[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20180034961A1 - Semiautomated Relay Method and Apparatus - Google Patents

Semiautomated Relay Method and Apparatus Download PDF

Info

Publication number
US20180034961A1
US20180034961A1 US15/729,069 US201715729069A US2018034961A1 US 20180034961 A1 US20180034961 A1 US 20180034961A1 US 201715729069 A US201715729069 A US 201715729069A US 2018034961 A1 US2018034961 A1 US 2018034961A1
Authority
US
United States
Prior art keywords
text
voice
relay
user
call
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/729,069
Inventor
Robert M. Engelke
Kevin R. Colwell
Christopher Engelke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultratec Inc
Original Assignee
Ultratec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/632,257 external-priority patent/US10389876B2/en
Priority claimed from US14/953,631 external-priority patent/US10878721B2/en
Priority claimed from US15/171,720 external-priority patent/US10748523B2/en
Priority to US15/729,069 priority Critical patent/US20180034961A1/en
Application filed by Ultratec Inc filed Critical Ultratec Inc
Publication of US20180034961A1 publication Critical patent/US20180034961A1/en
Priority to US15/982,239 priority patent/US20180270350A1/en
Priority to US16/147,029 priority patent/US11741963B2/en
Priority to US16/422,662 priority patent/US20190312973A1/en
Assigned to ULTRATEC, INC. reassignment ULTRATEC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COLWELL, KEVIN R., ENGELKE, CHRISTOPHER R., ENGELKE, ROBERT M.
Priority to US16/537,196 priority patent/US10917519B2/en
Priority to US16/564,393 priority patent/US20200007679A1/en
Priority to US16/740,582 priority patent/US20200153958A1/en
Priority to US16/740,574 priority patent/US11664029B2/en
Priority to US16/842,231 priority patent/US20200244800A1/en
Priority to US16/858,201 priority patent/US20200252507A1/en
Priority to US17/018,634 priority patent/US11368581B2/en
Priority to US17/092,907 priority patent/US20210058510A1/en
Priority to US17/232,681 priority patent/US20210234959A1/en
Priority to US17/321,222 priority patent/US20210274039A1/en
Priority to US17/486,375 priority patent/US20220014623A1/en
Priority to US17/486,053 priority patent/US20220014622A1/en
Priority to US17/498,386 priority patent/US20220028394A1/en
Priority to US17/585,147 priority patent/US20220150353A1/en
Priority to US17/847,809 priority patent/US20230005484A1/en
Priority to US18/144,644 priority patent/US12136425B2/en
Priority to US18/219,889 priority patent/US20230352028A1/en
Priority to US18/545,214 priority patent/US12136426B2/en
Priority to US18/396,162 priority patent/US20240127823A1/en
Priority to US18/396,138 priority patent/US20240127822A1/en
Priority to US18/736,743 priority patent/US20240321278A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42391Systems providing special services or facilities to subscribers where the subscribers are hearing-impaired persons, e.g. telephone devices for the deaf
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/22Procedures used during a speech recognition process, e.g. man-machine dialogue
    • G10L15/265
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/247Telephone sets including user guidance or feature selection means facilitating their use
    • H04M1/2474Telephone terminals specially adapted for disabled people
    • H04M1/2475Telephone terminals specially adapted for disabled people for a hearing impaired user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72475User interfaces specially adapted for cordless or mobile telephones specially adapted for disabled users
    • H04M1/72478User interfaces specially adapted for cordless or mobile telephones specially adapted for disabled users for hearing-impaired users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/16Communication-related supplementary services, e.g. call-transfer or call-hold
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/06Transformation of speech into a non-audible representation, e.g. speech visualisation or speech processing for tactile aids
    • G10L21/10Transforming into visible information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/7243User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality with interactive means for internal management of messages
    • H04M1/72433User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality with interactive means for internal management of messages for voice messaging, e.g. dictaphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/18Comparators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/40Electronic components, circuits, software, systems or apparatus used in telephone systems using speech recognition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/50Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
    • H04M3/53Centralised arrangements for recording incoming messages, i.e. mailbox systems
    • H04M3/533Voice mail systems
    • H04M3/53366Message disposing or creating aspects

Definitions

  • the present invention relates to relay systems for providing voice-to-text captioning for hearing impaired users and more specifically to a relay system that uses automated voice-to-text captioning software to transcribe voice-to-text.
  • An industry has evolved for providing communication services to assisted users whereby voice communications from a person linked to an assisted user's communication device are transcribed into text and displayed on an electronic display screen for the assisted user to read during a communication session.
  • the assisted user's device will also broadcast the linked person's voice substantially simultaneously as the text is displayed so that an assisted user that has some ability to hear can use their hearing sense to discern most phrases and can refer to the text when some part of a communication is not understandable from what was heard.
  • U.S. Pat. No. 6,603,835 (hereinafter “the '835 patent) titled “System For Text Assisted Telephony” teaches several different types of relay systems for providing text captioning services to assisted users.
  • One captioning service type is referred to as a single line system where a relay is linked between an AU's device and a telephone used by the person communicating with the AU.
  • a hearing user HU
  • one line links an HU device to the relay and one line (e.g., the single line) links the relay to the AU device.
  • Voice from the HU is presented to a relay call assistant (CA) who transcribes the voice-to-text and then the text is transmitted to the AU device to be displayed.
  • CA relay call assistant
  • the HU's voice is also, in at least some cases, carried or passed through the relay to the AU device to be broadcast to the AU.
  • the other captioning service type described in the '835 patent is a two line system.
  • a hearing user's telephone is directly linked to an assisted user's device for voice communications between the AU and the HU.
  • the AU can select a captioning control button on the AU device to link to the relay and provide the HU's voice to the relay on a first line.
  • a relay CA listens to the HU voice message and transcribes the voice message into text which is transmitted back to the AU device on a second line to be displayed to the AU.
  • One of the primary advantages of the two line system over one line systems is that the AU can add captioning to an on-going call.
  • the primary factors for determining the value of the system are accuracy, speed and cost to provide the service.
  • accuracy text should accurately represent voice messages from hearing users so that an AU reading the text has an accurate understanding of the meaning of the message. Erroneous words provide inaccurate messages and also can cause confusion for an AU reading transcribed text.
  • CAs need to be able to speak clearly and need to be able to type quickly and accurately.
  • CA jobs are also relatively high pressure jobs and therefore turnover is relatively high when compared jobs in many other industries which further increases the costs associated with operating a relay.
  • CAs voice-to-text transcription software by relay CAs.
  • early relay systems required CAs to type all of the text presented via an AU device.
  • CAs To present text as quickly as possible after broadcast of an associated voice message, highly skilled typists were required.
  • people routinely speak at a rate between 110 and 150 words per minute.
  • a conversation between an AU and an HU typically only about half the words voiced have to be transcribed (e.g., the AU typically communicates to the HU during half of a session).
  • a CA listens to an HU's voice and revoices the HU's voice message to a computer running the trained software.
  • the software being trained to the CA's voice, transcribes the re-voiced message much more quickly than a typist can type text and with only minimal errors.
  • revoicing techniques for generating text are easier and much faster to learn than high speed typing and therefore training costs and the general costs associated with CA's are reduced appreciably.
  • voice-to-text transcription can be expedited appreciably using revoicing techniques.
  • a hybrid semi-automated system can be provided where, when acceptable accuracy can be achieved using automated transcription software, the system can automatically use the transcription software to transcribe HU voice messages to text and when accuracy is unacceptable, the system can patch in a human CA to transcribe voice messages to text.
  • the number of CAs required at a large relay facility may be reduced appreciably (e.g., 30% or more) where software can accomplish a large portion of transcription to text.
  • the software may train to an HU's voice and the vagaries associated with voice messages received over a phone line (e.g., the limited 300 to 3000 Hz range) during a first portion of a call so that during a later portion of the call accuracy is particularly good. Training may occur while and in parallel with a CA manually (e.g., via typing, revoicing, etc.) transcribing voice-to-text and, once accuracy is at an acceptable threshold level, the system may automatically delink from the CA and use the text generated by the software to drive the AU display device.
  • a CA manually (e.g., via typing, revoicing, etc.) transcribing voice-to-text and, once accuracy is at an acceptable threshold level, the system may automatically delink from the CA and use the text generated by the software to drive the AU display device.
  • a relay processor may be capable of performing automated voice recognition processes and therefore that can handle the automated voice recognition part of a triage process involving a call assistant.
  • a relay processor or an assisted user's device processor may be able to perform the automated transcription portion of a hybrid process.
  • an assisted user's device will perform automated transcription in parallel with a relay assistant generating call assistant generated text where the relay and assisted user's device cooperate to provide text and assess when the call assistant should be cut out of a call with the automated text replacing the call assistant generated text.
  • a hearing user's communication device is a computer or includes a processor capable of transcribing voice messages to text
  • a hearing user's device may generated automated text in parallel with a call assistant generating text and the hearing user's device and the relay may cooperate to provide text and determine when the call assistant should be cut out of the call.
  • the call assistant generated text may be used to assess accuracy of the automated text for the purpose of determining when the call assistant should be cut out of the call.
  • the call assistant generated text may be used to train the automated voice-to-text software or engine on the fly to expedite the process of increasing accuracy until the call assistant can be cut out of the call.
  • an assisted user's device stores a hearing user's voice messages and, when captioning is initiated or a catch up request is received, the recorded voice messages are used to either automatically generate text or to have a call assistant generate text corresponding to the recorded voice messages.
  • a voice model for the hearing user that can be used subsequently to tune automated software to transcribe the hearing user's voice may be stored along with a voice profile for the hearing user that can be used to distinguish the hearing user's voice from other hearing users. Thereafter, when the hearing user calls an assisted user's device again, the profile can be used to identify the hearing user and the voice model can be used to tune the software so that the automated software can immediately start generating highly accurate or at least relatively more accurate text corresponding to the hearing user's voice messages.
  • FIG. 1 is a schematic showing various components of a communication system including a relay that may be used to perform various processes and methods according to at least some aspects of the present invention
  • FIG. 2 is a schematic of the relay server shown in FIG. 1 ;
  • FIG. 3 is a flow chart showing a process whereby an automated voice-to-text engine is used to generate automated text in parallel with a call assistant generating text where the automated text is used instead of call assistant generated text to provide captioning an assisted user's device once an accuracy threshold has been exceeded;
  • FIG. 4 is a sub-process that maybe substituted for a portion of the process shown in FIG. 3 whereby a control assistant can determine whether or not the automated text takes over the process after the accuracy threshold has been achieved;
  • FIG. 5 is a sub-process that may be added to the process shown in FIG. 3 wherein, upon an assisted user's requesting help, a call is linked to a second call assistant for correcting the automated text;
  • FIG. 6 is a process whereby an automated voice-to-text engine is used to fill in text for a hearing user's voice messages that are skipped over by a call assistant when an assisted user requests instantaneous captioning of a current message;
  • FIG. 7 is a process whereby automated text is automatically used to fill in captioning when transcription by a call assistant lags behind a hearing user's voice messages by a threshold duration;
  • FIG. 8 is a flow chart illustrating a process whereby text is generated for a hearing user's voice messages that precede a request for captioning services
  • FIG. 9 is a flow chart illustrating a process whereby voice messages prior to a request for captioning service are automatically transcribed to text by an automated voice-to-text engine;
  • FIG. 10 is a flow chart illustrating a process whereby an assisted user's device processor performs transcription processes until a request for captioning is received at which point the assisted user's device presents texts related to hearing user voice messages prior to the request and ongoing voice messages are transcribed via a relay;
  • FIG. 11 is a flow chart illustrating a process whereby an assisted user's device processor generates automated text for a hear user's voice messages which is presented via a display to an assisted user and also transmits the text to a call assistant at a relay for correction purposes;
  • FIG. 12 is a flow chart illustrating a process whereby high definition digital voice messages and analog voice messages are handled differently at a relay;
  • FIG. 13 is a process similar to FIG. 12 , albeit where an assisted user also has the option to link to a call assistant for captioning service regardless of the type of voice message received;
  • FIG. 14 is a flow chart that may be substituted for a portion of the process shown in FIG. 3 whereby voice models and voice profiles are generated for frequent hearing user's that communicate with an assisted user where the models and profiles can be subsequently used to increase accuracy of a transcription process;
  • FIG. 15 is a flow chart illustrating a process similar to the sub-process shown in FIG. 14 where voice profiles and voice models are generated and stored for subsequent use during transcription;
  • FIG. 16 is a flow chart illustrating a sub-process that may be added to the process shown in FIG. 15 where the resulting process calls for training of a voice model at each of an assisted user's device and a relay;
  • FIG. 17 is a schematic illustrating a screen shot that may be presented via an assisted user's device display screen
  • FIG. 18 is similar to FIG. 17 , albeit showing a different screen shot
  • FIG. 19 is a process that may be performed by the system shown in FIG. 1 where automated text is generated for line check words and is presented to an assisted user immediately upon identification of the words;
  • FIG. 20 is similar to FIG. 17 , albeit showing a different screen shot
  • FIG. 21 is a flow chart illustrating a method whereby an automated voice-to-text engine is used to identify errors in call assistant generated text which can be highlighted and can be corrected by a call assistant;
  • FIG. 22 is an exemplary AU device display screen shot that illustrates visually distinct text to indicate non-textual characteristics of an HU voice signal to an assisted user;
  • FIG. 23 is an exemplary CA workstation display screen shot that shows how automated AVR text associated with an instantaneously broadcast word may be visually distinguished for an error correcting CA;
  • FIG. 24 shows an exemplary HU communication device with CA captioned HU text and AVR generated AU text presented as well as other communication information that is consistent with at least some aspects off the present disclosure
  • FIG. 25 is an exemplary CA workstation display screen shot similar to FIG. 23 , albeit where a CA has corrected an error and an HU voice signal playback has been skipped backward as a function of where the correction occurred;
  • FIG. 26 is a screen shot of an exemplary AU device display that presents CA captioned HU text as well as AVR engine generated AU text;
  • FIG. 27 is an illustration of an exemplary HU device that shows text corresponding to the HU's voice signal as well as an indication of which word in the text has been most recently presented to an AU;
  • FIG. 28 is a schematic diagram showing a relay captioning system that is consistent with at least some aspects of the present disclosure
  • FIG. 29 is a schematic diagram of a relay system that includes a text transcription quality assessment function that is consistent with at least some aspects of the present disclosure
  • FIG. 30 is similar to FIG. 29 , albeit showing a different relay system that includes a different quality assessment function
  • FIG. 31 is similar to FIG. 29 , albeit showing a third relay system that includes a third quality assessment function;
  • FIG. 32 is a flow chart illustrating a method whereby time stamps are assigned to HU voice segments which are then used to substantially synchronize text and voice presentation;
  • FIG. 33 is a schematic illustrating a caption relay system that may implement the method illustrated in FIG. 32 as well as other methods described herein;
  • FIG. 34 is a sub process that may be substituted for a portion of the FIG. 32 process where an Au device assigns a sequence of time stamps to a sequence of text segments;
  • FIG. 35 is another flow chart illustrating another method for assigning and using time stamps to synchronize text and HU voice broadcast;
  • FIG. 36 is a screen shot illustrating a CA interface where a prior word is selected to be rebroadcast
  • FIG. 37 is a screen shot similar to FIG. 36 , albeit of an Au device display showing an AU selecting a prior broadcast phrase for rebroadcast;
  • FIG. 38 is another sub process that may be substituted for a portion of the FIG. 32 method
  • FIG. 39 is a screen shot showing a CA interface where various inventive features are shown.
  • FIG. 40 is a screen shot illustrating another CA interface where low and high confidence text is presented in different columns to help a CA more easily distinguish between text likely to need correction and text that is less likely to need correction;
  • FIG. 41 is a flow chart illustrating a method of introducing errors in ASR generated text to text CA attention
  • FIG. 42 is a screen shot illustrating an AU interface including, in addition to text presentation, an HU video field and a CA signing field that is consistent with at least some aspects of the present disclosure
  • FIG. 43 is a screen shot illustrating yet another CA interface
  • FIG. 44 is another Au interface screen shot including scrolling text and an HU video window.
  • FIG. 45 is another CA interface screen shot showing a CA correction field, an ASR uncorrected text field and an intervening time field that is consistent with at least some aspects of the present disclosure.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computer and the computer can be a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers or processors.
  • exemplary is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
  • the disclosed subject matter may be implemented as a system, method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer or processor based device to implement aspects detailed herein.
  • article of manufacture (or alternatively, “computer program product”) as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media.
  • computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick).
  • a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network (LAN).
  • LAN local area network
  • an exemplary communication system 10 including an assisted user's (AU's) communication device 12 , a hearing user's (HU's) telephone or other type communication device 14 , and a relay 16 .
  • the AU's device 12 is linked to the HU's device 14 via any network connection capable of facilitating a voice call between the AU and the HU.
  • the link may be a conventional telephone line, a network connection such as an internet connection or other network connection, a wireless connection, etc.
  • AU device 12 includes a keyboard 20 , a display screen 18 and a handset 22 .
  • Keyboard 20 can be used to dial any telephone number to initiate a call and, in at least some cases, includes other keys or may be controlled to present virtual buttons via screen 18 for controlling various functions that will be described in greater detail below. Other identifiers such as IP addresses or the like may also be used in at least some cases to initiate a call.
  • Screen 18 includes a flat panel display screen for displaying, among other things, text transcribed from a voice message or signal generated using HU's device 14 , control icons or buttons, caption feedback signals, etc.
  • Handset 22 includes a speaker for broadcasting a hearing user's voice messages to an assisted user and a microphone for receiving a voice message from an assisted user for delivery to the hearing user's device 14 .
  • Assisted user device 12 may also include a second loud speaker so that device 12 can operate as a speaker phone type device.
  • device 12 further includes a processor and a memory for storing software run by the processor to perform various functions that are consistent with at least some aspects of the present disclosure.
  • Device 12 is also linked or is linkable to relay 16 via any communication network including a phone network, a wireless network, the internet or some other similar network, etc.
  • Hearing user's device 14 includes a communication device (e.g., a telephone) including a keyboard for dialing phone numbers and a handset including a speaker and a microphone for communication with other devices.
  • a communication device e.g., a telephone
  • device 14 may include a computer, a smart phone, a smart tablet, etc., that can facilitate audio communications with other devices.
  • Devices 12 and 14 may use any of several different communication protocols including analog or digital protocols, a VOIP protocol or others.
  • relay 16 includes, among other things, a relay server 30 and a plurality of call assistant work stations 32 , 34 , etc.
  • Each of the call assistant work stations 32 , 34 , etc. is similar and operates in a similar fashion and therefore only station 32 is described here in any detail.
  • Station 32 includes a display screen 50 , a keyboard 52 and a headphone/microphone headset 54 .
  • Screen 50 may be any type of electronic display screen for presenting information including text transcribed from a hearing user's voice signal or message. In most cases screen 50 will present a graphical user interface with on screen tools for editing text that appears on the screen.
  • One text editing system is described in U.S. Pat. No. 7,164,753 which issued on Jan. 16, 2007 which is titled “Real Time Transcription Correction System” and which is incorporated herein in its entirety.
  • Keyboard 52 is a standard text entry QUERTY type keyboard and can be used to type text or to correct text presented on displays screen 50 .
  • Headset 54 includes a speaker in an ear piece and a microphone in a mouth piece and is worn by a call assistant.
  • the headset enables a call assistant to listen to the voice of a hearing user and the microphone enables the call assistant to speak voice messages into the relay system such as, for instance, revoiced messages from a hearing user to be transcribed into text.
  • the hearing user's voice messages are presented to a call assistant via headset 54 and the call assistant revoices the messages into the relay system using headset 54 .
  • call assistant work station 32 may also include a foot pedal or other device for controlling the speed with which voice messages are played via headset 54 so that the call assistant can slow or even stop play of the messages while the assistant either catches up on transcription or correction of text.
  • server 30 is a computer system that includes, among other components, at least a first processor 56 linked to a memory or database 58 where software run by server 56 to facilitate various functions that are consistent with at least some aspects of the present disclosure is stored.
  • the software stored in memory 58 includes pre-trained call assistant voice-to-text transcription software 60 for each call assistant where call assistant specific software is trained to the voice of an associated call assistant thereby increasing the accuracy of transcription activities.
  • Naturally Speaking continuous speech recognition software by Dragon, Inc. may be pre-trained to the voice of a specific call assistant and then used to transcribe voice messages voiced by the call assistant into text.
  • a voice-to-text software program 62 that is not pre-trained to a CA's voice and instead that trains to any voice on the fly as voice messages are received is stored in memory 58 .
  • Naturally Speaking software that can train on the fly may be used for this purpose.
  • the automatic voice recognition software or system that trains to the HU voices will be referred to generally as an AVR engine at times.
  • each call is relatively expensive to facilitate. To this end, in order to meet required accuracy standards for text caption calls, each call requires a dedicated call assistant. While automated voice-to-text systems that would not require a call assistant have been contemplated, none has been implemented because of accuracy and speed problems.
  • One aspect of the present disclosure is related to a system that is semi-automated wherein a call assistant is used when accuracy of an automated system is not at required levels and the assistant is cut out of a call automatically or manually when accuracy of the automated system meets or exceeds accuracy standards or at the preference of an AU.
  • a call assistant will be assigned to every new call linked to a relay and the call assistant will transcribe voice-to-text as in an existing system.
  • server 30 to automatically transcribe the hearing user's voice messages to text (e.g., into “automated text”).
  • Server 30 compares corrected text generated by the call assistant to the automated text to identify errors in the automated text.
  • Server 30 uses identified errors to train the automated voice-to-text software to the voice of the hearing user.
  • the software trains to the hearing user's voice and accuracy increases over time as the software trains. At some point the accuracy increases until required accuracy standards are met.
  • server 30 is programmed to automatically cut out the call assistant and start transmitting the automated text to the assisted user's device 12 .
  • the system may provide a “Help” button, an “Assist” button or “Assistance Request” type button (see 68 in FIG. 1 ) to an assisted user so that, if the assisted user recognizes that the automated text has too many errors for some reason, the assisted user can request a link to a call assistant to increase transcription accuracy (e.g., generate an assistance request).
  • the help button may be a persistent mechanical button on the assisted user's device 12 .
  • the help button may be a virtual on screen icon (e.g., see 68 in FIG. 1 ) and screen 18 may be a touch sensitive screen so that contact with the virtual button can be sensed.
  • the button may only be presented after the system switches from providing call assistant generated text to an assisted user's device to providing automated text to the assisted user's device to avoid confusion (e.g., avoid a case where an assisted user is already receiving call assistant generated text but thinks, because of a help button, that even better accuracy can be achieved in some fashion).
  • call assistant generated text is displayed on an assisted user's device 12
  • no “help” button is presented and after automated text is presented, the “help” button is presented.
  • the help button is again removed from the assisted user's device display 18 to avoid confusion.
  • help and auto flags are each set to a zero value.
  • the help flag indicates that an assisted user has selected a help or assist button via the assisted user's device 12 because of a perception that too many errors are occurring in transcribed text.
  • the auto flag indicates that automated text accuracy has exceeded a standard threshold requirement. Zero values indicate that the help button has not been selected and that the standard requirement has yet to be met and one values indicate that the button has been selected and that the standard requirement has been met.
  • the hearing user's voice messages are transmitted to server 30 at relay 16 .
  • server 30 Upon receiving the hearing user's voice messages, server 30 checks the auto and help flags at blocks 76 and 84 , respectively. At least initially the auto flag will be set to zero at block 76 meaning that automated text has not reached the accuracy standard requirement and therefore control passes down to block 78 where the hearing user's voice messages are provided to a call assistant.
  • the call assistant listens to the hearing user's voice messages and generates text corresponding thereto by either typing the messages, revoicing the messages to voice-to-text transcription software trained to the call assistant's voice, or a combination of both. Text generated is presented on screen 50 and the call assistant makes corrections to the text using keyboard 52 and/or headset 54 at block 80 .
  • the call assistant generated text is transmitted to assisted user device 12 to be displayed for the assisted user on screen 18 .
  • the help flag will be set to zero indicating that the assisted user has not requested additional captioning assistance.
  • the “help” button 68 may not be presented to an assisted user as call assistant generated text is initially presented.
  • control passes to block 86 where the hearing user's voice messages are fed to voice-to-text software run by server 30 that has not been previously trained to any particular voice.
  • the software automatically converts the hearing user's voice-to-text generating automated text.
  • server 30 compares the call assistant generated text to the automated text to identify errors in the automated text.
  • server 30 uses the errors to train the voice-to-text software for the hearing user's voice.
  • server 30 modifies the software so that the next time the utterance that resulted in the error occurs, the software will generate the word or words that the call assistant generated for the utterance.
  • Other ways of altering or training the voice-to-text software are well known in the art and any way of training the software may be used at block 92 .
  • a virtual “help” button may also be presented via the assisted user's display 18 at this time.
  • the call assistant is delinked from the call and at block 102 the processor generated automated text is transmitted to the AU device to be presented on display screen 18 .
  • the hearing user's voice is continually received during a call and at block 76 , once the auto flag has been set to one, the lower portion of the left hand loop including blocks 78 , 80 and 82 is cut out of the process as control loops back up to block 74 .
  • a short delay (e.g., 5 to 10 seconds in most cases) between setting the flags at block 104 and stopping use of the automated text so that a new call assistant can be linked up to the call and start generating call assistant generated text prior to halting the automated text.
  • the call assistant is linked and generating text for at least a few seconds (e.g., 3 seconds)
  • the delay may either be a pre-defined delay or may have a case specific duration that is determined by server 30 monitoring call assistant generated text and switching over to the call assistant generated text once the call assistant is up to speed.
  • server 30 may store a call assistant identifier along with a call identifier for the call. Thereafter, if an assisted user requests help at block 94 , server 30 may be programmed to identify if the call assistant previously associated with the call is available (e.g. not handling another call) and, if so, may re-link to the call assistant at block 78 . In this manner, if possible, a call assistant that has at least some context for the call can be linked up to restart transcription services.
  • server 30 may, when a call assistant is re-linked to a call, start a second triage process to attempt to delink the call assistant a second time if a threshold accuracy level is again achieved. For instance, in some cases, midstream during a call, a second hearing user may start communicating with the assisted user via the hearing user's device. For instance, a child may yield the hearing user's device 14 to a grandchild that has a different voice profile causing the assisted user to request help from a call assistant because of perceived text errors.
  • server 30 may start training on the grandchild's voice and may eventually achieve the threshold level required. Once the threshold again occurs, the call assistant may be delinked a second time so that automated text is again fed to the assisted user's device.
  • text errors in automated text may be caused by temporary noise in one or more of the lines carrying the hearing user's voice messages to relay 16 .
  • automated text may again be a suitable option.
  • the triage process may again commence and if the threshold accuracy level is again exceeded, the call assistant may be delinked and the automated text may again be used to drive the assisted user's device 12 .
  • the threshold accuracy level may be the same each time through the triage process, in at least some embodiments the accuracy level may be changed each time through the process. For instance, the first time through the triage process the accuracy threshold may be 96%. The second time through the triage process the accuracy threshold may be raised to 98%.
  • the automated text accuracy exceeds the standard accuracy threshold, there may be a short transition time during which a call assistant on a call observes automated text while listening to a hearing user's voice message to manually confirm that the handover from call assistant generated text to automated text is smooth.
  • the call assistant may watch the automated text on her workstation screen 50 and may correct any errors that occur during the transition.
  • the call assistant may opt to retake control of the transcription process.
  • FIG. 4 One sub-process 120 that may be added to the process shown in FIG. 3 for managing a call assistant to automated text handoff is illustrated in FIG. 4 .
  • control may pass to block 122 in FIG. 4 .
  • a short duration transition timer e.g. 10-15 seconds
  • automated text is presented on the call assistant's display 50 .
  • an on screen “Retain Control” icon or virtual button is provided to the call assistant via the assistant's display screen 50 which can be selected by the call assistant to forego the handoff to the automated voice-to-text software.
  • control passes to block 132 where the help flag is set to one and then control passes back up to block 76 in FIG. 3 where the call assistant process for generating text continues as described above.
  • control passes to block 130 where the transition timer is checked. If the transition timer has not timed out control passes back up to block 124 . Once the timer times out at block 130 , control passes back to block 98 in FIG. 3 where the auto flag is set to one and the call assistant is delinked from the call.
  • server 30 itself may be programmed to sense when transcription accuracy has degraded substantially and the server 30 may cause a re-link to a call assistant to increase accuracy of the text transcription. For instance, server 30 may assign a confidence factor to each word in the automated text based on how confident the server is that the word has been accurately transcribed. The confidence factors over a most recent number of words (e.g., 100) or a most recent period (e.g., 45 seconds) may be averaged and the average used to assess an overall confidence factor for transcription accuracy.
  • a most recent number of words e.g., 100
  • a most recent period e.g. 45 seconds
  • server 30 may re-link to a call assistant to increase transcription accuracy.
  • the automated process for re-linking to a call assistant may be used instead of or in addition to the process described above whereby an assisted user selects the “help” button to re-link to a call assistant.
  • partial call assistance may be provided instead of full call assistant service.
  • a call assistant instead of adding a call assistant that transcribes a hearing user's voice messages and then corrects errors, a call assistant may be linked only for correction purposes.
  • the idea here is that while software trained to a hearing user's voice may generate some errors, the number of errors after training will still be relatively small in most cases even if objectionable to an assisted user.
  • call assistants may be trained to have different skill sets where highly skilled and relatively more expensive to retain call assistants are trained to re-voice hearing user voice messages and correct the resulting text and less skilled call assistants are trained to simply make corrections to automated text.
  • initially all calls may be routed to highly skilled revoicing or “transcribing” call assistants and all re-linked calls may be routed to less skilled “corrector” call assistants.
  • a sub-process 134 that may be added to the process of FIG. 3 for routing re-linked calls to a corrector call assistant is shown in FIG. 5 .
  • decision block 94 if an assisted user selects the help button, control may pass to block 136 in FIG. 3 where the call is linked to a second corrector call assistant.
  • the automated text is presented to the second call assistant via the call assistant's display 50 .
  • the second call assistant listens to the voice of the hearing user and observes the automated text and makes corrections to errors perceived in the text.
  • server 30 transmits the corrected automated text to the assisted user's device for display via screen 18 . After block 142 control passes back up to block 76 in FIG. 2 .
  • call assistant's transcription to text may fall behind the hearing user's voice message stream by a substantial amount. For instance, where a hearing user is speaking quickly, is using odd vocabulary, and/or has an unusual accent that is hard to understand, call assistant transcription may fall behind a voice message stream by 20 seconds, 40 seconds or more.
  • an assisted user can perceive that presented text has fallen far behind broadcast voice messages from a hearing user based on memory of recently broadcast voice message content and observed text. For instance, an assisted user may recognize that currently displayed text corresponds to a portion of the broadcast voice message that occurred thirty seconds ago.
  • some captioning delay indicator may be presented via an assisted user's device display 18 . For instance, see FIG. 17 where captioning delay is indicated in two different ways on a display screen 18 . First, text 212 indicates an estimated delay in seconds (e.g., 24 second delay). Second, at the end of already transcribed text 214 , blanks 216 for words already voiced but yet to be transcribed may be presented to give an assisted user a sense of how delayed the captioning process has become.
  • the assisted user may want the text captioning to skip ahead to the currently broadcast voice message. For instance, if an assisted user had difficulty hearing the most recent five seconds of a hearing user's voice message and continues to have difficulty hearing but generally understood the preceding 25 seconds, the assisted user may want the captioning process to be re-synced with the current hearing user's voice message so that the assisted user's understanding of current words is accurate.
  • the assisted user could not understand the most recent 5 seconds of broadcast voice message, a re-sync with the current voice message would leave the assisted user with at least some void in understanding the conversation (e.g., at least the most recent 5 seconds of misunderstood voice message would be lost).
  • server 30 may run automated voice-to-text software on a hearing user's voice message simultaneously with a call assistant generating text from the voice message and, when an assisted user requests a “catch-up” or “re-sync” of the transcription process to the current voice message, server 30 may provide “fill in” automated text corresponding to the portion of the voice message between the most recent call assistant generated text and the instantaneous voice message which may be provided to the assisted user's device for display and also, optionally, to the call assistant's display screen to maintain context for the call assistant.
  • the fill in automated text may have some errors, the fill in text will be better than no text for the associated period and can be referred to by the assisted user to better understand the voice messages.
  • the call assistant may correct any errors in the fill in text. This correction and any error correction by a call assistant for that matter may be made prior to transmitting text to the assisted user's device or subsequent thereto. Where corrected text is transmitted to an assisted user's device subsequent to transmission of the original error prone text, the assisted user's device corrects the errors by replacing the erroneous text with the corrected text.
  • server 30 may only present automated fill in text to an assisted user corresponding to a pre-defined duration period (e.g., 8 seconds) that precedes the time when the re-sync request occurs. For instance, consistent with the example above where call assistant captioning falls behind by thirty seconds, an assisted user may only request re-sync at the end of the most recent five seconds as inability to understand the voice message may only be an issue during those five seconds. By presenting the most recent eight seconds of automated text to the assisted user, the user will have the chance to read text corresponding to the misunderstood voice message without being inundated with a large segment of automated text to view. Where automated fill in text is provided to an assisted user for only a pre-defined duration period, the same text may be provided for correction to the call assistant.
  • a pre-defined duration period e.g. 8 seconds
  • a method 190 by which an assisted user requests a re-sync of the transcription process to current voice messages when call assistant generated text falls behind current voice messages is illustrated.
  • a hearing user's voice messages are received at relay 16 .
  • control passes down to each of blocks 194 and 200 where two simultaneous sub-processes occur in parallel.
  • the hearing user's voice messages are stored in a rolling buffer.
  • the rolling buffer may, for instance, have a two minute duration so that the most recent two minutes of a hearing user's voice messages are always stored.
  • a call assistant listens to the hearing user's voice message and transcribes text corresponding to the messages via re-voicing to software trained to the call assistant's voice, typing, etc.
  • the call assistant generated text is transmitted to assisted user's device 12 to be presented on display screen 18 after which control passes back up to block 192 . Text correction may occur at block 196 or after block 198 .
  • the hearing user's voice is fed directly to voice-to-text software run by server 30 which generates automated text at block 202 .
  • server 30 may compare the automated text to the call assistant generated text to identify errors and may use those errors to train the software to the hearing user's voice so that the automated text continues to get more accurate as a call proceeds.
  • controller 30 monitors for a catch up or re-sync command received via the assisted user's device 12 (e.g., via selection of an on-screen virtual “catch up” button 220 , see again FIG. 17 ). Where no catch up or re-sync command has been received, control passes back up to block 192 where the process described above continues to cycle.
  • control passes to block 206 where the buffered voice messages are skipped and a current voice message is presented to the ear of the call assistant to be transcribed.
  • the automated text corresponding to the skipped voice message segment is filled in to the text on the call assistant's screen for context and at block 210 the fill in text is transmitted to the assisted user's device for display.
  • the fill in text may be visually distinguished on the assisted user's screen and/or on the call assistant's screen. For instance, fill in text may be highlighted, underlined, bolded, shown in a distinct font, etc. For example, see FIG. 18 that shows fill in text 222 that is underlined to visually distinguish. See also that the captioning delay 212 has been updated.
  • fill in text corresponding to voice messages that occur after or within some pre-defined period prior to a re-sync request may be distinguished in yet a third way to point out the text corresponding to the portion of a voice message that the assisted user most likely found interesting (e.g., the portion that prompted selection of the re-sync button). For instance, where 24 previous seconds of text are filled in when a re-sync request is initiated, all 24 seconds of fill in text may be underlined and the 8 seconds of text prior to the re-sync request may also be highlighted in yellow. See in FIG. 18 that some of the fill in text is shown in a phantom box 226 to indicate highlighting.
  • server 30 may be programmed to automatically determine when call assistant generated text substantially lags a current voice message from a hearing user and server 30 may automatically skip ahead to re-sync a call assistant with a current message while providing automated fill in text corresponding to intervening voice messages. For instance, server 30 may recognize when call assistant generated text is more than thirty seconds behind a current voice message and may skip the voice messages ahead to the current message while filling in automated text to fill the gap. In at least some cases this automated skip ahead process may only occur after at least some (e.g., 2 minutes) training to a hearing user's voice so ensure that minimal errors are generated in the fill in text.
  • server 30 may be programmed to automatically determine when call assistant generated text substantially lags a current voice message from a hearing user and server 30 may automatically skip ahead to re-sync a call assistant with a current message while providing automated fill in text corresponding to intervening voice messages. For instance, server 30 may recognize when call assistant generated text is more than thirty seconds behind a current voice message and may skip the
  • a method 150 for automatically skipping to a current voice message in a buffer when a call assistant falls to far behind is shown in FIG. 6 .
  • a hearing user's voice messages are received at relay 16 .
  • control passes down to each of blocks 154 and 162 where two simultaneous sub-processes occur in parallel.
  • the hearing user's voice messages are stored in a rolling buffer.
  • a call assistant listens to the hearing user's voice message and transcribes text corresponding to the messages via re-voicing to software trained to the call assistant's voice, typing, etc., after which control passes to block 170 .
  • the hearing user's voice is fed directly to voice-to-text software run by server 30 which generates automated text at block 164 .
  • server 30 may compare the automated text to the call assistant generated text to identify errors and may use those errors to train the software to the hearing user's voice so that the automated text continues to get more accurate as a call proceeds.
  • controller 30 monitors how far call assistant text transcription is behind the current voice message and compares that value to a threshold value. If the delay is less than the threshold value, control passes down to block 170 . If the delay exceeds the threshold value, control passes to block 168 where server 30 uses automated text from block 164 to fill in the call assistant generated text and skips the call assistant up to the current voice message. After block 168 control passes to block 170 .
  • the text including the call assistant generated text and the fill in text is presented to the call assistant via display screen 50 and the call assistant makes any corrections to observed errors.
  • the text is transmitted to assisted user's device 12 and is displayed on screen 18 .
  • uncorrected text may be transmitted to and displayed on device 12 and corrected text may be subsequently transmitted and used to correct errors in the prior text in line on device 12 .
  • control passes back up to block 152 where the process described above continues to cycle.
  • Automatically generated text to fill in when skipping forward may be visually distinguished (e.g., highlighted, underlined, etc.)
  • the automated catch up text may be presented at a rate that is faster (e.g., two to three times faster) than the hearing user's rate of speaking so that catch up is rapid without the oldest catch up text running off the call assistant's or assisted user's displays.
  • the system may automatically fill in text and only present the most recent 10 seconds or so of the automatic fill in text to the CA for correction so that the assisted user has corrected text corresponding to a most recent period as quickly as possible.
  • the CA generated text is substantially delayed, much of the fill in text would run off a typical assisted user's device display screen when presented so making corrections to that text would make little sense as the assisted user that requests catch up text is typically most interested in text associated with the most recent HU voice signal.
  • Many assisted user's devices can be used as conventional telephones without captioning service or as assisted user devices where captioning is presented and voice messages are broadcast to an assisted user.
  • the idea here is that one device can be used by hearing impaired persons and persons that have no hearing impairment and that the overall costs associated with providing captioning service can be minimized by only using captioning when necessary.
  • a hearing impaired person may not need captioning service all of the time. For instance, a hearing impaired person may be able to hear the voice of a person that speaks loudly fairly well but may not be able to hear the voice of another person that speaks more softly. In this case, captioning would be required when speaking to the person with the soft voice but may not be required when speaking to the person with the loud voice.
  • an impaired person may hear better when well rested but hear relatively more poorly when tired so captioning is required only when the person is tired.
  • an impaired person may hear well when there is minimal noise on a line but may hear poorly if line noise exceeds some threshold. Again, the impaired person would only need captioning some of the time.
  • an assisted user can select either a mechanical or virtual “Caption” icon or button (see again 68 in FIG. 1 ) to link the call to a relay, provide a hearing user's voice messages to the relay and commence captioning service.
  • a mechanical or virtual “Caption” icon or button see again 68 in FIG. 1
  • One problem with starting captioning only after an assisted user experiences problems hearing words is that at least some words (e.g., words that prompted the assisted user to select the caption button in the first place) typically go unrecognized and therefore the assisted user is left with a void in their understanding of a conversation.
  • One solution to the problem of lost meaning when words are not understood just prior to selection of a caption button is to store a rolling recordation of a hearing user's voice messages that can be transcribed subsequently when the caption button is selected to generate “fill in” text. For instance, the most recent 20 seconds of a hearing user's voice messages may be recorded and then transcribed only if the caption button is selected.
  • the relay generates text for the recorded message either automatically via software or via revoicing or typing by a call assistant or via a combination of both.
  • the call assistant or the automated voice recognition software starts transcribing current voice messages.
  • the text from the recording and the real time messages is transmitted to and presented via assisted user's device 12 which should enable the assisted user to determine the meaning of the previously misunderstood words.
  • the rolling recordation of hearing user's voice messages may be maintained by the assisted user's device 12 (see again FIG. 1 ) and that recordation may be sent to the relay for immediate transcription upon selection of the caption button.
  • a process 230 that may be performed by the system of FIG. 1 to provide captioning for voice messages that occur prior to a request for captioning service is illustrated.
  • a hearing user's voice messages are received during a call with an assisted user at the assisted user's device 12 .
  • the assisted user's device 12 stores a most recent 20 seconds of the hearing user's voice messages on a rolling basis. The 20 seconds of voice messages are stored without captioning initially in at least some embodiments.
  • the assisted user's device monitors for selection of a captioning button (not shown). If the captioning button has not been selected, control passes back up to block 232 where blocks 232 , 234 and 236 continue to cycle.
  • assisted user's device 12 establishes a communication link to relay 16 .
  • assisted user's device 12 transmits the stored 20 seconds of the hearing user's voice messages along with current ongoing voice messages from the hearing user to relay 16 .
  • a call assistant and/or software at the relay transcribes the voice-to-text, corrections are made (or not), and the text is transmitted back to device 12 to be displayed.
  • assisted user's device 12 receives the captioned text from the relay 16 and at block 244 the received text is displayed or presented on the assisted user's device display 18 .
  • text corresponding to the 20 seconds of hearing user voice messages prior to selection of the caption button may be visually distinguished (e.g., highlighted, bolded, underlined, etc.) from other text in some fashion.
  • a relay server process 270 whereby automated software transcribes voice messages that occur prior to selection of a caption button and a call assistant at least initially captions current voice messages is illustrated.
  • server 30 receives a hearing user's voice messages including current ongoing messages as well as the most recent 20 seconds of voice messages that had been stored by assisted user's device 12 (see again FIG. 1 ).
  • control passes to each of blocks 274 and 278 where two simultaneous processes commence in parallel.
  • the stored 20 seconds of voice messages are provided to voice-to-text software run by server 30 to generate automated text and at block 276 the automated text is transmitted to the assisted user's device 12 for display.
  • the current or real time hearing user's voice messages are provided to a call assistant and at block 280 the call assistant transcribes the current voice messages to text.
  • the call assistant generated text is transmitted to an assisted user's device at block 282 where the text is displayed along with the text transmitted at block 276 .
  • the assisted user receives text corresponding to misunderstood voice messages that occur just prior to the assisted user requesting captioning.
  • One other advantage of this system is that when captioning starts, the call assistant is not starting captioning with an already existing backlog of words to transcribe and instead automated software is used to provide the prior text.
  • an assisted user's device may link via the Internet or the like to a third party provider that can receive voice messages and transcribe those messages, at least somewhat accurately, to text.
  • a third party provider that can receive voice messages and transcribe those messages, at least somewhat accurately, to text.
  • real time transcription where accuracy needs to meet a high accuracy standard would still be performed by a call assistant or software trained to a specific voice while less accuracy sensitive text may be generated by the third party provider, at least some of the time for free, and transmitted back to the assisted user's device for display.
  • the assisted user's device 12 itself may run voice-to-text software that could be used to at least somewhat accurately transcribe voice messages to text where the text generated by the assisted user's device would only be provided in cases where accuracy sensitivity is less than normal such as where rolling voice messages prior to selection of a caption icon to initiate captioning are to be transcribed.
  • FIG. 10 shows another method 300 for providing text for voice messages that occurred prior to a caption request, albeit where an assisted user's device generates the pre-request text as opposed to a relay.
  • a hearing user's voice messages are received at an assisted user's device 12 .
  • the assisted user's device 12 runs voice-to-text software that, in at least some embodiments, trains on the fly to the voice of a linked hearing user and generates caption text.
  • on the fly training may include assigning a confidence factor to each automatically transcribed word and only using text that has a high confidence factor to train a voice model for the hearing user. For instance, only text having a confidence factor greater than 95% may be used for automatic training purposes.
  • confidence factors may be assigned based on many different factors or algorithms, many of which are well known in the automatic voice recognition art.
  • the caption text generated by the assisted user's device 12 is not displayed to the assisted user.
  • control simply routes back up to block 310 .
  • the assisted user's device links to a relay and at block 320 the hearing user's ongoing voice messages are transmitted to the relay.
  • the assisted user's device receives the transcribed text from the relay and at block 324 the text is displayed. After block 324 control passes back up to block 320 where the sub-loop including blocks 320 , 322 and 324 continues to cycle.
  • the assisted user's device instead of the assisted user's device storing the last 20 seconds of a hearing user's voice signal and transcribing that voice signal to text after the assisted user requests transcription, the assisted user's device constantly runs an ASR engine behind the scenes to generate automated engine text which is stored without initially being presented to the assisted user. Then, when the assisted user requests captioning or transcription, the most recently transcribed text can be presented via the assisted user's device display immediately or via rapid presentation (e.g., sequentially at a speed higher than the hearing user's speaking speed).
  • voice-to-text software run outside control of the relay may be used to generate at least initial text for a hearing user's voice and that the initial text may be presented via an assisted user's device.
  • a relay correction service may be provided. For instance, in addition to presenting text transcribed by the assisted user's device via a device display 18 , the text transcribed by the assisted user's device may also be transmitted to a relay 16 for correction.
  • the hearing user's voice messages may also be transmitted to the relay so that a call assistant can compare the text automatically generated by the assisted user's device to the HU's voice messages. At the relay, the call assistant can listen to the voice of the hearing person and can observe associated text. Any errors in the text can be corrected and corrected text blocks can be transmitted back to the assisted user's device and used for in line correction on the assisted user's display screen.
  • call assistants may be retained at a lesser cost to perform the call assistant tasks.
  • a related advantage is that the stress level on call assistants may be reduced appreciably by eliminating the need to both transcribe and correct at high speeds and therefore call assistant turnover at relays may be appreciably reduced which ultimately reduces costs associated with providing relay services.
  • a similar system may include an assisted user's device that links to some other third party provider transcription/caption server (e.g., in the “cloud”) to obtain initial captioned text which is immediately displayed to an assisted user and which is also transmitted to the relay for call assistant correction.
  • the call assistant corrections may be used by the third party provider to train the software on the fly to the hearing user's voice.
  • the assisted user's device may have three separate links, one to the hearing user, a second link to a third party provider server, and a third link to the relay.
  • the relay may create the link to the third party server for AVR services.
  • the relay would provide the HU's voice signal to the third party server, would receive text back from the server to transmit to the AU device and would receive corrections from the CA to transmit to each of the AU device and the server.
  • the third party server would then use the corrections to train the voice model to the HU voice and would use the evolving model to continue AVR transcription.
  • a method 360 whereby an assisted user's device transcribes a hearing user's voice to text and where corrections are made to the text at a relay is illustrated.
  • a hearing user's voice messages are received at an assisted user's device 12 (see also again FIG. 1 ).
  • the assisted user's device runs voice-to-text software to generate text from the received voice messages and at block 366 the generated text is presented to the assisted user via display 18 .
  • the transcribed text is transmitted to the relay 16 and at block 372 the text is presented to a call assistant via the call assistant's display 50 .
  • the call assistant corrects the text and at block 376 corrected blocks of text are transmitted to the assisted user's device 12 .
  • the assisted user's device 12 uses the corrected blocks to correct the text errors via in line correction.
  • the assisted user's device uses the errors, the corrected text and the voice messages to train the captioning software to the hearing user's voice.
  • a hearing user's device may include a processor that runs transcription software to generate text corresponding to the hearing user's voice messages.
  • device 14 may, instead of including a simple telephone, include a computer that can run various applications including a voice-to-text program or may link to some third party real time transcription software program (e.g., software run by a third party server in the “cloud”) to obtain an initial text transcription substantially in real time.
  • the text will often have more errors than allowed by the standard accuracy requirements.
  • the text and the hearing user's voice messages are transmitted to relay 16 where a call assistant listens to the voice messages, observes the text on screen 18 and makes corrections to eliminate transcription errors.
  • the corrected blocks of text are transmitted to the assisted user's device for display.
  • the corrected blocks may also be transmitted back to the hearing user's device for training the captioning software to the hearing user's voice.
  • the text transcribed by the hearing user's device and the hearing user's voice messages may either be transmitted directly from the hearing user's device to the relay or may be transmitted to the assisted user's device 12 and then on to the relay.
  • the voice messages and text may also be transmitted directly to the assisted user's device for immediate broadcast and display and the corrected text blocks may be subsequently used for in line correction.
  • the caption request option may be supported so that an assisted user can initiate captioning during an on-going call at any time by simply transmitting a signal to the hearing user's device instructing the hearing user's device to start the captioning process.
  • the help request option may be supported.
  • the automated text may be presented via the assisted user's device and, if the assisted user perceives that too many text errors are being generated, the help button may be selected to cause the hearing user's device or the assisted user's device to transmit the automated text to the relay for call assistant correction.
  • voice signal being transcribed can be a relatively high quality voice signal.
  • a standard phone voice signal has a range of frequencies between 300 and about 3000 Hertz which is only a fraction of the frequency range used by most voice-to-text transcription programs and therefore, in many cases, automated transcription software does only a poor job of transcribing voice signals that have passed through a telephone connection.
  • the frequency range of voice messages can be optimized for automated transcription.
  • the frequency range of the messages is relatively large and accuracy can be increased appreciably.
  • a hearing user's computer can send digital voice messages to a third party transcription server accuracy can be increased appreciably.
  • the link between an assisted user's device 12 and a hearing user's device 14 may be either a standard analog phone type connection or may be a digital connection depending on the capabilities of the hearing user's device that links to the assisted user's device.
  • a first call may be analog and a second call may be digital.
  • digital voice messages have a greater frequency range and therefore can be automatically transcribed more accurately than analog voice messages in many cases, it has been recognized that a system where automated voice-to-text program use is implemented on a case by case basis depending upon the type of voice message received (e.g., digital or analog) would be advantageous.
  • the relay may automatically link to a call assistant for full call assistant transcription service where the call assistant transcribes and corrects text via revoicing and keyboard manipulation and where the relay receives a high definition digital voice message for transcription, the relay may run an automated voice-to-text transcription program to generate automated text.
  • the automated text may either be immediately corrected by a call assistant or may only be corrected by an assistant after a help feature is selected by an assisted user as described above.
  • a hearing user's voice messages are received at a relay 16 .
  • relay server 30 determines if the received voice message is a high definition digital message or is an analog message. Where a high definition message has been received, control passes to block 406 where server 30 runs an automated voice-to-text program on the voice messages to generate automated text. At block 408 the automated text is transmitted to the assisted user's device 12 for display.
  • the call assistant listens to the voice messages and transcribes the messages into text. Error correction may also be performed at block 414 .
  • a help button may be presented that, when selected causes automated text to be presented to a call assistant for correction. In other cases automated text may be automatically presented to a call assistant for correction.
  • Another system is contemplated where all incoming calls to a relay are initially assigned to a call assistant for at least initial captioning where the option to switch to automated software generated text is only available when the call includes high definition audio and after accuracy standards have been exceeded.
  • all analog hearing user's voice messages would be captioned by a call assistant from start to finish and any high definition calls would cut out the call assistant when the standard is exceeded.
  • the assisted user's device 12 may be programmed to select either automated transcription when a high definition digital voice message is received or a relay with a call assistant when an analog voice message is received. Again, where device 12 runs an automated text program, call assistant correction may be automatic or may only start when a help button is selected.
  • FIG. 13 shows a process 430 whereby an assisted user's device 12 selects either automated voice-to-text software or a call assistant to transcribe based on the type (e.g., digital or analog) of voice messages received.
  • a hearing user's voice messages are received by an assisted user's device 12 .
  • a processor in device 12 determines if the assisted user has selected a help button. Initially no help button is selected as no text has been presented so at least initially control passes to block 436 .
  • the device processor determines if a hearing user's voice signal that is received is high definition digital or is analog.
  • the call assistant listens to the voice messages and generates text and at block 446 the text is transmitted to the assisted user's device 12 where the text is displayed at block 440 .
  • an assisted user initiates a captioning service
  • a previously developed voice model for a hearing user can be identified quickly
  • that model can be used without a new training process and the switchover from a full service call assistant to automated captioning may be expedited (e.g., instead of taking a minute or more the switchover may be accomplished in 15 seconds or less, in the time required to recognize or distinguish the hearing user's voice from other voices).
  • FIG. 14 shows a sub-process 460 that may be substituted for a portion of the process shown in FIG. 3 wherein voice-to-text templates or models along with related voice recognition profiles for callers are stored and used to expedite the handoff to automated transcription.
  • server 30 Prior to running sub-process 460 , referring again to FIG. 1 , server 30 is used to create a voice recognition database for storing hearing user device identifiers along with associated voice recognition profiles and associated voice-to-text models.
  • a voice recognition profile is a data construct that can be used to distinguish one voice from others.
  • voice recognition profiles are useful because more than one person may use a hearing user's device to call an assisted user. For instance in an exemplary case, an assisted user's son or daughter-in-law or one of any of three grandchildren may use device 14 to call an assisted user and therefore, to access the correct voice-to-text model, server 30 needs to distinguish which caller's voice is being received.
  • the voice recognition database will include several voice recognition profiles for each hearing user device identifier (e.g., each hearing user phone number).
  • a voice-to-text model includes parameters that are used to customize voice-to-text software for transcribing the voice of an associated hearing user to text.
  • the voice recognition database will include at least one voice model for each voice profile to be used by server 30 to automate transcription whenever a voice associated with the specific profile is identified. Data in the voice recognition database will be generated on the fly as an assisted user uses device 12 . Thus, initially the voice recognition database will include a simple construct with no device identifiers, profiles or voice models.
  • control may pass to block 464 in FIG. 13 where the hearing user's device identifier (e.g., a phone number, an IP address, a serial number of a hearing user's device, etc.) is received by server 30 .
  • the hearing user's device identifier e.g., a phone number, an IP address, a serial number of a hearing user's device, etc.
  • server 30 determines if the hearing user's device identifier has already been added to the voice recognition database.
  • server 30 trains a voice-to-text model using transcription errors. Again, the training will include comparing call assistant generated text to automated text to identify errors and using the errors to adjust model parameters so that the next time a word associated with an error is uttered by the hearing user, the software will identify the correct word.
  • server 30 trains a voice profile for the hearing user's voice so that the next time the hearing user calls, a voice profile will exist for the specific hearing user that can be used to identify the hearing user.
  • the server 30 stores the voice profile and voice model for the hearing user along with the hearing user device identifier for future use after which control passes back up to block 94 in FIG. 3 .
  • decision block 472 if the hearing user's voice does not match one of the previously stored voice profiles associated with the device identifier, control passes to block 482 where the process described above continues.
  • the voice model and voice profile for the hearing user are continually trained. Continual training enables the system to constantly adjust the model for changes in a hearing user's voice that may occur over time or when the hearing user experiences some physical condition (e.g., a cold, a raspy voice) that affects the sound of their voice.
  • the voice profile and voice model are stored with the HU device identifier for future use.
  • server 30 may adaptively change the order of voice profiles applied to a hearing user's voice during the voice recognition process. For instance, while server 30 may store five different voice profiles for five different hearing users that routinely connect to an assisted user's device, a first of the profiles may be used 80 percent of the time. In this case, when captioning is commenced, server 30 may start by using the first profile to analyze a hearing user's voice at block 472 and may cycle through the profiles from the most matched to the least matched.
  • server 30 may only store models and profiles for a limited number (e.g., 5) of frequent callers.
  • server 30 will track calls and automatically identify the most frequent hearing user devices used to link to the assisted user's device 12 over some rolling period (e.g., 1 month) and may only store models and profiles for the most frequent callers.
  • a separate counter may be maintained for each hearing user device used to link to the assisted user's device over the rolling period and different models and profiles may be swapped in and out of the stored set based on frequency of calls.
  • server 30 may query an assisted user for some indication that a specific hearing user is or will be a frequent contact and may add that person to a list for which a model and a profile should be stored for a total of up to five persons.
  • an assisted user's device 12 processor may maintain and use or at least have access to and use the voice recognition database to generate automated text without linking to a relay.
  • the assisted user's device runs the software to generate the automated text
  • the software for generating text can be trained any time the user's device receives a hearing user's voice messages without linking to a relay. For example, during a call between a hearing user and an assisted user on devices 14 and 12 , respectively, in FIG.
  • the voice messages of even a new hearing user can be used by the assisted user's device to train a voice-to-text model and a voice profile for the user.
  • the model prior to a caption request, as the model is trained and gets better and better, the model can be used to generate text that can be used as fill in text (e.g., text corresponding to voice messages that precede initiation of the captioning function) when captioning is selected.
  • FIG. 15 shows a process 500 that may be performed by an assisted user's device to train voice models and voice profiles and use those models and profiles to automate text transcription until a help button is selected.
  • an assisted user's device 12 processor receives a hearing user's voice messages as well as an identifier (e.g. a phone number) of the hearing user's device 14 .
  • the processor determines if the assisted user has selected the help button (e.g., indicating that current captioning includes too many errors). If an assisted user selects the help button at block 504 , control passes to block 522 where the assisted user's device is linked to a call assistant at relay 16 and the hearing user's voice is presented to the call assistant.
  • the assisted user's device receives text back from the relay and at block 534 the call assistant generated text is displayed on the assisted user's device display 18 .
  • the processor adaptively trains the voice model using perceived errors in the automated text.
  • one way to train the voice model is to generate text phonetically and thereafter perform a context analysis of each text word by looking at other words proximate the word to identify errors.
  • Another example of using context to identify errors is to look at several generated text words as a phrase and compare the phrase to similar prior phrases that are consistent with how the specific hearing user strings words together and identify any discrepancies as possible errors.
  • a voice profile for the hearing user is generated from the hearing user's voice messages so that the hearing user's voice can be recognized in the future.
  • blocks 528 , 512 , 514 and 516 enable the assisted user's device to train voice models and voice profiles for hearing users that call in anew where a new voice model can be used during an ongoing call and during future calls to provide generally accurate transcription.
  • the assisted user's device processor determine if the caption button on the assisted user's device has been selected. If captioning has not been selected control passes to block 502 where the process continues to cycle. Once captioning has been requested, control passes to block 520 where assisted user's device 12 displays the most recent 10 seconds of automated text and continuing automated text on display 18 .
  • different types of voice model training may be performed by different processors within the overall FIG. 1 system. For instance, while an assisted user's device is not linked to a relay, the assisted user's device cannot use any errors identified by a call assistance at the relay to train a voice model as no call assistant is generating errors. Nevertheless, the assisted user's device can use context and confidence factors to identify errors and train a model.
  • the relay server can use the call assistant identified errors and corrections to train a voice model which can, once sufficiently accurate, be transmitted to the assisted user's device where the new model is substituted for the old content based model or where the two models are combined into a single robust model in some fashion.
  • a context based voice model generated by the assisted user's device for the hearing user may be transmitted to the relay server and used as an initial model to be further trained using call assistant identified errors and corrections.
  • call assistant errors may be provided to the assisted user's device and used by that device to further train a context based voice model for the hearing user.
  • sub-process 550 that may be added to the process shown in FIG. 15 whereby an assisted user's device trains a voice model for a hearing user using voice message content and a relay server further trains the voice model generated by the assisted user's device using call assistant identified errors is illustrated.
  • sub-process 550 is intended to be performed in parallel with block 524 and 534 in FIG. 15 .
  • control also passes to block 552 in FIG. 16 .
  • the voice model for a hearing user that has been generated by an assisted user's device 12 is transmitted to relay 16 and at block 553 the voice model is used to modify a voice-to-text program at the relay.
  • the modified voice-to-text program is used to convert the hearing user's voice messages to automated text.
  • the call assistant generated text is compared to the automated text to identify errors.
  • the errors are used to further train the voice model.
  • control passes back to block 502 in FIG. 15 where the process described above continues to cycle.
  • control passes to block 562 wherein server 30 transmits the trained voice model to the assisted user's device for handling subsequent calls from the hearing user for which the model was trained.
  • the new model is stored in the database maintained by the assisted user's device.
  • server 30 may perform an automated process to cut out the call assistant and instead transmit automated text to the assisted user's device as described above in FIG. 1 .
  • the relay may be programmed to hand off control to the assisted user's device which would then use the newly trained and relatively more accurate model to perform automated transcription so that the relay could be disconnected.
  • one exemplary system may include an assisted user's device that attempts automated captioning with on the fly training first and, when automated captioning by the assisted user's device fails (e.g., a help icon is selected by an assisted user), the assisted user's device may link to a third party captioning system via the internet or the like where another more sophisticated voice-to-text captioning software is applied to generate automated text.
  • an assisted user's device that attempts automated captioning with on the fly training first and, when automated captioning by the assisted user's device fails (e.g., a help icon is selected by an assisted user), the assisted user's device may link to a third party captioning system via the internet or the like where another more sophisticated voice-to-text captioning software is applied to generate automated text.
  • the assisted user's device may link to a call assistant at the relay for call assistant captioning with simultaneous voice-to-text software transcription where errors in the automated text are used to train the software until a threshold accuracy requirement is met.
  • the system may automatically cut out the call assistant and switch to the automated text from the relay until the help button is again selected.
  • any learning or model training performed by one of the processors in the system may be provided to the next processor in the system to be used to expedite the training process.
  • an automated voice-to-text engine may be utilized in other ways to further enhance calls handled by a relay.
  • automated transcription software may be programmed to transcribe text all the time and identify specific words in a hearing user's voice messages to be presented via an assisted user's display immediately when identified to help the assisted user determine when a hearing user is confused by a communication delay. For instance, assume that transcription by a call assistant lags a hearing user's most current voice message by 20 seconds and that an assisted user is relying on the call assistant generated text to communicate with the hearing user.
  • the hearing user may be confused when the assisted user's response also lags a similar period and may generate a voice message questioning the status of the call. For instance, the hearing user may utter “Are you there?” or “Did you hear me?” or “Hello” or “What did you say?”. These phrases and others like them querying call status are referred to herein as “line check words” (LCWs) as the hearing user is checking the status of the call on the line.
  • LCWs line check words
  • the automated voice engine may search for line check words (e.g., 50 common line check phrases) in a hearing user's voice messages and present the line check words immediately via the assisted user's device during a call regardless of which words have been transcribed and presented to an assisted user.
  • line check words e.g., 50 common line check phrases
  • the assisted user seeing line check words or a phrase can verbally respond that the captioning service is lagging but catching up so that the parties can avoid or at least minimize confusion.
  • line check words When line check words are presented to an assisted user the words may be presented in-line within text being generated by a call assistant with intermediate blanks representing words yet to be transcribed by the call assistant. To this end, see again FIG. 17 that shows line check words “Are you still there?” in a highlighting box 590 at the end of intermediate blanks 216 representing words yet to be transcribed by the call assistant.
  • Line check words will, in at least some embodiments, be highlighted on the display or otherwise visually distinguished. In other embodiments the line check words may be located at some prominent location on the assisted user's display screen (e.g., in a line check box or field at the top or bottom of the display screen).
  • an automated voice engine to only search for specific words and phrases is that the engine can be tuned for those words and will be relatively more accurate than a general purpose engine that transcribes all words uttered by a hearing user.
  • the automated voice engine will be run by an assisted user's device processor while in other embodiments the automated voice engine may be run by the relay server with the line check words transmitted to the assisted user's device immediately upon generation and identification.
  • line check words may be presented in a visually distinguished fashion (e.g., highlighted, in different color, as a distinct font, as a uniquely sized font, etc.) so that an assisted user can distinguish those words from others and, where appropriate, provide a clarifying remark to a confused hearing user.
  • a process 600 that may be performed by an assisted user's device 12 and a relay to transcribe hearing user's voice messages and provide line check words immediately to an assisted user when transcription by a call assistant lags in illustrated.
  • a hearing user's voice messages are received by an assisted user's device 12 .
  • control continues along parallel sub-processes to blocks 604 and 612 .
  • the assisted user's device processor uses an automated voice engine to transcribe the hearing user's voice messages to text.
  • the voice engine may generate several errors and therefore likely would be insufficient for the purposes of providing captioning to the assisted user.
  • the engine is optimized and trained to caption a set (e.g., 10 to 100 ) line check words and/or phrases which the engine can do extremely accurately.
  • the assisted user's device processor searches for line check words in the automated text.
  • control passes back up to block 602 where the process continues to cycle.
  • control passes to block 610 where the line check word/phrase is immediately presented (see phrase “Are you still there?” in FIG. 18 ) to the assisted user via display 18 either in-line or in a special location and, in at least some cases, in a visually distinct manner.
  • the hearing user's voice messages are sent to a relay for transcription.
  • transcribed text is received at the assisted user's device back from the relay.
  • the text from the relay is used to fill in the intermediate blanks (see again FIG. 17 and also FIG. 18 where text has been filled in) on the assisted user's display.
  • an automated voice-to-text engine may operate all the time and may check for and indicate any potential errors in call assistant generated text so that the call assistant can determine if the errors should be corrected. For instance, in at least some cases, the automated voice engine may highlight potential errors in call assistant generated text on the call assistant's display screen inviting the call assistant to correct the potential errors. In these cases the call assistant would have the final say regarding whether or not a potential error should be altered.
  • FIG. 20 shows a screen shot of a call assistant's display screen where potential errors have been highlighted to distinguish the errors from other text.
  • Exemplary call assistant generated text is shown at 650 with errors shown in phantom boxes 652 , 654 and 656 that represent highlighting.
  • exemplary words generated by an automated voice-to-text engine are also presented to the call assistant in hovering fields above the potentially erroneous text as shown at 658 , 660 and 662 .
  • a call assistant can simply touch a suggested correction in a hovering field to make a correction and replace the erroneous word with the automated text suggested in the hovering field.
  • a call assistant instead touches an error, the call assistant can manually change the word to another word. If a call assistant does not touch an error or an associated corrected word, the word remains as originally transcribed by the call assistant.
  • An “Accept All” icon is presented at 669 that can be selected to accept all of the suggestions presented on a call assistant's display. All corrected words are transmitted to an assisted user's device to be displayed.
  • a method 700 by which a voice engine generates text to be compared to call assistant generated text and for providing a correction interface as in FIG. 20 for the call assistant is illustrated.
  • the hearing user's voice messages are provided to a relay.
  • control follows to two parallel paths to blocks 704 and 716 .
  • the hearing user's voice messages are transcribed into text by an automated voice-to-text engine run by the relay server before control passes to block 706 .
  • a call assistant transcribes the hearing user's voice messages to call assistant generated text.
  • the call assistant generated text is transmitted to the assisted user's device to be displayed.
  • the call assistant generated text is displayed on the call assistant's display screen 50 for correction after which control passes to block 706 .
  • the relay server compares the call assistant generated text to the automated text to identify any discrepancies. Where the automated text matches the call assistant generated text at block 708 , control passes back up to block 702 where the process continues. Where the automated text does not match the call assistant generated text at block 708 , control passes to block 710 where the server visually distinguishes the mismatched text on the call assistant's display screen 50 and also presents suggested correct text (e.g., the automated text).
  • the server monitors for any error corrections by the call assistant and at block 714 if an error has been corrected, the corrected text is transmitted to the assisted user's device for in-line correction.
  • the relay server may be able to generate some type of probability or confidence factor related to how likely a discrepancy between automated and call assistant generated text is related to a call assistant error and may only indicate errors and present suggestions for probable errors or discrepancies likely to be related to errors. For instance, where an automated text segment is different than an associated call assistant generated text segment but the automated segment makes no sense contextually in a sentence, the server may not indicate the discrepancy or may not show the automated text segment as an option for correction. The same discrepancy may be shown as a potential error at a different time if the automated segment makes contextual sense.
  • automated voice-to-text software that operates at the same time as a call assistant to generate text may be trained to recognize words often missed by a call assistant such as articles, for instance, and to ignore other words that call assistants more accurately transcribe.
  • the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
  • various method steps may be performed by other system processors.
  • the voice recognition process may be performed by an assisted user's device and the identified voice may be indicated to a relay 16 which then identifies a related voice model to be used.
  • a hearing user's device may identify a hearing user's voice and indicate the identity of the hearing user to the assisted user's device and/or the relay.
  • the system is described above in the context of a two line captioning system where one line links an assisted user's device to a hearing user's device and a second line links the assisted user's device to a relay
  • the concepts and features described above may be used in any transcription system including a system where the hearing user's voice is transmitted directly to a relay and the relay then transmits transcribed text and the hearing user's voice to the assisted user's device.
  • inputs to an assisted user's device may include mechanical or virtual on screen buttons/icons
  • other inputs arrangements may be supported.
  • help or a captioning request may be indicated via a voice input (e.g., verbal a request for assistance or for captioning).
  • a call assistant may always be on a call but the automated voice-to-text software may aid in the transcription process whenever possible to minimize overall costs. For instance, when a call is initially linked to a relay so that a hearing user's voice is received at the relay, the hearing user's voice may be provided to a first call assistant fully trained to transcribe and correct text.
  • voice-to-text software may train to the hearing user's voice while the first call assistant transcribes the text and after the voice-to-text software accuracy exceeds a threshold, instead of completely cutting out the relay or call assistant, the automated text may be provided to a second call assistant that is only trained to correct errors.
  • the automated text after training the automated text should have minimal errors and therefore even a minimally trained call assistant should be able to make corrections to the errors in a timely fashion.
  • a first CA assigned to a call may only correct errors in automated voice-to-text transcription and a fully trained revoicing and correcting CA may only be assigned after a help or caption request is received.
  • an assisted user's device processor may run automated voice-to-text software to transcribe hearing user's voice messages and may also generate a confidence factor for each word in the automated text based on how confident the processor is that the word has been accurately transcribed.
  • the confidence factors over a most recent number of words (e.g., 100) or a most recent period (e.g., 45 seconds) may be averaged and the average used to assess an overall confidence factor for transcription accuracy.
  • the device processor may link to a relay for more accurate transcription either via more sophisticated automated voice-to-text software or via a call assistant.
  • the automated process for linking to a relay may be used instead of or in addition to the process described above whereby an assisted user selects a “caption” button to link to a relay.
  • a system may also store other information that could be used when an assisted user is communicating with specific hearing user's to increase accuracy of automated voice-to-text software when used. For instance, a specific hearing user may routinely use complex words from a specific industry when conversing with an assisted user.
  • the system software can recognize when a complex word is corrected by a call assistant or contextually by automated software and can store the word and the pronunciation of the word by the specific hearing user in a hearing user word list for subsequent use. Then, when the specific hearing user subsequently links to the assisted user's device to communicate with the assisted user, the stored word list for the hearing user may be accessed and used to automate transcription.
  • the hearing user's word list may be stored at a relay, by an assisted user's device or even by a hearing user's device where the hearing user's device has data storing capability.
  • a word list specific to an assisted user's device i.e., to an assisted user
  • This list may include words used on a regular basis by any hearing user that communicates with an assisted user.
  • this list or the hearing user's word lists may be stored on an internet accessible database (e.g., in the “cloud”) so that the assisted user has the ability to access the list(s) and edit words on the list via an internet portal or some other network interface.
  • an AVR engine may always operate to search the HU voice signal to recognize when a complex or difficult to spell word is annunciated and the complex or hard to spell words may be automatically presented to the CA via the CA display screen in line with the CA generated text to be considered by the CA.
  • CA would still be able to change the automatically generated complex word, it is expected that CA correction of those words would not occur often given the specialized word lists for the specific communicating parties.
  • various aspects of a hearing user's voice messages may be used to select different voice-to-text software programs that are optimized for voices having different characteristic sets. For instance, there may be different voice-to-text programs optimized for male and female voices or for voices having different dialects.
  • system software may be able to distinguish one dialect from others and select an optimized voice engine/software program to increase transcription accuracy.
  • a system may be able to distinguish a high pitched voice from a low pitched voice and select a voice engine accordingly.
  • a voice engine may be selected for transcribing a hearing user's voice based on the region of a country in which a hearing user's device resides. For instance, where a hearing user's device is located in the southern part of the United States, an engine optimized for a southern dialect may be used while a device in New England may cause the system to select an engine optimized for another dialect. Different word lists may also be used based on region of a country in which a hearing user's device resides.
  • an assisted user's device will provide a text or other indication to an assisted user to convey how text that appears on an AU device display 18 is being generated.
  • automated voice-to-text software e.g., an automated voice recognition (AVR) system
  • AVR automated voice recognition
  • CA CA generated text
  • CA CA generated text
  • Call Assistant Generated Text (not illustrated) may be presented.
  • a phrase “Call Assistant Corrected Text” (not illustrated) may be presented when automated Text is corrected by a CA.
  • captioning options may include “Automated/Software Generated Text”, “CA Generated Text” (see virtual selection button 719 in FIG. 22 ) and “CA Corrected Text” (see virtual selection button 721 in FIG. 22 ).
  • This feature allows an AU to preemptively select a preference in specific cases or to select a preference dynamically during an ongoing call. For example, where an AU knows from past experience that calls with a specific HU result in excessive automated text errors, the AU could select “CA generated text” to cause CA support to persist during the duration of a call with the specific HU.
  • automated voice-to-text accuracy may be tracked by a system and indicated to any one or a subset of a CA, an AU, and an HU either during CA text generation or during automated text presentation.
  • the accuracy value may be over the duration of an ongoing call or over a short most recent rolling period or number of words (e.g., last 30 seconds, last 100 words, etc.), or for a most recent HU turn at talking. In some cases two averages, one over a full call period and the other over a most recent period, may be indicated.
  • the accuracy values would be provided via the AU device display 18 (see 728 in FIG. 22 ) and/or the CA workstation display 50 .
  • the accuracy value(s) may be presented via that display in at least some cases.
  • a display e.g., a smart phone, a tablet, etc.
  • the accuracy value(s) may be presented via that display in at least some cases.
  • the smart phone type HU device 800 in FIG. 24 where an accuracy rate is displayed at 802 for a call with an AU. It is expected that seeing a low accuracy value would encourage an HU to try to annunciate words more accurately or slowly to improve the value.
  • Human communication has many different components and the meanings ascribed to text words are only one aspect of that communication.
  • One other aspect of human non-text communication includes how words are annunciated which often belies a speakers emotions or other meaning. For instance, a simple change in volume while words are being spoken is often intended to convey a different level of importance. Similarly, the duration over which a word is expressed, the tone or pitch used when a phrase is annunciated, etc., can convey a different meaning. For instance, annunciating the word “Yes” quickly can connote a different meaning than annunciating the word “Yes” very slowly or such that the “s” sound carries on for a period of a few seconds.
  • a simple text word representation is devoid of a lot of meaning in an originally spoken phrase in many cases.
  • volume changes, tone, length of annunciation, pitch, etc., of an HU's voice signal may be sensed by automated software and used to change the appearance of or otherwise visually distinguish transcribed text that is presented to an AU via a device display 18 so that the AU can more fully understand and participate in a richer communication session.
  • volume changes, tone, length of annunciation, pitch, etc., of an HU's voice signal may be sensed by automated software and used to change the appearance of or otherwise visually distinguish transcribed text that is presented to an AU via a device display 18 so that the AU can more fully understand and participate in a richer communication session.
  • the two textual effects 732 and 734 in AU device text 730 in FIG. 22 where an arrow effect 732 represents a long annunciation period while a bolded/italicized effect 734 represents an appreciable change in HU voice signal volume.
  • HU voice signal may be sensed and each may have a different appearance. For instance, pitch, speed of speaking, etc., may all be automatically determined and used to provide effect distinct visual cues along with the transcribed text.
  • the visual cues may be automatically provided with or used to distinguish text presented via an AU device display regardless of the source of the text.
  • automated text may be supplemented with visual cues to indicate other communication characteristics and in at least some cases even CA generated text may be supplemented with automatically generated visual cues indicating how an HU annunciates various words and phrases.
  • voice characteristics are detected for an HU's utterances
  • software tracks the voice characteristics in time and associates those characteristics with specific text words or phrases generated by the CA. Then, the visual cues for each voice characteristic are used to visually distinguish the associated words when presented to the AU.
  • an AU may be able to adjust the degree to which text is enhanced via visual cues or even to select preferred visual cues for different voice characteristics. For instance, a specific AU may find fully enabled visual queuing to be distracting and instead may only want bold capital letter visual queuing when an HU's volume level exceeds some threshold value.
  • AU device preferences may be set via a display 18 during some type device of commissioning process.
  • the automated software that identifies voice characteristics will adjust or train to an HU's voice during the first few seconds of a call and will continue to train to that voice so that voice characteristic identification is normalized to the HU's specific voice signal to avoid excessive visual queuing.
  • voice standard e.g., a typical male or female voice
  • a first HU may always speak loudly and therefore, if his voice signal was compared to an average HU volume level, the voice signal would exceed the average level most if not all the time.
  • the software would use the HU voice signal to determine that the first HU's voice signal is persistently loud and would normalize to the loud signal so that words uttered within a range of volumes near the persistent loud volume would not be distinguished as loud.
  • the exceptionally loud signal may be recognized as a clear deviation from the persistent volume level for the normalized voice and therefore distinguished with a visual queue for the AU when associated text is presented.
  • the voice characteristic recognizing software would automatically train to the persistent voice characteristics for each HU including for instance, pitch, tone, speed of annunciation, etc., so that persistent voice characteristics of specific HU voice signals are not visually distinguished as anomalies.
  • HU voice models may also be automatically developed and stored for specific HU's for specifying voice characteristics. For instance, in the above example where a first HU has a particularly loud persistent voice, the volume range about the first HU's persistent volume as well as other persistent characteristics may be determined once during an initial call with an AU and then stored along with a phone number or other HU identifying information in a system database. Here, the next time the first HU communicates with an AU via the system, the HU voice characteristic model would be automatically accessed and used to detect voice characteristic anomalies and to visually distinguish accordingly.
  • a volume indicator 717 may be presented or visually altered in some fashion to indicate the persistent volume.
  • a volume indicator 715 may be presented above or otherwise spatially proximate any word annunciated with an unusually high volume.
  • the distinguishing visual queue for a specially annunciated word may only persist for a short duration (e.g., 3 seconds, until the end of a related sentence or phrase, for the next 5 words of an utterance, etc.) and then be eliminated.
  • the visual queuing is supposed to mimic the effect of an annunciated word or phrase which does not persist long term (e.g., the loud effect of a high volume word only persists as the word is being annunciated).
  • the software used to generate the HU voice characteristic models and/or to detect voice anomalies to be visually distinguished may be run via any of an HU device processor, an AU device processor, a relay processor and a third party operated processor linkable via the internet or some other network.
  • an HU device it will be optimal for an HU device to develop the HU model for an HU that is associated with the device and to store the model and apply the model to the HU's voice to detect anomalies to be visually distinguished for several reasons.
  • a particularly rich acoustic HU voice signal is available at the HU device so that anomalies can be better identified in many cases by the HU device as opposed to some processor downstream in the captioning process.
  • an HU voice text transcription 804 may also be presented via the HU device.
  • an HU viewing the transcribed text could formulate an independent impression of transcription accuracy and whether or not a more robust transcription process (e.g., CA generation of text) is required or would be preferred.
  • a virtual “CA request” button 806 or the like may be provided on the HU screen for selection so that the HU has the ability to initiate CA text transcription and or CA correction of text.
  • an HU device may also allow an HU to switch back to automated text if an accuracy value 802 exceeds some threshold level. Where HU voice characteristics are detected, those characteristics may be used to visually distinguish text at 804 in at least some embodiments.
  • an HU device is a smart phone, a tablet computing device or some other similar device capable of downloading software applications from an application store
  • a captioning application may be obtained from an application store for communication with one or more AU devices 12 .
  • the son or daughter of an AU may download the captioning application to be used any time the device user communicates with the AU.
  • the captioning application may have any of the functionality described in this disclosure and may result in a much better overall system in various ways.
  • a captioning application on an HU device may run automated voice-to-text software on a digital HU voice signal as described above where that text is provided to the AU device 12 for display and, at times, to a relay for correction, voice model training, voice characteristic model training, etc.
  • an HU device may train a voice model for an HU any time an HU's voice signal is obtained regardless of whether or not the HU is participating in a call with an AU.
  • the HU voice signal during dictation may be used to train a general HU voice model for the HU and, more specifically, a general model that can be used subsequently by the captioning system or application.
  • an HU voice signal captured during entry of a search phrase into a browser or an address into mapping software which is independent of the captioning application may be used to further train the general voice model for the HU.
  • the general voice model may be extremely accurate even before used in by AU captioning application.
  • an accuracy value for an HU's voice model may be calculated prior to an initial AU communication so that, if the accuracy value exceeds a high or required accuracy standard, automated text transcription may be used for an HU-AU call without requiring CA assistance, at least initially.
  • an HU device processor training to an HU voice signal may assign confidence factors to text words automatically transcribed by an AVR engine from HU voice signals.
  • the confidence factor values would continue to increase and eventually should exceed some threshold level at which initial captioning during an AU communication would meet accuracy requirements set by the captioning industry.
  • an HU voice model stored by or accessible by the HU device can be used to automatically transcribe text for any AU device without requiring continual redevelopment of the HU voice model.
  • one HU device may be used to communicate with two separate hearing impaired persons using two different AU devices without each sub-system redeveloping the HU voice model.
  • an HU's smart phone or tablet device running a captioning application may link directly to each of a relay and an AU's device to provide one or more of the HU voice signal, automated text and/or an HU voice model or voice characteristic model to each. This may be accomplished through two separate phone lines or via two channels on a single cellular line or via any other combination of two communication links.
  • an HU voice model may be generated by a relay or an AU's device or some other entity (e.g., a third party AVR engine provider) over time and the HU voice model may then be stored on the HU device or rendered accessible via that device for subsequent transcription.
  • a third party AVR engine provider e.g., a third party AVR engine provider
  • one robust HU voice model may be developed for an HU by any system processor or server independent of the HU device and may then be used with any AU device and relay for captioning purposes.
  • At least one system processor may monitor and assess line and/or audio conditions associated with a call and may present some type of indication to each or a subset of an AU, an HU and a CA to help each or at least one of the parties involved in a call to assess communication quality.
  • an HU device may be able to indicate to an AU and a CA if the HU device is being used as a speaker phone which could help explain an excessive error rate and help with a decision related to CA captioning involvement.
  • an HU's device may independently assess the level of non-HU voice signal noise being picked up by an HU device microphone and, if the determined noise level exceeds some threshold value either by itself or in relation to the signal strength of the HU voice signal, may perform some function. For example, one function may be to provide a signal to the HU indicating that the noise level is high. Another function may be to provide a noise level signal to the CA or the AU which could be indicated on one or both of the displays 50 and 18 . Yet another function would be to offer one or more captioning options to any of the HU or AU or even to a text correcting CA when the noise level exceeds the threshold level.
  • the idea is that as the noise level increases, the likelihood of accurate AVR captioning will typically decrease and therefore more accurate and robust captioning options should be available.
  • an HU device may transmit a known signal to an AU device which returns the known signal to the HU device and the HU device may compare the received signal to the known signal to determine line or communication link quality.
  • the HU may present a line quality value as shown at 808 in FIG. 24 for the HU to consider.
  • an AU device may present a line quality signal (not illustrated) to the AU to be considered.
  • system devices may monitor a plurality of different system operating characteristics such as line quality, speaker phone use, non-voice noise level, voice volume level, voice signal pace, etc., and may present one or more “coaching” indications to any one of or a subset of the HU, CA and AU for consideration.
  • the coaching indications should help the parties to a call understand if there is something they can do to increase the level of captioning accuracy.
  • only the most impactful coaching indications may be presented and different entities may receive different coaching indications. For instance, where noise at HU location exceeds a threshold level, a noise indicating signal may only be presented to the HU.
  • the system also recognizes that line quality is only average, that indication may be presented to the AU and not to the HU while the HU's noise level remains high. If the HU moves to a quieter location, the noise level indication on the HU device may be replaced with a line quality indication.
  • the coaching indications should help individual call entities recognize communication conditions that they can effect or that may be the cause of or may lead to poor captioning results for the AU.
  • coaching may include generating a haptic feedback or audible signal or both and a text message for an HU and/or an AU.
  • AU's routinely look at their devices to see captions during a caption assisted call, many HUs do not look at their devices during a call and simply rely on audio during communication.
  • the AU may look away from their device display at times when their hearing is sufficient.
  • warning or call state text message may present more information such as, for instance, an instruction to “Speak louder” or “Move to a less noisy space”, for consideration.
  • an AU may be able to set a maximum text lag time such that automated text generated by an AVR engine is used to drive an AU device screen 18 when a CA generated text lag reaches the maximum value. For instance, an AU may not want text to lag behind a broadcast HU voice signal by more than 7 seconds and may be willing to accept a greater error rate to stay within the maximum lag time period.
  • CA captioning/correction may proceed until the maximum lag time occurs at which point automated text may be used to fill in the lag period up to a current HU voice signal on the AU device and the CA may be skipped ahead to the current HU signal automatically to continue the captioning process.
  • any automated fill in text or text not corrected by a CA may be visually distinguished on the AU device display as well as on the CA display for consideration.
  • all text would be delayed at least 2 seconds in some cases and perhaps longer where a text generation lag time exceeds the minimum lag value.
  • an AU may be able to adjust the minimum voice-to-text lag time to meet a personal preference.
  • the threshold period may be dynamically changed as a function of how a communication between an HU and an AU is progressing. For instance, periods of silence in an HU voice signal may be used to automatically adjust the maximum lag period. For example, in some cases if silence is detected in an HU voice signal for more than three seconds, the threshold period to change from CA text to automatic text generation may be shortened to reflect the fact that when the HU starts speaking again, the CA should be closer to a caught up state. Then, as the HU speaks continuously for a period, the threshold period may again be extended.
  • the threshold period prior to automatic transition to the AVR engine to reduce or eliminate text lag may be dynamically changed based on other operating parameters. For instance, rate of error correction by a CA, confidence factor average in AVR text, line quality, noise accompanying the HU voice signal, or any combination of these and other factors may be used to change the threshold period.
  • One aspect described above relates to an AVR engine recognizing specific or important phrases like questions (e.g., see phrase “Are you still there?”) in FIG. 18 prior to CA text generation and presenting those phrases immediately to an AU upon detection.
  • Other important phrases may include phrases, words or sound anomalies that typically signify “turn markers” (e.g., words or sounds often associated with a change in speaker from AU to HU or vice versa). For instance, if an HU utters the phrase “What do you think?” followed by silence, the combination including the silent period may be recognized as a turn marker and the phrase may be presented immediately with space markers (e.g., underlined spaces) between CA text and the phrase to be filled in by the CA text transcription once the CA catches up to the turn marker phrase.
  • space markers e.g., underlined spaces
  • CA generated text is shown at 733 with a lag time indicated by underlined spaces at 735 and an AVR recognized turn marker phrase presented at 737 .
  • the AVR engine will be programmed with a small set (e.g., 100-300) of common turn marker phrases that are specifically sought in an HU voice signal and that are immediately presented to the AU when detected.
  • non-text voice characteristics like the change in sound that occurs at the end of a question which is often the signal for a turn marker may be sought in an HU voice signal and any AVR generated text within some prior period (e.g., 5 seconds, the previous 8 words, etc.) may be automatically presented to an AU.
  • a system processor at the AU device or at the relay may be able to determine a call type (e.g., auto-attendant or not, or some other call type routinely accurately handled by an AVR engine) and automatically route calls within the overall system to the best and most efficient/effective option for text generation.
  • a call type e.g., auto-attendant or not, or some other call type routinely accurately handled by an AVR engine
  • an AU device manages access to an AVR operated by a third party and accessible via an internet link
  • the AU device may automatically recognize the answering system as an auto-attendant type and instead of transmitting the auto-attendant voice signal to a relay for CA transcription, may transmit the auto-attendant voice signal to the third party AVR engine for text generation.
  • the AU device may also transmit the received voice signal to a CA for captioning if appropriate.
  • a CA for captioning
  • the AU device processor may recognize the person's voice as a non-auto-attendant signal and route that signal to a CA for captioning as well as to the AVR for voice model training.
  • the AVR engine may be specially tuned to transcribe auto-attendant voice signals to text and, when a live HU gets on the line, would immediately start training a voice model for that HU's voice signal.
  • the relay may include a synchronizing function or capability so that, as a CA listens to an HU's voice signal during an error correction process, the associated text from the AVR is presented generally synchronously to the CA with the HU voice signal.
  • an AVR transcribed word may be visually presented via a CA display 50 at substantially the same instant at which the word is broadcast to the CA to hear.
  • the AVR transcribed word may be presented one, two, or more seconds prior to broadcast of that word to the CA.
  • the AVR generated text may be presented for correction via a CA display 50 immediately upon generation and, as the CA controls broadcast speed of the HU voice signal for correction purposes, the word or phrase instantaneously audibly broadcast may be highlighted or visually distinguished in some fashion.
  • FIG. 23 where automated AVR generated text is shown at 748 where a word instantaneously audibly broadcast to a CA (see 752 ) is simultaneously highlighted at 750 .
  • the words are broadcast via CA headset 54 , the text representations of the words are highlighted or otherwise visually distinguished to help the error correcting CA follow along.
  • an error correcting CA will be able to skip back and forth within the HU voice signal to control broadcast of the HU voice signal to the CA.
  • a CA may have a foot pedal useable to skip back in a buffered HU voice recording 5 , 10 , etc., seconds to replay an HU voice signal recording.
  • the highlighted text in representation 748 would likewise skip back to be synchronized with the broadcast words.
  • a foot pedal activation may cause the recording to skip back to the word “pizza” which is then broadcast as at 764 and highlighted in text 748 as shown at 762 .
  • the CA may simply single tap or otherwise select any word presented on display 50 to skip the voice signal play back and highlighted text to that word.
  • icon 766 represents a single tap which causes the word “pizza” to be highlighted and substantially simultaneously broadcast.
  • Other word selecting gestures e.g., a mouse control click, etc. are contemplated.
  • the voice signal replay may automatically skip to some word in the voice buffer relative to the selected word and may halt voice signal replay automatically until the correction has been completed. For instance, a double tap on the word “pals’ in FIG. 23 may cause that word to be highlighted for correction and may automatically cause the point in the HU voice replay to move backward to a location a few words prior to the selected word “pals.” To this end, see in FIG.
  • the system may skip to a location a few words prior to the selected word and may represent the HU voice signal stating at that point and ending a few words after that point to give a CA context in which to hear the word to be corrected. Thereafter, the system may automatically move back to a subsequent point in the HU voice signal at which the CA was when the word to be corrected was selected. For instance, again, in FIG. 25 , assume that the HU voice broadcast to a CA is at the word “catch” 761 when the CA selects the word “Pete's 760 for correction.
  • the CA's interface may skip back in the HU voice signal to the word pizza at 762 and re-broadcast the phrase parts from the word “pizza” to the word “want” 763 to provide immediate context to the CA. After broadcasting the word “want”, the interface would skip back to the word “catch” 761 and continue broadcasting the HU voice signal from that point on.
  • the AVR engine may assign a confidence factor to each word generated that indicates how likely it is that the word is accurate.
  • the relay server may highlight any text on the correcting CA's display screen that has a confidence factor lower than some threshold level to call that text to the attention of the CA for special consideration. To this end, see again FIG. 23 where various words (e.g., 777 , 779 , 781 ) are specially highlighted in the automatically generated AVR text to indicate a low confidence factor.
  • an AU device may sense an AU voice signal and at least generate some information about when the AU is speaking.
  • the speaking information may then be transmitted in real time to the CA at the relay and used to present an indication that the AU is speaking on the CA screen. For instance, see again FIG. 23 where lines 783 are presented on display 50 to indicate that an AU is speaking.
  • lines 783 are presented on a right side of the display screen to distinguish the AU's speaking activity from the text and other visual representations associated with the HU's voice signal.
  • a text notice 797 or some graphical indicator e.g., a talking head
  • some type of non-content AU speaking indication like 783 may also be presented to an AU via the AU's device to help the AU understand how the communication is progressing.
  • the system processor e.g., at the relay, in the AU device or in the HU device
  • the system processor may be programmed to generate a series of automatic text transcription requests where each request only transmits a short sub-set of a complete HU voice signal.
  • a first AVR request may be limited to a first 15 seconds of HU voice signal
  • a second AVR request may be limited to a next 15 seconds of HU voice signal
  • a third AVR request may be limited to a third 15 seconds of HU voice signal
  • each request would present the associated HU signal to the AVR system immediately and continuously as the HU voice signal is received and transcribed text would be received back from the AVR system during the 15 second period. As the text is received back from the AVR system, the text would be cobbled together to provide a complete and relatively accurate transcript of the HU voice signal.
  • HU voice signal may be divided into consecutive periods in some cases, in other cases it is contemplated that the HU voice signal slices or sub-periods sent to the AVR system may overlap at least somewhat to ensure all words uttered by an HU are transcribed and to avoid a case where words in the HU voice signal are split among periods.
  • voice signal periods may be 30 seconds long and each may overlap a preceding period by 10 seconds and a following period by 10 seconds to avoid split words.
  • overlapping HU voice signal periods presented to an AVR system allows the system to use context represented by surrounding words to better (e.g., contextually) covert HU voiced words to text.
  • a word at the end of a first 20 second voice signal period will be near the front end of the overlapping portion of a next voice signal period and therefore, typically, will have contextual words prior to and following the word in the next voice signal period so that a more accurate contextually considered text representation can be generated.
  • a system processor may employ two, three or more independent or differently tuned AVR systems to automatically generate automated text and the processor may then compare the text results and formulate a single best transcript representation in some fashion. For instance, once text is generated by each engine, the processor may poll for most common words or phrases and then select most common as text to provide to an AU, to a CA, to a voice modeling engine, etc.
  • automated text e.g., AVR generated text
  • CA generated text e.g., CA generated text
  • CA corrected text e.g., CA corrected text
  • a different and more complex voice-to-text triage process may be implemented. For instance, when an AU-HU call commences and the AU requires text initially, automated AVR generated text may initially be provided to the AU. If a good HU voice model exists for the HU, the automated text may be provided without CA correction at least initially.
  • a next level of the triage process may link an error correcting CA to the call and the AVR text may be presented in essentially real time to the CA via display 50 simultaneously with presentation to the AU via display 18 .
  • corrections are automatically sent to the AU device and are indicated via display 18 .
  • the corrections may be in-line (e.g., erroneous text replaced), above error, shown after errors, may be visually distinguished via highlighting or the like, etc.
  • the AU may select an AU device button (e.g., see 68 again in FIG. 1 ) to request full CA transcription.
  • the error correcting CA may perform some action to initiate full CA transcription and correction.
  • a relay processor or even an AU device processor may detect that an error correcting CA is having to correct too many errors in the AVR generated text and may automatically initiate full CA transcription and correction.
  • the AVR engine may still operate on the HU voice signal to generate text and use that text and CA generated text, including corrections, to refine a voice model for the HU.
  • some threshold level e.g. 95% accuracy
  • the system may again automatically or at the command of the transcribing CA or the AU, revert back to the CA corrected AVR text and may cut out the transcribing CA to reduce costs.
  • the system may again automatically or at the command of an error correcting CA or an AU, revert back to the uncorrected AVR text to further reduce costs.
  • a second higher accuracy threshold e.g. 98% accuracy
  • an AU device may allow an AU to set a personal preference between text transcription accuracy and text speed. For instance, a first AU may have fairly good hearing and therefore may only rely on a text transcript periodically to identify a word uttered by an HU while a second AU has extremely bad hearing and effectively reads every word presented on an AU device display.
  • the first AU may prefer text speed at the expense of some accuracy while the second AU may require accuracy even when speed of text presentation or correction is reduced.
  • An exemplary AU device tool is shown as an accuracy/speed scale 770 in FIG. 18 where an accuracy/speed selection arrow 772 indicates a current selected operating characteristic.
  • moving arrow 772 to the left, operating parameters like correction time, AVR operation etc. are adjusted to increase accuracy at the expense of speed and moving arrow 772 right on scale 770 increases speed of text generation at the expense of accuracy.
  • the text when text is presented to an error correcting CA via a CA display 50 , the text may be presented at least slightly prior to broadcast of (e.g., 1 ⁇ 4 to 2 seconds) an associated HU voice signal.
  • an associated HU voice signal e.g. 1 ⁇ 4 to 2 seconds
  • a CA workstation may allow a CA to set text-audio sync preferences.
  • exemplary text-audio sync scale 765 in FIG. 25 that includes a sync selection arrow 767 that can be moved along the scale to change text-audio order as well as delay or lag between the two.
  • an on-screen tool akin to scale 765 and arrow 767 may be provided on an AU device display 18 to adjust HU voice signal broadcast and text presentation timing to meet an AU's preferences.
  • some AU's can hear voice signals with a specific characteristic set better than other voice signals. For instance, one AU may be able to hear low pitch traditionally male voices better than high pitch traditionally female voice signals.
  • an AU may perform a commissioning procedure whereby the AU tests capability to accurately hear voice signals having different characteristics and results of those capabilities may be stored in a system database. The hearing capability results may then be used to adjust or modify the way text captioning is accomplished. For instance, in the above case where an AU hears low pitch voices well but not high pitch voices, if a low pitch HU voice is detected when a call commences, the system may use the AVR function more rapidly than in the case of a high pitched voice signal. Voice characteristics other than pitch may be used to adjust text transcription and AVR transition protocols in similar ways.
  • an HU device like a smart phone, tablet, computing device, laptop, smart watch, etc.
  • a WIFI system or otherwise that is stored on a local or remote (e.g., cloud) server
  • every HU device or at least a subset used by specific HUs may store an HU voice model for an associated HU to be used by a captioning application or by any software application run by the HU device.
  • the HU model may be trained by one or more applications run on the HU device or by some other application like an AVR system associated with one of the captioning systems described herein that is run by an AU device, the relay server, or some third party server or processor.
  • an HU's voice model stored on an HU device may be used to drive a voice-to-text search engine input tool to provide text for an internet search independent of the captioning system.
  • the multi-use and perhaps multi-application trained HU voice model may also be used by a captioning AVR system during an AU-HU call.
  • the voice model may be used by an AVR application run on the HU device, run on the AU device, run by the relay server or run by a third party server.
  • an HU model associated with the number called may be automatically prepared for generating captions even prior to connection to the HU device.
  • a phone or other identifying number associated with an HU device can be identified prior to an AU answering a call from the HU device
  • an HU voice model associated with the HU device may be accessed and readied by the captioning system for use prior to the answering action to expedite AVR text generation.
  • Most people use one or a small number of phrases when answering an incoming phone call.
  • the AVR engine can be poised to detect one of the small number of greeting phrases routinely used to answer calls and to compare the HU's voice signal to the model to confirm that the voice model is for the specific HU that answers the call. If the HU's salutation upon answering the call does not match the voice model, the system may automatically link to a CA to start a CA controlled captioning process.
  • the AU side of a conversation with an HU may be transcribed to text automatically via an AVR engine and presented to the AU via a device display 18 while the HU side of the conversation is transcribed to text in the most optimal way given transcription triage rules or algorithms as described above.
  • the AU voice captions and AU voice signal would never be presented to a CA.
  • AU voice signal text may not be necessary in some cases, in others it is contemplated that many AUs may prefer that text of their voice signals be presented to be referred back to or simply as an indication of how the conversation is progressing. Seeing both sides of a conversation helps a viewer follow the progress more naturally.
  • the AVR generated AU text may not always be extremely accurate, accuracy in the AU text is less important because, again, the AU knows what she said.
  • the AVR engine may be run by any of the system processors or devices described herein.
  • the AVR engine will be run by the AU device 12 where the software that transcribes the AU voice to text is trained to the voice of the AU and therefore is extremely accurate because of the personalized training.
  • the AU voice signal when an AU-HU call commences, the AU voice signal may be transcribed to text by AU device 12 and presented as shown at 822 in FIG. 26 without providing the AU voice signal to relay 16 .
  • the HU voice signal in addition to being audibly broadcast via AU device 12 , may be transmitted in some fashion to relay 16 for conversion to text when some type of CA assistance is required.
  • Accurate HU text is presented on display 18 at 820 .
  • the AU gets to see both AU text, albeit with some errors, and highly accurate HU text.
  • AU and HU text may also be presented to an HU via an HU device (e.g., a smart phone) in a fashion similar to that shown in FIG. 26 .
  • the HU and AU text may be presented in staggered columns as shown along with an indication of how each text representation was generated (e.g., see titles at top of each column in FIG. 26 ).
  • an AU may, at times, not even want the HU side of a conversation to be heard by a CA for privacy reasons.
  • an AU device may provide a button or other type of selectable activator to indicate that total privacy is required and then to re-establish relay or CA captioning and/or correction again once privacy is no longer required. To this end, see the “Complete Privacy” button or virtual icon 826 shown on the AU device display 18 in FIG. 26 .
  • an AU device may monitor for an utterance from an AU using the device and may automatically fill in AVR engine generated text corresponding to an HU voice signal when any AU utterance is identified.
  • CA transcription is 30 seconds behind an HU voice signal
  • if an AU speaks it may be assumed that the AU has been listening to the HU voice signal and is responding to the broadcast HU voice signal in real time.
  • the CA's transcription task would simply be moved up in time to a current real time HU voice signal automatically and the CA would not have to consider the intervening 30 seconds of HU voice for transcription or even correction.
  • all AVR generated text that is associated with a lag time may be filled in immediately and automatically.
  • an AU device or other device may monitor AU utterances for some specific word or phrase intended to trigger an update of text associated with a lag time. For instance, the AU may monitor for the word “Update” and, when identified, may fill in the lag time with automated text.
  • the AU may be programmed to cancel the catch-up word “Update” from the AU voice signal sent to the HU device.
  • the AU utterance “Update” would have the effect of causing AVR text to fill in a lag time without being transmitted to the HU device.
  • Other commands may be recognized and automatically removed from the AU voice signal.
  • each system there are at least three entities and at least three devices and in some cases there may be a fourth entity and an associated fourth device.
  • each system there is at least one HU and associated device, one AU and associated device and one relay and associated device or sub-system while in some cases there may also be a third party provider (e.g., a fourth party) of AVR services operating one or more servers that run AVR software.
  • the HU device at a minimum, enables an HU to annunciate words that are transmitted to an AU device and receives an AU voice signal and broadcasts that signal audibly for the HU to hear.
  • the AU device at a minimum, enables an AU to annunciate words that are transmitted to an HU device, receives an HU voice signal and broadcasts that signal audibly for the AU to attempt to hear, receives or generates transcribed text corresponding to an HU voice signal and displays the transcribed text to an AU on a display to view.
  • the relay at a minimum, at times, receives the AU voice signal and generates at least corrected text that may be transmitted to another system device.
  • any of the other functions/processes described above may be performed by any of the HU device, AU device and relay server.
  • the HU device in some cases may store an HU voice model and/or voice characteristics model, an AVR application and a software program for managing which text, AVR or CA generated, is used to drive an AU device.
  • the HU may link directly with each of the AU device and relay, and may operate as an intermediary therebetween.
  • HU models, AVR software and caption control applications may be stored and used by the AU device processor or, alternatively, by the relay server.
  • different system components or devices may perform different aspects of a functioning system.
  • an HU device may store an HU voice model which may be provided to an AU device automatically at the beginning of a call and the AU device may transmit the HU voice model along with a received HU voice signal to a relay that uses the model to tune an AVR engine to generate automated text as well as provides the HU voice signal to a first CA for revoicing to generate CA text and a second CA for correcting the CA text.
  • the relay may transmit and transcribe text (e.g., automated and CA generated) to the AU device and the AU device may then select one of the received texts to present via the AU device screen.
  • CA captioning and correction and transmission of CA text to the AU device may be halted in total or in part at any time by the relay or, in some cases, by the AU device, based on various parameters or commands received from any parties (e.g., AU, HU, CA) linked to the communication.
  • the AVR engine receives an HU voice signal at least some of the time and generates automated text which may or may not be used at times to drive an AU device display.
  • AVR engine text (e.g., automated text) may be presented to an HU while CA generated text is presented to an AU and a most recent word presented to an AU may be indicated in the text on the HU device so that the HU has a good sense of how far behind an AU is in following the HU's voice signal.
  • FIG. 27 shows an exemplary HU smart phone device 800 including a display 801 where text corresponding to an HU voice signal is presented for the HU to view at 848 .
  • the text 848 includes text already presented to an AU prior to and including the word “after” that is shown highlighted 850 as well as AVR engine generated text subsequent to the highlight 850 that, in at least the illustrated embodiment, may not have been presented to the AU at the illustrated time.
  • an HU viewing display 801 can see where the AU is in receiving text corresponding to the HU voice signal.
  • the HU may use the information presented as a coaching tool to help the HU regulate the speed at which the HU converses.
  • an HU device is a smart phone or some other type of device that can run an application program to participate in a captioning service
  • many different linking arrangements between the AU, HU and a relay are contemplated.
  • the AU and HU may be directly linked and there may be a second link or line from the AU to the relay for voice and data transmission when necessary between those two entities.
  • the AU device may cause the HU device to link directly to the relay and the relay may then link to the AU device so that the relay is located between the AU and HU devices and all communications pass through the relay.
  • an HU device may link to the relay and the relay to the AU device and the AU device to the HU device so that any communications, voice or data, between two of the three entities is direct without having to pass through the other entity (e.g., HU and AU voice signals would be directly between HU and AU devices, HU voice signal would be direct from the HU device to the relay and transcribed text associated with the HU voice would be directly passed from the relay to the AU device to be displayed to the AU.
  • any text generated at the relay to be presented via the HU device would be transmitted directly from the relay to the HU device and any text generated by either one of the AU or HU devices (e.g., via an ARV engine) would be directly transmitted to the receiving device.
  • an HU device or captioning application run thereby may maintain a direct dial number or address for the relay and be able to link up to the relay automatically when CA or other relay services are required.
  • FIG. 28 a schematic is shown of an exemplary semi-automated captioning system that is consistent with at least some aspects of the present disclosure.
  • the system enables an HU using device 14 to communicate with an AU using AU device 12 where the AU receives text and HU voice signals via the AU device 12 .
  • Each of the HU and the AU link into a gateway server or other computing device 900 that is linked via a network of some type to a relay.
  • HU voice signals are fed through a noise reducing audio optimizer to a 3 pole or path AVR switch device 904 that is controlled by an adaptive AVR switch controller 932 to select one of first, second and third text generating processes associated with switch output leads 940 , 942 and 944 , respectively.
  • the first text generating process is an automated AVR text process wherein an AVR engine generates text without any input (e.g., data entry, correction, etc.) from any CA.
  • the second text generating process is a process wherein a CA 908 revoices an HU voice or types to generate text corresponding to an HU voice signal and then corrects that text.
  • the third text generating process is one wherein the AVR engine generates automated text and a correcting CA 912 makes corrections to the automated text.
  • the AVR engine operates in parallel with the CA to generate automated text in parallel to the CA generated and corrected text.
  • the HU voice signal is only presented to AVR engine 906 which generates automated text corresponding to the HU voice which is then provided to a voice to text synchronizer 910 .
  • synchronizer 908 simply passes the raw AVR text on through a correctable text window 916 to the AU device 12 .
  • the HU voice signal in addition to being linked to the AVR engine, is presented to CA 908 for generating and correcting text via traditional CA voice recognition 920 and manual correction tools 924 via correction window 922 .
  • corrected text is provided to the AU device 12 and is also provided to a text comparison unit or module 930 .
  • Raw text from the AVR engine 906 is presented to comparison unit 930 .
  • Comparison unit 930 compares the two text streams received and calculates an AVR error rate which is output to switch control 932 .
  • control 932 may be controlled to cut the text generating CA 908 out of the captioning process.
  • the HU voice signal in addition to being linked to the AVR engine, is fed through synchronizer 910 which delays the HU voice signal so that the HU voice signal lags the raw AVR text by a short period (e.g., 2 seconds).
  • the delayed HU voice signal is provided to a CA 912 charged with correcting AVR text generated by engine 906 .
  • the CA 912 uses a keyboard or the like 914 to correct any perceived errors in the raw AVR text presented in window 916 .
  • the corrected text is provided to the AU device 12 and is also provided to the text comparison unit 930 for comparison to the raw AVR text.
  • comparison unit 930 generates an AVR error rate which is used by control 932 to operate switch device 904 .
  • the manual corrections by CA 912 are provided to a CA error tracking unit 918 which counts the number of errors corrected by the CA and compares that number to the total number of words generated by the AVR engine 906 to calculate a CA correction rate for the AVR generated raw text.
  • the correction rate is provided to control 932 which uses that rate to control switch device 904 .
  • switch device 904 when an HU-AU call first requires captioning, in at least some cases switch device 904 will be linked to output lead 942 so that full CA transcription and correction occurs in parallel with the AVR engine generating raw AVR text for the HU voice signal.
  • the AVR engine may be programmed to compare the raw AVR text and the CA generated text and to train to the HU's voice signal so that, over a relatively short period, the error rate generated by comparison unit 930 drops.
  • control 932 controls device 940 to link to output lead 944 so that CA 908 is taken out of the captioning path and CA 912 is added.
  • CA 912 receives the raw AVR text and corrects that text which is sent on to the AU device 12 . As the CA corrects text, the AVR engine continues to train to the HU voice using the corrected errors. Eventually, the AVR accuracy should improve to the point where the correction rate calculated by tracking unit 918 is below some threshold. Once the correction rate is below the threshold, control 932 may control switch 904 to link to output link 940 to take the CA 912 out of the captioning loop which causes the relatively accurate raw AVR text to be fed through to the AU device 12 . As described above in at least some cases the AU and perhaps a CA or the HU may be able to manually switch between captioning processes to meet preferences or to address perceived captioning problems.
  • all of an HU's speech or voice signal may be fed into an audio buffer and a system processor may examine the HU voice signal to identify any silent periods that exceed some threshold duration (e.g., 2 seconds).
  • a silent period would be detected whenever the HU voice signal audio is out of a range associated with a typical human voice.
  • the AVR engine is restarted and a new AVR session is created.
  • no portion of the HU's speech or voice signal is lost and the system can simply restart the AVR engine after the identified silent period and continue the captioning process after removing the silent period.
  • the system can implement a dynamic and configurable range of silence or gap threshold. For instance, in some cases, the system processor monitoring for a silent period of a certain threshold duration can initially seek a period that exceeds some optimal relatively long length and can reduce the length of the threshold duration as the AVR captioning process nears a maximum period prior to restarting the engine. Thus, for instance, where a maximum AVR engine captioning period is 30 seconds, initially the silent period threshold duration may be 3 seconds. However, after an initial 20 seconds of captioning by an engine, the duration may be reduced to 1.5 seconds. Similarly, after 25 seconds of engine captioning, the threshold duration may be reduced further to one half a second.
  • the system can “manufacture” a gap or silent period in which to restart an AVR engine, holding an HU's voice signal in the audio buffer until the AVR engine starts captioning anew. While the manufactured silent period is not as desirable as identifying a natural gap or silent period as described above, the manufactured gap is a viable option if necessary so that the AVR engine can be restarted without loss of HU voice signal.
  • a hybrid silent period approach may be implemented.
  • a system processor may monitor for a silent period that exceeds 3 seconds in which to restart an AVR engine. If the processor does not identify a suitable 3-plus second period for restarting the engine within 25 seconds, the processor may wait until the end of any word and manufacture a 3 second period in which to restart the engine.
  • the processor can take out the end of the silent period and begin feeding the HU voice signal to the AVR engine prior to the end of the threshold period. In this way, the processor can effectively eliminate most of the silent period so that captioning proceeds quickly.
  • Restarting an AVR engine at various points within an HU voice signal has the additional benefit of making all hypothesis words (e.g., initially identified words prior to contextual correction based on subsequent words) firm. Doing so allows a CA correcting the text to make corrections or any other manipulations deemed appropriate for an AU immediately without having to wait for automated contextual corrections.
  • a processor examines an HU voice signal for suitably long silent periods in which to restart an AVR engine and, where no such period occurs by a certain point in a captioning process, the processor commences another AVR engine captioning process which overlaps the first process so that no HU voice signal is lost.
  • the processor would work out which captioned words are ultimately used as final AVR output during the overlapping periods to avoid duplicative or repeated text.
  • a system processor receiving an HU voice signal ascertains whether or not the signal includes audio in a range that is typical for human speech during an HU turn and generates a duration of speech value equal to the number of seconds of speech received. Thus, for instance, in a ten second period corresponding to an HU voice signal turn, there may be 3 seconds of silence during which audio is not in the range of typical human speech and therefore the duration of speech value would be 7 seconds.
  • the processor detects the quantity of captions being generated by an AVR engine.
  • the processor automatically compares the quantity of captions from the AVR with the duration of speech value to ascertain if there is a problem with the AVR engine. Thus, for instance, if the quantity of AVR generated captions is substantially less than would be expected given the duration of speech value, a potential AVR problem may be identified. Where an AVR problem is likely, the likely problem may be used by the processor to trigger a restart of the AVR engine to generate a better result. As an alternative, where an AVR problem is likely, the problem may trigger initiation of a whole new AVR session. As still one other alternative, a likely AVR problem may trigger a process to bring a CA on line immediately or more quickly than would otherwise be the case.
  • the ROA detector may retrieve the audio (i.e., the HU voice signal) that was originally sent to the AVR from a rolling buffer and replay/resend the audio to the AVR engine.
  • This replayed audio would be sent through a separate session simultaneously with any new sessions that are sending ongoing audio to the AVR.
  • the captions corresponding to the replayed audio would be sent to the AU device and inserted into a correct sequential slot in the captions presented to the AU.
  • the ROA detector would monitor the text that comes back from the AVR and compare that text to the text retrieved during the prior session, modifying the captions to remove redundancies.
  • ROA simply deliver a message to the AU device indicating that there was an error and that a segment of audio was not properly captioned.
  • the AU device would present the likely erroneous captions in some way that indicates a likely error (e.g., perhaps visually distinguished by a yellow highlight or the like).
  • a phone user may want to have just in time (JIT) captions on their phone or other communication device (e.g., a tablet) during a call with an HU for some reason. For instance, when a smart phone user wants to remove a smart phone from her ear for a short period the user may want to have text corresponding to an HU's voice presented during that period.
  • a virtual “Text” or “Caption” button may be presented on the smart phone display screen or a mechanical button may be presented on the device which, when selected causes an AVR to generate text for a preset period of time (e.g. 10 seconds) or until turned off by the device user.
  • the AVR may be on the smart phone device itself, may be at a relay or at some other device (e.g., the HU's device).
  • HU voice profiles may be developed and stored for any HU calling an AU
  • profiles may only be stored for a small set of HUs, such as, for instance, a set of favorites or contacts of an AU.
  • HU voice profiles may be developed, maintained, and morphed over time for each of those favorites.
  • the profiles may be stored at different locations and by different devices including the AU device, a relay, via a third party service provider, or even an HU device where the HU earmarks certain AUs as having the HU as a favorite or a contact.
  • a CA correcting captions In some cases it may be difficult technologically for a CA to correct AVR captions.
  • another option would simply be for a CA to mark errors in AVR text as wrong and move along.
  • the error could be indicated to an AU via the display on an AU's device.
  • the error could be used to train an HU voice profile and/or captioning model as described above.
  • a correction engine may generate and present a list of alternative words for the CA to choose from.
  • the CA may select a correct word option causing the correction to be presented to an AU as well as causing the AVR to train to the corrected word.
  • CA reliability testing can be used to determine when a particular CA could use additional or specialized training.
  • CA reliability testing may be useful for determining when to cut a CA out of a call to be replaced by automatic speech recognition (ASR) generated text.
  • ASR automatic speech recognition
  • a system processor may automatically cut the CA out even if ASR quality remains below some threshold target quality level if the ASR quality is persistently above the quality of CA generated text.
  • CA quality is low
  • text from the CA may be fed to a second CA for either a first or second round of corrections prior to transmission to an AU device for display or, a second relatively more skilled CA trained in handling difficult HU voice signals may be swapped into the transcription process in order to increase the quality level of the transcribed text.
  • CA reliability testing may be useful to a governing agency interested in tracking CA accuracy for some reason.
  • CA captioning quality in addition to assessing CA captioning quality, it will be useful to assess how accurately an automated speech recognition system can caption the same HU voice signal regardless of whether or not the quality values are used to switch the method of captioning.
  • line noise or other signal parameters may affect the quality of HU voice signal received at a relay and therefore, a low CA captioning quality may be at least in part attributed to line noise and other signal processing issues.
  • an ASR quality value for ASR generated text corresponding to the HU voice signal may be used as an indication of other parameters that affect CA captioning quality and therefore in part as a reason or justification for a low CA quality value.
  • the low ASR quality value may be used to show that, in fact, given the relatively higher CA quality value, that the CA value is quite good despite being below a minimum target threshold.
  • Line noise and other parameters may be measured in more direct ways via line sensors at a relay or elsewhere in the system and parameter values indicative of line noise and other characteristics may be stored along with CA quality values to consideration when assessing CA quality.
  • One system for testing and tracking accuracy may include a system where actual or simulated HU-AU calls are recorded for subsequent testing purposes and where HU turns (e.g., voice signal periods) in each call are transcribed and corrected by a CA to generate a true and highly accurate (e.g., approximately 100% accurate) transcription of the HU turns that is referred to hereinafter as the “truth”.
  • HU turns e.g., voice signal periods
  • the recording is played for the CA who perceives the recording to be a typical HU-AU call.
  • a large number of recorded calls may be generated and stored for use by the testing system so that a CA never listens to the same test recording more than once.
  • a system processor may track CAs and which test recordings the CA has been exposed to previously and may ensure that a CA only listens to any test recording once.
  • CA As a CA listens to a test recording, the CA transcribes the HU voice signal to text and, in at least some cases, makes corrections to the text. Because the CA generated text corresponds to a recorded voice signal and not a real time signal, the text is not forwarded to an AU device for display. The CA is unaware that the text is not forwarded to the AU device as this exercise is a test.
  • the CA generated text is compared to the truth and a quality value is generated for the CA generated text (hereinafter a “CA quality value”).
  • the CA quality value may be a percent accuracy representing the percent of HU voice signal words accurately transcribed to text.
  • the CA quality value is then stored in a data base for subsequent access.
  • the system will be programmed to track and record transcription latency that can be used as a second type of quality factor referred to hereinafter as the “CA latency value”.
  • the system may track instantaneous latency and use the instantaneous values to generate average and other statistical latency values. For instance, an average latency over an entire call may be calculated, an average latency over a most recent one minute period may be calculated, a maximum latency during a call, a minimum latency during a call, a latency average taking out the most latent 20% and least latent 20% of a call may be calculated and stored, etc.
  • the system may combine the quality and latency values according to some algorithm to generate an overall CA service value that reflects the combination of accuracy and latency.
  • CA latency may also be calculated in other ways.
  • a relay server may be programmed to count the number of words during a period that are received from an ASR service provider (see 1006 in FIG. 30 ) and to assume that the returned number of words represents the actual words per minute (WPM) spoken by an HU.
  • WPM word per minute
  • periods of HU silence may be removed from the period so that the word count more accurately reflects WPM of the speaking HU.
  • the number of words generated by a CA for the same period may be counted and used along with the period duration minus silent periods to determine a CA WPM count.
  • the server may then compare the speaker WPM to the CA WPM count to assess CA delay or latency.
  • the recorded call may also be provided to an ASR to generate automatic text.
  • the ASR generated text may also be compared to the truth and an “ASR quality value” may be generated.
  • the ASR quality value may be stored in a database for subsequent use or may be compared to the CA quality value to assess which quality value is higher or for some other purpose.
  • an ASR latency value or ASR latency values (e.g., max, min, average over a call, average over a most recent period, etc.) may be generated as well as an overall ASR service value.
  • the ASR and CA values may be used by a system processor to determine when the ASR generated text should be swapped in for the CA generated text and vice versa.
  • System 1000 includes relay components represented by the phantom box at 1001 and a cloud based ASR system 1006 (e.g., a server that is linked to via the internet or some other type of computing network).
  • a cloud based ASR system 1006 e.g., a server that is linked to via the internet or some other type of computing network.
  • Two sources of pre-generated information are maintained at the relay including a set of recorded calls at 1002 and a set of verified true transcripts at 1010 , one truth or true transcript for each recorded call in the set 1002 .
  • the recorded calls may include actual HU-AU calls or may include mock calls that occur between two knowing parties that simulate an actual call.
  • a connection is linked from a system server that stores the calls 1002 to a captioning platform as shown at 1004 and one of the recorded calls, hereinafter referred to as a test recording, is transmitted to the captioning platform 1004 .
  • the captioning platform 1004 sends the received test recording to two targets including a CA at 1008 and the ASR server 1006 (e.g., Google Voice, IBM's Watson, etc.).
  • the ASR generates an automated text transcript that is forwarded on to a first comparison engine at 1012 .
  • the CA generates CA generated text which is forwarded on to a second comparison engine 1014 .
  • the verified truth text transcript at 1010 is provided to each of the first and second comparison engines 1012 and 1014 .
  • the first engine 1012 compares the ASR text to the truth and generates an ASR quality value and the second engine 1014 compares the CA generated text to truth and generates a CA quality value, each of which are provided to a system database 1016 for storage until subsequently required.
  • some component within the system 1000 generates latency values for each of the ASR text and the CA generated text by comparing when the times at which words are uttered in the HU voice signal to the times at which the text corresponding thereto is generated.
  • the latency values are represented by clock symbols 1003 and 1005 in FIG. 29 .
  • the latency values are stored in the database 1016 along with the associated ASR and CA quality values generated by the comparison engines 1012 and 1014 .
  • a first CA may be assigned to an ongoing HU-AU call and may operate in a conventional fashion to generate transcribed text that corresponds to an HU voice signal where the transcribed text is transmitted back to the AU device for display substantially simultaneously as the HU voice is broadcast to the AU.
  • the first CA may perform any process to convert the HU voice to text such as, for instance, revoicing the HU voice signal to a processor that runs voice to text software trained to the voice of the HU to generate text and then correcting the text on a display screen prior to sending the text to the AU device for display.
  • the CA generated text is also provided to a second CA along with the HU voice signal and the second CA listens to the HU voice signal and views the text generated by the first CA and makes corrections to the first CA generated text. Having been corrected a second time, the text generated by the second CA is a substantially error free transcription of the HU voice signal referred to hereinafter as the “truth”.
  • the truth and the first CA generated text are provided to a comparison engine which then generates a “CA quality value” similar to the CA quality value described above with respect to FIG. 29 which is stored for subsequent access in a database.
  • the HU voice signal may also be provided to a cloud based ASR server or service to generate automated speech recognition text during an ongoing call that can be compared to the truth (e.g., the second CA generated text) to generate an ASR quality value.
  • a cloud based ASR server or service to generate automated speech recognition text during an ongoing call that can be compared to the truth (e.g., the second CA generated text) to generate an ASR quality value.
  • system 1020 for testing and tracking CA and AVR quality and latency values using ongoing HU-AU calls is illustrated.
  • Components in the FIG. 30 system 1020 that are similar to the components described above with respect to FIG. 29 are labeled with the same numbers and operate in a similar fashion unless indicated otherwise hereafter.
  • system 1020 includes relay components represented by the phantom box at 1021 and a cloud based ASR system 1006 akin to the cloud based system described above with respect to FIG. 29 .
  • a second CA at 1030 corrects text generated by a first CA at 1008 to create a truth (e.g., essentially 100% accurate text).
  • the truth is compared to ASR generated text and the first CA generated text to create quality values to be stored in database 1016 .
  • the AU device 1042 transmits an HU voice signal to the captioning platform at 1004 .
  • the captioning platform 1004 sends the received HU voice signal to two targets including a first CA at 1008 and the ASR server 1006 (e.g., Google Voice, IBM's Watson, etc.).
  • the ASR generates an automated text transcript that is forwarded on to a first comparison engine at 1012 .
  • the first CA generates CA generated text which is transmitted to at least three different targets.
  • the first CA generated text which may include text corrected by the first CA is transmitted to the AU device 1042 for display to the AU during the call.
  • the first CA generated text is transmitted to the second comparison engine 1014 .
  • the first CA generated text is transmitted to a second CA at 1030 .
  • the second CA at 1030 views the CA generated text on a display screen and also listens to the HU voice signal and makes corrections to the first CA generated text where the second CA generated text operates as a truth text or truth.
  • the truth is transmitted to the second comparison engine at 1014 to be compared to the first CA generated text so that a CA quality value can be generated.
  • the CA quality value is stored in database 1016 along with one or more CA latency values.
  • the truth is also transmitted from the second call assistant at 1030 to the first comparison engine at 1012 to be compared to the ASR generated text so that an ASR quality value is generated which is also stored along with at least one ASR latency value in the database 1016 .
  • FIG. 31 another embodiment of a testing relay system is shown at 1050 which is similar to the system 1020 of FIG. 30 , albeit where the ASR service 1006 provides an initial text transcription to the second CA at 1052 instead of the CA receiving the initial text from the first call assistant.
  • the second CA generated the truth text which is again provided to the two comparison engines at 1012 and 1014 so that ASR and CA quality factors can be generated to be stored in database 1016 .
  • the ASR text generation and quality testing processes are described above as occurring essentially in real time as a first CA generates text for a recorded or ongoing call.
  • real time quality and latency testing may be important where a dynamic triage transcription process is occurring where, for instance, ASR generated text may be swapped in for a cut out CA when ASR generated text achieves some quality threshold or a CA may be swapped in for ASR generated text if the ASR quality value drops below some threshold level.
  • quality testing may not need to be real time and instead, may be able to be done off line for some purposes. For instance, where quality testing is only used to provide metrics to a government agency, the testing may be done off line.
  • the CA text and the recorded HU voice signal associated therewith may be stored in database 1016 for subsequent access for generating the ASR text at 1006 as well as for comparing the CA generated text and the ASR generated text to the verified truth text from 1010.
  • the HU portion of a call may be stored in database 1016 for subsequent off line processing by ASR service 1006 and the second CA at 1030 and then for comparisons to the truth at engines 1012 an 1014 .
  • quality and latency testing may only be performed sporadically and generally randomly so that generated values are sort of an average representation of the overall captioning service.
  • quality and latency testing may be periodic in general, it is contemplated that tell tail signs of poor quality during transcription may be used to trigger additional quality and latency testing.
  • the AU request may be used as a trigger to start the quality testing process on text received from that point on (e.g., quality testing will commence and continue for HU voice received as time progresses forward).
  • quality testing may be performed from that point forward on the CA generated text.
  • an HU-AU call may be stored during the duration of the call and that, at least initially, no quality testing may occur. Then, if an AU requests CA assistance, in addition to patching a CA into the call to generate higher quality transcription, the system may automatically patch in a second CA that generates truth text as in FIG. 30 for the remainder of the call. In addition or instead, when the AU requests CA assistance, the system may, in addition to patching a CA in to generate better quality text, also cause the recorded HU voice prior to the request to be used by a second CA to generate truth text for comparison to the ASR generated text so that an ASR quality value for the text that caused the AU to request assistance can be generated.
  • the pre-CA assistance ASR quality value may be generated for the entire duration of the call prior to the request or just for a most recent sub-period (e.g., for the prior minute or 30 seconds).
  • the system may automatically erase any recorded portion of an HU-AU call immediately after any quality values associated therewith have been calculated. In cases where quality values are only calculated for a most recent period of HU voice signal, recordings prior thereto may be erased on a rolling basis.
  • sensors at a relay may sense line noise or other signal parameters and, whenever the line noise or other parameters meet some threshold level, the system may automatically start quality testing which may persist until the parameters no longer meet the threshold level.
  • quality testing there may be hysteresis built into the system so that once a threshold is met, at least some duration of HU voice signal below the threshold is required to halt the testing activities.
  • the parameter value or condition or circumstance that triggered the quality testing would, in this case, be stored along with the quality value and latency information to add context to why the system started quality testing in the specific instance.
  • quality testing may be performed on at least a portion of the call.
  • the call may be recorded regardless of whether or not ASR or CA generated text is presented to an AU.
  • a query may be presented to the AU requesting that the AU rate the AU's satisfaction with the call and captioning on some scale (e.g., a 1 through 10 quality scale with 10 being high).
  • the system may automatically use the recorded HU voice or at least a portion thereof to generate a CA quality value in one of the ways described above. For instance, the system may provide the text generated by a first CA or by the ASR and the recorded HU voice signal to a second CA for generating truth and a quality value may be generated using the truth text for storage in the database.
  • the system server may request authorization to use the signal to generate a captioning quality value. For instance, after an AU indicates a 7 or lower on a satisfaction scale, the system may query the AU for authorization to check captioning quality by providing a query on the AU's device display and “Yes” and “No” options. Here, if the yes option is selected, the system would generate the captioning quality value for the call and memorialize that value in the system database 1016 .
  • authorization to use the recording to generate the quality value may be sought from an HU if the HU is using a device that can receive and issue an authorization request at the end of a call. For instance, in the case of a call where an HU uses a standard telephone, if an AU indicates a low satisfaction rating at the end of a call, the system may transmit an audio recording to the HU requesting authorization to use the HU voice signal to generate the quality value along with instructions to select “1” for yes and “2” for no. In other cases where an HU's device is a smart phone or other computing type device, the request may include text transmitted to the HU device and selectable “Yes” and “No” buttons for authorizing or not.
  • an HU-AU call recording may be at least temporarily stored at a relay
  • call recordings may be stored at an AU device or even at an HU device until needed to generate quality values.
  • an HU or AU may exercise more control or at least perceive to exercise more control over call content.
  • the recording device may not release recordings unless authorization to do so is received from a device operator (e.g., an HU or an AU).
  • the system may query the HU to authorize use of the HU voice to generate captioning quality values.
  • the HU authorizes use of the HU voice signal
  • the recorded HU voice signal would be transmitted to the relay to be used to generate captioning quality values as described above.
  • the HU or AU device may serve as a sort of software vault for HU voice signal recordings that are only released to the relay after proper authorization is received from the HU or the AU, depending on system requirements.
  • voice to text software accuracy is higher for software that is trained to the voice of a speaking person. Also known is that software can train to specific voices over short durations. Nevertheless, in most cases it is advantageous if software starts with a voice model trained to a particular voice so that caption accuracy can start immediately upon transcription. Thus, for instance, in FIG. 30 , when a specific HU calls an AU to converse, it would be advantageous if the ASR service at 1006 had access to a voice model for the specific HU.
  • the ASR service 1006 store voice models for at least HUs that routinely call an AU (e.g., a top ten HU list for each AU) and, when an HU voice signal is received at the ASR service, the service would identify the HU voice signal either using recognition software that can distinguish once voice from others or via some type of an identifier like the phone number of the HU device used to call the AU. Once the HU voice is identified, the ASR service accesses an HU voice model associated with the HU voice and uses that model to perform automated captioning.
  • AU e.g., a top ten HU list for each AU
  • HUs may prefer to not have their voice models stored by third party ASR service providers or at least to not have the models stored and associated with specific HUs.
  • regulatory agencies may not allow a third party ASR service provider to maintain HU voice models or at least models that are associated with specific HUs.
  • no information useable to associate an HU with a voice model may be stored by an ASR service provider.
  • an ASR server may be programmed to identify an HU's voice signal from analysis of the voice signal itself in an anonymous way.
  • Another solution may be for an AU device to store HU voice models for frequent callers where each model is associated with an HU identifier like a phone number or network address associated with a specific HU device.
  • the AU device processor may use the number or address associated with the HU device to identify which voice model to associate with the HU device. Then, the AU device may forward the HU voice model to the ASR service provider 1006 to be used temporarily during the call to generate ASR text.
  • the AU device may simply forward an intermediate identification number or other identifier associated with the HU device to the ASR provider and the provider may associate the number with a specific HU voice model stored by the provider to access an appropriate HU voice model to use for text transcription.
  • the models may be associated with number 1 through 10 and the AU may simply forward on one of the intermediate identifiers (e.g., “7”) to the ASR provider 1006 to indicate which one of ten voice models maintained by the ASR provider for the AU to use with the HU voice transmitted.
  • an HU may maintain one or more HU voice models that can be forwarded on to an ASR provider either through the relay or directly to generate text.
  • voice to text errors can generally be split into two different categories referred to herein as “visible” and “invisible” errors. Visible errors are errors that result in text that, upon reading, is clearly erroneous while invisible errors are errors that result in text that, despite the error that occurred, makes sense in context.
  • some mechanism for distinguishing visible and invisible text transcription errors may be included in a relay quality testing system. For instance, where 10 errors are made during some sub-period of an HU-AU call, three of the errors may be identified as invisible while 7 are visible.
  • invisible errors typically have a worse effect on communication effectiveness, statistics that capture relative numbers of invisible to all errors should be useful in assessing CA or ASR quality.
  • a relay server may be programmed to automatically identify at least visible errors so that statistics related thereto can be captured.
  • the server may be able to contextually examine text and identify words of phrases that simply make no sense and may identify each of those nonsensical errors as a visible error.
  • a correcting CA See 1053 in FIG. 31
  • the system may be programmed to automatically use CA corrections to identify invisible errors.
  • any time a CA changes a word in a text phrase that initially made sense within the phrase to another word that contextually makes sense in the phrase the system may recognize that type of correction to have been associated with an invisible error.
  • the decision to switch captioning methods may be tied at least in part to the types of errors that are identified during a call. For instance, assume that a CA is currently generating text corresponding to an HU voice signal and that an ASR is currently training to the HU voice signal but is not currently at a high enough quality threshold to cut out the CA transcription process.
  • the threshold CA quality value may require 95% accuracy and the CA invisible error rate may be 20% coupled with a 90% overall accuracy requirement.
  • the CA may be cut out of the call and ASR text relied upon for captioning.
  • Other error types are contemplated and a system for distinguishing each of several errors types from one another for statistical reporting and for driving the captioning triage process are contemplated.
  • CA generated text to ASR generated text may be a function of not just a straight up comparison of ASR and CA quality values and instead may be related to both quality and relative latency associated with different transcription methods.
  • transition in some cases may be related to a combination of quality values, error types and relative latency as well as to user preferences.
  • a CA may be patched in to the call in an attempt to increase quality of the transcribed text.
  • the CA may either be a full revoicing and correcting CA, just a correcting CA that starts with the ASR generated text and makes corrections or a first CA that revoices and a second CA that makes corrections.
  • the ASR generated text may be provided to the AU device for display at the same time that the ASR generated text is sent to the CA for correction. In that case, corrected text may be transmitted to the AU device for in line correction once generated by the CA.
  • the system may track quality of the CA corrected text and store a CA quality value in a system database.
  • text may not be transmitted to the AU device until the CA has corrected that text and then the corrected text may be transmitted.
  • the CA may simply start correcting text related to HU voice signal received after the CA is linked to the call.
  • the CA may be presented with text associated with HU voice signal that was transcribed prior to the CA being linked to the call for the CA to make corrections to that text and then the CA may continue to make corrections to the text as subsequent HU voice signal is received.
  • an HU's communication device will include a display screen and a processor that drives the display screen to present a quality indication of the captions being presented to an AU.
  • the quality characteristic may include some accuracy percentage, the actual text being presented to the AU, or some other suitable indication of caption accuracy or an accuracy estimation.
  • the HU device may present one or more options for upgrading the captioning quality such as, for instance, requesting CA correction of automated text captioning, requesting CA transcription and correction, etc.
  • HU voice delay concepts have been described where an HU's voice signal broadcast is delayed in order to bring the voice signal broadcast more temporally in line with associated captioned text.
  • a system processor may be programmed to introduce a three second delay in HU voice broadcast to an AU to bring the HU voice signal broadcast more into simultaneous alignment with associated text generated by the system.
  • the system processor may be programmed to introduce a two second delay in the HU voice that is broadcast to an AU to bring the HU voice signal broadcast for into temporal alignment with the ASR generated text.
  • the three and two second delays are simply based on the average minimum voice-to-text delays that occur with a specific voice to text system and therefore, at most times, will only imprecisely align an HU voice signal with corresponding text. For instance, in a case where HU voice broadcast is delayed three seconds, if text transcription is delayed ten seconds, the three second delay would be insufficient to align the broadcast voice signal and text presentation. As another instance, where the HU voice is delayed three seconds, if a text transcription is generated in one second, the three second delay would cause the HU voice to be broadcast two seconds after presentation of the associated text. In other words, in this example, the three second HU voice delay would be too much delay at times and too little at other times and misalignment could cause assisted user confusion.
  • a transcription system may assign time stamps to various utterances in an HU's voice signal and those time stamps may also be assigned to text that is then generated from the utterances so that the HU voice and text can be precisely synchronized per user preferences (e.g., precisely aligned in time or, if preferred by an AU, with an HU's voice preceding or delayed with respect to text by the same persistent period) when broadcast and presented to the AU, respectively.
  • an AU's preference is that the HU voice and related text be broadcast and presented simultaneously at substantially the same time. It should be recognized that in any embodiment described hereafter where the description refers to aligned or simultaneous voice and text, the same teachings will be applicable to cases where voice and text are purposefully misaligned by a persistent period (e.g., always misaligned by 3 seconds per user preference).
  • an AU device that receives an HU voice signal may assign periodic time stamps to sequentially received voice signal segments and store the HU voice signal segments along with associated time stamps.
  • the AU device may also transmit at least an initial time stamp (e.g. corresponding to the beginning of the HU voice signal or the beginning of a first HU voice signal segment during a call) along with the HU voice signal to a relay when captioning is to commence.
  • the relay stores the initial time stamp in association with the beginning instant of the received HU voice signal and continues to store the HU voice signal as it is received.
  • the relay operates its own timer to generate time stamps for on-going segments of the HU voice signal as the voice signal is received and the relay generated time stamps are stored along with associated HU voice signal segments (e.g., one time stamp for each segment that corresponds to the beginning of the segment).
  • a relay operates an ASR engine or taps into a fourth party ASR service (e.g., Google Voice, IBM's Watson, etc.) where a CA checks and corrects ASR generated text
  • the ASR engine generates automated text for HU voice segments in real time as the HU voice signal is received.
  • a CA computer at the relay simultaneously broadcasts the HU voice segments and presents the ASR generated text to a CA at the relay for correction.
  • the ASR engine speed will fluctuate somewhat based on several factors that are known in the speech recognition art so that it can be assumed that the ASR engine will translate a typical HU voice signal segment to text within anywhere between a fraction of a second (e.g., one tenth of a second) to 10 seconds.
  • the relay is programmed to delay the HU voice signal broadcast dynamically for a period within the range of a fraction of a second up to the maximum number of seconds required for the ASR engine to transcribe a voice segment to text.
  • a CA may have control over the timing between text presentation and HU voice broadcast and may prefer one or the other of the text and voice to precede the other (e.g., HU voice to proceed corresponding text by two seconds or vice versa).
  • the preferred delay between voice and text can be persistent and unchanging which results in less CA confusion.
  • the relay transmits the time stamped text back to the AU caption device for display to the AU.
  • the AU device accesses the time stamped HU voice signal stored thereat and associates the text and HU voice signal segments based on similar (e.g., closest in time) or identical time stamps and stores the associated text and HU voice signal until presented and broadcasted to the AU.
  • the AU device then simultaneously (or delayed per user preference) broadcasts the HU voice signal segments and presents the corresponding text to the AU via the AU caption device in at least some embodiments.
  • FIG. 32 A flow chart that is consistent with this simple first case of time stamping text segments is shown in FIG. 32 and will be described next.
  • FIG. 33 a system similar to the system described above with respect to FIG. 1 is illustrated where similar elements are labelled with the same numbers used in FIG. 1 and, unless indicated otherwise, operates in a similar fashion.
  • the primary differences between the FIG. 1 system and the system described in FIG. 33 is that each of the AU caption device 12 and the relay 16 includes a memory device that stores, among other things, time stamped voice message segments corresponding to a received HU voice signal and that time stamps are transmitted between AU device 12 and relay server 30 (see 1034 and 1036 ).
  • captioning is required by the AU (e.g., either immediately when the call commences or upon selection of a caption option by the AU) at which point AU device 12 performs several functions.
  • the HU voice signal is received by the AU device 12 .
  • AU device 12 commences assignment and continues to assign periodic time stamps to the HU voice signal segments received at the AU device.
  • the time stamps include an initial time stamp t0 corresponding to the instant in time when captioning is to commence or some specific instant in time thereafter as well as following time stamps.
  • AU device 12 commences storing the received HU voice signal along with the assigned time stamps that divide up the HU voice signal into segments in AU device memory 1030 .
  • AU device 12 transmits the HU voice signal segments to relay 16 along with the initial time stamp t0 corresponding to the instant captioning was initiated where the initial time stamp is associated with the start of the first HU voice segment transmitted to the relay (see 1034 in FIG. 33 ).
  • relay 16 stores the initial time stamp t0 along with the first HU voice signal segment in memory 1032 , runs its own timer to assign subsequent time stamps to the HU voice signal received and stores the HU voice signal segments and relay generated time stamps in memory 1032 .
  • both the AU device and the relay assign the initial time stamp t0 to the same point within the HU voice signal and each assigns other stamps based on the initial time stamp, all of the AU device and relay time stamps should be aligned assuming that each assigns time stamps at the same periodic intervals (e.g., every second).
  • each of the AU device and relay may assign second and subsequent time stamps having the form (t0+ ⁇ t) where ⁇ t is a period of time relative to the initial time stamp to.
  • a second time stamp may be (t0+1 sec)
  • a third time stamp may be (t0+4 sec)
  • the AU device and relay may assign time stamps that have a different periods where the system simply aligns stamps text and voice when required based on closest stamps in time.
  • relay 16 runs an ASR engine to generate ASR engine text for each of the stored HU voice signal segments and stores the ASR engine text with the corresponding time stamped HU voice signal segments.
  • relay 16 presents the ASR engine text to a CA for consideration and correction.
  • the ASR engine text is presented via a CA computer display screen 32 while the HU voice segments are simultaneously (e.g., as text is scrolled onto display 32 ) broadcast to the CA via headset 54 .
  • the CA uses display 32 and/or other interface devices to make corrections (see block 1116 ) to the ASR engine text. Corrections to the text are stored in memory 1032 and the resulting text is transmitted at block 1118 to AU device 12 along with a separate time stamp for each of the text segments (see 1036 in FIG. 33 ).
  • AU device 12 upon receiving the time stamped text, AU device 12 correlates the time stamped text with the HU voice signal segments and associated time stamps in memory 1130 and stores the text with the associated voice segments and related time stamps at block 1120 .
  • AU device 12 simultaneously broadcasts and presents the correlated HU voice signal segments and text segments to the AU via an AU device speaker and the AU device display screen, respectively.
  • the time stamps applied to HU voice signal segments and corresponding text segments enable the system to align voice and text when presented to each of a CA and an AU.
  • the system may only use time stamps to align voice and text for one or the other of a CA and an AU.
  • the simultaneous broadcast step at 1112 may be replaced by voice broadcast and text presentation immediately when available and synchronous presentation and broadcast may only be available to the AU at step 1122 .
  • synchronous voice and text may be provided to the CA at step 1112 while HU voice signal and caption text are independently presented to the AU immediately upon reception at steps 1102 and 1122 , respectively.
  • the AU only transmits an initial HU voice signal time stamp to the relay corresponding to the instant when captioning commences.
  • AU device 12 may transmit more than one time stamp corresponding to specific points in time to relay 16 that can be used to correct any voice and text segment misalignment that may occur during system processes.
  • AU device 12 may transmit time stamps along with specific HU voice segments every 5 seconds or every 10 seconds or every 30 seconds, etc., while a call persists, and the relay may simply store each newly received time stamp along with an instant in the stream of HU voice signal received.
  • AU device 12 may transmit enough AU device generated time stamps to relay 16 that the relay does not have to run its own timer to independently generate time stamps for voice and text segments.
  • AU device 12 would still store the time stamped HU voice signal segments as they are received and stamped and would correlate time stamped text received back from the relay 16 in the same fashion so that HU voice segments and associated text can be simultaneously presented to the AU.
  • a sub-process 1138 that may be substituted for a portion of the process described above with respect to FIG. 32 is shown in FIG. 34 , albeit where all AU device time stamps are transmitted to and used by a relay so that the relay does not have to independently generate time stamps for HU voice and text segments.
  • control passes to block 1140 in FIG. 34 where AU device 12 transmits the time stamped HU voice signal segments to relay 16 .
  • relay 16 stores the time stamped HU voice signal segments after which control passes back to block 1110 in FIG.
  • the relay employs an ASR engine to convert the HU voice signal segments to text segments that are stored with the corresponding voice segments and time stamps.
  • the process described above with respect to FIG. 32 continues as described above so that the CA and/or the AU are presented with simultaneous HU voice and text segments.
  • an AU device 12 may not assign any time stamps to the HU voice signal and, instead, the relay or a fourth party ASR service provider may assign all time stamps to voice and text signals to generate the correlated voice and text segments. In this case, after text segments have been generated for each HU voice segment, the relay may transmit both the HU voice signal and the corresponding text back to AU device 12 for presentation.
  • a process 1146 that is similar to the FIG. 32 process described above is shown in FIG. 35 , albeit where the relay generates and assigns all time stamps to the HU voice signals and transmits the correlated time stamps, voice signals and text to the AU device for simultaneous presentation.
  • process steps 1150 through 1154 in FIG. 35 replace process steps 1102 through 1108 in FIG. 32 and process steps 1158 through 1162 in FIG. 35 replace process steps 1118 through 1122 in FIG. 32 while similarly numbered steps 1110 through 1116 are substantially identical between the two processes.
  • Process 1146 starts at block 1150 in FIG. 35 where AU device 12 receives an HU voice signal from an HU device where the HU voice signal is to be captioned. Without assigning any time stamps to the HU voice signal, AU device 12 links to a relay 16 and transmits the HU voice signal to relay 16 at block 1152 .
  • relay 16 uses a timer or clock to generate time stamps for HU voice signal segments after which control passes to block 1110 where relay 16 uses an ASR engine to convert the HU voice signal to text which is stored along with the corresponding HU voice signal segments and related time stamps.
  • relay 16 simultaneously presents ASR text and broadcasts HU voice segments to a CA for correction and the CA views the text and makes corrections at block 1116 .
  • relay 16 transmits the time stamped text and HU voice segments to AU device 12 and that information is stored by the AU device as indicated at block 1160 .
  • AU device 12 simultaneously broadcasts and presents corresponding HU voice and text segments via the AU device display.
  • delay insertion points will be important in at least some cases or at some times. For instance, an HU may speak for 20 consecutive seconds where the system assigns a time stamp every 2 seconds. In this case, one solution for aligning voice with text would be to wait until the entire 20 second spoken message is transcribed and then broadcast the entire 20 second voice message and present the transcribed text simultaneously. This, however, is a poor solution as it would slow down HU-AU communication appreciably.
  • Another solution would be to divide up the 20 second voice message into 5 second periods with silent delays therebetween so that the transcription process can routinely catch up. For instance, here, during a first five second period plus a short transcription catch up period (e.g., 2 seconds), the first five seconds of the 20 second HU voice massage is transcribed. At the end of the first 7 seconds of HU voice signal, the first five seconds of HU voice signal is broadcast and the corresponding text presented to the AU while the next 5 seconds of HU voice signal is transcribed. Transcription of the second 5 seconds of HU voice signal may take another 7 seconds which would meant that a 2 second delay or silent period would be inserted after the first five seconds of HU voice signal is broadcast to the AU.
  • a short transcription catch up period e.g. 2 seconds
  • a better solution is to insert delays between natural language phrases when possible. For instance, in the case of the 20 second HU voice signal example above, a first delay may be inserted after a first 3 second natural language phrase, a second delay may be inserted after a second 4 second natural language phrase, a third delay may be inserted after a third 5 second natural language phrase, a fourth delay may be inserted after a fourth 2 second natural language phrase and a fifth delay may be inserted after a fifth 2 second natural language phrase, so that none of the natural language phrases during the voice message are broken up by intervening delays.
  • Software for identifying natural language phrases or natural breaks in an HU's voice signal may use actual delays between consecutive spoken phrases as one proxy for where to insert a transcription catch up delay. In some cases software may be able to perform word, sentence and/or topic segmentation in order to identify natural language phrases. Other software techniques for dividing voice signals into natural language phrases are contemplated and should be used as appropriate.
  • time stamps may be assigned at irregular time intervals that make more sense given the phrases that an HU speaks, how an HU speaks, etc.
  • voice segments can be more accurately selected for replay via selection of associated text.
  • FIG. 36 shows a CA display screen 50 with transcribed text represented at 1200 .
  • the CA may select a word or phrase in presented text via touch (represented by hand icon 1202 ) to replay the HU voice signal associated therewith.
  • touch represented by hand icon 1202
  • the selected word is highlighted (see 1204 ) or otherwise visually distinguished.
  • the CA computer accesses the HU voice segment associated with the highlighted word and re-broadcasts the voice segment for the CA to re-listen to the selected word.
  • time stamps are assigned with short intervening periods, the time stamps should enable relatively precise replay of selected words from the text.
  • the highlight will remain and the CA may change the highlighted word or phrase via standard text editing tools.
  • a “Resume” or other icon 1210 may be presented proximate the selected word that can be selected via touch to continue the HU voice broadcast and text presentation at the location where the system left off when the CA selected the word for re-broadcast.
  • a short time e.g., 1 ⁇ 4th second to 3 seconds
  • the system may automatically revert back to the voice and text broadcast at the location where the system left off when the CA selected the word for re-broadcast.
  • the system will also identify other possible words that may correspond to the voice segment associated with the selected word (e.g., second and third best options for transcription of the HU voice segment associated with the selected word) and those options may be automatically presented for touch selection and replacement via a list of touch selectable icons, one for each option, similar to Resume icon 1210 .
  • the options may be presented in a list where the first list entry is the most likely substitute text option, the second entry is the second most likely substitute text option, and so on.
  • a relay server or the CA's computer may select an HU voice segment that includes the selected word and also other words in an HU voice segment or phrase that includes the selected word for re-broadcast to the CA so that the CA has some audible context in which to consider the selected word.
  • the phrase length segment is re-broadcast, the full text phrase associated therewith may be highlighted as shown at 1206 in FIG. 36 .
  • the selected word may be highlighted or otherwise visually distinguished in one way and the phrase length segment that includes the selected word may be highlighted or otherwise visually distinguished in a second way that is discernably different to the CA so that the CA is not confused as to what was selected (e.g., see different highlighting at 1204 and 1206 in FIG. 36 ).
  • a single touch on a word may cause the CA computer to re-broadcast the single selected word while highlighting the selected word and the associated longer phrase that includes the selected word differently while a double tap on a word may cause the phrase that includes the selected word to be re-broadcast to provide audio context.
  • broadcasting a full phrase that includes a selected word should be particularly useful as the natural language phrase should be associated with a more meaningful context than an arbitrary group of words surrounding the selected word.
  • Resume icon 1210 Upon selection of Resume icon 1210 , the highlighting is removed from the selected word and the CA computer restarts simultaneously broadcasting the HU voice signal and presenting associated transcribed text at the point where the computer left off when the re-broadcast word was selected. In some cases, the CA computer may back up a few seconds from the point where the computer left off to restart the broadcast to re-contextualize the voice and text presented to the CA as the CA again begins correcting text errors.
  • the system may, after a short period (e.g., one second after the selected word or associated phrase is re-broadcast), simply revert back to broadcasting the HU voice signal and presenting associated transcribed text at the point where the computer left off when the re-broadcast word was selected.
  • a beep or other audibly distinguishable signal may be generated upon word selection and at the end of a re-broadcast to audibly distinguish the re-broadcast from broadcast HU voice.
  • any re-broadcast voice signal may be audibly modified in some fashion (e.g., higher pitch or tone, greater volume, etc.) to audibly distinguish the re-broadcast from other HU voice signal broadcast.
  • FIG. 37 a screen shot akin to the screen shot shown in FIG. 26 is illustrated at 50 that may be presented to an AU via an AU device display, albeit where an AU has selected a word from within transcribed text for re-broadcast.
  • the instantaneous HU voice broadcast and text presentation is halted, the selected word is highlighted or otherwise visually distinguished as shown at 1230 and the phrase including the selected word may also be differently visually distinguished.
  • Beeps or other audible signals may be generated immediately prior to and after re-broadcast of a voice signal segment.
  • the AU device speaker (e.g., the speaker in associated handset 22 ) re-broadcasts the HU voice signal that is associated through the assigned time stamp to the selected word. In other cases the AU device will re-broadcast the entire phrase or sub-phrase that includes the selected word to give audio context to the selected word.
  • time stamping concept is described above with respect to a system where an ASR initially transcribes an HU voice signal to text and a CA corrects the ASR generated text
  • the time stamping concept is also advantageously applicable to cases where a CA transcribes an HU voice signal to text and then corrects the transcribed text or where a second CA corrects text transcribed by a first CA.
  • an ASR may operate in the background of a CA transcription system to generate and time stamp ASR text (e.g., text generated by an ASR engine) in parallel with the CA generated text.
  • a processor may be programmed to compare the ASR text and CA generated text to identify at least some matching words or phrases and to assign the time stamps associated with the matching ASR generated words or phrases to the matching CA generated text.
  • CA text will likely be more accurate than the ASR text most of the time and therefore that there will be differences between the two text strings.
  • some if not most of the time the ASR and CA generated texts will match so that many of the time stamps associated with the ASR text can be directly applied to the CA generated text to align the HU voice signal segments with the CA generated text.
  • confidence factors may be generated for likely associated ASR and CA generated text and time stamps may only be assigned to CA generated text when a confidence factor is greater than some threshold confidence factor value (e.g., 88/100). In most cases it is expected that confidence factors that exceed the threshold value will occur routinely and with short intervening durations so that a suitable number of reliable time stamps can be generated.
  • the stamps may be used to precisely align HU voice signal broadcast and text presentation to an AU or a CA (e.g., in the case of a second “correcting CA”) as described above as well as to support re-broadcast of HU voice signal segments corresponding to selected text by a CA and/or an AU.
  • a CA e.g., in the case of a second “correcting CA”
  • a sub-process 1300 that may be substituted for a portion of the FIG. 32 process is shown in FIG. 38 , albeit where ASR generated time stamps are applied to CA generated text.
  • steps 1302 through 1310 shown in FIG. 38 are swapped into the FIG. 32 process for steps 1112 through 1118 .
  • control passes to block 1302 in FIG. 38 where the relay broadcasts the HU voice signal to a CA and the CA revoices the HU voice signal to transcription software trained to the CA's voice and the software yields CA generated text.
  • a relay server or processor compares the ASR text to the CA generated text to identify high confidence “matching” words and/or phrases.
  • the phrase high confidence means that there is a high likelihood (e.g., 95% likely) that an ASR text word or phrase and a CA generated text word or phrase both correspond to the exact same HU voice signal segment.
  • Characteristics analyzed by the comparing processor include multiple word identical or nearly identical strings in compared text, temporally when text appears in each text string relative to other assigned time stamps, easily transcribed words where both an ASR and a CA are highly likely to accurately transcribe words, etc.
  • time stamps associated with the ASR text are only assigned to the CA generated text when the confidence factor related to the comparison is above some threshold level (e.g., 88/100). Time stamps are assigned at block 1306 in FIG. 38 .
  • the relay presents the CA generated text to the CA for correction and at block 1310 the relay transmits the time stamped CA generated text segments to the AU device.
  • control passes back to block 1120 in FIG. 32 where the AU device correlates time stamped CA generated text with HU voice signal segments previously stored in the AU device memory and stores the times, text and associated voice segments.
  • the AU device simultaneously broadcasts and presents identically time stamped HU voice and CA generated text to an AU. Again, in some cases, the AU device may have already broadcast the HU voice signal to the AU prior to block 1122 . In this case, upon receiving the text, the text may be immediately presented via the AU device display to the AU for consideration.
  • the time stamped HU voice signal and associated text would only be used by the AU device to support synchronized HU voice and text re-play or representation.
  • the time stamps assigned to a series of text and voice segments may simply represent relative time stamps as opposed to actual time stamps. For instance, instead of labelling three consecutive HU voice segments with actual times 3:55:45 AM; 3:55:48 AM; 3:55:51 AM . . . , the three segments may be labelled t0, t1, t2, etc., where the labels are repeated after they reach some maximum number (e.g., t20). In this case, for instance, during a 20 second HU voice signal, the 20 second signal may have five consecutive labels t0, t1, t2, t3 and t4 assigned, one every four seconds, to divide the signal into five consecutive segments.
  • the relative time labels can be assigned to HU voice signal segments and also associated with specific transcribed text segments.
  • the rate of time stamp assignment to an HU voice signal may be dynamic. For instance, if an HU is routinely silent for long periods between intermittent statements, time stamps may only be assigned during periods while the HU is speaking. As another instance, if an HU speaks slowly at times and more rapidly at other times, the number of time stamps assigned to the user's voice signal may increase (e.g., when speech is rapid) and decrease (e.g., when speech is relatively slow) with the rate of user speech. Other factors may affect the rate of time stamps applied to an HU voice signal.
  • time stamps are assigned to an HU voice signal by either or both of an assisted user's device and a relay
  • other system devices or processors may assign time stamps to the HU voice signal including a fourth party ASR engine provider (e.g., IBM's Watson, Google Voice, etc.).
  • the HU device is a computer (e.g., a smart phone, a tablet type computing device, a laptop computer)
  • the HU device may assign time stamps to the HU voice signal and transmit to other system devices that need time stamps. All combinations of system devices assigning new or redundant time stamps to HU voice signals are contemplated.
  • the engine(s) assigning the time stamps may generate stamps indicating any of (1) when a word or phrase is voiced in an HU voice signal audio stream (e.g., 16:22 to 16:22:5 corresponds to the word “Now”) and (2) the time at which text is generated by the ASR for a specific word (e.g., “Now” generated at 16:25).
  • a processor related to the relay may also generate time stamps indicating when a CA generated word is generated as well as when a correction is generated.
  • a CA caption delay e.g., the delay between an HU voice utterance and CA generation of text or correction of text associated with the utterance
  • some threshold e.g. 12 seconds
  • the rate of broadcast may be dynamic between a nominal value representing the natural speaking speed of the HU and a maximum rate (e.g., increase the natural HU voice speed three times), and the instantaneous rate may be a function of the degree of captioning delay.
  • the broadcast rate may be 1 representing the natural speaking speed of the HU
  • the rebroadcast rate may be 2 (e.g., twice the natural speaking speed)
  • the broadcast rate may be 3 (e.g., three times the natural speaking speed).
  • the dynamic rate may be a function of other factors such as but not limited to the rate at which an HU utters words, perceived clarity in the connection between the HU and AU devices or between the AU device and the relay or between any two components within the system, the number of corrections required by a CA during some sub-call period (e.g., the most recent 30 seconds), statistics related to how accurately a CA can generate text or make text corrections at different speaking rates, some type of set AU preference, some type of HU preference, etc.
  • the rate of HU voice broadcast may be based on ASR confidence factors. For instance, where an ASR assigns a high confidence factor to a 15 second portion of HU voice signal and a low confidence factor to the next 10 seconds of the HU voice signal, the HU voice broadcast rate may be set to twice the rate of HU speaking speed during the first 15 second period and then be slowed down to the actual HU speaking speed during the next 10 second period.
  • the HU broadcast rate may be at least in part based on characteristics of an HU's utterances. For instance, where an HU's volume on a specific word is substantially increased or decreased, the word (or phrase including the word) may always be presented at the HU speaking speed (e.g., at the rate uttered by the HU). In other cases, where the volume of one word within a phrase is stressed, the entire phrase may be broadcast at speaking speed so that the full effect of the stressed word can be appreciated. As another instance, where an HU draws out pronunciation of a word such as “Well . . . ” for 3 seconds, the word (or phrase including the word) may be presented at the spoken rate.
  • the HU voice broadcast rate may be at least in part based on words spoken by an HU or on content expressed in an HU's spoken words. For instance, simple words that are typically easy to understand including “Yes”, “No”, etc., may be broadcast at a higher rate than complex words like some medical diagnosis, multi-syllable terms, etc.
  • the system In cases where the system generates text corresponding to both HU and AU voice signals, in at least some embodiments it is contemplated that during normal operation only text associated with the HU signal may be presented to an AU and that the AU text may only be presented to the AU if the AU goes back in the text record to review the text associated with a prior part of a conversation. For instance, if an AU scrolls back in a conversation 3 minutes to review prior discussion, ASR generated AU voice related text may be presented at that time along with the HU text to provide context for the AU viewing the prior conversation.
  • the CA whenever a CA is involved in a caption assisted call, the CA considers an entire HU voice signal and either generates a complete CA generated text transcription of that signal or corrects ASR generated text errors while considering the entire HU voice signal.
  • the system may only present sub-portions of an HU voice signal to a CA that are associated with relatively low confidence factors for consideration to speed up the error correction process.
  • a CA may only be presented the ASR generated text and the HU voice signal may not be broadcast to the CA during the first 20 seconds while substantially simultaneous HU voice and text are presented to the CA during the following 10 second period so that the CA is able to correct any errors in the low confidence text.
  • the CA would still have the opportunity to select an interface option to hear the HU voice signal corresponding to the first 20 second period or some portion of that period if desired.
  • this technique of skipping broadcast of HU voice associated with high confidence text may only be used by the system during threshold catch up periods of operation. For instance, the technique of skipping broadcast of HU voice associated with high confidence text may only kick in when a CA text correction process is delayed from an HU voice signal by 20 or more seconds.
  • low confidence text and associated voice may be presented to a CA at normal speaking speed and high confidence text and associated voice may be presented to a CA at an expedited speed (e.g., 3 time normal speaking speed) when a text presentation delay (e.g., the period between the time an HU uttered a word and the time when a text representation of the word is presented to the CA) is less than a maximum latency period, and if the delay exceeds the maximum latency period, high confidence text may be presented in block form (e.g., as opposed to rapid sequential presentation of separate words) without broadcasting the HU voice to expedite the catchup process.
  • a text presentation delay e.g., the period between the time an HU uttered a word and the time when a text representation of the word is presented to the CA
  • high confidence text may be presented in block form (e.g., as opposed to rapid sequential presentation of separate words) without broadcasting the HU voice to expedite the catchup process.
  • a speech recognition engine will sequentially generate a sequence of captions for a single word or phrase uttered by a speaker. For instance, where an HU speaks a word, an ASR engine may generate a first “estimate” of a text representation of the word based simply on the sound of the individual word and nothing more. Shortly thereafter (e.g., within 1 to 6 seconds), the ASR engine may consider words that surround (e.g., come before and after) the uttered word along with a set of possible text representations of the word to identify a final estimate of a text representation of the uttered word based on context derived from the surrounding words. Similarly, in the case of a CA revoicing an HU voice signal to an ASR engine trained to the CA voice to generate text, multiple iterations of text estimates may occur sequentially until a final text representation is generated.
  • every best estimate of a text representation of every word to be transcribed will be transmitted immediately upon generation to an AU device for continually updated presentation to the AU so that the AU has the best HU voice signal transcription that exists at any given time.
  • each of the interim text estimate, the final text representation and the CA corrected text may be presented to the AU where updates to the text are made as in line corrections thereto (e.g., by replacing erroneous text with corrected text directly within the text stream presented) or, in the alternative, corrected text may be presented above or in some spatially associated location with respect to erroneous text.
  • CA corrected text may be disabled.
  • the ASR engine may be programmed to assume that the CA corrected text is accurate from that point forward.
  • the ASR engine may be programmed to assume that a CA corrected word is a true transcription of the uttered word which can then be used as true context for ascertaining the text to be associated with other ASR engine generated text words surrounding the true transcription.
  • text words prior to and following the CA corrected word may be corrected by the ASR engine based on the CA corrected word that provides new context.
  • the word will be said to be “firm”.
  • a CA corrects a word or words at one location in presented text
  • an ASR subsequently contextually corrects a word or phrase that precedes the CA corrected word or words
  • the subsequent ASR correction may be highlighted or otherwise visually distinguished so that the CA's attention is called thereto to consider the ASR correction.
  • the text that was corrected may be presented in a hovering tag proximate the ASR correction and may be touch selectable by the CA to revert back to the pre-correction text if the CA so chooses. To this end, see the CA interface screen shot 1391 shown in FIG.
  • ASR generated text is shown at 1393 that is similar to the text presented in FIG. 39 , albeit with a few corrections. More specifically, in FIG. 43 , it is assumed that a CA corrected the word “cods” to “kids” at 1395 (compare again to FIG. 39 ) after which an ASR engine corrected the prior word “bing” to “bring”. The prior ASR corrected word is highlighted or distinguished as shown at 1397 and the word that was changed to make the correction is presented in hovering tag 1399 . Tag 1399 is touch selectable by the CA to revert back to the prior word if selected.
  • the ASR engine may be programmed to disable generating additional estimates or hypothesis for any words uttered by the HU prior to the CA corrected word or within a text segment or phrase that includes the corrected word.
  • the CA may correct the fifth most recently presented word, the fifth most recently corrected word and the 25 preceding words would be rendered firm and unchangeable via the ASR engine.
  • the CA would still be free to change any word presented on her display screen at any time.
  • that word and any preceding text words may be firm as to both the CA and the ASR engine.
  • the system may only allow a CA to correct text corresponding to the 50 words most recently uttered by an HU.
  • the idea is that in most cases it will make no sense for a CA to waste time correcting text errors in text prior to the most recently uttered 50 words as an AU will only rarely care to back up in the record to see prior generated and corrected text.
  • the window of text that is correctable may be a function of several factors including font type and size selected by an AU on her device, the type and size of display included in an AUs device, etc. This feature of restricting CA corrections to AU viewable text is effectively a limit on how far behind CA error corrections can lag.
  • a call may start out with full CA error correction so that the CA considers all ASR engine generated text but that, once the error correction latency exceeds some threshold level, that the CA may only be able to or may be encouraged to only correct low confidence text.
  • the latency limit may be 10 seconds at which point all ASR text is presented but low confidence text is visually distinguished in some fashion designed to encourage correction.
  • FIG. 40 where low and high confidence text is presented in difference scrolling columns.
  • error correction may be limited to the left column low confidence text as illustrated. FIG. 40 is described in more detail hereafter. Where only low confidence text can be corrected, in at least some cases the HU voice signal for the high confidence text may not be broadcast.
  • only low confidence factor text and associated HU voice signal may be presented and broadcast to a CA for consideration with some indication of missing text and voice between the presented text words or phrases.
  • turn piping representations may be presented to a CA between low confidence editable text phrases.
  • ASR generated text may be transmitted to an AU device in blocks where context afforded by surrounding words has already been used to refine text hypothesis. For instance, words may be sent in five word text blocks where the block sent always includes the 6th through 10th most recently transcribed words so that the most recent through fifth most recent words can be used contextually to generate final text hypothesis for the 6th through 10th most recent words.
  • CA text corrections would still be made at a relay and transmitted to the AU device for in line corrections of the ASR engine final text.
  • CA corrections would again be transmitted separately to the AU device for in line correction.
  • the idea is that the CA generated text should be relatively more accurate than the ASR engine generated text and therefore immediate transmission of the CA generated text to the AU would result in a lower error presentation to the AU.
  • turn piping type indications may be presented to a CA on her interface display as a representation of the delay between the CA text generation or correction and the ASR engine generated text.
  • FIG. 17 A similar representation may be presented to a CA.
  • the system may automatically force a split to cause an ASR engine to catch up to a current time in a call and to firm up text before the split time.
  • the system may identify a preferred split prior to which ASR engine confidence factors are high. For instance, where ASR engine text confidence factors for spoken words prior to the most recent 15 words are high and for the last fifteen words are low, the system may automatically suggest a split at the 15th most recent word so that ASR text prior to that word is firmed up and text thereafter is still presented to the CA to be considered and corrected.
  • the CA may reject the split either by selecting a rejection option or by ignoring the suggestion or may accept the suggestion by selecting an accept option or by ignoring the suggestion (e.g., where the split is automatic if not rejected in some period (e.g., 2 seconds)).
  • ASR generated text is shown at 1332 .
  • the CA is behind in error correction so that the CA computer is currently broadcasting the word “want” as indicted by the “Broadcast” tag 1334 that moves along the ASR generated text string to indicate to the CA where the current broadcast point is located within the overall string.
  • a “High CF—Catch Up” tag 1338 is provided to indicate a point within the overall ASR text string presented prior to which ASR confidence factors are high and, after which ASR confidence factors are relatively lower.
  • a CA would be able to select tag 1338 to skip to the tagged point within the text. If a CA selects tag 1338 , the broadcast may skip to the associated tagged point so that “Broadcast” tag 1334 would be immediately moved to the point tagged by tag 1338 where the HU voice broadcast would recommence. In other cases, selecting high confidence tag 1338 may cause accelerated broadcast of text between tags 1334 and 1338 to expedite catch up.
  • FIG. 40 another exemplary CA screen shot 1333 that may be presented to show low and high confidence text segments and to enable a CA to skip to low confidence text and associated voice signal is illustrated.
  • Screen shot 1333 divides text into two columns including a low confidence column 1335 and a high confidence column 1337 .
  • Low confidence column 1335 includes text segments that have ASR assigned confidence factors that are less than some threshold value which high confidence column 1337 include text segments that have ASR assigned confidence factors that are greater than the threshold value.
  • Column 1335 is presented on the left half of screen shot 1333 and column 1337 is presented on the right half of shot 1333 . The two columns would scroll upward simultaneously as more text is generated.
  • a current broadcast tag 1339 is provided at a current broadcast point in the presented text.
  • a “High CF, Catch Up” tag 1341 is presented at the beginning of a low confidence text segment.
  • a CA may select the high confidence tag 1341 to skip the broadcast forward to the associated point to expedite the error correction process.
  • the HU voice broadcast may be at 2 X or more the speaking speed so that catch up can be more rapid.
  • a system processor may use the calling number (e.g., the number associated with the calling party or the calling parties device) to identify the least expensive good option for generating text for a specific call. For instance, for a specific first caller, a robust and reliable ASR engine voice model may already exist and therefore be useable to generate automated text without the need for CA involvement most of the time while no model may exist for a second caller that has not previously used the system.
  • the calling number e.g., the number associated with the calling party or the calling parties device
  • the system may automatically initiate captioning using the ASR engine and first caller voice model for first caller calls and may automatically initiate CA assisted captioning for second caller calls so that a voice model for the second caller can be developed for subsequent use.
  • the received call is from an AU and is outgoing to an HU
  • a similar analysis of the target HU may cause the system to initiate ASR engine captioning or CA assisted captioning.
  • identity of an AU may also be used to select which of two or more text generation options to use to at least initiate captioning.
  • some AU's may routinely request CA assistance on all calls while others may prefer all calls to be initiated as ASR engine calls (e.g., for privacy purposes) where CA assistance is only needed upon request for relatively small sub-periods of some calls.
  • AU phone or address numbers may be used to assess optimal captioning type.
  • both a called and a calling number may be used to assess optimal captioning type.
  • an AU number or address may trump an HU number or address and the HU number or address may only be used to assess caption type to use initially when the AU has no perceived or expressed preference.
  • an optimal AU interface needs additional information that is related to specific locations within a presented text string. For instance, specific virtual control buttons need to be associated with specific text string locations. For example, see the “High CF—Catch Up” button in FIG. 39 . As other examples, a “resume” tag as in FIG. 36 or a correction word (see FIG. 20 ) may need to be linked to a specific text location. As another instance, in some cases a “broadcast” tag indicating the word currently being broadcast may have to be linked to a specific text location (see FIG. 39 ).
  • a CA interface or even an AU interface will take a form where text lines are separated by at least one blank line that operates as an “additional information” field in which other text location linked information or content can be presented.
  • additional information fields are collectively labelled 1215 .
  • the additional information fields may also be provided below associated text lines.
  • other text fields may be presented as separate in line fields within the text strings (see 1217 in FIG. 40 ).
  • a system processor that drives or is associated with a CA interface may introduce periodic and random known errors into ASR generated text that is presented to a CA as test errors.
  • the idea is that a CA should identify the test errors and at least attempt to make corrections thereto.
  • the errors would be introduced to the CA, the errors would not be presented to an AU and instead the correct ASR engine text would be presented to the AU.
  • the system would allow a CA to actually correct the erroneous text without knowing which errors were ASR generated and which were introduced.
  • the interface may automatically make the correction upon selection so that the CA does not waste additional time rendering a correction.
  • a message may be presented to the CA indicating that the error was a purposefully introduced error.
  • an ASR engine generates ASR text segments corresponding to an HU voice signal.
  • a relay processor or ASR engine assigns confidence factors to the ASR text and at block 1356 , the relay identifies at least one high confidence text segment as a “test” segment.
  • the processor transmits the high confidence test segment to an AU device for display to an AU.
  • the processor identifies an error segment to be swapped into the ASR generated text for the test segment to be presented to the CA. For instance, where a high confidence test segment includes the phrase “John came home on Friday”, the processor may generate an exemplary error segment like “John camp home on Friday”.
  • the processor presents text with the error segment to the CA as part of an ongoing text stream to consider for error correction.
  • the processor monitors for CA selection of words or phrases in the error segment to be corrected. Where the CA does not select the error segment for correction, control passes to block 1372 where the processor stores an indication that the error segment was not identified and control passes back up to block 1352 where the process continues to cycle.
  • the processor may also store the test segment, the error segment and a voice clip corresponding to the test segment that may later be accessed by the CA or an administrator to confirm the missed error.
  • the test segment may be highlighted or otherwise visually distinguished so that the CA can see the correction made.
  • the processor provides confirmation that the error segment was purposefully introduced and corrected. To this end, see the “Introduced Error—Now Corrected” tag 1331 in FIG. 39 that may be presented after a CA selects an error segment.
  • the processor stores an indication that the error segment was identified by the CA. Again, in some cases, the test segment, error segment and related voice clip may be stored to memorialize the error correction. After block 1370 , control passes back up to block 1352 where the process continues to cycle.
  • errors may only be introduced when the rate of actual ASR engine errors and CA corrections is small. For instance, where a CA is routinely making error corrections during a one minute period, it would make no sense to introduce more text errors as the CA is most likely highly focused during that period. In addition, if a CA is substantially delayed in making corrections, the system may again opt to not introduce more errors.
  • Error introductions may include text additions, text deletions and text substitutions in some embodiments.
  • the error generating processor or CA interface may randomly generate errors of any type and related to any ASR generated text.
  • the processor may be programmed to introduce meaningful errors calculated to change the meaning of phrase so that a CA will be particularly motivated to correct the text error when presented. To this end, it has been recognized that some errors have limited effect on the meaning of an associated phrase while others can completely change the meaning of a phrase. Because ASR engines can understand context, they can also be programmed to ascertain when a simple text change will affect phrase meaning and can therefore be used to drive an interface as suggested here. For instance, in some cases introduced errors may only include meaningful errors. In other cases, introduced errors may include both meaningful errors and other errors that do not change the meaning of associated phrases and which would likely be recognized by an AU view the error and different statistics may be collected and stored for each of the error types to develop metrics for judging CA effectiveness.
  • gamification can be enhanced by generating ongoing, real time dynamic scores for CA performance including, for instance, a score associated with accuracy, a separate score associated with captioning speed and/or separate speed and accuracy scores under different circumstances such as, for instance, for male and female voices, for east coast accents, Midwest accents, southern accents, etc., for high speed talking and slower speed talking, for captioning with correcting versus captioning alone versus correcting ASR engine text, and any combinations of factors that can be discerned.
  • exemplary accuracy and speed scores that are updated in real time for an ongoing call are shown at 1343 and 1345 , respectively. Where a call persists for a long time, a rolling most recent sub-period of the call may be used as a duration over which the scores are calculated.
  • CA scores may be stored as part of a CA profile and that profile could be routinely updated to reflect growing CA effectiveness with experience over time.
  • CA specific scores are stored in a CA profile, the system may automatically route future calls that have characteristics that match high scores for a specific CA to that CA which should increase overall system accuracy and speed.
  • an HU profile associated with a specific phone number indicates that an associated HU has a strong southern accent and speaks rapidly, when a call is received that is associated with that phone number, the system may automatically route the call to a CA that has a high gamification score for rapid southern accents if such a CA is available to take the call.
  • the system may assign the call to a first CA to commence captioning where a relay processor analyzes the HU voice during the beginning of the call and identifies voice characteristics (e.g., rapid, southern, male, etc.) and automatically switches the call to a second CA that is associated with a high gamification score for the specific type of HU voice. In this case, speed and accuracy would be expected to increase after the switch to the second CA.
  • voice characteristics e.g., rapid, southern, male, etc.
  • a combined speed/accuracy score can be generated for each CA over the course of time, for each CA over a work period (e.g., a 6 hour captioning day), for each CA for each call that the CA handles, etc.
  • an exemplary single score algorithm may including a running tally that adds one point for a correct word and adds zero points for an incorrect word, where the correct word point is offset by an amount corresponding to a delay in word generation after some minimal threshold period (e.g., 2 seconds after the word is broadcast to the CA for transcription or one second after the word is broadcast to and presented to a CA for correction).
  • the offset may be 0.2 points for every second after the minimal threshold period.
  • Other algorithms are contemplated.
  • the single score may be presented to a CA dynamically and in real time so that CA is motivated to focus more. In other cases the single score per phone call may be presented at the end of each call or an average score over a work period may be presented at the end of the work period. In FIG. 40 , an exemplary current combined score is shown at 1347 .
  • the single score or any of the contemplated metrics may also be related to other factors such as, for instance, how quickly errors are corrected by a CA, how many ASR errors need to be corrected in a rolling period of time, how many manufactured or purposefully introduced errors are caught and corrected, once a CA is behind, how does the CA respond, how fast an HU is speaking (WPM), how clear a voice signal is received (perhaps as measured by the ASR engine), ASR confidence factors associated with text generated during a call (as a proxy for captioning complexity), etc.
  • an AU has the option to request CA assistance or more CA assistance than currently afforded on a call and or to request ASR engine text as opposed to CA generated text (e.g., typically for privacy purposes). While a request to change caption technique may be received from a CA, in at least some cases the alternative may not be suitable for some reason and, in those cases, the system may forego a switch to a requested technique and provide an indication to a requesting AU that the switch request has been rejected. For instance, if an AU receiving CA generated and corrected text requests a switch to an ASR engine but accuracy of the ASR engine is below some minimal threshold, the system may present a message to the AU that the ASR engine cannot currently support captioning and the CA generation and correction may persist. In this example, once the ASR engine is ready to accurately generate text, the switch thereto may be either automatic or the system may present a query to the AU seeking authorization to switch over to the ASR engine for subsequent captioning.
  • a system processor may determine that ASR engine text accuracy is low for some reason that will also affect CA assistance and may notify the AU that the a switch will not be made along with a reason (e.g., “Communication line fault”).
  • the caption system may automatically, upon request from an AU or per AU preferences stored in a database, initiate all captioning using an ASR engine.
  • the system may present short portions of an HU's voice signal to a series of CAs so that each CA only considers a portion of the text for correction. Then, the system would stitch all of the CA corrected text together into an HU text stream to be transmitted to the AU device for display.
  • an AU device interface may present a split text screen to an AU so that the AU has the option to view essentially real time ASR generated text or CA corrected text when the corrected text substantially lags the ASR text.
  • CA corrected text is shown in an upper field 1452 and “real time” ASR engine text is presented in a lower field 1454 .
  • a “CA location” tag 1456 is presented at the end of the CA corrected text while a “Broadcast” tag 1458 is presented at the end of the ASR engine text to indicate the CA and broadcast locations within the text string.
  • CA correction latency reaches a threshold level (e.g., the text between the CA correction location and the most recent ASR text no longer fits on the display screen)
  • text in the middle of the string may be replaced by a period indicator to indicate the duration of HU voice signal at the speaking speed that corresponds to the replaced text.
  • a threshold level e.g., the text between the CA correction location and the most recent ASR text no longer fits on the display screen
  • an HU may use a communication device that can provide video of the HU to an AU during a call.
  • an HU device may include a portable tablet type computing device or smart phone (see 1219 in FIG. 33 ) that includes an integrated camera for telepresence type communication.
  • a camera 1123 may be linked to the HU phone or other communication device 14 for collecting HU video when activated. Where HU video is obtained by an HU device, in most cases the video and voice signals will already be associated for synchronous playback.
  • the HU voice and video signals are transmitted to an AU device, the HU video may be broken down into video segments that correspond with time stamped text and voice segments and the stamped text, voice and video segments may be stored for simultaneous replay to the AU.
  • the HU video will freeze during each delay.
  • the HU voice signal is sped up during a catch up period as described above, the HU video may be shown at a faster speed so that the voice and video broadcasts are temporally aligned.
  • FIG. 42 shows an exemplary AU device screen shot 1308 including transcribed text 1382 and a video window or field 1384 .
  • the AU device would identify the voice segment and video segment associated with the selected text segment and replay both the voice and video segments while the phrase remains highlighted for the user to consider.
  • the AU device or AU station may also include a video camera 1125 for collecting AU video that can be presented to the HU during a call.
  • a video camera 1125 for collecting AU video that can be presented to the HU during a call.
  • at least some HUs may be reticent to allow an AU to view HU video without having the reciprocal ability to view the AU during an ongoing call and therefore reciprocal AU viewing would be desirable.
  • At least four advantages result from systems that present HU video to an AU during an ongoing call.
  • the AU will be able to see the HU's facial expressions which can increase the richness of the communication experience.
  • the HU representation in a video may be useable to discern words intended by an HU even if a final text representation thereof is inaccurate. For instance, where a text transcription error occurs, an AU may be able to select the phrase including the error and view the HU video associated with the selected phrase while listening to the associated voice segment and, based on both the audio and video representations, discern the actual phrase spoken by the HU.
  • the HU video may be useable by the AU to enhance communication.
  • an AU device may be programmed to query an HU device at the beginning of a communication to determine if the HU device has a video camera useable to generate an HU video signal. If the HU device has a camera, the AU device may cause the HU device to issue a query to the HU requesting access to and use of the HU device camera during the call. For instance, the query may include brief instructions and a touch selectable “Turn on camera” icon or the like for turning on the HU device camera. If the HU rejects the camera query, the system may operate without generating and presenting an HU video as described above. If the HU accepts the request, the HU device camera is turned on to obtain an HU video signal while the HU voice signal is obtained and the video and voice signal are transmitted to the AU device for further processing.
  • CAs provide a sign language service for deaf AUs.
  • an HU voice signal is provided to a CA.
  • the CA listens to the HU voice signal and uses her hands to generate a sequence of signs that correspond at least roughly to the content (e.g., meaning) of the HU voice messages.
  • a video camera at a CA station captures the CA sign sequence (e.g., “the sign signal” and transmits that signal to an AU device which presents the sign signal to the AU via a display screen. If the AU can speak, the AU talks into a microphone and the AU's voice is transmitted to the HU device where it is broadcast for the HU to hear.
  • a second or even a third communication signal may be generated for the HU voice signal that can be transmitted to the AU device and presented along with the sign signal to provide additional benefit to the AU.
  • sign language can come close to the meaning expressed in an HU voice signal
  • an ASR engine at a relay or operated by a fourth party server linked to a relay may, in parallel with a CA generating a sign signal, generate a text sequence for an HU voice signal.
  • the ASR text signal may be transmitted to an AU device along with or in parallel with the sign signal and may be presented simultaneously as the text and sign signals are generated. In this way, if an AU questions the meaning of a sign signal, the AU can refer to the ASR generated text to confirm meaning or, in many cases, review an actual transcript of the HU voice signal as opposed to a sometimes less accurate sign language representation.
  • ASR engine text may be presented to an AU well before a CA generated sign signal.
  • the AU may opt to skip ahead and forego sign language for intervening HU voice signal. Where an AU skips ahead in this fashion, the CA would be skipped ahead within the HU voice signal as well and continue signing from the skipped to point on.
  • a relay or other system processor may be programmed to compare text signal and sign signal content (e.g., actual meaning ascribed to the signals) so that time stamps can be applied to text and sign segment pairings thus enabling an AU to skip back through communications to review a sign signal simultaneously with a paired text tag or other indicator.
  • a processor may be programmed to assess the content (e.g., meaning) of each sign segment.
  • the processor may also be programmed to analyze the ASR generated text for content and to then compare the sign segment content to the text segment content to identify matching content.
  • the processor may assign a time stamp to the content matching segments and store the stamp and segment pair for subsequent access.
  • the AU device may represent the sign segment paired with the selected text.
  • the exemplary CA station includes, among other components, a video camera 55 for taking video of a signing CA to be delivered along with transcribed text to an AU.
  • a CA signing video window is shown at 1390 alongside a text field that includes text corresponding to an HU voice signal.
  • FIG. 42 if an AU selects the phrase labelled 1386 , that phrase would be visually highlighted or distinguished in some fashion and the associated or paired sign signal segment should be represented in window 1390 .
  • an HU video signal may also be used to represent the HU during a call.
  • all communication representations 1382 , 1384 and 1390 may always be synchronized via time stamps in some cases while in other cases the representation may not be completely synchronized.
  • the HU video window 1384 may always present a real time representation of the HU while text and sign signals are 1382 and 1390 are synchronized and typically delayed at least somewhat to compensate for time required to generate the sign signal as well as AU replay of prior sign signal segments.
  • a relay or other system processor may be programmed to analyze sign signal segments generated by a signing CA to automatically generate text segments that correspond thereto.
  • the text is generated from the sign signal as opposed to directly from the voice signal and therefore would match the sign signal content more closely in at least some embodiments.
  • time stamps applied to the sign signal can easily be aligned with the text signal and there would be no need for content analysis to align signals. Instead of using content to align, a sign signal segment would be identified and a time stamp applied thereto, then the sign signal segment would be translated to text and the resulting text would be stored in the system database correlated to the corresponding sign signal segment and the time stamp for subsequent access.
  • FIG. 44 shows yet another exemplary AU screen shot 1400 where text segments are shown at 1402 and an HU video window is shown at 1412 .
  • the text 1402 includes a block of text includes a set of text lines where the block is presented in three visually distinguished ways. First, a currently audibly broadcast word is highlighted or visually distinguished in a first way as indicated at 1406 . Second, the line of text that includes the word currently being broadcast is visually distinguished in a second way as shown at 1404 . Other text lines are presented above and below the line 1404 to show preceding text and following text for context. In addition, the line at 1404 including the currently broadcast word at 1406 is presented in a larger format to call an Au's attention to that line of text and the word being broadcast.
  • the larger text makes it easier for an AU to see the presented text.
  • the text block 1402 is controlled to scroll upward while keeping the text line that includes the currently broadcast word generally centrally vertically located on the AU device display so that the AU can simply train her eyes at the central portion of the display with the transcribed words scrolling through the field 1404 .
  • a properly trained AU would know that prior broadcast words can be replayed by tapping a word above field 1404 and that the broadcast can be skipped ahead by tapping one of the words below field 1404 .
  • Video window 1412 is provided spatially close to field 1404 so that the text presented therein is intuitively associated with the HU video in window 1412 .
  • the CA revoicing signal may be routed to the ASR engine that was being used prior to convert the HU voice signal to text.
  • the CA voice signal may be transmitted to the fourth party provider to generate transcribed text which is then transmitted back to the relay and on to the AU device for presentation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Otolaryngology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Telephonic Communication Services (AREA)

Abstract

A system and method for presenting substantially simultaneous voice and text to an assisted user (AU) during a voice conversation between the AU and a hearing user (HU), the hearing user using an HU device to talk to the assisted user, the system comprising an AU captioned device including a device processor, a relay that includes a relay display, a relay speaker and a relay processor, wherein, at least one of the device processor and the relay processor is programmed to perform the steps of receiving an HU voice signal comprising a sequence of HU voice segments and assigning time stamps to each of the HU voice segments, wherein, the relay processor is programmed to perform the steps of generating text segments corresponding to each HU voice segment, storing each HU voice segment along with a corresponding text segment and a corresponding time stamp in a memory device, broadcasting the HU voice segments to a call assistant (CA) via the relay speaker and presenting each text segment via the relay display substantially contemporaneously with broadcast of the corresponding HU voice segment.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 15/171,720, filed on Jun. 2, 2017, and titled “SEMIAUTOMATED RELAY METHOD AND APPARATUS”, which is a continuation-in-part of U.S. patent application Ser. No. 14/953,631, filed on Nov. 30, 2015, and titled “SEMIAUTOMATED RELAY METHOD AND APPARATUS”, which is a continuation-in-part of U.S. patent application Ser. No. 14/632,257, filed on Feb. 26, 2015, and titled “SEMIAUTOMATED RELAY METHOD AND APPARATUS”, which claims priority to U.S. provisional patent application Ser. No. 61/946,072 filed on Feb. 28, 2014, and titled “SEMIAUTOMATED RELAY METHOD AND APPARATUS”, each of which is incorporated herein in its entirety by reference.
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not applicable.
  • BACKGROUND OF THE DISCLOSURE
  • The present invention relates to relay systems for providing voice-to-text captioning for hearing impaired users and more specifically to a relay system that uses automated voice-to-text captioning software to transcribe voice-to-text.
  • Many people have at least some degree of hearing loss. For instance, in the United states, about 3 out of every 1000 people are functionally deaf and about 17 percent (36 million) of American adults report some degree of hearing loss which typically gets worse as people age. Many people with hearing loss have developed ways to cope with the ways their loss effects their ability to communicate. For instance, many deaf people have learned to use their sight to compensate for hearing loss by either communicating via sign language or by reading another person's lips as they speak.
  • When it comes to remotely communicating using a telephone, unfortunately, there is no way for a hearing impaired person (e.g., an assisted user (AU)) to use sight to compensate for hearing loss as conventional telephones do not enable an assisted user to see a person on the other end of the line (e.g., no lip reading or sign viewing). For persons with only partial hearing impairment, some simply turn up the volume on their telephones to try to compensate for their loss and can make do in most cases. For others with more severe hearing loss conventional telephones cannot compensate for their loss and telephone communication is a poor option.
  • An industry has evolved for providing communication services to assisted users whereby voice communications from a person linked to an assisted user's communication device are transcribed into text and displayed on an electronic display screen for the assisted user to read during a communication session. In many cases the assisted user's device will also broadcast the linked person's voice substantially simultaneously as the text is displayed so that an assisted user that has some ability to hear can use their hearing sense to discern most phrases and can refer to the text when some part of a communication is not understandable from what was heard.
  • U.S. Pat. No. 6,603,835 (hereinafter “the '835 patent) titled “System For Text Assisted Telephony” teaches several different types of relay systems for providing text captioning services to assisted users. One captioning service type is referred to as a single line system where a relay is linked between an AU's device and a telephone used by the person communicating with the AU. Hereinafter, unless indicated otherwise the other person communicating with the assisted user will be referred to as a hearing user (HU) even though the AU may in fact be communicating with another assisted user. In single line systems, one line links an HU device to the relay and one line (e.g., the single line) links the relay to the AU device. Voice from the HU is presented to a relay call assistant (CA) who transcribes the voice-to-text and then the text is transmitted to the AU device to be displayed. The HU's voice is also, in at least some cases, carried or passed through the relay to the AU device to be broadcast to the AU.
  • The other captioning service type described in the '835 patent is a two line system. In a two line system a hearing user's telephone is directly linked to an assisted user's device for voice communications between the AU and the HU. When captioning is required, the AU can select a captioning control button on the AU device to link to the relay and provide the HU's voice to the relay on a first line. Again, a relay CA listens to the HU voice message and transcribes the voice message into text which is transmitted back to the AU device on a second line to be displayed to the AU. One of the primary advantages of the two line system over one line systems is that the AU can add captioning to an on-going call. This is important as many AUs are only partially impaired and may only want captioning when absolutely necessary. The option to not have captioning is also important in cases where an AU device can be used as a normal telephone and where non-assisted users (e.g., a spouse living with an AU that has good hearing capability) that do not need captioning may also use the AU device.
  • With any relay system, the primary factors for determining the value of the system are accuracy, speed and cost to provide the service. Regarding accuracy, text should accurately represent voice messages from hearing users so that an AU reading the text has an accurate understanding of the meaning of the message. Erroneous words provide inaccurate messages and also can cause confusion for an AU reading transcribed text.
  • Regarding speed, ideally text is presented to an AU simultaneously with the voice message corresponding to the text so that an AU sees text associated with a message as the message is heard. In this regard, text that trails a voice message by several seconds can cause confusion. Current systems present captioned text relatively quickly (e.g. 1-3 seconds after the voice message is broadcast) most of the time. However, at times a CA can fall behind when captioning so that longer delays (e.g., 10-15 seconds) occur.
  • Regarding cost, existing systems require a unique and highly trained CA for each communication session. In known cases CAs need to be able to speak clearly and need to be able to type quickly and accurately. CA jobs are also relatively high pressure jobs and therefore turnover is relatively high when compared jobs in many other industries which further increases the costs associated with operating a relay.
  • One innovation that has increased captioning speed appreciably and that has reduced the costs associated with captioning at least somewhat has been the use of voice-to-text transcription software by relay CAs. In this regard, early relay systems required CAs to type all of the text presented via an AU device. To present text as quickly as possible after broadcast of an associated voice message, highly skilled typists were required. During normal conversations people routinely speak at a rate between 110 and 150 words per minute. During a conversation between an AU and an HU, typically only about half the words voiced have to be transcribed (e.g., the AU typically communicates to the HU during half of a session). This means that to keep up with transcribing the HU's portion of a typical conversation a CA has to be able to type at around 55 to 75 words per minute. To this end, most professional typists type at around 50 to 80 words per minute and therefore can keep up with a normal conversation for at least some time. Professional typists are relatively expensive. In addition, despite being able to keep up with a conversation most of the time, at other times (e.g., during long conversations or during particularly high speed conversations) even professional typists fall behind transcribing real time text and more substantial delays can occur.
  • In relay systems that use voice-to-text transcription software trained to a CA's voice, a CA listens to an HU's voice and revoices the HU's voice message to a computer running the trained software. The software, being trained to the CA's voice, transcribes the re-voiced message much more quickly than a typist can type text and with only minimal errors. In many respects revoicing techniques for generating text are easier and much faster to learn than high speed typing and therefore training costs and the general costs associated with CA's are reduced appreciably. In addition, because revoicing is much faster than typing in most cases, voice-to-text transcription can be expedited appreciably using revoicing techniques.
  • At least some prior systems have contemplated further reducing costs associated with relay services by replacing CA's with computers running voice-to-text software to automatically convert HU voice messages to text. In the past there have been several problems with this solution which have resulted in no one implementing a workable system. First, most voice messages (e.g., an HU's voice message) delivered over most telephone lines to a relay are not suitable for direct voice-to-text transcription software. In this regard, automated transcription software on the market has been tuned to work well with a voice signal that includes a much larger spectrum of frequencies than the range used in typical phone communications. The frequency range of voice signals on phone lines is typically between 300 and 3000 Hz. Thus, automated transcription software does not work well with voice signals delivered over a telephone line and large numbers of errors occur. Accuracy further suffers where noise exists on a telephone line which is a common occurrence.
  • Second, most automated transcription software has to be trained to the voice of a speaker to be accurate. When a new HU calls an AU's device, there is no way for a relay to have previously trained software to the HU voice and therefore the software cannot accurately generate text using the HU voice messages.
  • Third, many automated transcription software packages use context in order to generate text from a voice message. To this end, the words around each word in a voice message can be used by software as context for determining which word has been uttered. To use words around a first word to identify the first word, the words around the first word have to be obtained. For this reason, many automated transcription systems wait to present transcribed text until after subsequent words in a voice message have been transcribed so that context can be used to correct prior words before presentation. Systems that hold off on presenting text to correct using subsequent context cause delay in text presentation which is inconsistent with the relay system need for real time or close to real time text delivery.
  • BRIEF SUMMARY OF THE DISCLOSURE
  • It has been recognized that a hybrid semi-automated system can be provided where, when acceptable accuracy can be achieved using automated transcription software, the system can automatically use the transcription software to transcribe HU voice messages to text and when accuracy is unacceptable, the system can patch in a human CA to transcribe voice messages to text. Here, it is believed that the number of CAs required at a large relay facility may be reduced appreciably (e.g., 30% or more) where software can accomplish a large portion of transcription to text. In this regard, not only is the automated transcription software getting better over time, in at least some cases the software may train to an HU's voice and the vagaries associated with voice messages received over a phone line (e.g., the limited 300 to 3000 Hz range) during a first portion of a call so that during a later portion of the call accuracy is particularly good. Training may occur while and in parallel with a CA manually (e.g., via typing, revoicing, etc.) transcribing voice-to-text and, once accuracy is at an acceptable threshold level, the system may automatically delink from the CA and use the text generated by the software to drive the AU display device.
  • It has been recognized that in a relay system there are at least two processors that may be capable of performing automated voice recognition processes and therefore that can handle the automated voice recognition part of a triage process involving a call assistant. To this end, in most cases either a relay processor or an assisted user's device processor may be able to perform the automated transcription portion of a hybrid process. For instance, in some cases an assisted user's device will perform automated transcription in parallel with a relay assistant generating call assistant generated text where the relay and assisted user's device cooperate to provide text and assess when the call assistant should be cut out of a call with the automated text replacing the call assistant generated text.
  • In other cases where a hearing user's communication device is a computer or includes a processor capable of transcribing voice messages to text, a hearing user's device may generated automated text in parallel with a call assistant generating text and the hearing user's device and the relay may cooperate to provide text and determine when the call assistant should be cut out of the call.
  • Regardless of which device is performing automated captioning, the call assistant generated text may be used to assess accuracy of the automated text for the purpose of determining when the call assistant should be cut out of the call. In addition, regardless of which device is performing automated text captioning, the call assistant generated text may be used to train the automated voice-to-text software or engine on the fly to expedite the process of increasing accuracy until the call assistant can be cut out of the call.
  • It has also been recognized that there are times when a hearing impaired person is listening to a hearing user's voice without an assisted user's device providing simultaneous text when the hearing user is confused and would like transcription of recent voice messages of the hearing user. For instance, where an assisted user uses an assisted user's device to carry on a non-captioned call and the assisted user has difficulty understanding a voice message so that the assisted user initiates a captioning service to obtain text for subsequent voice messages. Here, while text is provided for subsequent messages, the assisted user still cannot obtain an understanding of the voice message that prompted initiation of captioning. As another instance, where call assistant generated text lags appreciably behind a current hearing user's voice message, an assisted user may request that the captioning catch up to the current message.
  • To provide captioning of recent voice messages in these cases, in at least some embodiments of this disclosure an assisted user's device stores a hearing user's voice messages and, when captioning is initiated or a catch up request is received, the recorded voice messages are used to either automatically generate text or to have a call assistant generate text corresponding to the recorded voice messages.
  • In at least some cases when automated software is trained to a hearing user's voice, a voice model for the hearing user that can be used subsequently to tune automated software to transcribe the hearing user's voice may be stored along with a voice profile for the hearing user that can be used to distinguish the hearing user's voice from other hearing users. Thereafter, when the hearing user calls an assisted user's device again, the profile can be used to identify the hearing user and the voice model can be used to tune the software so that the automated software can immediately start generating highly accurate or at least relatively more accurate text corresponding to the hearing user's voice messages.
  • To the accomplishment of the foregoing and related ends, the disclosure, then, comprises the features hereinafter fully described. The following description and the annexed drawings set forth in detail certain illustrative aspects of the disclosure. However, these aspects are indicative of but a few of the various ways in which the principles of the invention can be employed. Other aspects, advantages and novel features of the disclosure will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is a schematic showing various components of a communication system including a relay that may be used to perform various processes and methods according to at least some aspects of the present invention;
  • FIG. 2 is a schematic of the relay server shown in FIG. 1;
  • FIG. 3 is a flow chart showing a process whereby an automated voice-to-text engine is used to generate automated text in parallel with a call assistant generating text where the automated text is used instead of call assistant generated text to provide captioning an assisted user's device once an accuracy threshold has been exceeded;
  • FIG. 4 is a sub-process that maybe substituted for a portion of the process shown in FIG. 3 whereby a control assistant can determine whether or not the automated text takes over the process after the accuracy threshold has been achieved;
  • FIG. 5 is a sub-process that may be added to the process shown in FIG. 3 wherein, upon an assisted user's requesting help, a call is linked to a second call assistant for correcting the automated text;
  • FIG. 6 is a process whereby an automated voice-to-text engine is used to fill in text for a hearing user's voice messages that are skipped over by a call assistant when an assisted user requests instantaneous captioning of a current message;
  • FIG. 7 is a process whereby automated text is automatically used to fill in captioning when transcription by a call assistant lags behind a hearing user's voice messages by a threshold duration;
  • FIG. 8 is a flow chart illustrating a process whereby text is generated for a hearing user's voice messages that precede a request for captioning services;
  • FIG. 9 is a flow chart illustrating a process whereby voice messages prior to a request for captioning service are automatically transcribed to text by an automated voice-to-text engine;
  • FIG. 10 is a flow chart illustrating a process whereby an assisted user's device processor performs transcription processes until a request for captioning is received at which point the assisted user's device presents texts related to hearing user voice messages prior to the request and ongoing voice messages are transcribed via a relay;
  • FIG. 11 is a flow chart illustrating a process whereby an assisted user's device processor generates automated text for a hear user's voice messages which is presented via a display to an assisted user and also transmits the text to a call assistant at a relay for correction purposes;
  • FIG. 12 is a flow chart illustrating a process whereby high definition digital voice messages and analog voice messages are handled differently at a relay;
  • FIG. 13 is a process similar to FIG. 12, albeit where an assisted user also has the option to link to a call assistant for captioning service regardless of the type of voice message received;
  • FIG. 14 is a flow chart that may be substituted for a portion of the process shown in FIG. 3 whereby voice models and voice profiles are generated for frequent hearing user's that communicate with an assisted user where the models and profiles can be subsequently used to increase accuracy of a transcription process;
  • FIG. 15 is a flow chart illustrating a process similar to the sub-process shown in FIG. 14 where voice profiles and voice models are generated and stored for subsequent use during transcription;
  • FIG. 16 is a flow chart illustrating a sub-process that may be added to the process shown in FIG. 15 where the resulting process calls for training of a voice model at each of an assisted user's device and a relay;
  • FIG. 17 is a schematic illustrating a screen shot that may be presented via an assisted user's device display screen;
  • FIG. 18 is similar to FIG. 17, albeit showing a different screen shot;
  • FIG. 19 is a process that may be performed by the system shown in FIG. 1 where automated text is generated for line check words and is presented to an assisted user immediately upon identification of the words;
  • FIG. 20 is similar to FIG. 17, albeit showing a different screen shot;
  • FIG. 21 is a flow chart illustrating a method whereby an automated voice-to-text engine is used to identify errors in call assistant generated text which can be highlighted and can be corrected by a call assistant;
  • FIG. 22 is an exemplary AU device display screen shot that illustrates visually distinct text to indicate non-textual characteristics of an HU voice signal to an assisted user;
  • FIG. 23 is an exemplary CA workstation display screen shot that shows how automated AVR text associated with an instantaneously broadcast word may be visually distinguished for an error correcting CA;
  • FIG. 24 shows an exemplary HU communication device with CA captioned HU text and AVR generated AU text presented as well as other communication information that is consistent with at least some aspects off the present disclosure;
  • FIG. 25 is an exemplary CA workstation display screen shot similar to FIG. 23, albeit where a CA has corrected an error and an HU voice signal playback has been skipped backward as a function of where the correction occurred;
  • FIG. 26 is a screen shot of an exemplary AU device display that presents CA captioned HU text as well as AVR engine generated AU text;
  • FIG. 27 is an illustration of an exemplary HU device that shows text corresponding to the HU's voice signal as well as an indication of which word in the text has been most recently presented to an AU;
  • FIG. 28 is a schematic diagram showing a relay captioning system that is consistent with at least some aspects of the present disclosure;
  • FIG. 29 is a schematic diagram of a relay system that includes a text transcription quality assessment function that is consistent with at least some aspects of the present disclosure;
  • FIG. 30 is similar to FIG. 29, albeit showing a different relay system that includes a different quality assessment function;
  • FIG. 31 is similar to FIG. 29, albeit showing a third relay system that includes a third quality assessment function;
  • FIG. 32 is a flow chart illustrating a method whereby time stamps are assigned to HU voice segments which are then used to substantially synchronize text and voice presentation;
  • FIG. 33 is a schematic illustrating a caption relay system that may implement the method illustrated in FIG. 32 as well as other methods described herein;
  • FIG. 34 is a sub process that may be substituted for a portion of the FIG. 32 process where an Au device assigns a sequence of time stamps to a sequence of text segments;
  • FIG. 35 is another flow chart illustrating another method for assigning and using time stamps to synchronize text and HU voice broadcast;
  • FIG. 36 is a screen shot illustrating a CA interface where a prior word is selected to be rebroadcast;
  • FIG. 37 is a screen shot similar to FIG. 36, albeit of an Au device display showing an AU selecting a prior broadcast phrase for rebroadcast;
  • FIG. 38 is another sub process that may be substituted for a portion of the FIG. 32 method;
  • FIG. 39 is a screen shot showing a CA interface where various inventive features are shown;
  • FIG. 40 is a screen shot illustrating another CA interface where low and high confidence text is presented in different columns to help a CA more easily distinguish between text likely to need correction and text that is less likely to need correction;
  • FIG. 41 is a flow chart illustrating a method of introducing errors in ASR generated text to text CA attention;
  • FIG. 42 is a screen shot illustrating an AU interface including, in addition to text presentation, an HU video field and a CA signing field that is consistent with at least some aspects of the present disclosure;
  • FIG. 43 is a screen shot illustrating yet another CA interface;
  • FIG. 44 is another Au interface screen shot including scrolling text and an HU video window; and
  • FIG. 45 is another CA interface screen shot showing a CA correction field, an ASR uncorrected text field and an intervening time field that is consistent with at least some aspects of the present disclosure.
  • While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • The various aspects of the subject disclosure are now described with reference to the annexed drawings, wherein like reference numerals correspond to similar elements throughout the several views. It should be understood, however, that the drawings and detailed description hereafter relating thereto are not intended to limit the claimed subject matter to the particular form disclosed. Rather, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the claimed subject matter.
  • As used herein, the terms “component,” “system” and the like are intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computer and the computer can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers or processors.
  • The word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs.
  • Furthermore, the disclosed subject matter may be implemented as a system, method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer or processor based device to implement aspects detailed herein. The term “article of manufacture” (or alternatively, “computer program product”) as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. For example, computer readable media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick). Additionally it should be appreciated that a carrier wave can be employed to carry computer-readable electronic data such as those used in transmitting and receiving electronic mail or in accessing a network such as the Internet or a local area network (LAN). Of course, those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
  • Referring now to the drawings wherein like reference numerals correspond to similar elements throughout the several views and, more specifically, referring to FIG. 1, the present disclosure will be described in the context of an exemplary communication system 10 including an assisted user's (AU's) communication device 12, a hearing user's (HU's) telephone or other type communication device 14, and a relay 16. The AU's device 12 is linked to the HU's device 14 via any network connection capable of facilitating a voice call between the AU and the HU. For instance, the link may be a conventional telephone line, a network connection such as an internet connection or other network connection, a wireless connection, etc. AU device 12 includes a keyboard 20, a display screen 18 and a handset 22. Keyboard 20 can be used to dial any telephone number to initiate a call and, in at least some cases, includes other keys or may be controlled to present virtual buttons via screen 18 for controlling various functions that will be described in greater detail below. Other identifiers such as IP addresses or the like may also be used in at least some cases to initiate a call. Screen 18 includes a flat panel display screen for displaying, among other things, text transcribed from a voice message or signal generated using HU's device 14, control icons or buttons, caption feedback signals, etc. Handset 22 includes a speaker for broadcasting a hearing user's voice messages to an assisted user and a microphone for receiving a voice message from an assisted user for delivery to the hearing user's device 14. Assisted user device 12 may also include a second loud speaker so that device 12 can operate as a speaker phone type device. Although not shown, device 12 further includes a processor and a memory for storing software run by the processor to perform various functions that are consistent with at least some aspects of the present disclosure. Device 12 is also linked or is linkable to relay 16 via any communication network including a phone network, a wireless network, the internet or some other similar network, etc.
  • Hearing user's device 14, in at least some embodiments, includes a communication device (e.g., a telephone) including a keyboard for dialing phone numbers and a handset including a speaker and a microphone for communication with other devices. In other embodiments device 14 may include a computer, a smart phone, a smart tablet, etc., that can facilitate audio communications with other devices. Devices 12 and 14 may use any of several different communication protocols including analog or digital protocols, a VOIP protocol or others.
  • Referring still to FIG. 1, relay 16 includes, among other things, a relay server 30 and a plurality of call assistant work stations 32, 34, etc. Each of the call assistant work stations 32, 34, etc., is similar and operates in a similar fashion and therefore only station 32 is described here in any detail. Station 32 includes a display screen 50, a keyboard 52 and a headphone/microphone headset 54. Screen 50 may be any type of electronic display screen for presenting information including text transcribed from a hearing user's voice signal or message. In most cases screen 50 will present a graphical user interface with on screen tools for editing text that appears on the screen. One text editing system is described in U.S. Pat. No. 7,164,753 which issued on Jan. 16, 2007 which is titled “Real Time Transcription Correction System” and which is incorporated herein in its entirety.
  • Keyboard 52 is a standard text entry QUERTY type keyboard and can be used to type text or to correct text presented on displays screen 50. Headset 54 includes a speaker in an ear piece and a microphone in a mouth piece and is worn by a call assistant. The headset enables a call assistant to listen to the voice of a hearing user and the microphone enables the call assistant to speak voice messages into the relay system such as, for instance, revoiced messages from a hearing user to be transcribed into text. For instance, typically during a call between a hearing user on device 14 and an assisted user on device 12, the hearing user's voice messages are presented to a call assistant via headset 54 and the call assistant revoices the messages into the relay system using headset 54. Software trained to the voice of the call assistant transcribes the assistant's voice messages into text which is presented on display screen 50. The call assistant then uses keyboard 52 and/or headset 54 to make corrections to the text on display 50. The corrected text is then transmitted to the assisted user's device 12 for display on screen 18. In the alternative, the text may be transmitted prior to correction to the assisted user's device 12 for display and corrections may be subsequently transmitted to correct the displayed text via in-line corrections where errors are replaced by corrected text.
  • Although not shown, call assistant work station 32 may also include a foot pedal or other device for controlling the speed with which voice messages are played via headset 54 so that the call assistant can slow or even stop play of the messages while the assistant either catches up on transcription or correction of text.
  • Referring still to FIG. 1 and also to FIG. 2, server 30 is a computer system that includes, among other components, at least a first processor 56 linked to a memory or database 58 where software run by server 56 to facilitate various functions that are consistent with at least some aspects of the present disclosure is stored. The software stored in memory 58 includes pre-trained call assistant voice-to-text transcription software 60 for each call assistant where call assistant specific software is trained to the voice of an associated call assistant thereby increasing the accuracy of transcription activities. For instance, Naturally Speaking continuous speech recognition software by Dragon, Inc. may be pre-trained to the voice of a specific call assistant and then used to transcribe voice messages voiced by the call assistant into text.
  • In addition to the call assistant trained software, a voice-to-text software program 62 that is not pre-trained to a CA's voice and instead that trains to any voice on the fly as voice messages are received is stored in memory 58. Again, Naturally Speaking software that can train on the fly may be used for this purpose. Hereinafter, the automatic voice recognition software or system that trains to the HU voices will be referred to generally as an AVR engine at times.
  • Moreover, software 64 that automatically performs one of several different types of triage processes to generate text from voice messages accurately, quickly and in a relatively cost effective manner is stored in memory 58. The triage programs are described in detail hereafter.
  • One issue with existing relay systems is that each call is relatively expensive to facilitate. To this end, in order to meet required accuracy standards for text caption calls, each call requires a dedicated call assistant. While automated voice-to-text systems that would not require a call assistant have been contemplated, none has been implemented because of accuracy and speed problems.
  • One aspect of the present disclosure is related to a system that is semi-automated wherein a call assistant is used when accuracy of an automated system is not at required levels and the assistant is cut out of a call automatically or manually when accuracy of the automated system meets or exceeds accuracy standards or at the preference of an AU. For instance, in at least some cases a call assistant will be assigned to every new call linked to a relay and the call assistant will transcribe voice-to-text as in an existing system. Here, however, the difference will be that, during the call, the voice of a hearing user will also be processed by server 30 to automatically transcribe the hearing user's voice messages to text (e.g., into “automated text”). Server 30 compares corrected text generated by the call assistant to the automated text to identify errors in the automated text. Server 30 uses identified errors to train the automated voice-to-text software to the voice of the hearing user. During the beginning of the call the software trains to the hearing user's voice and accuracy increases over time as the software trains. At some point the accuracy increases until required accuracy standards are met. Once accuracy standards are met, server 30 is programmed to automatically cut out the call assistant and start transmitting the automated text to the assisted user's device 12.
  • In at least some cases, when a call assistant is cut out of a call, the system may provide a “Help” button, an “Assist” button or “Assistance Request” type button (see 68 in FIG. 1) to an assisted user so that, if the assisted user recognizes that the automated text has too many errors for some reason, the assisted user can request a link to a call assistant to increase transcription accuracy (e.g., generate an assistance request). In some cases the help button may be a persistent mechanical button on the assisted user's device 12. In the alternative, the help button may be a virtual on screen icon (e.g., see 68 in FIG. 1) and screen 18 may be a touch sensitive screen so that contact with the virtual button can be sensed. Where the help button is virtual, the button may only be presented after the system switches from providing call assistant generated text to an assisted user's device to providing automated text to the assisted user's device to avoid confusion (e.g., avoid a case where an assisted user is already receiving call assistant generated text but thinks, because of a help button, that even better accuracy can be achieved in some fashion). Thus, while call assistant generated text is displayed on an assisted user's device 12, no “help” button is presented and after automated text is presented, the “help” button is presented. After the help button is selected and a call assistant is re-linked to the call, the help button is again removed from the assisted user's device display 18 to avoid confusion.
  • Referring now to FIGS. 2 and 3, a method or process 70 is illustrated that may be performed by server 30 to cut out a call assistant when automated text reaches an accuracy level that meets a standard threshold level. Referring also to FIG. 1, at block 72, help and auto flags are each set to a zero value. The help flag indicates that an assisted user has selected a help or assist button via the assisted user's device 12 because of a perception that too many errors are occurring in transcribed text. The auto flag indicates that automated text accuracy has exceeded a standard threshold requirement. Zero values indicate that the help button has not been selected and that the standard requirement has yet to be met and one values indicate that the button has been selected and that the standard requirement has been met.
  • Referring still to FIGS. 1 and 3, at block 74, during a phone call between a hearing user using device 14 and an assisted user using device 12, the hearing user's voice messages are transmitted to server 30 at relay 16. Upon receiving the hearing user's voice messages, server 30 checks the auto and help flags at blocks 76 and 84, respectively. At least initially the auto flag will be set to zero at block 76 meaning that automated text has not reached the accuracy standard requirement and therefore control passes down to block 78 where the hearing user's voice messages are provided to a call assistant. At block 80, the call assistant listens to the hearing user's voice messages and generates text corresponding thereto by either typing the messages, revoicing the messages to voice-to-text transcription software trained to the call assistant's voice, or a combination of both. Text generated is presented on screen 50 and the call assistant makes corrections to the text using keyboard 52 and/or headset 54 at block 80. At block 82 the call assistant generated text is transmitted to assisted user device 12 to be displayed for the assisted user on screen 18.
  • Referring again to FIGS. 1 and 3, at block 84, at least initially the help flag will be set to zero indicating that the assisted user has not requested additional captioning assistance. In fact, at least initially the “help” button 68 may not be presented to an assisted user as call assistant generated text is initially presented. Where the help flag is zero at block 84, control passes to block 86 where the hearing user's voice messages are fed to voice-to-text software run by server 30 that has not been previously trained to any particular voice. At block 88 the software automatically converts the hearing user's voice-to-text generating automated text. At block 90, server 30 compares the call assistant generated text to the automated text to identify errors in the automated text. At block 92, server 30 uses the errors to train the voice-to-text software for the hearing user's voice. In this regard, for instance, where an error is identified, server 30 modifies the software so that the next time the utterance that resulted in the error occurs, the software will generate the word or words that the call assistant generated for the utterance. Other ways of altering or training the voice-to-text software are well known in the art and any way of training the software may be used at block 92.
  • After block 92 control passes to block 94 where server 30 monitors for a selection of the “help” button 68 by the assisted user. If the help button has not been selected, control passes to block 96 where server 30 compares the accuracy of the automated text to a threshold standard accuracy requirement. For instance, the standard requirement may require that accuracy be great than 96% measured over at least a most recent forty-five second period or a most recent 100 words uttered by a hearing user, whichever is longer. Where accuracy is below the threshold requirement, control passes back up to block 74 where the process described above continues. At block 96, once the accuracy is greater than the threshold requirement, control passes to block 98 where the auto flag is set to one indicating that the system should start using the automated text and delink the call assistant from the call to free up the assistant to handle a different call. A virtual “help” button may also be presented via the assisted user's display 18 at this time. Next, at block 100, the call assistant is delinked from the call and at block 102 the processor generated automated text is transmitted to the AU device to be presented on display screen 18.
  • Referring again to block 74, the hearing user's voice is continually received during a call and at block 76, once the auto flag has been set to one, the lower portion of the left hand loop including blocks 78, 80 and 82 is cut out of the process as control loops back up to block 74.
  • Referring again to block 94, if, during an automated portion of a call when automated text is being presented to the assisted user, the assisted user decides that there are too many errors in the transcription presented via display 18 and the assisted user selects the “help” button 68 (see again FIG. 1), control passes to block 104 where the help flag is set to one indicating that the assisted user has requested the assistance of a call assistant and the auto flag is reset to zero indicating that call assistant generated text will be used to drive the assisted user's display 18 instead of the automated text. Thereafter control passes back up to block 74. Again, at block 76, with the auto flag set to zero the next time through decision block 76, control passes back down to block 78 where the call is again linked to a call assistant for transcription as described above. In addition, the next time through block 84, because the help flag is set to one, control passes back up to block 74 and the automated text loop including blocks 86 through 104 is effectively cut out of the rest of the call.
  • In at least some embodiments, there will be a short delay (e.g., 5 to 10 seconds in most cases) between setting the flags at block 104 and stopping use of the automated text so that a new call assistant can be linked up to the call and start generating call assistant generated text prior to halting the automated text. In these cases, until the call assistant is linked and generating text for at least a few seconds (e.g., 3 seconds), the automated text will still be used to drive the assisted user's display 18. The delay may either be a pre-defined delay or may have a case specific duration that is determined by server 30 monitoring call assistant generated text and switching over to the call assistant generated text once the call assistant is up to speed.
  • In some embodiments, prior to delinking a call assistant from a call at block 100, server 30 may store a call assistant identifier along with a call identifier for the call. Thereafter, if an assisted user requests help at block 94, server 30 may be programmed to identify if the call assistant previously associated with the call is available (e.g. not handling another call) and, if so, may re-link to the call assistant at block 78. In this manner, if possible, a call assistant that has at least some context for the call can be linked up to restart transcription services.
  • In some embodiments it is contemplated that after an assisted user has selected a help button to receive call assistance, the call will be completed with a call assistant on the line. In other cases it is contemplated that server 30 may, when a call assistant is re-linked to a call, start a second triage process to attempt to delink the call assistant a second time if a threshold accuracy level is again achieved. For instance, in some cases, midstream during a call, a second hearing user may start communicating with the assisted user via the hearing user's device. For instance, a child may yield the hearing user's device 14 to a grandchild that has a different voice profile causing the assisted user to request help from a call assistant because of perceived text errors. Here, after the hand back to the call assistant, server 30 may start training on the grandchild's voice and may eventually achieve the threshold level required. Once the threshold again occurs, the call assistant may be delinked a second time so that automated text is again fed to the assisted user's device.
  • As another example text errors in automated text may be caused by temporary noise in one or more of the lines carrying the hearing user's voice messages to relay 16. Here, once the noise clears up, automated text may again be a suitable option. Thus, here, after an assisted user requests call assistant help, the triage process may again commence and if the threshold accuracy level is again exceeded, the call assistant may be delinked and the automated text may again be used to drive the assisted user's device 12. While the threshold accuracy level may be the same each time through the triage process, in at least some embodiments the accuracy level may be changed each time through the process. For instance, the first time through the triage process the accuracy threshold may be 96%. The second time through the triage process the accuracy threshold may be raised to 98%.
  • In at least some embodiments, when the automated text accuracy exceeds the standard accuracy threshold, there may be a short transition time during which a call assistant on a call observes automated text while listening to a hearing user's voice message to manually confirm that the handover from call assistant generated text to automated text is smooth. During this short transition time, for instance, the call assistant may watch the automated text on her workstation screen 50 and may correct any errors that occur during the transition. In at least some cases, if the call assistant perceives that the handoff does not work or the quality of the automated text is poor for some reason, the call assistant may opt to retake control of the transcription process.
  • One sub-process 120 that may be added to the process shown in FIG. 3 for managing a call assistant to automated text handoff is illustrated in FIG. 4. Referring also to FIGS. 1 and 2, at block 96 in FIG. 3, if the accuracy of the automated text exceeds the accuracy standard threshold level, control may pass to block 122 in FIG. 4. At block 122, a short duration transition timer (e.g. 10-15 seconds) is started. At block 124 automated text (e.g., text generated by feeding the hearing user's voice messages directly to voice-to-text software) is presented on the call assistant's display 50. At block 126 an on screen “Retain Control” icon or virtual button is provided to the call assistant via the assistant's display screen 50 which can be selected by the call assistant to forego the handoff to the automated voice-to-text software. At block 128, if the “Retain Control” icon is selected, control passes to block 132 where the help flag is set to one and then control passes back up to block 76 in FIG. 3 where the call assistant process for generating text continues as described above. At block 128, if the call assistant does not select the “Retain Control” icon, control passes to block 130 where the transition timer is checked. If the transition timer has not timed out control passes back up to block 124. Once the timer times out at block 130, control passes back to block 98 in FIG. 3 where the auto flag is set to one and the call assistant is delinked from the call.
  • In at least some embodiments it is contemplated that after voice-to-text software takes over the transcription task and the call assistant is delinked from a call, server 30 itself may be programmed to sense when transcription accuracy has degraded substantially and the server 30 may cause a re-link to a call assistant to increase accuracy of the text transcription. For instance, server 30 may assign a confidence factor to each word in the automated text based on how confident the server is that the word has been accurately transcribed. The confidence factors over a most recent number of words (e.g., 100) or a most recent period (e.g., 45 seconds) may be averaged and the average used to assess an overall confidence factor for transcription accuracy. Where the confidence factor is below a threshold level, server 30 may re-link to a call assistant to increase transcription accuracy. The automated process for re-linking to a call assistant may be used instead of or in addition to the process described above whereby an assisted user selects the “help” button to re-link to a call assistant.
  • In at least some cases when an assisted user selects a “help” button to re-link to a call assistant, partial call assistance may be provided instead of full call assistant service. For instance, instead of adding a call assistant that transcribes a hearing user's voice messages and then corrects errors, a call assistant may be linked only for correction purposes. The idea here is that while software trained to a hearing user's voice may generate some errors, the number of errors after training will still be relatively small in most cases even if objectionable to an assisted user. In at least some cases call assistants may be trained to have different skill sets where highly skilled and relatively more expensive to retain call assistants are trained to re-voice hearing user voice messages and correct the resulting text and less skilled call assistants are trained to simply make corrections to automated text. Here, initially all calls may be routed to highly skilled revoicing or “transcribing” call assistants and all re-linked calls may be routed to less skilled “corrector” call assistants.
  • A sub-process 134 that may be added to the process of FIG. 3 for routing re-linked calls to a corrector call assistant is shown in FIG. 5. Referring also to FIGS. 1 and 3, at decision block 94, if an assisted user selects the help button, control may pass to block 136 in FIG. 3 where the call is linked to a second corrector call assistant. At block 138 the automated text is presented to the second call assistant via the call assistant's display 50. At block 140 the second call assistant listens to the voice of the hearing user and observes the automated text and makes corrections to errors perceived in the text. At block 142, server 30 transmits the corrected automated text to the assisted user's device for display via screen 18. After block 142 control passes back up to block 76 in FIG. 2.
  • In some cases where a call assistant generates text that drives an assisted user's display screen 18 (see again FIG. 1), for one reason or another the call assistant's transcription to text may fall behind the hearing user's voice message stream by a substantial amount. For instance, where a hearing user is speaking quickly, is using odd vocabulary, and/or has an unusual accent that is hard to understand, call assistant transcription may fall behind a voice message stream by 20 seconds, 40 seconds or more.
  • In many cases when captioning falls behind, an assisted user can perceive that presented text has fallen far behind broadcast voice messages from a hearing user based on memory of recently broadcast voice message content and observed text. For instance, an assisted user may recognize that currently displayed text corresponds to a portion of the broadcast voice message that occurred thirty seconds ago. In other cases some captioning delay indicator may be presented via an assisted user's device display 18. For instance, see FIG. 17 where captioning delay is indicated in two different ways on a display screen 18. First, text 212 indicates an estimated delay in seconds (e.g., 24 second delay). Second, at the end of already transcribed text 214, blanks 216 for words already voiced but yet to be transcribed may be presented to give an assisted user a sense of how delayed the captioning process has become.
  • When an assisted user perceives that captioning is too far behind or when the user cannot understand a recently broadcast voice message, the assisted user may want the text captioning to skip ahead to the currently broadcast voice message. For instance, if an assisted user had difficulty hearing the most recent five seconds of a hearing user's voice message and continues to have difficulty hearing but generally understood the preceding 25 seconds, the assisted user may want the captioning process to be re-synced with the current hearing user's voice message so that the assisted user's understanding of current words is accurate.
  • Here, however, because the assisted user could not understand the most recent 5 seconds of broadcast voice message, a re-sync with the current voice message would leave the assisted user with at least some void in understanding the conversation (e.g., at least the most recent 5 seconds of misunderstood voice message would be lost). To deal with this issue, in at least some embodiments, it is contemplated that server 30 may run automated voice-to-text software on a hearing user's voice message simultaneously with a call assistant generating text from the voice message and, when an assisted user requests a “catch-up” or “re-sync” of the transcription process to the current voice message, server 30 may provide “fill in” automated text corresponding to the portion of the voice message between the most recent call assistant generated text and the instantaneous voice message which may be provided to the assisted user's device for display and also, optionally, to the call assistant's display screen to maintain context for the call assistant. In this case, while the fill in automated text may have some errors, the fill in text will be better than no text for the associated period and can be referred to by the assisted user to better understand the voice messages.
  • In cases where the fill in text is presented on the call assistant's display screen, the call assistant may correct any errors in the fill in text. This correction and any error correction by a call assistant for that matter may be made prior to transmitting text to the assisted user's device or subsequent thereto. Where corrected text is transmitted to an assisted user's device subsequent to transmission of the original error prone text, the assisted user's device corrects the errors by replacing the erroneous text with the corrected text.
  • Because it is often the case that assisted users will request a re-sync only when they have difficulty understanding words, server 30 may only present automated fill in text to an assisted user corresponding to a pre-defined duration period (e.g., 8 seconds) that precedes the time when the re-sync request occurs. For instance, consistent with the example above where call assistant captioning falls behind by thirty seconds, an assisted user may only request re-sync at the end of the most recent five seconds as inability to understand the voice message may only be an issue during those five seconds. By presenting the most recent eight seconds of automated text to the assisted user, the user will have the chance to read text corresponding to the misunderstood voice message without being inundated with a large segment of automated text to view. Where automated fill in text is provided to an assisted user for only a pre-defined duration period, the same text may be provided for correction to the call assistant.
  • Referring now to FIG. 7, a method 190 by which an assisted user requests a re-sync of the transcription process to current voice messages when call assistant generated text falls behind current voice messages is illustrated. Referring also to FIG. 1, at block 192 a hearing user's voice messages are received at relay 16. After block 192, control passes down to each of blocks 194 and 200 where two simultaneous sub-processes occur in parallel. At block 194, the hearing user's voice messages are stored in a rolling buffer. The rolling buffer may, for instance, have a two minute duration so that the most recent two minutes of a hearing user's voice messages are always stored. At block 196, a call assistant listens to the hearing user's voice message and transcribes text corresponding to the messages via re-voicing to software trained to the call assistant's voice, typing, etc. At block 198 the call assistant generated text is transmitted to assisted user's device 12 to be presented on display screen 18 after which control passes back up to block 192. Text correction may occur at block 196 or after block 198.
  • Referring again to FIG. 7, at process block 200, the hearing user's voice is fed directly to voice-to-text software run by server 30 which generates automated text at block 202. Although not shown in FIG. 7, after block 202, server 30 may compare the automated text to the call assistant generated text to identify errors and may use those errors to train the software to the hearing user's voice so that the automated text continues to get more accurate as a call proceeds.
  • Referring still to FIGS. 1 and 7, at decision block 204, controller 30 monitors for a catch up or re-sync command received via the assisted user's device 12 (e.g., via selection of an on-screen virtual “catch up” button 220, see again FIG. 17). Where no catch up or re-sync command has been received, control passes back up to block 192 where the process described above continues to cycle. At block 204, once a re-sync command has been received, control passes to block 206 where the buffered voice messages are skipped and a current voice message is presented to the ear of the call assistant to be transcribed. At block 208 the automated text corresponding to the skipped voice message segment is filled in to the text on the call assistant's screen for context and at block 210 the fill in text is transmitted to the assisted user's device for display.
  • Where automated text is filled in upon the occurrence of a catch up process, the fill in text may be visually distinguished on the assisted user's screen and/or on the call assistant's screen. For instance, fill in text may be highlighted, underlined, bolded, shown in a distinct font, etc. For example, see FIG. 18 that shows fill in text 222 that is underlined to visually distinguish. See also that the captioning delay 212 has been updated. In some cases, fill in text corresponding to voice messages that occur after or within some pre-defined period prior to a re-sync request may be distinguished in yet a third way to point out the text corresponding to the portion of a voice message that the assisted user most likely found interesting (e.g., the portion that prompted selection of the re-sync button). For instance, where 24 previous seconds of text are filled in when a re-sync request is initiated, all 24 seconds of fill in text may be underlined and the 8 seconds of text prior to the re-sync request may also be highlighted in yellow. See in FIG. 18 that some of the fill in text is shown in a phantom box 226 to indicate highlighting.
  • In at least some cases it is contemplated that server 30 may be programmed to automatically determine when call assistant generated text substantially lags a current voice message from a hearing user and server 30 may automatically skip ahead to re-sync a call assistant with a current message while providing automated fill in text corresponding to intervening voice messages. For instance, server 30 may recognize when call assistant generated text is more than thirty seconds behind a current voice message and may skip the voice messages ahead to the current message while filling in automated text to fill the gap. In at least some cases this automated skip ahead process may only occur after at least some (e.g., 2 minutes) training to a hearing user's voice so ensure that minimal errors are generated in the fill in text.
  • A method 150 for automatically skipping to a current voice message in a buffer when a call assistant falls to far behind is shown in FIG. 6. Referring also to FIG. 1, at block 152, a hearing user's voice messages are received at relay 16. After block 152, control passes down to each of blocks 154 and 162 where two simultaneous sub-processes occur in parallel. At block 154, the hearing user's voice messages are stored in a rolling buffer. At block 156, a call assistant listens to the hearing user's voice message and transcribes text corresponding to the messages via re-voicing to software trained to the call assistant's voice, typing, etc., after which control passes to block 170.
  • Referring still to FIG. 6, at process block 162, the hearing user's voice is fed directly to voice-to-text software run by server 30 which generates automated text at block 164. Although not shown in FIG. 6, after block 164, server 30 may compare the automated text to the call assistant generated text to identify errors and may use those errors to train the software to the hearing user's voice so that the automated text continues to get more accurate as a call proceeds.
  • Referring still to FIGS. 1 and 6, at decision block 166, controller 30 monitors how far call assistant text transcription is behind the current voice message and compares that value to a threshold value. If the delay is less than the threshold value, control passes down to block 170. If the delay exceeds the threshold value, control passes to block 168 where server 30 uses automated text from block 164 to fill in the call assistant generated text and skips the call assistant up to the current voice message. After block 168 control passes to block 170. At block 170, the text including the call assistant generated text and the fill in text is presented to the call assistant via display screen 50 and the call assistant makes any corrections to observed errors. At block 172, the text is transmitted to assisted user's device 12 and is displayed on screen 18. Again, uncorrected text may be transmitted to and displayed on device 12 and corrected text may be subsequently transmitted and used to correct errors in the prior text in line on device 12. After block 172 control passes back up to block 152 where the process described above continues to cycle. Automatically generated text to fill in when skipping forward may be visually distinguished (e.g., highlighted, underlined, etc.)
  • In at least some cases when automated fill in text is generated, that text may not be presented to the call assistant or the assisted user as a single block and instead may be doled out at a higher speed than the talking speed of the hearing user until the text catches up with a current time. To this end, where transcription is far behind a current point in a conversation, if automated catch up text were generated as an immediate single block, in at least some cases, the earliest text in the block could shoot off a call assistant's display screen or an assisted user's display screen so that the call assistant or the assisted user would be unable to view all of the automated catch up text. Instead of presenting the automated text as a complete block upon catchup, the automated catch up text may be presented at a rate that is faster (e.g., two to three times faster) than the hearing user's rate of speaking so that catch up is rapid without the oldest catch up text running off the call assistant's or assisted user's displays.
  • In other cases, when an assisted user requests fill in, the system may automatically fill in text and only present the most recent 10 seconds or so of the automatic fill in text to the CA for correction so that the assisted user has corrected text corresponding to a most recent period as quickly as possible. In many cases where the CA generated text is substantially delayed, much of the fill in text would run off a typical assisted user's device display screen when presented so making corrections to that text would make little sense as the assisted user that requests catch up text is typically most interested in text associated with the most recent HU voice signal.
  • Many assisted user's devices can be used as conventional telephones without captioning service or as assisted user devices where captioning is presented and voice messages are broadcast to an assisted user. The idea here is that one device can be used by hearing impaired persons and persons that have no hearing impairment and that the overall costs associated with providing captioning service can be minimized by only using captioning when necessary. In many cases even a hearing impaired person may not need captioning service all of the time. For instance, a hearing impaired person may be able to hear the voice of a person that speaks loudly fairly well but may not be able to hear the voice of another person that speaks more softly. In this case, captioning would be required when speaking to the person with the soft voice but may not be required when speaking to the person with the loud voice. As another instance, an impaired person may hear better when well rested but hear relatively more poorly when tired so captioning is required only when the person is tired. As still another instance, an impaired person may hear well when there is minimal noise on a line but may hear poorly if line noise exceeds some threshold. Again, the impaired person would only need captioning some of the time.
  • To minimize captioning service costs and still enable an impaired person to obtain captioning service whenever needed and even during an ongoing call, some systems start out all calls with a default setting where an assisted user's device 12 is used like a normal telephone without captioning. At any time during an ongoing call, an assisted user can select either a mechanical or virtual “Caption” icon or button (see again 68 in FIG. 1) to link the call to a relay, provide a hearing user's voice messages to the relay and commence captioning service. One problem with starting captioning only after an assisted user experiences problems hearing words is that at least some words (e.g., words that prompted the assisted user to select the caption button in the first place) typically go unrecognized and therefore the assisted user is left with a void in their understanding of a conversation.
  • One solution to the problem of lost meaning when words are not understood just prior to selection of a caption button is to store a rolling recordation of a hearing user's voice messages that can be transcribed subsequently when the caption button is selected to generate “fill in” text. For instance, the most recent 20 seconds of a hearing user's voice messages may be recorded and then transcribed only if the caption button is selected. The relay generates text for the recorded message either automatically via software or via revoicing or typing by a call assistant or via a combination of both. In addition, the call assistant or the automated voice recognition software starts transcribing current voice messages. The text from the recording and the real time messages is transmitted to and presented via assisted user's device 12 which should enable the assisted user to determine the meaning of the previously misunderstood words. In at least some embodiments the rolling recordation of hearing user's voice messages may be maintained by the assisted user's device 12 (see again FIG. 1) and that recordation may be sent to the relay for immediate transcription upon selection of the caption button.
  • Referring now to FIG. 8, a process 230 that may be performed by the system of FIG. 1 to provide captioning for voice messages that occur prior to a request for captioning service is illustrated. Referring also to FIG. 1, at block 232 a hearing user's voice messages are received during a call with an assisted user at the assisted user's device 12. At block 234 the assisted user's device 12 stores a most recent 20 seconds of the hearing user's voice messages on a rolling basis. The 20 seconds of voice messages are stored without captioning initially in at least some embodiments. At decision block 236, the assisted user's device monitors for selection of a captioning button (not shown). If the captioning button has not been selected, control passes back up to block 232 where blocks 232, 234 and 236 continue to cycle.
  • Once the caption button has been selected, control passes to block 238 where assisted user's device 12 establishes a communication link to relay 16. At block 240 assisted user's device 12 transmits the stored 20 seconds of the hearing user's voice messages along with current ongoing voice messages from the hearing user to relay 16. At this point a call assistant and/or software at the relay transcribes the voice-to-text, corrections are made (or not), and the text is transmitted back to device 12 to be displayed. At block 242 assisted user's device 12 receives the captioned text from the relay 16 and at block 244 the received text is displayed or presented on the assisted user's device display 18. At block 246, in at least some embodiments, text corresponding to the 20 seconds of hearing user voice messages prior to selection of the caption button may be visually distinguished (e.g., highlighted, bolded, underlined, etc.) from other text in some fashion. After block 246 control passes back up to block 232 where the process described above continues to cycle and captioning in substantially real time continues.
  • Referring to FIG. 9, a relay server process 270 whereby automated software transcribes voice messages that occur prior to selection of a caption button and a call assistant at least initially captions current voice messages is illustrated. At block 272, after an assisted user requests captioning service by selecting a caption button, server 30 receives a hearing user's voice messages including current ongoing messages as well as the most recent 20 seconds of voice messages that had been stored by assisted user's device 12 (see again FIG. 1). After block 27, control passes to each of blocks 274 and 278 where two simultaneous processes commence in parallel. At block 274 the stored 20 seconds of voice messages are provided to voice-to-text software run by server 30 to generate automated text and at block 276 the automated text is transmitted to the assisted user's device 12 for display. At block 278 the current or real time hearing user's voice messages are provided to a call assistant and at block 280 the call assistant transcribes the current voice messages to text. The call assistant generated text is transmitted to an assisted user's device at block 282 where the text is displayed along with the text transmitted at block 276. Thus, here, the assisted user receives text corresponding to misunderstood voice messages that occur just prior to the assisted user requesting captioning. One other advantage of this system is that when captioning starts, the call assistant is not starting captioning with an already existing backlog of words to transcribe and instead automated software is used to provide the prior text.
  • In addition to using a service provided by relay 16 to transcribe stored rolling text, other resources may be used to transcribe the stored rolling text. For instance, in at least some embodiments an assisted user's device may link via the Internet or the like to a third party provider that can receive voice messages and transcribe those messages, at least somewhat accurately, to text. In these cases it is contemplated that real time transcription where accuracy needs to meet a high accuracy standard would still be performed by a call assistant or software trained to a specific voice while less accuracy sensitive text may be generated by the third party provider, at least some of the time for free, and transmitted back to the assisted user's device for display.
  • In other cases, it is contemplated that the assisted user's device 12 itself may run voice-to-text software that could be used to at least somewhat accurately transcribe voice messages to text where the text generated by the assisted user's device would only be provided in cases where accuracy sensitivity is less than normal such as where rolling voice messages prior to selection of a caption icon to initiate captioning are to be transcribed.
  • FIG. 10 shows another method 300 for providing text for voice messages that occurred prior to a caption request, albeit where an assisted user's device generates the pre-request text as opposed to a relay. Referring also to FIG. 1, at block 310 a hearing user's voice messages are received at an assisted user's device 12. At block 312, the assisted user's device 12 runs voice-to-text software that, in at least some embodiments, trains on the fly to the voice of a linked hearing user and generates caption text.
  • Here, on the fly training may include assigning a confidence factor to each automatically transcribed word and only using text that has a high confidence factor to train a voice model for the hearing user. For instance, only text having a confidence factor greater than 95% may be used for automatic training purposes. Here, confidence factors may be assigned based on many different factors or algorithms, many of which are well known in the automatic voice recognition art. In this embodiment, at least initially, the caption text generated by the assisted user's device 12 is not displayed to the assisted user. At block 314, until the assisted user requests captioning, control simply routes back up to block 310. Once captioning is requested by an assisted user, control passes to block 316 where the text corresponding to the last 20 seconds generated by the assisted user's device is presented on the assisted user's device display 18. Here, while there may be some errors in the displayed text, at least some text associated with the most recent voice message can be quickly presented and give the assisted user the opportunity to attempt to understand the voice messages associated therewith. At block 318 the assisted user's device links to a relay and at block 320 the hearing user's ongoing voice messages are transmitted to the relay. At block 322, after call assistant transcription at the relay, the assisted user's device receives the transcribed text from the relay and at block 324 the text is displayed. After block 324 control passes back up to block 320 where the sub-loop including blocks 320, 322 and 324 continues to cycle.
  • Thus, in the above example, instead of the assisted user's device storing the last 20 seconds of a hearing user's voice signal and transcribing that voice signal to text after the assisted user requests transcription, the assisted user's device constantly runs an ASR engine behind the scenes to generate automated engine text which is stored without initially being presented to the assisted user. Then, when the assisted user requests captioning or transcription, the most recently transcribed text can be presented via the assisted user's device display immediately or via rapid presentation (e.g., sequentially at a speed higher than the hearing user's speaking speed).
  • In at least some cases it is contemplated that voice-to-text software run outside control of the relay may be used to generate at least initial text for a hearing user's voice and that the initial text may be presented via an assisted user's device. Here, because known software still may generate more text transcription errors than allowed given standard accuracy requirements, a relay correction service may be provided. For instance, in addition to presenting text transcribed by the assisted user's device via a device display 18, the text transcribed by the assisted user's device may also be transmitted to a relay 16 for correction. In addition to transmitting the text to the relay, the hearing user's voice messages may also be transmitted to the relay so that a call assistant can compare the text automatically generated by the assisted user's device to the HU's voice messages. At the relay, the call assistant can listen to the voice of the hearing person and can observe associated text. Any errors in the text can be corrected and corrected text blocks can be transmitted back to the assisted user's device and used for in line correction on the assisted user's display screen.
  • One advantage to this type of system is that relatively less skilled call assistants may be retained at a lesser cost to perform the call assistant tasks. A related advantage is that the stress level on call assistants may be reduced appreciably by eliminating the need to both transcribe and correct at high speeds and therefore call assistant turnover at relays may be appreciably reduced which ultimately reduces costs associated with providing relay services.
  • A similar system may include an assisted user's device that links to some other third party provider transcription/caption server (e.g., in the “cloud”) to obtain initial captioned text which is immediately displayed to an assisted user and which is also transmitted to the relay for call assistant correction. Here, again, the call assistant corrections may be used by the third party provider to train the software on the fly to the hearing user's voice. In this case, the assisted user's device may have three separate links, one to the hearing user, a second link to a third party provider server, and a third link to the relay. In other cases, the relay may create the link to the third party server for AVR services. Here, the relay would provide the HU's voice signal to the third party server, would receive text back from the server to transmit to the AU device and would receive corrections from the CA to transmit to each of the AU device and the server. The third party server would then use the corrections to train the voice model to the HU voice and would use the evolving model to continue AVR transcription.
  • Referring to FIG. 11, a method 360 whereby an assisted user's device transcribes a hearing user's voice to text and where corrections are made to the text at a relay is illustrated. At block 362 a hearing user's voice messages are received at an assisted user's device 12 (see also again FIG. 1). At block 364 the assisted user's device runs voice-to-text software to generate text from the received voice messages and at block 366 the generated text is presented to the assisted user via display 18. At block 370 the transcribed text is transmitted to the relay 16 and at block 372 the text is presented to a call assistant via the call assistant's display 50. At block 374 the call assistant corrects the text and at block 376 corrected blocks of text are transmitted to the assisted user's device 12. At block 378 the assisted user's device 12 uses the corrected blocks to correct the text errors via in line correction. At block 380, the assisted user's device uses the errors, the corrected text and the voice messages to train the captioning software to the hearing user's voice.
  • In some cases instead of having a relay or an assisted user's device run automated voice-to-text transcription software, a hearing user's device may include a processor that runs transcription software to generate text corresponding to the hearing user's voice messages. To this end, device 14 may, instead of including a simple telephone, include a computer that can run various applications including a voice-to-text program or may link to some third party real time transcription software program (e.g., software run by a third party server in the “cloud”) to obtain an initial text transcription substantially in real time. Here, as in the case where an assisted user's device runs the transcription software, the text will often have more errors than allowed by the standard accuracy requirements. Again, to correct the errors, the text and the hearing user's voice messages are transmitted to relay 16 where a call assistant listens to the voice messages, observes the text on screen 18 and makes corrections to eliminate transcription errors. The corrected blocks of text are transmitted to the assisted user's device for display. The corrected blocks may also be transmitted back to the hearing user's device for training the captioning software to the hearing user's voice. In these cases the text transcribed by the hearing user's device and the hearing user's voice messages may either be transmitted directly from the hearing user's device to the relay or may be transmitted to the assisted user's device 12 and then on to the relay. Where the hearing user's voice messages and text are transmitted directly to the relay 16, the voice messages and text may also be transmitted directly to the assisted user's device for immediate broadcast and display and the corrected text blocks may be subsequently used for in line correction.
  • In these cases the caption request option may be supported so that an assisted user can initiate captioning during an on-going call at any time by simply transmitting a signal to the hearing user's device instructing the hearing user's device to start the captioning process. Similarly, in these cases the help request option may be supported. Where the help option is facilitated, the automated text may be presented via the assisted user's device and, if the assisted user perceives that too many text errors are being generated, the help button may be selected to cause the hearing user's device or the assisted user's device to transmit the automated text to the relay for call assistant correction.
  • One advantage to having a hearing user's device manage or perform voice-to-text transcription is that the voice signal being transcribed can be a relatively high quality voice signal. To this end, a standard phone voice signal has a range of frequencies between 300 and about 3000 Hertz which is only a fraction of the frequency range used by most voice-to-text transcription programs and therefore, in many cases, automated transcription software does only a poor job of transcribing voice signals that have passed through a telephone connection. Where transcription can occur within a digital signal portion of an overall system, the frequency range of voice messages can be optimized for automated transcription. Thus, where a hearing user's computer that is all digital receives and transcribes voice messages, the frequency range of the messages is relatively large and accuracy can be increased appreciably. Similarly, where a hearing user's computer can send digital voice messages to a third party transcription server accuracy can be increased appreciably.
  • In at least some configurations it is contemplated that the link between an assisted user's device 12 and a hearing user's device 14 may be either a standard analog phone type connection or may be a digital connection depending on the capabilities of the hearing user's device that links to the assisted user's device. Thus, for instance, a first call may be analog and a second call may be digital. Because digital voice messages have a greater frequency range and therefore can be automatically transcribed more accurately than analog voice messages in many cases, it has been recognized that a system where automated voice-to-text program use is implemented on a case by case basis depending upon the type of voice message received (e.g., digital or analog) would be advantageous. For instance, in at least some embodiments, where a relay receives an analog voice message for transcription, the relay may automatically link to a call assistant for full call assistant transcription service where the call assistant transcribes and corrects text via revoicing and keyboard manipulation and where the relay receives a high definition digital voice message for transcription, the relay may run an automated voice-to-text transcription program to generate automated text. The automated text may either be immediately corrected by a call assistant or may only be corrected by an assistant after a help feature is selected by an assisted user as described above.
  • Referring to FIG. 12, one process 400 for treating high definition digital messages differently than analog voice messages is illustrated. Referring also to FIG. 1, at block 402 a hearing user's voice messages are received at a relay 16. At decision block 404, relay server 30 determines if the received voice message is a high definition digital message or is an analog message. Where a high definition message has been received, control passes to block 406 where server 30 runs an automated voice-to-text program on the voice messages to generate automated text. At block 408 the automated text is transmitted to the assisted user's device 12 for display. Referring again to block 404, where the hearing user's voice messages are in analog, control passes to block 412 where a link to a call assistant is established so that the hearing user's voice messages are provided to a call assistant. At block 414 the call assistant listens to the voice messages and transcribes the messages into text. Error correction may also be performed at block 414. After block 414, control passes to block 408 where the call assistant generated text is transmitted to the assisted user's device 12. Again, in some cases, when automated text is presented to an assisted user, a help button may be presented that, when selected causes automated text to be presented to a call assistant for correction. In other cases automated text may be automatically presented to a call assistant for correction.
  • Another system is contemplated where all incoming calls to a relay are initially assigned to a call assistant for at least initial captioning where the option to switch to automated software generated text is only available when the call includes high definition audio and after accuracy standards have been exceeded. Here, all analog hearing user's voice messages would be captioned by a call assistant from start to finish and any high definition calls would cut out the call assistant when the standard is exceeded.
  • In at least some cases where an assisted user's device is capable of running automated voice-to-text transcription software, the assisted user's device 12 may be programmed to select either automated transcription when a high definition digital voice message is received or a relay with a call assistant when an analog voice message is received. Again, where device 12 runs an automated text program, call assistant correction may be automatic or may only start when a help button is selected.
  • FIG. 13 shows a process 430 whereby an assisted user's device 12 selects either automated voice-to-text software or a call assistant to transcribe based on the type (e.g., digital or analog) of voice messages received. At block 432 a hearing user's voice messages are received by an assisted user's device 12. At decision block 434, a processor in device 12 determines if the assisted user has selected a help button. Initially no help button is selected as no text has been presented so at least initially control passes to block 436. At decision block 436, the device processor determines if a hearing user's voice signal that is received is high definition digital or is analog. Where the received signal is high definition digital, control passes to block 438 where the assisted user's device processor runs automated voice-to-text software to generate automated text which is then displayed on the assisted user device display 18 at block 440. Referring still to FIG. 13, if the help button has been selected at block 434 or if the received voice messages are in analog, control passes to block 442 where a link to a call assistant at relay 16 is established and the hearing user's voice messages are transmitted to the relay. At block 444 the call assistant listens to the voice messages and generates text and at block 446 the text is transmitted to the assisted user's device 12 where the text is displayed at block 440.
  • In has been recognized that in many cases most calls facilitated using an assisted user's device will be with a small group of other hearing or non-hearing users. For instance, in many cases as much as 70 to 80 percent of all calls to an assisted user's device will be with one of five or fewer hearing user's devices (e.g., family, close friends, a primary care physician, etc.). For this reason it has been recognized that it would be useful to store voice-to-text models for at least routine callers that link to an assisted user's device so that the automated voice-to-text training process can either be eliminated or substantially expedited. For instance, when an assisted user initiates a captioning service, if a previously developed voice model for a hearing user can be identified quickly, that model can be used without a new training process and the switchover from a full service call assistant to automated captioning may be expedited (e.g., instead of taking a minute or more the switchover may be accomplished in 15 seconds or less, in the time required to recognize or distinguish the hearing user's voice from other voices).
  • FIG. 14 shows a sub-process 460 that may be substituted for a portion of the process shown in FIG. 3 wherein voice-to-text templates or models along with related voice recognition profiles for callers are stored and used to expedite the handoff to automated transcription. Prior to running sub-process 460, referring again to FIG. 1, server 30 is used to create a voice recognition database for storing hearing user device identifiers along with associated voice recognition profiles and associated voice-to-text models. A voice recognition profile is a data construct that can be used to distinguish one voice from others.
  • In the context of the FIG. 1 system, voice recognition profiles are useful because more than one person may use a hearing user's device to call an assisted user. For instance in an exemplary case, an assisted user's son or daughter-in-law or one of any of three grandchildren may use device 14 to call an assisted user and therefore, to access the correct voice-to-text model, server 30 needs to distinguish which caller's voice is being received. Thus, in many cases, the voice recognition database will include several voice recognition profiles for each hearing user device identifier (e.g., each hearing user phone number). A voice-to-text model includes parameters that are used to customize voice-to-text software for transcribing the voice of an associated hearing user to text.
  • The voice recognition database will include at least one voice model for each voice profile to be used by server 30 to automate transcription whenever a voice associated with the specific profile is identified. Data in the voice recognition database will be generated on the fly as an assisted user uses device 12. Thus, initially the voice recognition database will include a simple construct with no device identifiers, profiles or voice models.
  • Referring still to FIGS. 1 and 14 and now also to FIG. 3, at decision block 84 in FIG. 3, if the help flag is still zero (e.g., an assisted user has not requested call assistant help to correct automated text errors) control may pass to block 464 in FIG. 13 where the hearing user's device identifier (e.g., a phone number, an IP address, a serial number of a hearing user's device, etc.) is received by server 30. At block 468 server 30 determines if the hearing user's device identifier has already been added to the voice recognition database. If the hearing user's device identifier does not appear in the database (e.g., the first time the hearing user's device is used to connect to the assisted user's device) control passes to block 482 where server 30 uses a general voice-to-text program to convert the hearing user's voice messages to text after which control passes to block 476. At block 476 the server 30 trains a voice-to-text model using transcription errors. Again, the training will include comparing call assistant generated text to automated text to identify errors and using the errors to adjust model parameters so that the next time a word associated with an error is uttered by the hearing user, the software will identify the correct word. At block 478, server 30 trains a voice profile for the hearing user's voice so that the next time the hearing user calls, a voice profile will exist for the specific hearing user that can be used to identify the hearing user. At block 480 the server 30 stores the voice profile and voice model for the hearing user along with the hearing user device identifier for future use after which control passes back up to block 94 in FIG. 3.
  • Referring still to FIGS. 1 and 14, at block 468, if the hearing user's device is already represented in the voice recognition database, control passes to block 470 where server 30 runs voice recognition software on the hearing user's voice messages in an attempt to identify a voice profile associated with the specific hearing user. At decision block 472, if the hearing user's voice does not match one of the previously stored voice profiles associated with the device identifier, control passes to block 482 where the process described above continues. At block 472, if the hearing user's voice matches a previously stored profile, control passes to block 474 where the voice model associated with the matching profile is used to tune the voice-to-text software to be used to generate automated text.
  • Referring still to FIG. 14, at blocks 476 and 478, the voice model and voice profile for the hearing user are continually trained. Continual training enables the system to constantly adjust the model for changes in a hearing user's voice that may occur over time or when the hearing user experiences some physical condition (e.g., a cold, a raspy voice) that affects the sound of their voice. At block 480, the voice profile and voice model are stored with the HU device identifier for future use.
  • In at least some embodiments, server 30 may adaptively change the order of voice profiles applied to a hearing user's voice during the voice recognition process. For instance, while server 30 may store five different voice profiles for five different hearing users that routinely connect to an assisted user's device, a first of the profiles may be used 80 percent of the time. In this case, when captioning is commenced, server 30 may start by using the first profile to analyze a hearing user's voice at block 472 and may cycle through the profiles from the most matched to the least matched.
  • To avoid server 30 having to store a different voice profile and voice model for every hearing person that communicates with an assisted user via device 12, in at least some embodiments it is contemplated that server 30 may only store models and profiles for a limited number (e.g., 5) of frequent callers. To this end, in at least some cases server 30 will track calls and automatically identify the most frequent hearing user devices used to link to the assisted user's device 12 over some rolling period (e.g., 1 month) and may only store models and profiles for the most frequent callers. Here, a separate counter may be maintained for each hearing user device used to link to the assisted user's device over the rolling period and different models and profiles may be swapped in and out of the stored set based on frequency of calls.
  • In other embodiments server 30 may query an assisted user for some indication that a specific hearing user is or will be a frequent contact and may add that person to a list for which a model and a profile should be stored for a total of up to five persons.
  • While the system described above with respect to FIG. 14 assumes that the relay 16 stores and uses voice models and voice profiles that are trained to hearing user's voices for subsequent use, in at least some embodiments it is contemplated that an assisted user's device 12 processor may maintain and use or at least have access to and use the voice recognition database to generate automated text without linking to a relay. In this case, because the assisted user's device runs the software to generate the automated text, the software for generating text can be trained any time the user's device receives a hearing user's voice messages without linking to a relay. For example, during a call between a hearing user and an assisted user on devices 14 and 12, respectively, in FIG. 1, and prior to an assisted user requesting captioning service, the voice messages of even a new hearing user can be used by the assisted user's device to train a voice-to-text model and a voice profile for the user. In addition, prior to a caption request, as the model is trained and gets better and better, the model can be used to generate text that can be used as fill in text (e.g., text corresponding to voice messages that precede initiation of the captioning function) when captioning is selected.
  • FIG. 15 shows a process 500 that may be performed by an assisted user's device to train voice models and voice profiles and use those models and profiles to automate text transcription until a help button is selected. Referring also to FIG. 1, at block 502, an assisted user's device 12 processor receives a hearing user's voice messages as well as an identifier (e.g. a phone number) of the hearing user's device 14. At block 504 the processor determines if the assisted user has selected the help button (e.g., indicating that current captioning includes too many errors). If an assisted user selects the help button at block 504, control passes to block 522 where the assisted user's device is linked to a call assistant at relay 16 and the hearing user's voice is presented to the call assistant. At block 524 the assisted user's device receives text back from the relay and at block 534 the call assistant generated text is displayed on the assisted user's device display 18.
  • Where the help button has not been selected, control passes to block 505 where the processor uses the device identifier to determine if the hearing user's device is represented in the voice recognition database. Where the hearing user's device is not represented in the database control passes to block 528 where the processor uses a general voice-to-text program to convert the hearing user's voice messages to text after which control passes to block 512.
  • Referring again to FIGS. 1 and 15, at block 512 the processor adaptively trains the voice model using perceived errors in the automated text. To this end, one way to train the voice model is to generate text phonetically and thereafter perform a context analysis of each text word by looking at other words proximate the word to identify errors. Another example of using context to identify errors is to look at several generated text words as a phrase and compare the phrase to similar prior phrases that are consistent with how the specific hearing user strings words together and identify any discrepancies as possible errors. At block 514 a voice profile for the hearing user is generated from the hearing user's voice messages so that the hearing user's voice can be recognized in the future. At block 516 the voice model and voice profile for the hearing user are stored for future use during subsequent calls and then control passes to block 518 where the process described above continues. Thus, blocks 528, 512, 514 and 516 enable the assisted user's device to train voice models and voice profiles for hearing users that call in anew where a new voice model can be used during an ongoing call and during future calls to provide generally accurate transcription.
  • Referring still to FIGS. 1 and 15, if the hearing user's device is already represented in the voice recognition database at block 505, control passes to block 506 where the processor runs voice recognition software on the hearing user's voice messages in an attempt to identify one of the voice profiles associated with the device identifier. At block 508, where no voice profile is recognized, control passes to block 528.
  • At block 508, if the hearing user's voice matches one of the stored voice profiles, control passes to block 510 where the voice-to-text model associated with the matching profile is used to generate automated text from the hearing user's voice messages. Next, at block 518, the assisted user's device processor determine if the caption button on the assisted user's device has been selected. If captioning has not been selected control passes to block 502 where the process continues to cycle. Once captioning has been requested, control passes to block 520 where assisted user's device 12 displays the most recent 10 seconds of automated text and continuing automated text on display 18.
  • In at least some embodiments it is contemplated that different types of voice model training may be performed by different processors within the overall FIG. 1 system. For instance, while an assisted user's device is not linked to a relay, the assisted user's device cannot use any errors identified by a call assistance at the relay to train a voice model as no call assistant is generating errors. Nevertheless, the assisted user's device can use context and confidence factors to identify errors and train a model. Once an assisted user's device is linked to a relay where a call assistant corrects errors, the relay server can use the call assistant identified errors and corrections to train a voice model which can, once sufficiently accurate, be transmitted to the assisted user's device where the new model is substituted for the old content based model or where the two models are combined into a single robust model in some fashion. In other cases when an assisted user's device links to a relay for call assistant captioning, a context based voice model generated by the assisted user's device for the hearing user may be transmitted to the relay server and used as an initial model to be further trained using call assistant identified errors and corrections. In still other cases call assistant errors may be provided to the assisted user's device and used by that device to further train a context based voice model for the hearing user.
  • Referring now to FIG. 16, a sub-process 550 that may be added to the process shown in FIG. 15 whereby an assisted user's device trains a voice model for a hearing user using voice message content and a relay server further trains the voice model generated by the assisted user's device using call assistant identified errors is illustrated. Referring also to FIG. 15, sub-process 550 is intended to be performed in parallel with block 524 and 534 in FIG. 15. Thus, after block 522, in addition to block 524, control also passes to block 552 in FIG. 16. At block 552 the voice model for a hearing user that has been generated by an assisted user's device 12 is transmitted to relay 16 and at block 553 the voice model is used to modify a voice-to-text program at the relay. At block 554 the modified voice-to-text program is used to convert the hearing user's voice messages to automated text. At block 556 the call assistant generated text is compared to the automated text to identify errors. At block 558 the errors are used to further train the voice model. At block 560, if the voice model has an accuracy below the required standard, control passes back to block 502 in FIG. 15 where the process described above continues to cycle. At block 560, once the accuracy exceeds the standard requirement, control passes to block 562 wherein server 30 transmits the trained voice model to the assisted user's device for handling subsequent calls from the hearing user for which the model was trained. At block 564 the new model is stored in the database maintained by the assisted user's device.
  • Referring still to FIG. 16, in addition to transmitting the trained model to the assisted user's device at block 562, once the model is accurate enough to meet the standard requirements, server 30 may perform an automated process to cut out the call assistant and instead transmit automated text to the assisted user's device as described above in FIG. 1. In the alternative, once the model has been transmitted to the assisted user's device at block 562, the relay may be programmed to hand off control to the assisted user's device which would then use the newly trained and relatively more accurate model to perform automated transcription so that the relay could be disconnected.
  • Several different concepts and aspects of the present disclosure have been described above. It should be understood that many of the concepts and aspects may be combined in different ways to configure other triage systems that are more complex. For instance, one exemplary system may include an assisted user's device that attempts automated captioning with on the fly training first and, when automated captioning by the assisted user's device fails (e.g., a help icon is selected by an assisted user), the assisted user's device may link to a third party captioning system via the internet or the like where another more sophisticated voice-to-text captioning software is applied to generate automated text. Here, if the help button is selected a second time or a “call assistant” button is selected, the assisted user's device may link to a call assistant at the relay for call assistant captioning with simultaneous voice-to-text software transcription where errors in the automated text are used to train the software until a threshold accuracy requirement is met. Here, once the accuracy requirement is exceeded, the system may automatically cut out the call assistant and switch to the automated text from the relay until the help button is again selected. In each of the transcription hand offs, any learning or model training performed by one of the processors in the system may be provided to the next processor in the system to be used to expedite the training process.
  • In at least some embodiments an automated voice-to-text engine may be utilized in other ways to further enhance calls handled by a relay. For instance, in cases where transcription by a call assistant lags behind a hearing user's voice messages, automated transcription software may be programmed to transcribe text all the time and identify specific words in a hearing user's voice messages to be presented via an assisted user's display immediately when identified to help the assisted user determine when a hearing user is confused by a communication delay. For instance, assume that transcription by a call assistant lags a hearing user's most current voice message by 20 seconds and that an assisted user is relying on the call assistant generated text to communicate with the hearing user. In this case, because the call assistant generated text lag is substantial, the hearing user may be confused when the assisted user's response also lags a similar period and may generate a voice message questioning the status of the call. For instance, the hearing user may utter “Are you there?” or “Did you hear me?” or “Hello” or “What did you say?”. These phrases and others like them querying call status are referred to herein as “line check words” (LCWs) as the hearing user is checking the status of the call on the line.
  • If the line check words are not presented until they occurred sequentially in the hearing user's voice messages, they would be delayed for 20 or more seconds in the above example. In at least some embodiments it is contemplated that the automated voice engine may search for line check words (e.g., 50 common line check phrases) in a hearing user's voice messages and present the line check words immediately via the assisted user's device during a call regardless of which words have been transcribed and presented to an assisted user. The assisted user, seeing line check words or a phrase can verbally respond that the captioning service is lagging but catching up so that the parties can avoid or at least minimize confusion.
  • When line check words are presented to an assisted user the words may be presented in-line within text being generated by a call assistant with intermediate blanks representing words yet to be transcribed by the call assistant. To this end, see again FIG. 17 that shows line check words “Are you still there?” in a highlighting box 590 at the end of intermediate blanks 216 representing words yet to be transcribed by the call assistant. Line check words will, in at least some embodiments, be highlighted on the display or otherwise visually distinguished. In other embodiments the line check words may be located at some prominent location on the assisted user's display screen (e.g., in a line check box or field at the top or bottom of the display screen).
  • One advantage of using an automated voice engine to only search for specific words and phrases is that the engine can be tuned for those words and will be relatively more accurate than a general purpose engine that transcribes all words uttered by a hearing user. In at least some embodiments the automated voice engine will be run by an assisted user's device processor while in other embodiments the automated voice engine may be run by the relay server with the line check words transmitted to the assisted user's device immediately upon generation and identification.
  • In still other cases where automated text is presented immediately upon generation to an assisted user, line check words may be presented in a visually distinguished fashion (e.g., highlighted, in different color, as a distinct font, as a uniquely sized font, etc.) so that an assisted user can distinguish those words from others and, where appropriate, provide a clarifying remark to a confused hearing user.
  • Referring now to FIG. 19, a process 600 that may be performed by an assisted user's device 12 and a relay to transcribe hearing user's voice messages and provide line check words immediately to an assisted user when transcription by a call assistant lags in illustrated. At block 602 a hearing user's voice messages are received by an assisted user's device 12. After block 602 control continues along parallel sub-processes to blocks 604 and 612. At block 604 the assisted user's device processor uses an automated voice engine to transcribe the hearing user's voice messages to text. Here, it is assumed that the voice engine may generate several errors and therefore likely would be insufficient for the purposes of providing captioning to the assisted user. The engine, however, is optimized and trained to caption a set (e.g., 10 to 100) line check words and/or phrases which the engine can do extremely accurately. At block 606, the assisted user's device processor searches for line check words in the automated text. At block 608, if a line check word or phrase is not identified control passes back up to block 602 where the process continues to cycle. At block 608, if a line check word or phrase is identified, control passes to block 610 where the line check word/phrase is immediately presented (see phrase “Are you still there?” in FIG. 18) to the assisted user via display 18 either in-line or in a special location and, in at least some cases, in a visually distinct manner.
  • Referring still to FIG. 19, at block 612 the hearing user's voice messages are sent to a relay for transcription. At block 614, transcribed text is received at the assisted user's device back from the relay. At block 616 the text from the relay is used to fill in the intermediate blanks (see again FIG. 17 and also FIG. 18 where text has been filled in) on the assisted user's display.
  • In at least some embodiments it is contemplated that an automated voice-to-text engine may operate all the time and may check for and indicate any potential errors in call assistant generated text so that the call assistant can determine if the errors should be corrected. For instance, in at least some cases, the automated voice engine may highlight potential errors in call assistant generated text on the call assistant's display screen inviting the call assistant to correct the potential errors. In these cases the call assistant would have the final say regarding whether or not a potential error should be altered.
  • Consistent with the above comments, see FIG. 20 that shows a screen shot of a call assistant's display screen where potential errors have been highlighted to distinguish the errors from other text. Exemplary call assistant generated text is shown at 650 with errors shown in phantom boxes 652, 654 and 656 that represent highlighting. In the illustrated example, exemplary words generated by an automated voice-to-text engine are also presented to the call assistant in hovering fields above the potentially erroneous text as shown at 658, 660 and 662. Here, a call assistant can simply touch a suggested correction in a hovering field to make a correction and replace the erroneous word with the automated text suggested in the hovering field. If a call assistant instead touches an error, the call assistant can manually change the word to another word. If a call assistant does not touch an error or an associated corrected word, the word remains as originally transcribed by the call assistant. An “Accept All” icon is presented at 669 that can be selected to accept all of the suggestions presented on a call assistant's display. All corrected words are transmitted to an assisted user's device to be displayed.
  • Referring to FIG. 21, a method 700 by which a voice engine generates text to be compared to call assistant generated text and for providing a correction interface as in FIG. 20 for the call assistant is illustrated. At block 702 the hearing user's voice messages are provided to a relay. After block 702 control follows to two parallel paths to blocks 704 and 716. At block 704 the hearing user's voice messages are transcribed into text by an automated voice-to-text engine run by the relay server before control passes to block 706. At block 716 a call assistant transcribes the hearing user's voice messages to call assistant generated text. At block 718 the call assistant generated text is transmitted to the assisted user's device to be displayed. At block 720 the call assistant generated text is displayed on the call assistant's display screen 50 for correction after which control passes to block 706.
  • Referring still to FIG. 21, at block 706 the relay server compares the call assistant generated text to the automated text to identify any discrepancies. Where the automated text matches the call assistant generated text at block 708, control passes back up to block 702 where the process continues. Where the automated text does not match the call assistant generated text at block 708, control passes to block 710 where the server visually distinguishes the mismatched text on the call assistant's display screen 50 and also presents suggested correct text (e.g., the automated text). Next, at block 712 the server monitors for any error corrections by the call assistant and at block 714 if an error has been corrected, the corrected text is transmitted to the assisted user's device for in-line correction.
  • In at least some embodiments the relay server may be able to generate some type of probability or confidence factor related to how likely a discrepancy between automated and call assistant generated text is related to a call assistant error and may only indicate errors and present suggestions for probable errors or discrepancies likely to be related to errors. For instance, where an automated text segment is different than an associated call assistant generated text segment but the automated segment makes no sense contextually in a sentence, the server may not indicate the discrepancy or may not show the automated text segment as an option for correction. The same discrepancy may be shown as a potential error at a different time if the automated segment makes contextual sense.
  • In still other embodiments automated voice-to-text software that operates at the same time as a call assistant to generate text may be trained to recognize words often missed by a call assistant such as articles, for instance, and to ignore other words that call assistants more accurately transcribe.
  • The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
  • Thus, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims. For example, while the methods above are described as being performed by specific system processors, in at least some cases various method steps may be performed by other system processors. For instance, where a hearing user's voice is recognized and then a voice model for the recognized hearing user is employed for voice-to-text transcription, the voice recognition process may be performed by an assisted user's device and the identified voice may be indicated to a relay 16 which then identifies a related voice model to be used. As another instance, a hearing user's device may identify a hearing user's voice and indicate the identity of the hearing user to the assisted user's device and/or the relay.
  • As another example, while the system is described above in the context of a two line captioning system where one line links an assisted user's device to a hearing user's device and a second line links the assisted user's device to a relay, the concepts and features described above may be used in any transcription system including a system where the hearing user's voice is transmitted directly to a relay and the relay then transmits transcribed text and the hearing user's voice to the assisted user's device.
  • As still one other example, while inputs to an assisted user's device may include mechanical or virtual on screen buttons/icons, in some embodiments other inputs arrangements may be supported. For instance, in some cases help or a captioning request may be indicated via a voice input (e.g., verbal a request for assistance or for captioning).
  • As another example, in at least some cases where a relay includes first and second differently trained call assistants where first call assistants are trained to be capable of transcribing and correcting text and second call assistants are only trained to be capable of correcting text, a call assistant may always be on a call but the automated voice-to-text software may aid in the transcription process whenever possible to minimize overall costs. For instance, when a call is initially linked to a relay so that a hearing user's voice is received at the relay, the hearing user's voice may be provided to a first call assistant fully trained to transcribe and correct text. Here, voice-to-text software may train to the hearing user's voice while the first call assistant transcribes the text and after the voice-to-text software accuracy exceeds a threshold, instead of completely cutting out the relay or call assistant, the automated text may be provided to a second call assistant that is only trained to correct errors. Here, after training the automated text should have minimal errors and therefore even a minimally trained call assistant should be able to make corrections to the errors in a timely fashion. In other cases, a first CA assigned to a call may only correct errors in automated voice-to-text transcription and a fully trained revoicing and correcting CA may only be assigned after a help or caption request is received.
  • In other systems an assisted user's device processor may run automated voice-to-text software to transcribe hearing user's voice messages and may also generate a confidence factor for each word in the automated text based on how confident the processor is that the word has been accurately transcribed. The confidence factors over a most recent number of words (e.g., 100) or a most recent period (e.g., 45 seconds) may be averaged and the average used to assess an overall confidence factor for transcription accuracy. Where the confidence factor is below a threshold level, the device processor may link to a relay for more accurate transcription either via more sophisticated automated voice-to-text software or via a call assistant. The automated process for linking to a relay may be used instead of or in addition to the process described above whereby an assisted user selects a “caption” button to link to a relay.
  • In addition to storing hearing user voice models, a system may also store other information that could be used when an assisted user is communicating with specific hearing user's to increase accuracy of automated voice-to-text software when used. For instance, a specific hearing user may routinely use complex words from a specific industry when conversing with an assisted user. The system software can recognize when a complex word is corrected by a call assistant or contextually by automated software and can store the word and the pronunciation of the word by the specific hearing user in a hearing user word list for subsequent use. Then, when the specific hearing user subsequently links to the assisted user's device to communicate with the assisted user, the stored word list for the hearing user may be accessed and used to automate transcription. The hearing user's word list may be stored at a relay, by an assisted user's device or even by a hearing user's device where the hearing user's device has data storing capability.
  • In other cases a word list specific to an assisted user's device (i.e., to an assisted user) that includes complex or common words routinely used to communicate with the assisted user may be generated, stored and updated by the system. This list may include words used on a regular basis by any hearing user that communicates with an assisted user. In at least some cases this list or the hearing user's word lists may be stored on an internet accessible database (e.g., in the “cloud”) so that the assisted user has the ability to access the list(s) and edit words on the list via an internet portal or some other network interface.
  • Where an HU's complex or hard to spell word list and/or an AU's word list is available, when a CA is creating CA generated text (e.g., via revoicing, typing, etc.), an AVR engine may always operate to search the HU voice signal to recognize when a complex or difficult to spell word is annunciated and the complex or hard to spell words may be automatically presented to the CA via the CA display screen in line with the CA generated text to be considered by the CA. Here, while the CA would still be able to change the automatically generated complex word, it is expected that CA correction of those words would not occur often given the specialized word lists for the specific communicating parties.
  • In still other embodiments various aspects of a hearing user's voice messages may be used to select different voice-to-text software programs that are optimized for voices having different characteristic sets. For instance, there may be different voice-to-text programs optimized for male and female voices or for voices having different dialects. Here, system software may be able to distinguish one dialect from others and select an optimized voice engine/software program to increase transcription accuracy. Similarly, a system may be able to distinguish a high pitched voice from a low pitched voice and select a voice engine accordingly.
  • In some cases a voice engine may be selected for transcribing a hearing user's voice based on the region of a country in which a hearing user's device resides. For instance, where a hearing user's device is located in the southern part of the United States, an engine optimized for a southern dialect may be used while a device in New England may cause the system to select an engine optimized for another dialect. Different word lists may also be used based on region of a country in which a hearing user's device resides.
  • In at least some cases it is contemplated that an assisted user's device will provide a text or other indication to an assisted user to convey how text that appears on an AU device display 18 is being generated. For instance, when automated voice-to-text software (e.g., an automated voice recognition (AVR) system) is generating text, the phrase “Software Generated Text” may be persistently presented (see 729 in FIG. 22) at the top of a display 18 and when CA generated text is presented, the phrase “Call Assistant Generated Text” (not illustrated) may be presented. A phrase “Call Assistant Corrected Text” (not illustrated) may be presented when automated Text is corrected by a CA.
  • In some cases a set of virtual buttons (e.g., 68 in FIG. 1) or mechanical buttons may be provided via an AU device allowing an AU to select captioning preferences. For instance, captioning options may include “Automated/Software Generated Text”, “CA Generated Text” (see virtual selection button 719 in FIG. 22) and “CA Corrected Text” (see virtual selection button 721 in FIG. 22). This feature allows an AU to preemptively select a preference in specific cases or to select a preference dynamically during an ongoing call. For example, where an AU knows from past experience that calls with a specific HU result in excessive automated text errors, the AU could select “CA generated text” to cause CA support to persist during the duration of a call with the specific HU.
  • In at least some embodiments, automated voice-to-text accuracy may be tracked by a system and indicated to any one or a subset of a CA, an AU, and an HU either during CA text generation or during automated text presentation. Here, the accuracy value may be over the duration of an ongoing call or over a short most recent rolling period or number of words (e.g., last 30 seconds, last 100 words, etc.), or for a most recent HU turn at talking. In some cases two averages, one over a full call period and the other over a most recent period, may be indicated. The accuracy values would be provided via the AU device display 18 (see 728 in FIG. 22) and/or the CA workstation display 50. Where an HU device has a display (e.g., a smart phone, a tablet, etc.), the accuracy value(s) may be presented via that display in at least some cases. To this end, see the smart phone type HU device 800 in FIG. 24 where an accuracy rate is displayed at 802 for a call with an AU. It is expected that seeing a low accuracy value would encourage an HU to try to annunciate words more accurately or slowly to improve the value.
  • Human communication has many different components and the meanings ascribed to text words are only one aspect of that communication. One other aspect of human non-text communication includes how words are annunciated which often belies a speakers emotions or other meaning. For instance, a simple change in volume while words are being spoken is often intended to convey a different level of importance. Similarly, the duration over which a word is expressed, the tone or pitch used when a phrase is annunciated, etc., can convey a different meaning. For instance, annunciating the word “Yes” quickly can connote a different meaning than annunciating the word “Yes” very slowly or such that the “s” sound carries on for a period of a few seconds. A simple text word representation is devoid of a lot of meaning in an originally spoken phrase in many cases.
  • In at least some embodiments of the present disclosure it is contemplated that volume changes, tone, length of annunciation, pitch, etc., of an HU's voice signal may be sensed by automated software and used to change the appearance of or otherwise visually distinguish transcribed text that is presented to an AU via a device display 18 so that the AU can more fully understand and participate in a richer communication session. To this end, see, for instance, the two textual effects 732 and 734 in AU device text 730 in FIG. 22 where an arrow effect 732 represents a long annunciation period while a bolded/italicized effect 734 represents an appreciable change in HU voice signal volume. Many other non-textual characteristics of an HU voice signal are contemplated and may be sensed and each may have a different appearance. For instance, pitch, speed of speaking, etc., may all be automatically determined and used to provide effect distinct visual cues along with the transcribed text.
  • The visual cues may be automatically provided with or used to distinguish text presented via an AU device display regardless of the source of the text. For example, in some cases automated text may be supplemented with visual cues to indicate other communication characteristics and in at least some cases even CA generated text may be supplemented with automatically generated visual cues indicating how an HU annunciates various words and phrases. Here, as voice characteristics are detected for an HU's utterances, software tracks the voice characteristics in time and associates those characteristics with specific text words or phrases generated by the CA. Then, the visual cues for each voice characteristic are used to visually distinguish the associated words when presented to the AU.
  • In at least some cases an AU may be able to adjust the degree to which text is enhanced via visual cues or even to select preferred visual cues for different voice characteristics. For instance, a specific AU may find fully enabled visual queuing to be distracting and instead may only want bold capital letter visual queuing when an HU's volume level exceeds some threshold value. AU device preferences may be set via a display 18 during some type device of commissioning process.
  • In some embodiments it is contemplated that the automated software that identifies voice characteristics will adjust or train to an HU's voice during the first few seconds of a call and will continue to train to that voice so that voice characteristic identification is normalized to the HU's specific voice signal to avoid excessive visual queuing. Here, it has been recognized that some people's voices will have persistent voice characteristics that would normally be detected as anomalies if compared to a voice standard (e.g., a typical male or female voice). For instance, a first HU may always speak loudly and therefore, if his voice signal was compared to an average HU volume level, the voice signal would exceed the average level most if not all the time. Here, to avoid always distinguishing the first HU's voice signal with visual queuing indicating a loud voice, the software would use the HU voice signal to determine that the first HU's voice signal is persistently loud and would normalize to the loud signal so that words uttered within a range of volumes near the persistent loud volume would not be distinguished as loud. Here, if the first HU's voice signal exceeds the range about his persistent volume level, the exceptionally loud signal may be recognized as a clear deviation from the persistent volume level for the normalized voice and therefore distinguished with a visual queue for the AU when associated text is presented. The voice characteristic recognizing software would automatically train to the persistent voice characteristics for each HU including for instance, pitch, tone, speed of annunciation, etc., so that persistent voice characteristics of specific HU voice signals are not visually distinguished as anomalies.
  • In at least some cases, as in the case of voice models developed and stored for specific HUs, it is contemplated that HU voice models may also be automatically developed and stored for specific HU's for specifying voice characteristics. For instance, in the above example where a first HU has a particularly loud persistent voice, the volume range about the first HU's persistent volume as well as other persistent characteristics may be determined once during an initial call with an AU and then stored along with a phone number or other HU identifying information in a system database. Here, the next time the first HU communicates with an AU via the system, the HU voice characteristic model would be automatically accessed and used to detect voice characteristic anomalies and to visually distinguish accordingly.
  • Referring again to FIG. 22, in addition to changing the appearance of transcribed text to indicate annunciation qualities or characteristics, other visual cues may be presented. For instance, if an HU persistently talks in a volume that is much higher than typical for the HU, a volume indicator 717 may be presented or visually altered in some fashion to indicate the persistent volume. As another example, a volume indicator 715 may be presented above or otherwise spatially proximate any word annunciated with an unusually high volume. In some cases the distinguishing visual queue for a specially annunciated word may only persist for a short duration (e.g., 3 seconds, until the end of a related sentence or phrase, for the next 5 words of an utterance, etc.) and then be eliminated. Here, the idea is that the visual queuing is supposed to mimic the effect of an annunciated word or phrase which does not persist long term (e.g., the loud effect of a high volume word only persists as the word is being annunciated).
  • The software used to generate the HU voice characteristic models and/or to detect voice anomalies to be visually distinguished may be run via any of an HU device processor, an AU device processor, a relay processor and a third party operated processor linkable via the internet or some other network. In at least some cases it will be optimal for an HU device to develop the HU model for an HU that is associated with the device and to store the model and apply the model to the HU's voice to detect anomalies to be visually distinguished for several reasons. In this regard, a particularly rich acoustic HU voice signal is available at the HU device so that anomalies can be better identified in many cases by the HU device as opposed to some processor downstream in the captioning process.
  • Referring again to FIG. 24, in at least some embodiments where an HU device 800 includes a display screen 801, an HU voice text transcription 804 may also be presented via the HU device. Here, an HU viewing the transcribed text could formulate an independent impression of transcription accuracy and whether or not a more robust transcription process (e.g., CA generation of text) is required or would be preferred. In at least some cases a virtual “CA request” button 806 or the like may be provided on the HU screen for selection so that the HU has the ability to initiate CA text transcription and or CA correction of text. Here, an HU device may also allow an HU to switch back to automated text if an accuracy value 802 exceeds some threshold level. Where HU voice characteristics are detected, those characteristics may be used to visually distinguish text at 804 in at least some embodiments.
  • Where an HU device is a smart phone, a tablet computing device or some other similar device capable of downloading software applications from an application store, it is contemplated that a captioning application may be obtained from an application store for communication with one or more AU devices 12. For instance, the son or daughter of an AU may download the captioning application to be used any time the device user communicates with the AU. Here, the captioning application may have any of the functionality described in this disclosure and may result in a much better overall system in various ways.
  • For instance, a captioning application on an HU device may run automated voice-to-text software on a digital HU voice signal as described above where that text is provided to the AU device 12 for display and, at times, to a relay for correction, voice model training, voice characteristic model training, etc. As another instance, an HU device may train a voice model for an HU any time an HU's voice signal is obtained regardless of whether or not the HU is participating in a call with an AU. For example, if a dictation application on an HU device which is completely separate from a captioning application is used to dictate a letter, the HU voice signal during dictation may be used to train a general HU voice model for the HU and, more specifically, a general model that can be used subsequently by the captioning system or application. Similarly, an HU voice signal captured during entry of a search phrase into a browser or an address into mapping software which is independent of the captioning application may be used to further train the general voice model for the HU. Here, the general voice model may be extremely accurate even before used in by AU captioning application. In addition, an accuracy value for an HU's voice model may be calculated prior to an initial AU communication so that, if the accuracy value exceeds a high or required accuracy standard, automated text transcription may be used for an HU-AU call without requiring CA assistance, at least initially.
  • For instance, prior to an initial AU call, an HU device processor training to an HU voice signal may assign confidence factors to text words automatically transcribed by an AVR engine from HU voice signals. As the software trains to the HU voice, the confidence factor values would continue to increase and eventually should exceed some threshold level at which initial captioning during an AU communication would meet accuracy requirements set by the captioning industry.
  • As another instance, an HU voice model stored by or accessible by the HU device can be used to automatically transcribe text for any AU device without requiring continual redevelopment of the HU voice model. Thus, one HU device may be used to communicate with two separate hearing impaired persons using two different AU devices without each sub-system redeveloping the HU voice model.
  • As yet another instance, an HU's smart phone or tablet device running a captioning application may link directly to each of a relay and an AU's device to provide one or more of the HU voice signal, automated text and/or an HU voice model or voice characteristic model to each. This may be accomplished through two separate phone lines or via two channels on a single cellular line or via any other combination of two communication links.
  • In some cases an HU voice model may be generated by a relay or an AU's device or some other entity (e.g., a third party AVR engine provider) over time and the HU voice model may then be stored on the HU device or rendered accessible via that device for subsequent transcription. In this case, one robust HU voice model may be developed for an HU by any system processor or server independent of the HU device and may then be used with any AU device and relay for captioning purposes.
  • In still other cases, at least one system processor may monitor and assess line and/or audio conditions associated with a call and may present some type of indication to each or a subset of an AU, an HU and a CA to help each or at least one of the parties involved in a call to assess communication quality. For instance, an HU device may be able to indicate to an AU and a CA if the HU device is being used as a speaker phone which could help explain an excessive error rate and help with a decision related to CA captioning involvement. As another instance, an HU's device may independently assess the level of non-HU voice signal noise being picked up by an HU device microphone and, if the determined noise level exceeds some threshold value either by itself or in relation to the signal strength of the HU voice signal, may perform some function. For example, one function may be to provide a signal to the HU indicating that the noise level is high. Another function may be to provide a noise level signal to the CA or the AU which could be indicated on one or both of the displays 50 and 18. Yet another function would be to offer one or more captioning options to any of the HU or AU or even to a text correcting CA when the noise level exceeds the threshold level. Here, the idea is that as the noise level increases, the likelihood of accurate AVR captioning will typically decrease and therefore more accurate and robust captioning options should be available.
  • As another instance, an HU device may transmit a known signal to an AU device which returns the known signal to the HU device and the HU device may compare the received signal to the known signal to determine line or communication link quality. Here, the HU may present a line quality value as shown at 808 in FIG. 24 for the HU to consider. Similarly, an AU device may present a line quality signal (not illustrated) to the AU to be considered.
  • In some cases system devices may monitor a plurality of different system operating characteristics such as line quality, speaker phone use, non-voice noise level, voice volume level, voice signal pace, etc., and may present one or more “coaching” indications to any one of or a subset of the HU, CA and AU for consideration. Here, the coaching indications should help the parties to a call understand if there is something they can do to increase the level of captioning accuracy. Here, in at least some cases only the most impactful coaching indications may be presented and different entities may receive different coaching indications. For instance, where noise at HU location exceeds a threshold level, a noise indicating signal may only be presented to the HU. Where the system also recognizes that line quality is only average, that indication may be presented to the AU and not to the HU while the HU's noise level remains high. If the HU moves to a quieter location, the noise level indication on the HU device may be replaced with a line quality indication. Thus, the coaching indications should help individual call entities recognize communication conditions that they can effect or that may be the cause of or may lead to poor captioning results for the AU.
  • In some cases coaching may include generating a haptic feedback or audible signal or both and a text message for an HU and/or an AU. To this end, while AU's routinely look at their devices to see captions during a caption assisted call, many HUs do not look at their devices during a call and simply rely on audio during communication. In the case of an AU, in some cases even when captioning is presented to an AU the AU may look away from their device display at times when their hearing is sufficient. By providing a haptic or audible or both additional signals, a user's attention can be drawn to their device displays where a warning or call state text message may present more information such as, for instance, an instruction to “Speak louder” or “Move to a less noisy space”, for consideration.
  • In some embodiments an AU may be able to set a maximum text lag time such that automated text generated by an AVR engine is used to drive an AU device screen 18 when a CA generated text lag reaches the maximum value. For instance, an AU may not want text to lag behind a broadcast HU voice signal by more than 7 seconds and may be willing to accept a greater error rate to stay within the maximum lag time period. Here, CA captioning/correction may proceed until the maximum lag time occurs at which point automated text may be used to fill in the lag period up to a current HU voice signal on the AU device and the CA may be skipped ahead to the current HU signal automatically to continue the captioning process. Again, here, any automated fill in text or text not corrected by a CA may be visually distinguished on the AU device display as well as on the CA display for consideration.
  • It has been recognized that many AU's using text to understand a broadcast HU voice signal prefer that the text lag behind the voice signal at least some short amount of time. For instance, an AU talking to an HU may stair off into space while listening to the HU voice signal and, only when a word or phrase is not understood, may look to text on display 18 for clarification. Here, if text were to appear on a display 18 immediately upon audio broadcast to an AU, the text may be several words beyond the misunderstood word by the time the AU looks at the display so that the AU would be required to hunt for the word. For this reason, in at least some embodiments, a short minimum text delay may be implemented prior to presenting text on display 18. Thus, all text would be delayed at least 2 seconds in some cases and perhaps longer where a text generation lag time exceeds the minimum lag value. As with other operating parameters, in at least some cases an AU may be able to adjust the minimum voice-to-text lag time to meet a personal preference.
  • It has been recognized that in cases where transcription switches automatically from a CA to an AVR engine when text lag exceeds some maximum lag time, it will be useful to dynamically change the threshold period as a function of how a communication between an HU and an AU is progressing. For instance, periods of silence in an HU voice signal may be used to automatically adjust the maximum lag period. For example, in some cases if silence is detected in an HU voice signal for more than three seconds, the threshold period to change from CA text to automatic text generation may be shortened to reflect the fact that when the HU starts speaking again, the CA should be closer to a caught up state. Then, as the HU speaks continuously for a period, the threshold period may again be extended. The threshold period prior to automatic transition to the AVR engine to reduce or eliminate text lag may be dynamically changed based on other operating parameters. For instance, rate of error correction by a CA, confidence factor average in AVR text, line quality, noise accompanying the HU voice signal, or any combination of these and other factors may be used to change the threshold period.
  • One aspect described above relates to an AVR engine recognizing specific or important phrases like questions (e.g., see phrase “Are you still there?”) in FIG. 18 prior to CA text generation and presenting those phrases immediately to an AU upon detection. Other important phrases may include phrases, words or sound anomalies that typically signify “turn markers” (e.g., words or sounds often associated with a change in speaker from AU to HU or vice versa). For instance, if an HU utters the phrase “What do you think?” followed by silence, the combination including the silent period may be recognized as a turn marker and the phrase may be presented immediately with space markers (e.g., underlined spaces) between CA text and the phrase to be filled in by the CA text transcription once the CA catches up to the turn marker phrase.
  • To this end, see the text at 731 in FIG. 22 where CA generated text is shown at 733 with a lag time indicated by underlined spaces at 735 and an AVR recognized turn marker phrase presented at 737. In this type of system, in some cases the AVR engine will be programmed with a small set (e.g., 100-300) of common turn marker phrases that are specifically sought in an HU voice signal and that are immediately presented to the AU when detected. In some cases, non-text voice characteristics like the change in sound that occurs at the end of a question which is often the signal for a turn marker may be sought in an HU voice signal and any AVR generated text within some prior period (e.g., 5 seconds, the previous 8 words, etc.) may be automatically presented to an AU.
  • It has been recognized that some types of calls can almost always be accurately handled by an AVR engine. For instance, auto-attendant type calls can typically be transcribed accurately via an AVR. For this reason, in at least some embodiments, it is envisioned that a system processor at the AU device or at the relay may be able to determine a call type (e.g., auto-attendant or not, or some other call type routinely accurately handled by an AVR engine) and automatically route calls within the overall system to the best and most efficient/effective option for text generation. Thus, for example, in a case where an AU device manages access to an AVR operated by a third party and accessible via an internet link, when an AU places a call that is received by an auto-attendant system, the AU device may automatically recognize the answering system as an auto-attendant type and instead of transmitting the auto-attendant voice signal to a relay for CA transcription, may transmit the auto-attendant voice signal to the third party AVR engine for text generation.
  • In this example, if the call type changes mid-stream during its duration, the AU device may also transmit the received voice signal to a CA for captioning if appropriate. For instance, if an interactive voice recognition auto-attendant system eventually routes the AU's call to a live person (e.g., a service representative for a company), once the live person answers the call, the AU device processor may recognize the person's voice as a non-auto-attendant signal and route that signal to a CA for captioning as well as to the AVR for voice model training. In these cases, the AVR engine may be specially tuned to transcribe auto-attendant voice signals to text and, when a live HU gets on the line, would immediately start training a voice model for that HU's voice signal.
  • In cases or at times when HU voice signals are transcribed automatically to text via an AVR engine when a CA is only correcting AVR generated text, the relay may include a synchronizing function or capability so that, as a CA listens to an HU's voice signal during an error correction process, the associated text from the AVR is presented generally synchronously to the CA with the HU voice signal. For instance, in some cases an AVR transcribed word may be visually presented via a CA display 50 at substantially the same instant at which the word is broadcast to the CA to hear. As another instance, the AVR transcribed word may be presented one, two, or more seconds prior to broadcast of that word to the CA.
  • In still other cases, the AVR generated text may be presented for correction via a CA display 50 immediately upon generation and, as the CA controls broadcast speed of the HU voice signal for correction purposes, the word or phrase instantaneously audibly broadcast may be highlighted or visually distinguished in some fashion. To this end, see FIG. 23 where automated AVR generated text is shown at 748 where a word instantaneously audibly broadcast to a CA (see 752) is simultaneously highlighted at 750. Here, as the words are broadcast via CA headset 54, the text representations of the words are highlighted or otherwise visually distinguished to help the error correcting CA follow along.
  • In at least some cases an error correcting CA will be able to skip back and forth within the HU voice signal to control broadcast of the HU voice signal to the CA. For instance, as described above, a CA may have a foot pedal useable to skip back in a buffered HU voice recording 5, 10, etc., seconds to replay an HU voice signal recording. Here, when the recording skips back, the highlighted text in representation 748 would likewise skip back to be synchronized with the broadcast words. To this end, see FIG. 25 where, in at least some cases, a foot pedal activation may cause the recording to skip back to the word “pizza” which is then broadcast as at 764 and highlighted in text 748 as shown at 762. In other cases, the CA may simply single tap or otherwise select any word presented on display 50 to skip the voice signal play back and highlighted text to that word. For instance, in FIG. 25 icon 766 represents a single tap which causes the word “pizza” to be highlighted and substantially simultaneously broadcast. Other word selecting gestures (e.g., a mouse control click, etc.) are contemplated.
  • In some embodiments when a CA selects a text word to correct, the voice signal replay may automatically skip to some word in the voice buffer relative to the selected word and may halt voice signal replay automatically until the correction has been completed. For instance, a double tap on the word “pals’ in FIG. 23 may cause that word to be highlighted for correction and may automatically cause the point in the HU voice replay to move backward to a location a few words prior to the selected word “pals.” To this end, see in FIG. 25 that the word “Pete's” that is still highlighted as being corrected (e.g., the CA has not confirmed a complete correction) has been typed in to replace the word “Pals” and the word “pizza” that precedes the word “Pete's” has been highlighted to indicate where the HU voice signal broadcast will again commence after the correction at 760 has been completed. While backward replay skipping has been described, forward skipping is also contemplated.
  • In some cases, when a CA selects a word in presented text for correction or at least to be considered for correction, the system may skip to a location a few words prior to the selected word and may represent the HU voice signal stating at that point and ending a few words after that point to give a CA context in which to hear the word to be corrected. Thereafter, the system may automatically move back to a subsequent point in the HU voice signal at which the CA was when the word to be corrected was selected. For instance, again, in FIG. 25, assume that the HU voice broadcast to a CA is at the word “catch” 761 when the CA selects the word “Pete's 760 for correction. In this case, the CA's interface may skip back in the HU voice signal to the word pizza at 762 and re-broadcast the phrase parts from the word “pizza” to the word “want” 763 to provide immediate context to the CA. After broadcasting the word “want”, the interface would skip back to the word “catch” 761 and continue broadcasting the HU voice signal from that point on.
  • In at least some embodiments where an AVR engine generates automatic text and a CA is simply correcting that text prior to transmission to an AU, the AVR engine may assign a confidence factor to each word generated that indicates how likely it is that the word is accurate. Here, in at least some cases, the relay server may highlight any text on the correcting CA's display screen that has a confidence factor lower than some threshold level to call that text to the attention of the CA for special consideration. To this end, see again FIG. 23 where various words (e.g., 777, 779, 781) are specially highlighted in the automatically generated AVR text to indicate a low confidence factor.
  • While AU voice signals are not presented to a CA in most cases for privacy reasons, it is believed that in at least some cases a CA may prefer to have some type of indication when an AU is speaking to help the CA understand how a communication is progressing. To this end, in at least some embodiments an AU device may sense an AU voice signal and at least generate some information about when the AU is speaking. The speaking information, without word content, may then be transmitted in real time to the CA at the relay and used to present an indication that the AU is speaking on the CA screen. For instance, see again FIG. 23 where lines 783 are presented on display 50 to indicate that an AU is speaking. As shown, lines 783 are presented on a right side of the display screen to distinguish the AU's speaking activity from the text and other visual representations associated with the HU's voice signal. As another instance, when the AU speaks, a text notice 797 or some graphical indicator (e.g., a talking head) may be presented on the CA display 50 to indicate current speaking by an AU. While not shown it is contemplated that some type of non-content AU speaking indication like 783 may also be presented to an AU via the AU's device to help the AU understand how the communication is progressing.
  • It has been recognized that some third party AVR systems available via the internet or the like tend to be extremely accurate for short voice signal durations (e.g., 15-30 seconds) after which accuracy becomes less reliable. To deal with AVR accuracy degradation during an ongoing call, in at least some cases where a third party AVR system is employed to generate automated text, the system processor (e.g., at the relay, in the AU device or in the HU device) may be programmed to generate a series of automatic text transcription requests where each request only transmits a short sub-set of a complete HU voice signal. For instance, a first AVR request may be limited to a first 15 seconds of HU voice signal, a second AVR request may be limited to a next 15 seconds of HU voice signal, a third AVR request may be limited to a third 15 seconds of HU voice signal, and so on. Here, each request would present the associated HU signal to the AVR system immediately and continuously as the HU voice signal is received and transcribed text would be received back from the AVR system during the 15 second period. As the text is received back from the AVR system, the text would be cobbled together to provide a complete and relatively accurate transcript of the HU voice signal.
  • While the HU voice signal may be divided into consecutive periods in some cases, in other cases it is contemplated that the HU voice signal slices or sub-periods sent to the AVR system may overlap at least somewhat to ensure all words uttered by an HU are transcribed and to avoid a case where words in the HU voice signal are split among periods. For instance, voice signal periods may be 30 seconds long and each may overlap a preceding period by 10 seconds and a following period by 10 seconds to avoid split words. In addition to avoiding a split word problem, overlapping HU voice signal periods presented to an AVR system allows the system to use context represented by surrounding words to better (e.g., contextually) covert HU voiced words to text. Thus, a word at the end of a first 20 second voice signal period will be near the front end of the overlapping portion of a next voice signal period and therefore, typically, will have contextual words prior to and following the word in the next voice signal period so that a more accurate contextually considered text representation can be generated.
  • In some cases, a system processor may employ two, three or more independent or differently tuned AVR systems to automatically generate automated text and the processor may then compare the text results and formulate a single best transcript representation in some fashion. For instance, once text is generated by each engine, the processor may poll for most common words or phrases and then select most common as text to provide to an AU, to a CA, to a voice modeling engine, etc.
  • In most cases automated text (e.g., AVR generated text) will be generated much faster than CA generated text or at least consistently much faster. It has been recognized that in at least some cases an assisted user will prefer even uncorrected automated text to CA corrected text where the automated text is presented more rapidly generated and therefore more in sync with an audio broadcast HU voice signal. For this reason, in at least some cases, a different and more complex voice-to-text triage process may be implemented. For instance, when an AU-HU call commences and the AU requires text initially, automated AVR generated text may initially be provided to the AU. If a good HU voice model exists for the HU, the automated text may be provided without CA correction at least initially. If the AU, a system processor, or an HU determines that the automated text includes too many errors or if some other operating characteristic (e.g., line noise) that may affect text transcription accuracy is sensed, a next level of the triage process may link an error correcting CA to the call and the AVR text may be presented in essentially real time to the CA via display 50 simultaneously with presentation to the AU via display 18.
  • Here, as the CA corrects the automated text, corrections are automatically sent to the AU device and are indicated via display 18. Here, the corrections may be in-line (e.g., erroneous text replaced), above error, shown after errors, may be visually distinguished via highlighting or the like, etc. Here, if too many errors continue to persist from the AU's perspective, the AU may select an AU device button (e.g., see 68 again in FIG. 1) to request full CA transcription. Similarly, if an error correcting CA perceives that the AVR engine is generating too many errors, the error correcting CA may perform some action to initiate full CA transcription and correction. Similarly, a relay processor or even an AU device processor may detect that an error correcting CA is having to correct too many errors in the AVR generated text and may automatically initiate full CA transcription and correction.
  • In any case where a CA takes over for an AVR engine to generate text, the AVR engine may still operate on the HU voice signal to generate text and use that text and CA generated text, including corrections, to refine a voice model for the HU. At some point, once the voice model accuracy as tested against the CA generated text reaches some threshold level (e.g., 95% accuracy), the system may again automatically or at the command of the transcribing CA or the AU, revert back to the CA corrected AVR text and may cut out the transcribing CA to reduce costs. Here, if the AVR engine eventually reaches a second higher accuracy threshold (e.g., 98% accuracy), the system may again automatically or at the command of an error correcting CA or an AU, revert back to the uncorrected AVR text to further reduce costs.
  • In at least some cases it is contemplated that an AU device may allow an AU to set a personal preference between text transcription accuracy and text speed. For instance, a first AU may have fairly good hearing and therefore may only rely on a text transcript periodically to identify a word uttered by an HU while a second AU has extremely bad hearing and effectively reads every word presented on an AU device display. Here, the first AU may prefer text speed at the expense of some accuracy while the second AU may require accuracy even when speed of text presentation or correction is reduced. An exemplary AU device tool is shown as an accuracy/speed scale 770 in FIG. 18 where an accuracy/speed selection arrow 772 indicates a current selected operating characteristic. Here, moving arrow 772 to the left, operating parameters like correction time, AVR operation etc., are adjusted to increase accuracy at the expense of speed and moving arrow 772 right on scale 770 increases speed of text generation at the expense of accuracy.
  • In at least some embodiments when text is presented to an error correcting CA via a CA display 50, the text may be presented at least slightly prior to broadcast of (e.g., ¼ to 2 seconds) an associated HU voice signal. In this regard, it has been recognized that many CAs prefer to see text prior to hearing a related audio signal and link the two optimally in their minds when text precedes audio. In other cases specific CAs may prefer simultaneous text and audio and still others may prefer audio before text. In at least some cases it is contemplated that a CA workstation may allow a CA to set text-audio sync preferences. To this end, see exemplary text-audio sync scale 765 in FIG. 25 that includes a sync selection arrow 767 that can be moved along the scale to change text-audio order as well as delay or lag between the two.
  • In at least some embodiments an on-screen tool akin to scale 765 and arrow 767 may be provided on an AU device display 18 to adjust HU voice signal broadcast and text presentation timing to meet an AU's preferences.
  • It has been recognized that some AU's can hear voice signals with a specific characteristic set better than other voice signals. For instance, one AU may be able to hear low pitch traditionally male voices better than high pitch traditionally female voice signals. In some embodiments an AU may perform a commissioning procedure whereby the AU tests capability to accurately hear voice signals having different characteristics and results of those capabilities may be stored in a system database. The hearing capability results may then be used to adjust or modify the way text captioning is accomplished. For instance, in the above case where an AU hears low pitch voices well but not high pitch voices, if a low pitch HU voice is detected when a call commences, the system may use the AVR function more rapidly than in the case of a high pitched voice signal. Voice characteristics other than pitch may be used to adjust text transcription and AVR transition protocols in similar ways.
  • In at least some cases where an HU device like a smart phone, tablet, computing device, laptop, smart watch, etc., has the ability to store data or to access data via the internet, a WIFI system or otherwise that is stored on a local or remote (e.g., cloud) server, it is contemplated that every HU device or at least a subset used by specific HUs may store an HU voice model for an associated HU to be used by a captioning application or by any software application run by the HU device. Here, the HU model may be trained by one or more applications run on the HU device or by some other application like an AVR system associated with one of the captioning systems described herein that is run by an AU device, the relay server, or some third party server or processor. Here, for example, in one instance, an HU's voice model stored on an HU device may be used to drive a voice-to-text search engine input tool to provide text for an internet search independent of the captioning system. The multi-use and perhaps multi-application trained HU voice model may also be used by a captioning AVR system during an AU-HU call. Here, the voice model may be used by an AVR application run on the HU device, run on the AU device, run by the relay server or run by a third party server.
  • In cases where an HU voice model is accessible to an AVR engine independent of an HU device, when an AU device is used to place a call to an HU device, an HU model associated with the number called may be automatically prepared for generating captions even prior to connection to the HU device. Where a phone or other identifying number associated with an HU device can be identified prior to an AU answering a call from the HU device, again, an HU voice model associated with the HU device may be accessed and readied by the captioning system for use prior to the answering action to expedite AVR text generation. Most people use one or a small number of phrases when answering an incoming phone call. Where an HU voice model is loaded prior to an HU answering a call, the AVR engine can be poised to detect one of the small number of greeting phrases routinely used to answer calls and to compare the HU's voice signal to the model to confirm that the voice model is for the specific HU that answers the call. If the HU's salutation upon answering the call does not match the voice model, the system may automatically link to a CA to start a CA controlled captioning process.
  • While a captioning system must provide accurate text corresponding to an HU voice signal for an AU to view when needed, typical relay systems for deaf and hard of hearing person would not provide a transcription of an AU's voice signal. Here, generally, the thinking has been that an AU knows what she says in a voice signal and an HU hears that signal and therefore text versions of the AU's voice was not necessary. This, coupled with the fact that AU captioning would have substantially increased the transcription burden on CAs (e.g., would have required CA revoicing or typing and correction of more voice signal (e.g., the AU voice signal)) meant that AU voice signal transcription simply was not supported. Another reason AU voice transcription was not supported was that at least some AUs, for privacy reasons, do not want both sides of conversations with HUs being listened to by CAs.
  • In at least some embodiments, it is contemplated that the AU side of a conversation with an HU may be transcribed to text automatically via an AVR engine and presented to the AU via a device display 18 while the HU side of the conversation is transcribed to text in the most optimal way given transcription triage rules or algorithms as described above. Here, the AU voice captions and AU voice signal would never be presented to a CA. Here, while AU voice signal text may not be necessary in some cases, in others it is contemplated that many AUs may prefer that text of their voice signals be presented to be referred back to or simply as an indication of how the conversation is progressing. Seeing both sides of a conversation helps a viewer follow the progress more naturally. Here, while the AVR generated AU text may not always be extremely accurate, accuracy in the AU text is less important because, again, the AU knows what she said.
  • Where an AVR engine automatically generates AU text, the AVR engine may be run by any of the system processors or devices described herein. In particularly advantageous systems the AVR engine will be run by the AU device 12 where the software that transcribes the AU voice to text is trained to the voice of the AU and therefore is extremely accurate because of the personalized training.
  • Thus, referring again to FIG. 1, for instance, in at least some embodiments, when an AU-HU call commences, the AU voice signal may be transcribed to text by AU device 12 and presented as shown at 822 in FIG. 26 without providing the AU voice signal to relay 16. The HU voice signal, in addition to being audibly broadcast via AU device 12, may be transmitted in some fashion to relay 16 for conversion to text when some type of CA assistance is required. Accurate HU text is presented on display 18 at 820. Thus, the AU gets to see both AU text, albeit with some errors, and highly accurate HU text. Referring again to FIG. 24, in at least some cases, AU and HU text may also be presented to an HU via an HU device (e.g., a smart phone) in a fashion similar to that shown in FIG. 26.
  • Referring still to FIG. 26, where both HU and AU text are generated and presented to an AU, the HU and AU text may be presented in staggered columns as shown along with an indication of how each text representation was generated (e.g., see titles at top of each column in FIG. 26).
  • In at least some cases it is contemplated that an AU may, at times, not even want the HU side of a conversation to be heard by a CA for privacy reasons. Here, in at least some cases, it is contemplated that an AU device may provide a button or other type of selectable activator to indicate that total privacy is required and then to re-establish relay or CA captioning and/or correction again once privacy is no longer required. To this end, see the “Complete Privacy” button or virtual icon 826 shown on the AU device display 18 in FIG. 26. Here, it is contemplated that, while an AU-HU conversation is progressing and a CA generates/corrects text 820 for an HU's voice signal and an AVR generates AU text 822, if the AU wants complete privacy but still wants HU text, the AU would select icon 826. Once icon 826 is selected, the HU voice signal would no longer be broadcast to the CA and instead an AVR engine would transcribe the AU voice signal to automated text to be presented via display 18. Icon 826 in FIG. 26 would be changed to “CA Caption” or something to that effect to allow the AU to again start full CA assistance when privacy is less of a concern.
  • In addition to a voice-to-text lag exceeding a maximum lag time, there may be other triggers for using AVR engine generated text to catch an AU up to an HU voice signal. For instance, in at least some cases an AU device may monitor for an utterance from an AU using the device and may automatically fill in AVR engine generated text corresponding to an HU voice signal when any AU utterance is identified. Here, for example, where CA transcription is 30 seconds behind an HU voice signal, if an AU speaks, it may be assumed that the AU has been listening to the HU voice signal and is responding to the broadcast HU voice signal in real time. Because the AU responds to the up to date HU voice signal, there is no need for an accurate text transcription for prior HU voice phrases and therefore automated text may be used to automatically catch up. In this case, the CA's transcription task would simply be moved up in time to a current real time HU voice signal automatically and the CA would not have to consider the intervening 30 seconds of HU voice for transcription or even correction.
  • As another example, when an AU device or other system device recognizes a turn marker in an HU voice signal, all AVR generated text that is associated with a lag time may be filled in immediately and automatically.
  • As still one other instance, an AU device or other device may monitor AU utterances for some specific word or phrase intended to trigger an update of text associated with a lag time. For instance, the AU may monitor for the word “Update” and, when identified, may fill in the lag time with automated text. Here, in at least some cases, the AU may be programmed to cancel the catch-up word “Update” from the AU voice signal sent to the HU device. Thus, here, the AU utterance “Update” would have the effect of causing AVR text to fill in a lag time without being transmitted to the HU device. Other commands may be recognized and automatically removed from the AU voice signal.
  • Thus, it should be appreciated that various embodiments of a semi-automated automatic voice recognition or text transcription system to aid hearing impaired persons when communicating with HUs have been described. In each system there are at least three entities and at least three devices and in some cases there may be a fourth entity and an associated fourth device. In each system there is at least one HU and associated device, one AU and associated device and one relay and associated device or sub-system while in some cases there may also be a third party provider (e.g., a fourth party) of AVR services operating one or more servers that run AVR software. The HU device, at a minimum, enables an HU to annunciate words that are transmitted to an AU device and receives an AU voice signal and broadcasts that signal audibly for the HU to hear.
  • The AU device, at a minimum, enables an AU to annunciate words that are transmitted to an HU device, receives an HU voice signal and broadcasts that signal audibly for the AU to attempt to hear, receives or generates transcribed text corresponding to an HU voice signal and displays the transcribed text to an AU on a display to view.
  • The relay, at a minimum, at times, receives the AU voice signal and generates at least corrected text that may be transmitted to another system device.
  • In some cases where there is no fourth party AVR system, any of the other functions/processes described above may be performed by any of the HU device, AU device and relay server. For instance, the HU device in some cases may store an HU voice model and/or voice characteristics model, an AVR application and a software program for managing which text, AVR or CA generated, is used to drive an AU device. Here, the HU may link directly with each of the AU device and relay, and may operate as an intermediary therebetween.
  • As another instance, HU models, AVR software and caption control applications may be stored and used by the AU device processor or, alternatively, by the relay server. In still other instances different system components or devices may perform different aspects of a functioning system. For instance, an HU device may store an HU voice model which may be provided to an AU device automatically at the beginning of a call and the AU device may transmit the HU voice model along with a received HU voice signal to a relay that uses the model to tune an AVR engine to generate automated text as well as provides the HU voice signal to a first CA for revoicing to generate CA text and a second CA for correcting the CA text. Here, the relay may transmit and transcribe text (e.g., automated and CA generated) to the AU device and the AU device may then select one of the received texts to present via the AU device screen. Here CA captioning and correction and transmission of CA text to the AU device may be halted in total or in part at any time by the relay or, in some cases, by the AU device, based on various parameters or commands received from any parties (e.g., AU, HU, CA) linked to the communication.
  • In cases where a fourth party to the system operates an AVR engine in the cloud or otherwise, at a minimum, the AVR engine receives an HU voice signal at least some of the time and generates automated text which may or may not be used at times to drive an AU device display.
  • In some cases it is contemplated that AVR engine text (e.g., automated text) may be presented to an HU while CA generated text is presented to an AU and a most recent word presented to an AU may be indicated in the text on the HU device so that the HU has a good sense of how far behind an AU is in following the HU's voice signal. To this end, see FIG. 27 that shows an exemplary HU smart phone device 800 including a display 801 where text corresponding to an HU voice signal is presented for the HU to view at 848. The text 848 includes text already presented to an AU prior to and including the word “after” that is shown highlighted 850 as well as AVR engine generated text subsequent to the highlight 850 that, in at least the illustrated embodiment, may not have been presented to the AU at the illustrated time. Here, an HU viewing display 801 can see where the AU is in receiving text corresponding to the HU voice signal. The HU may use the information presented as a coaching tool to help the HU regulate the speed at which the HU converses.
  • To be clear, where an HU device is a smart phone or some other type of device that can run an application program to participate in a captioning service, many different linking arrangements between the AU, HU and a relay are contemplated. For instance, in some cases the AU and HU may be directly linked and there may be a second link or line from the AU to the relay for voice and data transmission when necessary between those two entities. As another instance, when an HU and AU are linked directly and relay services are required after the initial link, the AU device may cause the HU device to link directly to the relay and the relay may then link to the AU device so that the relay is located between the AU and HU devices and all communications pass through the relay. In still another instance, an HU device may link to the relay and the relay to the AU device and the AU device to the HU device so that any communications, voice or data, between two of the three entities is direct without having to pass through the other entity (e.g., HU and AU voice signals would be directly between HU and AU devices, HU voice signal would be direct from the HU device to the relay and transcribed text associated with the HU voice would be directly passed from the relay to the AU device to be displayed to the AU. Here, any text generated at the relay to be presented via the HU device would be transmitted directly from the relay to the HU device and any text generated by either one of the AU or HU devices (e.g., via an ARV engine) would be directly transmitted to the receiving device. Thus, an HU device or captioning application run thereby may maintain a direct dial number or address for the relay and be able to link up to the relay automatically when CA or other relay services are required.
  • Referring now to FIG. 28, a schematic is shown of an exemplary semi-automated captioning system that is consistent with at least some aspects of the present disclosure. The system enables an HU using device 14 to communicate with an AU using AU device 12 where the AU receives text and HU voice signals via the AU device 12. Each of the HU and the AU link into a gateway server or other computing device 900 that is linked via a network of some type to a relay. HU voice signals are fed through a noise reducing audio optimizer to a 3 pole or path AVR switch device 904 that is controlled by an adaptive AVR switch controller 932 to select one of first, second and third text generating processes associated with switch output leads 940, 942 and 944, respectively. The first text generating process is an automated AVR text process wherein an AVR engine generates text without any input (e.g., data entry, correction, etc.) from any CA. The second text generating process is a process wherein a CA 908 revoices an HU voice or types to generate text corresponding to an HU voice signal and then corrects that text. The third text generating process is one wherein the AVR engine generates automated text and a correcting CA 912 makes corrections to the automated text. In the second process, the AVR engine operates in parallel with the CA to generate automated text in parallel to the CA generated and corrected text.
  • Referring still to FIG. 28, with switch 904 connected to output lead 940, the HU voice signal is only presented to AVR engine 906 which generates automated text corresponding to the HU voice which is then provided to a voice to text synchronizer 910. Here, synchronizer 908 simply passes the raw AVR text on through a correctable text window 916 to the AU device 12.
  • Referring again to FIG. 28, with switch 904 connected to output lead 942, the HU voice signal, in addition to being linked to the AVR engine, is presented to CA 908 for generating and correcting text via traditional CA voice recognition 920 and manual correction tools 924 via correction window 922. Here, corrected text is provided to the AU device 12 and is also provided to a text comparison unit or module 930. Raw text from the AVR engine 906 is presented to comparison unit 930. Comparison unit 930 compares the two text streams received and calculates an AVR error rate which is output to switch control 932. Here, where the AVR error rate is low (e.g., below some threshold), control 932 may be controlled to cut the text generating CA 908 out of the captioning process.
  • Referring still to FIG. 28, with switch 904 connected to output lead 944, the HU voice signal, in addition to being linked to the AVR engine, is fed through synchronizer 910 which delays the HU voice signal so that the HU voice signal lags the raw AVR text by a short period (e.g., 2 seconds). The delayed HU voice signal is provided to a CA 912 charged with correcting AVR text generated by engine 906. The CA 912 uses a keyboard or the like 914 to correct any perceived errors in the raw AVR text presented in window 916. The corrected text is provided to the AU device 12 and is also provided to the text comparison unit 930 for comparison to the raw AVR text. Again, comparison unit 930 generates an AVR error rate which is used by control 932 to operate switch device 904. The manual corrections by CA 912 are provided to a CA error tracking unit 918 which counts the number of errors corrected by the CA and compares that number to the total number of words generated by the AVR engine 906 to calculate a CA correction rate for the AVR generated raw text. The correction rate is provided to control 932 which uses that rate to control switch device 904.
  • Thus, in operation, when an HU-AU call first requires captioning, in at least some cases switch device 904 will be linked to output lead 942 so that full CA transcription and correction occurs in parallel with the AVR engine generating raw AVR text for the HU voice signal. Here, as described above, the AVR engine may be programmed to compare the raw AVR text and the CA generated text and to train to the HU's voice signal so that, over a relatively short period, the error rate generated by comparison unit 930 drops. Eventually, once the error rate drops below some rate threshold, control 932 controls device 940 to link to output lead 944 so that CA 908 is taken out of the captioning path and CA 912 is added. CA 912 receives the raw AVR text and corrects that text which is sent on to the AU device 12. As the CA corrects text, the AVR engine continues to train to the HU voice using the corrected errors. Eventually, the AVR accuracy should improve to the point where the correction rate calculated by tracking unit 918 is below some threshold. Once the correction rate is below the threshold, control 932 may control switch 904 to link to output link 940 to take the CA 912 out of the captioning loop which causes the relatively accurate raw AVR text to be fed through to the AU device 12. As described above in at least some cases the AU and perhaps a CA or the HU may be able to manually switch between captioning processes to meet preferences or to address perceived captioning problems.
  • As described above, it has been recognized that at least some AVR engines are more accurate and more resilient during the first 30+/− seconds of performing voice to text transcription. If an HU takes a speaking turn that is longer than 30 seconds the engine has a tendency to freeze or lag. To deal with this issue, in at least some embodiments, all of an HU's speech or voice signal may be fed into an audio buffer and a system processor may examine the HU voice signal to identify any silent periods that exceed some threshold duration (e.g., 2 seconds). Here, a silent period would be detected whenever the HU voice signal audio is out of a range associated with a typical human voice. When a silent period is identified, in at least some cases the AVR engine is restarted and a new AVR session is created. Here, because the process uses an audio buffer, no portion of the HU's speech or voice signal is lost and the system can simply restart the AVR engine after the identified silent period and continue the captioning process after removing the silent period.
  • Because the AVR engine is restarted whenever a silent period of at least a threshold duration occurs, the system can be designed to have several advantageous features. First, the system can implement a dynamic and configurable range of silence or gap threshold. For instance, in some cases, the system processor monitoring for a silent period of a certain threshold duration can initially seek a period that exceeds some optimal relatively long length and can reduce the length of the threshold duration as the AVR captioning process nears a maximum period prior to restarting the engine. Thus, for instance, where a maximum AVR engine captioning period is 30 seconds, initially the silent period threshold duration may be 3 seconds. However, after an initial 20 seconds of captioning by an engine, the duration may be reduced to 1.5 seconds. Similarly, after 25 seconds of engine captioning, the threshold duration may be reduced further to one half a second.
  • As another instance, because the system uses an audio buffer in this case, the system can “manufacture” a gap or silent period in which to restart an AVR engine, holding an HU's voice signal in the audio buffer until the AVR engine starts captioning anew. While the manufactured silent period is not as desirable as identifying a natural gap or silent period as described above, the manufactured gap is a viable option if necessary so that the AVR engine can be restarted without loss of HU voice signal.
  • In some cases it is contemplated that a hybrid silent period approach may be implemented. Here, for instance, a system processor may monitor for a silent period that exceeds 3 seconds in which to restart an AVR engine. If the processor does not identify a suitable 3-plus second period for restarting the engine within 25 seconds, the processor may wait until the end of any word and manufacture a 3 second period in which to restart the engine.
  • Where a silent period longer than the threshold duration occurs and the AVR engine is restarted, if the engine is ready for captioning prior to the end of the threshold duration, the processor can take out the end of the silent period and begin feeding the HU voice signal to the AVR engine prior to the end of the threshold period. In this way, the processor can effectively eliminate most of the silent period so that captioning proceeds quickly.
  • Restarting an AVR engine at various points within an HU voice signal has the additional benefit of making all hypothesis words (e.g., initially identified words prior to contextual correction based on subsequent words) firm. Doing so allows a CA correcting the text to make corrections or any other manipulations deemed appropriate for an AU immediately without having to wait for automated contextual corrections.
  • In still other cases other hybrid systems are contemplated where a processor examines an HU voice signal for suitably long silent periods in which to restart an AVR engine and, where no such period occurs by a certain point in a captioning process, the processor commences another AVR engine captioning process which overlaps the first process so that no HU voice signal is lost. Here, the processor would work out which captioned words are ultimately used as final AVR output during the overlapping periods to avoid duplicative or repeated text.
  • One other feature that may be implemented in some embodiments of this disclosure is referred to as a Return On Audio detector (ROA-Detector) feature. In this regard, a system processor receiving an HU voice signal ascertains whether or not the signal includes audio in a range that is typical for human speech during an HU turn and generates a duration of speech value equal to the number of seconds of speech received. Thus, for instance, in a ten second period corresponding to an HU voice signal turn, there may be 3 seconds of silence during which audio is not in the range of typical human speech and therefore the duration of speech value would be 7 seconds. In addition, the processor detects the quantity of captions being generated by an AVR engine. The processor automatically compares the quantity of captions from the AVR with the duration of speech value to ascertain if there is a problem with the AVR engine. Thus, for instance, if the quantity of AVR generated captions is substantially less than would be expected given the duration of speech value, a potential AVR problem may be identified. Where an AVR problem is likely, the likely problem may be used by the processor to trigger a restart of the AVR engine to generate a better result. As an alternative, where an AVR problem is likely, the problem may trigger initiation of a whole new AVR session. As still one other alternative, a likely AVR problem may trigger a process to bring a CA on line immediately or more quickly than would otherwise be the case.
  • In still other cases, when an AVR error is detected as indicated above, the ROA detector may retrieve the audio (i.e., the HU voice signal) that was originally sent to the AVR from a rolling buffer and replay/resend the audio to the AVR engine. This replayed audio would be sent through a separate session simultaneously with any new sessions that are sending ongoing audio to the AVR. Here, the captions corresponding to the replayed audio would be sent to the AU device and inserted into a correct sequential slot in the captions presented to the AU. In addition, here, the ROA detector would monitor the text that comes back from the AVR and compare that text to the text retrieved during the prior session, modifying the captions to remove redundancies. Another option would be for the ROA to simply deliver a message to the AU device indicating that there was an error and that a segment of audio was not properly captioned. Here, the AU device would present the likely erroneous captions in some way that indicates a likely error (e.g., perhaps visually distinguished by a yellow highlight or the like).
  • In some cases it is contemplated that a phone user may want to have just in time (JIT) captions on their phone or other communication device (e.g., a tablet) during a call with an HU for some reason. For instance, when a smart phone user wants to remove a smart phone from her ear for a short period the user may want to have text corresponding to an HU's voice presented during that period. Here, it is contemplated that a virtual “Text” or “Caption” button may be presented on the smart phone display screen or a mechanical button may be presented on the device which, when selected causes an AVR to generate text for a preset period of time (e.g. 10 seconds) or until turned off by the device user. Here, the AVR may be on the smart phone device itself, may be at a relay or at some other device (e.g., the HU's device).
  • While HU voice profiles may be developed and stored for any HU calling an AU, in some embodiments profiles may only be stored for a small set of HUs, such as, for instance, a set of favorites or contacts of an AU. For instance, where an AU has a list of ten favorites, HU voice profiles may be developed, maintained, and morphed over time for each of those favorites. Here, again, the profiles may be stored at different locations and by different devices including the AU device, a relay, via a third party service provider, or even an HU device where the HU earmarks certain AUs as having the HU as a favorite or a contact.
  • In some cases it may be difficult technologically for a CA to correct AVR captions. Here, instead of a CA correcting captions, another option would simply be for a CA to mark errors in AVR text as wrong and move along. Here, the error could be indicated to an AU via the display on an AU's device. In addition, the error could be used to train an HU voice profile and/or captioning model as described above. As another alternative, where a CA marks a word wrong, a correction engine may generate and present a list of alternative words for the CA to choose from. Here, using an on screen tool, the CA may select a correct word option causing the correction to be presented to an AU as well as causing the AVR to train to the corrected word.
  • In at least some cases it is contemplated that it may be useful to run periodic tests on CA generated text captions to track CA accuracy or reliability over time. For instance, in some cases CA reliability testing can be used to determine when a particular CA could use additional or specialized training. In other cases, CA reliability testing may be useful for determining when to cut a CA out of a call to be replaced by automatic speech recognition (ASR) generated text. In this regard, for instance, if a CA is less reliable than an ASR application for at least some threshold period of time, a system processor may automatically cut the CA out even if ASR quality remains below some threshold target quality level if the ASR quality is persistently above the quality of CA generated text. As another instance, where CA quality is low, text from the CA may be fed to a second CA for either a first or second round of corrections prior to transmission to an AU device for display or, a second relatively more skilled CA trained in handling difficult HU voice signals may be swapped into the transcription process in order to increase the quality level of the transcribed text. As still one other instance, CA reliability testing may be useful to a governing agency interested in tracking CA accuracy for some reason.
  • In at least some cases it has been recognized that in addition to assessing CA captioning quality, it will be useful to assess how accurately an automated speech recognition system can caption the same HU voice signal regardless of whether or not the quality values are used to switch the method of captioning. For instance, in at least some cases line noise or other signal parameters may affect the quality of HU voice signal received at a relay and therefore, a low CA captioning quality may be at least in part attributed to line noise and other signal processing issues. In this case, an ASR quality value for ASR generated text corresponding to the HU voice signal may be used as an indication of other parameters that affect CA captioning quality and therefore in part as a reason or justification for a low CA quality value. For instance, where an ASR quality value is 75% out of 100% and a CA quality value is 87% out of 100%, the low ASR quality value may be used to show that, in fact, given the relatively higher CA quality value, that the CA value is quite good despite being below a minimum target threshold. Line noise and other parameters may be measured in more direct ways via line sensors at a relay or elsewhere in the system and parameter values indicative of line noise and other characteristics may be stored along with CA quality values to consideration when assessing CA quality.
  • Several ways to test CA accuracy and generate accuracy statistics are contemplated by the present disclosure. One system for testing and tracking accuracy may include a system where actual or simulated HU-AU calls are recorded for subsequent testing purposes and where HU turns (e.g., voice signal periods) in each call are transcribed and corrected by a CA to generate a true and highly accurate (e.g., approximately 100% accurate) transcription of the HU turns that is referred to hereinafter as the “truth”.
  • During testing, without a CA knowing, the recording is played for the CA who perceives the recording to be a typical HU-AU call. In many cases, a large number of recorded calls may be generated and stored for use by the testing system so that a CA never listens to the same test recording more than once. In some cases a system processor may track CAs and which test recordings the CA has been exposed to previously and may ensure that a CA only listens to any test recording once.
  • As a CA listens to a test recording, the CA transcribes the HU voice signal to text and, in at least some cases, makes corrections to the text. Because the CA generated text corresponds to a recorded voice signal and not a real time signal, the text is not forwarded to an AU device for display. The CA is unaware that the text is not forwarded to the AU device as this exercise is a test. The CA generated text is compared to the truth and a quality value is generated for the CA generated text (hereinafter a “CA quality value”). For instance, the CA quality value may be a percent accuracy representing the percent of HU voice signal words accurately transcribed to text. The CA quality value is then stored in a data base for subsequent access.
  • In addition to generating a CA quality value that represents how accurately a CA transcribes voice to text, in at least some cases the system will be programmed to track and record transcription latency that can be used as a second type of quality factor referred to hereinafter as the “CA latency value”. Here, the system may track instantaneous latency and use the instantaneous values to generate average and other statistical latency values. For instance, an average latency over an entire call may be calculated, an average latency over a most recent one minute period may be calculated, a maximum latency during a call, a minimum latency during a call, a latency average taking out the most latent 20% and least latent 20% of a call may be calculated and stored, etc. In some cases where both a CA quality value and CA latency values are generated, the system may combine the quality and latency values according to some algorithm to generate an overall CA service value that reflects the combination of accuracy and latency.
  • CA latency may also be calculated in other ways. For instance, in at least some cases a relay server may be programmed to count the number of words during a period that are received from an ASR service provider (see 1006 in FIG. 30) and to assume that the returned number of words represents the actual words per minute (WPM) spoken by an HU. Here, periods of HU silence may be removed from the period so that the word count more accurately reflects WPM of the speaking HU. Then, the number of words generated by a CA for the same period may be counted and used along with the period duration minus silent periods to determine a CA WPM count. The server may then compare the speaker WPM to the CA WPM count to assess CA delay or latency.
  • In at least some cases the recorded call may also be provided to an ASR to generate automatic text. The ASR generated text may also be compared to the truth and an “ASR quality value” may be generated. The ASR quality value may be stored in a database for subsequent use or may be compared to the CA quality value to assess which quality value is higher or for some other purpose. Here, also, an ASR latency value or ASR latency values (e.g., max, min, average over a call, average over a most recent period, etc.) may be generated as well as an overall ASR service value. Again, the ASR and CA values may be used by a system processor to determine when the ASR generated text should be swapped in for the CA generated text and vice versa.
  • Referring now to FIG. 29, an exemplary system 1000 for testing and tracking CA and AVR quality and latency values using recorded HU-AU calls is illustrated. System 1000 includes relay components represented by the phantom box at 1001 and a cloud based ASR system 1006 (e.g., a server that is linked to via the internet or some other type of computing network). Two sources of pre-generated information are maintained at the relay including a set of recorded calls at 1002 and a set of verified true transcripts at 1010, one truth or true transcript for each recorded call in the set 1002. Again, the recorded calls may include actual HU-AU calls or may include mock calls that occur between two knowing parties that simulate an actual call.
  • During testing, a connection is linked from a system server that stores the calls 1002 to a captioning platform as shown at 1004 and one of the recorded calls, hereinafter referred to as a test recording, is transmitted to the captioning platform 1004. The captioning platform 1004 sends the received test recording to two targets including a CA at 1008 and the ASR server 1006 (e.g., Google Voice, IBM's Watson, etc.). The ASR generates an automated text transcript that is forwarded on to a first comparison engine at 1012. Similarly, the CA generates CA generated text which is forwarded on to a second comparison engine 1014. The verified truth text transcript at 1010 is provided to each of the first and second comparison engines 1012 and 1014. The first engine 1012 compares the ASR text to the truth and generates an ASR quality value and the second engine 1014 compares the CA generated text to truth and generates a CA quality value, each of which are provided to a system database 1016 for storage until subsequently required.
  • In addition, in some cases, some component within the system 1000 generates latency values for each of the ASR text and the CA generated text by comparing when the times at which words are uttered in the HU voice signal to the times at which the text corresponding thereto is generated. The latency values are represented by clock symbols 1003 and 1005 in FIG. 29. The latency values are stored in the database 1016 along with the associated ASR and CA quality values generated by the comparison engines 1012 and 1014.
  • Another way to test CA quality contemplated by the present disclosure is to use real time HU-AU calls to generate quality and latency values. In these cases, a first CA may be assigned to an ongoing HU-AU call and may operate in a conventional fashion to generate transcribed text that corresponds to an HU voice signal where the transcribed text is transmitted back to the AU device for display substantially simultaneously as the HU voice is broadcast to the AU. Here, the first CA may perform any process to convert the HU voice to text such as, for instance, revoicing the HU voice signal to a processor that runs voice to text software trained to the voice of the HU to generate text and then correcting the text on a display screen prior to sending the text to the AU device for display. In addition, the CA generated text is also provided to a second CA along with the HU voice signal and the second CA listens to the HU voice signal and views the text generated by the first CA and makes corrections to the first CA generated text. Having been corrected a second time, the text generated by the second CA is a substantially error free transcription of the HU voice signal referred to hereinafter as the “truth”. The truth and the first CA generated text are provided to a comparison engine which then generates a “CA quality value” similar to the CA quality value described above with respect to FIG. 29 which is stored for subsequent access in a database.
  • In addition, as is the case in FIG. 29, in the case of transcribing an ongoing HU-AU call, the HU voice signal may also be provided to a cloud based ASR server or service to generate automated speech recognition text during an ongoing call that can be compared to the truth (e.g., the second CA generated text) to generate an ASR quality value. Here, while conventional ASRs are fast, there will again be some latency in text generation and the system will be able to generate an ASR latency value.
  • Referring now to FIG. 30, an exemplary system 1020 for testing and tracking CA and AVR quality and latency values using ongoing HU-AU calls is illustrated. Components in the FIG. 30 system 1020 that are similar to the components described above with respect to FIG. 29 are labeled with the same numbers and operate in a similar fashion unless indicated otherwise hereafter. In addition to an HU communication device 1040 and an AU communication device 1042 (e.g., a caption type telephone device), system 1020 includes relay components represented by the phantom box at 1021 and a cloud based ASR system 1006 akin to the cloud based system described above with respect to FIG. 29. Here there is no pre-generated and recorded call or pre-generated truth text as testing is done using an ongoing dynamic call. Instead, a second CA at 1030 corrects text generated by a first CA at 1008 to create a truth (e.g., essentially 100% accurate text). The truth is compared to ASR generated text and the first CA generated text to create quality values to be stored in database 1016.
  • Referring still to FIG. 30, during testing, as in a conventional relay assisted captioning system, the AU device 1042 transmits an HU voice signal to the captioning platform at 1004. The captioning platform 1004 sends the received HU voice signal to two targets including a first CA at 1008 and the ASR server 1006 (e.g., Google Voice, IBM's Watson, etc.). The ASR generates an automated text transcript that is forwarded on to a first comparison engine at 1012. Similarly, the first CA generates CA generated text which is transmitted to at least three different targets. First, the first CA generated text which may include text corrected by the first CA is transmitted to the AU device 1042 for display to the AU during the call. Second, the first CA generated text is transmitted to the second comparison engine 1014. Third, the first CA generated text is transmitted to a second CA at 1030. The second CA at 1030 views the CA generated text on a display screen and also listens to the HU voice signal and makes corrections to the first CA generated text where the second CA generated text operates as a truth text or truth. The truth is transmitted to the second comparison engine at 1014 to be compared to the first CA generated text so that a CA quality value can be generated. The CA quality value is stored in database 1016 along with one or more CA latency values.
  • Referring again to FIG. 30, the truth is also transmitted from the second call assistant at 1030 to the first comparison engine at 1012 to be compared to the ASR generated text so that an ASR quality value is generated which is also stored along with at least one ASR latency value in the database 1016.
  • Referring to FIG. 31, another embodiment of a testing relay system is shown at 1050 which is similar to the system 1020 of FIG. 30, albeit where the ASR service 1006 provides an initial text transcription to the second CA at 1052 instead of the CA receiving the initial text from the first call assistant. Here, the second CA generated the truth text which is again provided to the two comparison engines at 1012 and 1014 so that ASR and CA quality factors can be generated to be stored in database 1016.
  • The ASR text generation and quality testing processes are described above as occurring essentially in real time as a first CA generates text for a recorded or ongoing call. Here, real time quality and latency testing may be important where a dynamic triage transcription process is occurring where, for instance, ASR generated text may be swapped in for a cut out CA when ASR generated text achieves some quality threshold or a CA may be swapped in for ASR generated text if the ASR quality value drops below some threshold level. In other cases, however, quality testing may not need to be real time and instead, may be able to be done off line for some purposes. For instance, where quality testing is only used to provide metrics to a government agency, the testing may be done off line.
  • In this regard, referring again to FIG. 29, in at least some cases where testing cannot be done on the fly as a CA at 1008 generates text, the CA text and the recorded HU voice signal associated therewith may be stored in database 1016 for subsequent access for generating the ASR text at 1006 as well as for comparing the CA generated text and the ASR generated text to the verified truth text from 1010. Similarly, referring again to FIG. 30, where real time quality and latency values are not required, at least the HU portion of a call may be stored in database 1016 for subsequent off line processing by ASR service 1006 and the second CA at 1030 and then for comparisons to the truth at engines 1012 an 1014.
  • One advantage of generating quality and latency values in real time using real HU-AU calls is that there is no need to store calls for subsequent processing. Currently there are regulations in at least some jurisdictions that prohibit storing calls for privacy reasons and therefore off line quality testing cannot be done in these cases.
  • In at least some embodiments it is contemplated that quality and latency testing may only be performed sporadically and generally randomly so that generated values are sort of an average representation of the overall captioning service. In other cases, while quality and latency testing may be periodic in general, it is contemplated that tell tail signs of poor quality during transcription may be used to trigger additional quality and latency testing. For instance, in at least some cases where an AU is receiving ASR generated text and the AU selects an option to link to a CA for correction, the AU request may be used as a trigger to start the quality testing process on text received from that point on (e.g., quality testing will commence and continue for HU voice received as time progresses forward). Similarly, when an AU requests full CA captioning (e.g., revoicing and text correction), quality testing may be performed from that point forward on the CA generated text.
  • In other cases, it is contemplated that an HU-AU call may be stored during the duration of the call and that, at least initially, no quality testing may occur. Then, if an AU requests CA assistance, in addition to patching a CA into the call to generate higher quality transcription, the system may automatically patch in a second CA that generates truth text as in FIG. 30 for the remainder of the call. In addition or instead, when the AU requests CA assistance, the system may, in addition to patching a CA in to generate better quality text, also cause the recorded HU voice prior to the request to be used by a second CA to generate truth text for comparison to the ASR generated text so that an ASR quality value for the text that caused the AU to request assistance can be generated. Here, the pre-CA assistance ASR quality value may be generated for the entire duration of the call prior to the request or just for a most recent sub-period (e.g., for the prior minute or 30 seconds). Here, in at least some cases, it is contemplated that the system may automatically erase any recorded portion of an HU-AU call immediately after any quality values associated therewith have been calculated. In cases where quality values are only calculated for a most recent period of HU voice signal, recordings prior thereto may be erased on a rolling basis.
  • As another instance, in at least some cases it is contemplated that sensors at a relay may sense line noise or other signal parameters and, whenever the line noise or other parameters meet some threshold level, the system may automatically start quality testing which may persist until the parameters no longer meet the threshold level. Here, there may be hysteresis built into the system so that once a threshold is met, at least some duration of HU voice signal below the threshold is required to halt the testing activities. The parameter value or condition or circumstance that triggered the quality testing would, in this case, be stored along with the quality value and latency information to add context to why the system started quality testing in the specific instance.
  • As one other example, in a case where an AU signals dissatisfaction with a captioning service at the end of a call, quality testing may be performed on at least a portion of the call. To this end, in at least some cases as an HU-AU call progresses, the call may be recorded regardless of whether or not ASR or CA generated text is presented to an AU. Then, at the end of a call, a query may be presented to the AU requesting that the AU rate the AU's satisfaction with the call and captioning on some scale (e.g., a 1 through 10 quality scale with 10 being high). Here, if a satisfaction rating were low (e.g., less than 7) for some reason, the system may automatically use the recorded HU voice or at least a portion thereof to generate a CA quality value in one of the ways described above. For instance, the system may provide the text generated by a first CA or by the ASR and the recorded HU voice signal to a second CA for generating truth and a quality value may be generated using the truth text for storage in the database.
  • In still other cases where an AU expresses a low satisfaction rating for a captioning service, prior to using a recorded HU voice signal to generate a quality value, the system server may request authorization to use the signal to generate a captioning quality value. For instance, after an AU indicates a 7 or lower on a satisfaction scale, the system may query the AU for authorization to check captioning quality by providing a query on the AU's device display and “Yes” and “No” options. Here, if the yes option is selected, the system would generate the captioning quality value for the call and memorialize that value in the system database 1016.
  • As another instance, because it is the HU's voice signal that is recorded (e.g., in some cases the AU voice signal may not be recorded) and used to generate the captioning quality value, authorization to use the recording to generate the quality value may be sought from an HU if the HU is using a device that can receive and issue an authorization request at the end of a call. For instance, in the case of a call where an HU uses a standard telephone, if an AU indicates a low satisfaction rating at the end of a call, the system may transmit an audio recording to the HU requesting authorization to use the HU voice signal to generate the quality value along with instructions to select “1” for yes and “2” for no. In other cases where an HU's device is a smart phone or other computing type device, the request may include text transmitted to the HU device and selectable “Yes” and “No” buttons for authorizing or not.
  • While an HU-AU call recording may be at least temporarily stored at a relay, in other cases it is contemplated that call recordings may be stored at an AU device or even at an HU device until needed to generate quality values. In this way, an HU or AU may exercise more control or at least perceive to exercise more control over call content. Here, for instance, while a call may be recorded, the recording device may not release recordings unless authorization to do so is received from a device operator (e.g., an HU or an AU). Thus, for instance, if the HU voice signal for a call is stored on an HU device during the call and, at the end of a call an AU expresses low satisfaction with the captioning service in response to a satisfaction query, the system may query the HU to authorize use of the HU voice to generate captioning quality values. In this case, if the HU authorizes use of the HU voice signal, the recorded HU voice signal would be transmitted to the relay to be used to generate captioning quality values as described above. Thus, the HU or AU device may serve as a sort of software vault for HU voice signal recordings that are only released to the relay after proper authorization is received from the HU or the AU, depending on system requirements.
  • As generally known in the industry, voice to text software accuracy is higher for software that is trained to the voice of a speaking person. Also known is that software can train to specific voices over short durations. Nevertheless, in most cases it is advantageous if software starts with a voice model trained to a particular voice so that caption accuracy can start immediately upon transcription. Thus, for instance, in FIG. 30, when a specific HU calls an AU to converse, it would be advantageous if the ASR service at 1006 had access to a voice model for the specific HU. One way to do this would be to have the ASR service 1006 store voice models for at least HUs that routinely call an AU (e.g., a top ten HU list for each AU) and, when an HU voice signal is received at the ASR service, the service would identify the HU voice signal either using recognition software that can distinguish once voice from others or via some type of an identifier like the phone number of the HU device used to call the AU. Once the HU voice is identified, the ASR service accesses an HU voice model associated with the HU voice and uses that model to perform automated captioning.
  • One problem with systems that require an ASR service to store HU voice models is that HUs may prefer to not have their voice models stored by third party ASR service providers or at least to not have the models stored and associated with specific HUs. Another problem may be that regulatory agencies may not allow a third party ASR service provider to maintain HU voice models or at least models that are associated with specific HUs. Once solution is that no information useable to associate an HU with a voice model may be stored by an ASR service provider. Here, instead of using an HU identifier like a phone number or other network address associated with an HU's device to identify an HU, an ASR server may be programmed to identify an HU's voice signal from analysis of the voice signal itself in an anonymous way.
  • Another solution may be for an AU device to store HU voice models for frequent callers where each model is associated with an HU identifier like a phone number or network address associated with a specific HU device. Here, when a call is received at an AU device, the AU device processor may use the number or address associated with the HU device to identify which voice model to associate with the HU device. Then, the AU device may forward the HU voice model to the ASR service provider 1006 to be used temporarily during the call to generate ASR text. Similarly, instead of forwarding an HU voice model to the ASR service provider, the AU device may simply forward an intermediate identification number or other identifier associated with the HU device to the ASR provider and the provider may associate the number with a specific HU voice model stored by the provider to access an appropriate HU voice model to use for text transcription. Here, for instance, where an AU supports ten different HU voice models for 10 most recent HU callers, the models may be associated with number 1 through 10 and the AU may simply forward on one of the intermediate identifiers (e.g., “7”) to the ASR provider 1006 to indicate which one of ten voice models maintained by the ASR provider for the AU to use with the HU voice transmitted.
  • In still other cases an HU may maintain one or more HU voice models that can be forwarded on to an ASR provider either through the relay or directly to generate text.
  • In at least some cases other more complex quality analysis and statistics are contemplated that may be useful in determining better ways to train CAs as well as in assessing CA quality values. For instance, it has been recognized that voice to text errors can generally be split into two different categories referred to herein as “visible” and “invisible” errors. Visible errors are errors that result in text that, upon reading, is clearly erroneous while invisible errors are errors that result in text that, despite the error that occurred, makes sense in context. For instance, where an HU voices the phrase “We are meeting at Joe's restaurant at 9 PM”, in a text transcription “We are meeting at Joe's rodent for pizza at 9 PM”, the word “rodent” is a “visible” error in the sense that an AU reading the phrase would quickly understand that the word “rodent” makes no sense in context. On the other hand, if the HU's phrase were transcribed as “We are meeting at Joe's room for pizza at 9 PM”, the erroneous word “room” is not contextually wrong and therefore cannot be easily discerned as an error. Where the word room is replaced by restaurant, an AU could easily get a wrong impression and for that reason invisible errors are generally considered worse than visible errors.
  • In at least some cases it is contemplate that some mechanism for distinguishing visible and invisible text transcription errors may be included in a relay quality testing system. For instance, where 10 errors are made during some sub-period of an HU-AU call, three of the errors may be identified as invisible while 7 are visible. Here, because invisible errors typically have a worse effect on communication effectiveness, statistics that capture relative numbers of invisible to all errors should be useful in assessing CA or ASR quality.
  • In at least some systems it is contemplated that a relay server may be programmed to automatically identify at least visible errors so that statistics related thereto can be captured. For instance, the server may be able to contextually examine text and identify words of phrases that simply make no sense and may identify each of those nonsensical errors as a visible error. Here, because invisible errors make contextual sense, there is no easy algorithm by which a processor or server can identify invisible errors. For this reason in at least some cases a correcting CA (See 1053 in FIG. 31) may be required to identify invisible errors or, in the alternative, the system may be programmed to automatically use CA corrections to identify invisible errors. In this regard, any time a CA changes a word in a text phrase that initially made sense within the phrase to another word that contextually makes sense in the phrase, the system may recognize that type of correction to have been associated with an invisible error.
  • In at least some cases it is contemplated that the decision to switch captioning methods may be tied at least in part to the types of errors that are identified during a call. For instance, assume that a CA is currently generating text corresponding to an HU voice signal and that an ASR is currently training to the HU voice signal but is not currently at a high enough quality threshold to cut out the CA transcription process. Here, there may be one threshold for the CA quality value generally and another for the CA invisible error rate where, if either of the two thresholds are met, the system automatically cuts the CA out. For example, the threshold CA quality value may require 95% accuracy and the CA invisible error rate may be 20% coupled with a 90% overall accuracy requirement. Thus, here, if the invisible error rate amounts to 20% or less of all errors and the overall CA text accuracy is above 90% (e.g., the invisible error rate is less than 2% of all words uttered by the HU), the CA may be cut out of the call and ASR text relied upon for captioning. Other error types are contemplated and a system for distinguishing each of several errors types from one another for statistical reporting and for driving the captioning triage process are contemplated.
  • In at least some cases when to transition from CA generated text to ASR generated text may be a function of not just a straight up comparison of ASR and CA quality values and instead may be related to both quality and relative latency associated with different transcription methods. In addition, when to transition in some cases may be related to a combination of quality values, error types and relative latency as well as to user preferences.
  • Other triage processes for identifying which HU voice to text method should be used are contemplated. For instance, in at least some embodiments when an ASR service or ASR software at a relay is being used to generate and transmit text to an AU device for display, if an ASR quality value drops below some threshold level, a CA may be patched in to the call in an attempt to increase quality of the transcribed text. Here, the CA may either be a full revoicing and correcting CA, just a correcting CA that starts with the ASR generated text and makes corrections or a first CA that revoices and a second CA that makes corrections. In a case where a correcting CA is brought into a call, in at least some cases the ASR generated text may be provided to the AU device for display at the same time that the ASR generated text is sent to the CA for correction. In that case, corrected text may be transmitted to the AU device for in line correction once generated by the CA. In addition, the system may track quality of the CA corrected text and store a CA quality value in a system database.
  • In other cases when a CA is brought into a call, text may not be transmitted to the AU device until the CA has corrected that text and then the corrected text may be transmitted.
  • In some cases, when a CA is linked to a call because the ASR generated text was not of a sufficiently high quality, the CA may simply start correcting text related to HU voice signal received after the CA is linked to the call. In other cases the CA may be presented with text associated with HU voice signal that was transcribed prior to the CA being linked to the call for the CA to make corrections to that text and then the CA may continue to make corrections to the text as subsequent HU voice signal is received.
  • Thus, as described above, in at least some embodiments an HU's communication device will include a display screen and a processor that drives the display screen to present a quality indication of the captions being presented to an AU. Here, the quality characteristic may include some accuracy percentage, the actual text being presented to the AU, or some other suitable indication of caption accuracy or an accuracy estimation. In addition, the HU device may present one or more options for upgrading the captioning quality such as, for instance, requesting CA correction of automated text captioning, requesting CA transcription and correction, etc.
  • Additional Specification
  • In at least some embodiments described above various HU voice delay concepts have been described where an HU's voice signal broadcast is delayed in order to bring the voice signal broadcast more temporally in line with associated captioned text. Thus, for instance, in a system that requires at least three seconds (and at times more time) to transcribe an HU's voice signal to text for presentation, a system processor may be programmed to introduce a three second delay in HU voice broadcast to an AU to bring the HU voice signal broadcast more into simultaneous alignment with associated text generated by the system. As another instance in a system where an AVR requires at least two seconds to transcribe an HU's voice signal to text for presentation to a correcting CA, the system processor may be programmed to introduce a two second delay in the HU voice that is broadcast to an AU to bring the HU voice signal broadcast for into temporal alignment with the ASR generated text.
  • In the above examples, the three and two second delays are simply based on the average minimum voice-to-text delays that occur with a specific voice to text system and therefore, at most times, will only imprecisely align an HU voice signal with corresponding text. For instance, in a case where HU voice broadcast is delayed three seconds, if text transcription is delayed ten seconds, the three second delay would be insufficient to align the broadcast voice signal and text presentation. As another instance, where the HU voice is delayed three seconds, if a text transcription is generated in one second, the three second delay would cause the HU voice to be broadcast two seconds after presentation of the associated text. In other words, in this example, the three second HU voice delay would be too much delay at times and too little at other times and misalignment could cause assisted user confusion.
  • In at least some embodiments it is contemplated that a transcription system may assign time stamps to various utterances in an HU's voice signal and those time stamps may also be assigned to text that is then generated from the utterances so that the HU voice and text can be precisely synchronized per user preferences (e.g., precisely aligned in time or, if preferred by an AU, with an HU's voice preceding or delayed with respect to text by the same persistent period) when broadcast and presented to the AU, respectively. While alignment per an AU's preferences may cause an HU voice to be broadcast prior to or after presentation of associated text, hereinafter, unless indicated otherwise, it will be assumed that an AU's preference is that the HU voice and related text be broadcast and presented simultaneously at substantially the same time. It should be recognized that in any embodiment described hereafter where the description refers to aligned or simultaneous voice and text, the same teachings will be applicable to cases where voice and text are purposefully misaligned by a persistent period (e.g., always misaligned by 3 seconds per user preference).
  • Various systems are contemplated for assigning time stamps to HU voice signals and associated text words and/or phrases. In a first relatively simple case, an AU device that receives an HU voice signal may assign periodic time stamps to sequentially received voice signal segments and store the HU voice signal segments along with associated time stamps. The AU device may also transmit at least an initial time stamp (e.g. corresponding to the beginning of the HU voice signal or the beginning of a first HU voice signal segment during a call) along with the HU voice signal to a relay when captioning is to commence.
  • In at least some embodiments the relay stores the initial time stamp in association with the beginning instant of the received HU voice signal and continues to store the HU voice signal as it is received. In addition, the relay operates its own timer to generate time stamps for on-going segments of the HU voice signal as the voice signal is received and the relay generated time stamps are stored along with associated HU voice signal segments (e.g., one time stamp for each segment that corresponds to the beginning of the segment). In a case where a relay operates an ASR engine or taps into a fourth party ASR service (e.g., Google Voice, IBM's Watson, etc.) where a CA checks and corrects ASR generated text, the ASR engine generates automated text for HU voice segments in real time as the HU voice signal is received.
  • A CA computer at the relay simultaneously broadcasts the HU voice segments and presents the ASR generated text to a CA at the relay for correction. Here, the ASR engine speed will fluctuate somewhat based on several factors that are known in the speech recognition art so that it can be assumed that the ASR engine will translate a typical HU voice signal segment to text within anywhere between a fraction of a second (e.g., one tenth of a second) to 10 seconds. Thus, where the CA computer is configured to simultaneously broadcast HU voice and present ASR generated text for CA consideration, the relay is programmed to delay the HU voice signal broadcast dynamically for a period within the range of a fraction of a second up to the maximum number of seconds required for the ASR engine to transcribe a voice segment to text. Again, here, a CA may have control over the timing between text presentation and HU voice broadcast and may prefer one or the other of the text and voice to precede the other (e.g., HU voice to proceed corresponding text by two seconds or vice versa). In these cases, the preferred delay between voice and text can be persistent and unchanging which results in less CA confusion.
  • After a CA corrects text errors in the ASR engine generated text, in at least some cases the relay transmits the time stamped text back to the AU caption device for display to the AU. Upon receiving the time stamped text from the relay, the AU device accesses the time stamped HU voice signal stored thereat and associates the text and HU voice signal segments based on similar (e.g., closest in time) or identical time stamps and stores the associated text and HU voice signal until presented and broadcasted to the AU. The AU device then simultaneously (or delayed per user preference) broadcasts the HU voice signal segments and presents the corresponding text to the AU via the AU caption device in at least some embodiments.
  • A flow chart that is consistent with this simple first case of time stamping text segments is shown in FIG. 32 and will be described next. Referring also to FIG. 33, a system similar to the system described above with respect to FIG. 1 is illustrated where similar elements are labelled with the same numbers used in FIG. 1 and, unless indicated otherwise, operates in a similar fashion. The primary differences between the FIG. 1 system and the system described in FIG. 33 is that each of the AU caption device 12 and the relay 16 includes a memory device that stores, among other things, time stamped voice message segments corresponding to a received HU voice signal and that time stamps are transmitted between AU device 12 and relay server 30 (see 1034 and 1036).
  • Referring to FIGS. 32 and 33, during a call between an HU using an HU device 14 and an AU using AU device 12, at some point, captioning is required by the AU (e.g., either immediately when the call commences or upon selection of a caption option by the AU) at which point AU device 12 performs several functions. First, after captioning is to commence, at block 1102, the HU voice signal is received by the AU device 12. At block 1104, AU device 12 commences assignment and continues to assign periodic time stamps to the HU voice signal segments received at the AU device. The time stamps include an initial time stamp t0 corresponding to the instant in time when captioning is to commence or some specific instant in time thereafter as well as following time stamps. In addition, at block 1104, AU device 12 commences storing the received HU voice signal along with the assigned time stamps that divide up the HU voice signal into segments in AU device memory 1030.
  • Referring still to FIGS. 32 and 33, at block 1106, AU device 12 transmits the HU voice signal segments to relay 16 along with the initial time stamp t0 corresponding to the instant captioning was initiated where the initial time stamp is associated with the start of the first HU voice segment transmitted to the relay (see 1034 in FIG. 33). At block 1108, relay 16 stores the initial time stamp t0 along with the first HU voice signal segment in memory 1032, runs its own timer to assign subsequent time stamps to the HU voice signal received and stores the HU voice signal segments and relay generated time stamps in memory 1032. Here, because both the AU device and the relay assign the initial time stamp t0 to the same point within the HU voice signal and each assigns other stamps based on the initial time stamp, all of the AU device and relay time stamps should be aligned assuming that each assigns time stamps at the same periodic intervals (e.g., every second).
  • In other cases, each of the AU device and relay may assign second and subsequent time stamps having the form (t0+Δt) where Δt is a period of time relative to the initial time stamp to. Thus, for instance, a second time stamp may be (t0+1 sec), a third time stamp may be (t0+4 sec), etc. In this case, the AU device and relay may assign time stamps that have a different periods where the system simply aligns stamps text and voice when required based on closest stamps in time.
  • Continuing, at block 1110, relay 16 runs an ASR engine to generate ASR engine text for each of the stored HU voice signal segments and stores the ASR engine text with the corresponding time stamped HU voice signal segments. At block 1112, relay 16 presents the ASR engine text to a CA for consideration and correction. Here, the ASR engine text is presented via a CA computer display screen 32 while the HU voice segments are simultaneously (e.g., as text is scrolled onto display 32) broadcast to the CA via headset 54. The CA uses display 32 and/or other interface devices to make corrections (see block 1116) to the ASR engine text. Corrections to the text are stored in memory 1032 and the resulting text is transmitted at block 1118 to AU device 12 along with a separate time stamp for each of the text segments (see 1036 in FIG. 33).
  • Referring yet again to FIGS. 32 and 33, upon receiving the time stamped text, AU device 12 correlates the time stamped text with the HU voice signal segments and associated time stamps in memory 1130 and stores the text with the associated voice segments and related time stamps at block 1120. At block 1122, in some embodiments, AU device 12 simultaneously broadcasts and presents the correlated HU voice signal segments and text segments to the AU via an AU device speaker and the AU device display screen, respectively.
  • Referring still to FIG. 32, it should be appreciated that the time stamps applied to HU voice signal segments and corresponding text segments enable the system to align voice and text when presented to each of a CA and an AU. In other embodiments it is contemplated that the system may only use time stamps to align voice and text for one or the other of a CA and an AU. Thus, for instance, in FIG. 32, the simultaneous broadcast step at 1112 may be replaced by voice broadcast and text presentation immediately when available and synchronous presentation and broadcast may only be available to the AU at step 1122. In a different system synchronous voice and text may be provided to the CA at step 1112 while HU voice signal and caption text are independently presented to the AU immediately upon reception at steps 1102 and 1122, respectively.
  • In the FIG. 32 process, the AU only transmits an initial HU voice signal time stamp to the relay corresponding to the instant when captioning commences. In other cases it is contemplated that AU device 12 may transmit more than one time stamp corresponding to specific points in time to relay 16 that can be used to correct any voice and text segment misalignment that may occur during system processes. Thus, for instance, instead of sending just the initial time stamp, AU device 12 may transmit time stamps along with specific HU voice segments every 5 seconds or every 10 seconds or every 30 seconds, etc., while a call persists, and the relay may simply store each newly received time stamp along with an instant in the stream of HU voice signal received.
  • In still other cases AU device 12 may transmit enough AU device generated time stamps to relay 16 that the relay does not have to run its own timer to independently generate time stamps for voice and text segments. Here, AU device 12 would still store the time stamped HU voice signal segments as they are received and stamped and would correlate time stamped text received back from the relay 16 in the same fashion so that HU voice segments and associated text can be simultaneously presented to the AU.
  • A sub-process 1138 that may be substituted for a portion of the process described above with respect to FIG. 32 is shown in FIG. 34, albeit where all AU device time stamps are transmitted to and used by a relay so that the relay does not have to independently generate time stamps for HU voice and text segments. In the modified process, referring also and again to FIG. 32, after AU device 12 assigns periodic time stamps to HU voice signal segments at block 1104, control passes to block 1140 in FIG. 34 where AU device 12 transmits the time stamped HU voice signal segments to relay 16. At block 1142, relay 16 stores the time stamped HU voice signal segments after which control passes back to block 1110 in FIG. 32 where the relay employs an ASR engine to convert the HU voice signal segments to text segments that are stored with the corresponding voice segments and time stamps. The process described above with respect to FIG. 32 continues as described above so that the CA and/or the AU are presented with simultaneous HU voice and text segments.
  • In other cases it is contemplated that an AU device 12 may not assign any time stamps to the HU voice signal and, instead, the relay or a fourth party ASR service provider may assign all time stamps to voice and text signals to generate the correlated voice and text segments. In this case, after text segments have been generated for each HU voice segment, the relay may transmit both the HU voice signal and the corresponding text back to AU device 12 for presentation.
  • A process 1146 that is similar to the FIG. 32 process described above is shown in FIG. 35, albeit where the relay generates and assigns all time stamps to the HU voice signals and transmits the correlated time stamps, voice signals and text to the AU device for simultaneous presentation. In the modified process 1146, process steps 1150 through 1154 in FIG. 35 replace process steps 1102 through 1108 in FIG. 32 and process steps 1158 through 1162 in FIG. 35 replace process steps 1118 through 1122 in FIG. 32 while similarly numbered steps 1110 through 1116 are substantially identical between the two processes.
  • Process 1146 starts at block 1150 in FIG. 35 where AU device 12 receives an HU voice signal from an HU device where the HU voice signal is to be captioned. Without assigning any time stamps to the HU voice signal, AU device 12 links to a relay 16 and transmits the HU voice signal to relay 16 at block 1152. At block 1154, relay 16 uses a timer or clock to generate time stamps for HU voice signal segments after which control passes to block 1110 where relay 16 uses an ASR engine to convert the HU voice signal to text which is stored along with the corresponding HU voice signal segments and related time stamps. At block 1112, relay 16 simultaneously presents ASR text and broadcasts HU voice segments to a CA for correction and the CA views the text and makes corrections at block 1116. After block 1116, relay 16 transmits the time stamped text and HU voice segments to AU device 12 and that information is stored by the AU device as indicated at block 1160. At block 1162, AU device 12 simultaneously broadcasts and presents corresponding HU voice and text segments via the AU device display.
  • In cases where HU voice signal broadcast is delayed so that the broadcast is aligned with presentation of corresponding transcribed text, delay insertion points will be important in at least some cases or at some times. For instance, an HU may speak for 20 consecutive seconds where the system assigns a time stamp every 2 seconds. In this case, one solution for aligning voice with text would be to wait until the entire 20 second spoken message is transcribed and then broadcast the entire 20 second voice message and present the transcribed text simultaneously. This, however, is a poor solution as it would slow down HU-AU communication appreciably.
  • Another solution would be to divide up the 20 second voice message into 5 second periods with silent delays therebetween so that the transcription process can routinely catch up. For instance, here, during a first five second period plus a short transcription catch up period (e.g., 2 seconds), the first five seconds of the 20 second HU voice massage is transcribed. At the end of the first 7 seconds of HU voice signal, the first five seconds of HU voice signal is broadcast and the corresponding text presented to the AU while the next 5 seconds of HU voice signal is transcribed. Transcription of the second 5 seconds of HU voice signal may take another 7 seconds which would meant that a 2 second delay or silent period would be inserted after the first five seconds of HU voice signal is broadcast to the AU. This process of inserting periodic delays into HU voice broadcast and text presentation while transcription catches up continues. Here, while it is possible that the delays at the five second times would be at ideal times between consecutive natural phrases, more often than not, the 5 second point delays would imperfectly divide natural language phrases making it more, not less difficult, to understand the overall HU voice message.
  • A better solution is to insert delays between natural language phrases when possible. For instance, in the case of the 20 second HU voice signal example above, a first delay may be inserted after a first 3 second natural language phrase, a second delay may be inserted after a second 4 second natural language phrase, a third delay may be inserted after a third 5 second natural language phrase, a fourth delay may be inserted after a fourth 2 second natural language phrase and a fifth delay may be inserted after a fifth 2 second natural language phrase, so that none of the natural language phrases during the voice message are broken up by intervening delays.
  • Software for identifying natural language phrases or natural breaks in an HU's voice signal may use actual delays between consecutive spoken phrases as one proxy for where to insert a transcription catch up delay. In some cases software may be able to perform word, sentence and/or topic segmentation in order to identify natural language phrases. Other software techniques for dividing voice signals into natural language phrases are contemplated and should be used as appropriate.
  • Thus, while some systems may assign perfectly periodic time stamps to HU voice signals to divide the signals into segments, in other cases time stamps will be assigned at irregular time intervals that make more sense given the phrases that an HU speaks, how an HU speaks, etc.
  • Where time stamps are assigned to HU voice and text segments, voice segments can be more accurately selected for replay via selection of associated text. For instance, see FIG. 36 that shows a CA display screen 50 with transcribed text represented at 1200. Here, as text is generated by a relay ASR engine and presented to a CA, consistent with at least some of the systems described above, the CA may select a word or phrase in presented text via touch (represented by hand icon 1202) to replay the HU voice signal associated therewith. When a word is selected in the presented text several things will happen in at least some contemplated embodiments. First, a current voice broadcast to the CA is halted. Second, the selected word is highlighted (see 1204) or otherwise visually distinguished. Third, when the word is highlighted, the CA computer accesses the HU voice segment associated with the highlighted word and re-broadcasts the voice segment for the CA to re-listen to the selected word. Where time stamps are assigned with short intervening periods, the time stamps should enable relatively precise replay of selected words from the text. In at least some cases, the highlight will remain and the CA may change the highlighted word or phrase via standard text editing tools.
  • In some cases a “Resume” or other icon 1210 may be presented proximate the selected word that can be selected via touch to continue the HU voice broadcast and text presentation at the location where the system left off when the CA selected the word for re-broadcast. In other cases, a short time (e.g., ¼th second to 3 seconds) after rebroadcasting a selected word or phrase, the system may automatically revert back to the voice and text broadcast at the location where the system left off when the CA selected the word for re-broadcast.
  • While not shown, in some cases when a text word is selected, the system will also identify other possible words that may correspond to the voice segment associated with the selected word (e.g., second and third best options for transcription of the HU voice segment associated with the selected word) and those options may be automatically presented for touch selection and replacement via a list of touch selectable icons, one for each option, similar to Resume icon 1210. Here, the options may be presented in a list where the first list entry is the most likely substitute text option, the second entry is the second most likely substitute text option, and so on.
  • Referring again to FIG. 36, in other cases when a text word is selected on a CA display screen 50, a relay server or the CA's computer may select an HU voice segment that includes the selected word and also other words in an HU voice segment or phrase that includes the selected word for re-broadcast to the CA so that the CA has some audible context in which to consider the selected word. Here, when the phrase length segment is re-broadcast, the full text phrase associated therewith may be highlighted as shown at 1206 in FIG. 36. In some cases, the selected word may be highlighted or otherwise visually distinguished in one way and the phrase length segment that includes the selected word may be highlighted or otherwise visually distinguished in a second way that is discernably different to the CA so that the CA is not confused as to what was selected (e.g., see different highlighting at 1204 and 1206 in FIG. 36).
  • In some cases a single touch on a word may cause the CA computer to re-broadcast the single selected word while highlighting the selected word and the associated longer phrase that includes the selected word differently while a double tap on a word may cause the phrase that includes the selected word to be re-broadcast to provide audio context. Where the system divides up an HU voice signal by natural phrases, broadcasting a full phrase that includes a selected word should be particularly useful as the natural language phrase should be associated with a more meaningful context than an arbitrary group of words surrounding the selected word.
  • Upon selection of Resume icon 1210, the highlighting is removed from the selected word and the CA computer restarts simultaneously broadcasting the HU voice signal and presenting associated transcribed text at the point where the computer left off when the re-broadcast word was selected. In some cases, the CA computer may back up a few seconds from the point where the computer left off to restart the broadcast to re-contextualize the voice and text presented to the CA as the CA again begins correcting text errors.
  • In other cases, instead of requiring a user to select a “Resume” option, the system may, after a short period (e.g., one second after the selected word or associated phrase is re-broadcast), simply revert back to broadcasting the HU voice signal and presenting associated transcribed text at the point where the computer left off when the re-broadcast word was selected. Here, a beep or other audibly distinguishable signal may be generated upon word selection and at the end of a re-broadcast to audibly distinguish the re-broadcast from broadcast HU voice. In other cases any re-broadcast voice signal may be audibly modified in some fashion (e.g., higher pitch or tone, greater volume, etc.) to audibly distinguish the re-broadcast from other HU voice signal broadcast.
  • Referring now to FIG. 37, a screen shot akin to the screen shot shown in FIG. 26 is illustrated at 50 that may be presented to an AU via an AU device display, albeit where an AU has selected a word from within transcribed text for re-broadcast. In at least some embodiments, similar to the CA system described above, when an AU selects a word from presented text, the instantaneous HU voice broadcast and text presentation is halted, the selected word is highlighted or otherwise visually distinguished as shown at 1230 and the phrase including the selected word may also be differently visually distinguished. Beeps or other audible signals may be generated immediately prior to and after re-broadcast of a voice signal segment. When a word is selected, the AU device speaker (e.g., the speaker in associated handset 22) re-broadcasts the HU voice signal that is associated through the assigned time stamp to the selected word. In other cases the AU device will re-broadcast the entire phrase or sub-phrase that includes the selected word to give audio context to the selected word.
  • While the time stamping concept is described above with respect to a system where an ASR initially transcribes an HU voice signal to text and a CA corrects the ASR generated text, the time stamping concept is also advantageously applicable to cases where a CA transcribes an HU voice signal to text and then corrects the transcribed text or where a second CA corrects text transcribed by a first CA. To this end, in at least some cases it is contemplated that an ASR may operate in the background of a CA transcription system to generate and time stamp ASR text (e.g., text generated by an ASR engine) in parallel with the CA generated text. A processor may be programmed to compare the ASR text and CA generated text to identify at least some matching words or phrases and to assign the time stamps associated with the matching ASR generated words or phrases to the matching CA generated text.
  • It is recognized that the CA text will likely be more accurate than the ASR text most of the time and therefore that there will be differences between the two text strings. However, some if not most of the time the ASR and CA generated texts will match so that many of the time stamps associated with the ASR text can be directly applied to the CA generated text to align the HU voice signal segments with the CA generated text. In some cases it is contemplated that confidence factors may be generated for likely associated ASR and CA generated text and time stamps may only be assigned to CA generated text when a confidence factor is greater than some threshold confidence factor value (e.g., 88/100). In most cases it is expected that confidence factors that exceed the threshold value will occur routinely and with short intervening durations so that a suitable number of reliable time stamps can be generated.
  • Once time stamps are associated with CA generated text, the stamps may be used to precisely align HU voice signal broadcast and text presentation to an AU or a CA (e.g., in the case of a second “correcting CA”) as described above as well as to support re-broadcast of HU voice signal segments corresponding to selected text by a CA and/or an AU.
  • A sub-process 1300 that may be substituted for a portion of the FIG. 32 process is shown in FIG. 38, albeit where ASR generated time stamps are applied to CA generated text. Referring also to FIG. 32, steps 1302 through 1310 shown in FIG. 38 are swapped into the FIG. 32 process for steps 1112 through 1118. Referring also to FIG. 32, after an ASR engine generates and stores time stamped text segments for a received HU voice signal segment, control passes to block 1302 in FIG. 38 where the relay broadcasts the HU voice signal to a CA and the CA revoices the HU voice signal to transcription software trained to the CA's voice and the software yields CA generated text.
  • At block 1304, a relay server or processor compares the ASR text to the CA generated text to identify high confidence “matching” words and/or phrases. Here, the phrase high confidence means that there is a high likelihood (e.g., 95% likely) that an ASR text word or phrase and a CA generated text word or phrase both correspond to the exact same HU voice signal segment. Characteristics analyzed by the comparing processor include multiple word identical or nearly identical strings in compared text, temporally when text appears in each text string relative to other assigned time stamps, easily transcribed words where both an ASR and a CA are highly likely to accurately transcribe words, etc. In some cases time stamps associated with the ASR text are only assigned to the CA generated text when the confidence factor related to the comparison is above some threshold level (e.g., 88/100). Time stamps are assigned at block 1306 in FIG. 38.
  • At block 1308, the relay presents the CA generated text to the CA for correction and at block 1310 the relay transmits the time stamped CA generated text segments to the AU device. After block 1310 control passes back to block 1120 in FIG. 32 where the AU device correlates time stamped CA generated text with HU voice signal segments previously stored in the AU device memory and stores the times, text and associated voice segments. At block 1122, the AU device simultaneously broadcasts and presents identically time stamped HU voice and CA generated text to an AU. Again, in some cases, the AU device may have already broadcast the HU voice signal to the AU prior to block 1122. In this case, upon receiving the text, the text may be immediately presented via the AU device display to the AU for consideration. Here, the time stamped HU voice signal and associated text would only be used by the AU device to support synchronized HU voice and text re-play or representation.
  • In some cases the time stamps assigned to a series of text and voice segments may simply represent relative time stamps as opposed to actual time stamps. For instance, instead of labelling three consecutive HU voice segments with actual times 3:55:45 AM; 3:55:48 AM; 3:55:51 AM . . . , the three segments may be labelled t0, t1, t2, etc., where the labels are repeated after they reach some maximum number (e.g., t20). In this case, for instance, during a 20 second HU voice signal, the 20 second signal may have five consecutive labels t0, t1, t2, t3 and t4 assigned, one every four seconds, to divide the signal into five consecutive segments. The relative time labels can be assigned to HU voice signal segments and also associated with specific transcribed text segments.
  • In at least some cases it is contemplated that the rate of time stamp assignment to an HU voice signal may be dynamic. For instance, if an HU is routinely silent for long periods between intermittent statements, time stamps may only be assigned during periods while the HU is speaking. As another instance, if an HU speaks slowly at times and more rapidly at other times, the number of time stamps assigned to the user's voice signal may increase (e.g., when speech is rapid) and decrease (e.g., when speech is relatively slow) with the rate of user speech. Other factors may affect the rate of time stamps applied to an HU voice signal.
  • While the systems describe above are described as ones where time stamps are assigned to an HU voice signal by either or both of an assisted user's device and a relay, in other cases it is contemplated that other system devices or processors may assign time stamps to the HU voice signal including a fourth party ASR engine provider (e.g., IBM's Watson, Google Voice, etc.). In still other cases where the HU device is a computer (e.g., a smart phone, a tablet type computing device, a laptop computer), the HU device may assign time stamps to the HU voice signal and transmit to other system devices that need time stamps. All combinations of system devices assigning new or redundant time stamps to HU voice signals are contemplated.
  • In any case where time stamps are assigned to voice signals and text segments, words, phrases, etc., the engine(s) assigning the time stamps may generate stamps indicating any of (1) when a word or phrase is voiced in an HU voice signal audio stream (e.g., 16:22 to 16:22:5 corresponds to the word “Now”) and (2) the time at which text is generated by the ASR for a specific word (e.g., “Now” generated at 16:25). Where a CA generates text or corrects text, a processor related to the relay may also generate time stamps indicating when a CA generated word is generated as well as when a correction is generated.
  • In at least some embodiments it is contemplated that any time a CA falls behind when transcribing an HU voice signal or when correcting an ASR engine generated text stream, the speed of the HU voice signal broadcast may be automatically increased or sped up as one way to help the CA catch up to a current point in an HU-AU call. For instance, in a simple case, any time a CA caption delay (e.g., the delay between an HU voice utterance and CA generation of text or correction of text associated with the utterance) exceeds some threshold (e.g., 12 seconds), the CA interface may automatically double the rate of HU signal broadcast to the CA until the CA catches up with the call.
  • In at least some cases the rate of broadcast may be dynamic between a nominal value representing the natural speaking speed of the HU and a maximum rate (e.g., increase the natural HU voice speed three times), and the instantaneous rate may be a function of the degree of captioning delay. Thus, for instance, where the captioning delay is only 4 or less seconds, the broadcast rate may be 1 representing the natural speaking speed of the HU, if the delay is between 4 and 8 seconds the rebroadcast rate may be 2 (e.g., twice the natural speaking speed), and if the delay is greater than 8 seconds, the broadcast rate may be 3 (e.g., three times the natural speaking speed).
  • In other cases the dynamic rate may be a function of other factors such as but not limited to the rate at which an HU utters words, perceived clarity in the connection between the HU and AU devices or between the AU device and the relay or between any two components within the system, the number of corrections required by a CA during some sub-call period (e.g., the most recent 30 seconds), statistics related to how accurately a CA can generate text or make text corrections at different speaking rates, some type of set AU preference, some type of HU preference, etc.
  • In some cases the rate of HU voice broadcast may be based on ASR confidence factors. For instance, where an ASR assigns a high confidence factor to a 15 second portion of HU voice signal and a low confidence factor to the next 10 seconds of the HU voice signal, the HU voice broadcast rate may be set to twice the rate of HU speaking speed during the first 15 second period and then be slowed down to the actual HU speaking speed during the next 10 second period.
  • In some cases the HU broadcast rate may be at least in part based on characteristics of an HU's utterances. For instance, where an HU's volume on a specific word is substantially increased or decreased, the word (or phrase including the word) may always be presented at the HU speaking speed (e.g., at the rate uttered by the HU). In other cases, where the volume of one word within a phrase is stressed, the entire phrase may be broadcast at speaking speed so that the full effect of the stressed word can be appreciated. As another instance, where an HU draws out pronunciation of a word such as “Well . . . ” for 3 seconds, the word (or phrase including the word) may be presented at the spoken rate.
  • In some cases the HU voice broadcast rate may be at least in part based on words spoken by an HU or on content expressed in an HU's spoken words. For instance, simple words that are typically easy to understand including “Yes”, “No”, etc., may be broadcast at a higher rate than complex words like some medical diagnosis, multi-syllable terms, etc.
  • In cases where the system generates text corresponding to both HU and AU voice signals, in at least some embodiments it is contemplated that during normal operation only text associated with the HU signal may be presented to an AU and that the AU text may only be presented to the AU if the AU goes back in the text record to review the text associated with a prior part of a conversation. For instance, if an AU scrolls back in a conversation 3 minutes to review prior discussion, ASR generated AU voice related text may be presented at that time along with the HU text to provide context for the AU viewing the prior conversation.
  • In the systems described above, whenever a CA is involved in a caption assisted call, the CA considers an entire HU voice signal and either generates a complete CA generated text transcription of that signal or corrects ASR generated text errors while considering the entire HU voice signal. In other embodiments it is contemplated that where an ASR engine generates confidence factors, the system may only present sub-portions of an HU voice signal to a CA that are associated with relatively low confidence factors for consideration to speed up the error correction process. Here, for instance, where ASR engine confidence factors are high (e.g., above some high factor threshold) for a 20 second portion of an HU voice signal and then is low for the next 10 seconds, a CA may only be presented the ASR generated text and the HU voice signal may not be broadcast to the CA during the first 20 seconds while substantially simultaneous HU voice and text are presented to the CA during the following 10 second period so that the CA is able to correct any errors in the low confidence text. In this example, it is contemplated that the CA would still have the opportunity to select an interface option to hear the HU voice signal corresponding to the first 20 second period or some portion of that period if desired.
  • In some cases only a portion of HU voice signal corresponding to low confidence ASR engine text may be presented at all times and in other cases, this technique of skipping broadcast of HU voice associated with high confidence text may only be used by the system during threshold catch up periods of operation. For instance, the technique of skipping broadcast of HU voice associated with high confidence text may only kick in when a CA text correction process is delayed from an HU voice signal by 20 or more seconds.
  • In particularly advantages cases, low confidence text and associated voice may be presented to a CA at normal speaking speed and high confidence text and associated voice may be presented to a CA at an expedited speed (e.g., 3 time normal speaking speed) when a text presentation delay (e.g., the period between the time an HU uttered a word and the time when a text representation of the word is presented to the CA) is less than a maximum latency period, and if the delay exceeds the maximum latency period, high confidence text may be presented in block form (e.g., as opposed to rapid sequential presentation of separate words) without broadcasting the HU voice to expedite the catchup process.
  • In cases where a system processor or sever determines when to automatically switch or when to suggest a switch from a CA captioning system to an ASR engine captioning system, several factors may be considered including the following:
      • 1. Percent match between ASR generated words and CA generated words over some prior captioning period (e.g., last 30 seconds);
      • 2. How accurate ASR confidence factors reflect corrections made by a CA;
      • 3. Words per minute spoken by an HU and how that affects accuracy;
      • 4. Average delay between ASR and CA generated text over some prior captioning period;
      • 5. An expressed AU preference stored in an AU preferences database accessible by a system processor;
      • 6. A current AU preferences as set during an ongoing call via an on screen or other interface tool; and
      • 7. Clarity of received signal or some other proxy for line quality of the link between any two processors or servers within the system.
  • Other factors are contemplated.
  • In at least some cases a speech recognition engine will sequentially generate a sequence of captions for a single word or phrase uttered by a speaker. For instance, where an HU speaks a word, an ASR engine may generate a first “estimate” of a text representation of the word based simply on the sound of the individual word and nothing more. Shortly thereafter (e.g., within 1 to 6 seconds), the ASR engine may consider words that surround (e.g., come before and after) the uttered word along with a set of possible text representations of the word to identify a final estimate of a text representation of the uttered word based on context derived from the surrounding words. Similarly, in the case of a CA revoicing an HU voice signal to an ASR engine trained to the CA voice to generate text, multiple iterations of text estimates may occur sequentially until a final text representation is generated.
  • In at least some cases it is contemplated that every best estimate of a text representation of every word to be transcribed will be transmitted immediately upon generation to an AU device for continually updated presentation to the AU so that the AU has the best HU voice signal transcription that exists at any given time. For instance, in a case where an ASR engine generates at least one intermediate text estimate and a final text representation of a word uttered by an HU and where a CA corrects the final text representation, each of the interim text estimate, the final text representation and the CA corrected text may be presented to the AU where updates to the text are made as in line corrections thereto (e.g., by replacing erroneous text with corrected text directly within the text stream presented) or, in the alternative, corrected text may be presented above or in some spatially associated location with respect to erroneous text.
  • In cases where an ASR engine generates intermediate and final text representations while a CA is also charged with correcting text errors, if the ASR engine is left to continually make context dependent corrections to text representations, there is the possibility that the ASR engine could change CA generated text and thereby undue an intended and necessary CA correction.
  • To eliminate the possibility of an ASR modifying CA corrected text, in at least some cases it is contemplated that automatic ASR engine contextual corrections for CA corrected text may be disabled. In this case, for instance, when a CA initiates a text correction or completes a correction in text presented on her device display screen, the ASR engine may be programmed to assume that the CA corrected text is accurate from that point forward. In some cases, the ASR engine may be programmed to assume that a CA corrected word is a true transcription of the uttered word which can then be used as true context for ascertaining the text to be associated with other ASR engine generated text words surrounding the true transcription. In some cases text words prior to and following the CA corrected word may be corrected by the ASR engine based on the CA corrected word that provides new context. Hereinafter, unless indicated otherwise, when an ASR engine is disabled from modifying a word in a text phrase, the word will be said to be “firm”.
  • In at least some cases it is contemplated that if a CA corrects a word or words at one location in presented text, if an ASR subsequently contextually corrects a word or phrase that precedes the CA corrected word or words, the subsequent ASR correction may be highlighted or otherwise visually distinguished so that the CA's attention is called thereto to consider the ASR correction. In at least some cases, when an ASR corrects text prior to a CA text correction, the text that was corrected may be presented in a hovering tag proximate the ASR correction and may be touch selectable by the CA to revert back to the pre-correction text if the CA so chooses. To this end, see the CA interface screen shot 1391 shown in FIG. 43 where ASR generated text is shown at 1393 that is similar to the text presented in FIG. 39, albeit with a few corrections. More specifically, in FIG. 43, it is assumed that a CA corrected the word “cods” to “kids” at 1395 (compare again to FIG. 39) after which an ASR engine corrected the prior word “bing” to “bring”. The prior ASR corrected word is highlighted or distinguished as shown at 1397 and the word that was changed to make the correction is presented in hovering tag 1399. Tag 1399 is touch selectable by the CA to revert back to the prior word if selected.
  • In other cases where a CA initiates or completes a word correction, the ASR engine may be programmed to disable generating additional estimates or hypothesis for any words uttered by the HU prior to the CA corrected word or within a text segment or phrase that includes the corrected word. Thus, for instance, in some cases, where 30 text words appear on a CA's display screen, if the CA corrects the fifth most recently presented word, the fifth most recently corrected word and the 25 preceding words would be rendered firm and unchangeable via the ASR engine. Here, in some cases the CA would still be free to change any word presented on her display screen at any time. In other cases, once a CA corrects a word, that word and any preceding text words may be firm as to both the CA and the ASR engine.
  • In some cases there may be restrictions on text corrections that may be made by a CA. For instance, in a simple case where an AU device can only present a maximum of 50 words to an AU at a time, the system may only allow a CA to correct text corresponding to the 50 words most recently uttered by an HU. Here, the idea is that in most cases it will make no sense for a CA to waste time correcting text errors in text prior to the most recently uttered 50 words as an AU will only rarely care to back up in the record to see prior generated and corrected text. Here, the window of text that is correctable may be a function of several factors including font type and size selected by an AU on her device, the type and size of display included in an AUs device, etc. This feature of restricting CA corrections to AU viewable text is effectively a limit on how far behind CA error corrections can lag.
  • In some cases it is contemplated that a call may start out with full CA error correction so that the CA considers all ASR engine generated text but that, once the error correction latency exceeds some threshold level, that the CA may only be able to or may be encouraged to only correct low confidence text. For instance, the latency limit may be 10 seconds at which point all ASR text is presented but low confidence text is visually distinguished in some fashion designed to encourage correction. To this end see for instance FIG. 40 where low and high confidence text is presented in difference scrolling columns. In some cases error correction may be limited to the left column low confidence text as illustrated. FIG. 40 is described in more detail hereafter. Where only low confidence text can be corrected, in at least some cases the HU voice signal for the high confidence text may not be broadcast.
  • In some cases, only low confidence factor text and associated HU voice signal may be presented and broadcast to a CA for consideration with some indication of missing text and voice between the presented text words or phrases. For instance, turn piping representations (see again 216 in FIG. 17) may be presented to a CA between low confidence editable text phrases.
  • In other cases, while interim and final ASR engine text may be presented to an AU, a CA may only see final ASR engine text and therefore only be able to edit that text. Here, the idea is that most of the time ASR engine corrections will be accurate and therefore, by delaying CA viewing until final ASR engine text is generated, the number of required CA corrections will be reduced appreciably. It is expected that this solution will become more advantageous as ASR engine speed increases so that there is minimal delay between interim and final ASR engine text representations.
  • In still other cases it is contemplated that only final ASR engine text may be sent on to an AU for consideration. In this case, for instance, ASR generated text may be transmitted to an AU device in blocks where context afforded by surrounding words has already been used to refine text hypothesis. For instance, words may be sent in five word text blocks where the block sent always includes the 6th through 10th most recently transcribed words so that the most recent through fifth most recent words can be used contextually to generate final text hypothesis for the 6th through 10th most recent words. Here, CA text corrections would still be made at a relay and transmitted to the AU device for in line corrections of the ASR engine final text.
  • In this case, if a CA takes over the task of text generation from an ASR engine for some reason (e.g., an AU requests CA help), the system may switch over to transmitting CA generated text word by word as the text is generated. In this case CA corrections would again be transmitted separately to the AU device for in line correction. Here, the idea is that the CA generated text should be relatively more accurate than the ASR engine generated text and therefore immediate transmission of the CA generated text to the AU would result in a lower error presentation to the AU.
  • While not shown, in at least some embodiments it is contemplated that turn piping type indications may be presented to a CA on her interface display as a representation of the delay between the CA text generation or correction and the ASR engine generated text. To this end, see the exemplary turn piping 216 in FIG. 17. A similar representation may be presented to a CA.
  • Where CA corrections or even CA generated text is substantially delayed, in at least some cases the system may automatically force a split to cause an ASR engine to catch up to a current time in a call and to firm up text before the split time. In addition, the system may identify a preferred split prior to which ASR engine confidence factors are high. For instance, where ASR engine text confidence factors for spoken words prior to the most recent 15 words are high and for the last fifteen words are low, the system may automatically suggest a split at the 15th most recent word so that ASR text prior to that word is firmed up and text thereafter is still presented to the CA to be considered and corrected. Here, the CA may reject the split either by selecting a rejection option or by ignoring the suggestion or may accept the suggestion by selecting an accept option or by ignoring the suggestion (e.g., where the split is automatic if not rejected in some period (e.g., 2 seconds)). To this end, see the exemplary CA screen shot in FIG. 39 where ASR generated text is shown at 1332. In this case, the CA is behind in error correction so that the CA computer is currently broadcasting the word “want” as indicted by the “Broadcast” tag 1334 that moves along the ASR generated text string to indicate to the CA where the current broadcast point is located within the overall string. A “High CF—Catch Up” tag 1338 is provided to indicate a point within the overall ASR text string presented prior to which ASR confidence factors are high and, after which ASR confidence factors are relatively lower. Here, it is contemplated that a CA would be able to select tag 1338 to skip to the tagged point within the text. If a CA selects tag 1338, the broadcast may skip to the associated tagged point so that “Broadcast” tag 1334 would be immediately moved to the point tagged by tag 1338 where the HU voice broadcast would recommence. In other cases, selecting high confidence tag 1338 may cause accelerated broadcast of text between tags 1334 and 1338 to expedite catch up.
  • Referring to FIG. 40, another exemplary CA screen shot 1333 that may be presented to show low and high confidence text segments and to enable a CA to skip to low confidence text and associated voice signal is illustrated. Screen shot 1333 divides text into two columns including a low confidence column 1335 and a high confidence column 1337. Low confidence column 1335 includes text segments that have ASR assigned confidence factors that are less than some threshold value which high confidence column 1337 include text segments that have ASR assigned confidence factors that are greater than the threshold value. Column 1335 is presented on the left half of screen shot 1333 and column 1337 is presented on the right half of shot 1333. The two columns would scroll upward simultaneously as more text is generated. Again, a current broadcast tag 1339 is provided at a current broadcast point in the presented text. Also, a “High CF, Catch Up” tag 1341 is presented at the beginning of a low confidence text segment. Here, again, it is contemplated that a CA may select the high confidence tag 1341 to skip the broadcast forward to the associated point to expedite the error correction process. As shown, in at least some cases, if the CA does not skip ahead by selecting tag 1341, the HU voice broadcast may be at 2X or more the speaking speed so that catch up can be more rapid.
  • In at least some cases it is contemplated that when a call is received at an AU device or at a relay, a system processor may use the calling number (e.g., the number associated with the calling party or the calling parties device) to identify the least expensive good option for generating text for a specific call. For instance, for a specific first caller, a robust and reliable ASR engine voice model may already exist and therefore be useable to generate automated text without the need for CA involvement most of the time while no model may exist for a second caller that has not previously used the system. In this case, the system may automatically initiate captioning using the ASR engine and first caller voice model for first caller calls and may automatically initiate CA assisted captioning for second caller calls so that a voice model for the second caller can be developed for subsequent use. Where the received call is from an AU and is outgoing to an HU, a similar analysis of the target HU may cause the system to initiate ASR engine captioning or CA assisted captioning.
  • In some embodiments identity of an AU (e.g., an AU's phone number or other communication address) may also be used to select which of two or more text generation options to use to at least initiate captioning. Thus, some AU's may routinely request CA assistance on all calls while others may prefer all calls to be initiated as ASR engine calls (e.g., for privacy purposes) where CA assistance is only needed upon request for relatively small sub-periods of some calls. Here, AU phone or address numbers may be used to assess optimal captioning type.
  • In still other cases both a called and a calling number may be used to assess optimal captioning type. Here, in some cases, an AU number or address may trump an HU number or address and the HU number or address may only be used to assess caption type to use initially when the AU has no perceived or expressed preference.
  • Referring again to FIG. 39, it has been recognized that, in addition to text corresponding to an HU voice signal, an optimal AU interface needs additional information that is related to specific locations within a presented text string. For instance, specific virtual control buttons need to be associated with specific text string locations. For example, see the “High CF—Catch Up” button in FIG. 39. As other examples, a “resume” tag as in FIG. 36 or a correction word (see FIG. 20) may need to be linked to a specific text location. As another instance, in some cases a “broadcast” tag indicating the word currently being broadcast may have to be linked to a specific text location (see FIG. 39).
  • In at least some embodiments, a CA interface or even an AU interface will take a form where text lines are separated by at least one blank line that operates as an “additional information” field in which other text location linked information or content can be presented. To this end, see FIG. 39 where additional information fields are collectively labelled 1215. In other embodiments it is contemplated that the additional information fields may also be provided below associated text lines. In still other embodiments, other text fields may be presented as separate in line fields within the text strings (see 1217 in FIG. 40).
  • In many industries it has been recognized that if a tedious job can be gamified, employee performance can be increased appreciably as employees work through obstacles to better personal scores and, in some cases, to compete with each other. Here, in addition to increased personal performance, an employing entity can develop insights into best work practices that can be rolled out to other employees attempting to better their performance. In the present case, various systems are being designed to add gamification aspects to the text captioning process performed by CAs. In this regard, in some cases it has been recognized that if a CA simply operates in parallel with an ASR engine to generate text, a CA may be tempted to simply let the ASR engine generate text without diligent error correction.
  • To avoid CAs shirking their error correction responsibilities, in at least some embodiments it is contemplated that a system processor that drives or is associated with a CA interface may introduce periodic and random known errors into ASR generated text that is presented to a CA as test errors. Here, the idea is that a CA should identify the test errors and at least attempt to make corrections thereto. In most cases, while errors would be introduced to the CA, the errors would not be presented to an AU and instead the correct ASR engine text would be presented to the AU. In some cases the system would allow a CA to actually correct the erroneous text without knowing which errors were ASR generated and which were introduced. In other cases, when a CA selects an introduced text error to make a correction, the interface may automatically make the correction upon selection so that the CA does not waste additional time rendering a correction. In some cases, when an introduced error is corrected either by the interface or the CA, a message may be presented to the CA indicating that the error was a purposefully introduced error.
  • Referring to FIG. 41, a method 1350 that is consistent with at least some aspects of the present disclosure for introducing errors into an ASR text stream for testing CA alertness is illustrated. At block 1352, an ASR engine generates ASR text segments corresponding to an HU voice signal. At block 1354, a relay processor or ASR engine assigns confidence factors to the ASR text and at block 1356, the relay identifies at least one high confidence text segment as a “test” segment. At block 1358, the processor transmits the high confidence test segment to an AU device for display to an AU. At block 1360, the processor identifies an error segment to be swapped into the ASR generated text for the test segment to be presented to the CA. For instance, where a high confidence test segment includes the phrase “John came home on Friday”, the processor may generate an exemplary error segment like “John camp home on Friday”.
  • Referring still to FIG. 41, at block 1362, the processor presents text with the error segment to the CA as part of an ongoing text stream to consider for error correction. At decision block 1364, the processor monitors for CA selection of words or phrases in the error segment to be corrected. Where the CA does not select the error segment for correction, control passes to block 1372 where the processor stores an indication that the error segment was not identified and control passes back up to block 1352 where the process continues to cycle. In addition, at block 1372, the processor may also store the test segment, the error segment and a voice clip corresponding to the test segment that may later be accessed by the CA or an administrator to confirm the missed error.
  • Referring again to block 1364 in FIG. 41, if the CA selects the error segment for correction, control passes to block 1366 where the processor automatically replaces the error segment with the test segment so that the CA does not have to correct the error segment. Here the test segment may be highlighted or otherwise visually distinguished so that the CA can see the correction made. In addition, in at least some cases, at block 1368, the processor provides confirmation that the error segment was purposefully introduced and corrected. To this end, see the “Introduced Error—Now Corrected” tag 1331 in FIG. 39 that may be presented after a CA selects an error segment. At block 1370, the processor stores an indication that the error segment was identified by the CA. Again, in some cases, the test segment, error segment and related voice clip may be stored to memorialize the error correction. After block 1370, control passes back up to block 1352 where the process continues to cycle.
  • In some cases errors may only be introduced when the rate of actual ASR engine errors and CA corrections is small. For instance, where a CA is routinely making error corrections during a one minute period, it would make no sense to introduce more text errors as the CA is most likely highly focused during that period. In addition, if a CA is substantially delayed in making corrections, the system may again opt to not introduce more errors.
  • Error introductions may include text additions, text deletions and text substitutions in some embodiments. In at least some cases the error generating processor or CA interface may randomly generate errors of any type and related to any ASR generated text. In other cases, the processor may be programmed to introduce meaningful errors calculated to change the meaning of phrase so that a CA will be particularly motivated to correct the text error when presented. To this end, it has been recognized that some errors have limited effect on the meaning of an associated phrase while others can completely change the meaning of a phrase. Because ASR engines can understand context, they can also be programmed to ascertain when a simple text change will affect phrase meaning and can therefore be used to drive an interface as suggested here. For instance, in some cases introduced errors may only include meaningful errors. In other cases, introduced errors may include both meaningful errors and other errors that do not change the meaning of associated phrases and which would likely be recognized by an AU view the error and different statistics may be collected and stored for each of the error types to develop metrics for judging CA effectiveness.
  • In some embodiments gamification can be enhanced by generating ongoing, real time dynamic scores for CA performance including, for instance, a score associated with accuracy, a separate score associated with captioning speed and/or separate speed and accuracy scores under different circumstances such as, for instance, for male and female voices, for east coast accents, Midwest accents, southern accents, etc., for high speed talking and slower speed talking, for captioning with correcting versus captioning alone versus correcting ASR engine text, and any combinations of factors that can be discerned. In FIG. 40, exemplary accuracy and speed scores that are updated in real time for an ongoing call are shown at 1343 and 1345, respectively. Where a call persists for a long time, a rolling most recent sub-period of the call may be used as a duration over which the scores are calculated.
  • CA scores may be stored as part of a CA profile and that profile could be routinely updated to reflect growing CA effectiveness with experience over time. Once CA specific scores are stored in a CA profile, the system may automatically route future calls that have characteristics that match high scores for a specific CA to that CA which should increase overall system accuracy and speed. Thus, for instance, if an HU profile associated with a specific phone number indicates that an associated HU has a strong southern accent and speaks rapidly, when a call is received that is associated with that phone number, the system may automatically route the call to a CA that has a high gamification score for rapid southern accents if such a CA is available to take the call. In other cases it is contemplated that when a call is received at a relay where the call cannot be associated with an existing HU voice profile, the system may assign the call to a first CA to commence captioning where a relay processor analyzes the HU voice during the beginning of the call and identifies voice characteristics (e.g., rapid, southern, male, etc.) and automatically switches the call to a second CA that is associated with a high gamification score for the specific type of HU voice. In this case, speed and accuracy would be expected to increase after the switch to the second CA.
  • In addition, in some cases it is contemplated that in addition to the individual speed and accuracy scores, a combined speed/accuracy score can be generated for each CA over the course of time, for each CA over a work period (e.g., a 6 hour captioning day), for each CA for each call that the CA handles, etc. For example, an exemplary single score algorithm may including a running tally that adds one point for a correct word and adds zero points for an incorrect word, where the correct word point is offset by an amount corresponding to a delay in word generation after some minimal threshold period (e.g., 2 seconds after the word is broadcast to the CA for transcription or one second after the word is broadcast to and presented to a CA for correction). For instance, the offset may be 0.2 points for every second after the minimal threshold period. Other algorithms are contemplated. The single score may be presented to a CA dynamically and in real time so that CA is motivated to focus more. In other cases the single score per phone call may be presented at the end of each call or an average score over a work period may be presented at the end of the work period. In FIG. 40, an exemplary current combined score is shown at 1347.
  • The single score or any of the contemplated metrics may also be related to other factors such as, for instance, how quickly errors are corrected by a CA, how many ASR errors need to be corrected in a rolling period of time, how many manufactured or purposefully introduced errors are caught and corrected, once a CA is behind, how does the CA respond, how fast an HU is speaking (WPM), how clear a voice signal is received (perhaps as measured by the ASR engine), ASR confidence factors associated with text generated during a call (as a proxy for captioning complexity), etc.
  • In at least some of the embodiments described above an AU has the option to request CA assistance or more CA assistance than currently afforded on a call and or to request ASR engine text as opposed to CA generated text (e.g., typically for privacy purposes). While a request to change caption technique may be received from a CA, in at least some cases the alternative may not be suitable for some reason and, in those cases, the system may forego a switch to a requested technique and provide an indication to a requesting AU that the switch request has been rejected. For instance, if an AU receiving CA generated and corrected text requests a switch to an ASR engine but accuracy of the ASR engine is below some minimal threshold, the system may present a message to the AU that the ASR engine cannot currently support captioning and the CA generation and correction may persist. In this example, once the ASR engine is ready to accurately generate text, the switch thereto may be either automatic or the system may present a query to the AU seeking authorization to switch over to the ASR engine for subsequent captioning.
  • In a similar fashion, if an AU requests additional CA assistance, a system processor may determine that ASR engine text accuracy is low for some reason that will also affect CA assistance and may notify the AU that the a switch will not be made along with a reason (e.g., “Communication line fault”).
  • In cases where privacy is particularly important to an AU on a specific call or generally, the caption system may automatically, upon request from an AU or per AU preferences stored in a database, initiate all captioning using an ASR engine. Here, where corrections are required, the system may present short portions of an HU's voice signal to a series of CAs so that each CA only considers a portion of the text for correction. Then, the system would stitch all of the CA corrected text together into an HU text stream to be transmitted to the AU device for display.
  • In some cases it is contemplated that an AU device interface may present a split text screen to an AU so that the AU has the option to view essentially real time ASR generated text or CA corrected text when the corrected text substantially lags the ASR text. To this end, see the exemplary split screen interface 1450 in FIG. 45 where CA corrected text is shown in an upper field 1452 and “real time” ASR engine text is presented in a lower field 1454. As shown, a “CA location” tag 1456 is presented at the end of the CA corrected text while a “Broadcast” tag 1458 is presented at the end of the ASR engine text to indicate the CA and broadcast locations within the text string. Where CA correction latency reaches a threshold level (e.g., the text between the CA correction location and the most recent ASR text no longer fits on the display screen), text in the middle of the string may be replaced by a period indicator to indicate the duration of HU voice signal at the speaking speed that corresponds to the replaced text. Here, as the CA moves on through the text string, text in the upper field 1452 scrolls up and as the HU continued to speak, the ASR text in the bottom field 1454 also scrolls up independent of the upper field scrolling rate.
  • In at least some cases it is contemplated that an HU may use a communication device that can provide video of the HU to an AU during a call. For instance, an HU device may include a portable tablet type computing device or smart phone (see 1219 in FIG. 33) that includes an integrated camera for telepresence type communication. In other cases, as shown in FIG. 33, a camera 1123 may be linked to the HU phone or other communication device 14 for collecting HU video when activated. Where HU video is obtained by an HU device, in most cases the video and voice signals will already be associated for synchronous playback. Here, the HU voice and video signals are transmitted to an AU device, the HU video may be broken down into video segments that correspond with time stamped text and voice segments and the stamped text, voice and video segments may be stored for simultaneous replay to the AU. Here, where there are delays between broadcast of consecutive HU voice segments as text transcription progresses, in at least some cases the HU video will freeze during each delay. Similarly, if the HU voice signal is sped up during a catch up period as described above, the HU video may be shown at a faster speed so that the voice and video broadcasts are temporally aligned.
  • FIG. 42 shows an exemplary AU device screen shot 1308 including transcribed text 1382 and a video window or field 1384. Here, assuming that all of the shown text at 1382 has already been broadcast to the AU, if the AU selects the phrase “you should bing the cods along” as indicate by hand icon 1386, the AU device would identify the voice segment and video segment associated with the selected text segment and replay both the voice and video segments while the phrase remains highlighted for the user to consider.
  • Referring yet again to FIG. 33, in some cases the AU device or AU station may also include a video camera 1125 for collecting AU video that can be presented to the HU during a call. Here, it is contemplated that at least some HUs may be reticent to allow an AU to view HU video without having the reciprocal ability to view the AU during an ongoing call and therefore reciprocal AU viewing would be desirable.
  • At least four advantages result from systems that present HU video to an AU during an ongoing call. First, where the video quality is relatively high, the AU will be able to see the HU's facial expressions which can increase the richness of the communication experience.
  • Second, in some cases the HU representation in a video may be useable to discern words intended by an HU even if a final text representation thereof is inaccurate. For instance, where a text transcription error occurs, an AU may be able to select the phrase including the error and view the HU video associated with the selected phrase while listening to the associated voice segment and, based on both the audio and video representations, discern the actual phrase spoken by the HU.
  • Third, it has been recognized that during most conversations, people instinctively provide visual cues to each other that help participants understand when to speak and when to remain silent while others are speaking. In effect, the visual cues operate to help people take turns during a conversation. By providing video representations to each of an HU and an AU during a call, both participants can have a good sense of when their turn is to talk, when the other participant is struggling with something that was said, etc.
  • Fourth, for deaf AU's that are trained to read lips, the HU video may be useable by the AU to enhance communication.
  • In at least some cases an AU device may be programmed to query an HU device at the beginning of a communication to determine if the HU device has a video camera useable to generate an HU video signal. If the HU device has a camera, the AU device may cause the HU device to issue a query to the HU requesting access to and use of the HU device camera during the call. For instance, the query may include brief instructions and a touch selectable “Turn on camera” icon or the like for turning on the HU device camera. If the HU rejects the camera query, the system may operate without generating and presenting an HU video as described above. If the HU accepts the request, the HU device camera is turned on to obtain an HU video signal while the HU voice signal is obtained and the video and voice signal are transmitted to the AU device for further processing.
  • There are video relay systems on the market today where specially trained CAs provide a sign language service for deaf AUs. In these systems, while an HU and an AU are communicating via a communication link or network, an HU voice signal is provided to a CA. The CA listens to the HU voice signal and uses her hands to generate a sequence of signs that correspond at least roughly to the content (e.g., meaning) of the HU voice messages. A video camera at a CA station captures the CA sign sequence (e.g., “the sign signal” and transmits that signal to an AU device which presents the sign signal to the AU via a display screen. If the AU can speak, the AU talks into a microphone and the AU's voice is transmitted to the HU device where it is broadcast for the HU to hear.
  • In at least some cases it is contemplated that a second or even a third communication signal may be generated for the HU voice signal that can be transmitted to the AU device and presented along with the sign signal to provide additional benefit to the AU. For instance, it has been recognized that in many cases, while sign language can come close to the meaning expressed in an HU voice signal, in many cases there is no exact translation of a voice message to a sign sequence and therefore some meaning can get lost in the voice to sign signal translation. In these cases, it would be advantageous to present both a text translation and a sign translation to an AU.
  • In at least some cases it is contemplated that an ASR engine at a relay or operated by a fourth party server linked to a relay may, in parallel with a CA generating a sign signal, generate a text sequence for an HU voice signal. The ASR text signal may be transmitted to an AU device along with or in parallel with the sign signal and may be presented simultaneously as the text and sign signals are generated. In this way, if an AU questions the meaning of a sign signal, the AU can refer to the ASR generated text to confirm meaning or, in many cases, review an actual transcript of the HU voice signal as opposed to a sometimes less accurate sign language representation.
  • In many cases an ASR will be able to generate text far faster than a CA will be able to generate a sign signal and therefore, in at least some cases, ASR engine text may be presented to an AU well before a CA generated sign signal. In some cases where an AU views, reads and understands text segments well prior to generation and presentation of a sign signal related thereto, the AU may opt to skip ahead and forego sign language for intervening HU voice signal. Where an AU skips ahead in this fashion, the CA would be skipped ahead within the HU voice signal as well and continue signing from the skipped to point on.
  • In at least some cases it is contemplated that a relay or other system processor may be programmed to compare text signal and sign signal content (e.g., actual meaning ascribed to the signals) so that time stamps can be applied to text and sign segment pairings thus enabling an AU to skip back through communications to review a sign signal simultaneously with a paired text tag or other indicator. For instance, in at least some embodiments as HU voice is converted by a CA to sign segments, a processor may be programmed to assess the content (e.g., meaning) of each sign segment. Similarly, the processor may also be programmed to analyze the ASR generated text for content and to then compare the sign segment content to the text segment content to identify matching content. Where sign and text segment content match, the processor may assign a time stamp to the content matching segments and store the stamp and segment pair for subsequent access. Here, if an AU selects a text segment from her AU device display, instead of (or in addition to in some embodiments) presenting an associated HU voice segment, the AU device may represent the sign segment paired with the selected text.
  • Referring again to FIG. 33, the exemplary CA station includes, among other components, a video camera 55 for taking video of a signing CA to be delivered along with transcribed text to an AU. Referring also and again to FIG. 42, a CA signing video window is shown at 1390 alongside a text field that includes text corresponding to an HU voice signal. In FIG. 42, if an AU selects the phrase labelled 1386, that phrase would be visually highlighted or distinguished in some fashion and the associated or paired sign signal segment should be represented in window 1390.
  • In at least some video relay systems, in addition to presenting sign and text representations of an HU voice signal, an HU video signal may also be used to represent the HU during a call. In this regard, see again FIG. 42 where both an HU video window 1384 and a CA signing window 1390 are presented simultaneously. Here, all communication representations 1382, 1384 and 1390 may always be synchronized via time stamps in some cases while in other cases the representation may not be completely synchronized. For instance, in some cases the HU video window 1384 may always present a real time representation of the HU while text and sign signals are 1382 and 1390 are synchronized and typically delayed at least somewhat to compensate for time required to generate the sign signal as well as AU replay of prior sign signal segments.
  • In still other embodiments it is contemplated that a relay or other system processor may be programmed to analyze sign signal segments generated by a signing CA to automatically generate text segments that correspond thereto. Here the text is generated from the sign signal as opposed to directly from the voice signal and therefore would match the sign signal content more closely in at least some embodiments. Because the text is generated directly from the sign signal, time stamps applied to the sign signal can easily be aligned with the text signal and there would be no need for content analysis to align signals. Instead of using content to align, a sign signal segment would be identified and a time stamp applied thereto, then the sign signal segment would be translated to text and the resulting text would be stored in the system database correlated to the corresponding sign signal segment and the time stamp for subsequent access.
  • FIG. 44 shows yet another exemplary AU screen shot 1400 where text segments are shown at 1402 and an HU video window is shown at 1412. The text 1402 includes a block of text includes a set of text lines where the block is presented in three visually distinguished ways. First, a currently audibly broadcast word is highlighted or visually distinguished in a first way as indicated at 1406. Second, the line of text that includes the word currently being broadcast is visually distinguished in a second way as shown at 1404. Other text lines are presented above and below the line 1404 to show preceding text and following text for context. In addition, the line at 1404 including the currently broadcast word at 1406 is presented in a larger format to call an Au's attention to that line of text and the word being broadcast. The larger text makes it easier for an AU to see the presented text. Moreover, the text block 1402 is controlled to scroll upward while keeping the text line that includes the currently broadcast word generally centrally vertically located on the AU device display so that the AU can simply train her eyes at the central portion of the display with the transcribed words scrolling through the field 1404. In this case, a properly trained AU would know that prior broadcast words can be replayed by tapping a word above field 1404 and that the broadcast can be skipped ahead by tapping one of the words below field 1404. Video window 1412 is provided spatially close to field 1404 so that the text presented therein is intuitively associated with the HU video in window 1412.
  • In at least some embodiments it is contemplated that when a CA replaces an ASR engine to generate text for some reason where the CA revoices an HU voice signal to the ASR engine to generate the text, instead of providing the voice signal re-voiced by the CA to an ASR engine at the relay, the CA revoicing signal may be routed to the ASR engine that was being used prior to convert the HU voice signal to text. Thus, for instance, where a system was transmitting an HU voice signal to a fourth party ASR engine provider when a CA takes over text generation via re-voicing, when the CA voices a word, the CA voice signal may be transmitted to the fourth party provider to generate transcribed text which is then transmitted back to the relay and on to the AU device for presentation.
  • To apprise the public of the scope of the present invention the following claims are made.

Claims (18)

What is claimed is:
1. A system for presenting substantially simultaneous voice and text to an assisted user (AU) during a voice conversation between the AU and a hearing user (HU), the hearing user using an HU device to talk to the assisted user, the system comprising:
an AU captioned device including a device processor;
a relay that includes a relay display, a relay speaker and a relay processor;
wherein, at least one of the device processor and the relay processor is programmed to perform the steps of:
(i) receiving an HU voice signal comprising a sequence of HU voice segments; and
(ii) assigning time stamps to each of the HU voice segments;
wherein, the relay processor is programmed to perform the steps of:
(i) generating text segments corresponding to each HU voice segment;
(ii) storing each HU voice segment along with a corresponding text segment and a corresponding time stamp in a memory device;
(iii) broadcasting the HU voice segments to a call assistant (CA) via the relay speaker; and
(iv) presenting each text segment via the relay display substantially contemporaneously with broadcast of the corresponding HU voice segment.
2. The system of claim 1 wherein the relay processor assigns at least a subset of the time stamps to the HU voice segments.
3. The system of claim 1 wherein the AU device assigns at least a subset of the time stamps to the HU voice segments.
4. The system of claim 3 wherein the relay processor receives the HU voice signal from the AU device.
5. The system of claim 4 wherein the AU device transmits the HU voice segments and associated time stamps to the relay processor.
6. The system of claim 5 wherein the relay further transmits the text segments along with the time stamps to the AU device processor.
7. The system of claim 6 wherein the AU device further includes a device display and a device speaker, the device processor further programmed to perform the steps of, broadcasting the HU voice segments to AU via the device speaker and presenting each text segment via the device display substantially contemporaneously with broadcast of the corresponding HU voice segment via the device speaker.
8. The system of claim 1 wherein the step of generating text segments includes an automatic speech recognition (ASR) engine automatically generating the text segments from the HU voice segments.
9. The system of claim 8 wherein the relay links to an ASR engine provider server that generates the text segments and that assigns the time stamps to each text segment.
10. The system of claim 1 wherein the AU device processor assigns time stamps to each text segment and the relay assigns time stamps to each text segment.
11. The system of claim 1 wherein the relay further includes a user interface, the relay processor further programmed to monitor the interface for selection of at least a word within a text segment displayed on the relay display and, upon selection of at least a word within the displayed text, halting broadcast of the HU voice signal and rebroadcasting the at least a word via the relay speaker.
12. The system of claim 7 wherein the AU device further includes a user interface, the device processor further programmed to monitor the interface for selection of at least a word within a text segment displayed on the device display and, upon selection of at least a word within the displayed text, halting broadcast of the HU voice signal via the device speaker and rebroadcasting the at least a word via the device speaker.
13. A system for presenting substantially simultaneous voice and text to an assisted user (AU) during a voice conversation between the AU and a hearing user (HU), the hearing user using an HU device to talk to the assisted user, the system comprising:
an AU captioned device including a device processor, a device display and a device speaker;
a relay that includes a relay processor;
wherein, at least one of the device processor and the relay processor is programmed to perform the steps of:
(i) receiving an HU voice signal comprising a sequence of HU voice segments; and
(ii) assigning time stamps to each of the HU voice segments;
wherein, the relay processor is programmed to perform the steps of:
(i) generating text segments corresponding to each HU voice segment; and
(ii) transmitting the text segments and time stamps to the AU device;
wherein, the device processor is programmed to perform the steps of:
(i) receiving the text segments and time stamps;
(ii) storing each HU voice segment along with a corresponding text segment and a corresponding time stamp in a memory device;
(iii) broadcasting the HU voice segments to the AU via the device speaker; and
(iv) presenting each text segment via the device display substantially contemporaneously with broadcast of the corresponding HU voice segment.
14. The system of claim 13 wherein the AU device further includes a user interface, the device processor further programmed to monitor the interface for selection of at least a word within a text segment displayed on the device display and, upon selection of at least a word within the displayed text, halting broadcast of the HU voice signal via the device speaker and rebroadcasting the at least a word via the device speaker.
15. The system of claim 13 wherein the relay transmits the text segments immediately upon generation and wherein the device processor presents the text segments immediately upon reception, the step of presenting each text segment commensurately including visually distinguishing the text segment corresponding to the currently broadcast HU voice segment.
16. The system of claim 13 wherein the relay feeds the HU voice signal to an automatic speech recognition (ASR) engine which generates the test segments, the relay further including a call assistant (CA) station that includes a relay display, a relay speaker and a relay user interface, a CA using the station to view the text segments on the relay display while listening to the HU voice signal, the device processor further programmed to monitor an AU device interface for selection of a text segment on the device display that is subsequent to the text segment corresponding to a currently broadcast text segment and, upon receiving the text segment selection, halting broadcast of the HU voice signal, identifying the HU voice segment associated with the selected text segment and broadcasting the identified HU voice segment via the device speaker.
17. The system of claim 16 wherein, upon receiving the text segment selection, transmitting a text segment selection signal to the relay processor, upon receiving the text segment selection signal, the relay processor halting broadcast of the HU voice signal, identifying the HU voice segment associated with the selected text segment and broadcasting the identified HU voice segment via the relay speaker.
18. A system for presenting substantially simultaneous voice and text to an assisted user (AU) during a voice conversation between the AU and a hearing user (HU), the hearing user using an HU device to talk to the assisted user, the system comprising:
an AU captioned device including a device processor, a device display and a device speaker;
a relay that includes a relay processor, a relay display and a relay speaker;
wherein, each of the AU device and the relay performs the steps of:
(i) receiving an HU voice signal comprising a sequence of HU voice segments; and
(ii) storing time stamps with each of the HU voice segments;
(iii) presenting the text segments via the displays;
wherein the relay processor is further programmed to perform the steps of:
(i) broadcasting each voice segment via the relay speaker substantially commensurate with presenting the corresponding text segment via the relay display;
wherein the device processor is further programmed to perform the steps of:
(i) broadcasting each voice segment via the device speaker substantially commensurate with presenting the corresponding text segment via the device display;
(ii) monitoring for a signal from the AU to skip ahead in the voice segment broadcast; and
(iii) upon receiving the signal to skip ahead, transmitting a skip ahead signal to the relay thereby causing the relay to automatically skip ahead in HU voice segment broadcast.
US15/729,069 2014-02-28 2017-10-10 Semiautomated Relay Method and Apparatus Abandoned US20180034961A1 (en)

Priority Applications (25)

Application Number Priority Date Filing Date Title
US15/729,069 US20180034961A1 (en) 2014-02-28 2017-10-10 Semiautomated Relay Method and Apparatus
US15/982,239 US20180270350A1 (en) 2014-02-28 2018-05-17 Semiautomated relay method and apparatus
US16/147,029 US11741963B2 (en) 2014-02-28 2018-09-28 Semiautomated relay method and apparatus
US16/422,662 US20190312973A1 (en) 2014-02-28 2019-05-24 Semiautomated relay method and apparatus
US16/537,196 US10917519B2 (en) 2014-02-28 2019-08-09 Semiautomated relay method and apparatus
US16/564,393 US20200007679A1 (en) 2014-02-28 2019-09-09 Semiautomated relay method and apparatus
US16/740,574 US11664029B2 (en) 2014-02-28 2020-01-13 Semiautomated relay method and apparatus
US16/740,582 US20200153958A1 (en) 2014-02-28 2020-01-13 Semiautomated relay method and apparatus
US16/842,231 US20200244800A1 (en) 2014-02-28 2020-04-07 Semiautomated relay method and apparatus
US16/858,201 US20200252507A1 (en) 2014-02-28 2020-04-24 Semiautomated relay method and apparatus
US17/018,634 US11368581B2 (en) 2014-02-28 2020-09-11 Semiautomated relay method and apparatus
US17/092,907 US20210058510A1 (en) 2014-02-28 2020-11-09 Semiautomated relay method and apparatus
US17/232,681 US20210234959A1 (en) 2014-02-28 2021-04-16 Semiautomated relay method and apparatus
US17/321,222 US20210274039A1 (en) 2014-02-28 2021-05-14 Semiautomated relay method and apparatus
US17/486,053 US20220014622A1 (en) 2014-02-28 2021-09-27 Semiautomated relay method and apparatus
US17/486,375 US20220014623A1 (en) 2014-02-28 2021-09-27 Semiautomated relay method and apparatus
US17/498,386 US20220028394A1 (en) 2014-02-28 2021-10-11 Semiautomated relay method and apparatus
US17/585,147 US20220150353A1 (en) 2014-02-28 2022-01-26 Semiautomated relay method and apparatus
US17/847,809 US20230005484A1 (en) 2014-02-28 2022-06-23 Semiautomated relay method and apparatus
US18/144,644 US12136425B2 (en) 2014-02-28 2023-05-08 Semiautomated relay method and apparatus
US18/219,889 US20230352028A1 (en) 2014-02-28 2023-07-10 Semiautomated relay method and apparatus
US18/545,214 US12136426B2 (en) 2014-02-28 2023-12-19 Semiautomated relay method and apparatus
US18/396,162 US20240127823A1 (en) 2014-02-28 2023-12-26 Semiautomated relay method and apparatus
US18/396,138 US20240127822A1 (en) 2014-02-28 2023-12-26 Semiautomated relay method and apparatus
US18/736,743 US20240321278A1 (en) 2014-02-28 2024-06-07 Semiautomated relay method and apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461946072P 2014-02-28 2014-02-28
US14/632,257 US10389876B2 (en) 2014-02-28 2015-02-26 Semiautomated relay method and apparatus
US14/953,631 US10878721B2 (en) 2014-02-28 2015-11-30 Semiautomated relay method and apparatus
US15/171,720 US10748523B2 (en) 2014-02-28 2016-06-02 Semiautomated relay method and apparatus
US15/729,069 US20180034961A1 (en) 2014-02-28 2017-10-10 Semiautomated Relay Method and Apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/171,720 Continuation-In-Part US10748523B2 (en) 2014-02-28 2016-06-02 Semiautomated relay method and apparatus

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US15/982,239 Continuation-In-Part US20180270350A1 (en) 2014-02-28 2018-05-17 Semiautomated relay method and apparatus
US16/537,196 Continuation US10917519B2 (en) 2014-02-28 2019-08-09 Semiautomated relay method and apparatus
US16/537,196 Continuation-In-Part US10917519B2 (en) 2014-02-28 2019-08-09 Semiautomated relay method and apparatus
US17/232,681 Continuation US20210234959A1 (en) 2014-02-28 2021-04-16 Semiautomated relay method and apparatus

Publications (1)

Publication Number Publication Date
US20180034961A1 true US20180034961A1 (en) 2018-02-01

Family

ID=61010743

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/729,069 Abandoned US20180034961A1 (en) 2014-02-28 2017-10-10 Semiautomated Relay Method and Apparatus
US16/537,196 Active US10917519B2 (en) 2014-02-28 2019-08-09 Semiautomated relay method and apparatus
US17/018,634 Active US11368581B2 (en) 2014-02-28 2020-09-11 Semiautomated relay method and apparatus
US17/232,681 Abandoned US20210234959A1 (en) 2014-02-28 2021-04-16 Semiautomated relay method and apparatus

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/537,196 Active US10917519B2 (en) 2014-02-28 2019-08-09 Semiautomated relay method and apparatus
US17/018,634 Active US11368581B2 (en) 2014-02-28 2020-09-11 Semiautomated relay method and apparatus
US17/232,681 Abandoned US20210234959A1 (en) 2014-02-28 2021-04-16 Semiautomated relay method and apparatus

Country Status (1)

Country Link
US (4) US20180034961A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170134580A1 (en) * 2012-01-26 2017-05-11 Zoom International S.R.O. Enhanced quality monitoring
US10192554B1 (en) 2018-02-26 2019-01-29 Sorenson Ip Holdings, Llc Transcription of communications using multiple speech recognition systems
US10325597B1 (en) 2018-10-08 2019-06-18 Sorenson Ip Holdings, Llc Transcription of communications
US20190196779A1 (en) * 2017-12-21 2019-06-27 Harman International Industries, Incorporated Intelligent personal assistant interface system
US10388272B1 (en) 2018-12-04 2019-08-20 Sorenson Ip Holdings, Llc Training speech recognition systems using word sequences
US10522138B1 (en) * 2019-02-11 2019-12-31 Groupe Allo Media SAS Real-time voice processing systems and methods
US10536286B1 (en) * 2017-12-13 2020-01-14 Amazon Technologies, Inc. Network conference management and arbitration via voice-capturing devices
US10536287B1 (en) 2017-12-13 2020-01-14 Amazon Technologies, Inc. Network conference management and arbitration via voice-capturing devices
US10536288B1 (en) 2017-12-13 2020-01-14 Amazon Technologies, Inc. Network conference management and arbitration via voice-capturing devices
US10573312B1 (en) * 2018-12-04 2020-02-25 Sorenson Ip Holdings, Llc Transcription generation from multiple speech recognition systems
US20200075013A1 (en) * 2018-08-29 2020-03-05 Sorenson Ip Holdings, Llc Transcription presentation
US10755729B2 (en) * 2016-11-07 2020-08-25 Axon Enterprise, Inc. Systems and methods for interrelating text transcript information with video and/or audio information
US10916258B2 (en) * 2017-06-30 2021-02-09 Telegraph Peak Technologies, LLC Audio channel monitoring by voice to keyword matching with notification
US10937415B2 (en) * 2016-06-15 2021-03-02 Sony Corporation Information processing device and information processing method for presenting character information obtained by converting a voice
CN112489649A (en) * 2020-11-25 2021-03-12 上海世茂物联网科技有限公司 Wireless voice control device, system and method
US11017778B1 (en) * 2018-12-04 2021-05-25 Sorenson Ip Holdings, Llc Switching between speech recognition systems
US20210210094A1 (en) * 2016-12-27 2021-07-08 Amazon Technologies, Inc. Messaging from a shared device
US20210304755A1 (en) * 2020-03-30 2021-09-30 Honda Motor Co., Ltd. Conversation support device, conversation support system, conversation support method, and storage medium
US20210319787A1 (en) * 2020-04-10 2021-10-14 International Business Machines Corporation Hindrance speech portion detection using time stamps
US11170761B2 (en) 2018-12-04 2021-11-09 Sorenson Ip Holdings, Llc Training of speech recognition systems
US11170782B2 (en) * 2019-04-08 2021-11-09 Speech Cloud, Inc Real-time audio transcription, video conferencing, and online collaboration system and methods
US20220107780A1 (en) * 2017-05-15 2022-04-07 Apple Inc. Multi-modal interfaces
US11438455B2 (en) * 2019-05-17 2022-09-06 Alberto Patron Method and system for providing captioned telephone services
US11483427B1 (en) * 2021-04-28 2022-10-25 Zoom Video Communications, Inc. Call recording authentication
US11488604B2 (en) 2020-08-19 2022-11-01 Sorenson Ip Holdings, Llc Transcription of audio
US11601548B2 (en) * 2019-05-17 2023-03-07 Beryl Burcher Captioned telephone services improvement
US20230169275A1 (en) * 2021-11-30 2023-06-01 Beijing Bytedance Network Technology Co., Ltd. Video processing method, video processing apparatus, and computer-readable storage medium
US11741964B2 (en) 2020-05-27 2023-08-29 Sorenson Ip Holdings, Llc Transcription generation technique selection
US12008989B2 (en) * 2018-04-25 2024-06-11 Kyocera Corporation Electronic apparatus and processing system
US12118999B2 (en) 2014-05-30 2024-10-15 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US12136419B2 (en) 2019-03-18 2024-11-05 Apple Inc. Multimodality in digital assistant systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389876B2 (en) 2014-02-28 2019-08-20 Ultratec, Inc. Semiautomated relay method and apparatus
US20180270350A1 (en) 2014-02-28 2018-09-20 Ultratec, Inc. Semiautomated relay method and apparatus
US10445052B2 (en) 2016-10-04 2019-10-15 Descript, Inc. Platform for producing and delivering media content
US10564817B2 (en) * 2016-12-15 2020-02-18 Descript, Inc. Techniques for creating and presenting media content
KR20210054800A (en) * 2019-11-06 2021-05-14 엘지전자 주식회사 Collecting user voice sample
US11539900B2 (en) 2020-02-21 2022-12-27 Ultratec, Inc. Caption modification and augmentation systems and methods for use by hearing assisted user

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005825A1 (en) * 1997-09-08 2001-06-28 Engelke Robert M. Real-time transcription correction system
US20060149558A1 (en) * 2001-07-17 2006-07-06 Jonathan Kahn Synchronized pattern recognition source data processed by manual or automatic means for creation of shared speaker-dependent speech user profile
US20070100634A1 (en) * 2001-02-16 2007-05-03 International Business Machines Corporation Tracking Time Using Portable Recorders and Speech Recognition
US20070274296A1 (en) * 2006-05-10 2007-11-29 Cross Charles W Jr Voip barge-in support for half-duplex dsr client on a full-duplex network

Family Cites Families (489)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3372246A (en) 1964-08-14 1968-03-05 Itt Waterproof pushbutton telephone subset
US3507997A (en) 1966-08-22 1970-04-21 Robert H Weitbrecht Frequency-shift teletypewriter
US3515814A (en) 1968-09-16 1970-06-02 Electronic Data Syst Corp Sequencer and selector for automatic voice tone transmission
US3585303A (en) 1968-10-21 1971-06-15 Alexander B Chieffo Telephone communication system for the deaf
US3598920A (en) 1969-10-28 1971-08-10 Bell Telephone Labor Inc Coin telephone facility for combined use by general public and physically handicapped
US3800089A (en) 1972-02-24 1974-03-26 Itt Hands-free emergency telephone system
US3959607A (en) 1972-11-24 1976-05-25 Christopher Anthony Vargo Communications booth with automatic accounting for telephone and booth usage
US3896267A (en) 1973-09-21 1975-07-22 Phonics Corp Telecommunications system for the hearing impaired utilizing baudot-ascii code selection
US3976995A (en) 1975-05-22 1976-08-24 Sanders Associates, Inc. Precessing display pager
USRE32365E (en) 1975-05-22 1987-03-03 Sanders Associates, Inc. Precessing display pager
US4012599A (en) 1975-07-29 1977-03-15 Jerome Charles Meyer Telephone communications system for the deaf
US4039768A (en) 1976-05-26 1977-08-02 Maley James B O Pay telephone station monitor system
DE2647097A1 (en) 1976-10-19 1978-04-20 Otto Graef Telephone base with sliding drawer - has place for personal telephone directory, note pad and pencil
US4268721A (en) 1977-05-02 1981-05-19 Sri International Portable telephone communication device for the hearing impaired
US4126768A (en) 1977-06-27 1978-11-21 Bell Telephone Laboratories, Incorporated Portable automatic number outpulser
FR2403697A1 (en) 1977-09-14 1979-04-13 Solere Fernand Table top telephone support - includes card index directory in drawer sliding forward from under phone
US4354252A (en) 1977-09-27 1982-10-12 Motorola, Inc. Programmable digital data terminal for mobile radio transceivers
DE2749923B2 (en) 1977-11-08 1981-07-16 Hörgeschädigten Technik Münster GmbH, 4400 Münster Device for written communication via the telephone network, in particular for the hearing impaired
US4188665A (en) 1977-11-29 1980-02-12 International Business Machines Corporation Programmable communications subsystem
US4191854A (en) 1978-01-06 1980-03-04 Coles George A Telephone-coupled visual alphanumeric communication device for deaf persons
US4201887A (en) 1978-05-11 1980-05-06 Cordura Marketing, Inc. Data telecommunications terminal
US4160136A (en) 1978-05-25 1979-07-03 Gte Automatic Electric Laboratories Incorporated Anti-vandalism arrangement for protecting the touch calling unit of a coin telephone
US4254308A (en) 1978-06-02 1981-03-03 Gladwin, Inc. Vandal resistant public telephone
US4151380A (en) 1978-06-02 1979-04-24 Gladwin, Inc. Post mounted public telephone
FR2432805A1 (en) 1978-08-04 1980-02-29 Mettling Willy Telephone receptacle and note-pad holder - provides firm fixing base for handset and convenient integral fixation for writing block
US4307266A (en) 1978-08-14 1981-12-22 Messina John D Communication apparatus for the handicapped
JPS5544283A (en) 1978-09-25 1980-03-28 Mitsutoshi Katsuyama Conversation unit
USD259348S (en) 1979-01-25 1981-05-26 Canon Kabushiki Kaisha Combined desk top electronic calculator and clock
US4302629A (en) 1979-03-14 1981-11-24 Teltone Corporation Digital data transmission system
IT1119498B (en) 1979-11-19 1986-03-10 Cselt Centro Studi Lab Telecom SYSTEM OF EXCHANGE AND DISCLOSURE OF INFORMATION BY MEANS OF THE TELEPHONE NETWORK OF DISTRIBUTION TO THE USER
US4289931A (en) 1979-11-28 1981-09-15 Micro-Tek, Inc. Security identification system using pulse code modulation
JPS5755649A (en) 1980-09-22 1982-04-02 Oki Electric Ind Co Ltd Telephone set for deaf and dumb person
US4471165A (en) 1980-10-28 1984-09-11 Pinetree Systems, Inc. Portable keyboard operated telecommunications system
US4451701A (en) 1980-10-30 1984-05-29 Oclc Online Computer Library Center, Incorporated Viewdata system and apparatus
US4415065A (en) 1980-11-17 1983-11-15 Sandstedt Gary O Restaurant or retail vending facility
US4569421A (en) 1980-11-17 1986-02-11 Sandstedt Gary O Restaurant or retail vending facility
US4430726A (en) 1981-06-18 1984-02-07 Bell Telephone Laboratories, Incorporated Dictation/transcription method and arrangement
USD275857S (en) 1981-08-12 1984-10-09 La Telephonie Industrielle Et Commerciale Telic Alcatel Data transmission terminal
US4503288A (en) 1981-08-31 1985-03-05 Novation, Inc. Intelligent telephone
USD273110S (en) 1981-11-23 1984-03-20 Teletype Corporation Teleprinter keyboard and telephone
US4426555A (en) 1982-01-18 1984-01-17 General Electric Company Telephone communications device for hearing-impaired person
CA1172344A (en) 1982-01-27 1984-08-07 Clifford D. Read Input/output device arrangements for terminals
JPS58134568A (en) 1982-02-05 1983-08-10 Hitachi Ltd Telephone system for person having difficulty in hearing
USD278435S (en) 1982-05-25 1985-04-16 Ricoh Company, Ltd. I/O Terminal for data communication
FR2538978B1 (en) 1982-12-29 1985-05-31 Grandmougin Michel TELEPHONE SET WITH BIDIRECTIONAL INFRARED LINK BETWEEN HANDSET AND FIXED MODULE CONNECTED TO A TELEPHONE LINE
US4490579A (en) 1983-04-15 1984-12-25 Vanig Godoshian Auto-dialing pager receiver
US4625080A (en) 1983-05-03 1986-11-25 Scott Michael M Remote video recorder programming apparatus operating over telephone lines
USD283421S (en) 1983-05-18 1986-04-15 Generale Electronique Europeenne Telephone
US4524244A (en) 1983-08-05 1985-06-18 Cygnet Technologies, Inc. Digital and voice telecommunication apparatus
US4659876A (en) 1983-08-30 1987-04-21 Spi Soft Pac International Audiographics communication system
US4568803A (en) 1984-02-23 1986-02-04 Pasquale Frola Inverted pyramid telephone booth
DE3410619A1 (en) 1984-03-22 1985-10-17 Siemens AG, 1000 Berlin und 8000 München Method for transmitting messages with the aid of a text card from a public telephone station
JPS60259058A (en) 1984-06-06 1985-12-21 Canon Inc Communication equipment
US4815121A (en) 1984-06-06 1989-03-21 Canon Kabushiki Kaisha Communication apparatus recognizing speech and automatically switching from data to speech transmission
USD280099S (en) 1984-07-06 1985-08-13 Multi-Tech Industries Corp. Telephone keypad for a combined radio, clock and telephone set
US4650927A (en) 1984-11-29 1987-03-17 International Business Machines Corporation Processor-assisted communication system using tone-generating telephones
US4713808A (en) 1985-11-27 1987-12-15 A T & E Corporation Watch pager system and communication protocol
US4908866A (en) 1985-02-04 1990-03-13 Eric Goldwasser Speech transcribing system
USD296894S (en) 1985-05-01 1988-07-26 Tie/Communications, Inc. Telephone station set
KR880700583A (en) 1985-08-16 1988-03-15 오라보 엠. 아제 베도 네토 Phone and Demodulator
US4754474A (en) 1985-10-21 1988-06-28 Feinson Roy W Interpretive tone telecommunication method and apparatus
GB2183880A (en) 1985-12-05 1987-06-10 Int Standard Electric Corp Speech translator for the deaf
JPH0740754B2 (en) 1986-03-04 1995-05-01 日本電気株式会社 Selective call receiver
US4799254A (en) 1986-06-30 1989-01-17 Wang Laboratories, Inc. Portable communication terminal for remote database query
US4866778A (en) 1986-08-11 1989-09-12 Dragon Systems, Inc. Interactive speech recognition apparatus
DE3632233A1 (en) 1986-09-23 1988-04-07 Siemens Ag Method and arrangement for avoiding faulty output of characters on a teletype machine
JPS63198466A (en) 1987-02-12 1988-08-17 Nec Corp Telephone set capable of transmitting voice and data simultaneously
US4777469A (en) 1987-07-17 1988-10-11 Ultratec, Inc. Public terminal receptacle
US4897868A (en) 1987-07-17 1990-01-30 Ultratec, Inc. Public terminal receptacle
US4849750A (en) 1987-10-20 1989-07-18 Telefind Corp. Paging receiver with dynamically programmable channel frequencies and functionality
US4817135A (en) 1987-11-24 1989-03-28 U.S. News Limited Partnership CRT mass-distribution, preprogrammed automatic dialing mechanism and related processes
US4868860A (en) 1988-02-22 1989-09-19 Telefind Corp. Paging system for entering pages by local telephone call
USD306727S (en) 1988-02-29 1990-03-20 Siemens Aktiengesellschaft Telephone set
US5051924A (en) 1988-03-31 1991-09-24 Bergeron Larry E Method and apparatus for the generation of reports
EP0342638B1 (en) 1988-05-17 1995-04-26 Casio Computer Company Limited Radio paging communication system
US5033088A (en) 1988-06-06 1991-07-16 Voice Processing Corp. Method and apparatus for effectively receiving voice input to a voice recognition system
US5099507A (en) 1988-09-20 1992-03-24 Casio Computer Co., Ltd. Auto-dialing apparatus and auto-dialing type paging receiver including improved calling functions
US4926460A (en) 1988-09-26 1990-05-15 Motorola, Inc. Universal PSTN page entry protocol
US4918723A (en) 1988-10-07 1990-04-17 Jerry R. Iggulden Keyboard to facsimile machine transmission system
US6075842A (en) 1988-10-11 2000-06-13 Ultratec, Inc. Text enhanced telephony
US6549611B2 (en) 1988-10-11 2003-04-15 Ultratec, Inc. Text enhanced telephony
US5432837A (en) 1992-05-20 1995-07-11 Ultratec, Inc. Telecommunication device for the deaf with automatic transmission capability
US5724405A (en) 1988-10-11 1998-03-03 Ultratec, Inc. Text enhanced telephony
US5081673A (en) 1988-10-11 1992-01-14 Engelke Robert M Voice bridge for relay center
US5027406A (en) 1988-12-06 1991-06-25 Dragon Systems, Inc. Method for interactive speech recognition and training
US5025442A (en) 1989-01-23 1991-06-18 Motorola, Inc. TDM/FDM communication system with pseudo-duplex capability
US4879738A (en) 1989-02-16 1989-11-07 Northern Telecom Limited Digital telephony card for use in an operator system
US4959847A (en) 1989-04-05 1990-09-25 Ultratec, Inc. Telecommunications device with automatic code detection and switching
JPH031748A (en) 1989-05-30 1991-01-08 Sharp Corp Data communication equipment
USD312457S (en) 1989-07-17 1990-11-27 Transaction Technology, Inc. Telephone computer instrument or similar article
KR920009226B1 (en) 1989-09-08 1992-10-15 삼성전자 주식회사 Telephone apparatus and control method
US4995077A (en) 1989-10-30 1991-02-19 Malinowski Igor P Card-like device having a microprocessor and speaker for communicating with a telephone line
US5091906A (en) 1989-12-18 1992-02-25 Motorola, Inc. Quasi-duplex radio system using bi-directional hole extension
US5146502A (en) 1990-02-26 1992-09-08 Davis, Van Nortwick & Company Speech pattern correction device for deaf and voice-impaired
US5339358A (en) 1990-03-28 1994-08-16 Danish International, Inc. Telephone keypad matrix
USD322785S (en) 1990-10-26 1991-12-31 Kingtel Telecommunication Corp. Telephone set
US5163081A (en) 1990-11-05 1992-11-10 At&T Bell Laboratories Automated dual-party-relay telephone system
US5134633A (en) 1990-11-30 1992-07-28 At&T Bell Laboratories Digital communications synchronization scheme
US5121421A (en) 1990-12-13 1992-06-09 Alheim Curtis C Interactive telephone communication system for hearing-impaired person
US5210689A (en) 1990-12-28 1993-05-11 Semantic Compaction Systems System and method for automatically selecting among a plurality of input modes
KR940001431B1 (en) 1991-01-19 1994-02-23 삼성전자 주식회사 Automatic dialing system
JPH04248596A (en) 1991-02-04 1992-09-04 Seiko Epson Corp Speech recognition correcting device
US5426706A (en) 1991-03-28 1995-06-20 Wood; William H. Remote simultaneous interpretation system
US5249220A (en) 1991-04-18 1993-09-28 Rts Electronics, Inc. Handheld facsimile and alphanumeric message transceiver operating over telephone or wireless networks
US5377263A (en) 1991-05-01 1994-12-27 Dial One Fastcard Telephone dialer card
CA2042068C (en) 1991-05-08 1995-03-21 Gez Microsystems, Inc. Telephone dialler with fast access telephone directory and "call back" feature
JPH0530010A (en) 1991-07-22 1993-02-05 Mitsubishi Electric Corp Radio equipment
US5214428A (en) 1991-09-18 1993-05-25 Gregory Allen Data input grid for computer
US5199077A (en) 1991-09-19 1993-03-30 Xerox Corporation Wordspotting for voice editing and indexing
US5192948A (en) 1991-11-04 1993-03-09 Mobil Oil Corporation Geophone borehole cable
US5294982A (en) 1991-12-24 1994-03-15 National Captioning Institute, Inc. Method and apparatus for providing dual language captioning of a television program
US5475798A (en) 1992-01-06 1995-12-12 Handlos, L.L.C. Speech-to-text translator
US6075841A (en) 1992-01-09 2000-06-13 Ultratec, Inc. In-line text display for telephone terminal employing data filtering
US5318340A (en) 1992-02-05 1994-06-07 Yorkshire Industries, Inc. Conference center
US5216702A (en) 1992-02-27 1993-06-01 At&T Bell Laboratories Nonintrusive speech level and dynamic noise measurements
US5307399A (en) 1992-03-06 1994-04-26 Glenayre Electronics, Inc. Paging system that allows caller/subscriber interconnection
US5410541A (en) 1992-05-04 1995-04-25 Ivon International, Inc. System for simultaneous analog and digital communications over an analog channel
AU4252493A (en) 1992-05-20 1993-12-13 Ultratec, Inc. Telecommunication device operating under an enhanced TDD protocol
US5327479A (en) 1992-05-20 1994-07-05 Ultratec, Inc. Telecommunication device for the deaf with interrupt and pseudo-duplex capability
US5325417A (en) 1992-05-20 1994-06-28 Ultratec, Inc. Telecommunication device for the deaf with automatic self-identification
US5311516A (en) 1992-05-29 1994-05-10 Motorola, Inc. Paging system using message fragmentation to redistribute traffic
USD351185S (en) 1992-06-25 1994-10-04 Casio Computer Co., Ltd. Combined electronic calculator and battery tester
US5289523A (en) 1992-07-31 1994-02-22 At&T Bell Laboratories Telecommunications relay service method and apparatus
GB9217313D0 (en) 1992-08-14 1992-09-30 British Broadcasting Corp Method and apparatus for attenuating an unwnated signal in a mix of signals
US5393236A (en) 1992-09-25 1995-02-28 Northeastern University Interactive speech pronunciation apparatus and method
US5392343A (en) 1992-11-10 1995-02-21 At&T Corp. On demand language interpretation in a telecommunications system
US5920836A (en) 1992-11-13 1999-07-06 Dragon Systems, Inc. Word recognition system using language context at current cursor position to affect recognition probabilities
JP2664611B2 (en) 1992-11-18 1997-10-15 三洋電機株式会社 Closed caption decoder and television receiver having the same
US5574784A (en) 1992-11-20 1996-11-12 Lucent Technologies Inc. Dynamic admission control for telecommunications relay service with text-to-speech synthesis
US5487102A (en) 1992-12-10 1996-01-23 Volt Information Sciences, Inc. Voice interface board for use in an operator system
US5487671A (en) 1993-01-21 1996-01-30 Dsp Solutions (International) Computerized system for teaching speech
US5519808A (en) 1993-03-10 1996-05-21 Lanier Worldwide, Inc. Transcription interface for a word processing station
US5423555A (en) 1993-04-14 1995-06-13 Kidrin; Thom Interactive television and video game system
US5522089A (en) 1993-05-07 1996-05-28 Cordata, Inc. Personal digital assistant module adapted for initiating telephone communications through DTMF dialing
US5375160A (en) 1993-05-28 1994-12-20 Ledler Corporation Interface apparatus for effecting captioning and communications between a telephone line and a television
US5537436A (en) 1993-06-14 1996-07-16 At&T Corp. Simultaneous analog and digital communication applications
EP0705472B1 (en) 1993-06-23 2000-05-10 Noise Cancellation Technologies, Inc. Variable gain active noise cancellation system with improved residual noise sensing
EP0658298A4 (en) 1993-07-06 1999-04-21 Motorola Inc Virtual pager for general purpose data terminal.
US5343519A (en) 1993-09-07 1994-08-30 Peter Feldman Autodialer with pin feature
USD357253S (en) 1993-09-29 1995-04-11 Star Paging (Communications Equipment) Manufacturing Ltd. Chinese/English financial pager
JP2986345B2 (en) 1993-10-18 1999-12-06 インターナショナル・ビジネス・マシーンズ・コーポレイション Voice recording indexing apparatus and method
US5566272A (en) 1993-10-27 1996-10-15 Lucent Technologies Inc. Automatic speech recognition (ASR) processing using confidence measures
US5745550A (en) 1993-11-04 1998-04-28 At&T Multiply accommodated message relaying for hearing impaired callers
US5475733A (en) 1993-11-04 1995-12-12 At&T Corp. Language accommodated message relaying for hearing impaired callers
US5463665A (en) 1993-11-04 1995-10-31 At&T Corp. Relaying of messages between hearing impaired callers using keyboards and other callers
US5574776A (en) 1993-12-13 1996-11-12 Lucent Technologies Inc. Call redirection feature for relay services
WO1995019086A1 (en) 1994-01-11 1995-07-13 Physicians World Communications Group Telecommunications conferencing/communications apparatus and method
GB2285895A (en) 1994-01-19 1995-07-26 Ibm Audio conferencing system which generates a set of minutes
US5497373A (en) 1994-03-22 1996-03-05 Ericsson Messaging Systems Inc. Multi-media interface
US5508754A (en) 1994-03-22 1996-04-16 National Captioning Institute System for encoding and displaying captions for television programs
US5424785A (en) 1994-03-22 1995-06-13 National Captioning Institute System for encoding and displaying captions for television programs
SE513456C2 (en) 1994-05-10 2000-09-18 Telia Ab Method and device for speech to text conversion
US5604786A (en) 1994-06-10 1997-02-18 Ultratec, Inc. Telephone with unified features for hearing and deaf users
USD364865S (en) 1994-06-10 1995-12-05 Ultratec, Inc. Text telephone
US5581593A (en) 1994-06-10 1996-12-03 Ultratec, Inc. Combination telephone and alphanumeric entry device
US5905476A (en) 1994-07-05 1999-05-18 Nxi Communications, Inc. ITU/TDD modem
US5687222A (en) 1994-07-05 1997-11-11 Nxi Communications, Inc. ITU/TDD modem
US5710806A (en) 1994-09-22 1998-01-20 Ameri Phone, Inc. Telecommunications device for the hearing impaired with telephone, text communication and answering, and automated voice carryover
US5521960A (en) 1994-10-03 1996-05-28 Aronow; Alan H. Interactive telephonic device for `VCO` relay communication
US5809112A (en) 1994-10-18 1998-09-15 Sprint Communications Co., L.P. Telecommunications relay system
US5559855A (en) 1994-11-29 1996-09-24 Lucent Technologies Inc. System and method for recognizing and routing telephone calls involving hearing or speech impaired persons
US5559856A (en) 1994-11-29 1996-09-24 Lucent Technologies Inc. System and method for recognizing and routing telephone calls involving hearing or speech impaired persons
US5893034A (en) 1994-12-09 1999-04-06 Uniden Corporation Cordless parent/slave telephone set with improved sidetone handling
US5826102A (en) 1994-12-22 1998-10-20 Bell Atlantic Network Services, Inc. Network arrangement for development delivery and presentation of multimedia applications using timelines to integrate multimedia objects and program objects
US5671267A (en) 1994-12-30 1997-09-23 Lucent Technologies Inc. Interactive system for communications between a cordless telephone and a remotely operated device
US5751338A (en) 1994-12-30 1998-05-12 Visionary Corporate Technologies Methods and systems for multimedia communications via public telephone networks
US5809425A (en) 1995-01-03 1998-09-15 Ultratec, Inc. Gateway for low cost alphanumeric paging entry system
US5978654A (en) 1995-01-03 1999-11-02 Ultratec, Inc. Alphanumeric paging entry system
US5828730A (en) 1995-01-19 1998-10-27 Sten-Tel, Inc. Method and apparatus for recording and managing communications for transcription
US5982853A (en) 1995-03-01 1999-11-09 Liebermann; Raanan Telephone for the deaf and method of using same
US5701338A (en) 1995-04-11 1997-12-23 Dnb Dataware Sciences, Inc. Technologies Call box with keyboard communication
US5883986A (en) 1995-06-02 1999-03-16 Xerox Corporation Method and system for automatic transcription correction
USD379181S (en) 1995-08-28 1997-05-13 Casio Computer Co., Ltd. Combined pager, telephone dialer and electronic calculator having the functions of telephone book, address book, calendar, schedule book and memo book
US6181778B1 (en) 1995-08-30 2001-01-30 Hitachi, Ltd. Chronological telephone system
US5855000A (en) 1995-09-08 1998-12-29 Carnegie Mellon University Method and apparatus for correcting and repairing machine-transcribed input using independent or cross-modal secondary input
US5680443A (en) 1995-11-08 1997-10-21 At & T Smart messages and smart macros for telecommunications relay service (TRS) and operator services for deaf (OSD)
US5799279A (en) 1995-11-13 1998-08-25 Dragon Systems, Inc. Continuous speech recognition of text and commands
US5870709A (en) 1995-12-04 1999-02-09 Ordinate Corporation Method and apparatus for combining information from speech signals for adaptive interaction in teaching and testing
JP3644108B2 (en) 1995-12-19 2005-04-27 ソニー株式会社 Call system, connection device, communication terminal device, and call method
US5787148A (en) 1995-12-28 1998-07-28 At&T Corp. Enhanced telecommunications relay service
US5815196A (en) 1995-12-29 1998-09-29 Lucent Technologies Inc. Videophone with continuous speech-to-subtitles translation
US6052454A (en) 1996-01-16 2000-04-18 Global Tel*Link Corp. Telephone apparatus with recording of phone conversations on massive storage
US7088832B1 (en) 1996-03-14 2006-08-08 Cooper J Carl IFB system apparatus and method
AU725370C (en) 1996-06-18 2003-01-02 Cranberry Properties, Llc Integrated voice, facsimile and electronic mail messaging system
US5712901A (en) 1996-06-26 1998-01-27 Mci Communications Corporation Automatic voice/text translation of phone mail messages
CA2259175A1 (en) 1996-06-27 1997-12-31 Mci Communications Corporation Wireless smart phone
US5917888A (en) 1996-06-28 1999-06-29 Mci Communications Corporation System and method for enhanced telecommunications relay service with easy extension feature
US5926527A (en) 1996-08-14 1999-07-20 At&T Corp. Telephone relay system
US5867817A (en) 1996-08-19 1999-02-02 Virtual Vision, Inc. Speech recognition manager
US7191135B2 (en) 1998-04-08 2007-03-13 Symbol Technologies, Inc. Speech recognition system and method for employing the same
US5982861A (en) 1996-08-28 1999-11-09 Marlee Electronics Corporation Electronic directory and entry control system
GB2302199B (en) 1996-09-24 1997-05-14 Allvoice Computing Plc Data processing method and apparatus
US6141415A (en) 1996-10-11 2000-10-31 Texas Instruments Incorporated Method and apparatus for detecting speech at a near-end of a communications system, a speaker-phone system, or the like
US5899976A (en) 1996-10-31 1999-05-04 Microsoft Corporation Method and system for buffering recognized words during speech recognition
CA2199312A1 (en) 1997-03-06 1998-09-06 Alphanet Telecom Inc. Telephone call transcription with electronic delivery
US5881723A (en) 1997-03-14 1999-03-16 Nellcor Puritan Bennett Incorporated Ventilator breath display and graphic user interface
US6181736B1 (en) 1997-03-25 2001-01-30 Nxi Communications, Inc. Network communication system
US6173259B1 (en) 1997-03-27 2001-01-09 Speech Machines Plc Speech to text conversion
GB2323693B (en) 1997-03-27 2001-09-26 Forum Technology Ltd Speech to text conversion
US6445799B1 (en) 1997-04-03 2002-09-03 Gn Resound North America Corporation Noise cancellation earpiece
US6067516A (en) 1997-05-09 2000-05-23 Siemens Information Speech and text messaging system with distributed speech recognition and speaker database transfers
US5940475A (en) 1997-05-30 1999-08-17 Northern Telecom Limited Telephone system integrated text based communication apparatus and system to enhance access for TDD and/or TTY devices
US6002749A (en) 1997-05-30 1999-12-14 Nortel Networks Corporation Telephone system integrated text based communication apparatus and systems to establish communication links to TDD and/or TTY devices and other telephone and text server systems
GB2327173B (en) 1997-07-09 2002-05-22 Ibm Voice recognition of telephone conversations
US5909482A (en) 1997-09-08 1999-06-01 Ultratec, Inc. Relay for personal interpreter
US6493426B2 (en) 1997-09-08 2002-12-10 Ultratec, Inc. Relay for personal interpreter
US6594346B2 (en) 1997-09-08 2003-07-15 Ultratec, Inc. Relay for personal interpreter
US6603835B2 (en) 1997-09-08 2003-08-05 Ultratec, Inc. System for text assisted telephony
USD405793S (en) 1997-09-09 1999-02-16 Engelke Robert M Paging message device
US6188429B1 (en) 1997-09-19 2001-02-13 Netergy Networks, Inc Video TTY device and method for videocommunication
US5978014A (en) 1997-09-19 1999-11-02 8×8, Inc. Video TTY device and method for videoconferencing
US6317716B1 (en) 1997-09-19 2001-11-13 Massachusetts Institute Of Technology Automatic cueing of speech
US6850609B1 (en) 1997-10-28 2005-02-01 Verizon Services Corp. Methods and apparatus for providing speech recording and speech transcription services
US6493447B1 (en) 1997-11-21 2002-12-10 Mci Communications Corporation Contact server for call center for syncronizing simultaneous telephone calls and TCP/IP communications
GB2333416A (en) 1998-01-17 1999-07-21 Ibm Text and speech conversion in telephony network
US5995590A (en) 1998-03-05 1999-11-30 International Business Machines Corporation Method and apparatus for a communication device for use by a hearing impaired/mute or deaf person or in silent environments
US6075534A (en) 1998-03-26 2000-06-13 International Business Machines Corporation Multiple function graphical user interface minibar for speech recognition
WO1999052237A1 (en) 1998-04-03 1999-10-14 Vertical Networks Inc. System and method for transmitting voice and data using intelligent bridged tdm and packet buses
US5974116A (en) 1998-07-02 1999-10-26 Ultratec, Inc. Personal interpreter
US6389114B1 (en) 1998-08-06 2002-05-14 At&T Corp. Method and apparatus for relaying communication
US6457031B1 (en) 1998-09-02 2002-09-24 International Business Machines Corp. Method of marking previously dictated text for deferred correction in a speech recognition proofreader
US6141341A (en) 1998-09-09 2000-10-31 Motorola, Inc. Voice over internet protocol telephone system and method
US6175819B1 (en) 1998-09-11 2001-01-16 William Van Alstine Translating telephone
US7003463B1 (en) 1998-10-02 2006-02-21 International Business Machines Corporation System and method for providing network coordinated conversational services
US6430270B1 (en) 1998-10-29 2002-08-06 Agere Systems Guardian Corp. Automatic conversational record
US6314396B1 (en) 1998-11-06 2001-11-06 International Business Machines Corporation Automatic gain control in a speech recognition system
US6381472B1 (en) 1998-12-21 2002-04-30 Bell Atlantic Mobile, Inc. TDD/TTY-digital access
US6507735B1 (en) 1998-12-23 2003-01-14 Nortel Networks Limited Automated short message attendant
US6473778B1 (en) 1998-12-24 2002-10-29 At&T Corporation Generating hypermedia documents from transcriptions of television programs using parallel text alignment
US6385586B1 (en) 1999-01-28 2002-05-07 International Business Machines Corporation Speech recognition text-based language conversion and text-to-speech in a client-server configuration to enable language translation devices
WO2000045574A1 (en) 1999-01-29 2000-08-03 International Thinklink Corporation Apparatus and method for channel-transparent multimedia broadcast messaging
US6324507B1 (en) 1999-02-10 2001-11-27 International Business Machines Corp. Speech recognition enrollment for non-readers and displayless devices
US6243684B1 (en) 1999-02-19 2001-06-05 Usada, Inc. Directory assistance system and method utilizing a speech recognition system and a live operator
TR200102364T2 (en) 1999-02-19 2002-06-21 Custom Speech Usa, Inc. Method using automated transcription system and two speech conversion expeditions and computer-assisted correction.
US6351523B1 (en) 1999-03-22 2002-02-26 Sharp Laboratories Of America, Inc. Method and apparatus for management of EMail originated by thin client devices
US7164753B2 (en) 1999-04-08 2007-01-16 Ultratec, Incl Real-time transcription correction system
JP3980791B2 (en) 1999-05-03 2007-09-26 パイオニア株式会社 Man-machine system with speech recognition device
US6298326B1 (en) 1999-05-13 2001-10-02 Alan Feller Off-site data entry system
US6345251B1 (en) 1999-06-15 2002-02-05 Telefonaktiebolaget Lm Ericsson (Publ) Low-rate speech coder for non-speech data transmission
US6374221B1 (en) 1999-06-22 2002-04-16 Lucent Technologies Inc. Automatic retraining of a speech recognizer while using reliable transcripts
US6704709B1 (en) 1999-07-28 2004-03-09 Custom Speech Usa, Inc. System and method for improving the accuracy of a speech recognition program
US6865258B1 (en) 1999-08-13 2005-03-08 Intervoice Limited Partnership Method and system for enhanced transcription
US20020055351A1 (en) 1999-11-12 2002-05-09 Elsey Nicholas J. Technique for providing personalized information and communications services
US6816468B1 (en) 1999-12-16 2004-11-09 Nortel Networks Limited Captioning for tele-conferences
US6377925B1 (en) 1999-12-16 2002-04-23 Interactive Solutions, Inc. Electronic translator for assisting communications
US6816469B1 (en) 1999-12-30 2004-11-09 At&T Corp. IP conference call waiting
US6760697B1 (en) 2000-01-25 2004-07-06 Minds And Technology, Inc. Centralized processing of digital speech data originated at the network clients of a set of servers
US6813603B1 (en) 2000-01-26 2004-11-02 Korteam International, Inc. System and method for user controlled insertion of standardized text in user selected fields while dictating text entries for completing a form
WO2001058165A2 (en) 2000-02-03 2001-08-09 Fair Disclosure Financial Network, Inc. System and method for integrated delivery of media and associated characters, such as audio and synchronized text transcription
US6625259B1 (en) 2000-03-29 2003-09-23 Rockwell Electronic Commerce Corp. Packet telephony gateway for hearing impaired relay services
US6564213B1 (en) 2000-04-18 2003-05-13 Amazon.Com, Inc. Search query autocompletion
ATE398874T1 (en) 2000-05-17 2008-07-15 Symstream Technology Holdings OCTAVE PULSE DATA CODING AND DECODING METHOD AND APPARATUS
US7117152B1 (en) 2000-06-23 2006-10-03 Cisco Technology, Inc. System and method for speech recognition assisted voice communications
US7047192B2 (en) * 2000-06-28 2006-05-16 Poirier Darrell A Simultaneous multi-user real-time speech recognition system
JP3581881B2 (en) 2000-07-13 2004-10-27 独立行政法人産業技術総合研究所 Voice complement method, apparatus and recording medium
US6661879B1 (en) 2000-07-19 2003-12-09 Xtend Communications Corp. System and method for recording telephonic communications
US6668044B1 (en) 2000-07-19 2003-12-23 Xtend Communications Corp. System and method for recording telephonic communications
US6424935B1 (en) 2000-07-31 2002-07-23 Micron Technology, Inc. Two-way speech recognition and dialect system
US6701162B1 (en) 2000-08-31 2004-03-02 Motorola, Inc. Portable electronic telecommunication device having capabilities for the hearing-impaired
US7287009B1 (en) 2000-09-14 2007-10-23 Raanan Liebermann System and a method for carrying out personal and business transactions
GB2382744B (en) 2000-09-19 2004-06-02 Ultratec Inc Relay for personal interpreter
US7747434B2 (en) 2000-10-24 2010-06-29 Speech Conversion Technologies, Inc. Integrated speech recognition, closed captioning, and translation system and method
US7130790B1 (en) 2000-10-24 2006-10-31 Global Translations, Inc. System and method for closed caption data translation
US6831974B1 (en) 2000-10-30 2004-12-14 Sprint Communications Company L.P. System and method for providing a caller identification to a called party for calls relayed through a call center
US6980953B1 (en) 2000-10-31 2005-12-27 International Business Machines Corp. Real-time remote transcription or translation service
US20020089470A1 (en) 2000-11-22 2002-07-11 Mithila Raman Real time internet transcript presentation system
US6950500B1 (en) 2000-11-28 2005-09-27 Sprint Communications Company L.P. Internet-based and network-based relay center access for the hearing and speech impaired
US6775360B2 (en) 2000-12-28 2004-08-10 Intel Corporation Method and system for providing textual content along with voice messages
US20020085703A1 (en) 2001-01-02 2002-07-04 Proctor Rod L. Facility and method for cellular data communication between hearing impaired users and emergency service centers
US20020094800A1 (en) 2001-01-16 2002-07-18 David Trop Paging system with 'calling party pays' and other advanced features
US6948066B2 (en) 2001-01-17 2005-09-20 International Business Machines Corporation Technique for establishing provable chain of evidence
US6668042B2 (en) 2001-01-24 2003-12-23 Avaya Technology Corp. Telephone handset for mixed-mode voice-and-TDD communication
US20020103008A1 (en) 2001-01-29 2002-08-01 Rahn Michael D. Cordless communication between PDA and host computer using cradle
US7221405B2 (en) 2001-01-31 2007-05-22 International Business Machines Corporation Universal closed caption portable receiver
US6882707B2 (en) 2001-02-21 2005-04-19 Ultratec, Inc. Method and apparatus for training a call assistant for relay re-voicing
US7076270B2 (en) 2001-02-28 2006-07-11 Dell Products L.P. Docking station for wireless communication device
US7363006B2 (en) 2001-03-14 2008-04-22 Agere Systems Inc. Cell phone extension using wireless piconet
US20040066926A1 (en) 2001-03-20 2004-04-08 Brockbank Robert G Computer telephony integration
US6665385B2 (en) 2001-04-23 2003-12-16 Cardionet, Inc. Medical monitoring system having multipath communications capability
US6820055B2 (en) * 2001-04-26 2004-11-16 Speche Communications Systems and methods for automated audio transcription, translation, and transfer with text display software for manipulating the text
US20020178001A1 (en) 2001-05-23 2002-11-28 Balluff Jeffrey A. Telecommunication apparatus and methods
US6973428B2 (en) * 2001-05-24 2005-12-06 International Business Machines Corporation System and method for searching, analyzing and displaying text transcripts of speech after imperfect speech recognition
US6504910B1 (en) 2001-06-07 2003-01-07 Robert Engelke Voice and text transmission system
DE10138408A1 (en) 2001-08-04 2003-02-20 Philips Corp Intellectual Pty Method for assisting the proofreading of a speech-recognized text with a reproduction speed curve adapted to the recognition reliability
KR100474724B1 (en) 2001-08-04 2005-03-08 삼성전자주식회사 Apparatus having touch screen and external display device using method therefor
US8416925B2 (en) 2005-06-29 2013-04-09 Ultratec, Inc. Device independent text captioned telephone service
US7881441B2 (en) 2005-06-29 2011-02-01 Ultratec, Inc. Device independent text captioned telephone service
JP2003067300A (en) 2001-08-29 2003-03-07 Nec Corp E-mail generation method by voice recognition processing
US20030065503A1 (en) 2001-09-28 2003-04-03 Philips Electronics North America Corp. Multi-lingual transcription system
US20030063731A1 (en) 2001-09-28 2003-04-03 Woodring Larry D. Systems and methods for recording and providing enhanced caller information in an advanced intelligent network
US7233655B2 (en) 2001-10-03 2007-06-19 Accenture Global Services Gmbh Multi-modal callback
US6763089B2 (en) 2001-10-12 2004-07-13 Nortel Networks Limited System for enabling TDD communication in a telephone network and method for using same
US20030097262A1 (en) 2001-11-20 2003-05-22 Gateway, Inc. Handheld device having speech-to text conversion functionality
US20030160755A1 (en) 2002-02-28 2003-08-28 Palm, Inc. Detachable expandable flexible display
KR100421152B1 (en) 2002-01-21 2004-03-04 삼성전자주식회사 Acoustic echo cancellation method and apparatus in a communication system for tty/tdd service
US8265931B2 (en) 2002-01-22 2012-09-11 At&T Intellectual Property Ii, L.P. Method and device for providing speech-to-text encoding and telephony service
JP2003228445A (en) 2002-02-04 2003-08-15 Sony Corp Personal digital assistant, and lock control system
US7236580B1 (en) 2002-02-20 2007-06-26 Cisco Technology, Inc. Method and system for conducting a conference call
JP2003345379A (en) 2002-03-20 2003-12-03 Japan Science & Technology Corp Audio video conversion apparatus and method, and audio video conversion program
DE10220524B4 (en) 2002-05-08 2006-08-10 Sap Ag Method and system for processing voice data and recognizing a language
US6778824B2 (en) 2002-06-19 2004-08-17 Telular Corp. Apparatus for wirelessly-coupling a bluetooth-wireless cellular mobile handset to a docking station for connecting a standard telephone set to the cellular network
AU2003256313A1 (en) 2002-06-26 2004-01-19 William Ii Harbison A method for comparing a transcribed text file with a previously created file
US6885731B2 (en) 2002-07-29 2005-04-26 Robert M. Engelke Captioned telephone with emergency access feature
US7099440B2 (en) 2003-09-24 2006-08-29 Avaya Technology Corp. Apparatus and method for providing service for TTY and voice transmission
US7016844B2 (en) 2002-09-26 2006-03-21 Core Mobility, Inc. System and method for online transcription services
US8494859B2 (en) 2002-10-15 2013-07-23 Gh, Llc Universal processing system and methods for production of outputs accessible by people with disabilities
US6816834B2 (en) 2002-10-23 2004-11-09 Jon Jaroker System and method for secure real-time high accuracy speech to text conversion of general quality speech
US7430283B2 (en) 2002-11-06 2008-09-30 Omega Products Corporation Internet access to telecommunications relay service
JP2004200391A (en) 2002-12-18 2004-07-15 Hitachi Ltd Semiconductor device
CA2516941A1 (en) 2003-02-19 2004-09-02 Custom Speech Usa, Inc. A method for form completion using speech recognition and text comparison
US7844454B2 (en) 2003-03-18 2010-11-30 Avaya Inc. Apparatus and method for providing voice recognition for multiple speakers
US7170977B2 (en) 2003-04-01 2007-01-30 Fairleigh Dickinson University Telephone interface for a handicapped individual
US9710819B2 (en) 2003-05-05 2017-07-18 Interactions Llc Real-time transcription system utilizing divided audio chunks
EP1620777A4 (en) 2003-05-05 2009-11-25 Interactions Llc Apparatus and method for processing service interactions
DE10328884A1 (en) 2003-06-26 2005-02-10 Living Byte Software Gmbh Call-back function implementation method in which a range of call-back functions are provided via a host server and Internet connection with an appropriate web page interface for configuring the call-back service
KR100641754B1 (en) 2003-07-02 2006-11-02 나현욱 Method of providing user's message for broadcasting equipment and apparatus thereof
US7313231B2 (en) 2003-09-02 2007-12-25 At&T Bls Intellectual Property, Inc. Methods, apparatus and computer program products for routing phone calls to a PSTN or a packet switched network based on called number
US7346506B2 (en) 2003-10-08 2008-03-18 Agfa Inc. System and method for synchronized text display and audio playback
US7142642B2 (en) 2003-11-04 2006-11-28 Mci, Llc Systems and methods for facilitating communications involving hearing-impaired parties
US7315612B2 (en) 2003-11-04 2008-01-01 Verizon Business Global Llc Systems and methods for facilitating communications involving hearing-impaired parties
US7236574B2 (en) 2003-11-04 2007-06-26 Verizon Business Global Llc Method and system for providing communication services for hearing-impaired parties
US20050144012A1 (en) 2003-11-06 2005-06-30 Alireza Afrashteh One button push to translate languages over a wireless cellular radio
US7912036B2 (en) 2004-02-12 2011-03-22 Verizon Business Global Llc Provision of telephony caller ID service via common instant communications clients
US7792701B2 (en) 2004-02-13 2010-09-07 International Business Machines Corporation Method and computer program product for providing accessibility services on demand
US8515024B2 (en) 2010-01-13 2013-08-20 Ultratec, Inc. Captioned telephone service
CA2556933C (en) 2004-02-18 2013-10-22 Ultratec, Inc. Captioned telephone service
EP1589757A1 (en) 2004-03-24 2005-10-26 Siemens Aktiengesellschaft Teletext for video telephony: system, method and apparatus
US20050226398A1 (en) 2004-04-09 2005-10-13 Bojeun Mark C Closed Captioned Telephone and Computer System
US20050232169A1 (en) 2004-04-16 2005-10-20 Nxi Communications, Inc. System and method for providing telecommunication relay services
US7016479B2 (en) 2004-04-23 2006-03-21 Sorenson Communications, Inc. Method and system for call restoration in a video relay service
US20050277431A1 (en) 2004-06-14 2005-12-15 Sbc Knowledge Ventures, Lp System and method for managing wireless data communications
US7899492B2 (en) 2004-07-16 2011-03-01 Sellerbid, Inc. Methods, systems and apparatus for displaying the multimedia information from wireless communication networks
US7818175B2 (en) 2004-07-30 2010-10-19 Dictaphone Corporation System and method for report level confidence
US8682672B1 (en) 2004-09-17 2014-03-25 On24, Inc. Synchronous transcript display with audio/video stream in web cast environment
US7650628B2 (en) 2004-10-21 2010-01-19 Escription, Inc. Transcription data security
US7904113B2 (en) 2004-11-12 2011-03-08 Interdigital Technology Corporation Method and apparatus for detecting and selectively utilizing peripheral devices
US7436300B2 (en) 2004-11-12 2008-10-14 Microsoft Corporation Wireless device support for electronic devices
US7836412B1 (en) 2004-12-03 2010-11-16 Escription, Inc. Transcription editing
US7142643B2 (en) 2004-12-17 2006-11-28 Sorenson Communications, Inc. Method and system for unifying phonebook for varied hearing disabilities
US8259920B2 (en) 2005-01-25 2012-09-04 Avaya Inc. Call extension in telecommunications systems
US8045953B2 (en) 2005-02-03 2011-10-25 Research In Motion Limited Method and apparatus for the autoselection of an emergency number in a mobile station
US7613610B1 (en) 2005-03-14 2009-11-03 Escription, Inc. Transcription data extraction
US7813485B2 (en) 2005-05-26 2010-10-12 International Business Machines Corporation System and method for seamlessly integrating an interactive visual menu with an voice menu provided in an interactive voice response system
US7573985B2 (en) 2005-06-21 2009-08-11 Verizon Business Global Llc Systems and methods for facilitating communications involving hearing-impaired parties
US20070011012A1 (en) 2005-07-11 2007-01-11 Steve Yurick Method, system, and apparatus for facilitating captioning of multi-media content
US7330737B2 (en) 2005-07-19 2008-02-12 Sony Ericsson Mobile Communications Ab Mobile phone multi-media cradle
US20070118372A1 (en) * 2005-11-23 2007-05-24 General Electric Company System and method for generating closed captions
US7693267B2 (en) 2005-12-30 2010-04-06 Microsoft Corporation Personalized user specific grammars
US7698140B2 (en) 2006-03-06 2010-04-13 Foneweb, Inc. Message transcription, voice query and query delivery system
WO2009073768A1 (en) 2007-12-04 2009-06-11 Vovision, Llc Correcting transcribed audio files with an email-client interface
GB2451371B (en) 2006-04-17 2011-02-23 Vovision Llc Method and systems for correcting transcribed audio files
KR100785927B1 (en) 2006-06-02 2007-12-17 삼성전자주식회사 Method and apparatus for providing data summarization
US20080005440A1 (en) 2006-06-28 2008-01-03 Gateway Inc. Streaming media cradle
US8286071B1 (en) 2006-06-29 2012-10-09 Escription, Inc. Insertion of standard text in transcriptions
US20120178064A1 (en) 2006-07-18 2012-07-12 Barry Katz Response scoring system for verbal behavior withina behavioral stream with a remote central processingsystem and associated handheld communicating devices
US20100145729A1 (en) 2006-07-18 2010-06-10 Barry Katz Response scoring system for verbal behavior within a behavioral stream with a remote central processing system and associated handheld communicating devices
US20080064326A1 (en) 2006-08-24 2008-03-13 Stephen Joseph Foster Systems and Methods for Casting Captions Associated With A Media Stream To A User
US20080108386A1 (en) 2006-11-03 2008-05-08 John Hard mobile communication terminal and method therefor
US20080129864A1 (en) 2006-12-01 2008-06-05 General Instrument Corporation Distribution of Closed Captioning From a Server to a Client Over a Home Network
US8588377B2 (en) 2007-03-02 2013-11-19 Cisco Technology, Inc. Method and system for grouping voice messages
US7962339B2 (en) 2007-03-14 2011-06-14 Speechcycle, Inc. Method for variable resolution and error control in spoken language understanding
US8447285B1 (en) 2007-03-26 2013-05-21 Callwave Communications, Llc Methods and systems for managing telecommunications and for translating voice messages to text messages
US20090037171A1 (en) 2007-08-03 2009-02-05 Mcfarland Tim J Real-time voice transcription system
EP2093974B1 (en) 2007-09-13 2010-12-22 Research In Motion Limited System and method for interfacing between a mobile device and a personal computer
CA2621744C (en) 2007-09-13 2016-10-04 Research In Motion Limited System and method for interfacing between a mobile device and a personal computer
US20090174759A1 (en) 2008-01-04 2009-07-09 Viable Communications, Inc. Audio video communications device
US7428702B1 (en) 2008-01-27 2008-09-23 International Business Machines Corporation Method and system for dynamic message correction
US20120284015A1 (en) 2008-01-28 2012-11-08 William Drewes Method for Increasing the Accuracy of Subject-Specific Statistical Machine Translation (SMT)
US8407049B2 (en) 2008-04-23 2013-03-26 Cogi, Inc. Systems and methods for conversation enhancement
US8407048B2 (en) 2008-05-27 2013-03-26 Qualcomm Incorporated Method and system for transcribing telephone conversation to text
US8447366B2 (en) 2008-05-30 2013-05-21 T-Mobile Usa, Inc. Charging station for mobile devices that allows access to device services
US8332212B2 (en) 2008-06-18 2012-12-11 Cogi, Inc. Method and system for efficient pacing of speech for transcription
US20090326939A1 (en) 2008-06-25 2009-12-31 Embarq Holdings Company, Llc System and method for transcribing and displaying speech during a telephone call
US8806455B1 (en) 2008-06-25 2014-08-12 Verint Systems Ltd. Systems and methods for text nuclearization
US8526581B2 (en) 2008-07-03 2013-09-03 C21 Patents, Llc Internet protocol text relay for hearing impaired users
US9124716B1 (en) 2008-07-03 2015-09-01 C21 Patents, Llc Internet protocol text relay for hearing impaired users
US9917947B2 (en) 2008-07-03 2018-03-13 C21 Patents, Llc Internet protocol text relay for hearing impaired users
US20100007711A1 (en) 2008-07-23 2010-01-14 Thurmond Bell vPhone (video phone), V3Phone (video, voice,vehicular phone) and V3Phone Console for vehicular and portable wireless communication,entertainment, global positioning, and video conferencing
US8775454B2 (en) 2008-07-29 2014-07-08 James L. Geer Phone assisted ‘photographic memory’
US8325883B2 (en) 2008-07-30 2012-12-04 Verizon Patent And Licensing Inc. Method and system for providing assisted communications
US8626249B2 (en) 2008-08-12 2014-01-07 T-Mobile Usa, Inc. Charging station that operates as an intermediary device between mobile devices and other devices
US8019608B2 (en) 2008-08-29 2011-09-13 Multimodal Technologies, Inc. Distributed speech recognition using one way communication
US9460708B2 (en) 2008-09-19 2016-10-04 Microsoft Technology Licensing, Llc Automated data cleanup by substitution of words of the same pronunciation and different spelling in speech recognition
US8516533B2 (en) 2008-11-07 2013-08-20 Digimarc Corporation Second screen methods and arrangements
US8497939B2 (en) * 2008-12-08 2013-07-30 Home Box Office, Inc. Method and process for text-based assistive program descriptions for television
US8538324B2 (en) 2009-02-03 2013-09-17 Sony Corporation Mobile phone dock for TV
US8306819B2 (en) * 2009-03-09 2012-11-06 Microsoft Corporation Enhanced automatic speech recognition using mapping between unsupervised and supervised speech model parameters trained on same acoustic training data
US8265671B2 (en) 2009-06-17 2012-09-11 Mobile Captions Company Llc Methods and systems for providing near real time messaging to hearing impaired user during telephone calls
WO2011008978A1 (en) * 2009-07-15 2011-01-20 Google Inc. Commands directed at displayed text
SG178117A1 (en) 2009-08-07 2012-03-29 Access Innovation Media Pty Ltd System and method for real time text streaming
US8843368B2 (en) 2009-08-17 2014-09-23 At&T Intellectual Property I, L.P. Systems, computer-implemented methods, and tangible computer-readable storage media for transcription alignment
US8335689B2 (en) 2009-10-14 2012-12-18 Cogi, Inc. Method and system for efficient management of speech transcribers
US8370142B2 (en) 2009-10-30 2013-02-05 Zipdx, Llc Real-time transcription of conference calls
US8379801B2 (en) 2009-11-24 2013-02-19 Sorenson Communications, Inc. Methods and systems related to text caption error correction
US8385329B2 (en) 2009-11-30 2013-02-26 At&T Intellectual Property I, L.P. Method and system of voice carry over for instant messaging relay services
US8374864B2 (en) * 2010-03-17 2013-02-12 Cisco Technology, Inc. Correlation of transcribed text with corresponding audio
US20110246172A1 (en) 2010-03-30 2011-10-06 Polycom, Inc. Method and System for Adding Translation in a Videoconference
US8856300B2 (en) 2010-05-18 2014-10-07 At&T Intellectual Property I, L.P. End-to-end secure cloud computing
US8352883B2 (en) 2010-07-08 2013-01-08 Alexey Kashik Analysis of complex data objects and multiple parameter systems
US20120016671A1 (en) 2010-07-15 2012-01-19 Pawan Jaggi Tool and method for enhanced human machine collaboration for rapid and accurate transcriptions
US8645136B2 (en) 2010-07-20 2014-02-04 Intellisist, Inc. System and method for efficiently reducing transcription error using hybrid voice transcription
JP5102383B2 (en) 2010-07-26 2012-12-19 エルジー エレクトロニクス インコーポレイティド SMS receiving method in dual mode terminal and dual mode terminal therefor
EP2429190A1 (en) 2010-09-13 2012-03-14 NTT DoCoMo, Inc. Method and apparatus for transferring a video stream
US8930605B2 (en) 2010-10-01 2015-01-06 Z124 Systems and methods for docking portable electronic devices
US8320875B2 (en) 2010-10-27 2012-11-27 At&T Mobility Ii Llc Emergency communication recognition
US10032455B2 (en) 2011-01-07 2018-07-24 Nuance Communications, Inc. Configurable speech recognition system using a pronunciation alignment between multiple recognizers
US9183843B2 (en) 2011-01-07 2015-11-10 Nuance Communications, Inc. Configurable speech recognition system using multiple recognizers
WO2012115988A2 (en) 2011-02-22 2012-08-30 Expeditus Of Melitene Llc Observation platform for using structured communications
US9602625B2 (en) 2011-02-22 2017-03-21 Theatrolabs, Inc. Mediating a communication in an observation platform
US8369488B2 (en) 2011-03-15 2013-02-05 At&T Mobility Ii Llc Triggering a 911 voice call from a non-voice message
US20120245936A1 (en) 2011-03-25 2012-09-27 Bryan Treglia Device to Capture and Temporally Synchronize Aspects of a Conversation and Method and System Thereof
US9774747B2 (en) 2011-04-29 2017-09-26 Nexidia Inc. Transcription system
US8819402B2 (en) 2011-07-06 2014-08-26 Sony Corporation System for displaying image from mobile device on a display in a computer by booting the computer with limited operating system and relinquishing bus control to the mobile device
KR20140053183A (en) 2011-07-11 2014-05-07 알피티 커뮤니케이션즈 인크. Mobile device docking station
US8588731B2 (en) 2011-07-12 2013-11-19 General Motors Llc TYY interface module signal to communicate equipment disruption to call center
US20130045720A1 (en) 2011-08-15 2013-02-21 Shreedhar Madhavapeddl Enhanced signaling for mobile communication devices
US9536567B2 (en) 2011-09-02 2017-01-03 Nexidia Inc. Transcript re-sync
US9318110B2 (en) 2011-09-09 2016-04-19 Roe Mobile Development Llc Audio transcription generator and editor
US9704111B1 (en) 2011-09-27 2017-07-11 3Play Media, Inc. Electronic transcription job market
US8930492B2 (en) 2011-10-17 2015-01-06 Blackberry Limited Method and electronic device for content sharing
US8892447B1 (en) 2011-10-25 2014-11-18 Nuance Communications, Inc. Quality assessment of text derived from an audio signal
US8886169B2 (en) 2011-10-25 2014-11-11 At&T Intellectual Property I, Lp Apparatus and method for providing enhanced telephonic communications
US8223720B1 (en) 2011-12-13 2012-07-17 Vonage Network, Llc Systems and methods for handoff of a mobile telephone call in a VOIP environment
US8731516B2 (en) 2011-12-30 2014-05-20 Cellco Partnership Text messaging 911 calls
US9161166B2 (en) 2012-02-24 2015-10-13 Blackberry Limited Method and apparatus for interconnected devices
US20130254264A1 (en) 2012-03-07 2013-09-26 26Ones Inc. Tethering method, computing devices, system and software
US8918311B1 (en) 2012-03-21 2014-12-23 3Play Media, Inc. Intelligent caption systems and methods
CN103368999A (en) 2012-03-29 2013-10-23 富泰华工业(深圳)有限公司 Internet access system and method
CN104303177B (en) 2012-04-25 2018-08-17 寇平公司 Execute the method and earphone computing device of real-time phonetic translation
US20130317818A1 (en) 2012-05-24 2013-11-28 University Of Rochester Systems and Methods for Captioning by Non-Experts
US20130331056A1 (en) 2012-06-12 2013-12-12 Guardity Technologies, Inc. Automatic Speech Message Validation of an Emergency Teletype Text Message
US9805118B2 (en) 2012-06-29 2017-10-31 Change Healthcare Llc Transcription method, apparatus and computer program product
GB2503922A (en) 2012-07-12 2014-01-15 Metaswitch Networks Ltd A transcription device configured to convert speech into text data in response to a transcription request from a receiving party
US20140039871A1 (en) 2012-08-02 2014-02-06 Richard Henry Dana Crawford Synchronous Texts
US9112996B2 (en) 2012-09-10 2015-08-18 Tools/400 Inc. Emergency 9-1-1 portal and application
US8805319B2 (en) 2012-10-05 2014-08-12 At&T Intellectual Property I, L.P. Identifying source of TTY based emergency call
US8874070B2 (en) 2012-11-29 2014-10-28 At&T Intellectual Property, I, L.P. Text message generation for emergency services as a backup to voice communications
US9344562B2 (en) 2012-11-30 2016-05-17 At&T Intellectual Property I, Lp Apparatus and method for managing interactive television and voice communication services
KR102023008B1 (en) 2012-12-10 2019-09-19 엘지전자 주식회사 Display device for converting voice to text and method thereof
CA2799892C (en) 2012-12-20 2016-11-22 Stenotran Services Inc. System and method for real-time multimedia reporting
WO2014107141A1 (en) 2013-01-03 2014-07-10 Sestek Ses Ve Iletişim Bilgisayar Teknolojileri Sanayii Ve Ticaret Anonim Şirketi Speech analytics system and methodology with accurate statistics
JP6172769B2 (en) 2013-03-07 2017-08-02 Necソリューションイノベータ株式会社 Understanding support system, understanding support server, understanding support method, and program
US8976940B2 (en) 2013-03-12 2015-03-10 Sorenson Communications, Inc. Systems and related methods for visual indication of an occurrence of an event
US9215406B2 (en) 2013-03-14 2015-12-15 Polycom, Inc. Immersive telepresence anywhere
US9576498B1 (en) 2013-03-15 2017-02-21 3Play Media, Inc. Systems and methods for automated transcription training
US9215409B2 (en) 2013-03-15 2015-12-15 Sorenson Communications, Inc. Systems and related methods for controlling audio communications between a relay service and an audio endpoint
US9916295B1 (en) 2013-03-15 2018-03-13 Richard Henry Dana Crawford Synchronous context alignments
US9406296B2 (en) 2013-04-19 2016-08-02 C21 Patents, Llc Two way automatic universal transcription telephone
WO2014191054A1 (en) 2013-05-31 2014-12-04 Longsand Limited Processing of audio data
WO2015008162A2 (en) 2013-07-15 2015-01-22 Vocavu Solutions Ltd. Systems and methods for textual content creation from sources of audio that contain speech
US20150073790A1 (en) 2013-09-09 2015-03-12 Advanced Simulation Technology, inc. ("ASTi") Auto transcription of voice networks
US9418650B2 (en) 2013-09-25 2016-08-16 Verizon Patent And Licensing Inc. Training speech recognition using captions
US9191789B2 (en) 2013-10-02 2015-11-17 Captioncall, Llc Systems and methods for using a caption device with a mobile device
US20150106091A1 (en) 2013-10-14 2015-04-16 Spence Wetjen Conference transcription system and method
US9460719B1 (en) 2013-10-15 2016-10-04 3Play Media, Inc. Automated delivery of transcription products
US9185211B2 (en) 2013-11-08 2015-11-10 Sorenson Communications, Inc. Apparatuses and methods for operating a communication system in one of a tone mode and a text mode
US9473627B2 (en) 2013-11-08 2016-10-18 Sorenson Communications, Inc. Video endpoints and related methods for transmitting stored text to other video endpoints
US20160155435A1 (en) 2013-11-14 2016-06-02 Honeywell International Inc. Aircraft systems and methods for reducing and detecting read-back and hear-back errors
US10051120B2 (en) 2013-12-20 2018-08-14 Ultratec, Inc. Communication device and methods for use by hearing impaired
US10878721B2 (en) 2014-02-28 2020-12-29 Ultratec, Inc. Semiautomated relay method and apparatus
US20180270350A1 (en) 2014-02-28 2018-09-20 Ultratec, Inc. Semiautomated relay method and apparatus
US10389876B2 (en) 2014-02-28 2019-08-20 Ultratec, Inc. Semiautomated relay method and apparatus
US9578588B2 (en) 2014-03-27 2017-02-21 Intel IP Corporation Apparatus, method and system of tethering between a mobile device and a network
US9633657B2 (en) 2014-04-02 2017-04-25 Speakread A/S Systems and methods for supporting hearing impaired users
US9324324B2 (en) 2014-05-22 2016-04-26 Nedelco, Inc. Adaptive telephone relay service systems
US9633696B1 (en) 2014-05-30 2017-04-25 3Play Media, Inc. Systems and methods for automatically synchronizing media to derived content
KR102203757B1 (en) * 2014-10-24 2021-01-15 삼성전자 주식회사 Closed caption-supported content receiving apparatus and display apparatus, system having the same and closed caption-providing method thereof
US9247052B1 (en) 2014-11-14 2016-01-26 Captioncall, Llc Apparatuses and methods for routing digital voice data in a communication system for hearing-impaired users
US9947322B2 (en) 2015-02-26 2018-04-17 Arizona Board Of Regents Acting For And On Behalf Of Northern Arizona University Systems and methods for automated evaluation of human speech
US9473738B2 (en) 2015-03-17 2016-10-18 Sorenson Communications, Inc. Communication systems, communication endpoints, and related methods for remotely controlling communication endpoints
US10582268B2 (en) 2015-04-03 2020-03-03 Philip T. McLaughlin System and method for synchronization of audio and closed captioning
US9380150B1 (en) 2015-09-16 2016-06-28 Captioncall, Llc Methods and devices for automatic volume control of a far-end voice signal provided to a captioning communication service
US20170085506A1 (en) 2015-09-21 2017-03-23 Beam Propulsion Lab Inc. System and method of bidirectional transcripts for voice/text messaging
US10515388B2 (en) * 2015-12-18 2019-12-24 Invoca, Inc. Call tracking
US20170187876A1 (en) 2015-12-28 2017-06-29 Peter Hayes Remote automated speech to text including editing in real-time ("raster") systems and methods for using the same
US10044854B2 (en) 2016-07-07 2018-08-07 ClearCaptions, LLC Method and system for providing captioned telephone service with automated speech recognition
US9628620B1 (en) 2016-07-07 2017-04-18 ClearCaptions, LLC Method and system for providing captioned telephone service with automated speech recognition
US9571638B1 (en) 2016-10-07 2017-02-14 Nedelco, Inc. Segment-based queueing for audio captioning
US10304459B2 (en) 2016-10-12 2019-05-28 Sorenson Ip Holdings, Llc Transcription presentation of communication sessions
US10971157B2 (en) 2017-01-11 2021-04-06 Nuance Communications, Inc. Methods and apparatus for hybrid speech recognition processing
US10810995B2 (en) * 2017-04-27 2020-10-20 Marchex, Inc. Automatic speech recognition (ASR) model training
US10553208B2 (en) * 2017-10-09 2020-02-04 Ricoh Company, Ltd. Speech-to-text conversion for interactive whiteboard appliances using multiple services
US10971173B2 (en) * 2017-12-08 2021-04-06 Google Llc Signal processing coordination among digital voice assistant computing devices
US10755706B2 (en) * 2018-03-26 2020-08-25 Midea Group Co., Ltd. Voice-based user interface with dynamically switchable endpoints
CN118885242A (en) * 2018-08-27 2024-11-01 谷歌有限责任公司 Client application of function telephone based on experimental parameter adaptation
US10930300B2 (en) * 2018-11-02 2021-02-23 Veritext, Llc Automated transcript generation from multi-channel audio
US11011157B2 (en) * 2018-11-13 2021-05-18 Adobe Inc. Active learning for large-scale semi-supervised creation of speech recognition training corpora based on number of transcription mistakes and number of word occurrences
US11017778B1 (en) * 2018-12-04 2021-05-25 Sorenson Ip Holdings, Llc Switching between speech recognition systems
US10573312B1 (en) * 2018-12-04 2020-02-25 Sorenson Ip Holdings, Llc Transcription generation from multiple speech recognition systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005825A1 (en) * 1997-09-08 2001-06-28 Engelke Robert M. Real-time transcription correction system
US20070100634A1 (en) * 2001-02-16 2007-05-03 International Business Machines Corporation Tracking Time Using Portable Recorders and Speech Recognition
US20060149558A1 (en) * 2001-07-17 2006-07-06 Jonathan Kahn Synchronized pattern recognition source data processed by manual or automatic means for creation of shared speaker-dependent speech user profile
US20070274296A1 (en) * 2006-05-10 2007-11-29 Cross Charles W Jr Voip barge-in support for half-duplex dsr client on a full-duplex network

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10084917B2 (en) * 2012-01-26 2018-09-25 ZOOM International a.s. Enhanced quality monitoring
US20170134580A1 (en) * 2012-01-26 2017-05-11 Zoom International S.R.O. Enhanced quality monitoring
US12118999B2 (en) 2014-05-30 2024-10-15 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US10937415B2 (en) * 2016-06-15 2021-03-02 Sony Corporation Information processing device and information processing method for presenting character information obtained by converting a voice
US10943600B2 (en) * 2016-11-07 2021-03-09 Axon Enterprise, Inc. Systems and methods for interrelating text transcript information with video and/or audio information
US10755729B2 (en) * 2016-11-07 2020-08-25 Axon Enterprise, Inc. Systems and methods for interrelating text transcript information with video and/or audio information
US20210210094A1 (en) * 2016-12-27 2021-07-08 Amazon Technologies, Inc. Messaging from a shared device
US12057115B2 (en) * 2016-12-27 2024-08-06 Amazon Technologies, Inc. Messaging from a shared device
US12014118B2 (en) * 2017-05-15 2024-06-18 Apple Inc. Multi-modal interfaces having selection disambiguation and text modification capability
US20220107780A1 (en) * 2017-05-15 2022-04-07 Apple Inc. Multi-modal interfaces
US10916258B2 (en) * 2017-06-30 2021-02-09 Telegraph Peak Technologies, LLC Audio channel monitoring by voice to keyword matching with notification
US11108579B2 (en) 2017-12-13 2021-08-31 Amazon Technologies, Inc. Network conference management and arbitration via voice-capturing devices
US10536288B1 (en) 2017-12-13 2020-01-14 Amazon Technologies, Inc. Network conference management and arbitration via voice-capturing devices
US10536287B1 (en) 2017-12-13 2020-01-14 Amazon Technologies, Inc. Network conference management and arbitration via voice-capturing devices
US10536286B1 (en) * 2017-12-13 2020-01-14 Amazon Technologies, Inc. Network conference management and arbitration via voice-capturing devices
US20190196779A1 (en) * 2017-12-21 2019-06-27 Harman International Industries, Incorporated Intelligent personal assistant interface system
US11710488B2 (en) 2018-02-26 2023-07-25 Sorenson Ip Holdings, Llc Transcription of communications using multiple speech recognition systems
US10192554B1 (en) 2018-02-26 2019-01-29 Sorenson Ip Holdings, Llc Transcription of communications using multiple speech recognition systems
US12008989B2 (en) * 2018-04-25 2024-06-11 Kyocera Corporation Electronic apparatus and processing system
US20200075013A1 (en) * 2018-08-29 2020-03-05 Sorenson Ip Holdings, Llc Transcription presentation
US10789954B2 (en) * 2018-08-29 2020-09-29 Sorenson Ip Holdings, Llc Transcription presentation
WO2020046435A1 (en) * 2018-08-29 2020-03-05 Sorenson Ip Holdings, Llc Transcription presentation
US11600279B2 (en) 2018-10-08 2023-03-07 Sorenson Ip Holdings, Llc Transcription of communications
US10504519B1 (en) 2018-10-08 2019-12-10 Sorenson Ip Holdings, Llc Transcription of communications
US10325597B1 (en) 2018-10-08 2019-06-18 Sorenson Ip Holdings, Llc Transcription of communications
US11017778B1 (en) * 2018-12-04 2021-05-25 Sorenson Ip Holdings, Llc Switching between speech recognition systems
US11935540B2 (en) 2018-12-04 2024-03-19 Sorenson Ip Holdings, Llc Switching between speech recognition systems
US10388272B1 (en) 2018-12-04 2019-08-20 Sorenson Ip Holdings, Llc Training speech recognition systems using word sequences
US10573312B1 (en) * 2018-12-04 2020-02-25 Sorenson Ip Holdings, Llc Transcription generation from multiple speech recognition systems
US11145312B2 (en) * 2018-12-04 2021-10-12 Sorenson Ip Holdings, Llc Switching between speech recognition systems
US20210233530A1 (en) * 2018-12-04 2021-07-29 Sorenson Ip Holdings, Llc Transcription generation from multiple speech recognition systems
US11170761B2 (en) 2018-12-04 2021-11-09 Sorenson Ip Holdings, Llc Training of speech recognition systems
US10672383B1 (en) 2018-12-04 2020-06-02 Sorenson Ip Holdings, Llc Training speech recognition systems using word sequences
US10971153B2 (en) * 2018-12-04 2021-04-06 Sorenson Ip Holdings, Llc Transcription generation from multiple speech recognition systems
US11594221B2 (en) * 2018-12-04 2023-02-28 Sorenson Ip Holdings, Llc Transcription generation from multiple speech recognition systems
US11114092B2 (en) * 2019-02-11 2021-09-07 Groupe Allo Media SAS Real-time voice processing systems and methods
US10522138B1 (en) * 2019-02-11 2019-12-31 Groupe Allo Media SAS Real-time voice processing systems and methods
US10657957B1 (en) 2019-02-11 2020-05-19 Groupe Allo Media SAS Real-time voice processing systems and methods
US12136419B2 (en) 2019-03-18 2024-11-05 Apple Inc. Multimodality in digital assistant systems
US11170782B2 (en) * 2019-04-08 2021-11-09 Speech Cloud, Inc Real-time audio transcription, video conferencing, and online collaboration system and methods
US11962716B2 (en) * 2019-05-17 2024-04-16 Alberto Patron Method and system for providing captioned telephone services
US11438455B2 (en) * 2019-05-17 2022-09-06 Alberto Patron Method and system for providing captioned telephone services
US11601548B2 (en) * 2019-05-17 2023-03-07 Beryl Burcher Captioned telephone services improvement
US20210304755A1 (en) * 2020-03-30 2021-09-30 Honda Motor Co., Ltd. Conversation support device, conversation support system, conversation support method, and storage medium
US20210319787A1 (en) * 2020-04-10 2021-10-14 International Business Machines Corporation Hindrance speech portion detection using time stamps
US11557288B2 (en) * 2020-04-10 2023-01-17 International Business Machines Corporation Hindrance speech portion detection using time stamps
US11741964B2 (en) 2020-05-27 2023-08-29 Sorenson Ip Holdings, Llc Transcription generation technique selection
US11488604B2 (en) 2020-08-19 2022-11-01 Sorenson Ip Holdings, Llc Transcription of audio
CN112489649A (en) * 2020-11-25 2021-03-12 上海世茂物联网科技有限公司 Wireless voice control device, system and method
US11483427B1 (en) * 2021-04-28 2022-10-25 Zoom Video Communications, Inc. Call recording authentication
US20230169275A1 (en) * 2021-11-30 2023-06-01 Beijing Bytedance Network Technology Co., Ltd. Video processing method, video processing apparatus, and computer-readable storage medium

Also Published As

Publication number Publication date
US20210234959A1 (en) 2021-07-29
US10917519B2 (en) 2021-02-09
US20200412869A1 (en) 2020-12-31
US11368581B2 (en) 2022-06-21
US20200404097A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US11368581B2 (en) Semiautomated relay method and apparatus
US12136426B2 (en) Semiautomated relay method and apparatus
US20220150353A1 (en) Semiautomated relay method and apparatus
US12137183B2 (en) Semiautomated relay method and apparatus
US10748523B2 (en) Semiautomated relay method and apparatus
US10878721B2 (en) Semiautomated relay method and apparatus
US20220103683A1 (en) Semiautomated relay method and apparatus
NZ753695A (en) Semiautomated relay method and apparatus
AU2019203487A1 (en) Semiautomated relay method and apparatus

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ULTRATEC, INC., WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ENGELKE, ROBERT M.;COLWELL, KEVIN R.;ENGELKE, CHRISTOPHER R.;REEL/FRAME:049699/0462

Effective date: 20190709

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION