US20170266376A1 - Recirculating cooling system for energy delivery device - Google Patents
Recirculating cooling system for energy delivery device Download PDFInfo
- Publication number
- US20170266376A1 US20170266376A1 US15/610,676 US201715610676A US2017266376A1 US 20170266376 A1 US20170266376 A1 US 20170266376A1 US 201715610676 A US201715610676 A US 201715610676A US 2017266376 A1 US2017266376 A1 US 2017266376A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- reservoir
- medical device
- cooling
- cooling fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/16886—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
- A61M5/1689—Drip counters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00023—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0054—Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N2005/002—Cooling systems
- A61N2005/005—Cooling systems for cooling the radiator
Definitions
- the present disclosure relates to the use of energy delivery devices. More particularly, the present disclosure is directed to a method for cooling for energy delivery devices.
- Energy delivery procedures such as tissue ablation are used in numerous medical procedures to treat many conditions. Ablation can be performed to remove undesired tissue such as cancer cells. Ablation procedures may also involve the modification of the tissue without removal, such as to stop electrical propagation through the tissue in patients with an arrhythmia condition. Often the ablation is performed by passing energy, such as electrical energy, through one or more electrodes and causing the tissue in contact with the electrodes to heat up to an ablative temperature.
- Electromagnetic (EM) ablation may also be used instead of direct energy discharge into tissue.
- microwave (MW) ablation is a common example of such EM ablation where energy is applied to tissue through microwave radiation.
- EM ablation devices may require cooling to operate within desired parameters without damaging the ablation device or causing unintended tissue damage.
- Examples of EM ablation medical devices include percutaneous needle ablation probes and flexible intraluminal ablation catheters.
- Some devices implement cooling systems including a peristaltic pump that forces saline or another fluid through a tubing system operably connected to an energy delivery device. The saline solution draws heat from the energy delivery device and is then pumped out into a receptacle or to a drain.
- these systems require constant supply of saline bags, can be wasteful, and can be inefficient.
- proximal refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is farther away from the user.
- distal refers to the end of the apparatus that is farther away from the user.
- clinical refers to any medical professional (e.g., doctor, surgeon, nurse, or the like) performing a medical procedure involving the use of embodiments described herein.
- a method of cooling a medical device includes providing a fluid reservoir, pumping a cooling fluid, and energizing a medical device.
- the method may also include providing a drip chamber, a fluid flow indicator, a tubing system, and/or an elbow.
- Pumping the cooling fluid may include pressurizing the cooling fluid before the fluid flow through the medical device.
- the method may also include measuring the temperature of the cooling fluid. In embodiments, a flow rate of fluid with the system is adjusted in response to the temperature of the cooling fluid.
- a method of recirculating a cooling fluid for use with an energy delivery device includes providing an energy delivery device and a recirculating cooling system connected to the energy delivery device.
- the recirculating cooling system is configured to maintain the energy delivery device with a desired temperature range.
- the recirculating cooling system may include a tubing system and a fluid reservoir.
- the tubing system configured to interconnect the fluid reservoir with the energy delivery device and carry the cooling fluid from the fluid reservoir and through the energy delivery device before returning the cooling fluid to the fluid reservoir.
- the method may further include providing a thermocouple on a portion of the cooling system to measure a system temperature.
- the desired temperature range may include an upper limit. The flow rate of the fluid may be increased with the system temperature approaches the upper limit.
- FIG. 1 is a side view of a portion of a cooling system in accordance with the present disclosure
- FIG. 2 is a cross-sectional view of a drip chamber and flow indicator, in accordance with the present disclosure
- FIG. 3 is a perspective view of a flow indicator of a cooling system in accordance with the present disclosure
- FIG. 4A is an exploded view of a portion of the cooling system in accordance with the present disclosure.
- FIG. 4B is a side view of the portion of the cooling system of FIG. 4A ;
- FIG. 5A is a cross-sectional view of a fluid return elbow member in accordance with the present disclosure.
- FIG. 5B is a front view of the fluid return elbow of FIG. 5A ;
- FIG. 5C is a bottom view of the fluid return elbow of FIG. 5A ;
- FIG. 6 is a side view of a cooling system in accordance with the present disclosure.
- FIGS. 7A and 7B are cross-sectional views of a drip chamber and a flow indicator, in accordance with the present disclosure.
- FIG. 8 is a side view of a cooling system in accordance with the present disclosure depicting locations of flow sensors and thermocouples.
- an energy delivery device cooling system is disclosed.
- the system 1000 includes a reservoir connector assembly 100 in communication with a reservoir 200 .
- the reservoir 200 is configured to contain or hold a cooling fluid.
- the reservoir connector assembly 100 may include an elongate member 101 configured to extend into the reservoir 200 .
- Tubing system 400 connects the reservoir 200 with a medical device having inlet and outlet ports and forming a closed loop cooling system 1000 , as will be described in greater detail below. Examples of medical devices to which the system 1000 may be connected can be found in commonly owned U.S. Pat. Nos. 8,334,812; 8,430,871; 9,247,992; and 9,459,770; each of which is incorporated herein by reference in its entirety.
- the elongate member 101 can have any length and shape capable of being inserted into the reservoir 200 .
- the elongate member 101 can be a spike with a penetrating tip.
- the elongate member 101 can have a blunt or substantially flat tip.
- the elongate member 101 can be substantially cylindrical, and in the embodiments with a piercing tip, the tip can be symmetrically conical or non-symmetrically conical.
- the elongate member 101 has at least a first lumen 105 and a second lumen 107 defined therethrough.
- Each lumen 105 , 107 is configured to be in fluid communication with the reservoir 200 shown in FIG. 1 at openings 105 a and 107 a respectively.
- the first lumen 105 may act as an inflow lumen for drawing fluid from the reservoir 200 and the second lumen 107 may act as a return lumen for returning fluid to the reservoir 200 .
- Lumens 105 , 107 and openings 105 a , 107 a may have the same or different diameters.
- the diameter of the lumens 105 , 107 may be selected based on a desired volumetric flow rate and fluid velocity for a given medical device. For example, to promote mixing in the reservoir 200 , a smaller diameter lumen 107 can be chosen to achieve a higher velocity of the fluid for a given pressure.
- the increased velocity can increase turbulent flow within the reservoir 200 and/or the tubing system 400 , resulting in increased mixing of the fluid. This increased mixing can promote homogenization of the fluid temperature within the reservoir 200 and/or the tubing system 400 .
- the turbulent flow can also increase the efficiency of the transfer of heat from the fluid to the surrounding environment.
- At least one outflow port 109 is in fluid communication with the first lumen 105 and allows fluid to flow from the reservoir 200 into a drip chamber 300 or directly into the tubing system 400 .
- the reservoir connector assembly 100 includes a return port 103 configured to allow cooling fluid to return to the reservoir connector assembly 100 from the tubing system 400 .
- the return port 103 is in fluid communication with the second lumen 107 and may be configured to allow for direct or indirect fluid communication with tubing system 400 . It is also envisioned that the reservoir connector assembly 100 includes more than one return port 103 .
- the elongate member 101 further includes a third lumen and a fourth lumen having third and fourth openings, respectively, and in fluid communication with the reservoir 200 and the outflow port 109 .
- added lumens may also connect to the return port 103 .
- the elongate member 101 or the reservoir 200 may include a thermocouple 202 operably connected thereto to monitor a temperature of the fluid inside the reservoir 200 .
- the thermocouple 202 may be placed in various locations to measure the temperature of the fluid in the system 1000 , as shown in FIG. 8 .
- the thermocouple 202 may be placed near the opening of the second lumen 107 to measure the temperature of the fluid flowing into the reservoir 200 , near the first lumen 105 to measure the temperature of the fluid flowing out of the reservoir 200 , in a portion of the tubing system 400 to measure the temperature of fluid flowing therein, or any combination thereof.
- the thermocouple 202 may be connected to an energy source for the medical device, for example a microwave generator (not shown), and may be employed as a safety shut off for the energy source such that if the temperature of the fluid rises beyond a set threshold that indicates insufficient cooling, the energy source is shut off to prevent undesired damage to patient tissue during treatment.
- an energy source for the medical device for example a microwave generator (not shown)
- a safety shut off for the energy source such that if the temperature of the fluid rises beyond a set threshold that indicates insufficient cooling, the energy source is shut off to prevent undesired damage to patient tissue during treatment.
- a reservoir connector assembly 100 fluidly connects the reservoir 200 with a drip chamber 300 .
- the drip chamber 300 may include a top portion 301 ( FIG. 4A ) configured to receive a portion of the reservoir connector assembly 100 and a bottom portion 303 configured to connect the drip chamber 300 in fluid communication with the tubing system 400 .
- a fluid connector 305 connects the bottom portion 303 with the tubing system 400 and facilitates fluid communication therebetween.
- a central portion 307 which may be formed as a cylinder.
- the central portion 307 of the drip chamber 300 may also include a flow indicator 309 for indicating that a fluid is flowing from the reservoir 200 through the drip chamber 300 to the tubing system 400 .
- the flow indicator 309 may be formed of a hollow cylinder 310 with hydrofoils 311 configured to rotate the hollow cylinder 310 in the drip chamber 300 when fluid flows through the flow indicator 309 .
- the flow indicator 309 may include a design 313 disposed on an outer surface thereof that visually indicates that the cylinder 309 is rotating, and thus that fluid is flowing therethrough.
- the design 313 may resemble a barber-shop pole, however, other designs can be used to indicate fluid flow, for example a corporate logo COVIDIEN® or other graphic design.
- the cylinder 310 may be formed of a material with a specific gravity causing the cylinder 310 to either be neutrally buoyant in the cooling fluid or to float in the cooling fluid.
- Other embodiments of flow indicators 309 may be utilized that are suitable for indicating flow in the drip chamber 300 including but not limited to low density balls, floating material indicators, paddle wheel indicators, or the like.
- FIGS. 7A and 7B An alternative arrangement of a flow indicator 309 a is depicted in FIGS. 7A and 7B .
- the flow indicator 309 a is generally in the shape of a cube, though other geometric shapes may be employed without departing from the scope of the present disclosure.
- the cube shape may be advantageous by eliminating the possibility of the flow indicator 309 a occluding the bottom portion 303 of the drip chamber 300 when the system 1000 is initially primed with the fluid.
- the flow indicator 309 a has a density related to the cooling fluid such that when fluid is not flowing through the drip container 300 the flow indicator 309 a floats to the upper surface 700 of the fluid in the drip container 300 as shown in FIG. 7A and when fluid is flowing through the drip container 300 the flow indicator 309 a partially submerges beneath the surface 700 and may also rotate to provide visual indicia of fluid flow as shown in FIG. 7B .
- the tubing system 400 may include one or more return fluid flow indicators disposed thereon to indicate that a fluid is returning from the medical device to the reservoir 200 through tubing system 400 .
- return flow indicator examples include bubble indicators and traps, Venturi-style indicators, Hall-effect fluid flow indicators, and the like.
- Indicators, such as bubble indicators and venturi devices, also have the dual purpose of removing any gas which may have entered the system or vapor from the liquid flow to prevent disruption in the flow.
- Other fluid flow indicators may also be employed to measure fluid velocity, pressure, or volumetric flow rate.
- fluid flow indicators are currently sold by Introtek International under the name BDC and BER Ultrasonic Clamp-on Air Bubble, Air-in-line & Liquid level Detection Systems as well as the Drip Chamber Ultrasonic Liquid Level Sensors.
- FIG. 8 illustrates numerous locations where flow indicators 309 b and thermocouples 202 , as described above, may be employed within system 1000 .
- the flow indicators 309 b are flow sensors that detect flow of a fluid between portions of the flow indicators 309 b .
- the flow indicators 309 b and thermocouples 202 may be attached to various portions of the system 1000 and may be attached to devices (not shown) that provide audible and/or visual indicia of fluid flow within the system 1000 . Further, the devices themselves may provide audible and/or visual indicia when fluid is not flowing within portions of the system 1000 , e.g. when a tube is kinked or blocked.
- the tubing system 400 includes one or more tubes 401 that allow a fluid to flow from the reservoir connector assembly 100 , through an energy delivery device (not shown) such as an ablation needle or catheter or an energy source, and back to the reservoir connector assembly 100 .
- the tubing system 400 may include a first end 403 and a second end 405 .
- the first end 403 is in fluid communication with the outflow port 109 , either indirectly through the bottom portion 303 of drip chamber 300 or by direct connection to outflow port 109 , and is configured to allow fluid to flow into tubing system 400 .
- the second end 405 is in fluid communication with the return port 103 , and is configured to allow fluid to return to the reservoir 200 through the second lumen 107 .
- Tubing system 400 may also include one or more thermal diffusion devices 407 configured to draw heat from the fluid and diffuse the heat to the ambient environment.
- the thermal diffusion device 407 includes a series of fins 409 in contact with the tube 401 returning from a medical device.
- a fan may be employed to direct airflow over the fins and increase the cooling effect.
- a thermal diffusion device 409 could also or alternatively be employed on the reservoir 200 .
- a further alternative could employ passing the tube 401 returning from the medical device through a reservoir containing cold water or ice water in order to further draw heat out of the fluid flowing through the tubes 401 .
- the system 1000 may further include an elbow member 500 connected to the second end 405 of the tubing system 400 as shown in FIGS. 5A-C .
- the second end 405 of the tubing system 400 in fluid communication with the return port 103 through the elbow member 500 .
- the elbow member 500 may include a body 501 defining a lumen 503 , an inflow port 505 in fluid communication with the lumen 503 , and an outflow port 507 in fluid communication with the lumen 503 .
- the inflow port 505 is configured to connect to a return section or second end 405 of a tubing system 400
- the outflow port 507 is configured to connect to or accept the return port 103 of the reservoir connection assembly 100 .
- the elbow member 500 may further have a flange 509 disposed around the outflow port 507 to ensure proper alignment of the elbow 500 with the reservoir connection assembly 100 as shown in FIGS. 4A and 4B .
- flange 509 has a tombstone shape with a flat portion on a bottom portion thereof to allowing for connection with return port 103 in only one orientation of the elbow 500 .
- the elbow 500 is formed of molded plastic.
- the elbow 500 may be injection molded, blow molded, or formed in any other suitable manner known in the art.
- the elbow 500 may be made of one solid piece or a conglomeration of subparts.
- one or more pumps may be used to control fluid flow through the cooling system 1000 .
- a pump 600 may be connected to the tubing system 400 to pressurize a fluid in the tubing 401 .
- the type of pump 600 used is a peristaltic pump which applies pressure to compress the outside of a pump tubing 602 forcing fluid downstream towards the medical device.
- the pump tubing 602 may be made of a thicker gauge of the same material or a different material than the tubing 401 , thus allowing it to withstand the repetitive stresses of the peristaltic pump for the duration of a medical procedure.
- Connectors 604 may be used to fluidly connect the pump tubing 602 to the tubing 401 .
- a protective slip cover 606 may alternatively be used to protect either the pump tubing 602 , or the tubing 401 , if no pump tubing 602 is utilized.
- any device suitable to create a pressure to advance fluid through the tubing 401 in the cooling system 1000 may be used.
- the entire system 1000 may rely on gravity and the change in density of the fluid as it is heated to allow the fluid to circulate through the system 1000 .
- its density at 1 atm decreases from about 62.4 lb/ft 3 at 60° F. to about 60 lb/ft 3 at 212° F. This difference in density may in some circumstances promote sufficient circulation of the fluid through the system 1000 to maintain proper cooling of the medical device.
- the fluid used in cooling system 1000 may be any suitable liquid such as saline solution, de-ionized water, sugar water, and combinations thereof, or the like.
- the reservoir 200 may be a saline bag traditionally used in medicine.
- the tubing system 400 is connected to a medical device (not shown) to cool the medical device.
- the medical device may have cooling lumens such as those found in microwave ablation probes and microwave ablation catheters.
- the tubing system 400 connects to an inflow port of the medical device allowing cooling fluid to flow through the lumens of the medical device to and flow out of an outflow port on the medical device.
- the cooling fluid may pumped from the reservoir 200 through the medical device, as described above, or alternatively, the cooling fluid may be gravity fed to the medical device.
- the cooling system 1000 may include the reservoir connection assembly 100 and the drip chamber 300 in fluid communication with the tubing system 400 , as described above.
- the cooling fluid flows from the reservoir 200 through the reservoir connection assembly 100 , drip chamber 300 , and the tubing system 400 into the inflow port of the medical device.
- the fluid returns to the reservoir 200 flowing from the outflow port of the medical device through tubing system 400 , the return port 103 , and the second lumen 107 of reservoir connection assembly 100 .
- the fluid extracts or absorbs heat from the medical device to cool the device. As the fluid is traveling through system 1000 , it releases some heat into the environment surrounding the tubing system 400 . If thermal diffusion devices 407 are connected to the system 1000 , heat may be released from the fluid more efficiently, allowing for a reduced operating temperature of the system 1000 .
- Temperatures maintained in the system 1000 and the energy delivery device should be within a range to avoid injury to the patient and adequate to allow flow through the system.
- the temperature should be below approximately 113° F. to avoid injury to the patient and above the freezing temperature of the fluid.
- Pressures and flow rates within the system 1000 and the components thereof may be varied through variations in pump speed, and through design of the system 1000 and the components thereof.
- Some example performance parameters include:
- Microwave Needle Microwave Pump Ablation Probe Ablation Catheter Pressure 35-45 psi 45-55 psi 50-70 psi Up to 60 psi Flow Rate 4.8-6.1 in 3 /min 4.2-5.5 in 3 /min 1.4-1.8 in 3 /min
- cooling system 1000 can employ standard sterile saline bags as the fluid reservoir, which eliminates the need for a specialized fluid source. Further the system 1000 recirculates fluid as opposed to simply dumping the cooling fluid after one pass through the medical device, thereby conserving cooling fluid and eliminating the need for a collection bucket or bag.
- a method may include providing a saline bag or other fluid reservoir and a saline bag elongate member having multiple lumens defined therein.
- the saline bag elongate member includes at least one return port connected to at least one of the lumens.
- the method may also include providing a drip container such as the drip container 300 disclosed herein.
- the method may further include providing an elbow 500 as disclosed herein.
- the method further includes connecting the elbow 500 to the return port of the saline bag elongate member to allow fluid flow to return into the saline bag through the return port.
- the method also includes the step of connecting a return portion of the tubing system 400 to the elbow 500 .
- the method includes providing an energy delivery device, providing a recirculating cooling system connected to the energy delivery device, and recirculating a fluid through the cooling system and energy delivery device to maintain the energy delivery device at a desired temperature or within a desired temperature range to prevent undesired damage to tissue.
- the desired temperature range may include an upper limit corresponding to a temperature above which tissue is damaged and a lower limit below which the fluid will not flow within the system.
- the flow rate of fluid within the system may be adjusted as the temperature approaches the upper limit or the lower limit. For example, when the temperature approaches the upper limit the flow rate may be increased to increase the cooling of the medical device.
- the system may include visual or audible indicia when the temperature approaches the upper or lower limit.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Fluid Mechanics (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
A method for cooling a medical device includes fluidly connecting a cooling fluid reservoir to a medical device. The fluid connection includes a fluid out-flow path and a fluid return path corresponding to the fluid reservoir. The cooling fluid is pumped from the fluid reservoir to the medical device. The medical device is energized and the heat generated by the energization is absorbed by the cooling fluid pumped to the medical device. The cooling fluid is received at the reservoir containing the absorbed heat. The cooling fluid transfers the absorbed heat to the cooling fluid in the reservoir and to the environment adjacent to the reservoir.
Description
- This application is a continuation of U.S. patent application Ser. No. 13/835,808, filed Mar. 15, 2013, the entire contents of which are hereby incorporated by reference.
- 1. Technical Field
- The present disclosure relates to the use of energy delivery devices. More particularly, the present disclosure is directed to a method for cooling for energy delivery devices.
- 2. Background of the Related Art
- Energy delivery procedures such as tissue ablation are used in numerous medical procedures to treat many conditions. Ablation can be performed to remove undesired tissue such as cancer cells. Ablation procedures may also involve the modification of the tissue without removal, such as to stop electrical propagation through the tissue in patients with an arrhythmia condition. Often the ablation is performed by passing energy, such as electrical energy, through one or more electrodes and causing the tissue in contact with the electrodes to heat up to an ablative temperature.
- Electromagnetic (EM) ablation may also be used instead of direct energy discharge into tissue. For example, microwave (MW) ablation is a common example of such EM ablation where energy is applied to tissue through microwave radiation. EM ablation devices may require cooling to operate within desired parameters without damaging the ablation device or causing unintended tissue damage. Examples of EM ablation medical devices include percutaneous needle ablation probes and flexible intraluminal ablation catheters. Some devices implement cooling systems including a peristaltic pump that forces saline or another fluid through a tubing system operably connected to an energy delivery device. The saline solution draws heat from the energy delivery device and is then pumped out into a receptacle or to a drain. However, these systems require constant supply of saline bags, can be wasteful, and can be inefficient.
- Like reference numerals may refer to similar or identical elements throughout the description of the figures. As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is farther away from the user. The term “clinician” refers to any medical professional (e.g., doctor, surgeon, nurse, or the like) performing a medical procedure involving the use of embodiments described herein.
- According to aspects of the disclosure, a method of cooling a medical device is disclosed. The method includes providing a fluid reservoir, pumping a cooling fluid, and energizing a medical device. The method may also include providing a drip chamber, a fluid flow indicator, a tubing system, and/or an elbow. Pumping the cooling fluid may include pressurizing the cooling fluid before the fluid flow through the medical device. The method may also include measuring the temperature of the cooling fluid. In embodiments, a flow rate of fluid with the system is adjusted in response to the temperature of the cooling fluid.
- According to other aspects of the disclosure, a method of recirculating a cooling fluid for use with an energy delivery device is disclosed. The method includes providing an energy delivery device and a recirculating cooling system connected to the energy delivery device. The recirculating cooling system is configured to maintain the energy delivery device with a desired temperature range. The recirculating cooling system may include a tubing system and a fluid reservoir. The tubing system configured to interconnect the fluid reservoir with the energy delivery device and carry the cooling fluid from the fluid reservoir and through the energy delivery device before returning the cooling fluid to the fluid reservoir. The method may further include providing a thermocouple on a portion of the cooling system to measure a system temperature. The desired temperature range may include an upper limit. The flow rate of the fluid may be increased with the system temperature approaches the upper limit.
- The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
-
FIG. 1 is a side view of a portion of a cooling system in accordance with the present disclosure; -
FIG. 2 is a cross-sectional view of a drip chamber and flow indicator, in accordance with the present disclosure; -
FIG. 3 is a perspective view of a flow indicator of a cooling system in accordance with the present disclosure; -
FIG. 4A is an exploded view of a portion of the cooling system in accordance with the present disclosure; -
FIG. 4B is a side view of the portion of the cooling system ofFIG. 4A ; -
FIG. 5A is a cross-sectional view of a fluid return elbow member in accordance with the present disclosure; -
FIG. 5B is a front view of the fluid return elbow ofFIG. 5A ; -
FIG. 5C is a bottom view of the fluid return elbow ofFIG. 5A ; -
FIG. 6 is a side view of a cooling system in accordance with the present disclosure; -
FIGS. 7A and 7B are cross-sectional views of a drip chamber and a flow indicator, in accordance with the present disclosure; and -
FIG. 8 is a side view of a cooling system in accordance with the present disclosure depicting locations of flow sensors and thermocouples. - Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, the disclosed embodiments are merely examples of the disclosure and may be embodied in various forms. Well known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
- In accordance with at least one aspect of the present disclosure, an energy delivery device cooling system is disclosed. Referring generally to
FIGS. 1-6 , thesystem 1000 includes areservoir connector assembly 100 in communication with areservoir 200. Thereservoir 200 is configured to contain or hold a cooling fluid. Thereservoir connector assembly 100 may include anelongate member 101 configured to extend into thereservoir 200.Tubing system 400 connects thereservoir 200 with a medical device having inlet and outlet ports and forming a closedloop cooling system 1000, as will be described in greater detail below. Examples of medical devices to which thesystem 1000 may be connected can be found in commonly owned U.S. Pat. Nos. 8,334,812; 8,430,871; 9,247,992; and 9,459,770; each of which is incorporated herein by reference in its entirety. - In some embodiments, the
elongate member 101 can have any length and shape capable of being inserted into thereservoir 200. For example, theelongate member 101 can be a spike with a penetrating tip. In other embodiments, theelongate member 101 can have a blunt or substantially flat tip. Theelongate member 101 can be substantially cylindrical, and in the embodiments with a piercing tip, the tip can be symmetrically conical or non-symmetrically conical. - Referring specifically to
FIG. 2 , theelongate member 101 has at least afirst lumen 105 and asecond lumen 107 defined therethrough. Eachlumen reservoir 200 shown inFIG. 1 atopenings first lumen 105 may act as an inflow lumen for drawing fluid from thereservoir 200 and thesecond lumen 107 may act as a return lumen for returning fluid to thereservoir 200. -
Lumens openings lumens reservoir 200, asmaller diameter lumen 107 can be chosen to achieve a higher velocity of the fluid for a given pressure. The increased velocity can increase turbulent flow within thereservoir 200 and/or thetubing system 400, resulting in increased mixing of the fluid. This increased mixing can promote homogenization of the fluid temperature within thereservoir 200 and/or thetubing system 400. The turbulent flow can also increase the efficiency of the transfer of heat from the fluid to the surrounding environment. - At least one
outflow port 109 is in fluid communication with thefirst lumen 105 and allows fluid to flow from thereservoir 200 into adrip chamber 300 or directly into thetubing system 400. With continued reference toFIG. 2 and added reference toFIG. 4A , thereservoir connector assembly 100 includes areturn port 103 configured to allow cooling fluid to return to thereservoir connector assembly 100 from thetubing system 400. Thereturn port 103 is in fluid communication with thesecond lumen 107 and may be configured to allow for direct or indirect fluid communication withtubing system 400. It is also envisioned that thereservoir connector assembly 100 includes more than onereturn port 103. - In some embodiments, the
elongate member 101 further includes a third lumen and a fourth lumen having third and fourth openings, respectively, and in fluid communication with thereservoir 200 and theoutflow port 109. Similarly, added lumens may also connect to thereturn port 103. - The
elongate member 101 or thereservoir 200 may include athermocouple 202 operably connected thereto to monitor a temperature of the fluid inside thereservoir 200. Alternatively, thethermocouple 202 may be placed in various locations to measure the temperature of the fluid in thesystem 1000, as shown inFIG. 8 . For example, thethermocouple 202 may be placed near the opening of thesecond lumen 107 to measure the temperature of the fluid flowing into thereservoir 200, near thefirst lumen 105 to measure the temperature of the fluid flowing out of thereservoir 200, in a portion of thetubing system 400 to measure the temperature of fluid flowing therein, or any combination thereof. Thethermocouple 202 may be connected to an energy source for the medical device, for example a microwave generator (not shown), and may be employed as a safety shut off for the energy source such that if the temperature of the fluid rises beyond a set threshold that indicates insufficient cooling, the energy source is shut off to prevent undesired damage to patient tissue during treatment. - As shown in
FIG. 1 , areservoir connector assembly 100 fluidly connects thereservoir 200 with adrip chamber 300. Thedrip chamber 300 may include a top portion 301 (FIG. 4A ) configured to receive a portion of thereservoir connector assembly 100 and abottom portion 303 configured to connect thedrip chamber 300 in fluid communication with thetubing system 400. In embodiments, afluid connector 305 connects thebottom portion 303 with thetubing system 400 and facilitates fluid communication therebetween. Between thetop portion 301 and thebottom portion 303 is acentral portion 307, which may be formed as a cylinder. As shown inFIGS. 2, 7, and 8 , thecentral portion 307 of thedrip chamber 300 may also include aflow indicator 309 for indicating that a fluid is flowing from thereservoir 200 through thedrip chamber 300 to thetubing system 400. - As shown in
FIG. 3 , theflow indicator 309 may be formed of ahollow cylinder 310 withhydrofoils 311 configured to rotate thehollow cylinder 310 in thedrip chamber 300 when fluid flows through theflow indicator 309. Theflow indicator 309 may include adesign 313 disposed on an outer surface thereof that visually indicates that thecylinder 309 is rotating, and thus that fluid is flowing therethrough. For example, thedesign 313 may resemble a barber-shop pole, however, other designs can be used to indicate fluid flow, for example a corporate logo COVIDIEN® or other graphic design. Thecylinder 310 may be formed of a material with a specific gravity causing thecylinder 310 to either be neutrally buoyant in the cooling fluid or to float in the cooling fluid. Other embodiments offlow indicators 309 may be utilized that are suitable for indicating flow in thedrip chamber 300 including but not limited to low density balls, floating material indicators, paddle wheel indicators, or the like. - An alternative arrangement of a flow indicator 309 a is depicted in
FIGS. 7A and 7B . As shown inFIGS. 7A and 7B , the flow indicator 309 a is generally in the shape of a cube, though other geometric shapes may be employed without departing from the scope of the present disclosure. The cube shape may be advantageous by eliminating the possibility of the flow indicator 309 a occluding thebottom portion 303 of thedrip chamber 300 when thesystem 1000 is initially primed with the fluid. The flow indicator 309 a has a density related to the cooling fluid such that when fluid is not flowing through thedrip container 300 the flow indicator 309 a floats to theupper surface 700 of the fluid in thedrip container 300 as shown inFIG. 7A and when fluid is flowing through thedrip container 300 the flow indicator 309 a partially submerges beneath thesurface 700 and may also rotate to provide visual indicia of fluid flow as shown inFIG. 7B . - The
tubing system 400 may include one or more return fluid flow indicators disposed thereon to indicate that a fluid is returning from the medical device to thereservoir 200 throughtubing system 400. Examples of such return flow indicator include bubble indicators and traps, Venturi-style indicators, Hall-effect fluid flow indicators, and the like. Indicators, such as bubble indicators and venturi devices, also have the dual purpose of removing any gas which may have entered the system or vapor from the liquid flow to prevent disruption in the flow. Other fluid flow indicators may also be employed to measure fluid velocity, pressure, or volumetric flow rate. Examples of the fluid flow indicators are currently sold by Introtek International under the name BDC and BER Ultrasonic Clamp-on Air Bubble, Air-in-line & Liquid level Detection Systems as well as the Drip Chamber Ultrasonic Liquid Level Sensors. -
FIG. 8 illustrates numerous locations whereflow indicators 309 b andthermocouples 202, as described above, may be employed withinsystem 1000. Theflow indicators 309 b are flow sensors that detect flow of a fluid between portions of theflow indicators 309 b. Theflow indicators 309 b andthermocouples 202 may be attached to various portions of thesystem 1000 and may be attached to devices (not shown) that provide audible and/or visual indicia of fluid flow within thesystem 1000. Further, the devices themselves may provide audible and/or visual indicia when fluid is not flowing within portions of thesystem 1000, e.g. when a tube is kinked or blocked. - Referring now to
FIGS. 1 and 2 , thetubing system 400 includes one ormore tubes 401 that allow a fluid to flow from thereservoir connector assembly 100, through an energy delivery device (not shown) such as an ablation needle or catheter or an energy source, and back to thereservoir connector assembly 100. Thetubing system 400 may include afirst end 403 and asecond end 405. - In the illustrated embodiment, the
first end 403 is in fluid communication with theoutflow port 109, either indirectly through thebottom portion 303 ofdrip chamber 300 or by direct connection tooutflow port 109, and is configured to allow fluid to flow intotubing system 400. Thesecond end 405 is in fluid communication with thereturn port 103, and is configured to allow fluid to return to thereservoir 200 through thesecond lumen 107. -
Tubing system 400 may also include one or morethermal diffusion devices 407 configured to draw heat from the fluid and diffuse the heat to the ambient environment. As shown inFIG. 1 , thethermal diffusion device 407 includes a series offins 409 in contact with thetube 401 returning from a medical device. A fan may be employed to direct airflow over the fins and increase the cooling effect. While shown connected to thetube 401, athermal diffusion device 409 could also or alternatively be employed on thereservoir 200. A further alternative could employ passing thetube 401 returning from the medical device through a reservoir containing cold water or ice water in order to further draw heat out of the fluid flowing through thetubes 401. - The
system 1000 may further include anelbow member 500 connected to thesecond end 405 of thetubing system 400 as shown inFIGS. 5A-C . Thesecond end 405 of thetubing system 400 in fluid communication with thereturn port 103 through theelbow member 500. - The
elbow member 500 may include abody 501 defining alumen 503, aninflow port 505 in fluid communication with thelumen 503, and anoutflow port 507 in fluid communication with thelumen 503. Theinflow port 505 is configured to connect to a return section orsecond end 405 of atubing system 400, and theoutflow port 507 is configured to connect to or accept thereturn port 103 of thereservoir connection assembly 100. - The
elbow member 500 may further have aflange 509 disposed around theoutflow port 507 to ensure proper alignment of theelbow 500 with thereservoir connection assembly 100 as shown inFIGS. 4A and 4B . For example, as shown,flange 509 has a tombstone shape with a flat portion on a bottom portion thereof to allowing for connection withreturn port 103 in only one orientation of theelbow 500. - In at least some embodiments, the
elbow 500 is formed of molded plastic. Theelbow 500 may be injection molded, blow molded, or formed in any other suitable manner known in the art. Theelbow 500 may be made of one solid piece or a conglomeration of subparts. - In one embodiment, one or more pumps may be used to control fluid flow through the
cooling system 1000. Referring toFIG. 6 , apump 600 may be connected to thetubing system 400 to pressurize a fluid in thetubing 401. While any pump known in the art can be used, as shownFIG. 6 , the type ofpump 600 used is a peristaltic pump which applies pressure to compress the outside of apump tubing 602 forcing fluid downstream towards the medical device. Thepump tubing 602 may be made of a thicker gauge of the same material or a different material than thetubing 401, thus allowing it to withstand the repetitive stresses of the peristaltic pump for the duration of a medical procedure.Connectors 604 may be used to fluidly connect thepump tubing 602 to thetubing 401. Further, a protective slip cover 606 may alternatively be used to protect either thepump tubing 602, or thetubing 401, if nopump tubing 602 is utilized. Though described herein with respect to a peristaltic pump, any device suitable to create a pressure to advance fluid through thetubing 401 in thecooling system 1000 may be used. - As an alternative to using a
peristaltic pump 600, theentire system 1000 may rely on gravity and the change in density of the fluid as it is heated to allow the fluid to circulate through thesystem 1000. For example, as water heats, its density at 1 atm (sea level) decreases from about 62.4 lb/ft3 at 60° F. to about 60 lb/ft3 at 212° F. This difference in density may in some circumstances promote sufficient circulation of the fluid through thesystem 1000 to maintain proper cooling of the medical device. - The fluid used in
cooling system 1000 may be any suitable liquid such as saline solution, de-ionized water, sugar water, and combinations thereof, or the like. For example, thereservoir 200 may be a saline bag traditionally used in medicine. - In use, the
tubing system 400 is connected to a medical device (not shown) to cool the medical device. The medical device may have cooling lumens such as those found in microwave ablation probes and microwave ablation catheters. Thetubing system 400 connects to an inflow port of the medical device allowing cooling fluid to flow through the lumens of the medical device to and flow out of an outflow port on the medical device. The cooling fluid may pumped from thereservoir 200 through the medical device, as described above, or alternatively, the cooling fluid may be gravity fed to the medical device. Thecooling system 1000 may include thereservoir connection assembly 100 and thedrip chamber 300 in fluid communication with thetubing system 400, as described above. The cooling fluid flows from thereservoir 200 through thereservoir connection assembly 100,drip chamber 300, and thetubing system 400 into the inflow port of the medical device. The fluid returns to thereservoir 200 flowing from the outflow port of the medical device throughtubing system 400, thereturn port 103, and thesecond lumen 107 ofreservoir connection assembly 100. The fluid extracts or absorbs heat from the medical device to cool the device. As the fluid is traveling throughsystem 1000, it releases some heat into the environment surrounding thetubing system 400. Ifthermal diffusion devices 407 are connected to thesystem 1000, heat may be released from the fluid more efficiently, allowing for a reduced operating temperature of thesystem 1000. - Temperatures maintained in the
system 1000 and the energy delivery device should be within a range to avoid injury to the patient and adequate to allow flow through the system. For example, the temperature should be below approximately 113° F. to avoid injury to the patient and above the freezing temperature of the fluid. Pressures and flow rates within thesystem 1000 and the components thereof may be varied through variations in pump speed, and through design of thesystem 1000 and the components thereof. - Some example performance parameters include:
-
Microwave Needle Microwave Pump Ablation Probe Ablation Catheter Pressure 35-45 psi 45-55 psi 50-70 psi Up to 60 psi Flow Rate 4.8-6.1 in3/min 4.2-5.5 in3/min 1.4-1.8 in3/min - One of the advantages of the
cooling system 1000 described herein is that it can employ standard sterile saline bags as the fluid reservoir, which eliminates the need for a specialized fluid source. Further thesystem 1000 recirculates fluid as opposed to simply dumping the cooling fluid after one pass through the medical device, thereby conserving cooling fluid and eliminating the need for a collection bucket or bag. - Methods are also disclosed herein. In an embodiment, a method may include providing a saline bag or other fluid reservoir and a saline bag elongate member having multiple lumens defined therein. The saline bag elongate member includes at least one return port connected to at least one of the lumens. The method may also include providing a drip container such as the
drip container 300 disclosed herein. - The method may further include providing an
elbow 500 as disclosed herein. The method further includes connecting theelbow 500 to the return port of the saline bag elongate member to allow fluid flow to return into the saline bag through the return port. The method also includes the step of connecting a return portion of thetubing system 400 to theelbow 500. - Also disclosed is a method for recirculating a cooling fluid for use with an energy delivery device. The method includes providing an energy delivery device, providing a recirculating cooling system connected to the energy delivery device, and recirculating a fluid through the cooling system and energy delivery device to maintain the energy delivery device at a desired temperature or within a desired temperature range to prevent undesired damage to tissue. The desired temperature range may include an upper limit corresponding to a temperature above which tissue is damaged and a lower limit below which the fluid will not flow within the system. The flow rate of fluid within the system may be adjusted as the temperature approaches the upper limit or the lower limit. For example, when the temperature approaches the upper limit the flow rate may be increased to increase the cooling of the medical device. The system may include visual or audible indicia when the temperature approaches the upper or lower limit.
- It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications, and variances. The embodiments described with reference to the attached drawing figs. are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods, and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
Claims (11)
1. (canceled)
2. A method of cooling a medical device, the method comprising:
fluidly connecting a fluid reservoir to a medical device by inserting an elongate member of a connector assembly entirely through a connection port and into a main volume of the fluid reservoir, the elongate member defining an outflow lumen and a return lumen that each extend into the main volume of the fluid reservoir;
pumping a cooling fluid from main volume of the fluid reservoir through the outflow lumen to the medical device;
energizing the medical device such that the pumped cooling fluid absorbs heat generated by the energized medical device; and
receiving into the main volume of the fluid reservoir the cooling fluid containing the absorbed heat through the return lumen such that the absorbed heat of the cooling fluid is transferred to cooling fluid in the main volume of the fluid reservoir and to the environment adjacent the fluid reservoir.
3. The method according to claim 2 , further comprising observing a fluid flow from the fluid reservoir to the medical device.
4. The method according to claim 3 , wherein observing the fluid flow includes observing the fluid flow in a drip chamber positioned between the fluid reservoir and the medical device.
5. The method according to claim 4 , wherein observing the fluid flow in the drip chamber includes viewing a spinning member disposed in the drip chamber.
6. The method according to claim 2 , wherein pumping a cooling fluid from main volume of the fluid reservoir includes activating a pump in fluid communication with the fluid reservoir, the pump pressurizing the cooling fluid for delivery to the medical device.
7. The method according to claim 2 , further comprising measuring the temperature of the cooling fluid within at least one of the fluid reservoir, the tubing system, or the medical device.
8. The method according to claim 7 , further comprising increasing or decreasing a flow rate of the cooling fluid in response to the temperature of the cooling fluid.
9. The method according to claim 2 , further comprising fluidly connecting a fluid tubing system to a return port of the connector assembly, the return port in fluid communication with the return lumen.
10. The method according to claim 9 , wherein fluidly connecting the fluid tubing system includes aligning a flange of the fluid tubing system with an elbow of the connector assembly.
11. The method according to claim 10 , wherein aligning the flange of the fluid tubing system includes aligning a tombstone shape of the flange with the elbow of the connector assembly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/610,676 US20170266376A1 (en) | 2013-03-15 | 2017-06-01 | Recirculating cooling system for energy delivery device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/835,808 US9682190B2 (en) | 2013-03-15 | 2013-03-15 | Recirculating cooling system for energy delivery device |
US15/610,676 US20170266376A1 (en) | 2013-03-15 | 2017-06-01 | Recirculating cooling system for energy delivery device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/835,808 Continuation US9682190B2 (en) | 2013-03-15 | 2013-03-15 | Recirculating cooling system for energy delivery device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170266376A1 true US20170266376A1 (en) | 2017-09-21 |
Family
ID=51522242
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/835,808 Active 2035-01-17 US9682190B2 (en) | 2013-03-15 | 2013-03-15 | Recirculating cooling system for energy delivery device |
US15/610,676 Abandoned US20170266376A1 (en) | 2013-03-15 | 2017-06-01 | Recirculating cooling system for energy delivery device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/835,808 Active 2035-01-17 US9682190B2 (en) | 2013-03-15 | 2013-03-15 | Recirculating cooling system for energy delivery device |
Country Status (1)
Country | Link |
---|---|
US (2) | US9682190B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9682190B2 (en) | 2013-03-15 | 2017-06-20 | Covidien Lp | Recirculating cooling system for energy delivery device |
US9101344B2 (en) | 2013-03-15 | 2015-08-11 | Covidien Lp | Recirculating cooling system for energy delivery device |
JP7049326B2 (en) | 2016-10-04 | 2022-04-06 | アヴェント インコーポレイテッド | Cooled RF probe |
US11071586B2 (en) | 2017-06-05 | 2021-07-27 | Covidien Lp | Cooling systems for energy delivery devices |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187847A (en) * | 1977-07-11 | 1980-02-12 | Loeser Edward A | Airless intravenous fluid system |
US4822351A (en) * | 1987-03-25 | 1989-04-18 | Ims Limited | Powder spike holder |
US4834744A (en) * | 1987-11-04 | 1989-05-30 | Critikon, Inc. | Spike for parenteral solution container |
US4959053A (en) * | 1988-01-08 | 1990-09-25 | Jang Cheng Houng | Automatic stopping device for the intravenous drip |
US5304130A (en) * | 1992-02-26 | 1994-04-19 | Baxter International Inc. | Container for the controlled administration of a beneficial agent |
US5343763A (en) * | 1992-06-15 | 1994-09-06 | Racine Federated Inc. | Flow indicator impeller module |
US5941848A (en) * | 1996-11-14 | 1999-08-24 | Baxter International Inc. | Passive drug delivery apparatus |
US6036680A (en) * | 1997-01-27 | 2000-03-14 | Baxter International Inc. | Self-priming solution lines and a method and system for using same |
US20040127840A1 (en) * | 2002-03-04 | 2004-07-01 | Steve Gara | Blood separation apparatus and method of using the same |
US20090099552A1 (en) * | 2007-10-12 | 2009-04-16 | Maureen Levy | Drug delivery route-based connector system and method |
US20110118724A1 (en) * | 2009-11-17 | 2011-05-19 | Bsd Medical Corporation | Microwave coagulation applicator and system with fluid injection |
US7987851B2 (en) * | 2005-12-27 | 2011-08-02 | Hansa Medical Products, Inc. | Valved fenestrated tracheotomy tube having outer and inner cannulae |
US20110230753A1 (en) * | 2010-03-09 | 2011-09-22 | Cameron Mahon | Fluid circuits for temperature control in a thermal therapy system |
US20150105745A1 (en) * | 2012-04-09 | 2015-04-16 | Becton, Dickinson And Company | Drug Vial Safety Device |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3739777A (en) * | 1971-05-10 | 1973-06-19 | D Gregg | Intravenous feeding apparatus and system |
US3832998A (en) * | 1973-01-30 | 1974-09-03 | D Gregg | Intravenous feeding apparatus |
US3990443A (en) * | 1975-10-14 | 1976-11-09 | Data Service Co. Of America, Inc. | Drop rate sensing and regulating apparatus |
US4105028A (en) * | 1976-10-12 | 1978-08-08 | Sadlier Patricia M | Positive control intravenous fluid administration |
US5049129A (en) * | 1986-05-29 | 1991-09-17 | Zdeb Brian D | Adapter for passive drug delivery system |
EP0569728A1 (en) * | 1992-04-15 | 1993-11-18 | FISHER & PAYKEL LIMITED | Liquid supply apparatus |
US5545161A (en) * | 1992-12-01 | 1996-08-13 | Cardiac Pathways Corporation | Catheter for RF ablation having cooled electrode with electrically insulated sleeve |
US6575969B1 (en) | 1995-05-04 | 2003-06-10 | Sherwood Services Ag | Cool-tip radiofrequency thermosurgery electrode system for tumor ablation |
DE69636885T2 (en) | 1995-05-04 | 2007-06-21 | Sherwood Services Ag | Surgical system with cooled electrode tip |
US5733319A (en) | 1996-04-25 | 1998-03-31 | Urologix, Inc. | Liquid coolant supply system |
US7458984B2 (en) * | 1998-01-23 | 2008-12-02 | Innercool Therapies, Inc. | System and method for inducing hypothermia with active patient temperature control employing catheter-mounted temperature sensor and temperature projection algorithm |
EP1104327B1 (en) | 1998-08-14 | 2004-10-27 | K.U. Leuven Research & Development | Cooled-wet electrode |
US6478793B1 (en) | 1999-06-11 | 2002-11-12 | Sherwood Services Ag | Ablation treatment of bone metastases |
US6679865B2 (en) * | 2001-12-07 | 2004-01-20 | Nedrip Ltd. | Fluid flow meter for gravity fed intravenous fluid delivery systems |
US7052463B2 (en) | 2002-09-25 | 2006-05-30 | Koninklijke Philips Electronics, N.V. | Method and apparatus for cooling a contacting surface of an ultrasound probe |
US6887263B2 (en) | 2002-10-18 | 2005-05-03 | Radiant Medical, Inc. | Valved connector assembly and sterility barriers for heat exchange catheters and other closed loop catheters |
US7819847B2 (en) * | 2003-06-10 | 2010-10-26 | Hewlett-Packard Development Company, L.P. | System and methods for administering bioactive compositions |
US7425208B1 (en) * | 2003-08-29 | 2008-09-16 | Vitello Jonathan J | Needle assembly facilitating complete removal or nearly complete removal of a composition from a container |
WO2006024929A2 (en) * | 2004-09-03 | 2006-03-09 | Atul Kumar | An electromagnetically controlled tissue cavity distending system |
US20080051732A1 (en) * | 2006-06-23 | 2008-02-28 | Thaiping Chen | Drop sensing device for monitoring intravenous fluid flow |
US8292880B2 (en) | 2007-11-27 | 2012-10-23 | Vivant Medical, Inc. | Targeted cooling of deployable microwave antenna |
US20090149930A1 (en) | 2007-12-07 | 2009-06-11 | Thermage, Inc. | Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue |
US8965536B2 (en) | 2008-03-03 | 2015-02-24 | Covidien Lp | Intracooled percutaneous microwave ablation probe |
US8251987B2 (en) | 2008-08-28 | 2012-08-28 | Vivant Medical, Inc. | Microwave antenna |
US20100057074A1 (en) | 2008-09-02 | 2010-03-04 | Roman Ricardo D | Irrigated Ablation Catheter System and Methods |
US9108037B2 (en) | 2009-03-09 | 2015-08-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Apparatus and method for tissue ablation with near-field cooling |
US8334812B2 (en) | 2009-06-19 | 2012-12-18 | Vivant Medical, Inc. | Microwave ablation antenna radiation detector |
US8556889B2 (en) | 2009-09-29 | 2013-10-15 | Covidien Lp | Flow rate monitor for fluid cooled microwave ablation probe |
CN102639077B (en) | 2009-10-27 | 2015-05-13 | 赫莱拉公司 | Delivery devices with coolable energy emitting assemblies |
US8430871B2 (en) | 2009-10-28 | 2013-04-30 | Covidien Lp | System and method for monitoring ablation size |
JP5468414B2 (en) | 2010-02-22 | 2014-04-09 | 国立大学法人 岡山大学 | Brain cooling device and brain cooling device suitable for the same |
US9192436B2 (en) | 2010-05-25 | 2015-11-24 | Covidien Lp | Flow rate verification monitor for fluid-cooled microwave ablation probe |
US20130237901A1 (en) * | 2010-07-01 | 2013-09-12 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and methods to treat or prevent kidney and urologic disease |
KR101016566B1 (en) | 2010-12-27 | 2011-02-24 | 주식회사 투유 | Injector inspection device and injection quantity measuring method using the same |
US10743932B2 (en) * | 2011-07-28 | 2020-08-18 | Biosense Webster (Israel) Ltd. | Integrated ablation system using catheter with multiple irrigation lumens |
US20140081218A1 (en) * | 2012-09-06 | 2014-03-20 | Memorial Sloan-Kettering Cancer Center | Intravenous device having a movable arrangement |
TW201430342A (en) | 2013-01-28 | 2014-08-01 | Actherm Inc | A detecting device and method for electrochemical sensing strips |
US9101344B2 (en) | 2013-03-15 | 2015-08-11 | Covidien Lp | Recirculating cooling system for energy delivery device |
US9459770B2 (en) | 2013-03-15 | 2016-10-04 | Covidien Lp | Pathway planning system and method |
US9682190B2 (en) | 2013-03-15 | 2017-06-20 | Covidien Lp | Recirculating cooling system for energy delivery device |
-
2013
- 2013-03-15 US US13/835,808 patent/US9682190B2/en active Active
-
2017
- 2017-06-01 US US15/610,676 patent/US20170266376A1/en not_active Abandoned
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187847A (en) * | 1977-07-11 | 1980-02-12 | Loeser Edward A | Airless intravenous fluid system |
US4822351A (en) * | 1987-03-25 | 1989-04-18 | Ims Limited | Powder spike holder |
US4834744A (en) * | 1987-11-04 | 1989-05-30 | Critikon, Inc. | Spike for parenteral solution container |
US4959053A (en) * | 1988-01-08 | 1990-09-25 | Jang Cheng Houng | Automatic stopping device for the intravenous drip |
US5304130A (en) * | 1992-02-26 | 1994-04-19 | Baxter International Inc. | Container for the controlled administration of a beneficial agent |
US5343763A (en) * | 1992-06-15 | 1994-09-06 | Racine Federated Inc. | Flow indicator impeller module |
US5941848A (en) * | 1996-11-14 | 1999-08-24 | Baxter International Inc. | Passive drug delivery apparatus |
US6036680A (en) * | 1997-01-27 | 2000-03-14 | Baxter International Inc. | Self-priming solution lines and a method and system for using same |
US20040127840A1 (en) * | 2002-03-04 | 2004-07-01 | Steve Gara | Blood separation apparatus and method of using the same |
US7987851B2 (en) * | 2005-12-27 | 2011-08-02 | Hansa Medical Products, Inc. | Valved fenestrated tracheotomy tube having outer and inner cannulae |
US20090099552A1 (en) * | 2007-10-12 | 2009-04-16 | Maureen Levy | Drug delivery route-based connector system and method |
US20110118724A1 (en) * | 2009-11-17 | 2011-05-19 | Bsd Medical Corporation | Microwave coagulation applicator and system with fluid injection |
US20110230753A1 (en) * | 2010-03-09 | 2011-09-22 | Cameron Mahon | Fluid circuits for temperature control in a thermal therapy system |
US20150105745A1 (en) * | 2012-04-09 | 2015-04-16 | Becton, Dickinson And Company | Drug Vial Safety Device |
Also Published As
Publication number | Publication date |
---|---|
US20140262201A1 (en) | 2014-09-18 |
US9682190B2 (en) | 2017-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10966774B2 (en) | Recirculating cooling system for energy delivery device | |
US20170266376A1 (en) | Recirculating cooling system for energy delivery device | |
KR100218497B1 (en) | Fluid delivery system for hysteroscopic surgery | |
CN101437477B (en) | Heat exchange catheter with multi-lumen tube having a fluid return passageway | |
US20100004595A1 (en) | Balloon catheter systems for treating uterine disorders having fluid line de-gassing assemblies and methods therefor | |
US20090082837A1 (en) | Hand-held Thermal Ablation Device | |
ES2929383T3 (en) | Methods and apparatus for determining the integrity of a body cavity | |
US11071586B2 (en) | Cooling systems for energy delivery devices | |
US9764071B2 (en) | Bursitis treatment device and method | |
EP3451958B1 (en) | Recirculating cooling systems for use with energy delivery devices | |
CN114246658B (en) | Visual double-cavity egg taking system | |
CN112891056A (en) | Radio frequency thermotherapy system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COVIDIEN LP, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LARSON, ERIC W.;PETERSON, DARION R.;BRANNAN, JOSEPH D.;REEL/FRAME:042554/0607 Effective date: 20130412 |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |