US20170219394A1 - Integrated flow control valve with flowrate feedback - Google Patents
Integrated flow control valve with flowrate feedback Download PDFInfo
- Publication number
- US20170219394A1 US20170219394A1 US15/013,849 US201615013849A US2017219394A1 US 20170219394 A1 US20170219394 A1 US 20170219394A1 US 201615013849 A US201615013849 A US 201615013849A US 2017219394 A1 US2017219394 A1 US 2017219394A1
- Authority
- US
- United States
- Prior art keywords
- assembly
- chamber
- float
- flow
- inlet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 43
- 238000006073 displacement reaction Methods 0.000 claims abstract description 12
- 230000000717 retained effect Effects 0.000 claims abstract description 11
- 230000007704 transition Effects 0.000 claims description 16
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 238000004804 winding Methods 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/22—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/02—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
- F16K11/06—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
- F16K11/065—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
- F16K11/07—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
- F16K11/0716—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides with fluid passages through the valve member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K27/00—Construction of housing; Use of materials therefor
- F16K27/003—Housing formed from a plurality of the same valve elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
- F16K31/0603—Multiple-way valves
- F16K31/061—Sliding valves
- F16K31/0613—Sliding valves with cylindrical slides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/12—Actuating devices; Operating means; Releasing devices actuated by fluid
- F16K31/18—Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float
- F16K31/20—Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve
- F16K31/22—Actuating devices; Operating means; Releasing devices actuated by fluid actuated by a float actuating a lift valve with the float rigidly connected to the valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
- F16K37/0025—Electrical or magnetic means
- F16K37/0041—Electrical or magnetic means for measuring valve parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K37/00—Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
- F16K37/0025—Electrical or magnetic means
- F16K37/005—Electrical or magnetic means for measuring fluid parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/22—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters
- G01F1/24—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters with magnetic or electric coupling to the indicating device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/005—Valves
Definitions
- the present invention relates to the control and measurement of flowrates for fluids, and in particular, to an assembly for controlling and measuring or sensing the flowrate of fluids.
- a rotameter is a well-known device that measures the flowrate of fluid in a closed tube. It belongs to a class of meters called variable area meters, which measure flowrate by allowing the cross-sectional area of the fluid traveling through, to vary, causing a measurable effect. Unfortunately, rotameters cannot be used to measure flowrate at high pressures because they are typically made out of glass.
- a flow control valve assembly having at least one manifold having an inlet flow port, an outlet flow port, and a flow channel provided between the inlet flow port and the outlet flow port, the flow channel having an inlet chamber, a variable area chamber, and an outlet chamber, with fluid flowing from the inlet flow port to the inlet chamber, the variable area chamber and the outlet chamber, in that order, before exiting the outlet flow port.
- the flow control valve assembly also includes a float assembly extending inside the flow channel, the float assembly having a float that is limited for its movement inside the variable area chamber, a measuring device which measures the displacement of the float, and a connecting rod which connects the float to the measuring device.
- a bracket assembly is secured to the inlet chamber inside the flow channel, with the measuring device retained by the bracket assembly.
- FIG. 1A is a perspective view of a flow control valve assembly according to one embodiment of the present invention shown in use with multiple output flow channels.
- FIG. 1B is a perspective view of a flow control valve assembly according to another embodiment of the present invention shown in use with a single output flow channel, with the inlet flow port on the opposite side of the outlet flow port.
- FIG. 1C is a perspective view of a flow control valve assembly according to another embodiment of the present invention shown in use with a single output flow channel, with the inlet flow port on the same side as the outlet flow port.
- FIG. 2 is a cross-sectional side view of the assembly of FIG. 1A adapted for use with multiple output flow channels.
- FIG. 3 is an exploded view of the assembly of FIG. 2 .
- FIG. 4 is a cross-sectional side view of the assembly of FIG. 1B adapted for use with a single output flow channel.
- FIG. 5 is a front view of the assembly of FIG. 4 .
- FIG. 6 is a rear view of the assembly of FIG. 4 .
- FIG. 7 is a perspective view of the float assembly of the assembly of FIGS. 1A, 1B , and 10 shown with a compression spring.
- FIG. 8 is a side view of the float assembly of FIG. 7 shown without a compression spring.
- FIG. 9 is a side view of the float assembly of FIG. 7 shown with a partial compression spring.
- FIG. 10 is a side view of the float assembly of FIG. 7 shown with a full compression spring.
- FIG. 11A is an exploded sectional view of a conventional linear variable differential transformer (LVDT).
- LVDT linear variable differential transformer
- FIG. 11B is an electrical diagram for the LVDT of FIG. 11A .
- FIG. 12 is an exploded view of a valve sleeve and valve spool that can be used with the assembly of FIGS. 1A, 1B and 1C .
- FIG. 13A is an enlarged sectional view illustrating the float in a rest position.
- FIG. 13B is an enlarged sectional view illustrating the float being displaced from the rest position during fluid flow.
- FIGS. 1A, 1B, and 1C illustrate the flow control valve assembly 100 as used in an application for multiple output flow channels ( FIG. 1A ) and a single output flow channel ( FIG. 1B and 1C ).
- the unused port can be plugged or used with a pressure control circuit, which controls the inlet flow pressure.
- inlet flow is delivered via an inlet flow tube 102 into a header manifold 104 for distributing the inlet flow, and to which each flow control valve assembly 100 is fluidly coupled.
- each assembly 100 has a feedback manifold 105 and a flow control manifold 106 .
- Each feedback manifold 105 has an inlet flow port 108 which is fluidly coupled to inlet flow in the header manifold 104 .
- the inlet flow port 108 is coupled to an inlet chamber 110 having PQT (Pressure, Flowrate, and Temperature) transducers in the feedback manifold 105 .
- the inlet chamber 110 is in turn fluidly coupled to a variable area chamber 112 in the flow control manifold 106 , and then the variable area chamber 112 is fluidly coupled to an outlet chamber 114 .
- PQT Pressure, Flowrate, and Temperature
- a valve sleeve 116 and a matching valve spool 118 are seated inside the outlet chamber 114 to control the flow of the outflowing fluid.
- the valve sleeve 116 has configurable orifices 198 as shown in FIG. 12 .
- the valve spool 118 controlled by the actuator 190 , moves relative to the valve sleeve 116 to control the overall outflow orifice area, which in turn controls the flowrate.
- An outlet flow port 120 is fluidly coupled to the outlet chamber 114 through the valve spool 118 and valve sleeve 116 to allow the fluid to flow to the outflow path.
- the outflow orifice area concept includes providing, strategically positioning, and sizing multiple hole or orifice arrangements in the valve sleeve 116 to meter the desired flowrate.
- An actuator 190 can be coupled to the valve spool 118 to drive the desired spool position.
- An optional actuator position feedback 192 e.g., an LVDT
- an LVDT can also be coupled to the actuator 190 for providing feedback of the actuator position.
- the inlet flow is coupled directly to the inlet flow port 108 of the feedback manifold 105 .
- the feedback manifold 105 includes the electronics and sensors for measuring Pressure, Flowrate, and Temperature.
- the LVDT sensor wires are channeled from the inlet chamber 110 to the electronic enclosure 180 (dry area).
- the LVDT sensor wires are protected against the fluid flow by either upper mounting bracket 130 or lower mounting bracket 132 depending on how the LVDT 134 is orientated.
- a pressure control circuit can be built-in to the feedback manifold 105 to control the specific inlet flow pressure.
- a similar pressure control circuit can be incorporated with the header manifold 104 to control the common inlet flow pressure.
- the inlet chamber 110 has a generally cylindrical configuration and is adapted to receive the upper mounting bracket 130 and the lower mounting bracket 132 of the float assembly 128 of FIG. 7 .
- the float assembly 128 includes an LVDT 134 which has opposite ends retained by the upper mounting bracket 130 and the lower mounting bracket 132 .
- the LVDT 134 has a coil assembly 136 and a core 138 .
- the core 138 has a cylindrical bore extending therethrough, with a connecting rod 140 having a lower end extending through an upper part of the bore of the LVDT 134 .
- a float 142 is secured to the upper end of the connecting rod 140 .
- a mounting spring 144 is provided on the lower mounting bracket 132 to provide support to the coil assembly 136 , to absorb vibrations, and to take out slack.
- An extension rod 146 extends from a lower part of the cylindrical bore of the core 138 , and terminates at a stop 148 .
- An extension rod spring 150 is provided on the extension rod 146 between the stop 148 and the lower mounting bracket 132 . In FIG. 8 , the extension rod spring 150 is not shown and is therefore omitted. In FIG. 9 , the extension rod spring 150 is provided as a partial spring. In FIG. 10 , the extension rod spring 150 is provided as a full spring. The purpose of the extension rod springs 150 is to shorten the float's 142 travel. A full spring could be comprised of multiple springs, each with different compression values, and these added springs must be included as a part of the balanced energy equation.
- the LVDT 134 is used to measure the displacement or movement of the float 142 .
- the coil assembly 136 consists of a primary winding 1600 centered between a pair of identically wound secondary windings 1620 that are symmetrically spaced about the primary winding 1600 .
- the coils are typically wound on a one-piece hollow form of thermally stable glass reinforced polymer, encapsulated against moisture, wrapped in a high permeability magnetic shield, and then secured in a cylindrical stainless steel housing.
- the coil assembly 136 is usually the stationary element of the LVDT, with the core 138 being the moving element.
- the core 138 can be a separate tubular armature of magnetically permeable material, which is free to move axially within the hollow bore defined by the coil assembly 136 .
- the core 138 is connected to the float 142 via the connecting rod 140 .
- the primary winding 1600 is energized by alternating current of appropriate amplitude and frequency.
- the LVDT's electrical output signal is the differential AC voltage between the two secondary windings 1620 , which varies with the axial position of the core 138 within the coil assembly 136 .
- the wires of the coil assembly 136 are in a high pressure flow channel (wet) and they are subjected to fluid flow velocity as high as 30 feet per second.
- the mounting brackets 130 and 132 are designed to protect the signal wires 152 (see FIG. 7 ) from fluid flow velocity.
- the float 142 can be configured in any shape and is used to measure the fluid flowrate using the rotameter or variable orifice area concept when mounted without spring compression.
- the density of the float 142 must be greater than the fluid density if a compression spring is not added. If an extension rod spring 150 is added in compression (see below), the density of the float 142 can be greater or less than the fluid density, but the flowrate computation must include the spring forces along its axis.
- the mounting brackets 130 and 132 are mounted adjacent the upper end of the inlet chamber 110 , and provide a solid stop or securement mechanism for the LVDT 134 to prevent the coil assembly 136 from moving during fluid flow.
- Signal wires 152 are coupled to the core 138 and are channeled through either the upper mounting bracket 130 or the lower mounting bracket 132 in a protective mode.
- the connecting rod 140 and the extension rod 146 should not be made of magnetized, ferromagnetic, or high conductivity metals, but instead can be made of plastic or other non-conducting materials.
- One example is an AISI 300 series austenitic (non-magnetic) stainless steel which prevents distortion of the LVDT magnetic field.
- the extension rod spring 150 allows the size of the manifolds 105 and 106 , and their chambers 110 , 112 and 114 , to be minimized. This can be important where space is limited.
- the extension rod spring 150 functions to limit the displacement of the float 142 while achieving the same flowrate. However, the flowrate computation must include the spring force along its axis.
- the present invention uses the principles (and equations) of conservation of energy to balance the float 142 , and the continuity equation to compute the flowrate.
- the position of the float 142 is detected by the LVDT 134 in the form of its actual displacement from its rest position (see FIG. 13A ) which is a reference point, and then the LVDT 134 calculates the flow opening area 200 or variable orifice area (see FIG. 13B ), which is actually the circumferential space between the tapered wall and the ball of the float 142 .
- the position of the float 142 measured by the LVDT 134 , defines the flowrate. At any float position, the total summation of forces acting on the float 142 is balanced.
- Fy is the vertical force
- Fd is the drag force
- Fb is the buoyancy force
- W is the weight of the float 142
- Fs is the spring force in tension/compression
- Fm are the miscellaneous forces which are negligible.
- v is the fluid velocity
- g is the gravity constant
- Z is the potential energy
- P is the pressure
- ⁇ is the density of the fluid.
- a a is the flow area at the inlet of the neck region 162 .
- a b is the flow opening area 200 around the float 142 ,
- v a is the fluid velocity at the inlet of the neck region 162 and
- v b is the fluid velocity at the flow opening area 200 around the float 142 .
- variable area chamber 112 of the flow control manifold 106 has a tapered inflow section 160 , a neck region 162 , and a tapered outflow section 164 .
- the tapered inflow section 160 starts with its largest diameter at the bottom of the flow control manifold 106 where the fluid flow enters the variable area chamber 112 from the inlet chamber 110 , and then gradually tapers to its smallest diameter where it transitions to the neck region 162 , and then the variable area chamber 112 transitions from the neck region 162 to the tapered outflow section 164 which starts with its smallest diameter at the transition from the neck region 162 and gradually tapers to its largest diameter adjacent the transition to the outlet chamber 114 .
- the outlet chamber 114 has a generally cylindrical configuration and is adapted to receive the valve spool 118 and the valve sleeve 116 .
- the float 142 is retained in the tapered outflow section 164 and adapted to rest on the neck region 162 when there is no fluid flow.
- the connecting rod 140 extends through the neck region 162 and through the tapered inflow section 160 to the LVDT 134 that is retained in the inlet chamber 110 .
- the inward taper in the tapered inflow section 160 is designed to increase the velocity of the fluid at the location of the neck region 162 , where the float 142 is located. The increased velocity will increase the kinetic energy of the fluid entering the neck region 162 . Once the float 142 is lifted or moving, it will reach an equilibrium point, where the energy on the float 142 is balanced.
- the outward taper of the tapered outflow section 164 creates an increasing or variable flow area, thus decreasing the velocity of the fluid, and functions to limit the distance travelled by the float 142 .
- the major forces acting on the float 142 are: (i) the weight of the float 142 , (ii) the buoyancy force from the fluid. (iii) the fluid pressure acting upon the cross-sectional area of the float 142 or drag force, and (iv) the spring force if applicable. Other forces are assumed to be negligible.
- the float 142 rests at the bottom of the tapered outflow section 164 at the neck region 162 (the “rest” position). This is the reference point of the measurement taken by the LVDT 134 .
- a separate display and electronic enclosure 180 can be remotely secured or coupled to the flow control manifold 106 .
- the electronic enclosure 180 can include a housing, with a signal conditioner circuit board 184 and a main controller and driver circuit board 186 housed therein.
- An operator interface and display 188 can also be integrated into the housing, and possibly mounted on a tiltable panel.
- the manifolds 105 and 106 are illustrated as being embodied in separate units or housings, but these manifolds 105 and 106 can be combined into a single housing. In the embodiment illustrated in FIGS. 2 and 3 , the manifolds 105 and 106 are separate, and an O-ring 196 can be provided at the connection between the manifolds 105 and 106 to provide an effective fluid seal.
- One aspect of the present invention is that the various components (manifolds 104 , 105 and 106 , and display and electronic enclosure 180 ) can be provided in separate modules and then assembled together on a modular basis. The modularity of these components allows the end user to have options to use differently-sized or differently-calibrated components with different applications.
- the flow control valve assembly 100 is effective in controlling output flowrate to meet the requirements of any given application, such as controlling the velocity or speed of an actuator.
- Other examples include use to:
- the flow control valve assembly 100 is illustrated herein as being mounted vertically during use (e.g., see FIGS. 1A, 1B and 1C ), but it can also be mounted horizontally.
- the difference between the two orientations is that the extension rod spring 150 is optional with the vertical orientation, but the spring 150 would be required if the assembly 100 is mounted horizontally.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to the control and measurement of flowrates for fluids, and in particular, to an assembly for controlling and measuring or sensing the flowrate of fluids.
- 2. Description of the Prior Art
- A rotameter is a well-known device that measures the flowrate of fluid in a closed tube. It belongs to a class of meters called variable area meters, which measure flowrate by allowing the cross-sectional area of the fluid traveling through, to vary, causing a measurable effect. Unfortunately, rotameters cannot be used to measure flowrate at high pressures because they are typically made out of glass.
- There are also other techniques and devices to measure flowrates, for example, turbine meters and venturi tubes (delta P). However, these devices do not accurately measure flowrates at the low end (e.g., turn-down ratios below 20-to-1) of the flow.
- Thus, there remains a need to provide a device for accurately measuring fluid flowrates, even at high pressures.
- In order to accomplish the objects of the present invention, there is provided a flow control valve assembly having at least one manifold having an inlet flow port, an outlet flow port, and a flow channel provided between the inlet flow port and the outlet flow port, the flow channel having an inlet chamber, a variable area chamber, and an outlet chamber, with fluid flowing from the inlet flow port to the inlet chamber, the variable area chamber and the outlet chamber, in that order, before exiting the outlet flow port. The flow control valve assembly also includes a float assembly extending inside the flow channel, the float assembly having a float that is limited for its movement inside the variable area chamber, a measuring device which measures the displacement of the float, and a connecting rod which connects the float to the measuring device. A bracket assembly is secured to the inlet chamber inside the flow channel, with the measuring device retained by the bracket assembly.
-
FIG. 1A is a perspective view of a flow control valve assembly according to one embodiment of the present invention shown in use with multiple output flow channels. -
FIG. 1B is a perspective view of a flow control valve assembly according to another embodiment of the present invention shown in use with a single output flow channel, with the inlet flow port on the opposite side of the outlet flow port. -
FIG. 1C is a perspective view of a flow control valve assembly according to another embodiment of the present invention shown in use with a single output flow channel, with the inlet flow port on the same side as the outlet flow port. -
FIG. 2 is a cross-sectional side view of the assembly ofFIG. 1A adapted for use with multiple output flow channels. -
FIG. 3 is an exploded view of the assembly ofFIG. 2 . -
FIG. 4 is a cross-sectional side view of the assembly ofFIG. 1B adapted for use with a single output flow channel. -
FIG. 5 is a front view of the assembly ofFIG. 4 . -
FIG. 6 is a rear view of the assembly ofFIG. 4 . -
FIG. 7 is a perspective view of the float assembly of the assembly ofFIGS. 1A, 1B , and 10 shown with a compression spring. -
FIG. 8 is a side view of the float assembly ofFIG. 7 shown without a compression spring. -
FIG. 9 is a side view of the float assembly ofFIG. 7 shown with a partial compression spring. -
FIG. 10 is a side view of the float assembly ofFIG. 7 shown with a full compression spring. -
FIG. 11A is an exploded sectional view of a conventional linear variable differential transformer (LVDT). -
FIG. 11B is an electrical diagram for the LVDT ofFIG. 11A . -
FIG. 12 is an exploded view of a valve sleeve and valve spool that can be used with the assembly ofFIGS. 1A, 1B and 1C . -
FIG. 13A is an enlarged sectional view illustrating the float in a rest position. -
FIG. 13B is an enlarged sectional view illustrating the float being displaced from the rest position during fluid flow. - The following detailed description is of the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The scope of the invention is best defined by the appended claims. In certain instances, detailed descriptions of well-known devices and mechanisms are omitted so as to not obscure the description of the present invention with unnecessary detail.
-
FIGS. 1A, 1B, and 1C illustrate the flowcontrol valve assembly 100 as used in an application for multiple output flow channels (FIG. 1A ) and a single output flow channel (FIG. 1B and 1C ). There are twoports - Referring to
FIG. 1A , inlet flow is delivered via aninlet flow tube 102 into aheader manifold 104 for distributing the inlet flow, and to which each flowcontrol valve assembly 100 is fluidly coupled. For example, referring toFIGS. 2 and 3 , eachassembly 100 has afeedback manifold 105 and aflow control manifold 106. Eachfeedback manifold 105 has aninlet flow port 108 which is fluidly coupled to inlet flow in theheader manifold 104. Theinlet flow port 108 is coupled to aninlet chamber 110 having PQT (Pressure, Flowrate, and Temperature) transducers in thefeedback manifold 105. Theinlet chamber 110 is in turn fluidly coupled to avariable area chamber 112 in theflow control manifold 106, and then thevariable area chamber 112 is fluidly coupled to anoutlet chamber 114. - A
valve sleeve 116 and a matchingvalve spool 118 are seated inside theoutlet chamber 114 to control the flow of the outflowing fluid. Thevalve sleeve 116 hasconfigurable orifices 198 as shown inFIG. 12 . Thevalve spool 118, controlled by theactuator 190, moves relative to thevalve sleeve 116 to control the overall outflow orifice area, which in turn controls the flowrate. Anoutlet flow port 120 is fluidly coupled to theoutlet chamber 114 through thevalve spool 118 andvalve sleeve 116 to allow the fluid to flow to the outflow path. The outflow orifice area concept includes providing, strategically positioning, and sizing multiple hole or orifice arrangements in thevalve sleeve 116 to meter the desired flowrate. - An
actuator 190, typically a solenoid driven, can be coupled to thevalve spool 118 to drive the desired spool position. An optional actuator position feedback 192 (e.g., an LVDT) can also be coupled to theactuator 190 for providing feedback of the actuator position. - Referring to
FIGS. 4-6 , for the single output flow channel embodiments shown inFIGS. 1B and 1C , the inlet flow is coupled directly to theinlet flow port 108 of thefeedback manifold 105. - Referring back to
FIGS. 2 and 3 , thefeedback manifold 105 includes the electronics and sensors for measuring Pressure, Flowrate, and Temperature. The LVDT sensor wires are channeled from theinlet chamber 110 to the electronic enclosure 180 (dry area). The LVDT sensor wires are protected against the fluid flow by eitherupper mounting bracket 130 orlower mounting bracket 132 depending on how theLVDT 134 is orientated. In addition, a pressure control circuit can be built-in to thefeedback manifold 105 to control the specific inlet flow pressure. A similar pressure control circuit can be incorporated with theheader manifold 104 to control the common inlet flow pressure. Theinlet chamber 110 has a generally cylindrical configuration and is adapted to receive theupper mounting bracket 130 and thelower mounting bracket 132 of thefloat assembly 128 ofFIG. 7 . - Referring to
FIGS. 7-10 , thefloat assembly 128 includes anLVDT 134 which has opposite ends retained by theupper mounting bracket 130 and thelower mounting bracket 132. Referring also toFIG. 11A , theLVDT 134 has acoil assembly 136 and acore 138. Thecore 138 has a cylindrical bore extending therethrough, with a connectingrod 140 having a lower end extending through an upper part of the bore of theLVDT 134. Afloat 142 is secured to the upper end of the connectingrod 140. A mountingspring 144 is provided on thelower mounting bracket 132 to provide support to thecoil assembly 136, to absorb vibrations, and to take out slack. Anextension rod 146 extends from a lower part of the cylindrical bore of thecore 138, and terminates at astop 148. Anextension rod spring 150 is provided on theextension rod 146 between thestop 148 and thelower mounting bracket 132. InFIG. 8 , theextension rod spring 150 is not shown and is therefore omitted. InFIG. 9 , theextension rod spring 150 is provided as a partial spring. InFIG. 10 , theextension rod spring 150 is provided as a full spring. The purpose of the extension rod springs 150 is to shorten the float's 142 travel. A full spring could be comprised of multiple springs, each with different compression values, and these added springs must be included as a part of the balanced energy equation. - The
LVDT 134 is used to measure the displacement or movement of thefloat 142. As shown inFIG. 11B , thecoil assembly 136 consists of a primary winding 1600 centered between a pair of identically woundsecondary windings 1620 that are symmetrically spaced about the primary winding 1600. The coils are typically wound on a one-piece hollow form of thermally stable glass reinforced polymer, encapsulated against moisture, wrapped in a high permeability magnetic shield, and then secured in a cylindrical stainless steel housing. Thecoil assembly 136 is usually the stationary element of the LVDT, with thecore 138 being the moving element. Thecore 138 can be a separate tubular armature of magnetically permeable material, which is free to move axially within the hollow bore defined by thecoil assembly 136. Thecore 138 is connected to thefloat 142 via the connectingrod 140. In operation, the primary winding 1600 is energized by alternating current of appropriate amplitude and frequency. The LVDT's electrical output signal is the differential AC voltage between the twosecondary windings 1620, which varies with the axial position of thecore 138 within thecoil assembly 136. In the present invention, the wires of thecoil assembly 136 are in a high pressure flow channel (wet) and they are subjected to fluid flow velocity as high as 30 feet per second. The mountingbrackets FIG. 7 ) from fluid flow velocity. - The
float 142 can be configured in any shape and is used to measure the fluid flowrate using the rotameter or variable orifice area concept when mounted without spring compression. The density of thefloat 142 must be greater than the fluid density if a compression spring is not added. If anextension rod spring 150 is added in compression (see below), the density of thefloat 142 can be greater or less than the fluid density, but the flowrate computation must include the spring forces along its axis. - The mounting
brackets inlet chamber 110, and provide a solid stop or securement mechanism for theLVDT 134 to prevent thecoil assembly 136 from moving during fluid flow.Signal wires 152 are coupled to thecore 138 and are channeled through either theupper mounting bracket 130 or thelower mounting bracket 132 in a protective mode. - The connecting
rod 140 and theextension rod 146 should not be made of magnetized, ferromagnetic, or high conductivity metals, but instead can be made of plastic or other non-conducting materials. One example is an AISI 300 series austenitic (non-magnetic) stainless steel which prevents distortion of the LVDT magnetic field. - The
extension rod spring 150 allows the size of themanifolds chambers extension rod spring 150 functions to limit the displacement of thefloat 142 while achieving the same flowrate. However, the flowrate computation must include the spring force along its axis. - The present invention uses the principles (and equations) of conservation of energy to balance the
float 142, and the continuity equation to compute the flowrate. The position of thefloat 142 is detected by theLVDT 134 in the form of its actual displacement from its rest position (seeFIG. 13A ) which is a reference point, and then theLVDT 134 calculates theflow opening area 200 or variable orifice area (seeFIG. 13B ), which is actually the circumferential space between the tapered wall and the ball of thefloat 142. The position of thefloat 142, measured by theLVDT 134, defines the flowrate. At any float position, the total summation of forces acting on thefloat 142 is balanced. -
ΣFy=Fd+Fb−W+/−Fs+Fm=0 - where Fy is the vertical force, Fd is the drag force, Fb is the buoyancy force, W is the weight of the
float 142, Fs is the spring force in tension/compression, and Fm are the miscellaneous forces which are negligible. - The fluid energy equation is: ½*v2/g+Z+P/(ρ*g)=Constant at any point of reference
- where v is the fluid velocity, g is the gravity constant, Z is the potential energy, P is the pressure, and ρ is the density of the fluid.
- The continuity equation is: Flow Q=va* Aa=Vb* Ab,
- where Aa is the flow area at the inlet of the
neck region 162. Ab is theflow opening area 200 around thefloat 142, va is the fluid velocity at the inlet of theneck region 162 and vb is the fluid velocity at theflow opening area 200 around thefloat 142. - Referring back to
FIG. 2 , thevariable area chamber 112 of theflow control manifold 106 has a taperedinflow section 160, aneck region 162, and a taperedoutflow section 164. The taperedinflow section 160 starts with its largest diameter at the bottom of theflow control manifold 106 where the fluid flow enters thevariable area chamber 112 from theinlet chamber 110, and then gradually tapers to its smallest diameter where it transitions to theneck region 162, and then thevariable area chamber 112 transitions from theneck region 162 to the taperedoutflow section 164 which starts with its smallest diameter at the transition from theneck region 162 and gradually tapers to its largest diameter adjacent the transition to theoutlet chamber 114. Theoutlet chamber 114 has a generally cylindrical configuration and is adapted to receive thevalve spool 118 and thevalve sleeve 116. - The
float 142 is retained in the taperedoutflow section 164 and adapted to rest on theneck region 162 when there is no fluid flow. The connectingrod 140 extends through theneck region 162 and through the taperedinflow section 160 to theLVDT 134 that is retained in theinlet chamber 110. The inward taper in the taperedinflow section 160 is designed to increase the velocity of the fluid at the location of theneck region 162, where thefloat 142 is located. The increased velocity will increase the kinetic energy of the fluid entering theneck region 162. Once thefloat 142 is lifted or moving, it will reach an equilibrium point, where the energy on thefloat 142 is balanced. The outward taper of the taperedoutflow section 164 creates an increasing or variable flow area, thus decreasing the velocity of the fluid, and functions to limit the distance travelled by thefloat 142. - As a result, energy is conserved at any position occupied by the
float 142. In this application, the major forces acting on thefloat 142 are: (i) the weight of thefloat 142, (ii) the buoyancy force from the fluid. (iii) the fluid pressure acting upon the cross-sectional area of thefloat 142 or drag force, and (iv) the spring force if applicable. Other forces are assumed to be negligible. When there is no flowrate, thefloat 142 rests at the bottom of the taperedoutflow section 164 at the neck region 162 (the “rest” position). This is the reference point of the measurement taken by theLVDT 134. At this point, the weight and buoyancy forces are being balanced by the normal force (action is equal to reaction) at the taperedoutflow section 164. When there is a flowrate, thefloat 142 will be raised to a certain position in the taperedoutflow section 164 away from theneck region 162, which is detected or measured by theLVDT 134. At any float position other than the rest position, the weight and buoyancy forces are balanced by the fluid pressure acting on the cross-sectional area of thefloat 142 or drag force, and spring force, if applicable. The continuity equation mentioned above applies to all float positions; that is, the mass or volume flow “in” must equal the mass or volume flow “out”. In other words, flowrate IN=flowrate OUT. - A separate display and
electronic enclosure 180 can be remotely secured or coupled to theflow control manifold 106. Theelectronic enclosure 180 can include a housing, with a signalconditioner circuit board 184 and a main controller anddriver circuit board 186 housed therein. An operator interface and display 188 can also be integrated into the housing, and possibly mounted on a tiltable panel. - The
manifolds manifolds FIGS. 2 and 3 , themanifolds ring 196 can be provided at the connection between themanifolds manifolds - A number of applications lend themselves to be used by the present invention. For example, the flow
control valve assembly 100 is effective in controlling output flowrate to meet the requirements of any given application, such as controlling the velocity or speed of an actuator. Other examples include use to: -
- limit output flowrate for a specific channel (e.g., controlling chilled or heated fluid flowrate for precision heating or cooling);
- limit output flowrate for multiple channels (e.g., for flow distributions which are comparable to an electrical distribution panel);
- split or divide an inlet flow to meet a specific flow ratio requirement (e.g., gas engine application); or
- combine multiple inlet flow channels into one for accurate mixing (e.g., precision chemical fluid mixings).
- The flow
control valve assembly 100 is illustrated herein as being mounted vertically during use (e.g., seeFIGS. 1A, 1B and 1C ), but it can also be mounted horizontally. The difference between the two orientations is that theextension rod spring 150 is optional with the vertical orientation, but thespring 150 would be required if theassembly 100 is mounted horizontally. - The above detailed description is for the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The scope of the invention is best defined by the appended claims. In certain instances, detailed descriptions of well-known devices, components, mechanisms and methods are omitted so as to not obscure the description of the present invention with unnecessary detail.
Claims (20)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/013,849 US9733111B1 (en) | 2016-02-02 | 2016-02-02 | Integrated flow control valve with flowrate feedback |
US15/405,007 US10359126B2 (en) | 2016-02-02 | 2017-01-12 | Integrated flow control valve with flowrate feedback |
US16/517,084 US10801634B2 (en) | 2016-02-02 | 2019-07-19 | Integrated flow control valve with flowrate feedback |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/013,849 US9733111B1 (en) | 2016-02-02 | 2016-02-02 | Integrated flow control valve with flowrate feedback |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/405,007 Continuation-In-Part US10359126B2 (en) | 2016-02-02 | 2017-01-12 | Integrated flow control valve with flowrate feedback |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170219394A1 true US20170219394A1 (en) | 2017-08-03 |
US9733111B1 US9733111B1 (en) | 2017-08-15 |
Family
ID=59385543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/013,849 Active US9733111B1 (en) | 2016-02-02 | 2016-02-02 | Integrated flow control valve with flowrate feedback |
Country Status (1)
Country | Link |
---|---|
US (1) | US9733111B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019079533A1 (en) | 2017-10-18 | 2019-04-25 | Magnum Venus Products | Catalyst flow sensor |
EP3531077A1 (en) * | 2018-02-23 | 2019-08-28 | Hamilton Sundstrand Corporation | Vdt with high permeability shield |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2321041A (en) * | 1940-12-02 | 1943-06-08 | Fischer & Porter Co | Rotameter construction |
US2350343A (en) * | 1941-08-30 | 1944-06-06 | Fischer & Porter Co | Flowmeter |
US3143881A (en) * | 1961-09-07 | 1964-08-11 | Wallace & Tiernan Inc | Pneumatic transmitting means for flowmeters |
US3894433A (en) * | 1974-02-13 | 1975-07-15 | Fischer & Porter Co | Rotameter system with electrical read-out |
US4297981A (en) * | 1977-04-05 | 1981-11-03 | Ntn Toyo Bearing Company, Limited | Fuel flow rate measuring device |
JPS571881A (en) * | 1980-06-04 | 1982-01-07 | Aisin Seiki Co Ltd | Proportional flow control valve |
US4489614A (en) * | 1980-11-20 | 1984-12-25 | Defasselle Robert J | Flowmeter |
US4787253A (en) * | 1987-06-29 | 1988-11-29 | Craig R. deFasselle | Electronic display flow meter |
US5024105A (en) * | 1989-03-28 | 1991-06-18 | Tentler Michael L | Viscosity-insensitive variable-area flowmeter |
US5186058A (en) * | 1991-05-10 | 1993-02-16 | Lew Hyok S | Rotameter with float guides |
US5423346A (en) * | 1994-03-03 | 1995-06-13 | Ivac Corporation | Fluid container shut off valve |
US5565631A (en) * | 1995-02-07 | 1996-10-15 | The Futurestar Corporation | Non-metallic flow meter float and method |
US5655568A (en) * | 1995-08-08 | 1997-08-12 | Bhargava; Raj | Passive flow regulating device |
US6591694B2 (en) * | 2001-06-14 | 2003-07-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Flow meter with a self-illuminating floater |
US6901813B2 (en) * | 2003-05-13 | 2005-06-07 | World Wide Plastics, Inc | Flow meter alarm device |
US7140262B1 (en) * | 2005-05-05 | 2006-11-28 | Vaughn Neher Technology, Llc | Precision variable area flowmeter apparatus |
DK2229338T3 (en) * | 2007-12-12 | 2018-01-02 | Frank Hartmann | FLOW CONTROL DEVICES |
-
2016
- 2016-02-02 US US15/013,849 patent/US9733111B1/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019079533A1 (en) | 2017-10-18 | 2019-04-25 | Magnum Venus Products | Catalyst flow sensor |
EP3698108A4 (en) * | 2017-10-18 | 2021-07-07 | Magnum Venus Products | Catalyst flow sensor |
US11448534B2 (en) | 2017-10-18 | 2022-09-20 | Magnum Venus Products | Catalyst flow sensor |
EP3531077A1 (en) * | 2018-02-23 | 2019-08-28 | Hamilton Sundstrand Corporation | Vdt with high permeability shield |
US20190267175A1 (en) * | 2018-02-23 | 2019-08-29 | Hamilton Sundstrand Corporation | Vdt with high permeability shield |
US10998116B2 (en) | 2018-02-23 | 2021-05-04 | Hamilton Sundstrand Corporation | VDT with high permeability shield |
Also Published As
Publication number | Publication date |
---|---|
US9733111B1 (en) | 2017-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6898984B2 (en) | Measuring apparatus to determine the flow of a fluid | |
CN111344539A (en) | Coriolis mass flowmeter | |
US10359126B2 (en) | Integrated flow control valve with flowrate feedback | |
US7213467B2 (en) | Flowmeter | |
US9733111B1 (en) | Integrated flow control valve with flowrate feedback | |
US6339959B1 (en) | Magnetic float type flowmeter | |
US9091658B2 (en) | Paramagnetic gas sensor apparatus and adjustment method | |
US10801634B2 (en) | Integrated flow control valve with flowrate feedback | |
US8746032B1 (en) | Flow metering system | |
US20010018928A1 (en) | Method of operation of mass flow controller | |
KR101749936B1 (en) | On-off Structure of Flow Control Valve used for Mass Flow Controller | |
US6619315B2 (en) | Mass flow controller | |
US10534012B2 (en) | Bidirectional flow switch | |
US11300436B2 (en) | Flow laminator | |
EP3387391B1 (en) | Asymmetric flowmeter and related method | |
JP3201594B2 (en) | Area flow meter | |
JP2008128979A (en) | Differential pressure sensor and flow meter | |
US8464750B1 (en) | Magnetostrictive pressure regulating system | |
JPH0317225Y2 (en) | ||
JP3016846B2 (en) | Gas meter | |
WO2003065015A1 (en) | Electromagnetic gravimeter | |
US9719826B2 (en) | Mass flow primary with exciter | |
JPH0771989A (en) | Coriolis flowmeter | |
PL63360Y1 (en) | Sensing element for measuring volume and density of liquids flowing under gravity, and particularly industrial and municipal sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FLUID POWER CONTROL SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUKITO, HARSOYO;REEL/FRAME:037649/0820 Effective date: 20160126 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |