[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20170190383A1 - Motion transmission system of a bicycle - Google Patents

Motion transmission system of a bicycle Download PDF

Info

Publication number
US20170190383A1
US20170190383A1 US15/463,915 US201715463915A US2017190383A1 US 20170190383 A1 US20170190383 A1 US 20170190383A1 US 201715463915 A US201715463915 A US 201715463915A US 2017190383 A1 US2017190383 A1 US 2017190383A1
Authority
US
United States
Prior art keywords
sprocket
sprockets
bicycle
sprocket assembly
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/463,915
Inventor
Maurizio Valle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Campagnolo SRL
Original Assignee
Campagnolo SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40076613&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20170190383(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Campagnolo SRL filed Critical Campagnolo SRL
Priority to US15/463,915 priority Critical patent/US20170190383A1/en
Publication of US20170190383A1 publication Critical patent/US20170190383A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/06Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a stepped pulley
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • B62M9/12Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like the chain, belt, or the like being laterally shiftable, e.g. using a rear derailleur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G13/00Chains
    • F16G13/02Driving-chains
    • F16G13/06Driving-chains with links connected by parallel driving-pins with or without rollers so called open links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/24Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using chains or toothed belts, belts in the form of links; Chains or belts specially adapted to such gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/24Freewheels or freewheel clutches specially adapted for cycles

Definitions

  • the field of the invention relates to a motion transmission system of a bicycle.
  • sprocket assembly comprising more sprockets, the largest of which are arranged partially over the spokes of the wheel of the bicycle.
  • the sprockets have a minimum thickness, in the area of engagement with the chain, equal to 1.76 mm, whereas the distance between adjacent sprockets is lower than the minimum thickness of the sprockets themselves, and in particular is equal to 1.66 mm.
  • the sprocket assembly illustrated requires the use of a special-shaped chain.
  • the aforementioned chain comprises, in alternating succession, a first link, consisting of two plates that are parallel and spaced apart to define the area of engagement with a tooth of a sprocket, and a second link, consisting of a single plate shaped like a “bridge” so as to define in a central portion thereof a seat for coupling with the next tooth of the sprocket.
  • the aforementioned chain thanks to the second link made with a single plate, has a maximum thickness much smaller than a conventional chain and for this reason it can also be used when there is a space between the sprockets that is smaller than the thickness of the sprockets themselves.
  • the aforementioned chain wears down quickly because of the continuous friction between the teeth of the sprockets and the second links consisting of a single shaped plate. This makes it subject to premature structural yielding.
  • the sprockets that are arranged over the spokes of the wheel have a large diameter, i.e. they have a very high number of teeth. Since the number of teeth of the smallest sprocket of known sprocket assemblies is now standardized and goes up to about 11-12 teeth, it follows that passing from the smallest sprockets to the largest ones there is a non-linear increase in diameters, and therefore in the number of teeth. In other words, the cyclist notices a great difference in effort necessary to pedaling from one sprocket to an adjacent sprocket that has a great difference in teeth compared to the previous one. Therefore, it is possible that the cyclist is not able to find the optimum combination of sprockets and guide toothed wheels even with such a large number of sprockets.
  • the total bulk of the sprocket assembly is very high at the bicycle wheel, for which reason the chain, when engaging the end sprockets, is inclined with respect to the guide toothed wheels and therefore more subject to friction, wear and tension peaks.
  • motion transmission system in a bicycle is used to indicate the assembly of at least some of the components active in the transmission of motion, imparted by the cyclist through pedaling, from the crank arms to the rear wheel of the bicycle.
  • the present invention relates, in a first aspect thereof, to a motion transmission system of a bicycle, comprising a sprocket assembly adapted to be mounted on a freewheel body of a hub of a bicycle rear wheel and a bicycle chain adapted to engage the sprockets of the sprocket assembly, the sprocket assembly comprising at least eleven sprockets, the hub being able to rotate about a rotation axis and comprising a plurality of attachment seats of the spokes of the rear wheel of the bicycle and a fastening portion to a frame of the bicycle, a predetermined axial distance being defined on the hub between a plane, substantially perpendicular to the rotation axis, comprising the points of the spoke attachment seats closest to the freewheel body and a plane, substantially perpendicular to the rotation axis and defined in the fastening portion to the frame, comprising the attachment points to the frame closest to the freewheel body, wherein all of the sprockets of the sprocket
  • FIG. 1 schematically shows a side view of a bicycle comprising a motion transmission system
  • FIG. 2 schematically shows a longitudinal section view of a portion of the motion transmission system of FIG. 1 , i.e. of a sprocket assembly mounted on a freewheel body of a hub of a bicycle rear wheel, such a sprocket assembly being engaged with a bicycle chain;
  • FIG. 3 schematically shows a plan view from above of the sprocket assembly of FIG. 2 mounted in a bicycle frame;
  • FIG. 4 schematically shows a plan view from above of a complete transmission system according to the present invention mounted on a bicycle frame, FIG. 3 being an enlarged detail of this FIG. 4 ;
  • FIGS. 5 and 6 schematically show a plan view from above and, respectively, a top side view of the chain of FIG. 2 ;
  • FIG. 7 schematically shows a longitudinal section view of a portion of the chain of FIGS. 5 and 6 , taken according to the plane traced with the line VII-VII of FIG. 6 .
  • the present invention relates, in a first aspect thereof, to a motion transmission system of a bicycle, comprising a sprocket assembly adapted to be mounted on a freewheel body of a hub of a bicycle rear wheel and a bicycle chain adapted to engage the sprockets of the sprocket assembly, the sprocket assembly comprising at least eleven sprockets, the hub being able to rotate about a rotation axis and comprising a plurality of attachment seats of the spokes of the rear wheel of the bicycle and a fastening portion to a frame of the bicycle, a predetermined axial distance being defined on the hub between a plane, substantially perpendicular to the rotation axis, comprising the points of the spoke attachment seats closest to the freewheel body and a plane, substantially perpendicular to the rotation axis and defined in the fastening portion to the frame, comprising the attachment points to the frame closest to the freewheel body, wherein all of the sprockets of the sprocket
  • a sprocket assembly having the aforementioned axial bulk and of a chain having the aforementioned thickness allows, on the one hand, a high strength of the transmission system with at least eleven sprockets to be ensured, at the same time allowing conventionally-shaped chain and sprockets to be used, to the advantage of the simplicity of construction and reliability of the transmission system.
  • the chain is smaller in size than the chains currently used for sprocket assemblies with ten sprockets, so as to allow narrower sprockets and/or smaller distances between conventional sprockets to be used, which results in a lightweight assembly.
  • the maximum thickness of the chain is less than that currently used for a chain of a sprocket assembly with ten sprockets
  • the aforementioned thickness of the chain ensures a surprisingly high strength, and in particular it is possible to use a conventionally-shaped chain, which is sufficiently strong, contrary to certain prior art that suggests using a specially-shaped chain.
  • conventional chains thanks to the presence of a bush able to rotate freely in the link engaged by a tooth, ensure that the friction between the tooth and the chain does not limit the smooth running of the transmission system.
  • the transmission system described herein provided for the use of a sprocket assembly in which no sprocket is intended to be arranged over the spokes of the wheel of the bicycle, for which reason the sprockets added after the tenth one can advantageously be intermediate sprockets, and not end sprockets with a large diameter as required in the prior art.
  • a sprocket assembly having an axial bulk such as to be able to be entirely housed on the freewheel body of the hub without being arranged over the spokes of the wheel allows such a sprocket assembly to be suitably positioned, for which reason it can be ensured that the chain, when engaging the end sprockets, is not excessively inclined, thus limiting its wear and the generation of tension peaks.
  • the chain may comprise an alternating succession of outer links and inner links, connected each other at respective connection ends, each link, outer and inner, comprising two respective plates, outer and inner, being arranged parallel and spaced apart to define a space for receiving a tooth of a sprocket.
  • the shape of the chain of the transmission system may be conventional, which contributes to the simplicity and cost-effectiveness of manufacturing the transmission system.
  • the maximum thickness may be between 4.8 mm and 5.6 mm, the extreme values being included. Preferably, the maximum thickness is comprised between 5 mm and 5.5 mm, the extreme values being included. These aforementioned maximum thicknesses of the chain ensure a sufficiently high reliability.
  • the axial width or bulk is lower than or equal to 46 mm, and more preferably lower than or equal to 43.5 mm.
  • the aforementioned sprocket assembly can be housed in a conventional bicycle having wheels and frame of standardized size.
  • the distance between two end sprockets of the sprocket assembly, measured between respective faces of the end sprockets facing outwardly from the sprocket assembly, may be lower than or equal to 42.5 mm, and preferably lower than or equal to 40.5 mm.
  • the chain can engage the sprocket with the smallest diameter with sufficient margin as not to slide in the frame of the bicycle, and the gearshift can position the chain on the sprocket with the largest diameter without interfering with the spokes of the wheel.
  • the sprockets may have a predetermined position and are spaced apart.
  • the sprocket with the smallest diameter of the sprocket assembly has 11 or 12 teeth and the sprocket with the largest diameter has a number of teeth comprised between 23 and 27.
  • the transmission system has a sprocket assembly comprising a combination of eleven sprockets selected from the following:
  • the transmission system has a sprocket assembly comprising a combination of twelve sprockets selected from the following:
  • the sprockets may have a maximum thickness, at an engagement area with the chain, lower than or equal to 1.7 mm, and more preferably lower than or equal to 1.6 mm.
  • the distance between at least two consecutive sprockets of the sprocket assembly is greater than or equal to the thickness of the sprockets. Moreover, the distance between all of the consecutive sprockets of the sprocket assembly may be greater than or equal to the thickness of the sprockets.
  • the distance between consecutive sprockets may be lower than or equal to 2.2 mm.
  • the sprockets with a smaller diameter may be placed at greater distances apart than the sprockets with a larger diameter. Further, the sprockets with a smaller diameter may be at a distance apart lower than or equal to 2.5 mm.
  • Such distances between sprockets allow the passage of a conventionally-shaped chain with particularly strong sections.
  • At least six consecutive sprockets may have a number of teeth that differs by one from that of at least one adjacent sprocket. Moreover, one of the at least six sprockets has eighteen teeth.
  • consecutive sprockets may be at least seven in number. Even further, the consecutive sprockets may have at least eight or at least nine in number.
  • the transmission system may comprise at least one guide toothed wheel associated with at least one crank arm and adapted to be engaged by the chain at the same time as one of the sprockets of the sprocket assembly.
  • the at least one toothed wheel may be made from aluminum alloy and has a maximum thickness, in the engagement area of the chain, lower than or equal to 1.7 mm. Further, the maximum thickness of the at least one toothed wheel and of the sprockets, in the respective engagement areas of the chain, is the same. In particular, the maximum thickness may be lower than or equal to 1.6 mm in combination with a chain having a thickness lower than or equal to 5.5 mm.
  • the sprocket assembly for a bicycle rear wheel comprises at least eleven sprockets, wherein all of the sprockets of the sprocket assembly have an overall axial width or bulk lower than or equal to 46 mm.
  • Such a sprocket assembly may have, individually or in combination, all of the structural and functional characteristics discussed above with reference to the sprocket assembly of the motion transmission system and therefore has all of the aforementioned advantages.
  • the axial bulk of the sprocket assembly is preferably lower than or equal to 43.5 mm.
  • the distance between two end sprockets of the sprocket assembly may be measured between respective faces of the end sprockets facing outwardly from the sprocket assembly, is lower than or equal to 42.5 mm, and more preferably lower than or equal to 40.5 mm.
  • the sprockets may have a predetermined position and are spaced apart.
  • the sprocket with the smallest diameter has 11 or 12 teeth and the sprocket with the largest diameter has a number of teeth comprised between 23 and 27.
  • the aforementioned sprocket assembly may comprise a combination of eleven sprockets selected from the following:
  • the sprocket assembly may comprise a combination of twelve sprockets selected from the following:
  • the sprockets may have a maximum thickness, at an engagement area with a bicycle chain, lower than or equal to 1.7 mm, and more preferably lower than or equal to 1.6 mm.
  • the distance between at least two consecutive sprockets of the sprocket assembly, measured between the engagement area with a bicycle chain of the sprocket with the smallest diameter and an adjacent sprocket, may be greater than or equal to the thickness of the sprockets.
  • the distance between all of the consecutive sprockets of the sprocket assembly may be greater than or equal to the thickness of the sprockets.
  • the distance between consecutive sprockets is lower than or equal to 2.2 mm.
  • the sprockets with a smaller diameter may be placed at greater distances apart than the sprockets with a larger diameter.
  • the sprockets with a smaller diameter may be at a distance apart lower than or equal to 2.5 mm.
  • At least six consecutive sprockets may have a number of teeth that differs by one from that of at least one adjacent sprocket. Moreover, one of the at least six sprockets preferably has eighteen teeth.
  • consecutive sprockets may be at least seven in number. Even further, the consecutive sprockets may be at least eight or at least nine in number.
  • the bicycle chain comprises an alternating succession of outer links and inner links, connected each other at respective connection ends, each link, outer and inner, comprising two respective plates, outer and inner, arranged parallel and spaced apart to define a space for receiving a tooth of a sprocket of a sprocket assembly of a bicycle rear wheel, wherein it has a maximum thickness comprised between 4.6 mm and 5.8 mm, the extreme values being included.
  • Such a bicycle chain has, individually or in combination, all of the structural and functional characteristics discussed above with reference to the chain of the motion transmission system and therefore has all of the aforementioned advantages.
  • the maximum thickness is between 4.8 mm and 5.6 mm, the extreme values being included, and more preferably between 5 mm and 5.5 mm, the extreme values being included.
  • a bicycle comprises a transmission system, and/or a sprocket assembly and/or a chain of the type described above.
  • Such a bicycle may have, individually or in combination, all of the structural and functional characteristics discussed above with reference to the aforementioned transmission system and/or sprocket assembly and/or chain.
  • a bicycle comprises a sprocket assembly having at least eleven sprockets, wherein the sprocket assembly is positioned so that the difference between the distance of the sprocket with the smallest diameter from a chain line of the bicycle and the distance of the sprocket with the largest diameter from the chain line is lower than or equal, in absolute value, to 4 mm.
  • the distance of the sprocket with the smallest diameter from the chain line is equal to the distance of the sprocket with the largest diameter from the chain line.
  • a bicycle 51 is shown to which a motion transmission system in accordance with the present invention is applied, wholly indicated with 59 .
  • the bicycle 51 of FIG. 1 comprises a frame 53 to which a front wheel 55 and a rear driving wheel 57 are connected.
  • This system comprises a pair of crank arms 50 directly coupled with one or more guide toothed wheels 12 .
  • the crank arms 50 are supported in rotation in the frame 53 through a bottom bracket assembly 14 comprising a shaft and some bearings.
  • the guide toothed wheels 12 engage a chain 15 to transmit the torque applied by the cyclist on the crank arms 50 to a sprocket assembly 16 coupled with the rear driving wheel 57 .
  • the rear driving wheel 57 comprises a rim 58 , some spokes 18 and a hub 20 .
  • the hub 20 is per se known and for this reason is only schematically illustrated: it comprises a first body 56 ( FIG. 3 ) coupled with the rim 58 through the spokes 18 and a second body that rotates as a unit with the sprocket assembly 16 .
  • the second body is indicated with reference numeral 22 in FIG. 2 and is known as freewheel body since it is free to rotate with respect to the first body 56 in a direction of rotation, and move it into rotation in the opposite direction.
  • the rotation axis is indicated with X in FIG. 2 .
  • the hub 20 On the first body 56 of the hub 20 there are seats 54 ( FIG. 3 ) for the attachment of the spokes 18 to the hub 20 .
  • the hub 20 On the axially opposite side to the seats 54 , the hub 20 comprises a portion 540 for attachment to the frame 53 of the bicycle 51 .
  • the sprocket assembly 16 comprises a plurality of driven toothed wheels, known as sprockets, having a different outer diameter to one another: in the example illustrated in FIGS. 2-4 , there are eleven sprockets and they are indicated with reference numerals 1 to 11 , from the sprocket 1 having the largest outer diameter to the sprocket 11 having the smallest outer diameter.
  • a gearshifting device 24 illustrated in FIG. 1 , allows the chain 15 to be moved from an engagement condition with a sprocket to an engagement condition with another sprocket.
  • a similar device can also be provided in the area of the crank arms 50 in the case in which there is more than one guide toothed wheel 12 . In this way the sprockets and the toothed wheels can be associated with each other through the chain 15 in a plurality of combinations.
  • the sprocket assembly 16 has a size such as to be able to be entirely housed in the space of the hub 20 between the portion 540 for attachment to the frame 53 of the bicycle 51 and the portion of body 56 where the seats 54 are made.
  • the sprocket assembly 16 is of a size such as to be able to be housed in the space E between the planes Z and Y, where Z is the plane, perpendicular to the axis X of the hub 20 , passing through the points of the seats 54 closest to the freewheel body 22 , and Y is the plane, perpendicular to the axis X and defined in the portion for attachment to the frame 53 of the hub, passing through the points of the hub 20 where the attachment to the frame 53 takes place and that are closest to the freewheel body 22 .
  • the portion of the frame 53 to which the wheel is fastened in general is shaped like a fork with a face facing towards the sprocket assembly 16 , indicated with reference numeral 159 in FIGS. 2 and 3 and the points of the hub 20 where the attachment to the frame 53 takes place and that are closest to the freewheel body 22 are defined at a plane defined on the face 159 .
  • the space E has a predetermined axial distance greater than or equal to 46 mm and the sprocket assembly 16 has an axial bulk lower than or equal to 46 mm, preferably lower than or equal to 43.50 mm. Further, the sprocket with the smallest diameter 11 has a distance F from the face 159 of the frame 53 at least equal to 2 mm or such that when the chain 15 engages it the distance G of the chain 15 from the frame 53 is at least equal to 0.5 mm.
  • the distance M between the faces 1 a and 11 a of the sprockets 1 and 11 facing towards the outside of the sprocket assembly 16 is lower than or equal to 42.5 mm, and preferably lower than or equal to 40.5 mm, compared with an engagement area of the sprockets made on the freewheel body 22 with a length N lower than or equal to 39 mm.
  • the sprocket assembly 16 it can be positioned substantially symmetrically with respect to the chain line LC of the bicycle 51 , conventionally defined by the standardization rules at a predetermined distance W from the middle plane MD of the bicycle 51 (in the case of use of a pair of guide toothed wheels associated with the crank arms, the chain line is arranged substantially at half the distance between the two guide toothed wheels).
  • the face 1 a of the sprocket 1 with the largest diameter and the face 11 a of the sprocket 11 with the smallest diameter have respective distances DS′ and DS′′ from the chain line LC that are substantially equal or with a difference lower than 4 mm.
  • the chain 15 when the chain 15 is engaged respectively with the sprocket 1 with the largest diameter and with the sprocket 11 with the smallest diameter it is inclined with respect to the chain line LC by substantially equal acute angles ⁇ ′ and ⁇ ′′, as shown in FIG. 4 .
  • the angles ⁇ ′ and ⁇ ′′ are between 2.25° and 3.75°.
  • the sprocket assembly 16 meets the measurements indicated above since the sprockets from 1 to 11 have a thickness O substantially constant along a radial direction, and lower than or equal to 1.7 mm and, moreover, the distance P between most of the adjacent sprockets is greater than the thickness of the sprockets but lower than or equal to 2.3 mm.
  • the thickness of the sprockets could also be variable along a radial direction, but what's more is that in the engagement area with the chain 15 sprockets from 1 to 11 have a maximum thickness lower than or equal to 1.7 mm and preferably lower than or equal to 1.6 mm.
  • all of the sprockets are placed at a distance P apart lower than or equal to 2.2 mm.
  • some sprockets are at a distance apart greater than 2.2 mm.
  • the sprockets 9 , 10 and 11 are at distances apart P′ and P′′ equal to 2.4 and 2.5 mm.
  • the chain 15 is illustrated in detail in FIGS. 5 to 7 and has a conventional shape. It comprises an alternating succession of outer links 60 and inner links 61 , connected each other at respective connection ends 60 a and 61 a.
  • Each outer link comprises two outer plates 15 a and each inner link 61 comprises two inner plates 15 b .
  • the plates of each link are arranged parallel and spaced apart to define a space for receiving a tooth of a sprocket.
  • the outer plates 15 a are farther apart than the inner plates 15 b and they partially overlap them at the respective connection end 60 a and 61 a .
  • a rivet 15 c rotatably joins the inner plates 15 b to the outer plates 15 a at the respective connection ends 60 a and 61 a.
  • the ends 60 a of the outer plates 60 have respective holes 60 b and the ends 61 a of the inner plates 61 have respective holes 61 b , the holes 60 b and 61 b having substantially the same diameter and being aligned to house the rivets 15 c .
  • the rivet 15 c between the two inner plates 15 b , there is a bush 15 d capable of rotating freely about the axis of the rivet ( FIG. 7 ).
  • flanged portions 61 c of the inner plates 15 b are arranged, located around the holes 61 b and extending towards the inside of the link 61 .
  • the maximum thickness R of the chain 15 is lower than or equal to 5.8 mm and preferably lower than or equal to 5.5 mm.
  • the chain has a minimum thickness greater than or equal to 4.6 mm, preferably greater than or equal to 4.8 mm and even more preferably greater than or equal to 5 mm. These values ensure sufficient structural strength to satisfy the current technical standards.
  • the guide toothed wheels 12 associated with the crank arms 50 are made from aluminum alloy, at least in the part intended to engage the chain 15 , the latter preferably has a thickness comprised between 5 and 5.7 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Gears, Cams (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Transmission Devices (AREA)

Abstract

A bicycle rear wheel sprocket assembly has twelve sprockets in a twelve sprocket assembly. The twelve sprocket assembly is configured to be mounted to a bicycle freewheel hub. The freewheel hub rotates about a rotation axis and has a spoke attachment portion and a frame fastening portion which are spaced apart by an axial distance. End sprockets of the twelve sprocket assembly are positioned within the axial distance.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is related to: Italian patent application MI2007A001660, filed Aug. 9, 2007; U.S. application Ser. No. 12/187,560, filed Aug. 7, 2008, now issued U.S. Pat. No. 8,454,461; U.S. application Ser. No. 13/279,834, filed Oct. 24, 2011; U.S. application Ser. No. 13/279,843, filed Oct. 24, 2011 (abandoned); and U.S. application Ser. No. 13/740,636, filed Jan. 14, 2013, all of which are incorporated by reference as if fully set forth.
  • FIELD OF INVENTION
  • The field of the invention relates to a motion transmission system of a bicycle.
  • BACKGROUND
  • In a bicycle transmission system, the combination of a guide toothed wheel with a small diameter with a sprocket with a large diameter allows demanding climbs to be easily handled. However, this same combination, over flat land or going downhill, is disadvantageous since the cyclist's energy is dissipated, due to the fact that the cyclist is obliged to pedal quickly while the bicycle moves forwards slowly.
  • In order to make the aforementioned combination more suitable for the route to be made, it is known to equip the bicycle with a plurality of guide toothed wheels and with a plurality of sprockets, which can be combined with each other based upon requirements, through appropriate gearshifting devices.
  • Because bicycle components have reached a high degree of standardization, the characteristic size of components such as frame, gearshifting devices, freewheel body or chain do not greatly vary, so that most bicycles use three guide toothed wheels and up to ten sprockets.
  • However, certain bicycle transmission systems show a sprocket assembly comprising more sprockets, the largest of which are arranged partially over the spokes of the wheel of the bicycle. The sprockets have a minimum thickness, in the area of engagement with the chain, equal to 1.76 mm, whereas the distance between adjacent sprockets is lower than the minimum thickness of the sprockets themselves, and in particular is equal to 1.66 mm. In order to be made to rotate, the sprocket assembly illustrated requires the use of a special-shaped chain. The aforementioned chain comprises, in alternating succession, a first link, consisting of two plates that are parallel and spaced apart to define the area of engagement with a tooth of a sprocket, and a second link, consisting of a single plate shaped like a “bridge” so as to define in a central portion thereof a seat for coupling with the next tooth of the sprocket.
  • The aforementioned chain, thanks to the second link made with a single plate, has a maximum thickness much smaller than a conventional chain and for this reason it can also be used when there is a space between the sprockets that is smaller than the thickness of the sprockets themselves.
  • The aforementioned chain wears down quickly because of the continuous friction between the teeth of the sprockets and the second links consisting of a single shaped plate. This makes it subject to premature structural yielding.
  • Further, in such an arrangement, the sprockets that are arranged over the spokes of the wheel have a large diameter, i.e. they have a very high number of teeth. Since the number of teeth of the smallest sprocket of known sprocket assemblies is now standardized and goes up to about 11-12 teeth, it follows that passing from the smallest sprockets to the largest ones there is a non-linear increase in diameters, and therefore in the number of teeth. In other words, the cyclist notices a great difference in effort necessary to pedaling from one sprocket to an adjacent sprocket that has a great difference in teeth compared to the previous one. Therefore, it is possible that the cyclist is not able to find the optimum combination of sprockets and guide toothed wheels even with such a large number of sprockets.
  • In addition to the above, the total bulk of the sprocket assembly is very high at the bicycle wheel, for which reason the chain, when engaging the end sprockets, is inclined with respect to the guide toothed wheels and therefore more subject to friction, wear and tension peaks.
  • SUMMARY
  • Throughout the present description and in the subsequent claims, the expression “motion transmission system” in a bicycle is used to indicate the assembly of at least some of the components active in the transmission of motion, imparted by the cyclist through pedaling, from the crank arms to the rear wheel of the bicycle.
  • The present invention relates, in a first aspect thereof, to a motion transmission system of a bicycle, comprising a sprocket assembly adapted to be mounted on a freewheel body of a hub of a bicycle rear wheel and a bicycle chain adapted to engage the sprockets of the sprocket assembly, the sprocket assembly comprising at least eleven sprockets, the hub being able to rotate about a rotation axis and comprising a plurality of attachment seats of the spokes of the rear wheel of the bicycle and a fastening portion to a frame of the bicycle, a predetermined axial distance being defined on the hub between a plane, substantially perpendicular to the rotation axis, comprising the points of the spoke attachment seats closest to the freewheel body and a plane, substantially perpendicular to the rotation axis and defined in the fastening portion to the frame, comprising the attachment points to the frame closest to the freewheel body, wherein all of the sprockets of the sprocket assembly, when they are associated with the freewheel body, have an overall axial width or bulk smaller than, or equal to, the predetermined axial distance, and in that the chain has a maximum thickness in the direction of the rotation axis comprised between 4.6 mm and 5.8 mm, the extreme values being included.
  • BRIEF DESCRIPTION OF THE DRAWING(S)
  • Certain characteristics and advantages shall become clearer from the following detailed description of a preferred embodiment thereof, made with reference to the attached drawings and given for indicating and not limiting purposes. In such drawings:
  • FIG. 1 schematically shows a side view of a bicycle comprising a motion transmission system;
  • FIG. 2 schematically shows a longitudinal section view of a portion of the motion transmission system of FIG. 1, i.e. of a sprocket assembly mounted on a freewheel body of a hub of a bicycle rear wheel, such a sprocket assembly being engaged with a bicycle chain;
  • FIG. 3 schematically shows a plan view from above of the sprocket assembly of FIG. 2 mounted in a bicycle frame;
  • FIG. 4 schematically shows a plan view from above of a complete transmission system according to the present invention mounted on a bicycle frame, FIG. 3 being an enlarged detail of this FIG. 4;
  • FIGS. 5 and 6 schematically show a plan view from above and, respectively, a top side view of the chain of FIG. 2;
  • FIG. 7 schematically shows a longitudinal section view of a portion of the chain of FIGS. 5 and 6, taken according to the plane traced with the line VII-VII of FIG. 6.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • Introduction
  • The present invention relates, in a first aspect thereof, to a motion transmission system of a bicycle, comprising a sprocket assembly adapted to be mounted on a freewheel body of a hub of a bicycle rear wheel and a bicycle chain adapted to engage the sprockets of the sprocket assembly, the sprocket assembly comprising at least eleven sprockets, the hub being able to rotate about a rotation axis and comprising a plurality of attachment seats of the spokes of the rear wheel of the bicycle and a fastening portion to a frame of the bicycle, a predetermined axial distance being defined on the hub between a plane, substantially perpendicular to the rotation axis, comprising the points of the spoke attachment seats closest to the freewheel body and a plane, substantially perpendicular to the rotation axis and defined in the fastening portion to the frame, comprising the attachment points to the frame closest to the freewheel body, wherein all of the sprockets of the sprocket assembly, when they are associated with the freewheel body, have an overall axial bulk smaller than, or equal to, the predetermined axial distance, and in that the chain has a maximum thickness in the direction of the rotation axis comprised between 4.6 mm and 5.8 mm, the extreme values being included.
  • The use of a sprocket assembly having the aforementioned axial bulk and of a chain having the aforementioned thickness allows, on the one hand, a high strength of the transmission system with at least eleven sprockets to be ensured, at the same time allowing conventionally-shaped chain and sprockets to be used, to the advantage of the simplicity of construction and reliability of the transmission system. In particular, the chain is smaller in size than the chains currently used for sprocket assemblies with ten sprockets, so as to allow narrower sprockets and/or smaller distances between conventional sprockets to be used, which results in a lightweight assembly.
  • More specifically, although the maximum thickness of the chain is less than that currently used for a chain of a sprocket assembly with ten sprockets, the aforementioned thickness of the chain ensures a surprisingly high strength, and in particular it is possible to use a conventionally-shaped chain, which is sufficiently strong, contrary to certain prior art that suggests using a specially-shaped chain. In addition thereto, conventional chains, thanks to the presence of a bush able to rotate freely in the link engaged by a tooth, ensure that the friction between the tooth and the chain does not limit the smooth running of the transmission system.
  • Moreover, the transmission system described herein provided for the use of a sprocket assembly in which no sprocket is intended to be arranged over the spokes of the wheel of the bicycle, for which reason the sprockets added after the tenth one can advantageously be intermediate sprockets, and not end sprockets with a large diameter as required in the prior art. This enormously increases the linearity of the increase in diameter of the sprockets, since it is possible for example to have a greater number of adjacent sprockets with a difference in teeth equal to just one tooth.
  • Moreover, the use of a sprocket assembly having an axial bulk such as to be able to be entirely housed on the freewheel body of the hub without being arranged over the spokes of the wheel allows such a sprocket assembly to be suitably positioned, for which reason it can be ensured that the chain, when engaging the end sprockets, is not excessively inclined, thus limiting its wear and the generation of tension peaks.
  • The chain may comprise an alternating succession of outer links and inner links, connected each other at respective connection ends, each link, outer and inner, comprising two respective plates, outer and inner, being arranged parallel and spaced apart to define a space for receiving a tooth of a sprocket. The shape of the chain of the transmission system may be conventional, which contributes to the simplicity and cost-effectiveness of manufacturing the transmission system.
  • The maximum thickness may be between 4.8 mm and 5.6 mm, the extreme values being included. Preferably, the maximum thickness is comprised between 5 mm and 5.5 mm, the extreme values being included. These aforementioned maximum thicknesses of the chain ensure a sufficiently high reliability.
  • Preferably, the axial width or bulk is lower than or equal to 46 mm, and more preferably lower than or equal to 43.5 mm.
  • In this way, the aforementioned sprocket assembly can be housed in a conventional bicycle having wheels and frame of standardized size.
  • The distance between two end sprockets of the sprocket assembly, measured between respective faces of the end sprockets facing outwardly from the sprocket assembly, may be lower than or equal to 42.5 mm, and preferably lower than or equal to 40.5 mm.
  • In this way the chain can engage the sprocket with the smallest diameter with sufficient margin as not to slide in the frame of the bicycle, and the gearshift can position the chain on the sprocket with the largest diameter without interfering with the spokes of the wheel.
  • The sprockets may have a predetermined position and are spaced apart.
  • In another embodiment of the transmission system, the sprocket with the smallest diameter of the sprocket assembly has 11 or 12 teeth and the sprocket with the largest diameter has a number of teeth comprised between 23 and 27.
  • The transmission system has a sprocket assembly comprising a combination of eleven sprockets selected from the following:
  • a first combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23 teeth respectively;
  • a second combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25 teeth respectively;
  • a third combination with sprockets having 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27 teeth respectively;
  • a fourth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25 teeth respectively;
  • a fifth combination with sprockets having 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27 teeth respectively.
  • In another alternative, the transmission system has a sprocket assembly comprising a combination of twelve sprockets selected from the following:
  • a first combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23 teeth respectively;
  • a second combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25 teeth respectively;
  • a third combination with sprockets having 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 25, 27 teeth respectively;
  • a fourth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25 teeth respectively;
  • a fifth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27 teeth respectively.
  • The sprockets may have a maximum thickness, at an engagement area with the chain, lower than or equal to 1.7 mm, and more preferably lower than or equal to 1.6 mm.
  • The distance between at least two consecutive sprockets of the sprocket assembly, measured between the engagement area with the chain of the sprocket with the smallest diameter and an adjacent sprocket, is greater than or equal to the thickness of the sprockets. Moreover, the distance between all of the consecutive sprockets of the sprocket assembly may be greater than or equal to the thickness of the sprockets.
  • The distance between consecutive sprockets may be lower than or equal to 2.2 mm.
  • This makes it possible to use a chain with plates of the links having relatively large thicknesses and thus being sufficiently strong.
  • The sprockets with a smaller diameter may be placed at greater distances apart than the sprockets with a larger diameter. Further, the sprockets with a smaller diameter may be at a distance apart lower than or equal to 2.5 mm.
  • Such distances between sprockets allow the passage of a conventionally-shaped chain with particularly strong sections.
  • At least six consecutive sprockets may have a number of teeth that differs by one from that of at least one adjacent sprocket. Moreover, one of the at least six sprockets has eighteen teeth.
  • Moreover, the consecutive sprockets may be at least seven in number. Even further, the consecutive sprockets may have at least eight or at least nine in number.
  • In this way, in the movement of the chain from one sprocket to another the cyclist does not notice a great difference in effort.
  • The transmission system may comprise at least one guide toothed wheel associated with at least one crank arm and adapted to be engaged by the chain at the same time as one of the sprockets of the sprocket assembly. The at least one toothed wheel may be made from aluminum alloy and has a maximum thickness, in the engagement area of the chain, lower than or equal to 1.7 mm. Further, the maximum thickness of the at least one toothed wheel and of the sprockets, in the respective engagement areas of the chain, is the same. In particular, the maximum thickness may be lower than or equal to 1.6 mm in combination with a chain having a thickness lower than or equal to 5.5 mm.
  • Thanks to the dimensions indicated above it is possible to make toothed wheels that are light and sufficiently strong.
  • In a second aspect thereof, the sprocket assembly for a bicycle rear wheel comprises at least eleven sprockets, wherein all of the sprockets of the sprocket assembly have an overall axial width or bulk lower than or equal to 46 mm.
  • Such a sprocket assembly may have, individually or in combination, all of the structural and functional characteristics discussed above with reference to the sprocket assembly of the motion transmission system and therefore has all of the aforementioned advantages.
  • In particular, the axial bulk of the sprocket assembly is preferably lower than or equal to 43.5 mm.
  • The distance between two end sprockets of the sprocket assembly, may be measured between respective faces of the end sprockets facing outwardly from the sprocket assembly, is lower than or equal to 42.5 mm, and more preferably lower than or equal to 40.5 mm.
  • The sprockets may have a predetermined position and are spaced apart.
  • In another embodiment of the sprocket assembly, the sprocket with the smallest diameter has 11 or 12 teeth and the sprocket with the largest diameter has a number of teeth comprised between 23 and 27.
  • The aforementioned sprocket assembly may comprise a combination of eleven sprockets selected from the following:
  • a first combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23 teeth respectively;
  • a second combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25 teeth respectively;
  • a third combination with sprockets having 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27 teeth respectively;
  • a fourth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25 teeth respectively;
  • a fifth combination with sprockets having 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27 teeth respectively.
  • In another alternative, the sprocket assembly may comprise a combination of twelve sprockets selected from the following:
  • a first combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23 teeth respectively;
  • a second combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25 teeth respectively;
  • a third combination with sprockets having 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 25, 27 teeth respectively;
  • a fourth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25 teeth respectively;
  • a fifth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27 teeth respectively.
  • The sprockets may have a maximum thickness, at an engagement area with a bicycle chain, lower than or equal to 1.7 mm, and more preferably lower than or equal to 1.6 mm.
  • The distance between at least two consecutive sprockets of the sprocket assembly, measured between the engagement area with a bicycle chain of the sprocket with the smallest diameter and an adjacent sprocket, may be greater than or equal to the thickness of the sprockets.
  • Moreover, the distance between all of the consecutive sprockets of the sprocket assembly may be greater than or equal to the thickness of the sprockets.
  • Preferably, the distance between consecutive sprockets is lower than or equal to 2.2 mm.
  • In another embodiment of the sprocket assembly, the sprockets with a smaller diameter may be placed at greater distances apart than the sprockets with a larger diameter. The sprockets with a smaller diameter may be at a distance apart lower than or equal to 2.5 mm.
  • At least six consecutive sprockets may have a number of teeth that differs by one from that of at least one adjacent sprocket. Moreover, one of the at least six sprockets preferably has eighteen teeth.
  • Further, the consecutive sprockets may be at least seven in number. Even further, the consecutive sprockets may be at least eight or at least nine in number.
  • In a third aspect thereof, the bicycle chain comprises an alternating succession of outer links and inner links, connected each other at respective connection ends, each link, outer and inner, comprising two respective plates, outer and inner, arranged parallel and spaced apart to define a space for receiving a tooth of a sprocket of a sprocket assembly of a bicycle rear wheel, wherein it has a maximum thickness comprised between 4.6 mm and 5.8 mm, the extreme values being included.
  • Such a bicycle chain has, individually or in combination, all of the structural and functional characteristics discussed above with reference to the chain of the motion transmission system and therefore has all of the aforementioned advantages.
  • In particular, the maximum thickness is between 4.8 mm and 5.6 mm, the extreme values being included, and more preferably between 5 mm and 5.5 mm, the extreme values being included.
  • In a fourth aspect thereof, a bicycle comprises a transmission system, and/or a sprocket assembly and/or a chain of the type described above.
  • Such a bicycle may have, individually or in combination, all of the structural and functional characteristics discussed above with reference to the aforementioned transmission system and/or sprocket assembly and/or chain.
  • In a fifth aspect thereof, a bicycle comprises a sprocket assembly having at least eleven sprockets, wherein the sprocket assembly is positioned so that the difference between the distance of the sprocket with the smallest diameter from a chain line of the bicycle and the distance of the sprocket with the largest diameter from the chain line is lower than or equal, in absolute value, to 4 mm.
  • In such a bicycle, when the chain is in the engagement positions of the end sprockets, it is not excessively inclined and it is not subject to wear and tension peaks.
  • The distance of the sprocket with the smallest diameter from the chain line is equal to the distance of the sprocket with the largest diameter from the chain line.
  • Description
  • With initial reference to FIG. 1, a bicycle 51 is shown to which a motion transmission system in accordance with the present invention is applied, wholly indicated with 59.
  • The bicycle 51 of FIG. 1 comprises a frame 53 to which a front wheel 55 and a rear driving wheel 57 are connected.
  • What makes the front wheel 55 different from the rear driving wheel 57 is that the second receives the motion from the transmission system 59 of the bicycle 51. This system comprises a pair of crank arms 50 directly coupled with one or more guide toothed wheels 12. The crank arms 50 are supported in rotation in the frame 53 through a bottom bracket assembly 14 comprising a shaft and some bearings. The guide toothed wheels 12 engage a chain 15 to transmit the torque applied by the cyclist on the crank arms 50 to a sprocket assembly 16 coupled with the rear driving wheel 57.
  • In particular, the rear driving wheel 57 comprises a rim 58, some spokes 18 and a hub 20. The hub 20 is per se known and for this reason is only schematically illustrated: it comprises a first body 56 (FIG. 3) coupled with the rim 58 through the spokes 18 and a second body that rotates as a unit with the sprocket assembly 16. The second body is indicated with reference numeral 22 in FIG. 2 and is known as freewheel body since it is free to rotate with respect to the first body 56 in a direction of rotation, and move it into rotation in the opposite direction. The rotation axis is indicated with X in FIG. 2.
  • On the first body 56 of the hub 20 there are seats 54 (FIG. 3) for the attachment of the spokes 18 to the hub 20. On the axially opposite side to the seats 54, the hub 20 comprises a portion 540 for attachment to the frame 53 of the bicycle 51.
  • The sprocket assembly 16 comprises a plurality of driven toothed wheels, known as sprockets, having a different outer diameter to one another: in the example illustrated in FIGS. 2-4, there are eleven sprockets and they are indicated with reference numerals 1 to 11, from the sprocket 1 having the largest outer diameter to the sprocket 11 having the smallest outer diameter.
  • A gearshifting device 24, illustrated in FIG. 1, allows the chain 15 to be moved from an engagement condition with a sprocket to an engagement condition with another sprocket. A similar device can also be provided in the area of the crank arms 50 in the case in which there is more than one guide toothed wheel 12. In this way the sprockets and the toothed wheels can be associated with each other through the chain 15 in a plurality of combinations.
  • With reference to FIGS. 2 and 3, the sprocket assembly 16 has a size such as to be able to be entirely housed in the space of the hub 20 between the portion 540 for attachment to the frame 53 of the bicycle 51 and the portion of body 56 where the seats 54 are made. In particular, the sprocket assembly 16 is of a size such as to be able to be housed in the space E between the planes Z and Y, where Z is the plane, perpendicular to the axis X of the hub 20, passing through the points of the seats 54 closest to the freewheel body 22, and Y is the plane, perpendicular to the axis X and defined in the portion for attachment to the frame 53 of the hub, passing through the points of the hub 20 where the attachment to the frame 53 takes place and that are closest to the freewheel body 22.
  • In particular, the portion of the frame 53 to which the wheel is fastened in general is shaped like a fork with a face facing towards the sprocket assembly 16, indicated with reference numeral 159 in FIGS. 2 and 3 and the points of the hub 20 where the attachment to the frame 53 takes place and that are closest to the freewheel body 22 are defined at a plane defined on the face 159.
  • The space E has a predetermined axial distance greater than or equal to 46 mm and the sprocket assembly 16 has an axial bulk lower than or equal to 46 mm, preferably lower than or equal to 43.50 mm. Further, the sprocket with the smallest diameter 11 has a distance F from the face 159 of the frame 53 at least equal to 2 mm or such that when the chain 15 engages it the distance G of the chain 15 from the frame 53 is at least equal to 0.5 mm.
  • Moreover, the distance M between the faces 1 a and 11 a of the sprockets 1 and 11 facing towards the outside of the sprocket assembly 16 is lower than or equal to 42.5 mm, and preferably lower than or equal to 40.5 mm, compared with an engagement area of the sprockets made on the freewheel body 22 with a length N lower than or equal to 39 mm.
  • With reference to FIG. 3 it can be seen that thanks to the size of the sprocket assembly 16 it can be positioned substantially symmetrically with respect to the chain line LC of the bicycle 51, conventionally defined by the standardization rules at a predetermined distance W from the middle plane MD of the bicycle 51 (in the case of use of a pair of guide toothed wheels associated with the crank arms, the chain line is arranged substantially at half the distance between the two guide toothed wheels). This means that the face 1 a of the sprocket 1 with the largest diameter and the face 11 a of the sprocket 11 with the smallest diameter have respective distances DS′ and DS″ from the chain line LC that are substantially equal or with a difference lower than 4 mm.
  • This means that when the chain 15 is engaged respectively with the sprocket 1 with the largest diameter and with the sprocket 11 with the smallest diameter it is inclined with respect to the chain line LC by substantially equal acute angles α′ and α″, as shown in FIG. 4. Preferably, the angles α′ and α″ are between 2.25° and 3.75°.
  • The sprocket assembly 16 meets the measurements indicated above since the sprockets from 1 to 11 have a thickness O substantially constant along a radial direction, and lower than or equal to 1.7 mm and, moreover, the distance P between most of the adjacent sprockets is greater than the thickness of the sprockets but lower than or equal to 2.3 mm.
  • Actually, the thickness of the sprockets could also be variable along a radial direction, but what's more is that in the engagement area with the chain 15 sprockets from 1 to 11 have a maximum thickness lower than or equal to 1.7 mm and preferably lower than or equal to 1.6 mm.
  • Preferably, moreover, all of the sprockets are placed at a distance P apart lower than or equal to 2.2 mm.
  • Alternatively, some sprockets are at a distance apart greater than 2.2 mm. According to the preferred embodiment shown in FIG. 2, the sprockets 9, 10 and 11 are at distances apart P′ and P″ equal to 2.4 and 2.5 mm.
  • The chain 15 is illustrated in detail in FIGS. 5 to 7 and has a conventional shape. It comprises an alternating succession of outer links 60 and inner links 61, connected each other at respective connection ends 60 a and 61 a.
  • Each outer link comprises two outer plates 15 a and each inner link 61 comprises two inner plates 15 b. The plates of each link are arranged parallel and spaced apart to define a space for receiving a tooth of a sprocket. The outer plates 15 a are farther apart than the inner plates 15 b and they partially overlap them at the respective connection end 60 a and 61 a. A rivet 15 c rotatably joins the inner plates 15 b to the outer plates 15 a at the respective connection ends 60 a and 61 a.
  • In particular, the ends 60 a of the outer plates 60 have respective holes 60 b and the ends 61 a of the inner plates 61 have respective holes 61 b, the holes 60 b and 61 b having substantially the same diameter and being aligned to house the rivets 15 c. Around the rivet 15 c, between the two inner plates 15 b, there is a bush 15 d capable of rotating freely about the axis of the rivet (FIG. 7). Between the rivet 15 c and the bush 15 d flanged portions 61 c of the inner plates 15 b are arranged, located around the holes 61 b and extending towards the inside of the link 61.
  • The maximum thickness R of the chain 15 is lower than or equal to 5.8 mm and preferably lower than or equal to 5.5 mm.
  • In any case, the chain has a minimum thickness greater than or equal to 4.6 mm, preferably greater than or equal to 4.8 mm and even more preferably greater than or equal to 5 mm. These values ensure sufficient structural strength to satisfy the current technical standards. In the case in which the guide toothed wheels 12 associated with the crank arms 50 are made from aluminum alloy, at least in the part intended to engage the chain 15, the latter preferably has a thickness comprised between 5 and 5.7 mm.
  • With the sizes indicated above, some combinations of eleven sprockets that can be housed substantially in the space in which the combinations of ten sprockets of the prior art are housed, are the following:
  • first combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23 teeth respectively;
  • second combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 25 teeth respectively;
  • third combination with sprockets having 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27 teeth respectively;
  • fourth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25 teeth respectively;
  • fifth combination with sprockets having 12, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27 teeth respectively.
  • Some combinations with twelve sprockets are the following:
  • first combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23 teeth respectively;
  • second combination with sprockets having 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25 teeth respectively;
  • third combination with sprockets having 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 25, 27 teeth respectively;
  • fourth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25 teeth respectively;
  • fifth combination with sprockets having 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27 teeth respectively.
  • Of course, a person of ordinary skill in the art can bring numerous modifications and variants to the motion transmission system of a bicycle described above, in order to satisfy contingent and specific requirements, all of which are anyway covered by the scope of protection as defined by the following claims.

Claims (29)

What is claimed is:
1. A bicycle rear wheel sprocket assembly comprising, twelve sprockets in a twelve sprocket assembly configured for mounting to a bicycle freewheel hub, wherein the freewheel hub rotates about a rotation axis and has a spoke attachment portion and a frame fastening portion which are spaced apart by an axial distance, and wherein end sprockets of the twelve sprocket assembly are positioned within the axial distance.
2. The bicycle rear wheel sprocket assembly of claim 1, wherein the sprocket assembly is bounded by a first plane positioned at the spoke attachment portion and a second plane positioned at the frame fastening portion.
3. The bicycle rear wheel sprocket assembly of claim 2, wherein a maximum axial width of the sprocket assembly is no greater than 46 mm.
4. The bicycle rear wheel sprocket assembly of claim 2, wherein a maximum axial width of the sprocket assembly is no greater than 43.5 mm.
5. The bicycle rear wheel sprocket assembly of claim 2, wherein a first end sprocket of the twelve sprocket assembly is immediately adjacent to the first plane and a second end sprocket of the twelve sprocket assembly opposite to the first end sprocket is immediately adjacent to the second plane.
6. The bicycle rear wheel sprocket assembly of claim 1, wherein each sprocket is generally planar in the area of the rotation axis.
7. The bicycle rear wheel sprocket assembly of claim 1, wherein inner diameter surfaces of all of the twelve sprockets are parallel to the rotation axis.
8. The bicycle rear wheel sprocket assembly of claim 1, wherein a distance measured between respective outer faces of end sprockets in the assembly is no greater than 42.5 mm.
9. The bicycle rear wheel sprocket assembly of claim 8, wherein a distance measured between respective outer faces of end sprockets in the assembly is no greater than 40.5 mm.
10. A bicycle motion transmission system, comprising:
a freewheel body of a rear wheel hub having a first plane that is perpendicular to a rotation axis of the rear wheel hub and is defined by an axially inner most portion of the hub that includes spoke attachment seats, and a second plane that is perpendicular to the rotation axis of the rear wheel hub, and is defined by a portion of the hub that includes a frame attachment portion; and
twelve sprockets that define a twelve sprocket assembly mounted on the freewheel body of the rear wheel hub with a first end sprocket and second end sprocket that are the outermost sprockets of the twelve sprocket assembly, and the first end sprocket and the second end sprocket are bounded by the first and second planes.
11. The bicycle motion transmission system of claim 10 wherein a maximum axial width of the sprocket assembly is no greater than 46 mm.
12. The bicycle motion transmission system of claim 10, wherein a maximum axial width of the sprocket assembly is no greater than 43.5 mm.
13. The bicycle motion transmission system of claim 10, wherein the first end sprocket is immediately adjacent to the first plane and the second end sprocket is immediately adjacent to the second plane.
14. The bicycle motion transmission system of claim 10, wherein the first end sprocket is spaced inwardly from the first plane in a direction toward a center of the twelve sprocket assembly and the second end sprocket is spaced inwardly from the second plane in a direction toward a center of the twelve sprocket assembly.
15. The bicycle motion transmission system of claim 10 further including a chain having an alternating succession of outer links comprised of two parallel plates and inner links comprised of two parallel plates, the outer and inner links are connected to each other at respective connection and are spaced apart to define a sprocket tooth receiving space between the two parallel inner plate.
16. The bicycle motion transmission system of claim 10, wherein a distance measured between respective outer faces of end sprockets in the assembly is no greater than 42.5 mm.
17. The bicycle motion transmission system of claim 16, wherein a distance measured between respective outer faces of end sprockets in the assembly is no greater than 40.5 mm.
18. A combination of a bicycle rear wheel sprocket assembly and a drive chain, comprising:
a twelve sprocket assembly with first and second end sprockets being the outermost sprockets of the twelve sprocket assembly, the first and second end sprockets both being bounded by a first plane that is perpendicular to a rotation axis of a rear wheel hub, and is defined by an axially inner most portion of the hub that includes spoke attachment seats, and a second plane that is perpendicular to the rotation axis of the rear wheel hub, and is defined by a portion of the hub that includes a frame attachment portion; and
a chain having an alternating succession of outer links comprised of two parallel plates and inner links comprised of two parallel plates, the outer and inner links are connected to each other at respective connection and are spaced apart to define a sprocket tooth receiving space between the two parallel inner plates.
19. The combination of claim 18, wherein the chain has a maximum thickness, as measured at the parallel outer links, between and including 4.6 mm and 5.8 mm.
20. The combination of claim 19, wherein the chain has a maximum thickness which is greater than 4.8 mm.
21. The combination of claim 20, wherein the chain has a maximum thickness which is greater than 5.0 mm.
22. The combination of claim 18, wherein a maximum axial width of the sprocket assembly is no greater than 46 mm.
23. The combination of claim 22, wherein a maximum axial width of the sprocket assembly is no greater than 43.5 mm.
24. The combination of claim 18, wherein the first end sprocket is immediately next the first plane and the second end sprocket is immediately next the second plane.
25. The combination of claim 18, wherein a distance measured between respective outer faces of end sprockets in the assembly is no greater than 42.5 mm.
26. The combination of claim 25, wherein a distance measured between respective outer faces of end sprockets in the assembly is no greater than 40.5 mm.
27. A bicycle rear wheel sprocket assembly comprising, twelve sprockets in a mounting assembly configured for mounting to a bicycle freewheel hub that rotates about a rotation axis, the bicycle freewheel hub has a spoke attachment portion and a frame fastening portion that are axially separated to define between them an axial mounting space where the mounting assembly with the twelve sprockets mounts to the bicycle freewheel hub with extreme end sprockets of the twelve sprockets positioned perpendicular to the rotation axis and within the mounting space.
28. A bicycle motion transmission system, comprising:
a bicycle rear wheel sprocket assembly comprising twelve sprockets in a twelve sprocket assembly configured for mounting to a bicycle free wheel hub, the twelve sprockets including a largest sprocket and a smallest sprocket; and
a chain configured to engage sprocket teeth of each of the twelve sprockets, wherein:
the freewheel hub has a spoke attachment portion and a frame fastening portion which are spaced apart by an axial distance;
the chain is comprised of alternating inner and outer links that are connected to each other, each inner and outer link includes two spaced apart plates that define a void that receives one tooth of at least one of the sprockets; and
the chain remains within the axial distance when it moves over the sprocket assembly from the smallest sprocket to the largest sprocket.
29. The bicycle motion transmission system of claim 28, wherein the twelve sprockets in a twelve sprocket assembly are mounted within the predetermined axial distance.
US15/463,915 2007-08-09 2017-03-20 Motion transmission system of a bicycle Abandoned US20170190383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/463,915 US20170190383A1 (en) 2007-08-09 2017-03-20 Motion transmission system of a bicycle

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
ITMI2007A001660 2007-08-09
IT001660A ITMI20071660A1 (en) 2007-08-09 2007-08-09 MOTION BIKE TRANSMISSION SYSTEM
US12/187,560 US8454461B2 (en) 2007-08-09 2008-08-07 Motion transmission system of a bicycle
US13/279,843 US20120277046A1 (en) 2007-08-09 2011-10-24 Motion transmission system of a bicycle
US13/279,834 US9850992B2 (en) 2007-08-09 2011-10-24 Motion transmission system of a bicycle
US13/740,636 US20130130852A1 (en) 2007-08-09 2013-01-14 Motion transmission system of a bicycle
US15/463,915 US20170190383A1 (en) 2007-08-09 2017-03-20 Motion transmission system of a bicycle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/740,636 Continuation US20130130852A1 (en) 2007-08-09 2013-01-14 Motion transmission system of a bicycle

Publications (1)

Publication Number Publication Date
US20170190383A1 true US20170190383A1 (en) 2017-07-06

Family

ID=40076613

Family Applications (6)

Application Number Title Priority Date Filing Date
US12/187,560 Active 2031-08-22 US8454461B2 (en) 2007-08-09 2008-08-07 Motion transmission system of a bicycle
US13/279,834 Active US9850992B2 (en) 2007-08-09 2011-10-24 Motion transmission system of a bicycle
US13/279,843 Abandoned US20120277046A1 (en) 2007-08-09 2011-10-24 Motion transmission system of a bicycle
US13/740,636 Abandoned US20130130852A1 (en) 2007-08-09 2013-01-14 Motion transmission system of a bicycle
US15/463,915 Abandoned US20170190383A1 (en) 2007-08-09 2017-03-20 Motion transmission system of a bicycle
US15/463,871 Abandoned US20170190382A1 (en) 2007-08-09 2017-03-20 Motion transmission system of a bicycle

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US12/187,560 Active 2031-08-22 US8454461B2 (en) 2007-08-09 2008-08-07 Motion transmission system of a bicycle
US13/279,834 Active US9850992B2 (en) 2007-08-09 2011-10-24 Motion transmission system of a bicycle
US13/279,843 Abandoned US20120277046A1 (en) 2007-08-09 2011-10-24 Motion transmission system of a bicycle
US13/740,636 Abandoned US20130130852A1 (en) 2007-08-09 2013-01-14 Motion transmission system of a bicycle

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/463,871 Abandoned US20170190382A1 (en) 2007-08-09 2017-03-20 Motion transmission system of a bicycle

Country Status (8)

Country Link
US (6) US8454461B2 (en)
EP (2) EP2647563A3 (en)
JP (3) JP5253917B2 (en)
CN (3) CN101362500A (en)
ES (1) ES2429788T3 (en)
IT (1) ITMI20071660A1 (en)
RU (1) RU2008132882A (en)
TW (2) TWI576279B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20071660A1 (en) * 2007-08-09 2009-02-10 Campagnolo Srl MOTION BIKE TRANSMISSION SYSTEM
ITMI20071661A1 (en) * 2007-08-09 2009-02-10 Campagnolo Srl ASSEEME OF WHEELS TOOTHED FOR A BICYCLE
ITPD20090125A1 (en) * 2009-05-08 2010-11-09 Alit S R L MOTION TRANSMISSION DEVICE FOR CONVEYOR BELTS
TWI585000B (en) * 2011-07-13 2017-06-01 Sram De Gmbh A multi-sprocket equipped with a small sprocket is used for the transmission of the bicycle transmission
US9533735B2 (en) * 2013-07-19 2017-01-03 Sram Deutschland Gmbh Multiple-sprocket arrangement for a bicycle gearing
EP2987715A1 (en) * 2014-08-21 2016-02-24 VP Components Co., Ltd. Chain wheel assembly and chain wheel device using it
US9011282B2 (en) * 2014-11-21 2015-04-21 D3 Innovation Inc. Bicycle sprocket for use with a multi-gear rear cassette
DE202015009220U1 (en) * 2014-12-15 2016-12-08 Shimano Inc. Bicycle multiple sprocket assembly and drive section
US9403578B1 (en) * 2015-02-05 2016-08-02 Shimano Inc. Bicycle sprocket assembly and bicycle rear sprocket assembly
DE102015205736B4 (en) 2015-03-30 2024-05-16 Sram Deutschland Gmbh Bicycle rear wheel sprocket arrangement
DE102015017526B4 (en) 2015-03-30 2024-09-05 Sram Deutschland Gmbh Bicycle rear wheel sprocket arrangement
US10900547B2 (en) 2015-03-30 2021-01-26 Sram Deutschland Gmbh Drive arrangement for a bicycle and tool
CN106275229A (en) * 2015-06-09 2017-01-04 乔绅股份有限公司 Flower hub and flywheel structure
DE102015210503A1 (en) 2015-06-09 2016-12-15 Sram Deutschland Gmbh Rear sprocket assembly for a bicycle, especially a pedelec
EP3109062A1 (en) * 2015-06-25 2016-12-28 Chosen Co., Ltd. Assembly of hub and freewheel
US10703441B2 (en) 2015-07-03 2020-07-07 Sram Deutschland Gmbh Drive arrangement for a bicycle
ITUB20154794A1 (en) * 2015-11-06 2017-05-06 Campagnolo Srl Bicycle chain and motion transmission system comprising this chain
US10167046B2 (en) 2016-01-29 2019-01-01 Cyclazoom, LLC Vehicle with weight-based drive mechanism
DE102016008594B4 (en) * 2016-07-14 2024-02-15 Shimano Inc. Bicycle multiple sprocket assembly
US9868491B1 (en) * 2016-07-21 2018-01-16 Shimano Inc. Bicycle sprocket assembly
DE102016012229A1 (en) 2016-10-13 2018-04-19 Sram Deutschland Gmbh Multiple sprocket assembly and bicycle drive with such a multiple sprocket arrangement
TWI617749B (en) * 2017-01-13 2018-03-11 Chain and its inner chain
CN108343708B (en) * 2017-01-23 2024-11-05 超汇桂盟传动(苏州)有限公司 Chain and inner chain piece thereof
US11364971B2 (en) 2017-07-31 2022-06-21 Shimano Inc. Bicycle sprocket assembly and bicycle drive train
US10689067B2 (en) 2017-03-03 2020-06-23 Shimano Inc. Bicycle sprocket assembly and bicycle drive train
CN108284914B (en) * 2018-02-12 2023-10-27 珠海蓝图运动科技股份有限公司 Bicycle chain pulling structure and bicycle
IT201900013341A1 (en) * 2019-07-30 2021-01-30 Campagnolo Srl Sprocket carrier and sprocket set sub-assembly for a bicycle rear wheel
US11465710B2 (en) * 2019-12-10 2022-10-11 Shimano Inc. Bicycle rear sprocket assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954604A (en) * 1996-11-21 1999-09-21 Shimano, Inc. Multiple sprocket assembly for a bicycle
US20060025849A1 (en) * 2003-04-14 2006-02-02 Aaron Kaplan Vascular bifurcation prosthesis with multiple linked thin fronds
US20130130852A1 (en) * 2007-08-09 2013-05-23 Campagnolo S.R.L. Motion transmission system of a bicycle

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR910359A (en) 1944-11-17 1946-06-05 Forges Du Lignon Improvement in freewheels of multi-gear bicycles
FR989114A (en) 1949-06-21 1951-09-05 Vandevoir Method and device for driving an auxiliary motor bicycle
US3082637A (en) * 1961-10-17 1963-03-26 Gen Nailing Mach Quick-change sprocket
US4121474A (en) 1971-10-23 1978-10-24 Jose Domingo Arregui Suinaga Multiple crown free wheel systems for bicycles
JPS5742153Y2 (en) 1978-12-12 1982-09-16
US4363580A (en) 1980-07-07 1982-12-14 The Boeing Company Self-retaining close tolerance bushing
US5205794A (en) * 1983-11-14 1993-04-27 Bicycle Partnership #1 Shift mechanism for bicycle
US5026329A (en) * 1990-08-02 1991-06-25 Catepillar Inc. Isolated drive sprocket assembly
JPH04297390A (en) 1991-03-27 1992-10-21 Shimano Inc Multistage wheel for bicycle rear wheel
US5362278A (en) 1992-03-18 1994-11-08 Fichtel & Sachs Ag Chain driving mechanism for a bicycle or the like
GB2277138A (en) 1993-04-15 1994-10-19 Nah Bang Ind Co Ltd Bicycle chain
DE4401272C1 (en) 1994-01-18 1995-03-16 Fichtel & Sachs Ag Multiple sprocket for bicycle derailleurs
EP0671316B1 (en) 1994-03-10 2000-01-12 Industrial Technology Research Institute Two sprocket tooth trimming methods and the structure thereof for the multi-stage sprocket assembly in a bicycle
US5569107A (en) * 1995-05-31 1996-10-29 Falcon Industrial Co., Ltd. Multi-step bicycle transmission sprocket assembly
US5766106A (en) * 1995-09-08 1998-06-16 Edwards; Craig H. Crankset assembly
JP3562883B2 (en) 1995-09-29 2004-09-08 株式会社シマノ Multi-stage wheels for bicycle rear wheels
DE29623258U1 (en) * 1996-07-23 1998-01-22 Mannesmann Sachs AG, 97424 Schweinfurt Chain drive for bicycles
DE19629602A1 (en) * 1996-07-23 1998-01-15 Mannesmann Sachs Ag Chain drive with at least one chain wheel set for bicycles
US5921881A (en) 1996-11-21 1999-07-13 Shimano, Inc. Narrow bicycle chain with inner links that receive sprocket teeth within a bottom recess
IT1289715B1 (en) * 1996-12-05 1998-10-16 Campagnolo Srl PINION SUPPORT GROUP FOR A BICYCLE
US6102281A (en) * 1997-11-13 2000-08-15 Graphic Packaging Corporation Partially-shield microwave heating tray
US6676549B1 (en) * 1998-12-18 2004-01-13 Shimano, Inc. Motion sensor for use with a bicycle sprocket assembly
US6264575B1 (en) 1999-04-08 2001-07-24 Shimano, Inc. Freewheel for a bicycle
US6428437B1 (en) * 1999-06-10 2002-08-06 Raphael Schlanger Power transmission assembly
US6537173B2 (en) 2000-04-11 2003-03-25 Mavic S.A. Transmission system for a bicycle
US6572500B2 (en) 2000-06-30 2003-06-03 Shimano Inc. Bicycle sprocket with chain support projections
TW467841B (en) * 2000-09-05 2001-12-11 Nat Science Council The multi-stage sprocket assembly for the bicycle chain shifting
US6382381B1 (en) * 2000-09-06 2002-05-07 Shimano Inc. Bicycle hub assembly
US6340338B1 (en) * 2000-09-13 2002-01-22 Shimano Inc. Bicycle sprocket
JP2002308177A (en) 2001-04-02 2002-10-23 Uni Sunstar Bv Chain catch prevention device, bicycle, and power-assisted bicycle
US6923741B2 (en) 2002-08-30 2005-08-02 Shimano Inc. Top sprocket for a rear sprocket assembly and rear sprocket assembly for a bicycle
DE10260565B4 (en) 2002-12-21 2016-09-15 Sram Deutschland Gmbh The sprocket assembly
US6866604B2 (en) * 2003-01-17 2005-03-15 Shimano, Inc. Multiple level sprocket support for a bicycle
FR2865185A1 (en) 2004-01-21 2005-07-22 Herve Baumann Bicycle chain transmission mechanism, includes set of toothed ring gears in which distance between two adjacent toothed ring gears varies according to selected transmission ratio
JP2005231556A (en) * 2004-02-20 2005-09-02 Shimano Inc Hub for bicycle
JP2005343254A (en) 2004-06-01 2005-12-15 Shimano Inc Chain for bicycle
DE102004027963B4 (en) 2004-06-08 2015-12-24 Sram Deutschland Gmbh Riveted sprocket set
US20060063624A1 (en) * 2004-09-20 2006-03-23 Darrell Voss Transmission systems and methods
DE202004019270U1 (en) 2004-12-13 2005-04-28 Lee, Cheng Ming Lightweight multiple sprocket wheel for gearchange mechanism on bicycle is of stepped dished shape with short cylinder sections with teeth joining annular sections, all made in one piece
US7585240B2 (en) 2005-02-03 2009-09-08 Shimano Inc. Bicycle sprocket assembly
EP1712811A1 (en) * 2005-04-15 2006-10-18 Campagnolo S.R.L. One-way transmission device for a hub of a rear wheel of a bicycle, pawl carrying body for such device and hub comprising such device
TWM274314U (en) 2005-04-25 2005-09-01 Jr-Bin Liou Transmission structure for gearshift bicycle
US7435197B2 (en) * 2005-05-11 2008-10-14 Shimano Inc. Rear sprocket for bicycle transmission
US8057338B2 (en) * 2005-08-30 2011-11-15 Shimano, Inc. Bicycle sprocket apparatus with reinforcement between sprockets
US7824287B2 (en) * 2005-12-02 2010-11-02 Shimano Inc. Bicycle sprocket
US20080004143A1 (en) 2006-06-16 2008-01-03 Shimano Inc. Bicycle sprocket assembly
US7854673B2 (en) * 2006-08-31 2010-12-21 Shimano Inc. Bicycle sprocket assembly having a reinforcement member coupled between sprockets
JP2008189254A (en) * 2007-02-07 2008-08-21 Shimano Inc Rear sprocket assembly for bicycle, and sprocket
US7325391B1 (en) 2007-03-02 2008-02-05 Shimano Inc. Bicycle chain
ITMI20071661A1 (en) 2007-08-09 2009-02-10 Campagnolo Srl ASSEEME OF WHEELS TOOTHED FOR A BICYCLE
ITMI20071659A1 (en) * 2007-08-09 2009-02-10 Campagnolo Srl SPROCKET ASSEMBLY FOR A REAR BICYCLE WHEEL AND SPROCKET PACK INCLUDING SUCH ASSEMBLY
ITMI20071658A1 (en) * 2007-08-09 2009-02-10 Campagnolo Srl PINION MODULE FOR A BICYCLE AND SPROCKET PACK INCLUDING THIS MODULE
US7871347B2 (en) * 2007-10-11 2011-01-18 Shimano Inc. Bicycle rear sprocket assembly
US20100009794A1 (en) 2008-07-10 2010-01-14 Douglas Chiang Sprocket assembly
US9376165B2 (en) * 2009-10-16 2016-06-28 Shimano Inc. Bicycle sprocket

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954604A (en) * 1996-11-21 1999-09-21 Shimano, Inc. Multiple sprocket assembly for a bicycle
US20060025849A1 (en) * 2003-04-14 2006-02-02 Aaron Kaplan Vascular bifurcation prosthesis with multiple linked thin fronds
US20130130852A1 (en) * 2007-08-09 2013-05-23 Campagnolo S.R.L. Motion transmission system of a bicycle
US8454461B2 (en) * 2007-08-09 2013-06-04 Campagnolo S.R.L. Motion transmission system of a bicycle

Also Published As

Publication number Publication date
US20120277046A1 (en) 2012-11-01
EP2647563A3 (en) 2017-02-22
US8454461B2 (en) 2013-06-04
US20130130852A1 (en) 2013-05-23
US20090042680A1 (en) 2009-02-12
RU2008132882A (en) 2010-02-20
EP2022712A3 (en) 2012-03-28
US20170190382A1 (en) 2017-07-06
US20120277045A1 (en) 2012-11-01
EP2647563A2 (en) 2013-10-09
US9850992B2 (en) 2017-12-26
JP2016117489A (en) 2016-06-30
CN101362500A (en) 2009-02-11
ITMI20071660A1 (en) 2009-02-10
CN104709432A (en) 2015-06-17
TW201434709A (en) 2014-09-16
TWI443041B (en) 2014-07-01
JP2009107615A (en) 2009-05-21
JP6188394B2 (en) 2017-08-30
CN104743051B (en) 2018-02-09
JP5253917B2 (en) 2013-07-31
EP2022712B1 (en) 2013-07-10
TWI576279B (en) 2017-04-01
TW200911624A (en) 2009-03-16
JP2013154881A (en) 2013-08-15
ES2429788T3 (en) 2013-11-15
JP6333878B2 (en) 2018-05-30
EP2022712A2 (en) 2009-02-11
CN104743051A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
US20170190383A1 (en) Motion transmission system of a bicycle
US10371234B2 (en) Bicycle chain and motion transmission system comprising such a chain
US11110991B2 (en) Chainring
US10088020B2 (en) Belt drive system
US11364971B2 (en) Bicycle sprocket assembly and bicycle drive train
CN104760655A (en) Bicycle crank assembly
US20180186429A1 (en) Rear derailleur
CA2252654A1 (en) Two-wheel drive bicycle
AU2016345061A1 (en) A transmission system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION