US20170145276A1 - Heat transfer fluid - Google Patents
Heat transfer fluid Download PDFInfo
- Publication number
- US20170145276A1 US20170145276A1 US15/396,855 US201715396855A US2017145276A1 US 20170145276 A1 US20170145276 A1 US 20170145276A1 US 201715396855 A US201715396855 A US 201715396855A US 2017145276 A1 US2017145276 A1 US 2017145276A1
- Authority
- US
- United States
- Prior art keywords
- weight
- heat transfer
- transfer fluid
- tetrafluoropropene
- difluoromethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
- C08J9/146—Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/008—Lubricant compositions compatible with refrigerants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B45/00—Arrangements for charging or discharging refrigerant
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/122—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/22—All components of a mixture being fluoro compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/40—Replacement mixtures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/40—Replacement mixtures
- C09K2205/43—Type R22
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/003—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
- C10M2203/065—Well-defined aromatic compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
- C10M2209/043—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/1033—Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/09—Characteristics associated with water
- C10N2020/097—Refrigerants
- C10N2020/101—Containing Hydrofluorocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
-
- C10N2220/302—
-
- C10N2240/30—
Definitions
- compositions according to the present invention may also be used as a replacement for R-407C, for example in heat pumps.
- compositions according to the present invention under the operating conditions of a heat pump and air conditioning are given in Table 2.
- values of the constituents (1234yf, 32 and 152a) for each composition are given as percentages by weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Detergent Compositions (AREA)
Abstract
Compositions which are based on tetrafluoropropene and more particularly relates to compositions inclduing 60% to 90% by weight of 2,3,3,3-tetrafluoropropene and 10% to 40% by weight of at least one compound selected from difluoroethane and difluoromethane, which can be used as a heat transfer fluid. The compositions may include 60% to 79% by weight of 2,3,3,3-tetrafluoropropene and 21% to 40% by weight of a compound selected from difluoroethane and difluoromethane.
Description
- The present application is a continuation of U.S. application Ser. No. 14/873,855, filed on Oct. 2, 2015, which is a continuation of U.S. application Ser. No. 13/122,606, filed on Apr. 5, 2011, which is a U.S. national stage of International Application No. PCT/FR2009/051814, filed on Sep. 24, 2009, which claims the benefit of French Application No. 08.56836, filed on Oct. 9, 2008 and French Application No. 08.56817, filed on Oct. 8, 2008. The entire contents of each of U.S. application Ser. No. 14/873,855, U.S. application Ser. No. 13/122,606, International Application No. PCT/FR2009/051814, French Application No. 08.56836, and French Application No. 08.56817 are hereby incorporated herein by reference in their entirety.
- The present invention relates to compositions comprising hydrofluoroolefins and to their uses as heat transfer fluids, blowing agents, solvents and aerosols.
- The problems posed by substances which deplete the atmospheric ozone layer (ODP: ozone depletion potential) were tackled at Montreal, where a protocol was signed which imposes a reduction on the production and use of chlorofluorocarbons (CFCs). This protocol has been the subject of amendments, which have imposed the abandonment of CFCs and have extended the regulations to other products, among them hydrochlorofluorocarbons (HCFCs).
- The refrigeration industry and the air conditioning industry have invested much in the replacement of these refrigerant fluids, and a product of this investment has been the commercialization of hydrofluorocarbons (HFCs).
- (Hydro)chlorofluorocarbons which are used as expandants or solvents have also been replaced by HFCs.
- In the automotive industry, the air-conditioning systems of vehicles which are sold in many countries have switched from a chlorofluorocarbon (CFC-12) refrigerant fluid to that of a hydrofluorocarbon (1,1,1,2-tetrafluoroethane: HFC-134a), which is less harmful to the ozone layer. However, in view of the objectives set by the Kyoto Protocol, HFC-134a (GWP=1300) is considered to have a high warming potential. The contribution to the greenhouse effect of a fluid is quantified by a criterion, the GWP (global warming potential), which indexes the warming potential by taking a reference value of 1 for carbon dioxide.
- Carbon dioxide, being non-toxic, non-flammable and having a very low GWP, has been proposed as a refrigerant fluid for air-conditioning systems, as a replacement for HFC-134a. However, the use of carbon dioxide presents a number of disadvantages, associated in particular with the very high pressure of its use as a refrigerant fluid in existing apparatus and technologies.
- Moreover, the mixture R-404A, composed of 44% by weight of pentafluoroethane, 52% by weight of trifluoroethane and 4% by weight of HFC-134a, is widely used as a refrigerant fluid in superstores (supermarket) and in refrigerated transport. This mixture, however, has a GWP of 3900. The mixture R-407C, composed of 52% by weight of HFC-134a, 25% by weight of pentafluoroethane and 23% by weight of difluoromethane, is used as a heat transfer fluid in air conditioning and in heat pumps. This mixture, however, has a GWP of 1800.
- Document JP 4110388 describes the use of hydrofluoropropenes of formula C3HmFn, where m and n represent an integer between 1 and 5 inclusive and m+n=6, as heat transfer fluids, especially tetrafluoropropene and trifluoropropene.
- Document WO 2004/037913 discloses the use of compositions comprising at least one fluoroalkene having three or four carbon atoms, more particularly pentafluoropropene and tetrafluoropropene, preferably having a GWP of not more than 150, as heat transfer fluids.
- Document WO 2005/105947 teaches the addition to tetrafluoropropene, preferably 1,3,3,3-tetrafluoropropene, of a co-blowing agent such as difluoromethane, pentafluoroethane, tetrafluoroethane, difluoroethane, heptafluoropropane, hexafluoropropane, pentafluoropropane, pentafluorobutane, water or carbon dioxide.
- Document WO 2006/094303 discloses an azeotropic composition containing 7.4% by weight of 2,3,3,3-tetrafluoropropene (1234yf) and 92.6% by weight of difluoromethane (HFC-32). This document likewise discloses an azeotropic composition containing 91% by weight of 2,3,3,3-tetrafluoropropene and 9% by weight of difluoroethane (HFC-152a).
- The applicant has now developed compositions which contain hydrofluoropropenes, which can be used as a heat transfer fluid, which do not have the aforementioned drawbacks and which combine a zero ODP with a GWP lower than that of existing heat transfer fluids such as R-404A or R-407C or R22 (chlorodifluoromethane).
- The compositions according to the present invention are characterized in that they comprise 60% to 90% by weight of 2,3,3,3-tetrafluoropropene and 10% to 40% by weight of at least one compound selected from difluoroethane and difluoromethane.
- According to a first embodiment of the invention the compositions comprise 60% to 79% by weight of 2,3,3,3-tetrafluoropropene and 21% to 40% by weight of a compound selected from difluoroethane and difluoromethane.
- The compositions according to this first embodiment preferably comprise 60% to 70% by weight of 2,3,3,3-tetrafluoropropene and 30% to 40% by weight of a compound selected from difluoroethane and difluoromethane.
- Advantageously the compositions according to this first embodiment comprise 60% to 65% by weight of 2,3,3,3-tetrafluoropropene and 35% to 40% by weight of a compound selected from difluoroethane and difluoromethane.
- The compositions which are particularly preferred according to this first embodiment comprise 2,3,3,3-tetrafluoropropene and difluoromethane.
- Advantageously these compositions contain essentially 2,3,3,3-tetrafluoropreopene and difluoromethane.
- According to a second embodiment of the invention the compositions comprise 60% to 90% by weight of 2,3,3,3-tetrafluoropropene and 10% to 40% by weight of a mixture composed of dichloromethane and difluoroethane.
- The compositions which are preferred according to this second embodiment comprise 60% to 80% by weight of 2,3,3,3-tetrafluoropropene and 20% to 40% by weight of a mixture composed of difluoromethane and difluoroethane.
- The compositions which are advantageously preferred according to this second embodiment comprise 60% to 75% by weight of 2,3,3,3-tetrafluoropropene and 25% to 40% by weight of a mixture composed of difluoromethane and difluoroethane.
- Particularly preferred compositions comprise 60% to 80% by weight of 2,3,3,3-tetrafluoropropene and 5% to 35% by weight of difluoromethane and 5% to 35% by weight of difluoroethane.
- The compositions which are of interest are those comprising or containing essentially 60% to 80% by weight of 2,3,3,3-tetrafluoropropene and 10% to 30% by weight of difluoromethane and 10% to 30% by weight of difluoroethane.
- The compositions according to the invention may comprise a stabilizer for 2,3,3,3-tetrafluoropropene. The stabilizer represents not more than 5% by weight, relative to the total composition.
- Stabilizers include more particularly nitromethane, ascorbic acid, terephthalic acid, azoles such as tolutriazole or benzotriazole, phenolic compounds such as tocopherol, hydroquinone, tert-butylhydroquinone, 2,6-di-tert-butyl-4-methylphenol, epoxides (alkyl, optionally fluorinated or perfluorinated, or alkenyl or aromatic) such as n-butyl glycidyl ether, hexanediol diglycidyl ether, allyl glycidyl ether and butylphenyl glycidyl ether, phosphites, phosphates, phosphonates, thiols and lactones.
- The compositions according to the present invention may comprise lubricants such as mineral oil, alkylbenzene, polyalkylene glycol and polyvinyl ether.
- The compositions according to the present invention are suitable for replacing R-404A in refrigeration and/or R-407C in air conditioning and heat pumps in existing systems. They may also be suitable for replacing R-404A in refrigeration systems with a cascaded compression regime in which at least one stage is operated with the compositions according to the present invention. Examples of compositions which are of particular interest for the replacement of R-404A in existing systems include those comprising or containing essentially 60% by weight of 2,3,3,3-tetrafluoropropene and 40% by weight of difluoromethane; 70% by weight of 2,3,3,3-tetrafluoropropene and 30% by weight of difluoromethane; and 60% by weight of 2,3,3,3-tetrafluoropropene, 30% by weight of difluoromethane and 10% by weight of difluoroethane.
- Examples of compositions which are of particular interest for the replacement of R-404A in systems operating with a cascaded compression regime include those comprising or containing essentially 60% by weight of 2,3,3,3-tetrafluoropropene and 40% by weight of difluoroethane; 70% by weight of 2,3,3,3-tetrafluoropropene and 30% by weight of difluoroethane; and 75% by weight of 2,3,3,3-tetrafluoropropene, 20% by weight of difluoromethane and 5% by weight of difluoroethane.
- The compositions according to the present invention may also be used as a replacement for R-407C, for example in heat pumps.
- Examples of compositions which are of particular interest for the replacement of R-407C in existing systems include those comprising or containing essentially 60% by weight of 2,3,3,3-tetrafluoropropene and 40% by weight of difluoromethane; 70% by weight of 2,3,3,3-tetrafluoropropene and 30% by weight of difluoromethane; 60% by weight of 2,3,3,3-tetrafluoropropene, 30% by weight of difluoromethane and 10% by weight of difluoroethane; and 70% by weigh of 2,3,3,3-tetrafluoropropene, 25% by weight of difluoromethane and 5% by weight of difluoroethane.
- The compositions according to the present invention can be used, furthermore, as blowing agents, aerosols and solvents.
- The performance data of the compositions according to the invention under the operating conditions of refrigeration are given in Table 1. The values of the constituents (1234yf, 32 and 152a) for each composition are given as percentages by weight.
- For R404A, the nominal operating pressure is 18 bar, the volumetric capacity is 1500 kJ/m 3 and the COP is 1.8 under the following operating conditions.:
- Evaporation temperature: −20° C.
- Condensation temperature: 40° C.
- Compressor inlet temperature: −5° C.
- Super cooled liquid temperature: 33° C.
- Isentropic yield of the compressor: 70%
- BP: pressure at the evaporator
- HP: pressure at the condenser
- Ratio: compression ratio
- T comp outlet: temperature at the compressor outlet
- COP: coefficient of performance—defined, for the purposes of refrigeration, as being the useful cooling power supplied by the system, as a proportion of the power provided or consumed by the system.
- CAP: volumetric capacity (kJ/m3)
- % CAP or COP is the ratio of the value of the CAP or COP of the mixture in relation to the same value for R404A.
-
TABLE 1 T BP HP Ratio comp. Compositions (bar) (bar) (p/p) outlet % COP % CAP R404A 3 18 6.10 77 100 100 1234yf 32 152a 60 40 0 2.7 21 7.57 111 96 102 70 30 0 2.4 19 8.02 104 94 89 75 25 0 2.2 18 8.19 101 94 83 60 20 20 2.0 16 8.01 100 98 76 60 30 10 2.3 18 7.94 106 96 88 70 25 5 2.2 18 8.10 101 95 83 70 20 10 2.0 16 8.07 98 96 77 75 20 5 2.0 16 8.16 97 95 77 75 15 10 1.9 15 8.01 93 97 72 85 10 5 1.8 14 7.92 86 99 67 60 0 40 1.5 10 6.60 79 114 59 70 0 30 1.5 10 6.53 76 113 59 - The performance data of the compositions according to the present invention under the operating conditions of a heat pump and air conditioning are given in Table 2. The values of the constituents (1234yf, 32 and 152a) for each composition are given as percentages by weight.
- For R407C, the nominal operating pressure is 34 bar, the volumetric capacity is 1461 kJ/m 3 and the COP is 2.1 under the following operating conditions:
- Evaporation temperature: −5° C.
- Condensation temperature: 70° C.
- Compressor inlet temperature: 5° C.
- Supercooled liquid temperature: 65° C.
- Isentropic yield of the compressor: 70%
- BP: pressure at the evaporator
- HP: pressure at the condenser
- Ratio: compression ratio
- T comp outlet: temperature at the compressor outlet
- COP: coefficient of performance—defined, for the purposes of a heat pump, as being the useful heating power supplied by the system, as a proportion of the power provided or consumed by the system.
- CAP: volumetric capacity (kJ/m3)
- % CAP or COP is the ratio of the value of the CAP or COP of the mixture in relation to the same value for the R-407C.
-
TABLE 2 T BP HP Ratio comp. Compositions (bar) (bar) (p/p) outlet % COP % CAP R407C 3.9 34.4 127 100 100 1234yf 32 152a 60 40 0 4.8 39.7 8.30 133 91.9 112 70 30 0 4.2 36.5 8.69 126 92.4 99 75 25 0 3.9 34.6 8.85 122 93.2 93 60 20 20 3.5 30.1 8.64 121 101.5 89 60 30 10 4.1 35.0 8.60 128 97.1 101 70 25 5 3.9 33.9 8.74 123 95.5 94 70 20 10 3.6 31.2 8.70 119 98.3 88 75 20 5 3.6 31.8 8.79 118 96.4 88 75 15 10 3.3 28.9 8.64 113 99.3 82 85 10 5 3.1 26.7 8.58 107 99.3 75 60 0 40 2.6 18.9 7.27 98 113.7 67 70 0 30 2.7 19.1 7.19 95 111.3 66
Claims (17)
1-12. (canceled)
13. A heat transfer fluid comprising:
60% to 90% by weight of 2,3,3,3-tetrafluoropropene; and
10% to 40% by weight of a mixture of difluoromethane and 1,1-difluoroethane.
14. The heat transfer fluid of claim 13 comprising:
60% to 79% by weight of 2,3,3,3-tetrafluoropropene; and
21% to 40% by weight of a mixture of difluoromethane and 1,1-difluoroethane.
15. The heat transfer fluid of claim 13 comprising:
60% to 70% by weight of 2,3,3,3-tetrafluoropropene; and
30% to 40% by weight of a mixture of difluoromethane and 1,1-difluoroethane.
16. The heat transfer fluid of claim 13 comprising:
60% to 65% by weight of 2,3,3,3-tetrafluoropropene; and
35% to 40% by weight of a mixture of difluoromethane and 1,1-difluoroethane.
17. A composition comprising the heat transfer fluid of claim 13 and a stabilizer selected from the group consisting of nitromethane, ascorbic acid, terephthalic acid, azoles, phenolic compounds, epoxides, phosphites, phosphates, phosphonates, thiols and lactones.
18. The composition of claim 17 , wherein the stabilizer represents at most 5% by weight relative to the heat transfer fluid.
19. A composition comprising the heat transfer fluid of claim 13 and a lubricant selected from the group consisting of mineral oil, alkylbenzene, polyalkylene glycol and polyvinyl ether.
20. A composition comprising the heat transfer fluid of claim 16 and a stabilizer selected from the group consisting of nitromethane, ascorbic acid, terephthalic acid, azoles, phenolic compounds, epoxides, phosphites, phosphates, phosphonates, thiols and lactones.
21. The composition of claim 20 , wherein the stabilizer represents at most 5% by weight relative to the heat transfer fluid.
22. A composition comprising the heat transfer fluid of claim 16 and a lubricant selected from the group consisting of mineral oil, alkylbenzene, polyalkylene glycol and polyvinyl ether.
23. The heat transfer fluid of claim 16 consisting of:
60% to 65% by weight of 2,3,3,3-tetrafluoropropene; and
35% to 40% by weight of a mixture of difluoromethane and 1,1-difluoroethane.
24. A heat transfer fluid comprising:
60% to 80% by weight of 2,3,3,3-tetrafluoropropene;
5% to 35% by weight of difluoromethane; and
5% to 20% by weight of 1,1-difluoroethane,
wherein the total amount of difluoromethane and 1,1-difluoroethane is 15% to 40% by weight of the composition.
25. The heat transfer fluid of claim 24 comprising:
60% to 80% by weight of 2,3,3,3-tetrafluoropropene;
10% to 25% by weight of difluoromethane;
5% to 20% by weight of 1,1-difluoroethane; and
optionally a stabilizer.
26. A composition comprising the heat transfer fluid of claim 24 and a stabilizer selected from the group consisting of nitromethane, ascorbic acid, terephthalic acid, azoles, phenolic compounds, epoxides, phosphites, phosphates, phosphonates, thiols and lactones.
27. The composition of claim 26 , wherein the stabilizer represents at most 5% by weight relative to the heat transfer fluid.
28. A composition comprising the heat transfer fluid of claim 24 and a lubricant selected from the group consisting of mineral oil, alkylbenzene, polyalkylene glycol and polyvinyl ether.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/396,855 US20170145276A1 (en) | 2008-10-08 | 2017-01-03 | Heat transfer fluid |
US16/142,492 US11130893B2 (en) | 2008-10-08 | 2018-09-26 | Heat transfer fluid |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR08.56817 | 2008-10-08 | ||
FR0856817A FR2936806B1 (en) | 2008-10-08 | 2008-10-08 | REFRIGERANT FLUID |
FR0856836A FR2936807B3 (en) | 2008-10-08 | 2008-10-09 | HEAT TRANSFER FLUID |
FR08.56836 | 2008-10-09 | ||
PCT/FR2009/051814 WO2010040928A1 (en) | 2008-10-08 | 2009-09-24 | Heat transfer fluid |
US201113122606A | 2011-04-05 | 2011-04-05 | |
US14/873,855 US9599381B2 (en) | 2008-10-08 | 2015-10-02 | Heat transfer fluid |
US15/396,855 US20170145276A1 (en) | 2008-10-08 | 2017-01-03 | Heat transfer fluid |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/873,855 Continuation US9599381B2 (en) | 2008-10-08 | 2015-10-02 | Heat transfer fluid |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/142,492 Continuation US11130893B2 (en) | 2008-10-08 | 2018-09-26 | Heat transfer fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170145276A1 true US20170145276A1 (en) | 2017-05-25 |
Family
ID=40627376
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/122,606 Abandoned US20110186772A1 (en) | 2008-10-08 | 2009-09-24 | Heat transfer fluid |
US14/873,855 Active US9599381B2 (en) | 2008-10-08 | 2015-10-02 | Heat transfer fluid |
US15/396,855 Abandoned US20170145276A1 (en) | 2008-10-08 | 2017-01-03 | Heat transfer fluid |
US16/142,492 Active US11130893B2 (en) | 2008-10-08 | 2018-09-26 | Heat transfer fluid |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/122,606 Abandoned US20110186772A1 (en) | 2008-10-08 | 2009-09-24 | Heat transfer fluid |
US14/873,855 Active US9599381B2 (en) | 2008-10-08 | 2015-10-02 | Heat transfer fluid |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/142,492 Active US11130893B2 (en) | 2008-10-08 | 2018-09-26 | Heat transfer fluid |
Country Status (10)
Country | Link |
---|---|
US (4) | US20110186772A1 (en) |
EP (2) | EP2586842A3 (en) |
JP (5) | JP5591246B2 (en) |
CN (1) | CN102171309B (en) |
ES (1) | ES2663548T3 (en) |
FR (2) | FR2936806B1 (en) |
PL (1) | PL2331651T3 (en) |
PT (1) | PT2331651T (en) |
TW (1) | TWI406934B (en) |
WO (1) | WO2010040928A1 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9932507B2 (en) * | 2011-08-26 | 2018-04-03 | The Chemours Company Fc, Llc | Compositions comprising tetrafluoropropene and methods of use thereof |
US9969918B2 (en) | 2012-12-26 | 2018-05-15 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US10005940B2 (en) | 2015-02-19 | 2018-06-26 | Daikin Industries, Ltd. | Composition containing mixture of fluorinated hydrocarbons, and method for producing same |
US10023780B2 (en) | 2013-07-11 | 2018-07-17 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US10119055B2 (en) | 2010-07-09 | 2018-11-06 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US10125296B2 (en) | 2009-09-11 | 2018-11-13 | Arkema France | Binary refrigerating fluid |
US10131829B2 (en) | 2012-12-26 | 2018-11-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US10252913B2 (en) | 2013-03-20 | 2019-04-09 | Arkema France | Composition comprising HF and 2,3,3,3-tetrafluoropropene |
US10316231B2 (en) | 2009-09-11 | 2019-06-11 | Arkema France | Low-temperature and average-temperature refrigeration |
US10358592B2 (en) | 2009-09-11 | 2019-07-23 | Arkema France | Heat transfer method |
US10399918B2 (en) | 2015-03-18 | 2019-09-03 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10450488B2 (en) | 2012-01-26 | 2019-10-22 | Arkema France | Heat transfer compositions having improved miscibility with lubricating oil |
US10604690B2 (en) | 2012-12-26 | 2020-03-31 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US10808157B2 (en) | 2008-11-03 | 2020-10-20 | Arkema France | Vehicle heating and/or air conditioning method |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US10954467B2 (en) | 2016-10-10 | 2021-03-23 | Arkema France | Use of tetrafluoropropene based compositions |
US11001546B2 (en) | 2018-02-05 | 2021-05-11 | Arkema France | Ternary azeotropic or quasi-azeotropic composition comprising HF, 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane |
CN112789342A (en) * | 2018-10-04 | 2021-05-11 | 科慕埃弗西有限公司 | Azeotropic compositions of HFO-1234YF and propylene |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
US11130893B2 (en) | 2008-10-08 | 2021-09-28 | Arkema France | Heat transfer fluid |
US11306232B2 (en) | 2016-10-10 | 2022-04-19 | Arkema France | Tetrafluoropropene-based azeotropic compositions |
US11629278B2 (en) | 2018-02-15 | 2023-04-18 | Arkema France | Heat transfer compositions as replacement for R-134A |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100122545A1 (en) | 2008-11-19 | 2010-05-20 | E. I. Du Pont De Nemours And Company | Tetrafluoropropene compositions and uses thereof |
FR2942237B1 (en) * | 2009-02-13 | 2013-01-04 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
US9845419B2 (en) | 2009-07-29 | 2017-12-19 | Honeywell International Inc. | Low GWP heat transfer compositions containing difluoromethane and 1,3,3,3-tetrafluoropropene |
FR2950069B1 (en) | 2009-09-11 | 2011-11-25 | Arkema France | USE OF TERNARY COMPOSITIONS |
FR2950071B1 (en) | 2009-09-11 | 2012-02-03 | Arkema France | TERNARY COMPOSITIONS FOR LOW CAPACITY REFRIGERATION |
FR2950067B1 (en) * | 2009-09-11 | 2011-10-28 | Arkema France | HEAT TRANSFER FLUID IN REPLACEMENT OF R-410A |
FR2950070B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | TERNARY COMPOSITIONS FOR HIGH CAPACITY REFRIGERATION |
FR2954342B1 (en) | 2009-12-18 | 2012-03-16 | Arkema France | HEAT TRANSFER FLUIDS WITH REDUCED FLAMMABILITY |
KR20210122889A (en) * | 2009-12-21 | 2021-10-12 | 더 케무어스 컴퍼니 에프씨, 엘엘씨 | Compositions comprising tetrafluoropropene and difluoromethane and uses thereof |
CN102639668B (en) * | 2010-01-27 | 2016-02-24 | 大金工业株式会社 | Containing the refrigerant composition of methylene fluoride (HFC32) and 2,3,3,3-tetrafluoeopropene (HFO1234YF) |
FR2959998B1 (en) * | 2010-05-11 | 2012-06-01 | Arkema France | TERNARY HEAT TRANSFER FLUIDS COMPRISING DIFLUOROMETHANE, PENTAFLUOROETHANE AND TETRAFLUOROPROPENE |
FR2964975B1 (en) | 2010-09-20 | 2012-08-24 | Arkema France | COMPOSITION BASED ON 2,3,3,3-TETRAFLUOROPROPENE |
US20120119136A1 (en) * | 2010-11-12 | 2012-05-17 | Honeywell International Inc. | Low gwp heat transfer compositions |
FR2971512B1 (en) | 2011-02-10 | 2013-01-18 | Arkema France | BINARY COMPOSITIONS OF 2,3,3,3-TETRAFLUOROPROPENE AND AMMONIA |
FR2974812B1 (en) | 2011-05-04 | 2014-08-08 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
US9169427B2 (en) | 2011-07-13 | 2015-10-27 | Honeywell International Inc. | Low GWP heat transfer compositions containing difluoromethane, a fluorinated ethane and 1,3,3,3-tetrafluoropropene |
JP2013120029A (en) * | 2011-12-08 | 2013-06-17 | Panasonic Corp | Air conditioner |
US9783721B2 (en) | 2012-08-20 | 2017-10-10 | Honeywell International Inc. | Low GWP heat transfer compositions |
WO2014038604A1 (en) | 2012-09-04 | 2014-03-13 | ダイキン工業株式会社 | Method for filling mixed refrigerant containing 2,3,3,3-tetrafluoropropene |
FR2998302B1 (en) | 2012-11-20 | 2015-01-23 | Arkema France | REFRIGERANT COMPOSITION |
US8940180B2 (en) | 2012-11-21 | 2015-01-27 | Honeywell International Inc. | Low GWP heat transfer compositions |
US9982180B2 (en) | 2013-02-13 | 2018-05-29 | Honeywell International Inc. | Heat transfer compositions and methods |
WO2014152740A1 (en) * | 2013-03-15 | 2014-09-25 | Honeywell International Inc. | Low gwp heat transfer compositions |
US9631779B2 (en) * | 2013-08-15 | 2017-04-25 | Star Headlight & Lantern Co., Inc. | Optical system utilizing LED illumination for a light bar, and light bar having same |
FR3010415B1 (en) * | 2013-09-11 | 2015-08-21 | Arkema France | HEAT TRANSFER FLUIDS COMPRISING DIFLUOROMETHANE, PENTAFLUOROETHANE, TETRAFLUOROPROPENE AND POSSIBLY PROPANE |
FR3023286B1 (en) * | 2014-07-02 | 2018-02-16 | Arkema France | PROCESS FOR THE PRODUCTION OF TETRAFLUOROPROPENE |
FR3064275B1 (en) | 2017-03-21 | 2019-06-07 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
FR3064264B1 (en) | 2017-03-21 | 2019-04-05 | Arkema France | COMPOSITION BASED ON TETRAFLUOROPROPENE |
BR112021022059A2 (en) * | 2018-10-26 | 2021-12-28 | Chemours Co Fc Llc | Fluoropropene compositions, methods of producing a mixture and cooling, processes for transferring heat, for treating a surface and for forming a composition, refrigeration system, refrigeration apparatus, use of the fluoropropene composition and method for replacing a soda |
US11209196B2 (en) | 2018-10-26 | 2021-12-28 | The Chemours Company Fc, Llc | HFO-1234ZE, HFO-1225ZC and HFO-1234YF compositions and processes for producing and using the compositions |
CN113383060B (en) * | 2019-02-14 | 2023-02-21 | 出光兴产株式会社 | Composition for refrigerator |
WO2020236536A1 (en) * | 2019-05-17 | 2020-11-26 | The Chemours Company Fc, Llc | Refrigerant compositions for refrigerant compressor systems |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH549772A (en) | 1972-04-29 | 1974-05-31 | Bertrams Ag Hch | CROSS COUNTERFLOW HEAT EXCHANGER AND METHOD OF ITS MANUFACTURING. |
FR2256381A1 (en) | 1973-12-27 | 1975-07-25 | Tour Agenturer Ab | Arrangement for heating or cooling a flow medium - part of air currents diverted to a circuit containing e.g. ammonia in a heat exchanger |
JP2852362B2 (en) | 1990-04-27 | 1999-02-03 | 日本電信電話株式会社 | Word line drive |
JPH04110388A (en) | 1990-08-31 | 1992-04-10 | Daikin Ind Ltd | Fluid for heat transfer |
DE69232218T2 (en) * | 1991-10-11 | 2002-06-27 | Imperial Chemical Industries Plc, London | working fluids |
JP3270706B2 (en) | 1997-03-24 | 2002-04-02 | 三菱電機株式会社 | Multi-source refrigeration equipment |
US6503417B1 (en) | 1998-04-13 | 2003-01-07 | E. I. Du Pont De Nemours And Company | Ternary compositions of ammonia, pentafluoroethane and difluoromethane |
JP2000161805A (en) | 1998-11-27 | 2000-06-16 | Daikin Ind Ltd | Refrigerating apparatus |
US6176102B1 (en) | 1998-12-30 | 2001-01-23 | Praxair Technology, Inc. | Method for providing refrigeration |
US9005467B2 (en) | 2003-10-27 | 2015-04-14 | Honeywell International Inc. | Methods of replacing heat transfer fluids |
US7279451B2 (en) | 2002-10-25 | 2007-10-09 | Honeywell International Inc. | Compositions containing fluorine substituted olefins |
US20040089839A1 (en) | 2002-10-25 | 2004-05-13 | Honeywell International, Inc. | Fluorinated alkene refrigerant compositions |
ES2728672T3 (en) | 2002-10-25 | 2019-10-28 | Honeywell Int Inc | Compositions containing fluorine substituted olefins |
US20090253820A1 (en) | 2006-03-21 | 2009-10-08 | Honeywell International Inc. | Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming |
US20120097885A9 (en) * | 2003-10-27 | 2012-04-26 | Honeywell International Inc. | Compositions Containing Difluoromethane and Fluorine Substituted Olefins |
US20140166923A1 (en) * | 2002-10-25 | 2014-06-19 | Honeywell International Inc. | Compositions containing difluoromethane and fluorine substituted olefins |
JP4110388B2 (en) | 2003-01-10 | 2008-07-02 | 荒川化学工業株式会社 | Cleaning agent and rinsing agent for gold-plated parts, cleaning method and rinsing method |
JP2005202637A (en) * | 2004-01-15 | 2005-07-28 | Matsushita Electric Ind Co Ltd | Automatic vending machine |
JP4454324B2 (en) | 2004-01-29 | 2010-04-21 | 三洋電機株式会社 | Booster unit |
JP4454323B2 (en) | 2004-01-29 | 2010-04-21 | 三洋電機株式会社 | Refrigeration system |
JP4432654B2 (en) | 2004-07-22 | 2010-03-17 | パナソニック株式会社 | Bathroom ventilation heater |
JP4420807B2 (en) * | 2004-12-14 | 2010-02-24 | 三洋電機株式会社 | Refrigeration equipment |
US7569170B2 (en) | 2005-03-04 | 2009-08-04 | E.I. Du Pont De Nemours And Company | Compositions comprising a fluoroolefin |
US20060243944A1 (en) * | 2005-03-04 | 2006-11-02 | Minor Barbara H | Compositions comprising a fluoroolefin |
US20080184731A1 (en) | 2005-03-18 | 2008-08-07 | Carrier Commercial Refrigeration, Inc. | Multi-Part Heat Exchanger |
JP2007169331A (en) * | 2005-12-19 | 2007-07-05 | Kanou Reiki Kogyo:Kk | Non-azeotropic mixture coolant for super low temperature and single unit type freezing circuit for super low temperature |
GB0614080D0 (en) | 2006-07-17 | 2006-08-23 | Ineos Fluor Holdings Ltd | Heat transfer compositions |
BRPI0714896A2 (en) * | 2006-09-01 | 2013-05-21 | Du Pont | Method to provide you the shipping |
JP5008365B2 (en) | 2006-09-21 | 2012-08-22 | 旭化成ケミカルズ株式会社 | Vinylidene chloride copolymer resin composition |
JP2008134031A (en) | 2006-11-29 | 2008-06-12 | Hitachi Appliances Inc | Refrigerating device using zeotropic refrigerant mixture |
US20100012302A1 (en) | 2006-12-19 | 2010-01-21 | E. I. Du Pont De Nemours And Company | Dual row heat exchanger and automobile bumper incorporating the same |
JP2008159353A (en) | 2006-12-22 | 2008-07-10 | Matsushita Electric Ind Co Ltd | Method and device for manufacturing button type zinc air battery |
ES2935119T3 (en) | 2007-01-31 | 2023-03-01 | Chemours Co Fc Llc | A vapor compression heat transfer system |
CN101688817A (en) | 2007-06-21 | 2010-03-31 | 纳幕尔杜邦公司 | Method for leak detection in heat transfer system |
EP2171012A1 (en) | 2007-07-27 | 2010-04-07 | E. I. du Pont de Nemours and Company | Compositions comprising fluoroolefins and uses thereof |
JP4556001B2 (en) | 2007-12-27 | 2010-10-06 | 日立化成工業株式会社 | Method for forming surface protective film of flexible wiring board |
JP2009177860A (en) | 2008-01-21 | 2009-08-06 | Toyota Motor Corp | Controller of vehicle and vehicle equipped with the same |
JP2009257652A (en) | 2008-02-29 | 2009-11-05 | Daikin Ind Ltd | Refrigerating apparatus |
JP2009257655A (en) | 2008-03-04 | 2009-11-05 | Daikin Ind Ltd | Refrigerating apparatus |
JP2009257745A (en) * | 2008-03-25 | 2009-11-05 | Daikin Ind Ltd | Refrigerating device |
JP2009257601A (en) * | 2008-04-11 | 2009-11-05 | Daikin Ind Ltd | Air conditioning device |
US8038899B2 (en) | 2008-04-28 | 2011-10-18 | Honeywell International Inc. | Refrigerant compositions having a siloxane solubilizing agent |
FR2932494B1 (en) | 2008-06-11 | 2011-02-25 | Arkema France | COMPOSITIONS BASED ON HYDROFLUOROOLEFINS |
FR2932492B1 (en) | 2008-06-11 | 2010-07-30 | Arkema France | COMPOSITIONS BASED ON HYDROFLUOROOLEFINS |
FR2932493B1 (en) | 2008-06-11 | 2010-07-30 | Arkema France | COMPOSITIONS BASED ON HYDROFLUOROOLEFINS |
JP2010002074A (en) * | 2008-06-18 | 2010-01-07 | Mitsubishi Electric Corp | Mixed refrigerant and refrigerating cycle device using the same |
WO2010002016A1 (en) | 2008-07-01 | 2010-01-07 | Daikin Industries, Ltd. | REFRIGERANT COMPOSITION COMPRISING DIFLUOROMETHANE (HFC32) AND 2,3,3,3-TETRAFLUOROPROPENE (HFO1234yf) |
WO2010002023A1 (en) | 2008-07-01 | 2010-01-07 | Daikin Industries, Ltd. | REFRIGERANT COMPOSITION COMPRISING DIFLUOROMETHANE (HFC32), 2,3,3,3-TETRAFLUOROPROPENE (HFO1234yf) AND 1,1,1,2-TETRAFLUOROETHANE (HFC134a) |
EP3093323A1 (en) | 2008-07-30 | 2016-11-16 | Honeywell International Inc. | Compositions containing difluoromethane and fluorine substituted |
CN107384323A (en) * | 2008-07-30 | 2017-11-24 | 霍尼韦尔国际公司 | The composition of the alkene substituted containing difluoromethane and fluorine |
US11214720B2 (en) | 2009-07-29 | 2022-01-04 | Honeywell International Inc. | Compositions containing difluoromethane and fluorine substituted olefins |
FR2936806B1 (en) | 2008-10-08 | 2012-08-31 | Arkema France | REFRIGERANT FLUID |
FR2937906B1 (en) | 2008-11-03 | 2010-11-19 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
US20170080773A1 (en) | 2008-11-03 | 2017-03-23 | Arkema France | Vehicle Heating and/or Air Conditioning Method |
US20100122545A1 (en) | 2008-11-19 | 2010-05-20 | E. I. Du Pont De Nemours And Company | Tetrafluoropropene compositions and uses thereof |
DE202009019200U1 (en) | 2008-11-19 | 2018-10-15 | The Chemours Company Fc, Llc | Tetrafluoropropene compositions and their uses |
FR2938551B1 (en) | 2008-11-20 | 2010-11-12 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
FR2938550B1 (en) | 2008-11-20 | 2010-11-12 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
FR2941039B1 (en) | 2009-01-14 | 2013-02-08 | Arkema France | HEAT TRANSFER METHOD |
JP2010203759A (en) | 2009-02-04 | 2010-09-16 | Panasonic Corp | Freezer |
FR2942237B1 (en) | 2009-02-13 | 2013-01-04 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
US9845419B2 (en) | 2009-07-29 | 2017-12-19 | Honeywell International Inc. | Low GWP heat transfer compositions containing difluoromethane and 1,3,3,3-tetrafluoropropene |
FR2950071B1 (en) | 2009-09-11 | 2012-02-03 | Arkema France | TERNARY COMPOSITIONS FOR LOW CAPACITY REFRIGERATION |
FR2950069B1 (en) | 2009-09-11 | 2011-11-25 | Arkema France | USE OF TERNARY COMPOSITIONS |
FR2950067B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | HEAT TRANSFER FLUID IN REPLACEMENT OF R-410A |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
FR2950066B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | LOW AND MEDIUM TEMPERATURE REFRIGERATION |
FR2950068B1 (en) | 2009-09-11 | 2012-05-18 | Arkema France | HEAT TRANSFER METHOD |
FR2950065B1 (en) | 2009-09-11 | 2012-02-03 | Arkema France | BINARY REFRIGERANT FLUID |
FR2950070B1 (en) | 2009-09-11 | 2011-10-28 | Arkema France | TERNARY COMPOSITIONS FOR HIGH CAPACITY REFRIGERATION |
FR2954342B1 (en) | 2009-12-18 | 2012-03-16 | Arkema France | HEAT TRANSFER FLUIDS WITH REDUCED FLAMMABILITY |
FR2957083B1 (en) | 2010-03-02 | 2015-12-11 | Arkema France | HEAT TRANSFER FLUID FOR CENTRIFUGAL COMPRESSOR |
FR2959998B1 (en) | 2010-05-11 | 2012-06-01 | Arkema France | TERNARY HEAT TRANSFER FLUIDS COMPRISING DIFLUOROMETHANE, PENTAFLUOROETHANE AND TETRAFLUOROPROPENE |
FR2959999B1 (en) | 2010-05-11 | 2012-07-20 | Arkema France | HEAT TRANSFER FLUIDS AND THEIR USE IN COUNTER-CURRENT HEAT EXCHANGERS |
FR2959997B1 (en) | 2010-05-11 | 2012-06-08 | Arkema France | HEAT TRANSFER FLUIDS AND THEIR USE IN COUNTER-CURRENT HEAT EXCHANGERS |
CN106634851A (en) | 2010-06-22 | 2017-05-10 | 阿科玛股份有限公司 | Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin |
FR2962130B1 (en) | 2010-06-30 | 2012-07-20 | Arkema France | COMPOSITION BASED ON 2,3,3,3-TETRAFLUOROPROPENE |
FR2962442B1 (en) | 2010-07-09 | 2016-02-26 | Arkema France | STABLE 2,3,3,3-TETRAFLUOROPROPENE COMPOSITION |
FR2964975B1 (en) | 2010-09-20 | 2012-08-24 | Arkema France | COMPOSITION BASED ON 2,3,3,3-TETRAFLUOROPROPENE |
FR2971512B1 (en) | 2011-02-10 | 2013-01-18 | Arkema France | BINARY COMPOSITIONS OF 2,3,3,3-TETRAFLUOROPROPENE AND AMMONIA |
FR2974812B1 (en) | 2011-05-04 | 2014-08-08 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR2986007B1 (en) | 2012-01-25 | 2015-01-23 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR2986236B1 (en) | 2012-01-26 | 2014-01-10 | Arkema France | HEAT TRANSFER COMPOSITIONS HAVING IMPROVED MISCIBILITY WITH LUBRICATING OIL |
FR3000095B1 (en) | 2012-12-26 | 2015-02-20 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE AND 1,2-DIFLUOROETHYLENE |
FR3000093B1 (en) | 2012-12-26 | 2015-07-17 | Arkema France | AZEOTROPIC OR QUASI-AZEOTROPIC COMPOSITION OF CHLOROMETHANE |
FR3000096B1 (en) | 2012-12-26 | 2015-02-20 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
FR3003565B1 (en) | 2013-03-20 | 2018-06-29 | Arkema France | COMPOSITION COMPRISING HF AND 2,3,3,3-TETRAFLUOROPROPENE |
FR3008419B1 (en) | 2013-07-11 | 2015-07-17 | Arkema France | 2,3,3,3-TETRAFLUOROPROPENE-BASED COMPOSITIONS HAVING IMPROVED MISCIBILITY |
FR3033791B1 (en) | 2015-03-18 | 2017-04-14 | Arkema France | STABILIZATION OF 1-CHLORO-3,3,3-TRIFLUOROPROPENE |
FR3057271B1 (en) | 2016-10-10 | 2020-01-17 | Arkema France | USE OF TETRAFLUOROPROPENE COMPOSITIONS |
FR3057272B1 (en) | 2016-10-10 | 2020-05-08 | Arkema France | AZEOTROPIC COMPOSITIONS BASED ON TETRAFLUOROPROPENE |
FR3061906B1 (en) | 2017-01-19 | 2019-03-15 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
FR3061905B1 (en) | 2017-01-19 | 2019-05-17 | Arkema France | COMPOSITION COMPRISING 2,3,3,3-TETRAFLUOROPROPENE |
FR3070982B1 (en) | 2017-09-12 | 2019-08-30 | Arkema France | COMPOSITION BASED ON HYDROCHLOROFLUOROOLEFIN AND MINERAL OIL |
FR3077572B1 (en) | 2018-02-05 | 2021-10-08 | Arkema France | TERNARY AZEOTROPIC OR QUASI-AZEOTROPIC COMPOSITION COMPRISING HF, 2,3,3,3-TETRAFLUOROPROPENE AND 1,1,1,2,2, -PENTAFLUOROPROPANE. |
FR3077822B1 (en) | 2018-02-15 | 2020-07-24 | Arkema France | REPLACEMENT HEAT TRANSFER COMPOSITIONS FOR R-134A |
FR3080169B1 (en) | 2018-04-13 | 2020-12-18 | Arkema France | PROCESS FOR COOLING AND / OR HEATING A BODY OR A FLUID IN A MOTOR VEHICLE |
-
2008
- 2008-10-08 FR FR0856817A patent/FR2936806B1/en active Active
- 2008-10-09 FR FR0856836A patent/FR2936807B3/en not_active Expired - Lifetime
-
2009
- 2009-09-24 CN CN200980138906.7A patent/CN102171309B/en not_active Ceased
- 2009-09-24 WO PCT/FR2009/051814 patent/WO2010040928A1/en active Application Filing
- 2009-09-24 ES ES09759757.9T patent/ES2663548T3/en active Active
- 2009-09-24 EP EP13152355.7A patent/EP2586842A3/en not_active Withdrawn
- 2009-09-24 EP EP09759757.9A patent/EP2331651B1/en active Active
- 2009-09-24 PT PT97597579T patent/PT2331651T/en unknown
- 2009-09-24 US US13/122,606 patent/US20110186772A1/en not_active Abandoned
- 2009-09-24 JP JP2011530523A patent/JP5591246B2/en active Active
- 2009-09-24 PL PL09759757T patent/PL2331651T3/en unknown
- 2009-10-06 TW TW098133850A patent/TWI406934B/en active
-
2014
- 2014-03-12 JP JP2014049419A patent/JP2014141681A/en active Pending
-
2015
- 2015-10-02 US US14/873,855 patent/US9599381B2/en active Active
-
2016
- 2016-05-26 JP JP2016104908A patent/JP2016176082A/en active Pending
-
2017
- 2017-01-03 US US15/396,855 patent/US20170145276A1/en not_active Abandoned
-
2018
- 2018-09-26 US US16/142,492 patent/US11130893B2/en active Active
- 2018-11-16 JP JP2018215896A patent/JP2019052317A/en active Pending
-
2021
- 2021-01-14 JP JP2021003960A patent/JP2021066889A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11130893B2 (en) | 2008-10-08 | 2021-09-28 | Arkema France | Heat transfer fluid |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US10808157B2 (en) | 2008-11-03 | 2020-10-20 | Arkema France | Vehicle heating and/or air conditioning method |
US10858562B2 (en) | 2009-09-11 | 2020-12-08 | Arkema France | Binary refrigerating fluid |
US10316231B2 (en) | 2009-09-11 | 2019-06-11 | Arkema France | Low-temperature and average-temperature refrigeration |
US10035938B2 (en) | 2009-09-11 | 2018-07-31 | Arkema France | Heat transfer fluid replacing R-134a |
US10125296B2 (en) | 2009-09-11 | 2018-11-13 | Arkema France | Binary refrigerating fluid |
US10358592B2 (en) | 2009-09-11 | 2019-07-23 | Arkema France | Heat transfer method |
US10119055B2 (en) | 2010-07-09 | 2018-11-06 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US10662357B2 (en) | 2010-07-09 | 2020-05-26 | Arkema France | Stable 2,3,3,3-tetrafluoropropene composition |
US10035940B2 (en) | 2011-08-26 | 2018-07-31 | The Chemours Company Fc, Llc | Compositions comprising tetrafluoropropene and methods of use thereof |
US10836943B2 (en) | 2011-08-26 | 2020-11-17 | The Chemours Company Fc, Llc | Compositions comprising tetrafluoropropene and methods of use thereof |
US10184074B2 (en) | 2011-08-26 | 2019-01-22 | The Chemours Company Fc, Llc | Compositions comprising tetrafluoropropene and methods of use thereof |
US11840657B2 (en) | 2011-08-26 | 2023-12-12 | The Chemours Company Fc, Llc | Compositions comprising tetrafluoropropene and methods of use thereof |
US9932507B2 (en) * | 2011-08-26 | 2018-04-03 | The Chemours Company Fc, Llc | Compositions comprising tetrafluoropropene and methods of use thereof |
US10450488B2 (en) | 2012-01-26 | 2019-10-22 | Arkema France | Heat transfer compositions having improved miscibility with lubricating oil |
US9969918B2 (en) | 2012-12-26 | 2018-05-15 | Arkema France | Azeotropic or quasi-azeotropic composition of chloromethane |
US10604690B2 (en) | 2012-12-26 | 2020-03-31 | Arkema France | Composition including 2,3,3,3-tetrafluoropropene |
US10131829B2 (en) | 2012-12-26 | 2018-11-20 | Arkema France | Composition containing 2,3,3,3-tetrafluoropropene and 1,2-difluoroethylene |
US10252913B2 (en) | 2013-03-20 | 2019-04-09 | Arkema France | Composition comprising HF and 2,3,3,3-tetrafluoropropene |
US10023780B2 (en) | 2013-07-11 | 2018-07-17 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10377935B2 (en) | 2013-07-11 | 2019-08-13 | Arkema France | 2,3,3,3-tetrafluoropropene compositions having improved miscibility |
US10005940B2 (en) | 2015-02-19 | 2018-06-26 | Daikin Industries, Ltd. | Composition containing mixture of fluorinated hydrocarbons, and method for producing same |
US10618861B2 (en) | 2015-03-18 | 2020-04-14 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10399918B2 (en) | 2015-03-18 | 2019-09-03 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10954467B2 (en) | 2016-10-10 | 2021-03-23 | Arkema France | Use of tetrafluoropropene based compositions |
US11306232B2 (en) | 2016-10-10 | 2022-04-19 | Arkema France | Tetrafluoropropene-based azeotropic compositions |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
US11001546B2 (en) | 2018-02-05 | 2021-05-11 | Arkema France | Ternary azeotropic or quasi-azeotropic composition comprising HF, 2,3,3,3-tetrafluoropropene and 1,1,1,2,2-pentafluoropropane |
US11629278B2 (en) | 2018-02-15 | 2023-04-18 | Arkema France | Heat transfer compositions as replacement for R-134A |
CN112789342A (en) * | 2018-10-04 | 2021-05-11 | 科慕埃弗西有限公司 | Azeotropic compositions of HFO-1234YF and propylene |
Also Published As
Publication number | Publication date |
---|---|
EP2586842A3 (en) | 2017-03-08 |
TWI406934B (en) | 2013-09-01 |
EP2331651B1 (en) | 2018-02-21 |
FR2936806A1 (en) | 2010-04-09 |
JP2019052317A (en) | 2019-04-04 |
WO2010040928A1 (en) | 2010-04-15 |
PL2331651T3 (en) | 2018-06-29 |
FR2936806B1 (en) | 2012-08-31 |
JP2016176082A (en) | 2016-10-06 |
US9599381B2 (en) | 2017-03-21 |
JP2012505279A (en) | 2012-03-01 |
CN102171309B (en) | 2014-06-25 |
ES2663548T3 (en) | 2018-04-13 |
FR2936807A1 (en) | 2010-04-09 |
US20110186772A1 (en) | 2011-08-04 |
TW201026835A (en) | 2010-07-16 |
EP2586842A2 (en) | 2013-05-01 |
JP2014141681A (en) | 2014-08-07 |
JP5591246B2 (en) | 2014-09-17 |
JP2021066889A (en) | 2021-04-30 |
US20190203094A1 (en) | 2019-07-04 |
PT2331651T (en) | 2018-03-28 |
US11130893B2 (en) | 2021-09-28 |
CN102171309A (en) | 2011-08-31 |
US20160025394A1 (en) | 2016-01-28 |
EP2331651A1 (en) | 2011-06-15 |
FR2936807B3 (en) | 2012-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11130893B2 (en) | Heat transfer fluid | |
US8246850B2 (en) | Hydrofluoroolefin compositions | |
US8252198B2 (en) | Hydrofluoroolefin compositions | |
US8486294B2 (en) | Hydrofluoroolefin compositions | |
US10858561B2 (en) | Heat transfer method | |
US20190040292A1 (en) | Heat transfer process | |
TWI801701B (en) | Compositions containing trans-1,2-difluoroethylene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ARKEMA FRANCE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RACHED, WISSAM;REEL/FRAME:048028/0576 Effective date: 20110307 |