US20170119480A9 - Device and methods of improving laparoscopic surgery - Google Patents
Device and methods of improving laparoscopic surgery Download PDFInfo
- Publication number
- US20170119480A9 US20170119480A9 US14/817,223 US201514817223A US2017119480A9 US 20170119480 A9 US20170119480 A9 US 20170119480A9 US 201514817223 A US201514817223 A US 201514817223A US 2017119480 A9 US2017119480 A9 US 2017119480A9
- Authority
- US
- United States
- Prior art keywords
- instrument
- laparoscopic instrument
- wireless transmitter
- automated assistant
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002357 laparoscopic surgery Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title description 26
- 238000004891 communication Methods 0.000 claims abstract description 6
- 230000000007 visual effect Effects 0.000 claims abstract description 6
- 230000002035 prolonged effect Effects 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims 6
- 230000000881 depressing effect Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 208000032544 Cicatrix Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004886 head movement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00039—Operational features of endoscopes provided with input arrangements for the user
- A61B1/00042—Operational features of endoscopes provided with input arrangements for the user for mechanical operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00006—Operational features of endoscopes characterised by electronic signal processing of control signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00011—Operational features of endoscopes characterised by signal transmission
- A61B1/00016—Operational features of endoscopes characterised by signal transmission using wireless means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00043—Operational features of endoscopes provided with output arrangements
- A61B1/00045—Display arrangement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00147—Holding or positioning arrangements
- A61B1/00149—Holding or positioning arrangements using articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/313—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
- A61B1/3132—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
- A61B90/53—Supports for surgical instruments, e.g. articulated arms connected to the surgeon's body, e.g. by a belt
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00221—Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
- A61B2034/2057—Details of tracking cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
- A61B2090/3612—Image-producing devices, e.g. surgical cameras with images taken automatically
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/373—Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/30—User interface
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C2201/00—Transmission systems of control signals via wireless link
- G08C2201/90—Additional features
- G08C2201/92—Universal remote control
Definitions
- the present invention generally relates to means and methods for improving the interface between the surgeon and the operating medical assistant or between the surgeon and an endoscope system for laparoscopic surgery. Moreover, this present invention discloses a device useful for controlling an endoscope system for laparoscopic surgery, in which the endoscope is inserted through a small incision into the body's cavities.
- the surgeon performs the operation through small holes using long instruments and observing the internal anatomy with an endoscope camera.
- the endoscope is conventionally held by a camera human assistant (i.e. operating medical assistant) since the surgeon must perform the operation using both hands.
- the surgeon performance is largely dependent on the camera position relative to the instruments and on a stable image shown at the monitor.
- the main problem is the difficulty for the operating medical assistant to hold the endoscope steadily, keeping the scene upright.
- Laparoscopic surgery is becoming increasingly popular with patients because the scars are smaller and their period of recovery is shorter.
- Laparoscopic surgery requires special training of the surgeon or gynecologist and the theatre nursing staff. The equipment is often expensive and not available in all hospitals.
- U.S. Pat. No. 6,714,841 discloses an automated camera endoscope in which the surgeon is fitted with a head mounted light source that transmits the head movements to a sensor, forming an interface that converts the movements to directions for the mechanical movement of the automated assistant.
- Alternative automated assistants incorporate a voice operated interface, a directional key interface, or other navigational interfaces. The above interfaces share the following drawbacks:
- each said instrument is fitted with a wireless transmitter.
- the method comprises step selected inter alia from (a) obtaining a device as defined above; (b) selecting said desired instrument; and (c) displaying said desired instrument on a screen; wherein said device controlling and/or directing said automated endoscope assistant and thereby focusing said endoscope on said desired instrument of said surgeon.
- FIG. 1 is a general schematic view of an enhanced interface laparoscopic system that relies on a single wireless code signal to indicate the instrument on which to focus the endoscope constructed in accordance with the principles of the present invention in a preferred embodiment thereof;
- FIG. 2 is a general schematic view of an enhanced interface laparoscopic system that relies on at least two wireless signals to indicate the instrument on which to focus the endoscope;
- FIG. 3 is a schematic view of the method in which the single wireless code signal choice instrumentation focus is represented on the viewing apparatus;
- FIG. 4 is a schematic view of the method in which multiple wireless code signal choice of instrumentation is operated
- FIG. 5 represents the relative position of each tool in respect to the mechanism
- the present invention can be also utilized to improve the interface between the surgeon and the operating medical assistant and/or the surgeon colleagues. Moreover, the present invention can be also utilized to control and/or direct an automated endoscope assistant to focus the endoscope to the desired instrument of the surgeon. Furthermore, the device is adapted to focus the operating medical assistant on the desired instrument of the surgeon.
- conventional laparoscopy computerized system refers herein to system or/software conventionally used in the market such as Lapman, Endo assist or AESOP.
- a single wireless emission code is utilized and choice is achieved by a visible graphic representation upon the conventional viewing screen.
- each instrument is fitted with a unique code wireless transmitter, and selection is achieved by depressing its button.
- the present invention discloses also a device joined with conventional camera assisted laparoscopic surgery systems comprising at least one wireless transmitter that may or may not be attached to the maneuvering control end of surgical instruments.
- a generic or a unique code is transmitted to a receiving device connected to a computer that presents (e.g. displays) the selected surgical tool on a connected video screen.
- Confirmation of the selection by the depression of at least one button on wireless transmitter transmits a code to the receiver connected to the computer that instructs the automated surgical assistant to move the endoscope achieving a view on the screen that is focused on the selected instrument area.
- an enhanced interface laparoscopy device comprising:
- the wireless transmitter or transmitters are either freestanding or attached to the maneuvering end of the surgical instruments and emit the same single code that upon the depression of at least one key on them emits a signal to the receiver that communicates with the connected computer that displays a graphic symbol upon a random choice of one of the onscreen surgical instruments depicted or extracted by the computer on the screen. If needed the surgeon repeats the depression of at least one key resulting in a shift in the displayed graphic designator from one onscreen depiction of surgical instrument to another until the desired instrument is reached and thereby selected. Subsequently the computer directs the automated assistant to focus the endoscope on the desired instrument area.
- the selection of the instrument requires confirmation by varying the form of click on at least one key, such as a prolonged depression. Only upon confirmation is the computer authorized to instruct the automated assistant to focus the endoscope on the desired instrument area.
- each relevant surgical instruments is fitted at its maneuvering control end with a wireless transmitter with at least one key that transmits a unique code.
- the surgeon identifies each of the instruments to the computerized system by depressing at least one key on each of the wireless transmitters fitted to the surgical instruments and matching their characteristics with a prepared database, thereby forming within the computerized system a unique signature for each of the transmitters.
- the receiver upon depression of at least one key on the wireless transmitter attached to each surgical instrument, the receiver receives the unique code communicates it to the computer that identifies it with the preprogrammed signature and instructs the automated assistant to move the endoscope so as to achieve the desired focus.
- each relevant surgical instruments is fitted at its maneuvering control end with a wireless transmitter with at least one key that transmits a unique code. While performing the surgery procedure, whenever the surgeon inserts, a surgical instrument at the first time, he signals by depressing at least one key on each of the wireless transmitters fitted to the surgical instruments.
- the computer software identifies the instrument, while it is being inserted, analyzes the characteristics of the surgical instrument and keeps it in a database, thereby forming within the computerized system a unique signature for each of the transmitters.
- the receiver upon depression of at least one key on the wireless transmitter attached to each surgical instrument, the receiver receives the unique code, communicates it to the computer that identifies it with the signature stored at the insertion step and instructs the automated assistant to move the endoscope so as to achieve the desired focus.
- the selection is signified on the connected screen by displaying a graphic symbol upon the onscreen depiction of the surgical.
- the selection is confirmed by an additional mode of depression of at least one key on the wireless transmitter, such as a prolonged depression of the key, authorizing the computer to instruct the automated assistant to change view provided by the endoscope.
- the device of the present invention has many technological advantages, among them:
- FIG. 1 is a general schematic view of an enhanced interface laparoscopic system comprising one or more button operated wireless transmitters 12 a, that may or may not be attached to the maneuvering end of surgical instruments 17 b and 17 c, which once depressed aerially transmit a single code wave 14 through aerial 13 to connected receiver 11 that produces a signal processed by computer 15 thereby assigning a particular one of two or more surgical instruments 17 b and 17 c as the focus of the surgeons attention.
- a conventional automated endoscope 21 is maneuvered by means of conventional automated arm 19 according to conventional computational spatial placement software contained in computer 15 .
- FIG. 2 is a general schematic view of an enhanced interface laparoscopic system comprising one or more button operated wireless transmitters 12 b and 12 c are attached respectfully to the maneuvering means at the end of surgical instruments 17 b and 17 c, which once depressed aerially, each transmit a unique code wave 14 b and 14 c through aerial 13 to connected receiver 11 that produces a signal processed by computer 15 thereby assigning a particular one of two or more surgical instruments 17 b and 17 c as the focus of the surgeons attention.
- a conventional automated endoscope 21 is maneuvered by means of conventional automated arm 19 according to conventional computational spatial placement software contained in computer 15 .
- FIG. 3 is a schematic view of the method in which single wireless signal code choice of instrumentation focus is achieved, by means of video representation, 35 b and 35 c of the actual surgical instruments (not represented in FIG. 3 ) displayed by graphic symbols.
- a light depression of the button on generic code emitting wireless transmitter 12 a transmits a code that is received by receiver aerial 13 communicated through connected receiver 11 to computer 15 that shifts the graphically displayed symbol of choice 35 b on video screen 30 from instrument to instrument until the required instrument is reached.
- a prolonged depression of the button on transmitter 12 a confirms the selection thereby signaling computer 15 to instruct the automated mechanical assistant (not represented in FIG. 4 ) to move the endoscope (not represented in FIG. 3 ) and achieving a camera view of the instrument area on screen 30 .
- FIG. 4 is a schematic view of the method in which multiple wireless signal code choice of instrumentation focus is achieved, by means of video representation 35 b and 35 c of the actual surgical instruments (not represented in FIG. 4 ) displayed by graphic symbols.
- buttons on unique code emitting wireless transmitters 12 b and 12 c attached respectfully to actual operational instruments displays graphic symbol 35 b on respectful video representation 37 b.
- a prolonged depression of the button on transmitter 12 b and 12 c confirms the selection thereby signaling computer 15 to instruct the automated mechanical assistant (not represented in FIG. 4 ) to move the endoscope (not represented in FIG. 4 ) and achieving a camera view of the instrument area on screen 30 .
- the computer software when a prolonged depression of the buttons on transmitter 12 b and 12 c confirms the selection, the computer software analyze the characteristics of the surgical instrument and stores it in a database, thereby forming within the computerized system, a database, used for matching between each transmitting code and a surgical instrument.
- the receiver that receives the transmitted code, communicates it to the computer software that identifies the code as a “known” code and matching it, to the known parameters that were stored earlier in database of the surgical tools, and extracts the surgical tool tip.
- the tracking software instructs the automated assistant to move the endoscope so as to achieve the desired focus.
- FIGS. 5 illustrating the relative position of each tool. While performing the surgery, the surgeon often changes the position of his tools and even their insertion point.
- the wireless switches then may be use to locate the relative angle in which each tool is being held in respect to the camera holder mechanism. This is another advantage of the system that is used to calculate the position of the tool in the frame captured by the video camera. In that manner the surgeon does not have to inform the system where the insertion point of every tool is.
- the exact location of the wireless switch is not measured: the information about the relative positions of the tools in respect to each other contains in most cases enough data for the software to maintain the matching between the switches and the tools.
- the positioning sensors of the system are placed near or on the camera holder so the signals they receive can be utilize in order to calculate the vectors V 1 V 2 . . . Vn representing the range and the 3 angles needed to define a point in a 3D space.
- switches In order to realize a position and range system, many well known technologies may be used. For example if the switches emit wireless signals then an array of antennas may be used to compare the power of the signal received at each antenna in order to determine the angle of the switch and it's approximate range to the camera holder mechanism. If the switch emits ultra sound wave then US microphones can be used to triangulate the position of the switch. The same is for light emitting switch.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Robotics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Endoscopes (AREA)
Abstract
Description
- The present invention generally relates to means and methods for improving the interface between the surgeon and the operating medical assistant or between the surgeon and an endoscope system for laparoscopic surgery. Moreover, this present invention discloses a device useful for controlling an endoscope system for laparoscopic surgery, in which the endoscope is inserted through a small incision into the body's cavities.
- In laparoscopic surgery, the surgeon performs the operation through small holes using long instruments and observing the internal anatomy with an endoscope camera. The endoscope is conventionally held by a camera human assistant (i.e. operating medical assistant) since the surgeon must perform the operation using both hands. The surgeon performance is largely dependent on the camera position relative to the instruments and on a stable image shown at the monitor. The main problem is the difficulty for the operating medical assistant to hold the endoscope steadily, keeping the scene upright.
- Laparoscopic surgery is becoming increasingly popular with patients because the scars are smaller and their period of recovery is shorter. Laparoscopic surgery requires special training of the surgeon or gynecologist and the theatre nursing staff. The equipment is often expensive and not available in all hospitals.
- During laparoscopic surgery it is often required to shift the spatial placement of the endoscope in order to present the surgeon with the optimal view. Conventional laparoscopic surgery makes use of either human assistants that manually shift the instrumentation or alternatively robotic automated assistants. Automated assistants utilize interfaces that enable the surgeon to direct the mechanical movement of the assistant, achieving a shift in the camera view.
- U.S. Pat. No. 6,714,841 discloses an automated camera endoscope in which the surgeon is fitted with a head mounted light source that transmits the head movements to a sensor, forming an interface that converts the movements to directions for the mechanical movement of the automated assistant. Alternative automated assistants incorporate a voice operated interface, a directional key interface, or other navigational interfaces. The above interfaces share the following drawbacks:
-
- a. Single directional interface that provide limited feedback to the surgeon
- b. Cumbersome serial operation for starting and stopping movement directions that requires the surgeon's constant attention, preventing the surgeon from keeping the flow of surgical procedure.
- Research has suggested that these systems divert the surgeons focus from the major task at hand. Therefore technologies assisted by magnets and image processing have been developed to simplify interfacing control. However these improved technologies still fail to address another complicating interface aspect of laparoscopic surgery, they do not allow the surgeon to signal to both the automated assistant and to human assistants or to surgical colleagues , which instrument his attention is focused on.
- Hence, there is still a long felt need for a improving the interface between the surgeon and an endoscope system, surgical colleagues or human assistants for laparoscopic surgery.
- It is one object of the present invention to disclose a device useful for the surgeon and the automated assistant interface, and/or said surgeon and the operating medical assistant interface, during laparoscopic surgery; wherein said device is adapted to control and/or direct said automated endoscope assistant to focus said endoscope on the desired instrument of said surgeon; further wherein said device is adapted to focus said operating medical assistant on said desired instrument of said surgeon.
- It is another object of the present invention to disclose the device as defined above, wherein said device additionally comprising:
-
- a. at least one wireless transmitter with at least one operating key;
- b. at least one wireless receiver;
- c. at least one conventional laparoscopy computerized system; said conventional laparoscopy computerized system is adapted to load a surgical instrument spatial locating software, and an automated assistant maneuvering software; said locating software enables a visual response to the depression of said at least one key on said wireless transmitter; said maneuvering software enables the movement of said endoscope; and
- d. at least one video screen.
- It is another object of the present invention to disclose the device as defined above, wherein each said instrument is fitted with a wireless transmitter.
- It is another object of the present invention to disclose the device as defined above, wherein said wireless transmitter is freestanding.
- It is another object of the present invention to disclose the device as defined above, wherein said wireless transmitter is adapted to locate the position of each instrument.
- It is another object of the present invention to disclose the device as defined above, wherein said selection of said desired instrument is confirmed by clicking on said at least one key.
- It is another object of the present invention to disclose the device as defined above, wherein said selection of said desired instrument is confirmed by depression of said at least one key on said wireless transmitter.
- It is another object of the present invention to disclose the device as defined above, wherein said depression of said at least one key is a prolonged depression.
- It is another object of the present invention to disclose a method useful for surgeon and the automated assistant interface, and/or said surgeon and the operating medical assistant interface, during laparoscopic surgery. The method comprises step selected inter alia from (a) obtaining a device as defined above; (b) selecting said desired instrument; and (c) displaying said desired instrument on a screen; wherein said device controlling and/or directing said automated endoscope assistant and thereby focusing said endoscope on said desired instrument of said surgeon.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of confirming by the selection of said desired instrument.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of extracting said desired instrument form said screen.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of instructing said automated assistant to focus said endoscope on said desired instrument.
- It is another object of the present invention to disclose the method as defined above, wherein said step of selecting said desired instrument additionally comprising the steps of (a) depressing of said at least one key on said wireless transmitter; (b) transmitting a generic code to said receiver; (c) communicating said signal to the computer.
- It is another object of the present invention to disclose the method as defined above, wherein said step of selecting said desired instrument additionally comprising the step confirming the selection of said desired instrument by clicking on said at least one key.
- It is another object of the present invention to disclose the method as defined above, wherein said step of selecting said desired instrument additionally comprising the step confirming the selection of said desired instrument by a prolonged depression on said at least one key.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of re-selecting said desired instrument until said desired instrument is selected.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of identifying each of said instruments to said computerized system.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of attaching said wireless transmitter to said surgical instrument.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of matching each transmitted code from said depressed wireless transmitter to said surgical instrument.
- It is another object of the present invention to disclose the method as defined above, wherein said step of matching each transmitted code additionally comprising the step of storing said matching database on a computer.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of signing said surgical instrument by a temporary onscreen graphic symbol and presenting upon the onscreen depiction of the surgical instrument.
- It is another object of the present invention to disclose the method as defined above, additionally comprising the step of continuously displaying said selection graphic symbol.
- It is still an object of the present invention to disclose the method as defined above, wherein the selection of the surgical instrument is signified by a continuous onscreen graphic symbol presented upon the onscreen depiction of the surgical instrument.
- It is lastly an object of the present invention to disclose the method as defined above, additionally comprising the step of calculating the position of each said instrument.
- In order to understand the invention and to see how it may be implemented in practice, and by way of non-limiting example only, with reference to the accompanying drawing, in which
-
FIG. 1 is a general schematic view of an enhanced interface laparoscopic system that relies on a single wireless code signal to indicate the instrument on which to focus the endoscope constructed in accordance with the principles of the present invention in a preferred embodiment thereof; -
FIG. 2 is a general schematic view of an enhanced interface laparoscopic system that relies on at least two wireless signals to indicate the instrument on which to focus the endoscope; -
FIG. 3 is a schematic view of the method in which the single wireless code signal choice instrumentation focus is represented on the viewing apparatus; -
FIG. 4 is a schematic view of the method in which multiple wireless code signal choice of instrumentation is operated; -
FIG. 5 represents the relative position of each tool in respect to the mechanism; - The following description is provided, alongside all chapters of the present invention, so as to enable any person skilled in the art to make use of the invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, will remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide means and methods for improving the interface between the surgeon and an endoscope system for laparoscopic surgery.
- The present invention can be also utilized to improve the interface between the surgeon and the operating medical assistant and/or the surgeon colleagues. Moreover, the present invention can be also utilized to control and/or direct an automated endoscope assistant to focus the endoscope to the desired instrument of the surgeon. Furthermore, the device is adapted to focus the operating medical assistant on the desired instrument of the surgeon.
- The term “conventional laparoscopy computerized system” refers herein to system or/software conventionally used in the market such as Lapman, Endo assist or AESOP.
- In preferred embodiment of the invention a single wireless emission code is utilized and choice is achieved by a visible graphic representation upon the conventional viewing screen.
- In another preferred embodiment each instrument is fitted with a unique code wireless transmitter, and selection is achieved by depressing its button.
- The present invention discloses also a device joined with conventional camera assisted laparoscopic surgery systems comprising at least one wireless transmitter that may or may not be attached to the maneuvering control end of surgical instruments. Upon depression of at least one button on the transmitters either a generic or a unique code is transmitted to a receiving device connected to a computer that presents (e.g. displays) the selected surgical tool on a connected video screen. Confirmation of the selection by the depression of at least one button on wireless transmitter transmits a code to the receiver connected to the computer that instructs the automated surgical assistant to move the endoscope achieving a view on the screen that is focused on the selected instrument area.
- It would thus be desirable to achieve a device that allows the surgeon to identify to the laparoscopic computing system as well as to surgical colleagues to which surgical instrument attention is to be directed. By identifying the surgical instrument by the laparoscopic computing system the endoscope directs the view to the selected focus of attention.
- Therefore, in accordance with a preferred embodiment of the present invention an enhanced interface laparoscopy device is provided. The device comprising:
-
- a. At least one wireless transmitter with at least one operating key.
- b. At least one wireless receiver.
- c. at least one conventional laparoscopy computerized system; said conventional laparoscopy computerized system is adapted to load a surgical instrument spatial locating software, and an automated assistant maneuvering software; said locating software enables a visual response to the depression of said at least one key on said wireless transmitter; said maneuvering software enables the movement of said endoscope.
- d. At least one video screen.
- e. At least one automated assistant.
- In a preferred embodiment of the enhanced interface laparoscopy device the wireless transmitter or transmitters are either freestanding or attached to the maneuvering end of the surgical instruments and emit the same single code that upon the depression of at least one key on them emits a signal to the receiver that communicates with the connected computer that displays a graphic symbol upon a random choice of one of the onscreen surgical instruments depicted or extracted by the computer on the screen. If needed the surgeon repeats the depression of at least one key resulting in a shift in the displayed graphic designator from one onscreen depiction of surgical instrument to another until the desired instrument is reached and thereby selected. Subsequently the computer directs the automated assistant to focus the endoscope on the desired instrument area.
- In a further preferred embodiment the selection of the instrument requires confirmation by varying the form of click on at least one key, such as a prolonged depression. Only upon confirmation is the computer authorized to instruct the automated assistant to focus the endoscope on the desired instrument area.
- In another preferred embodiment of the invention each relevant surgical instruments is fitted at its maneuvering control end with a wireless transmitter with at least one key that transmits a unique code. In the initial stage of the procedure the surgeon identifies each of the instruments to the computerized system by depressing at least one key on each of the wireless transmitters fitted to the surgical instruments and matching their characteristics with a prepared database, thereby forming within the computerized system a unique signature for each of the transmitters. Thereon, upon depression of at least one key on the wireless transmitter attached to each surgical instrument, the receiver receives the unique code communicates it to the computer that identifies it with the preprogrammed signature and instructs the automated assistant to move the endoscope so as to achieve the desired focus.
- In another preferred embodiment of the invention each relevant surgical instruments is fitted at its maneuvering control end with a wireless transmitter with at least one key that transmits a unique code. While performing the surgery procedure, whenever the surgeon inserts, a surgical instrument at the first time, he signals by depressing at least one key on each of the wireless transmitters fitted to the surgical instruments.
- Then the computer software identifies the instrument, while it is being inserted, analyzes the characteristics of the surgical instrument and keeps it in a database, thereby forming within the computerized system a unique signature for each of the transmitters. Thereon, upon depression of at least one key on the wireless transmitter attached to each surgical instrument, the receiver receives the unique code, communicates it to the computer that identifies it with the signature stored at the insertion step and instructs the automated assistant to move the endoscope so as to achieve the desired focus.
- In a further preferred embodiment the selection is signified on the connected screen by displaying a graphic symbol upon the onscreen depiction of the surgical.
- In a further preferred embodiment the selection is confirmed by an additional mode of depression of at least one key on the wireless transmitter, such as a prolonged depression of the key, authorizing the computer to instruct the automated assistant to change view provided by the endoscope.
- The device of the present invention has many technological advantages, among them:
-
- Simplifying the communication interface between surgeon and mechanical assistants.
- Seamless interaction with conventional computerized automated endoscope systems.
- Simplicity of construction and reliability.
- User-friendliness
- Additional features and advantages of the invention will become apparent from the following drawings and description.
- Reference is made now to
FIG. 1 , which is a general schematic view of an enhanced interface laparoscopic system comprising one or more button operatedwireless transmitters 12 a, that may or may not be attached to the maneuvering end ofsurgical instruments single code wave 14 through aerial 13 to connectedreceiver 11 that produces a signal processed bycomputer 15 thereby assigning a particular one of two or moresurgical instruments automated endoscope 21 is maneuvered by means of conventionalautomated arm 19 according to conventional computational spatial placement software contained incomputer 15. - Reference is made now to
FIG. 2 , which is a general schematic view of an enhanced interface laparoscopic system comprising one or more button operatedwireless transmitters surgical instruments unique code wave receiver 11 that produces a signal processed bycomputer 15 thereby assigning a particular one of two or moresurgical instruments automated endoscope 21 is maneuvered by means of conventionalautomated arm 19 according to conventional computational spatial placement software contained incomputer 15. - Reference is made now to
FIG. 3 , which is a schematic view of the method in which single wireless signal code choice of instrumentation focus is achieved, by means of video representation, 35 b and 35 c of the actual surgical instruments (not represented inFIG. 3 ) displayed by graphic symbols. Wherein a light depression of the button on generic code emittingwireless transmitter 12 a transmits a code that is received by receiver aerial 13 communicated through connectedreceiver 11 tocomputer 15 that shifts the graphically displayed symbol ofchoice 35 b onvideo screen 30 from instrument to instrument until the required instrument is reached. A prolonged depression of the button ontransmitter 12 a confirms the selection thereby signalingcomputer 15 to instruct the automated mechanical assistant (not represented inFIG. 4 ) to move the endoscope (not represented inFIG. 3 ) and achieving a camera view of the instrument area onscreen 30. - Reference is made now to
FIG. 4 , which is a schematic view of the method in which multiple wireless signal code choice of instrumentation focus is achieved, by means ofvideo representation FIG. 4 ) displayed by graphic symbols. Wherein when buttons on unique code emittingwireless transmitters FIG. 4 ) displaysgraphic symbol 35 b onrespectful video representation 37 b. A prolonged depression of the button ontransmitter computer 15 to instruct the automated mechanical assistant (not represented inFIG. 4 ) to move the endoscope (not represented inFIG. 4 ) and achieving a camera view of the instrument area onscreen 30. - In another embodiment of this invention, when a prolonged depression of the buttons on
transmitter - From now on, when the surgeon presses again on this button, the receiver that receives the transmitted code, communicates it to the computer software that identifies the code as a “known” code and matching it, to the known parameters that were stored earlier in database of the surgical tools, and extracts the surgical tool tip. When the position tool tip is known, then the tracking software instructs the automated assistant to move the endoscope so as to achieve the desired focus.
- Reference is made now to
FIGS. 5 illustrating the relative position of each tool. While performing the surgery, the surgeon often changes the position of his tools and even their insertion point. The wireless switches then may be use to locate the relative angle in which each tool is being held in respect to the camera holder mechanism. This is another advantage of the system that is used to calculate the position of the tool in the frame captured by the video camera. In that manner the surgeon does not have to inform the system where the insertion point of every tool is. The exact location of the wireless switch is not measured: the information about the relative positions of the tools in respect to each other contains in most cases enough data for the software to maintain the matching between the switches and the tools. In this figure the positioning sensors of the system are placed near or on the camera holder so the signals they receive can be utilize in order to calculate the vectors V1 V2 . . . Vn representing the range and the 3 angles needed to define a point in a 3D space. - In order to realize a position and range system, many well known technologies may be used. For example if the switches emit wireless signals then an array of antennas may be used to compare the power of the signal received at each antenna in order to determine the angle of the switch and it's approximate range to the camera holder mechanism. If the switch emits ultra sound wave then US microphones can be used to triangulate the position of the switch. The same is for light emitting switch.
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/817,223 US10456202B2 (en) | 2005-04-18 | 2015-08-04 | Device and methods of improving laparoscopic surgery |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67201005P | 2005-04-18 | 2005-04-18 | |
US70519905P | 2005-08-04 | 2005-08-04 | |
US71695105P | 2005-09-15 | 2005-09-15 | |
US71695305P | 2005-09-15 | 2005-09-15 | |
PCT/IL2006/000478 WO2006111966A2 (en) | 2005-04-18 | 2006-04-20 | Means and methods of improving laparoscopic surgery |
US11/874,534 US9295379B2 (en) | 2005-04-18 | 2007-10-18 | Device and methods of improving laparoscopic surgery |
US201161525785P | 2011-08-21 | 2011-08-21 | |
PCT/IL2012/000312 WO2013027203A1 (en) | 2011-08-21 | 2012-08-21 | Wearable user interface |
US13/736,118 US9943372B2 (en) | 2005-04-18 | 2013-01-08 | Device having a wearable interface for improving laparoscopic surgery and methods for use thereof |
US14/817,223 US10456202B2 (en) | 2005-04-18 | 2015-08-04 | Device and methods of improving laparoscopic surgery |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/874,534 Continuation-In-Part US9295379B2 (en) | 2005-04-18 | 2007-10-18 | Device and methods of improving laparoscopic surgery |
US13/736,118 Continuation US9943372B2 (en) | 2005-04-18 | 2013-01-08 | Device having a wearable interface for improving laparoscopic surgery and methods for use thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/874,534 Continuation US9295379B2 (en) | 2005-04-18 | 2007-10-18 | Device and methods of improving laparoscopic surgery |
Publications (3)
Publication Number | Publication Date |
---|---|
US20160184031A1 US20160184031A1 (en) | 2016-06-30 |
US20170119480A9 true US20170119480A9 (en) | 2017-05-04 |
US10456202B2 US10456202B2 (en) | 2019-10-29 |
Family
ID=48281324
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/736,118 Active 2028-07-17 US9943372B2 (en) | 2005-04-18 | 2013-01-08 | Device having a wearable interface for improving laparoscopic surgery and methods for use thereof |
US14/817,223 Active US10456202B2 (en) | 2005-04-18 | 2015-08-04 | Device and methods of improving laparoscopic surgery |
US15/346,739 Active 2026-12-13 US10603110B2 (en) | 2005-04-18 | 2016-11-09 | Device and methods of improving laparoscopic surgery |
US16/836,874 Active US11877721B2 (en) | 2005-04-18 | 2020-03-31 | Device and methods of improving laparoscopic surgery |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/736,118 Active 2028-07-17 US9943372B2 (en) | 2005-04-18 | 2013-01-08 | Device having a wearable interface for improving laparoscopic surgery and methods for use thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/346,739 Active 2026-12-13 US10603110B2 (en) | 2005-04-18 | 2016-11-09 | Device and methods of improving laparoscopic surgery |
US16/836,874 Active US11877721B2 (en) | 2005-04-18 | 2020-03-31 | Device and methods of improving laparoscopic surgery |
Country Status (1)
Country | Link |
---|---|
US (4) | US9943372B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11786323B2 (en) | 2021-03-31 | 2023-10-17 | Moon Surgical Sas | Self-calibrating co-manipulation surgical system for use with surgical instrument for performing laparoscopic surgery |
US11832910B1 (en) | 2023-01-09 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having adaptive gravity compensation |
US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
US12011149B2 (en) | 2021-03-31 | 2024-06-18 | Moon Surgical Sas | Co-manipulation surgical system for bedside robotic laparoscopic surgery using surgical instruments |
US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9943372B2 (en) | 2005-04-18 | 2018-04-17 | M.S.T. Medical Surgery Technologies Ltd. | Device having a wearable interface for improving laparoscopic surgery and methods for use thereof |
US7697827B2 (en) | 2005-10-17 | 2010-04-13 | Konicek Jeffrey C | User-friendlier interfaces for a camera |
US20120041263A1 (en) | 2009-04-23 | 2012-02-16 | M.S.T. Medical Surgery Technologies Ltd. | Two-part endoscope surgical device |
WO2012049623A1 (en) | 2010-10-11 | 2012-04-19 | Ecole Polytechnique Federale De Lausanne (Epfl) | Mechanical manipulator for surgical instruments |
CN103717355B (en) | 2011-07-27 | 2015-11-25 | 洛桑联邦理工学院 | For the mechanical remote control operating means of remote control |
US9757206B2 (en) | 2011-08-21 | 2017-09-12 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
US9204939B2 (en) | 2011-08-21 | 2015-12-08 | M.S.T. Medical Surgery Technologies Ltd. | Device and method for assisting laparoscopic surgery—rule based approach |
US10866783B2 (en) * | 2011-08-21 | 2020-12-15 | Transenterix Europe S.A.R.L. | Vocally activated surgical control system |
US10299773B2 (en) | 2011-08-21 | 2019-05-28 | Transenterix Europe S.A.R.L. | Device and method for assisting laparoscopic surgery—rule based approach |
DE202012013197U1 (en) | 2011-08-21 | 2015-05-21 | M.S.T. Medical Surgery Technologies Ltd. | Apparatus for Assisting Laparoscopic Surgery - Rule Based Approach |
US11561762B2 (en) * | 2011-08-21 | 2023-01-24 | Asensus Surgical Europe S.A.R.L. | Vocally actuated surgical control system |
US10052157B2 (en) | 2011-08-21 | 2018-08-21 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
US9795282B2 (en) | 2011-09-20 | 2017-10-24 | M.S.T. Medical Surgery Technologies Ltd | Device and method for maneuvering endoscope |
EP2819609B1 (en) | 2012-02-29 | 2020-10-21 | TransEnterix Europe Sàrl | Manual control system for maneuvering an endoscope |
ES2881537T3 (en) | 2012-03-07 | 2021-11-29 | Transenterix Europe Sarl | General endoscopic control system |
WO2013181522A1 (en) * | 2012-06-01 | 2013-12-05 | Intuitive Surgical Operations, Inc. | Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator |
DE102013108228A1 (en) * | 2013-07-31 | 2015-02-05 | MAQUET GmbH | Assistance device for the imaging support of an operator during a surgical procedure |
EP4079251A1 (en) | 2014-03-17 | 2022-10-26 | Intuitive Surgical Operations, Inc. | Guided setup for teleoperated medical device |
EP3119320B1 (en) | 2014-03-17 | 2020-07-22 | Intuitive Surgical Operations, Inc. | Automated structure with pre-established arm positions in a teleoperated medical system |
DK3653145T3 (en) | 2014-12-19 | 2024-04-15 | Distalmotion Sa | REUSABLE SURGICAL INSTRUMENT FOR MINIMALLY INVASIVE PROCEDURES |
US11039820B2 (en) | 2014-12-19 | 2021-06-22 | Distalmotion Sa | Sterile interface for articulated surgical instruments |
EP3232974B1 (en) | 2014-12-19 | 2018-10-24 | DistalMotion SA | Articulated handle for mechanical telemanipulator |
EP3232951B1 (en) | 2014-12-19 | 2023-10-25 | DistalMotion SA | Surgical instrument with articulated end-effector |
EP3232977B1 (en) | 2014-12-19 | 2020-01-29 | DistalMotion SA | Docking system for mechanical telemanipulator |
EP3270825B1 (en) | 2015-03-20 | 2020-04-22 | JenaValve Technology, Inc. | Heart valve prosthesis delivery system |
EP3280343B1 (en) | 2015-04-09 | 2024-08-21 | DistalMotion SA | Mechanical teleoperated device for remote manipulation |
WO2017037532A1 (en) | 2015-08-28 | 2017-03-09 | Distalmotion Sa | Surgical instrument with increased actuation force |
CN108348300A (en) * | 2015-09-29 | 2018-07-31 | 皇家飞利浦有限公司 | Instrumentation controller for robot assisted Minimally Invasive Surgery |
US10168688B2 (en) * | 2016-04-29 | 2019-01-01 | Taylor BRUSKY | Systems and methods for implementing a pointer-guided tracking system and a pointer-guided mechanical movable device control system |
US11058503B2 (en) | 2017-05-11 | 2021-07-13 | Distalmotion Sa | Translational instrument interface for surgical robot and surgical robot systems comprising the same |
AU2019218707B2 (en) | 2018-02-07 | 2024-10-24 | Distalmotion Sa | Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy |
WO2020154596A1 (en) * | 2019-01-24 | 2020-07-30 | Noah Medical Corporation | Single use devices with integrated vision capabilities |
US11832909B2 (en) | 2021-03-31 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having actuatable setup joints |
US11844583B2 (en) | 2021-03-31 | 2023-12-19 | Moon Surgical Sas | Co-manipulation surgical system having an instrument centering mode for automatic scope movements |
US11819302B2 (en) | 2021-03-31 | 2023-11-21 | Moon Surgical Sas | Co-manipulation surgical system having user guided stage control |
EP4401666A1 (en) | 2021-09-13 | 2024-07-24 | DistalMotion SA | Instruments for surgical robotic system and interfaces for the same |
US20230107857A1 (en) * | 2021-09-29 | 2023-04-06 | Cilag Gmbh International | Surgical sealing devices for a natural body orifice |
US12136177B2 (en) * | 2022-10-21 | 2024-11-05 | Hewlett-Packard Development Company, L.P. | Machine vision hand and tool tracking |
US11844585B1 (en) | 2023-02-10 | 2023-12-19 | Distalmotion Sa | Surgical robotics systems and devices having a sterile restart, and methods thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030055409A1 (en) * | 1998-02-24 | 2003-03-20 | Brock David L. | Interchangeable fluid instrument |
US20040044295A1 (en) * | 2002-08-19 | 2004-03-04 | Orthosoft Inc. | Graphical user interface for computer-assisted surgery |
US20040243147A1 (en) * | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
Family Cites Families (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3278275D1 (en) * | 1981-10-22 | 1988-05-05 | Olympus Optical Co | Endoscope apparatus with motor-driven bending mechanism |
US4805615A (en) * | 1985-07-02 | 1989-02-21 | Carol Mark P | Method and apparatus for performing stereotactic surgery |
US4854301A (en) | 1986-11-13 | 1989-08-08 | Olympus Optical Co., Ltd. | Endoscope apparatus having a chair with a switch |
US4756204A (en) | 1987-02-11 | 1988-07-12 | Cincinnati Milacron Inc. | Counterbalance assembly for rotatable robotic arm and the like |
KR970001431B1 (en) | 1987-05-27 | 1997-02-06 | 쉬뢴도르프 게오르그 | Process and device for optical representation of surgical operation |
DE3804491A1 (en) * | 1987-12-02 | 1989-06-15 | Olympus Optical Co | Device for brain surgery |
US5269305A (en) * | 1990-04-27 | 1993-12-14 | The Nomos Corporation | Method and apparatus for performing stereotactic surgery |
US5086401A (en) | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
US5201742A (en) * | 1991-04-16 | 1993-04-13 | Hasson Harrith M | Support jig for a surgical instrument |
US5384588A (en) | 1991-05-13 | 1995-01-24 | Telerobotics International, Inc. | System for omindirectional image viewing at a remote location without the transmission of control signals to select viewing parameters |
US5313306A (en) | 1991-05-13 | 1994-05-17 | Telerobotics International, Inc. | Omniview motionless camera endoscopy system |
US5279309A (en) * | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5417210A (en) * | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5211165A (en) | 1991-09-03 | 1993-05-18 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency field gradients |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
JPH0663003A (en) | 1992-08-20 | 1994-03-08 | Olympus Optical Co Ltd | Scope holder |
WO1994026167A1 (en) * | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
US5791231A (en) * | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
US5731804A (en) * | 1995-01-18 | 1998-03-24 | Immersion Human Interface Corp. | Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
WO1995016396A1 (en) | 1993-12-15 | 1995-06-22 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
FR2717365B1 (en) | 1994-03-21 | 1996-05-15 | Rech Biolog Et | Infrared fluorescence endoscopic or fibroscopic imaging device. |
US6463361B1 (en) | 1994-09-22 | 2002-10-08 | Computer Motion, Inc. | Speech interface for an automated endoscopic system |
EP0788613B2 (en) * | 1994-10-26 | 2008-06-04 | Leica Microsystems (Schweiz) AG | Microscope, in particular for surgical operations |
US5836869A (en) * | 1994-12-13 | 1998-11-17 | Olympus Optical Co., Ltd. | Image tracking endoscope system |
US5571072A (en) * | 1995-04-28 | 1996-11-05 | Kronner; Richard F. | Dual-axis endoscope holder |
US5814038A (en) * | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
AU2997095A (en) | 1995-06-20 | 1997-01-22 | Wan Sing Ng | Articulated arm for medical procedures |
US6714841B1 (en) * | 1995-09-15 | 2004-03-30 | Computer Motion, Inc. | Head cursor control interface for an automated endoscope system for optimal positioning |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US5971976A (en) | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US5828197A (en) * | 1996-10-25 | 1998-10-27 | Immersion Human Interface Corporation | Mechanical interface having multiple grounded actuators |
US6331181B1 (en) * | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
EP1015944B1 (en) | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
US7789875B2 (en) * | 1998-02-24 | 2010-09-07 | Hansen Medical, Inc. | Surgical instruments |
US6100501A (en) * | 1998-03-16 | 2000-08-08 | Von Der Heyde; Christian P. | Tick removal device with heating and illumination |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6659939B2 (en) * | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US8600551B2 (en) | 1998-11-20 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Medical robotic system with operatively couplable simulator unit for surgeon training |
US6468265B1 (en) * | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
JP4542710B2 (en) * | 1998-11-23 | 2010-09-15 | マイクロデクステラティー・システムズ・インコーポレーテッド | Surgical manipulator |
JP3739592B2 (en) | 1998-12-02 | 2006-01-25 | 株式会社モリタ製作所 | Laparoscopic device |
US6451027B1 (en) * | 1998-12-16 | 2002-09-17 | Intuitive Surgical, Inc. | Devices and methods for moving an image capture device in telesurgical systems |
CA2594492A1 (en) | 1999-03-07 | 2000-09-14 | Active Implants Corporation | Method and apparatus for computerized surgery |
US6368332B1 (en) | 1999-03-08 | 2002-04-09 | Septimiu Edmund Salcudean | Motion tracking platform for relative motion cancellation for surgery |
US6179776B1 (en) | 1999-03-12 | 2001-01-30 | Scimed Life Systems, Inc. | Controllable endoscopic sheath apparatus and related method of use |
US10820949B2 (en) * | 1999-04-07 | 2020-11-03 | Intuitive Surgical Operations, Inc. | Medical robotic system with dynamically adjustable slave manipulator characteristics |
US6902528B1 (en) | 1999-04-14 | 2005-06-07 | Stereotaxis, Inc. | Method and apparatus for magnetically controlling endoscopes in body lumens and cavities |
US20020091301A1 (en) | 1999-05-18 | 2002-07-11 | Levin John M. | Retractor with memory |
US7594912B2 (en) | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US7037258B2 (en) | 1999-09-24 | 2006-05-02 | Karl Storz Imaging, Inc. | Image orientation for endoscopic video displays |
US6591239B1 (en) | 1999-12-09 | 2003-07-08 | Steris Inc. | Voice controlled surgical suite |
DE19961971B4 (en) * | 1999-12-22 | 2009-10-22 | Forschungszentrum Karlsruhe Gmbh | Device for safely automatically tracking an endoscope and tracking an instrument |
US6569086B2 (en) | 2000-03-27 | 2003-05-27 | Olympus Optical Co., Ltd. | Controllable bending endoscope |
DE10025285A1 (en) | 2000-05-22 | 2001-12-06 | Siemens Ag | Fully automatic, robot-assisted camera guidance using position sensors for laparoscopic interventions |
US6837892B2 (en) * | 2000-07-24 | 2005-01-04 | Mazor Surgical Technologies Ltd. | Miniature bone-mounted surgical robot |
EP1365686A4 (en) | 2000-09-23 | 2009-12-02 | Ramin Shahidi | Endoscopic targeting method and system |
US20020059284A1 (en) * | 2000-10-20 | 2002-05-16 | Ran Bronstein | Method for rapid transfer of data with a multi-spline model |
US6632170B1 (en) | 2000-11-27 | 2003-10-14 | Biomec Inc. | Articulated arm for holding surgical instruments |
AU2002248360A1 (en) * | 2001-01-16 | 2002-08-19 | Microdexterity Systems, Inc. | Surgical manipulator |
US6871563B2 (en) | 2001-02-26 | 2005-03-29 | Howie Choset | Orientation preserving angular swivel joint |
US6730030B2 (en) | 2001-03-02 | 2004-05-04 | Yoram Palti | Method and apparatus for detecting arterial stenosis |
US6747566B2 (en) | 2001-03-12 | 2004-06-08 | Shaw-Yuan Hou | Voice-activated remote control unit for multiple electrical apparatuses |
IL158129A0 (en) | 2001-03-26 | 2004-03-28 | Glenn Alexander Thompson | Constant velocity coupling and control system therefor |
EP1253509A1 (en) | 2001-04-27 | 2002-10-30 | Jacques Andre | Device for controlling a three-dimensional movement |
IL143260A (en) | 2001-05-20 | 2006-09-05 | Given Imaging Ltd | Array system and method for locating an in vivo signal source |
KR100678362B1 (en) | 2001-07-13 | 2007-02-05 | 데구덴트 게엠베하 | Production of replacement teeth from a three-dimensionally determined and digitised positive model |
JP3756095B2 (en) | 2001-10-01 | 2006-03-15 | 日本サーボ株式会社 | Articulated industrial robot and arm unit of the robot |
US7313246B2 (en) * | 2001-10-06 | 2007-12-25 | Stryker Corporation | Information system using eyewear for communication |
US6785358B2 (en) | 2001-10-09 | 2004-08-31 | General Electric Company | Voice activated diagnostic imaging control user interface |
US10595710B2 (en) * | 2001-10-19 | 2020-03-24 | Visionscope Technologies Llc | Portable imaging system employing a miniature endoscope |
JP2003230565A (en) * | 2002-02-12 | 2003-08-19 | Univ Tokyo | Active trocar |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
DE10211262A1 (en) | 2002-03-14 | 2003-10-09 | Tomec Imaging Systems Gmbh | Method and device for the reconstruction and representation of multidimensional objects from one- or two-dimensional image data |
US6997866B2 (en) * | 2002-04-15 | 2006-02-14 | Simon Fraser University | Devices for positioning implements about fixed points |
US7674270B2 (en) * | 2002-05-02 | 2010-03-09 | Laparocision, Inc | Apparatus for positioning a medical instrument |
FR2839440B1 (en) * | 2002-05-13 | 2005-03-25 | Perception Raisonnement Action | POSITIONING SYSTEM ON A PATIENT OF AN OBSERVATION AND / OR INTERVENTION DEVICE |
JP4081747B2 (en) | 2002-05-17 | 2008-04-30 | 技研株式会社 | Robot drive control method and apparatus |
WO2003105289A2 (en) | 2002-06-07 | 2003-12-18 | University Of North Carolina At Chapel Hill | Methods and systems for laser based real-time structured light depth extraction |
DE10226539A1 (en) | 2002-06-14 | 2004-01-08 | Leica Microsystems Ag | Voice control for surgical microscopes |
EP1531749A2 (en) | 2002-08-13 | 2005-05-25 | Microbotics Corporation | Microsurgical robot system |
WO2004023986A1 (en) | 2002-08-30 | 2004-03-25 | Olympus Corporation | Medical treatment system, endoscope system, endoscope insert operation program, and endoscope device |
US7259906B1 (en) | 2002-09-03 | 2007-08-21 | Cheetah Omni, Llc | System and method for voice control of medical devices |
JP4236436B2 (en) * | 2002-09-19 | 2009-03-11 | オリンパス株式会社 | Endoscopic surgical system |
US6834837B2 (en) | 2002-11-07 | 2004-12-28 | Rultract, Inc. | Surgical instrument support device and method |
US7319897B2 (en) | 2002-12-02 | 2008-01-15 | Aesculap Ag & Co. Kg | Localization device display method and apparatus |
JP2004209096A (en) | 2003-01-07 | 2004-07-29 | Olympus Corp | Medical instrument holding device |
US8118732B2 (en) | 2003-04-01 | 2012-02-21 | Boston Scientific Scimed, Inc. | Force feedback control system for video endoscope |
US7088339B2 (en) | 2003-05-30 | 2006-08-08 | Mike Gresham | Ergonomic input device |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US7313430B2 (en) * | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
EP2316328B1 (en) | 2003-09-15 | 2012-05-09 | Super Dimension Ltd. | Wrap-around holding device for use with bronchoscopes |
DE10349659A1 (en) | 2003-10-24 | 2005-06-09 | Siemens Ag | System for the localization of lesions in hollow organs |
WO2005077435A1 (en) | 2004-01-19 | 2005-08-25 | Atul Kumar | A system for distending body tissue cavities by continuous flow irrigation |
CA2561287C (en) | 2004-04-01 | 2017-07-11 | William C. Torch | Biosensors, communicators, and controllers monitoring eye movement and methods for using them |
US9033870B2 (en) * | 2004-09-24 | 2015-05-19 | Vivid Medical, Inc. | Pluggable vision module and portable display for endoscopy |
WO2006039646A2 (en) | 2004-09-30 | 2006-04-13 | Boston Scientific Limited | Video endoscope |
WO2006063246A1 (en) | 2004-12-08 | 2006-06-15 | The General Hospital Corporation | System and method for normalized fluorescence or bioluminescence imaging |
US8069420B2 (en) * | 2004-12-29 | 2011-11-29 | Karl Storz Endoscopy-America, Inc. | System for controlling the communication of medical imaging data |
EP1681029A1 (en) | 2005-01-18 | 2006-07-19 | Technische Universität München | Apparatus and process for manipulating medical instruments |
US7763015B2 (en) * | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US8317797B2 (en) | 2005-02-08 | 2012-11-27 | Rasmussen G Lynn | Arthroplasty systems and methods for optimally aligning and tensioning a knee prosthesis |
AU2007234510A1 (en) | 2005-04-18 | 2007-12-06 | M.S.T. Medical Surgery Technologies Ltd | Device and methods of improving laparoscopic surgery |
US9295379B2 (en) * | 2005-04-18 | 2016-03-29 | M.S.T. Medical Surgery Technologies Ltd. | Device and methods of improving laparoscopic surgery |
US9943372B2 (en) | 2005-04-18 | 2018-04-17 | M.S.T. Medical Surgery Technologies Ltd. | Device having a wearable interface for improving laparoscopic surgery and methods for use thereof |
CA2606476A1 (en) | 2005-04-18 | 2006-10-26 | M.S.T. Medical Surgery Technologies Ltd | Means and methods of improving laparoscopic surgery |
US8414475B2 (en) * | 2005-04-18 | 2013-04-09 | M.S.T. Medical Surgery Technologies Ltd | Camera holder device and method thereof |
US7809184B2 (en) * | 2005-05-04 | 2010-10-05 | Brainlab Ag | Devices and methods for automatically verifying, calibrating and surveying instruments for computer-assisted surgery |
US8108072B2 (en) * | 2007-09-30 | 2012-01-31 | Intuitive Surgical Operations, Inc. | Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information |
US8147503B2 (en) * | 2007-09-30 | 2012-04-03 | Intuitive Surgical Operations Inc. | Methods of locating and tracking robotic instruments in robotic surgical systems |
US8073528B2 (en) * | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
US9289267B2 (en) | 2005-06-14 | 2016-03-22 | Siemens Medical Solutions Usa, Inc. | Method and apparatus for minimally invasive surgery using endoscopes |
EP1901884B1 (en) | 2005-06-30 | 2019-02-13 | Intuitive Surgical Operations Inc. | Indicator for tool state communication in multi-arm telesurgery |
US8241271B2 (en) | 2005-06-30 | 2012-08-14 | Intuitive Surgical Operations, Inc. | Robotic surgical instruments with a fluid flow control system for irrigation, aspiration, and blowing |
US8273076B2 (en) | 2005-06-30 | 2012-09-25 | Intuitive Surgical Operations, Inc. | Indicator for tool state and communication in multi-arm robotic telesurgery |
US7597699B2 (en) | 2005-07-25 | 2009-10-06 | Rogers William G | Motorized surgical handpiece |
US8079950B2 (en) | 2005-09-29 | 2011-12-20 | Intuitive Surgical Operations, Inc. | Autofocus and/or autoscaling in telesurgery |
US7689320B2 (en) | 2005-12-20 | 2010-03-30 | Intuitive Surgical Operations, Inc. | Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations |
US8607935B2 (en) | 2005-12-20 | 2013-12-17 | Intuitive Surgical Operations, Inc. | Guide systems for laminated spring assemblies |
EP1967125B1 (en) | 2005-12-28 | 2012-02-01 | Olympus Medical Systems Corp. | System for observing inside of subject and method of observing inside of subject |
US7907166B2 (en) * | 2005-12-30 | 2011-03-15 | Intuitive Surgical Operations, Inc. | Stereo telestration for robotic surgery |
US8219177B2 (en) | 2006-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US8219178B2 (en) | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
ITMI20060443A1 (en) | 2006-03-13 | 2007-09-14 | Ethicon Endo Surgery Inc | DEVICE FOR THE MANIPULATION OF BODY TEXTILE |
EP1854425A1 (en) * | 2006-05-11 | 2007-11-14 | BrainLAB AG | Position determination for medical devices with redundant position measurement and weighting to prioritise measurements |
CA2655431C (en) | 2006-06-14 | 2014-10-21 | Benny Hon Bun Yeung | Surgical manipulator |
US8679096B2 (en) | 2007-06-21 | 2014-03-25 | Board Of Regents Of The University Of Nebraska | Multifunctional operational component for robotic devices |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
JP4654165B2 (en) | 2006-08-08 | 2011-03-16 | テルモ株式会社 | Working mechanism and manipulator |
US7824328B2 (en) | 2006-09-18 | 2010-11-02 | Stryker Corporation | Method and apparatus for tracking a surgical instrument during surgery |
US8690755B2 (en) * | 2006-09-21 | 2014-04-08 | M. S. T. Medical Surgery Technologies Ltd. | Endoscopic positioning system |
US8672836B2 (en) | 2007-01-31 | 2014-03-18 | The Penn State Research Foundation | Method and apparatus for continuous guidance of endoscopy |
JP4916011B2 (en) | 2007-03-20 | 2012-04-11 | 株式会社日立製作所 | Master / slave manipulator system |
US8058969B1 (en) | 2007-06-01 | 2011-11-15 | Sprint Communications Company L.P. | Biopresence based keyguard mechanism |
WO2008157412A2 (en) | 2007-06-13 | 2008-12-24 | Conformis, Inc. | Surgical cutting guide |
EP2008605A1 (en) | 2007-06-25 | 2008-12-31 | Universite Catholique De Louvain | A hybrid manual-robotic system for controlling the position of an instrument |
EP2170204A2 (en) | 2007-07-02 | 2010-04-07 | M.S.T. Medical Surgery Technologies Ltd | System for positioning endoscope and surgical instruments |
IL184664A (en) | 2007-07-17 | 2015-02-26 | Mordehai Sholev | Laparoscopy interface between a surgeon and an automated assistant and method thereof |
US8224484B2 (en) | 2007-09-30 | 2012-07-17 | Intuitive Surgical Operations, Inc. | Methods of user interface with alternate tool mode for robotic surgical tools |
FR2927794B1 (en) | 2008-02-21 | 2011-05-06 | Gen Electric | METHOD AND DEVICE FOR GUIDING A SURGICAL TOOL IN A BODY ASSISTED BY A MEDICAL IMAGING DEVICE |
US8282653B2 (en) | 2008-03-24 | 2012-10-09 | Board Of Regents Of The University Of Nebraska | System and methods for controlling surgical tool elements |
US7843158B2 (en) | 2008-03-31 | 2010-11-30 | Intuitive Surgical Operations, Inc. | Medical robotic system adapted to inhibit motions resulting in excessive end effector forces |
KR100980247B1 (en) | 2008-05-27 | 2010-09-06 | (주)미래컴퍼니 | Laparoscope and image processing system using the same |
US8355003B2 (en) | 2008-06-13 | 2013-01-15 | Microsoft Corporation | Controller lighting activation by proximity and motion |
IT1392888B1 (en) | 2008-07-24 | 2012-04-02 | Esaote Spa | DEVICE AND METHOD OF GUIDANCE OF SURGICAL UTENSILS BY ECOGRAPHIC IMAGING. |
JP2011530373A (en) | 2008-08-14 | 2011-12-22 | エム.エス.ティ.メディカル サージャリ テクノロジーズ エルティディ. | System with laparoscopic operation with DOF N |
JP5403785B2 (en) | 2008-10-15 | 2014-01-29 | 国立大学法人 名古屋工業大学 | Insertion device |
EP2208463B1 (en) | 2009-01-15 | 2014-03-12 | M.S.T. Medical Surgery Technologies LTD | Interface between a surgeon and an automated assistant and method thereof |
US20120041263A1 (en) | 2009-04-23 | 2012-02-16 | M.S.T. Medical Surgery Technologies Ltd. | Two-part endoscope surgical device |
KR101030427B1 (en) | 2009-04-28 | 2011-04-20 | 국립암센터 | Endoscope manipulator for minimal invasive surgery |
DE102009018917A1 (en) | 2009-04-28 | 2010-11-18 | Aktormed Gmbh | Operations Assistance System |
US8547423B2 (en) | 2009-09-24 | 2013-10-01 | Alex Ning | Imaging system and device |
EP2482747B1 (en) | 2009-10-01 | 2020-09-02 | Mako Surgical Corp. | Surgical system for positioning prosthetic component and/or for constraining movement of surgical tool |
US8758263B1 (en) | 2009-10-31 | 2014-06-24 | Voxel Rad, Ltd. | Systems and methods for frameless image-guided biopsy and therapeutic intervention |
US8521331B2 (en) | 2009-11-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument |
CA2724093A1 (en) | 2009-12-17 | 2011-06-17 | Straumann Holding Ag | Dental tools for guided surgery |
WO2011088400A2 (en) | 2010-01-14 | 2011-07-21 | The Regents Of The University Of California | Apparatus, system, and method for robotic microsurgery |
JP5704833B2 (en) | 2010-05-10 | 2015-04-22 | オリンパス株式会社 | Operation input device and manipulator system |
US20140066703A1 (en) | 2010-06-18 | 2014-03-06 | Vantage Surgical Systems Inc. | Stereoscopic system for minimally invasive surgery visualization |
US8679125B2 (en) | 2010-09-22 | 2014-03-25 | Biomet Manufacturing, Llc | Robotic guided femoral head reshaping |
US8579800B2 (en) | 2011-03-22 | 2013-11-12 | Fabian Emura | Systematic chromoendoscopy and chromocolonoscopy as a novel systematic method to examine organs with endoscopic techniques |
WO2012147679A1 (en) | 2011-04-27 | 2012-11-01 | オリンパス株式会社 | Endoscopic device and measurement method |
US10052157B2 (en) | 2011-08-21 | 2018-08-21 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
CN204274388U (en) | 2011-08-21 | 2015-04-22 | M.S.T.医学外科技术有限公司 | Contribute to equipment and the surgery systems of the interface of surgeon and automatization assistant |
US9757206B2 (en) | 2011-08-21 | 2017-09-12 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
US9204939B2 (en) | 2011-08-21 | 2015-12-08 | M.S.T. Medical Surgery Technologies Ltd. | Device and method for assisting laparoscopic surgery—rule based approach |
DE202012013197U1 (en) | 2011-08-21 | 2015-05-21 | M.S.T. Medical Surgery Technologies Ltd. | Apparatus for Assisting Laparoscopic Surgery - Rule Based Approach |
US10299773B2 (en) | 2011-08-21 | 2019-05-28 | Transenterix Europe S.A.R.L. | Device and method for assisting laparoscopic surgery—rule based approach |
US9795282B2 (en) | 2011-09-20 | 2017-10-24 | M.S.T. Medical Surgery Technologies Ltd | Device and method for maneuvering endoscope |
WO2013042107A1 (en) | 2011-09-20 | 2013-03-28 | M.S.T. Medical Surgery Technologies Ltd. | A device and method for maneuvering endoscope |
US9138297B2 (en) | 2012-02-02 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Systems and methods for controlling a robotic surgical system |
EP2819609B1 (en) | 2012-02-29 | 2020-10-21 | TransEnterix Europe Sàrl | Manual control system for maneuvering an endoscope |
ES2881537T3 (en) | 2012-03-07 | 2021-11-29 | Transenterix Europe Sarl | General endoscopic control system |
JP6351579B2 (en) | 2012-06-01 | 2018-07-04 | ウルトラデント プロダクツ インク. | Stereoscopic video imaging |
US9629523B2 (en) | 2012-06-27 | 2017-04-25 | Camplex, Inc. | Binocular viewing assembly for a surgical visualization system |
CN203042209U (en) | 2012-09-20 | 2013-07-10 | 陈跃宇 | Laparoscopic puncture device with intra-cavity full-view auxiliary lens |
US20150238276A1 (en) | 2012-09-30 | 2015-08-27 | M.S.T. Medical Surgery Technologies Ltd. | Device and method for assisting laparoscopic surgery - directing and maneuvering articulating tool |
EP2900130A4 (en) | 2012-09-30 | 2016-10-05 | Mst Medical Surgery Technologies Ltd | Directing and maneuvering articulating a laparoscopic surgery tool |
KR102079945B1 (en) | 2012-11-22 | 2020-02-21 | 삼성전자주식회사 | Surgical robot and method for controlling the surgical robot |
EP2943109A4 (en) | 2013-01-08 | 2016-08-24 | Mst Medical Surgery Technologies Ltd | Support and positioner for an endoscope maneuvering system |
KR102257034B1 (en) | 2013-03-15 | 2021-05-28 | 에스알아이 인터내셔널 | Hyperdexterous surgical system |
US11116383B2 (en) | 2014-04-02 | 2021-09-14 | Asensus Surgical Europe S.à.R.L. | Articulated structured light based-laparoscope |
US10932657B2 (en) | 2014-04-02 | 2021-03-02 | Transenterix Europe S.A.R.L. | Endoscope with wide angle lens and adjustable view |
WO2015151094A1 (en) | 2014-04-02 | 2015-10-08 | M.S.T. Medical Surgery Technologies Ltd. | Endoscope with wide angle lens and adjustable view |
WO2015189839A1 (en) | 2014-06-08 | 2015-12-17 | M.S.T. Medical Surgery Technologies Ltd. | Device and method for assisting laparoscopic surgery utilizing a touch screen |
EP3166468A4 (en) | 2014-07-10 | 2018-03-07 | M.S.T. Medical Surgery Technologies Ltd. | Improved interface for laparoscopic surgeries - movement gestures |
JP6063003B2 (en) | 2015-06-08 | 2017-01-18 | ローム株式会社 | Semiconductor nonvolatile memory circuit and test method thereof |
-
2013
- 2013-01-08 US US13/736,118 patent/US9943372B2/en active Active
-
2015
- 2015-08-04 US US14/817,223 patent/US10456202B2/en active Active
-
2016
- 2016-11-09 US US15/346,739 patent/US10603110B2/en active Active
-
2020
- 2020-03-31 US US16/836,874 patent/US11877721B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030055409A1 (en) * | 1998-02-24 | 2003-03-20 | Brock David L. | Interchangeable fluid instrument |
US20040243147A1 (en) * | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
US20040044295A1 (en) * | 2002-08-19 | 2004-03-04 | Orthosoft Inc. | Graphical user interface for computer-assisted surgery |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11786323B2 (en) | 2021-03-31 | 2023-10-17 | Moon Surgical Sas | Self-calibrating co-manipulation surgical system for use with surgical instrument for performing laparoscopic surgery |
US11980431B2 (en) | 2021-03-31 | 2024-05-14 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments having a virtual map display to facilitate setup |
US12011149B2 (en) | 2021-03-31 | 2024-06-18 | Moon Surgical Sas | Co-manipulation surgical system for bedside robotic laparoscopic surgery using surgical instruments |
US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
US11832910B1 (en) | 2023-01-09 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having adaptive gravity compensation |
US11839442B1 (en) | 2023-01-09 | 2023-12-12 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
Also Published As
Publication number | Publication date |
---|---|
US20160184031A1 (en) | 2016-06-30 |
US9943372B2 (en) | 2018-04-17 |
US20210038313A1 (en) | 2021-02-11 |
US10456202B2 (en) | 2019-10-29 |
US20130123804A1 (en) | 2013-05-16 |
US11877721B2 (en) | 2024-01-23 |
US10603110B2 (en) | 2020-03-31 |
US20170049521A1 (en) | 2017-02-23 |
US20170281275A9 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10456202B2 (en) | Device and methods of improving laparoscopic surgery | |
US10456010B2 (en) | Device and methods of improving laparoscopic surgery | |
EP2181645B1 (en) | Device of improving laparoscopic surgery | |
EP2744388B1 (en) | Wearable user interface | |
US10751139B2 (en) | Device and method for assisting laparoscopic surgery—rule based approach | |
US11185315B2 (en) | Device and method for assisting laparoscopic surgery—rule based approach | |
US10052157B2 (en) | Device and method for assisting laparoscopic surgery—rule based approach | |
US9757206B2 (en) | Device and method for assisting laparoscopic surgery—rule based approach | |
AU2007234510A1 (en) | Device and methods of improving laparoscopic surgery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: M.S.T. MEDICAL SURGERY TECHNOLOGIES LTD, ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHOLEV, MORDEHAI;ATAROT, GAL;FRIMER, MOTTI;SIGNING DATES FROM 20150730 TO 20150806;REEL/FRAME:036284/0449 |
|
AS | Assignment |
Owner name: M.S.T. MEDICAL SURGERY TECHNOLOGIES LTD, ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHOLEV, MORDEHAI;ATAROT, GAL;FRIMER, MOTTI;SIGNING DATES FROM 20150730 TO 20150806;REEL/FRAME:036419/0720 |
|
AS | Assignment |
Owner name: TRANSENTERIX EUROPE, S.A.R.L., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:M.S.T. MEDICAL SURGERY TECHNOLOGIES LTD.;REEL/FRAME:047947/0438 Effective date: 20181031 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ASENSUS SURGICAL EUROPE S.A.R.L., SWITZERLAND Free format text: CHANGE OF NAME;ASSIGNOR:TRANSENTERIX EUROPE S.A.R.L.;REEL/FRAME:066959/0274 Effective date: 20210224 |