US20170070260A1 - Systems and Methods for Parallel Signal Cancellation - Google Patents
Systems and Methods for Parallel Signal Cancellation Download PDFInfo
- Publication number
- US20170070260A1 US20170070260A1 US15/346,488 US201615346488A US2017070260A1 US 20170070260 A1 US20170070260 A1 US 20170070260A1 US 201615346488 A US201615346488 A US 201615346488A US 2017070260 A1 US2017070260 A1 US 2017070260A1
- Authority
- US
- United States
- Prior art keywords
- signal
- signals
- interference
- receiver
- interfering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/7103—Interference-related aspects the interference being multiple access interference
- H04B1/7105—Joint detection techniques, e.g. linear detectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/12—Neutralising, balancing, or compensation arrangements
- H04B1/123—Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
- H04B1/126—Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means having multiple inputs, e.g. auxiliary antenna for receiving interfering signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/7103—Interference-related aspects the interference being multiple access interference
- H04B1/7107—Subtractive interference cancellation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1027—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1081—Reduction of multipath noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
- H04B1/7117—Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0678—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different spreading codes between antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
- H04B7/0891—Space-time diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/0007—Code type
- H04J13/0022—PN, e.g. Kronecker
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J13/00—Code division multiplex systems
- H04J13/16—Code allocation
- H04J13/18—Allocation of orthogonal codes
- H04J13/20—Allocation of orthogonal codes having an orthogonal variable spreading factor [OVSF]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
- H04B1/712—Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/1027—Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
- H04B2001/1045—Adjacent-channel interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70718—Particular systems or standards
- H04B2201/70719—CDMA2000
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/7097—Direct sequence modulation interference
- H04B2201/70979—Fat finger issues in RAKE receivers
Definitions
- the invention generally relates to the field of communications. More specifically the invention is related to interference suppression for use in coded signal communications, such as Code Division Multiple Access (“CDMA”) communications.
- CDMA Code Division Multiple Access
- Interference in communications obstructs the intended reception of a signal and is a persistent problem. Interference may exist in many forms. In CDMA communications, for example, interference is typically the result of receiving one or more unwanted signals simultaneously with a selected signal. These unwanted signals may disrupt the reception of the selected signal because of mutual interference. This disruption of the selected signal is typical in CDMA telephony systems and may corrupt data retrieval processes of a selected signal.
- a communications system typically includes a plurality of “base stations” providing a coverage area within a geographic region. These base stations communicate with mobile telephones and/or other CDMA devices operating within the coverage area.
- a base station provides a coverage “cell” within the overall communication coverage area maintained by the communications system. While within a particular cell, a mobile telephone, or “handset”, can communicate with the base station providing the coverage for that cell. As the mobile telephone moves to the cell of another base station, communications between the mobile telephone and the base station providing the initial cell coverage can be transferred via a “hand off” to the other base station.
- Each base station within a CDMA telephony system uses coded signals to communicate with mobile telephones.
- coded signals For example, typical CDMA telephony systems use pseudorandom number (PN) spreading codes, sometimes referred to as “short codes,” to encode data signals. These encoded data signals are transmitted to and from mobile telephones to convey digitized voice and/or other forms of communication.
- PN codes are known to those skilled in the art.
- the terms coded signals and encoded signals are interchangeably used herein.
- the base station applies a PN code to the data at a rate faster than that of the data.
- the PN code is applied to the data such that there are multiple “chips” of the code for any given element of data.
- Such an application of the PN code is commonly referred to as direct sequence spreading of the data. Chips and their associated chip rates are known to those skilled in the art.
- each base station is assigned a particular timing offset of the short code to differentiate between base stations.
- Mobile telephones may therefore determine the identity of a particular base station based on the timing offset of the short code.
- the data signals are often further encoded with a unique “covering” code.
- covering codes provide “channelization” for a signal that increases the number of unique communication channels. For example, data encoded with a covering code can further differentiate signals thereby improving detection and subsequent processing of a selected signal.
- covering codes are often used in CDMA telephony systems and typically include families of codes that are orthogonal (e.g., Walsh codes) or codes that are substantially orthogonal (e.g. quasi-orthogonal functions (“QOF”)).
- Orthogonal covering codes and QOF covering codes have properties that allow for the differentiation of unwanted signals and are known to those skilled in the art.
- Walsh codes are also known to those skilled in the art.
- Both the short codes and the covering codes assist in the detection of a selected signal.
- interference caused by other signals may still degrade data extraction capabilities of the selected signal.
- signals from other base stations can interfere with the mobile telephone communication. Since cells often overlap one another to ensure that all desired geographic regions are included in the communication system's coverage area, one or more signals from one base station may interfere with the communication link, or “channel,” between the mobile telephone and another base station. This effect is commonly referred to as cross-channel interference.
- Cross-channel interference may also occur because some overhead channels are broadcast to all mobile telephones within the cell. These channels can “bleed” over into other cells and overpower a selected signal, thereby corrupting conveyed data. Examples of such channels include pilot channels, which are often broadcast at greater power levels and convey reference information and can be used to coherently demodulate other channels. Other potentially interfering channels may convey paging channels that alert a particular mobile telephone to an incoming call and synchronization channels that provides synchronization between a mobile telephone and a base station. Still other potentially interfering channels may include traffic channels bearing user traffic such as data and voice.
- Multipath can create interference because of the reception of copies of a selected signal at differing times.
- Multipath typically occurs because of obstructions, such as buildings, trees, et cetera, that create multiple transmission paths for a selected signal.
- These separate transmission paths may have unique distances that cause the signal to arrive at a receiver at differing times and is commonly referred to as co-channel interference. Additionally, these separate paths may bleed over into other cells to cause cross-channel interference.
- Multipath creates co-channel interference because, among other reasons, the orthogonality of the covering code for a received signal is essentially lost due to timing offsets associated with the multipath.
- a multipath signal having a covering code and arriving at a receiver at differing times causes a misalignment of the covering code.
- Such a misalignment can result in a high cross-correlation in the covering codes and a general inability to correctly retrieve conveyed data.
- a rake receiver may have a plurality of “fingers,” wherein each finger of the rake receiver independently estimates channel gain and other signal characteristics (e.g., phase) of the selected signal to more accurately demodulate data of the selected signal and subsequently retrieve the data.
- Each finger is assigned a particular “path” of the selected signal (i.e., one of the paths of the multipath signal or a signal from another base station). These paths may be combined to increase signal strength. Additionally, as signal characteristics change, the fingers may be assigned or de-assigned to other “paths” of the signal to improve data retrieval.
- Rake receivers can improve data retrieval of a received signal.
- present rake receivers do not substantially reduce cross-channel interference and/or co-channel interference. These interferers may still corrupt data as long as they exist in any substantial form.
- a processing engine is used to substantially cancel a plurality of interfering components within a received signal.
- the processing engine includes a plurality of matrix generators that are used to generate matrices, each matrix comprising elements of a unique component selected for cancellation.
- the processing engine also includes one or more processors that use the matrices to generate cancellation operators.
- a plurality of applicators applies the cancellation operators to parallel but not necessarily unique input signals to substantially cancel the interfering components from the input signals. These input signals may include received signals, interference cancelled signals and/or PN codes.
- CDMA Code Division Multiple Access
- Wideband CDMA Wideband CDMA
- Broadband CDMA Wideband CDMA
- GPS Global Positioning System
- a processing engine comprises:
- each matrix generator is configured for generating a matrix comprising elements of an interfering signal selected for cancellation
- a processor communicatively coupled to the matrix generators and configured for generating a cancellation operator from each matrix
- each applicator is communicatively coupled to the processor and configured for applying one of the cancellation operators to an input signal to substantially cancel one of the interfering signals.
- the processing engine is configurable with a receiver and wherein the processing engine further comprises a connection element configured for receiving output signals from the applicators and for selecting received said output signals as inputs to processing fingers of the receiver.
- connection element comprises a plurality of selectors wherein each selector is configured for receiving one of the output signals and for selecting said one of the output signals as one of the inputs to one of the processing fingers.
- each selector is further configured for receiving a digitized radio signal comprising one or more Code Division Multiple Access signals as one of the inputs to one of the processing fingers.
- each selector is further configured for receiving a digitized radio signal comprising one or more Wideband Code Division Multiple Access signals as one of the inputs to one of the processing fingers.
- each selector is further configured for receiving a digitized radio signal comprising one or more Global Positioning System signals as one of the inputs to one of the processing fingers.
- the output signals are interference cancelled signals.
- each cancellation operator is a projection operator configured for projecting a selected signal substantially orthogonal to one of the interfering signals.
- the projection operator comprises the form:
- P s ⁇ is the projection operator
- I is an identity matrix
- S is one of the matrices
- S T is a transpose of said one of the matrices.
- each of the cancellation operators comprises the form:
- y′ is an output cancelled signal
- y is a received signal
- S is one of the matrices
- S T is a transpose of said one of the matrices.
- the processing engine further comprises an interference selector configured for selecting the interfering signals as inputs to the matrix generators.
- the interference selector is further configured for providing on-time interfering PN codes of the interfering signals to the matrix generators.
- the interference selector selects the interfering signals based on a pre-determined criteria selected from a group consisting of amplitude, timing offset, phase and code sequence.
- a method of canceling interference comprises:
- each matrix comprising elements of an interference signal selected for cancellation
- generating the cancellation operator comprises generating a projection operator having a form:
- P s ⁇ is the projection operator
- I is an identity matrix
- S is one of the matrices
- S T is a transpose of said one of the matrices.
- applying comprises substantially canceling said one of the interfering signals according to the form:
- y′ is an output cancelled signal
- y is a received signal
- S is one of the matrices
- S T is a transpose of said one of the matrices.
- the method further comprises selecting the interference signals for input to the matrices.
- the method further comprises providing on-time interfering PN codes of the interfering signals to the matrices in response to selecting.
- the method further comprises selecting output signals generated in response to applying, for assignment of the output signals to processing fingers of a receiver.
- the method further comprises transferring the output signals to the processing fingers in response to selecting said output signals as input signals to the processing fingers.
- the output signals are interference cancelled signals.
- the method further comprises receiving a Code Division Multiple Access signal.
- the method further comprises receiving a Wideband Code Division Multiple Access signal.
- the method further comprises receiving a Global Positioning System signal.
- a mobile handset comprises:
- a receiver configured for receiving a radio signal
- a processing engine communicatively coupled to the receiver and comprising
- each matrix generator is configured for generating a matrix comprising elements of an interfering signal selected for cancellation
- a processor communicatively coupled to the matrix generators and configured for generating a cancellation operator from each matrix
- each applicator is communicatively coupled to the processor and configured for applying one of the cancellation operators to an input signal to substantially cancel one of the interfering signals.
- the radio signal comprises a Code Division Multiple Access signal.
- the radio signal comprises a Wideband Code Division Multiple Access signal.
- the radio signal comprises a Global Positioning System signal.
- FIG. 1 is a block diagram of an exemplary coded signal processing engine in one embodiment of the invention.
- FIG. 2 is a block diagram of the exemplary coded signal processing engine configurable with a receiver in one embodiment of the invention.
- FIG. 3 is a block diagram of exemplary receiver circuitry.
- FIG. 4 is another block diagram of exemplary receiver circuitry.
- FIG. 5 is a flow chart illustrating one exemplary methodical embodiment of the invention.
- FIG. 1 is a block diagram of exemplary coded signal processing engine 100 in one embodiment of the invention.
- Coded signal processing engine (“CSPE”) 100 is used to substantially cancel interfering components from signals. Examples of such interfering components include co-channel interference and cross-channel interference typical of CDMA telephony.
- CSPE 100 substantially cancels selected interfering components by applying a cancellation operator to either a received signal y or selected coded reference signals.
- CSPE 100 thereby generates a plurality of output cancelled signals (i.e., labeled Output Cancelled Signals 1 . . . N , where “N” is an integer greater than one), wherein the selected interfering components are substantially removed from the received signal y/coded reference signals.
- the coded reference signals may be “on-time” PN codes of signals used to decode signals selected for demodulation.
- On-time refers to a particular timing alignment for a PN code. Such a timing alignment may be relevant to extracting data from a signal being tracked within a receiver.
- CSPE 100 includes interference selector 101 for selecting interfering components and for providing selected “on-time” interfering PN codes to matrix generators 102 of CSPE 100 .
- the interference selector may select the interfering signals based on pre-determined criteria, such as amplitude, timing offset, phase and/or code sequence.
- Matrix generators 102 are configured for using selected interfering codes and phase estimates (labeled ⁇ 1 . . . N Est.) corresponding to those codes to generate matrices 103 (labeled matrices 103 1 . . . N ).
- Each matrix 103 comprises one or more vectors 104 (labeled matrices 104 1 . . . N ).
- each vector 104 comprise elements representing components of the interfering codes (e.g., such as those elements described in the '346 and the '360 applications).
- each vector may include elements representing a unique code of an interfering signal (e.g., co-channel interference or cross-channel interference).
- the codes are typically Walsh covering codes and on-time PN codes of selected interferers.
- Each interference vector is multiplied by a phase estimate of a corresponding selected interferer. Phase estimation is exemplified in the '346 application.
- each matrix 103 may be representative of a unique plurality of interfering signals.
- matrix 103 1 may include a single vector representing one interfering signal A 1 (not shown)
- matrix 103 2 may include a single vector representing another interfering signal A 2 (not shown).
- the invention is not intended to be limited to the exemplary embodiment shown herein.
- CSPE 100 uses each matrix 103 to generate unique cancellation operators for selective cancellation of the interfering components.
- CSPE 100 includes processor 105 configured for processing matrices 103 to generate the cancellation operators.
- the cancellation operators may be projection operators that are used to project selected coded signals substantially orthogonal to the interference (e.g., the interference represented by the matrices 103 ) so as to substantially cancel or remove the interference from the selected coded signals.
- processor 105 uses matrices 103 to generate the projection operators according to the following form:
- P s ⁇ is the projection operator
- I is an identity matrix
- S is an interference matrix 103
- S T is a transpose of the matrix 103 .
- CSPE 100 applies the cancellation operator to selected input signals (labeled “Input Signal”).
- Each applicator 106 (labeled 106 1 . . . N ) applies one of the cancellation operators to an input signal.
- Each application of a cancellation operator typically provides a unique output cancelled signal which is the input signal with the selected interfering signal substantially removed.
- applicator 106 1 may apply a projection operator P s A1 ⁇ to an input signal.
- the projection operator P s A1 ⁇ in this example, is generated from a matrix 103 comprising an interfering component of signal A 1 .
- applicators 106 2 and 106 N may apply projection operators in parallel with applicator 106 1 to produce the respective unique signals Output Cancelled Signal 2 and Output Cancelled Signal N .
- Parallel as used herein implies the substantially simultaneous generations of unique cancellation operators and the subsequent applications of the cancellation operators to independent input signals.
- cancellation may be performed by applying a construction of the matrices as follows:
- the received signal y is multiplied by the interference matrix construction of Eq. 1.
- that product is subtracted from the received signal y to produce an output cancelled signal y′, such as y A1 ′ and y A21 ′.
- applicators 106 may apply other cancellation operators to other input signals to produce a variety of output cancelled signals.
- One example of another input signal is an on-time reference PN code, such as that described below in FIG. 4 .
- Examples of other methods for the production of cancellation operators include subtractive methods, decorrelators and decision feedback.
- processor 105 may be either a single processor configured for generating a plurality of cancellation operators or processor 105 may represent a plurality of processors each of which is similarly configured for generating a unique cancellation operator. Examples of such processors include general purpose processors and Application Specific Integrated Circuits (“ASIC”). Accordingly, the processor may be operably controlled via software and/or firmware instructions to generate the cancellation operators. Those skilled in the art are familiar with processors, ASICs, software, firmware and the various combinations thereof which may be used in such implementations.
- CSPE 100 in general as described herein may be implemented through software, firmware, hardware and/or various combinations thereof.
- the generations of the cancellation operators and the subsequent cancellations of interfering signals may be computed through the use of software instructions (e.g., firmware) operable within a processor or specified in hardware architecture.
- FIG. 2 is a block diagram of the exemplary CSPE 100 of FIG. 1 configurable with receiver 204 in one embodiment of the invention.
- receiver 204 receives a radio frequency (“RF”) signal through antenna 201 and subsequently converts that signal to a digital received signal y using Analog-to-Digital (“A/D”) converter 202 .
- A/D converter 202 transfers the digital signal to receiver circuitry 203 for signal processing.
- RF radio frequency
- A/D converter 202 transfers the digital signal to receiver circuitry 203 for signal processing.
- CDMA signals typically includes both In-phase (“I”) and Quadrature (“Q”) components.
- the digital received signal y may include both I and Q components as well.
- receiver circuitry 203 is configured for transferring the digitized received signal y to CSPE 100 for cancellation of interfering signals.
- CSPE 100 receives the signal y as well as known codes from the interfering signals.
- the interfering signals may be cross channel and/or co-channel interfering signals comprising known codes of CDMA telephony systems.
- codes may be input to CSPE 100 on an as needed basis or stored within a memory (not shown) local to the CSPE 100 .
- the codes may be generated by processor 105 on an as needed basis.
- CSPE 100 uses applicators 106 1 . . . N to apply cancellation operators to the input signals in the following manner:
- connection element 206 These Output Cancelled Signal 1 . . . N are transferred to connection element 206 via “N” channel connection 205 .
- “N” channel connection 205 may be a communicative connection such as a data bus that allows for the transfer of “N” number of channels to connection element 206 . Consequently, connection element 206 may be configurable to receive such an “N” channel connection.
- Connection element 206 is configured for selectively transferring Output Cancelled Signal 1 . . . N to receiver circuitry 203 of receiver 204 via “M” channel connection 207 .
- connection element 206 may be a switching device, multiplexer, a plurality of multiplexers or another similar communication device that selectively transfers “N” number of signals to “M” number of channels, where “M” is also a number greater than one.
- “M” channel connection 207 is similar to “N” channel connection 205 .
- connection element 206 may be applied independently of cancellation processing. Consequently, connection element 206 may or may not be configured within the CSPE 100 . For example, should the selection of Output Cancelled Signal 1 . . . N be received by receiver circuitry 203 be decided by receiver 204 , then connection element 206 may reside outside of the embodied CSPE 100 . In a preferred embodiment, however, CSPE 100 includes the control functionality for connection element 206 that determines which of the Output Cancelled Signal 1 . . . N are transferred to receiver circuitry 203 . Accordingly, the invention should not be limited to the preferred embodiment described and shown herein.
- FIG. 3 is a block diagram of exemplary receiver circuitry 203 .
- receiver circuitry 203 is configured with CSPE 100 via connection element 206 for selectively tracking signals through receiver fingers f 1 , f 2 and f 3 (labeled 302 f1 , 302 f2 and 302 f3 ).
- connection element 206 may allow the receiver circuitry 203 to track and subsequently demodulate a selected combination of Output Cancelled Signal 1 . . . N and the received signal y through the receiver fingers f 1 , f 2 and f 3 .
- a first receiver finger f 1 receives the signal y via a corresponding selector (the selectors are labeled 301 f1 . . . f3 ).
- the phase estimate ⁇ f1 and the PN code f1 outputs of the first receiver finger f 1 are transferred from the finger to CSPE 100 for producing the output cancelled signal y A1 ′ described in FIGS. 1 and 2 .
- a second receiver finger f 2 selectively receives either y or y A1 ′ via a corresponding selector for tracking of a second assigned signal.
- a third receiver fingers f 3 has a selection of signals y and output cancelled signals y A1 ′ and y A2 ′ to track and demodulate a third assigned signal.
- the preferred embodiment is all that is necessary in CDMA telephony because there are typically only one or two signals (e.g., A 1 and A 2 ) that degrade reception beyond the point of intended data recovery. Accordingly, selective cancellation of only one or two signals may decrease processor consumption requirements and thereby improve overall processing performance of the system. As such, the embodiment should not be limited to the number of receiver fingers shown and described. More receiver fingers than those illustrated in this exemplary embodiment may be used to selectively track and demodulate signals according to the principles described herein.
- FIG. 4 is another block diagram of exemplary receiver circuitry 203 .
- the received signal y is transferred to receiver fingers f 1 , f 2 and f 3 (labeled 405 f1 . . . f3 ) and CSPE 100 .
- Time tracking and phase estimation of the received signal y may be performed for each finger in corresponding elements 401 f1 . . . f3 .
- Such tracking and phase estimation is used to generate on-time reference PN codes (PN code f1 . . . f3 ) and is described in greater detail in the '346 application.
- f3 transfer the on-time reference PN codes as well as the phase estimates (labeled ⁇ f1 . . . f3 ) to CSPE 100 and to corresponding selectors 402 f1 . . . f3 .
- CSPE 100 uses these on-time PN codes and phase estimates to generate cancellation operators that remove interfering signals from the received signal y.
- CSPE 100 uses the applicators 106 of FIGS. 1 and 2 to apply cancellation operators to the on-time PN codes to produce output cancelled versions of the codes (labeled output reference codes).
- Such an embodiment may conform to a cancellation of the form P s ⁇ x, where x is an on-time reference PN code.
- These output cancelled reference codes are selectively transferred to demodulators 403 f1 . . . f2 via selectors 402 f1 . . . f2 of connection element 206 .
- These codes are used by the demodulators 403 f1 . . . f2 to demodulate the received signal y.
- Such demodulation may be performed with a correlation of a reference code and a received signal over a period of a symbol and is well known to those skilled in the art.
- a first receiver finger f 1 receives the on-time reference PN code x f1 via a first selector 402 f1 and produces the phase estimate ⁇ f1 the PN code f1 outputs. The first finger f 1 then demodulates the received signal y using the code x f1 . These phase estimate ⁇ f1 and the PN code f1 outputs of that first receiver finger f 1 may be transferred from the finger f 1 to CSPE 100 for producing the output cancelled signal x A1 ′, where x A1 ′ is the on-time reference PN code of the signal selected for demodulation without the interfering effects of the signal A 1 .
- a second receiver finger f 2 selectively receives either x or x A1 ′ via corresponding selector 402 f2 . If x is transferred to the second receiver finger f 2 , the phase estimate ⁇ f2 and the PN code f2 outputs of receiver finger f 2 are transferred to CSPE 100 to produce the output cancelled signal x A2 ′, where x A2 ′ is the on-time reference PN code of the signal selected for demodulation without the interfering effects of the signal A 2 . Consequently, a third receiver finger f 3 has a selection of signals x f3 and output cancelled on-time reference PN codes x A1 ′ and x A2 ′ which can be used to track and demodulate the received signal y.
- FIG. 5 is a flow chart 500 illustrating one exemplary methodical embodiment of the invention.
- one or more interference components of a received signal are selected, in element 501 . These interference components are used to generate an interference matrix, in element 502 .
- a cancellation operator is generated from the interference matrix, in element 503 .
- the cancellation operator may be a projection operator as described in FIG. 1 that is generated in element 504 to substantially orthogonally project a received signal from interfering components. Such a projection operator may substantially cancel or remove the interfering components from the received signal.
- the cancellation operator is applied to either the received signal or an on-time reference PN code, in element 505 .
- Elements 501 through 505 are performed in parallel based on the number of receiver fingers used for tracking and demodulation in a receiver. For example, in a receiver comprising three fingers, such as the receiver circuitry 203 in FIGS. 4 and 5 , elements 501 through 505 may be performed three times in a substantially simultaneous fashion. Moreover, control functionality may be configured to only select information of particular fingers. For example, if a signal does not contribute significantly to the interference, it may be selectively excluded from the cancellation process to decrease processing. Such a selection process is described in the '954 application.
- the application of the cancellation operators in element 505 produces output cancelled signals such as those described herein. Once those output cancelled signals are produced, the signals are selected for finger assignments, in element 506 . Such a selection process may be performed by connection element 206 in FIG. 3 . Selected output cancelled signals are transferred to the receiver fingers according to their respective finger assignments, in element 507 . Within their respective fingers, the output cancelled signals are either tracked and demodulated as in FIG. 3 or are used to track and demodulate a received signal as in FIG. 4 .
- the embodiments described herein may substantially reduce interference caused by unwanted signals and improve signal processing. For example, poor signal quality due to interference may deleteriously affect acquisition, tracking and demodulation of selected signals. A reduction of interference May, therefore, result in improved signal processing and error reduction.
- the embodiments herein may advantageously require use within a CDMA telephony system. Improved processing within a CDMA telephony system may be exploited in terms of increased system capacity, transmit power reduction, system coverage and/or data rates.
- CDMA Code Division Multiple Access
- WCDMA Wideband CDMA
- Broadband CDMA Broadband CDMA
- the above embodiments of the invention may be implemented in a variety of ways.
- the above embodiments may be implemented from software, firmware, hardware or various combinations thereof.
- Those skilled in the art are familiar with software, firmware, hardware and their various combinations.
- DSP Digital Signal Processors
- aspects of the invention may be implemented through combinations of software using Java, C, C++, Matlab, and/or processor specific machine and assembly languages. Accordingly, those skilled in the art should readily recognize that such implementations are a matter of design choice and that the invention should not be limited to any particular implementation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Noise Elimination (AREA)
Abstract
A receiver includes a first finger that receives a non-interference-cancelled signal and output first demodulated data, a first phase estimate, and a first PN code. The receiver also includes a second finger that selectively receives the non-interference-cancelled signal and a first interference-cancelled signal generated from the non-interference-cancelled signal based on the first phase estimate and the first PN code. The second finger also outputs second demodulated data.
Description
- This application claims priority to U.S. Provisional Patent Application 60/445,243 (filed Feb. 6, 2003), which is herein incorporated by reference. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/699,954 (filed Sep. 23, 2003; the “'954 application”), Ser. No. 10/686,828 (filed Oct. 15, 2003; the “'828 application”), Ser. No. 10/686,829 (filed Oct. 15, 2003; the “'829 application”), Ser. No. 10/699,360 (filed Oct. 31, 2003; the “'360 application”), Ser. No. 10/294,834 (filed Nov. 15, 2002; the “'834 application”), Ser. No. 10/686,359 (filed Oct. 15, 2003; the “'359 application”) and Ser. No. 10/763,346 (filed Jan. 23, 2004; the “'346 application”), which are all hereby incorporated by reference. This application is also related to Ser. No. 09/988,219 (filed Nov. 19, 2001; the “'219 application”), which is hereby incorporated by reference.
- 1. Field of the Invention
- The invention generally relates to the field of communications. More specifically the invention is related to interference suppression for use in coded signal communications, such as Code Division Multiple Access (“CDMA”) communications.
- 2. Discussion of the Related Art
- Interference in communications obstructs the intended reception of a signal and is a persistent problem. Interference may exist in many forms. In CDMA communications, for example, interference is typically the result of receiving one or more unwanted signals simultaneously with a selected signal. These unwanted signals may disrupt the reception of the selected signal because of mutual interference. This disruption of the selected signal is typical in CDMA telephony systems and may corrupt data retrieval processes of a selected signal.
- In CDMA telephony, a communications system typically includes a plurality of “base stations” providing a coverage area within a geographic region. These base stations communicate with mobile telephones and/or other CDMA devices operating within the coverage area. To illustrate, a base station provides a coverage “cell” within the overall communication coverage area maintained by the communications system. While within a particular cell, a mobile telephone, or “handset”, can communicate with the base station providing the coverage for that cell. As the mobile telephone moves to the cell of another base station, communications between the mobile telephone and the base station providing the initial cell coverage can be transferred via a “hand off” to the other base station.
- Each base station within a CDMA telephony system uses coded signals to communicate with mobile telephones. For example, typical CDMA telephony systems use pseudorandom number (PN) spreading codes, sometimes referred to as “short codes,” to encode data signals. These encoded data signals are transmitted to and from mobile telephones to convey digitized voice and/or other forms of communication. PN codes are known to those skilled in the art. The terms coded signals and encoded signals are interchangeably used herein.
- To encode the data signals, the base station applies a PN code to the data at a rate faster than that of the data. For example, the PN code is applied to the data such that there are multiple “chips” of the code for any given element of data. Such an application of the PN code is commonly referred to as direct sequence spreading of the data. Chips and their associated chip rates are known to those skilled in the art.
- Sometimes, each base station is assigned a particular timing offset of the short code to differentiate between base stations. Mobile telephones may therefore determine the identity of a particular base station based on the timing offset of the short code. Additionally, the data signals are often further encoded with a unique “covering” code. Such covering codes provide “channelization” for a signal that increases the number of unique communication channels. For example, data encoded with a covering code can further differentiate signals thereby improving detection and subsequent processing of a selected signal.
- These covering codes are often used in CDMA telephony systems and typically include families of codes that are orthogonal (e.g., Walsh codes) or codes that are substantially orthogonal (e.g. quasi-orthogonal functions (“QOF”)). Orthogonal covering codes and QOF covering codes have properties that allow for the differentiation of unwanted signals and are known to those skilled in the art. Walsh codes are also known to those skilled in the art.
- Both the short codes and the covering codes assist in the detection of a selected signal. However, interference caused by other signals may still degrade data extraction capabilities of the selected signal. For example, as a mobile telephone communicates with a particular base station within that base station's coverage cell, signals from other base stations can interfere with the mobile telephone communication. Since cells often overlap one another to ensure that all desired geographic regions are included in the communication system's coverage area, one or more signals from one base station may interfere with the communication link, or “channel,” between the mobile telephone and another base station. This effect is commonly referred to as cross-channel interference.
- Cross-channel interference may also occur because some overhead channels are broadcast to all mobile telephones within the cell. These channels can “bleed” over into other cells and overpower a selected signal, thereby corrupting conveyed data. Examples of such channels include pilot channels, which are often broadcast at greater power levels and convey reference information and can be used to coherently demodulate other channels. Other potentially interfering channels may convey paging channels that alert a particular mobile telephone to an incoming call and synchronization channels that provides synchronization between a mobile telephone and a base station. Still other potentially interfering channels may include traffic channels bearing user traffic such as data and voice.
- Still, other forms of interference may occur from “multipath” copies of a selected signal. Multipath can create interference because of the reception of copies of a selected signal at differing times. Multipath typically occurs because of obstructions, such as buildings, trees, et cetera, that create multiple transmission paths for a selected signal. These separate transmission paths may have unique distances that cause the signal to arrive at a receiver at differing times and is commonly referred to as co-channel interference. Additionally, these separate paths may bleed over into other cells to cause cross-channel interference.
- Multipath creates co-channel interference because, among other reasons, the orthogonality of the covering code for a received signal is essentially lost due to timing offsets associated with the multipath. For example, a multipath signal having a covering code and arriving at a receiver at differing times causes a misalignment of the covering code. Such a misalignment can result in a high cross-correlation in the covering codes and a general inability to correctly retrieve conveyed data.
- “Rake” receivers, such as those used in CDMA telephony systems, combine multipath signals to increase available signal strength. For example, a rake receiver may have a plurality of “fingers,” wherein each finger of the rake receiver independently estimates channel gain and other signal characteristics (e.g., phase) of the selected signal to more accurately demodulate data of the selected signal and subsequently retrieve the data. Each finger is assigned a particular “path” of the selected signal (i.e., one of the paths of the multipath signal or a signal from another base station). These paths may be combined to increase signal strength. Additionally, as signal characteristics change, the fingers may be assigned or de-assigned to other “paths” of the signal to improve data retrieval.
- Rake receivers can improve data retrieval of a received signal. However, present rake receivers do not substantially reduce cross-channel interference and/or co-channel interference. These interferers may still corrupt data as long as they exist in any substantial form.
- The present invention provides systems and methods for parallel interference suppression. In one embodiment of the invention, a processing engine is used to substantially cancel a plurality of interfering components within a received signal. The processing engine includes a plurality of matrix generators that are used to generate matrices, each matrix comprising elements of a unique component selected for cancellation. The processing engine also includes one or more processors that use the matrices to generate cancellation operators. A plurality of applicators applies the cancellation operators to parallel but not necessarily unique input signals to substantially cancel the interfering components from the input signals. These input signals may include received signals, interference cancelled signals and/or PN codes. The embodiments disclosed herein may be particularly advantageous to systems employing CDMA (e.g., such as cdmaOne and cdma2000), Wideband CDMA, Broadband CDMA and Global Positioning System (“GPS”) signals. Such systems are known to those skilled in the art.
- In one embodiment of the invention, a processing engine comprises:
- a plurality of matrix generators, wherein each matrix generator is configured for generating a matrix comprising elements of an interfering signal selected for cancellation;
- a processor communicatively coupled to the matrix generators and configured for generating a cancellation operator from each matrix; and
- a plurality of applicators, wherein each applicator is communicatively coupled to the processor and configured for applying one of the cancellation operators to an input signal to substantially cancel one of the interfering signals.
- In another embodiment of the invention, the processing engine is configurable with a receiver and wherein the processing engine further comprises a connection element configured for receiving output signals from the applicators and for selecting received said output signals as inputs to processing fingers of the receiver.
- In another embodiment of the invention, the connection element comprises a plurality of selectors wherein each selector is configured for receiving one of the output signals and for selecting said one of the output signals as one of the inputs to one of the processing fingers.
- In another embodiment of the invention, each selector is further configured for receiving a digitized radio signal comprising one or more Code Division Multiple Access signals as one of the inputs to one of the processing fingers.
- In another embodiment of the invention, each selector is further configured for receiving a digitized radio signal comprising one or more Wideband Code Division Multiple Access signals as one of the inputs to one of the processing fingers.
- In another embodiment of the invention, each selector is further configured for receiving a digitized radio signal comprising one or more Global Positioning System signals as one of the inputs to one of the processing fingers.
- In another embodiment of the invention, the output signals are interference cancelled signals.
- In another embodiment of the invention, each cancellation operator is a projection operator configured for projecting a selected signal substantially orthogonal to one of the interfering signals.
- In another embodiment of the invention, the projection operator comprises the form:
-
P s ⊥ =I−S(S T S)−1 S T, - where Ps ⊥ is the projection operator, I is an identity matrix, S is one of the matrices and ST is a transpose of said one of the matrices.
- In another embodiment of the invention, each of the cancellation operators comprises the form:
-
y′=y−S(S T S)−1 S T y, - where y′ is an output cancelled signal, y is a received signal, S is one of the matrices and ST is a transpose of said one of the matrices.
- In another embodiment of the invention, the processing engine further comprises an interference selector configured for selecting the interfering signals as inputs to the matrix generators.
- In another embodiment of the invention, the interference selector is further configured for providing on-time interfering PN codes of the interfering signals to the matrix generators.
- In another embodiment of the invention, the interference selector selects the interfering signals based on a pre-determined criteria selected from a group consisting of amplitude, timing offset, phase and code sequence.
- In one embodiment of the invention, a method of canceling interference comprises:
- generating a plurality of matrices, each matrix comprising elements of an interference signal selected for cancellation;
- generating a cancellation operator from each of the matrices; and
- applying each cancellation operator in parallel to an input signal to substantially cancel one of the interference signals.
- In another embodiment of the invention, generating the cancellation operator comprises generating a projection operator having a form:
-
P s ⊥ =I−S(S T S)−1 S T, - where Ps ⊥ is the projection operator, I is an identity matrix, S is one of the matrices and ST is a transpose of said one of the matrices.
- In another embodiment of the invention, applying comprises substantially canceling said one of the interfering signals according to the form:
-
y′=y−S(S T S)−1 S T y, - where y′ is an output cancelled signal, y is a received signal, S is one of the matrices and ST is a transpose of said one of the matrices.
- In another embodiment of the invention, the method further comprises selecting the interference signals for input to the matrices.
- In another embodiment of the invention, the method further comprises providing on-time interfering PN codes of the interfering signals to the matrices in response to selecting.
- In another embodiment of the invention, the method further comprises selecting output signals generated in response to applying, for assignment of the output signals to processing fingers of a receiver.
- In another embodiment of the invention, the method further comprises transferring the output signals to the processing fingers in response to selecting said output signals as input signals to the processing fingers.
- In another embodiment of the invention, the output signals are interference cancelled signals.
- In another embodiment of the invention, the method further comprises receiving a Code Division Multiple Access signal.
- In another embodiment of the invention, the method further comprises receiving a Wideband Code Division Multiple Access signal.
- In another embodiment of the invention, the method further comprises receiving a Global Positioning System signal.
- In one embodiment of the invention, a mobile handset comprises:
- a receiver configured for receiving a radio signal; and
- a processing engine communicatively coupled to the receiver and comprising
- a plurality of matrix generators, wherein each matrix generator is configured for generating a matrix comprising elements of an interfering signal selected for cancellation,
- a processor communicatively coupled to the matrix generators and configured for generating a cancellation operator from each matrix, and
- a plurality of applicators, wherein each applicator is communicatively coupled to the processor and configured for applying one of the cancellation operators to an input signal to substantially cancel one of the interfering signals.
- In another embodiment of the invention, the radio signal comprises a Code Division Multiple Access signal.
- In another embodiment of the invention, the radio signal comprises a Wideband Code Division Multiple Access signal.
- In another embodiment of the invention, the radio signal comprises a Global Positioning System signal.
-
FIG. 1 is a block diagram of an exemplary coded signal processing engine in one embodiment of the invention. -
FIG. 2 is a block diagram of the exemplary coded signal processing engine configurable with a receiver in one embodiment of the invention. -
FIG. 3 is a block diagram of exemplary receiver circuitry. -
FIG. 4 is another block diagram of exemplary receiver circuitry. -
FIG. 5 is a flow chart illustrating one exemplary methodical embodiment of the invention. - While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that it is not intended to limit the invention to the particular form disclosed, but rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the claims.
-
FIG. 1 is a block diagram of exemplary codedsignal processing engine 100 in one embodiment of the invention. Coded signal processing engine (“CSPE”) 100 is used to substantially cancel interfering components from signals. Examples of such interfering components include co-channel interference and cross-channel interference typical of CDMA telephony.CSPE 100 substantially cancels selected interfering components by applying a cancellation operator to either a received signal y or selected coded reference signals.CSPE 100 thereby generates a plurality of output cancelled signals (i.e., labeled Output Cancelled Signals1 . . . N, where “N” is an integer greater than one), wherein the selected interfering components are substantially removed from the received signal y/coded reference signals. The coded reference signals may be “on-time” PN codes of signals used to decode signals selected for demodulation. On-time as used herein refers to a particular timing alignment for a PN code. Such a timing alignment may be relevant to extracting data from a signal being tracked within a receiver. - In this embodiment,
CSPE 100 includesinterference selector 101 for selecting interfering components and for providing selected “on-time” interfering PN codes tomatrix generators 102 ofCSPE 100. The interference selector may select the interfering signals based on pre-determined criteria, such as amplitude, timing offset, phase and/or code sequence.Matrix generators 102 are configured for using selected interfering codes and phase estimates (labeled φ1 . . . N Est.) corresponding to those codes to generate matrices 103 (labeled matrices 103 1 . . . N). Each matrix 103 comprises one or more vectors 104 (labeled matrices 104 1 . . . N). Further, thevectors 104 comprise elements representing components of the interfering codes (e.g., such as those elements described in the '346 and the '360 applications). For example, each vector may include elements representing a unique code of an interfering signal (e.g., co-channel interference or cross-channel interference). The codes are typically Walsh covering codes and on-time PN codes of selected interferers. Each interference vector is multiplied by a phase estimate of a corresponding selected interferer. Phase estimation is exemplified in the '346 application. - As
multiple vectors 104 may be used to represent multiple interfering signals, each matrix 103 may be representative of a unique plurality of interfering signals. For example, matrix 103 1 may include a single vector representing one interfering signal A1 (not shown), whereas matrix 103 2 may include a single vector representing another interfering signal A2 (not shown). The invention, however, is not intended to be limited to the exemplary embodiment shown herein. -
CSPE 100 uses each matrix 103 to generate unique cancellation operators for selective cancellation of the interfering components. Accordingly,CSPE 100 includesprocessor 105 configured for processing matrices 103 to generate the cancellation operators. The cancellation operators may be projection operators that are used to project selected coded signals substantially orthogonal to the interference (e.g., the interference represented by the matrices 103) so as to substantially cancel or remove the interference from the selected coded signals. In a projection operator embodiment,processor 105 uses matrices 103 to generate the projection operators according to the following form: -
P s ⊥ =I−S(S T S)−1 S T, (Eq. 1) - where Ps ⊥ is the projection operator, I is an identity matrix, S is an interference matrix 103 and ST is a transpose of the matrix 103. Such projection operators and their associated constructions are described in the '346, the '360, the '829, the '219 and the '834 applications.
-
CSPE 100 applies the cancellation operator to selected input signals (labeled “Input Signal”). Each applicator 106 (labeled 106 1 . . . N) applies one of the cancellation operators to an input signal. Each application of a cancellation operator typically provides a unique output cancelled signal which is the input signal with the selected interfering signal substantially removed. For example, using the same signal notations of “A” as described above, applicator 106 1 may apply a projection operator PsA1 ⊥ to an input signal. The projection operator PsA1 ⊥, in this example, is generated from a matrix 103 comprising an interfering component of signal A1. Once applied to the received signal y as the input signal, applicator 106 1 produces an Output Cancelled Signal1 that corresponds to yA1′=PsA1 ⊥y, where yA1′ is the received signal with the interfering component A1 substantially removed. - Similarly, applicators 106 2 and 106 N may apply projection operators in parallel with applicator 106 1 to produce the respective unique signals Output Cancelled Signal2 and Output Cancelled SignalN. For example, applicator 106 2 may apply a projection operator Ps
A2 ⊥ such that the applicator produces an Output Cancelled Signal2 corresponding to yA2′=PsA2 ⊥y, where yA2′ is the received signal with the interfering component A2 substantially removed. Parallel as used herein implies the substantially simultaneous generations of unique cancellation operators and the subsequent applications of the cancellation operators to independent input signals. - In an alternative embodiment, cancellation may be performed by applying a construction of the matrices as follows:
-
y′=y−S(S T S)−1 S T y. (Eq. 2) - In such an embodiment, the received signal y is multiplied by the interference matrix construction of Eq. 1. However, that product is subtracted from the received signal y to produce an output cancelled signal y′, such as yA1′ and yA21′. Those skilled in the art should readily recognize that the two approaches produce substantially the same result.
- While one exemplary embodiment has been shown in detail, the invention is not intended to be limited to the examples described and illustrated herein. For example, applicators 106 may apply other cancellation operators to other input signals to produce a variety of output cancelled signals. One example of another input signal is an on-time reference PN code, such as that described below in
FIG. 4 . Examples of other methods for the production of cancellation operators include subtractive methods, decorrelators and decision feedback. - Additionally, the invention is not intended to be limited to the number of applicators 106, input signals, output cancelled signals,
matrix generators 102 andprocessors 105. For example,processor 105 may be either a single processor configured for generating a plurality of cancellation operators orprocessor 105 may represent a plurality of processors each of which is similarly configured for generating a unique cancellation operator. Examples of such processors include general purpose processors and Application Specific Integrated Circuits (“ASIC”). Accordingly, the processor may be operably controlled via software and/or firmware instructions to generate the cancellation operators. Those skilled in the art are familiar with processors, ASICs, software, firmware and the various combinations thereof which may be used in such implementations. - Moreover, those skilled in the art should readily recognize that
CSPE 100 in general as described herein may be implemented through software, firmware, hardware and/or various combinations thereof. For example, the generations of the cancellation operators and the subsequent cancellations of interfering signals may be computed through the use of software instructions (e.g., firmware) operable within a processor or specified in hardware architecture. -
FIG. 2 is a block diagram of theexemplary CSPE 100 ofFIG. 1 configurable withreceiver 204 in one embodiment of the invention. In this embodiment,receiver 204 receives a radio frequency (“RF”) signal throughantenna 201 and subsequently converts that signal to a digital received signal y using Analog-to-Digital (“A/D”)converter 202. A/D converter 202 transfers the digital signal toreceiver circuitry 203 for signal processing. Those skilled in the art should readily recognize that the processing of CDMA signals typically includes both In-phase (“I”) and Quadrature (“Q”) components. As such, the digital received signal y may include both I and Q components as well. - In this embodiment,
receiver circuitry 203 is configured for transferring the digitized received signal y toCSPE 100 for cancellation of interfering signals.CSPE 100 receives the signal y as well as known codes from the interfering signals. For example, the interfering signals may be cross channel and/or co-channel interfering signals comprising known codes of CDMA telephony systems. Such codes may be input toCSPE 100 on an as needed basis or stored within a memory (not shown) local to theCSPE 100. Alternatively, the codes may be generated byprocessor 105 on an as needed basis. - Operable characteristics of
CSPE 100 are the same as those described inFIG. 1 . However, again using the same signal notations of “A” as described above, in this preferred receiver embodiment,CSPE 100 uses applicators 106 1 . . . N to apply cancellation operators to the input signals in the following manner: - Applicator 106 1 produces an Output Cancelled Signal1 that corresponds to yA1′=Ps
A1 ⊥y, where again yA1′ is the received signal with the interfering component A1 substantially removed; - Applicator 106 2 produces an Output cancelled Signal2 corresponding to yA2′=Ps
A2 ⊥y; and where again yA2′ is the received signal with the interfering component A2 substantially removed. - These Output Cancelled Signal1 . . . N are transferred to
connection element 206 via “N”channel connection 205. For example, “N”channel connection 205 may be a communicative connection such as a data bus that allows for the transfer of “N” number of channels toconnection element 206. Consequently,connection element 206 may be configurable to receive such an “N” channel connection. -
Connection element 206 is configured for selectively transferring Output Cancelled Signal1 . . . N toreceiver circuitry 203 ofreceiver 204 via “M”channel connection 207. For example,connection element 206 may be a switching device, multiplexer, a plurality of multiplexers or another similar communication device that selectively transfers “N” number of signals to “M” number of channels, where “M” is also a number greater than one. As such, “M”channel connection 207 is similar to “N”channel connection 205. - The control for
connection element 206 may be applied independently of cancellation processing. Consequently,connection element 206 may or may not be configured within theCSPE 100. For example, should the selection of Output Cancelled Signal1 . . . N be received byreceiver circuitry 203 be decided byreceiver 204, thenconnection element 206 may reside outside of the embodiedCSPE 100. In a preferred embodiment, however,CSPE 100 includes the control functionality forconnection element 206 that determines which of the Output Cancelled Signal1 . . . N are transferred toreceiver circuitry 203. Accordingly, the invention should not be limited to the preferred embodiment described and shown herein. -
FIG. 3 is a block diagram ofexemplary receiver circuitry 203. In this embodiment,receiver circuitry 203 is configured withCSPE 100 viaconnection element 206 for selectively tracking signals through receiver fingers f1, f2 and f3 (labeled 302 f1, 302 f2 and 302 f3). For example,connection element 206 may allow thereceiver circuitry 203 to track and subsequently demodulate a selected combination of Output Cancelled Signal1 . . . N and the received signal y through the receiver fingers f1, f2 and f3. - In a preferred embodiment, a first receiver finger f1 receives the signal y via a corresponding selector (the selectors are labeled 301 f1 . . . f3). The phase estimate φf1 and the PN codef1 outputs of the first receiver finger f1 are transferred from the finger to
CSPE 100 for producing the output cancelled signal yA1′ described inFIGS. 1 and 2 . A second receiver finger f2 selectively receives either y or yA1′ via a corresponding selector for tracking of a second assigned signal. If y is transferred to the second receiver finger f2, the phase estimate φf2 and the PN codef2 outputs of that second receiver finger are transferred toCSPE 100 to produce the output cancelled signal yA2′ also described inFIGS. 1 and 2 . Consequently, a third receiver fingers f3 has a selection of signals y and output cancelled signals yA1′ and yA2′ to track and demodulate a third assigned signal. - In many instances, tracking, demodulation and cancellation of the signals described and shown herein the preferred embodiment is all that is necessary in CDMA telephony because there are typically only one or two signals (e.g., A1 and A2) that degrade reception beyond the point of intended data recovery. Accordingly, selective cancellation of only one or two signals may decrease processor consumption requirements and thereby improve overall processing performance of the system. As such, the embodiment should not be limited to the number of receiver fingers shown and described. More receiver fingers than those illustrated in this exemplary embodiment may be used to selectively track and demodulate signals according to the principles described herein.
-
FIG. 4 is another block diagram ofexemplary receiver circuitry 203. In this alternative embodiment, the received signal y is transferred to receiver fingers f1, f2 and f3 (labeled 405 f1 . . . f3) andCSPE 100. Time tracking and phase estimation of the received signal y may be performed for each finger in corresponding elements 401 f1 . . . f3. Such tracking and phase estimation is used to generate on-time reference PN codes (PN codef1 . . . f3) and is described in greater detail in the '346 application. Elements 401 f1 . . . f3 transfer the on-time reference PN codes as well as the phase estimates (labeled φf1 . . . f3) toCSPE 100 and to corresponding selectors 402 f1 . . . f3.CSPE 100 uses these on-time PN codes and phase estimates to generate cancellation operators that remove interfering signals from the received signal y. - Differing from the embodiment of
FIG. 3 ,CSPE 100 uses the applicators 106 ofFIGS. 1 and 2 to apply cancellation operators to the on-time PN codes to produce output cancelled versions of the codes (labeled output reference codes). Such an embodiment may conform to a cancellation of the form Ps ⊥x, where x is an on-time reference PN code. These output cancelled reference codes are selectively transferred todemodulators 403 f1 . . . f2 via selectors 402 f1 . . . f2 ofconnection element 206. These codes are used by thedemodulators 403 f1 . . . f2 to demodulate the received signal y. Such demodulation may be performed with a correlation of a reference code and a received signal over a period of a symbol and is well known to those skilled in the art. - In a preferred embodiment, a first receiver finger f1 receives the on-time reference PN code xf1 via a first selector 402 f1 and produces the phase estimate φf1 the PN codef1 outputs. The first finger f1 then demodulates the received signal y using the code xf1. These phase estimate φf1 and the PN codef1 outputs of that first receiver finger f1 may be transferred from the finger f1 to
CSPE 100 for producing the output cancelled signal xA1′, where xA1′ is the on-time reference PN code of the signal selected for demodulation without the interfering effects of the signal A1. A second receiver finger f2 selectively receives either x or xA1′ via corresponding selector 402 f2. If x is transferred to the second receiver finger f2, the phase estimate φf2 and the PN codef2 outputs of receiver finger f2 are transferred toCSPE 100 to produce the output cancelled signal xA2′, where xA2′ is the on-time reference PN code of the signal selected for demodulation without the interfering effects of the signal A2. Consequently, a third receiver finger f3 has a selection of signals xf3 and output cancelled on-time reference PN codes xA1′ and xA2′ which can be used to track and demodulate the received signal y. - Again, those skilled in the art should readily recognize that the preferred embodiment should not be limited to that which is shown and described herein. More receiver fingers than those illustrated and described herein the exemplary embodiment may be used to selectively track and demodulate signals according to the principles described herein.
-
FIG. 5 is aflow chart 500 illustrating one exemplary methodical embodiment of the invention. In this embodiment, one or more interference components of a received signal are selected, inelement 501. These interference components are used to generate an interference matrix, inelement 502. A cancellation operator is generated from the interference matrix, inelement 503. The cancellation operator may be a projection operator as described inFIG. 1 that is generated inelement 504 to substantially orthogonally project a received signal from interfering components. Such a projection operator may substantially cancel or remove the interfering components from the received signal. The cancellation operator is applied to either the received signal or an on-time reference PN code, inelement 505. -
Elements 501 through 505 are performed in parallel based on the number of receiver fingers used for tracking and demodulation in a receiver. For example, in a receiver comprising three fingers, such as thereceiver circuitry 203 inFIGS. 4 and 5 ,elements 501 through 505 may be performed three times in a substantially simultaneous fashion. Moreover, control functionality may be configured to only select information of particular fingers. For example, if a signal does not contribute significantly to the interference, it may be selectively excluded from the cancellation process to decrease processing. Such a selection process is described in the '954 application. - The application of the cancellation operators in
element 505 produces output cancelled signals such as those described herein. Once those output cancelled signals are produced, the signals are selected for finger assignments, inelement 506. Such a selection process may be performed byconnection element 206 inFIG. 3 . Selected output cancelled signals are transferred to the receiver fingers according to their respective finger assignments, inelement 507. Within their respective fingers, the output cancelled signals are either tracked and demodulated as inFIG. 3 or are used to track and demodulate a received signal as inFIG. 4 . - The embodiments described herein may substantially reduce interference caused by unwanted signals and improve signal processing. For example, poor signal quality due to interference may deleteriously affect acquisition, tracking and demodulation of selected signals. A reduction of interference May, therefore, result in improved signal processing and error reduction. In regards to such benefits, the embodiments herein may advantageously require use within a CDMA telephony system. Improved processing within a CDMA telephony system may be exploited in terms of increased system capacity, transmit power reduction, system coverage and/or data rates. However, those skilled in the art should readily recognize that the above embodiments should not be limited to any particular method of signaling. For example, the embodiments disclosed herein may also be advantageous to systems employing CDMA (e.g., such as cdmaOne and cdma2000), WCDMA, Broadband CDMA and GPS signals.
- Additionally, it should be noted that the above embodiments of the invention may be implemented in a variety of ways. For example, the above embodiments may be implemented from software, firmware, hardware or various combinations thereof. Those skilled in the art are familiar with software, firmware, hardware and their various combinations. To illustrate, those skilled in the art may choose to implement aspects of the invention in hardware using ASIC chips, Digital Signal Processors (“DSP”) and/or other integrated circuitry (e.g., custom designed circuitry and Xilinx chips). Alternatively, aspects of the invention may be implemented through combinations of software using Java, C, C++, Matlab, and/or processor specific machine and assembly languages. Accordingly, those skilled in the art should readily recognize that such implementations are a matter of design choice and that the invention should not be limited to any particular implementation.
- While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character. Accordingly, it should be understood that only the preferred embodiment and minor variants thereof have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Claims (1)
1. A receiver comprising:
a first finger configured to receive a non-interference-cancelled signal and output first demodulated data, a first phase estimate, and a first PN code; and
a second finger configured to:
selectively receive the non-interference-cancelled signal and a first interference-cancelled signal generated from the non-interference-cancelled signal based on the first phase estimate and the first PN code; and
output second demodulated data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/346,488 US20170070260A1 (en) | 2002-09-20 | 2016-11-08 | Systems and Methods for Parallel Signal Cancellation |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/247,836 US7158559B2 (en) | 2002-01-15 | 2002-09-20 | Serial cancellation receiver design for a coded signal processing engine |
US10/294,834 US7200183B2 (en) | 2001-11-16 | 2002-11-15 | Construction of an interference matrix for a coded signal processing engine |
US10/686,829 US7580448B2 (en) | 2002-10-15 | 2003-10-15 | Method and apparatus for channel amplitude estimation and interference vector construction |
US10/686,359 US7068706B2 (en) | 2002-10-15 | 2003-10-15 | System and method for adjusting phase |
US10/763,346 US7039136B2 (en) | 2001-11-19 | 2004-01-23 | Interference cancellation in a signal |
US10/773,777 US7394879B2 (en) | 2001-11-19 | 2004-02-06 | Systems and methods for parallel signal cancellation |
US11/100,935 US20050180364A1 (en) | 2002-09-20 | 2005-04-07 | Construction of projection operators for interference cancellation |
US11/192,763 US7463609B2 (en) | 2005-07-29 | 2005-07-29 | Interference cancellation within wireless transceivers |
US11/204,606 US7787572B2 (en) | 2005-04-07 | 2005-08-15 | Advanced signal processors for interference cancellation in baseband receivers |
US12/871,776 US9647708B2 (en) | 2002-09-20 | 2010-08-30 | Advanced signal processors for interference cancellation in baseband receivers |
US12/966,931 US9544044B2 (en) | 2002-09-20 | 2010-12-13 | Systems and methods for parallel signal cancellation |
US14/925,515 US9490857B2 (en) | 2002-09-20 | 2015-10-28 | Systems and methods for parallel signal cancellation |
US15/346,488 US20170070260A1 (en) | 2002-09-20 | 2016-11-08 | Systems and Methods for Parallel Signal Cancellation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/925,515 Continuation US9490857B2 (en) | 2002-09-20 | 2015-10-28 | Systems and methods for parallel signal cancellation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170070260A1 true US20170070260A1 (en) | 2017-03-09 |
Family
ID=37758187
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/204,606 Active 2028-11-26 US7787572B2 (en) | 2002-09-20 | 2005-08-15 | Advanced signal processors for interference cancellation in baseband receivers |
US12/871,776 Active 2025-07-29 US9647708B2 (en) | 2002-09-20 | 2010-08-30 | Advanced signal processors for interference cancellation in baseband receivers |
US12/958,141 Abandoned US20110069796A1 (en) | 2005-04-07 | 2010-12-01 | Advanced Signal Processors for Interference Suppression in Baseband Receivers |
US12/966,931 Expired - Lifetime US9544044B2 (en) | 2002-09-20 | 2010-12-13 | Systems and methods for parallel signal cancellation |
US14/925,515 Expired - Lifetime US9490857B2 (en) | 2002-09-20 | 2015-10-28 | Systems and methods for parallel signal cancellation |
US15/346,488 Abandoned US20170070260A1 (en) | 2002-09-20 | 2016-11-08 | Systems and Methods for Parallel Signal Cancellation |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/204,606 Active 2028-11-26 US7787572B2 (en) | 2002-09-20 | 2005-08-15 | Advanced signal processors for interference cancellation in baseband receivers |
US12/871,776 Active 2025-07-29 US9647708B2 (en) | 2002-09-20 | 2010-08-30 | Advanced signal processors for interference cancellation in baseband receivers |
US12/958,141 Abandoned US20110069796A1 (en) | 2005-04-07 | 2010-12-01 | Advanced Signal Processors for Interference Suppression in Baseband Receivers |
US12/966,931 Expired - Lifetime US9544044B2 (en) | 2002-09-20 | 2010-12-13 | Systems and methods for parallel signal cancellation |
US14/925,515 Expired - Lifetime US9490857B2 (en) | 2002-09-20 | 2015-10-28 | Systems and methods for parallel signal cancellation |
Country Status (2)
Country | Link |
---|---|
US (6) | US7787572B2 (en) |
WO (1) | WO2007021906A2 (en) |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2588192C (en) * | 2005-01-05 | 2015-06-23 | Atc Technologies, Llc | Adaptive beam forming with multi-user detection and interference reduction in satellite communication systems and methods |
US7535972B2 (en) * | 2005-06-24 | 2009-05-19 | Broadcom Corporation | Programmable transmitter |
US20070070179A1 (en) * | 2005-09-28 | 2007-03-29 | Pieter Van Rooyen | Method and system for a reconfigurable OFDM radio |
US20070070934A1 (en) * | 2005-09-28 | 2007-03-29 | Pieter Van Rooyen | Method and system for a reconfigurable OFDM radio supporting diversity |
US7894514B2 (en) * | 2005-09-29 | 2011-02-22 | Alcatel-Lucent Usa Inc. | Receiver techniques for wireless communication |
GB0601198D0 (en) * | 2006-01-20 | 2006-03-01 | Cambridge Silicon Radio Ltd | FM Tone rejection |
US8374220B2 (en) * | 2006-05-29 | 2013-02-12 | St-Ericsson Sa | Low-cost and low-complexity inner communication receiver for receive diversity |
JP4745168B2 (en) * | 2006-08-22 | 2011-08-10 | 株式会社エヌ・ティ・ティ・ドコモ | base station |
US8687563B2 (en) * | 2007-01-09 | 2014-04-01 | Stmicroelectronics, Inc. | Simultaneous sensing and data transmission |
WO2009065261A1 (en) * | 2007-11-23 | 2009-05-28 | Zte Corporation | Transmitting diversity and receiver processing method in td-scdma system |
JP4846743B2 (en) * | 2008-02-13 | 2011-12-28 | 日本電信電話株式会社 | Wireless communication system, interference cancellation station, and interference cancellation method |
KR101098759B1 (en) * | 2008-04-21 | 2011-12-26 | 주식회사 코아로직 | Universal blind mode detector, FFT-mode detector, guard-mode detector and memory sharing structure of the same universal blind mode detector and method of detecting universal blind mode |
US20090280747A1 (en) * | 2008-05-07 | 2009-11-12 | Motorola, Inc. | Method and Apparatus for Interference Cancellation in a Wireless Communication System |
US8761274B2 (en) * | 2009-02-04 | 2014-06-24 | Acorn Technologies, Inc. | Least squares channel identification for OFDM systems |
US9762414B2 (en) | 2009-02-04 | 2017-09-12 | Acorn Technologies, Inc. | Least squares channel identification for OFDM Systems |
US9288089B2 (en) | 2010-04-30 | 2016-03-15 | Ecole Polytechnique Federale De Lausanne (Epfl) | Orthogonal differential vector signaling |
US9450744B2 (en) | 2010-05-20 | 2016-09-20 | Kandou Lab, S.A. | Control loop management and vector signaling code communications links |
US9479369B1 (en) | 2010-05-20 | 2016-10-25 | Kandou Labs, S.A. | Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage |
US9300503B1 (en) | 2010-05-20 | 2016-03-29 | Kandou Labs, S.A. | Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication |
US9106238B1 (en) | 2010-12-30 | 2015-08-11 | Kandou Labs, S.A. | Sorting decoder |
US9288082B1 (en) | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
US8593305B1 (en) | 2011-07-05 | 2013-11-26 | Kandou Labs, S.A. | Efficient processing and detection of balanced codes |
US9596109B2 (en) | 2010-05-20 | 2017-03-14 | Kandou Labs, S.A. | Methods and systems for high bandwidth communications interface |
US9401828B2 (en) | 2010-05-20 | 2016-07-26 | Kandou Labs, S.A. | Methods and systems for low-power and pin-efficient communications with superposition signaling codes |
US9246713B2 (en) | 2010-05-20 | 2016-01-26 | Kandou Labs, S.A. | Vector signaling with reduced receiver complexity |
US9251873B1 (en) | 2010-05-20 | 2016-02-02 | Kandou Labs, S.A. | Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communications |
US9985634B2 (en) | 2010-05-20 | 2018-05-29 | Kandou Labs, S.A. | Data-driven voltage regulator |
US9077386B1 (en) | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
US9564994B2 (en) | 2010-05-20 | 2017-02-07 | Kandou Labs, S.A. | Fault tolerant chip-to-chip communication with advanced voltage |
US9362962B2 (en) | 2010-05-20 | 2016-06-07 | Kandou Labs, S.A. | Methods and systems for energy-efficient communications interface |
WO2011151469A1 (en) | 2010-06-04 | 2011-12-08 | Ecole Polytechnique Federale De Lausanne | Error control coding for orthogonal differential vector signaling |
EP2451104B1 (en) * | 2010-11-05 | 2017-06-28 | Alcatel Lucent | Network nodes and methods |
US9275720B2 (en) | 2010-12-30 | 2016-03-01 | Kandou Labs, S.A. | Differential vector storage for dynamic random access memory |
US8767895B2 (en) * | 2011-01-25 | 2014-07-01 | Telefonaktiebolaget L M Ericsson (Publ) | Interference cancellation based on interfering link IL signal quality and related methods and devices |
EP2541785A1 (en) * | 2011-06-29 | 2013-01-02 | TELEFONAKTIEBOLAGET LM ERICSSON (publ) | Method of interference cancellation, radio receiver, cellular communication device and computer program |
JP5782989B2 (en) * | 2011-10-26 | 2015-09-24 | アイコム株式会社 | COMMUNICATION DEVICE AND COMMUNICATION METHOD |
EP2842384A4 (en) | 2012-04-26 | 2015-12-16 | Propagation Res Associates Inc | Method and system for using orthogonal space projections to mitigate interference |
US9401741B2 (en) | 2012-04-26 | 2016-07-26 | Propagation Research Associates, Inc. | Methods and systems for mitigating signal interference |
US9268683B1 (en) | 2012-05-14 | 2016-02-23 | Kandou Labs, S.A. | Storage method and apparatus for random access memory using codeword storage |
US9654196B2 (en) | 2013-01-17 | 2017-05-16 | Telefonaktiebolaget L M Ericsson | Methods of transmitting and/or receiving data transmissions using information relating to other data transmissions and related network nodes |
WO2014113727A1 (en) | 2013-01-17 | 2014-07-24 | Kandou Labs, S.A. | Methods and systems for chip-to-chip communication with reduced simultaneous switching noise |
WO2014124450A1 (en) | 2013-02-11 | 2014-08-14 | Kandou Labs, S.A. | Methods and systems for high bandwidth chip-to-chip communications interface |
US8897353B2 (en) | 2013-03-15 | 2014-11-25 | Acorn Technologies, Inc. | Block time domain channel estimation in OFDM system |
US9031123B2 (en) | 2013-03-15 | 2015-05-12 | Acorn Technologies, Inc. | Communication system and method using subspace interference cancellation |
US9154337B2 (en) | 2013-03-15 | 2015-10-06 | Acorn Technologies, Inc. | Non-linear time domain channel estimation in OFDM systems |
WO2014172377A1 (en) | 2013-04-16 | 2014-10-23 | Kandou Labs, S.A. | Methods and systems for high bandwidth communications interface |
CN105393512B (en) | 2013-06-25 | 2019-06-28 | 康杜实验室公司 | Vector signaling with low receiver complexity |
WO2015024056A1 (en) | 2013-08-21 | 2015-02-26 | University Of South Australia | A multiuser communications system |
US9106465B2 (en) | 2013-11-22 | 2015-08-11 | Kandou Labs, S.A. | Multiwire linear equalizer for vector signaling code receiver |
US9806761B1 (en) | 2014-01-31 | 2017-10-31 | Kandou Labs, S.A. | Methods and systems for reduction of nearest-neighbor crosstalk |
WO2015117102A1 (en) | 2014-02-02 | 2015-08-06 | Kandou Labs SA | Method and apparatus for low power chip-to-chip communications with constrained isi ratio |
US9369312B1 (en) | 2014-02-02 | 2016-06-14 | Kandou Labs, S.A. | Low EMI signaling for parallel conductor interfaces |
EP3111607B1 (en) | 2014-02-28 | 2020-04-08 | Kandou Labs SA | Clock-embedded vector signaling codes |
US9509437B2 (en) | 2014-05-13 | 2016-11-29 | Kandou Labs, S.A. | Vector signaling code with improved noise margin |
US9148087B1 (en) | 2014-05-16 | 2015-09-29 | Kandou Labs, S.A. | Symmetric is linear equalization circuit with increased gain |
US9852806B2 (en) | 2014-06-20 | 2017-12-26 | Kandou Labs, S.A. | System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding |
US9112550B1 (en) | 2014-06-25 | 2015-08-18 | Kandou Labs, SA | Multilevel driver for high speed chip-to-chip communications |
CN106797352B (en) | 2014-07-10 | 2020-04-07 | 康杜实验室公司 | High signal-to-noise characteristic vector signaling code |
US9432082B2 (en) | 2014-07-17 | 2016-08-30 | Kandou Labs, S.A. | Bus reversable orthogonal differential vector signaling codes |
WO2016014423A1 (en) | 2014-07-21 | 2016-01-28 | Kandou Labs S.A. | Multidrop data transfer |
KR101949964B1 (en) | 2014-08-01 | 2019-02-20 | 칸도우 랩스 에스에이 | Orthogonal differential vector signaling codes with embedded clock |
US9674014B2 (en) | 2014-10-22 | 2017-06-06 | Kandou Labs, S.A. | Method and apparatus for high speed chip-to-chip communications |
US9595988B2 (en) | 2014-12-10 | 2017-03-14 | Intel Corporation | Communication device and method for receiving a signal |
US10571224B2 (en) | 2015-05-04 | 2020-02-25 | Propagation Research Associates, Inc. | Systems, methods and computer-readable media for improving platform guidance or navigation using uniquely coded signals |
KR102372931B1 (en) | 2015-06-26 | 2022-03-11 | 칸도우 랩스 에스에이 | High speed communications system |
US9557760B1 (en) | 2015-10-28 | 2017-01-31 | Kandou Labs, S.A. | Enhanced phase interpolation circuit |
US9577815B1 (en) | 2015-10-29 | 2017-02-21 | Kandou Labs, S.A. | Clock data alignment system for vector signaling code communications link |
US10055372B2 (en) | 2015-11-25 | 2018-08-21 | Kandou Labs, S.A. | Orthogonal differential vector signaling codes with embedded clock |
EP3408935B1 (en) | 2016-01-25 | 2023-09-27 | Kandou Labs S.A. | Voltage sampler driver with enhanced high-frequency gain |
WO2017185072A1 (en) | 2016-04-22 | 2017-10-26 | Kandou Labs, S.A. | High performance phase locked loop |
US10003454B2 (en) | 2016-04-22 | 2018-06-19 | Kandou Labs, S.A. | Sampler with low input kickback |
CN109417521B (en) | 2016-04-28 | 2022-03-18 | 康杜实验室公司 | Low power multi-level driver |
US10153591B2 (en) | 2016-04-28 | 2018-12-11 | Kandou Labs, S.A. | Skew-resistant multi-wire channel |
CN109313622B (en) | 2016-04-28 | 2022-04-15 | 康杜实验室公司 | Vector signaling code for dense routing line groups |
US9906358B1 (en) | 2016-08-31 | 2018-02-27 | Kandou Labs, S.A. | Lock detector for phase lock loop |
US10411922B2 (en) | 2016-09-16 | 2019-09-10 | Kandou Labs, S.A. | Data-driven phase detector element for phase locked loops |
US10200188B2 (en) | 2016-10-21 | 2019-02-05 | Kandou Labs, S.A. | Quadrature and duty cycle error correction in matrix phase lock loop |
US10372665B2 (en) | 2016-10-24 | 2019-08-06 | Kandou Labs, S.A. | Multiphase data receiver with distributed DFE |
US10200218B2 (en) | 2016-10-24 | 2019-02-05 | Kandou Labs, S.A. | Multi-stage sampler with increased gain |
US10601529B2 (en) * | 2017-01-24 | 2020-03-24 | Corning Optical Communications LLC | Suppressing an uplink radio frequency (RF) interference signal(s) in a remote unit in a wireless distribution system (WDS) using a correction signal(s) relative to the uplink RF interference signal(s) |
US10116468B1 (en) | 2017-06-28 | 2018-10-30 | Kandou Labs, S.A. | Low power chip-to-chip bidirectional communications |
US10686583B2 (en) | 2017-07-04 | 2020-06-16 | Kandou Labs, S.A. | Method for measuring and correcting multi-wire skew |
US10203226B1 (en) | 2017-08-11 | 2019-02-12 | Kandou Labs, S.A. | Phase interpolation circuit |
US10326623B1 (en) | 2017-12-08 | 2019-06-18 | Kandou Labs, S.A. | Methods and systems for providing multi-stage distributed decision feedback equalization |
KR102498475B1 (en) | 2017-12-28 | 2023-02-09 | 칸도우 랩스 에스에이 | Synchronously-switched multi-input demodulating comparator |
US10554380B2 (en) | 2018-01-26 | 2020-02-04 | Kandou Labs, S.A. | Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation |
US10778300B2 (en) * | 2018-12-03 | 2020-09-15 | Samsung Electronics Co., Ltd | Method and apparatus for high rank multiple-input multiple-output (MIMO) symbol detection |
US10880132B1 (en) * | 2019-10-28 | 2020-12-29 | Cisco Technology, Inc. | Distortion cancellation |
US11018705B1 (en) | 2020-07-17 | 2021-05-25 | Propagation Research Associates, Inc. | Interference mitigation, target detection, location and measurement using separable waveforms transmitted from spatially separated antennas |
CN117424652B (en) * | 2023-10-08 | 2024-10-29 | 中国人民解放军军事科学院国防科技创新研究院 | Terahertz space-time adaptive interference suppression system for aircraft platform |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020041645A1 (en) * | 1999-04-30 | 2002-04-11 | Tamio Saito | Code division multiplex radio equipment with interference canceler |
US20030112904A1 (en) * | 2001-11-16 | 2003-06-19 | Fuller Arthur T.G. | Time variant filter implementation |
US7012977B2 (en) * | 2000-12-29 | 2006-03-14 | Telefonaktiebolaget Lm Ericsson (Publ) | System, method and apparatus for wireless channel parameter estimation in spread spectrum communication systems |
Family Cites Families (382)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742201A (en) * | 1971-02-22 | 1973-06-26 | Raytheon Co | Transformer system for orthogonal digital waveforms |
US4359738A (en) | 1974-11-25 | 1982-11-16 | The United States Of America As Represented By The Secretary Of The Navy | Clutter and multipath suppressing sidelobe canceller antenna system |
US4088955A (en) * | 1975-04-07 | 1978-05-09 | Baghdady Elie J | Interference rejection technique |
US4713794A (en) | 1978-12-22 | 1987-12-15 | Raytheon Company | Digital memory system |
US4309769A (en) * | 1980-02-25 | 1982-01-05 | Harris Corporation | Method and apparatus for processing spread spectrum signals |
US4665401A (en) * | 1980-10-10 | 1987-05-12 | Sperry Corporation | Millimeter wave length guidance system |
IL67379A (en) | 1982-12-01 | 1985-11-29 | Tadiran Israel Elect Ind Ltd | Real-time frequency management system for hf communication networks |
US4601046A (en) * | 1984-05-15 | 1986-07-15 | Halpern Peter H | System for transmitting data through a troposcatter medium |
US4670885A (en) * | 1985-02-26 | 1987-06-02 | Signatron, Inc. | Spread spectrum adaptive antenna interference canceller |
US4893316A (en) * | 1985-04-04 | 1990-01-09 | Motorola, Inc. | Digital radio frequency receiver |
US4965732A (en) | 1985-11-06 | 1990-10-23 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and arrangements for signal reception and parameter estimation |
US4856025A (en) * | 1985-12-26 | 1989-08-08 | Matsushita Electric Industrial Co., Ltd. | Method of digital signal transmission |
US4822506A (en) * | 1986-11-12 | 1989-04-18 | Ciba-Geigy Corporation | Lubricant additives containing sulfur |
US4922506A (en) * | 1988-01-11 | 1990-05-01 | Sicom Corporation | Compensating for distortion in a communication channel |
SE8802229D0 (en) | 1988-06-14 | 1988-06-14 | Ericsson Telefon Ab L M | MOBILE RADIO STATION PROCEDURE |
US5367558A (en) | 1988-09-23 | 1994-11-22 | Motorola, Inc. | Cellular cordless telephone |
US4933639A (en) * | 1989-02-13 | 1990-06-12 | The Board Of Regents, The University Of Texas System | Axis translator for magnetic resonance imaging |
US5017929A (en) * | 1989-09-06 | 1991-05-21 | Hughes Aircraft Company | Angle of arrival measuring technique |
US5109390A (en) * | 1989-11-07 | 1992-04-28 | Qualcomm Incorporated | Diversity receiver in a cdma cellular telephone system |
US5101501A (en) | 1989-11-07 | 1992-03-31 | Qualcomm Incorporated | Method and system for providing a soft handoff in communications in a cdma cellular telephone system |
GB2238932B (en) * | 1989-11-17 | 1994-04-13 | Nec Corp | Decision feedback equalizer including forward part whose signal reference point is shiftable depending on channel response |
DE69023324T2 (en) * | 1990-01-02 | 1996-06-27 | Max Planck Gesellschaft | Method and system for measuring atmospheric wind fields using spatially offset, diagonally radiating antennas. |
SE465992B (en) | 1990-04-10 | 1991-11-25 | Ericsson Telefon Ab L M | MOBILE PHONE SYSTEM PROVIDED TO USE BY SUBSCRIBERS INDOOR AND OUTDOOR |
US6359872B1 (en) | 1997-10-28 | 2002-03-19 | Intermec Ip Corp. | Wireless personal local area network |
US5220687A (en) * | 1990-05-30 | 1993-06-15 | Pioneer Electronic Corporation | Radio receiver having switch for switching between a wide filter and a narrow filter |
GB2246490A (en) | 1990-07-23 | 1992-01-29 | Philips Electronic Associated | Fdm-tdd cordless telephone system measures channel quality for handover |
JPH0494228A (en) | 1990-08-09 | 1992-03-26 | Matsushita Electric Ind Co Ltd | Dynamic channel allocation method |
US5099493A (en) * | 1990-08-27 | 1992-03-24 | Zeger-Abrams Incorporated | Multiple signal receiver for direct sequence, code division multiple access, spread spectrum signals |
WO1992004796A1 (en) | 1990-09-04 | 1992-03-19 | Motorola, Inc. | Cordless telephone system for residential, business and public telepoint operation |
US5203013A (en) | 1990-09-10 | 1993-04-13 | Motorola, Inc. | Radio telephone system supporting busy and out-of-range function |
US5390207A (en) * | 1990-11-28 | 1995-02-14 | Novatel Communications Ltd. | Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators |
US5513176A (en) * | 1990-12-07 | 1996-04-30 | Qualcomm Incorporated | Dual distributed antenna system |
IL100213A (en) * | 1990-12-07 | 1995-03-30 | Qualcomm Inc | CDMA microcellular telephone system and distributed antenna system therefor |
US5218619A (en) * | 1990-12-17 | 1993-06-08 | Ericsson Ge Mobile Communications Holding, Inc. | CDMA subtractive demodulation |
US5151919A (en) * | 1990-12-17 | 1992-09-29 | Ericsson-Ge Mobile Communications Holding Inc. | Cdma subtractive demodulation |
US5105435A (en) * | 1990-12-21 | 1992-04-14 | Motorola, Inc. | Method and apparatus for cancelling spread-spectrum noise |
US5815525A (en) | 1991-05-13 | 1998-09-29 | Omnipoint Corporation | Multi-band, multi-mode spread-spectrum communication system |
US5887020A (en) | 1991-05-13 | 1999-03-23 | Omnipoint Corporation | Multi-band, multi-mode spread-spectrum communication system |
JP2684888B2 (en) * | 1991-08-06 | 1997-12-03 | 国際電信電話株式会社 | Adaptive array antenna control method |
US5263191A (en) | 1991-12-11 | 1993-11-16 | Westinghouse Electric Corp. | Method and circuit for processing and filtering signals |
US5515378A (en) | 1991-12-12 | 1996-05-07 | Arraycomm, Inc. | Spatial division multiple access wireless communication systems |
DE4201439A1 (en) | 1992-01-21 | 1993-07-22 | Daimler Benz Ag | High-rate data transmission procedure via digital radio channel - providing multipath propagation compensation by decision feedback equaliser of correctly phased and weighted antenna signal combination |
US5260988A (en) | 1992-02-06 | 1993-11-09 | Motorola, Inc. | Apparatus and method for alternative radiotelephone system selection |
DE4206476A1 (en) | 1992-03-02 | 1993-09-09 | Blaupunkt Werke Gmbh | CIRCUIT ARRANGEMENT FOR ELIMINATING INTERFERENCE WITH STEREO BROADCAST SIGNALS |
US5353331A (en) | 1992-03-05 | 1994-10-04 | Bell Atlantic Network Services, Inc. | Personal communications service using wireline/wireless integration |
US5267261A (en) | 1992-03-05 | 1993-11-30 | Qualcomm Incorporated | Mobile station assisted soft handoff in a CDMA cellular communications system |
JPH05268128A (en) * | 1992-03-18 | 1993-10-15 | Kokusai Denshin Denwa Co Ltd <Kdd> | Cdma communication system |
SE470036B (en) | 1992-03-24 | 1993-10-25 | Ericsson Telefon Ab L M | Method of locating a mobile station in a mobile telephone system |
US5237586A (en) * | 1992-03-25 | 1993-08-17 | Ericsson-Ge Mobile Communications Holding, Inc. | Rake receiver with selective ray combining |
TW214620B (en) | 1992-04-13 | 1993-10-11 | Ericsson Ge Mobile Communicat | Calling channel in CDMA communications system |
US5448619A (en) | 1992-04-14 | 1995-09-05 | Orion Industries, Inc. | Apparatus and a method of allowing private cellular operation within an existing public cellular system |
US5226045A (en) | 1992-05-07 | 1993-07-06 | Bell Communications Research, Inc. | Method and apparatus for autonomous selective routing during radio access in TDMA portable radio systems |
CA2115657C (en) | 1992-06-23 | 1998-07-07 | Michael J. Schellinger | Dual system cellular cordless radiotelephone apparatus with sub-data channel timing monitor |
US5224122A (en) * | 1992-06-29 | 1993-06-29 | Motorola, Inc. | Method and apparatus for canceling spread-spectrum noise |
KR0146209B1 (en) | 1992-08-25 | 1998-08-17 | 존 에이치. 무어 | Method and apparatus for performing a hand-off in a wireless communication system |
US5870677A (en) | 1992-10-05 | 1999-02-09 | Ntt Mobile Communications Network Inc. | Private mobile communication system easily connecting portable or mobile radio telephone equipment to public network |
DE69319689T2 (en) * | 1992-10-28 | 1999-02-25 | Atr Optical And Radio Communications Research Laboratories, Kyoto | Device and method for controlling a group antenna with a plurality of antenna elements |
ZA938324B (en) * | 1992-11-24 | 1994-06-07 | Qualcomm Inc | Pilot carrier dot product circuit |
US5333175A (en) | 1993-01-28 | 1994-07-26 | Bell Communications Research, Inc. | Method and apparatus for dynamic power control in TDMA portable radio systems |
JPH0744473B2 (en) * | 1993-02-02 | 1995-05-15 | 日本電気株式会社 | Demodulation system |
US5353302A (en) | 1993-02-03 | 1994-10-04 | At&T Bell Laboratories | Signal despreader for CDMA systems |
DE4303355A1 (en) | 1993-02-05 | 1994-08-11 | Philips Patentverwaltung | Radio system |
SE516173C2 (en) | 1993-02-16 | 2001-11-26 | Ericsson Telefon Ab L M | Device for telecommunications |
US5343493A (en) * | 1993-03-16 | 1994-08-30 | Hughes Aircraft Company | Personal assistance system and method for use with a cellular communication system |
US5553062A (en) * | 1993-04-22 | 1996-09-03 | Interdigital Communication Corporation | Spread spectrum CDMA interference canceler system and method |
US5305349A (en) * | 1993-04-29 | 1994-04-19 | Ericsson Ge Mobile Communications Inc. | Quantized coherent rake receiver |
US5796727A (en) | 1993-04-30 | 1998-08-18 | International Business Machines Corporation | Wide-area wireless lan access |
US5507035A (en) | 1993-04-30 | 1996-04-09 | International Business Machines Corporation | Diversity transmission strategy in mobile/indoor cellula radio communications |
US5437055A (en) * | 1993-06-03 | 1995-07-25 | Qualcomm Incorporated | Antenna system for multipath diversity in an indoor microcellular communication system |
GB2282735B (en) | 1993-06-04 | 1998-11-18 | Mercury Personal Communication | Autorouting system for mobile telephones |
SE518649C2 (en) | 1993-06-22 | 2002-11-05 | Ericsson Telefon Ab L M | Procedure for telecommunications access in a multi-network environment |
GB9315845D0 (en) | 1993-07-30 | 1993-09-15 | Roke Manor Research | Apparatus for use in equipment providing a digital radio link between a fixed and a mobile radio unit |
US5406615A (en) | 1993-08-04 | 1995-04-11 | At&T Corp. | Multi-band wireless radiotelephone operative in a plurality of air interface of differing wireless communications systems |
DE4326843C2 (en) | 1993-08-10 | 1997-11-20 | Hirschmann Richard Gmbh Co | Receiving method and receiving antenna system for eliminating reusable interference or control device for performing this method |
FR2709028B1 (en) * | 1993-08-13 | 1995-10-20 | Matra Communication | Method for selecting the propagation paths used to receive messages transmitted by CDMA radiocommunication. |
US5390233A (en) | 1993-08-31 | 1995-02-14 | At&T Corp. | Telephone call transfer between a wireless and wired telephone |
US5343496A (en) * | 1993-09-24 | 1994-08-30 | Bell Communications Research, Inc. | Interference suppression in CDMA systems |
JP3106874B2 (en) | 1993-09-29 | 2000-11-06 | 松下電器産業株式会社 | Disk recording and playback device |
GB2282730B (en) | 1993-10-08 | 1998-01-28 | Nokia Telecommunications Oy | Dual mode subscriber terminal and a handover procedure of the dual mode subscriber terminal in a mobile telecommunication network |
US5481570A (en) * | 1993-10-20 | 1996-01-02 | At&T Corp. | Block radio and adaptive arrays for wireless systems |
US6088590A (en) | 1993-11-01 | 2000-07-11 | Omnipoint Corporation | Method and system for mobile controlled handoff and link maintenance in spread spectrum communication |
US5386202A (en) * | 1993-11-03 | 1995-01-31 | Sicom, Inc. | Data communication modulation with managed intersymbol interference |
CA2136796C (en) | 1993-11-29 | 1998-11-24 | Shinichi Urasaka | Cordless telephone apparatus |
JPH07154859A (en) | 1993-11-29 | 1995-06-16 | Mitsubishi Electric Corp | Mobile equipment, switchboard and mobile communication system |
DE4343959C2 (en) | 1993-12-22 | 1996-04-25 | Hirschmann Richard Gmbh Co | Receiving method and receiving antenna system for eliminating reusable interference or control device for performing this method |
US5488649A (en) | 1994-05-06 | 1996-01-30 | Motorola, Inc. | Method for validating a communication link |
US5673307A (en) | 1994-02-17 | 1997-09-30 | Spectralink Corporation | Handoff method for indoor cellular phone system |
US5594782A (en) | 1994-02-24 | 1997-01-14 | Gte Mobile Communications Service Corporation | Multiple mode personal wireless communications system |
US5553098A (en) * | 1994-04-12 | 1996-09-03 | Sicom, Inc. | Demodulator with selectable coherent and differential data |
CA2165076C (en) | 1994-05-06 | 2000-11-21 | Michael J. Schellinger | Call routing system for a wireless data device |
US5509052A (en) | 1994-05-25 | 1996-04-16 | Motorola, Inc. | Base storage of handset's base registrations |
JPH089042A (en) | 1994-06-24 | 1996-01-12 | Matsushita Electric Ind Co Ltd | Radio telephone system |
US5440265A (en) * | 1994-09-14 | 1995-08-08 | Sicom, Inc. | Differential/coherent digital demodulator operating at multiple symbol points |
US5602903A (en) | 1994-09-28 | 1997-02-11 | Us West Technologies, Inc. | Positioning system and method |
FI102797B (en) | 1994-10-07 | 1999-02-15 | Nokia Mobile Phones Ltd | A method of signal detection in a receiver of a TDMA mobile communication system, and a receiver implementing the method |
US5825759A (en) | 1994-10-26 | 1998-10-20 | Telefonaktiebolaget Lm Ericsson | Distributing network services and resources in a mobile communications network |
FI99184C (en) * | 1994-11-28 | 1997-10-10 | Nokia Telecommunications Oy | Method for allocating available frequency bands to different cells in a TDMA cellular radio system and a TDMA cellular radio system |
US5602833A (en) * | 1994-12-19 | 1997-02-11 | Qualcomm Incorporated | Method and apparatus for using Walsh shift keying in a spread spectrum communication system |
US5592533A (en) | 1994-12-23 | 1997-01-07 | Bell Atlantic Mobile Systems, Inc. | Personal communication service registration system and method |
US5475677A (en) | 1994-12-29 | 1995-12-12 | Bell Communications Research Inc. | Compatible licensed and unlicensed band portable handset unit for TDMA wireless communications system |
US5651137A (en) | 1995-04-12 | 1997-07-22 | Intel Corporation | Scalable cache attributes for an input/output bus |
US5644592A (en) * | 1995-04-24 | 1997-07-01 | California Institute Of Technology | Parallel interference cancellation for CDMA applications |
JPH08307937A (en) | 1995-04-28 | 1996-11-22 | Sony Corp | Radio communication system and its communication terminal equipment |
US5508708A (en) * | 1995-05-08 | 1996-04-16 | Motorola, Inc. | Method and apparatus for location finding in a CDMA system |
WO1996038990A2 (en) | 1995-05-31 | 1996-12-05 | Siemens Aktiengesellschaft | Cellular cordless telecommunication system with isdn connection |
US6018317A (en) * | 1995-06-02 | 2000-01-25 | Trw Inc. | Cochannel signal processing system |
US6240124B1 (en) * | 1995-06-06 | 2001-05-29 | Globalstar L.P. | Closed loop power control for low earth orbit satellite communications system |
CA2197342C (en) | 1995-06-13 | 2001-11-06 | Mamoru Sawahashi | Cdma demodulating apparatus |
JP3123900B2 (en) | 1995-06-30 | 2001-01-15 | 三洋電機株式会社 | Digital cordless telephone equipment |
US5890055A (en) | 1995-07-28 | 1999-03-30 | Lucent Technologies Inc. | Method and system for connecting cells and microcells in a wireless communications network |
US5745852A (en) | 1995-07-31 | 1998-04-28 | Lucent Technologies | Land-line supported private base station operable in a cellular system |
US5926760A (en) | 1995-07-31 | 1999-07-20 | Lucent Technologies, Inc. | System for providing features for a land-line supported private base station operable in a cellular system |
US5724658A (en) | 1995-08-21 | 1998-03-03 | Mci Communications Corporation | Call routing to wireless roamers in mobile telecommunication systems |
US6307868B1 (en) | 1995-08-25 | 2001-10-23 | Terayon Communication Systems, Inc. | Apparatus and method for SCDMA digital data transmission using orthogonal codes and a head end modem with no tracking loops |
US5978413A (en) | 1995-08-28 | 1999-11-02 | Bender; Paul E. | Method and system for processing a plurality of multiple access transmissions |
JPH0984095A (en) | 1995-09-08 | 1997-03-28 | Sony Corp | Mobile communication equipment, stationary communication equipment, communication system and communication method |
US5675629A (en) | 1995-09-08 | 1997-10-07 | At&T | Cordless cellular system base station |
US5903834A (en) | 1995-10-06 | 1999-05-11 | Telefonaktiebolaget L/M Ericsson | Distributed indoor digital multiple-access cellular telephone system |
US5732076A (en) | 1995-10-26 | 1998-03-24 | Omnipoint Corporation | Coexisting communication systems |
US5872776A (en) * | 1995-11-22 | 1999-02-16 | Yang; Lin-Lang | Signal detection and interference cancellation based on simplified matrix inversion for CDMA applications |
US6134227A (en) | 1995-12-04 | 2000-10-17 | Advanced Micro Devices | Secondary channel for radio frequency communications |
WO1997024004A1 (en) | 1995-12-22 | 1997-07-03 | Mci Communications Corporation | Integrated cellular and wireline telephone service |
US6658250B1 (en) | 1996-01-05 | 2003-12-02 | Hughes Electronics Corporation | System and method for a wide area wireless personal communication system incorporating advanced messaging |
US5822681A (en) | 1996-01-24 | 1998-10-13 | Bell Communications Research, Inc. | Method for assigning band port channels in an unlicensed personal communications system |
JP2838998B2 (en) | 1996-02-07 | 1998-12-16 | 日本電気株式会社 | Mobile terminal and mobile network |
GB2310342A (en) | 1996-02-16 | 1997-08-20 | Northern Telecom Ltd | Dual mode radio transceiver front end |
JP3272940B2 (en) * | 1996-03-07 | 2002-04-08 | ケイディーディーアイ株式会社 | Spread spectrum signal demodulator |
US5890064A (en) | 1996-03-13 | 1999-03-30 | Telefonaktiebolaget L M Ericsson (Publ) | Mobile telecommunications network having integrated wireless office system |
US5867292A (en) | 1996-03-22 | 1999-02-02 | Wireless Communications Products, Llc | Method and apparatus for cordless infrared communication |
JP3449457B2 (en) | 1996-04-18 | 2003-09-22 | 勝元 崔 | Signal processing apparatus and method for minimizing interference and reducing noise in a wireless communication system |
US6308072B1 (en) | 1996-04-26 | 2001-10-23 | Motorola, Inc. | Method and apparatus for controlling a wireless communication system |
US5796729A (en) | 1996-05-09 | 1998-08-18 | Bell Communications Research, Inc. | Integrated telecommunication system architecture for wireless and wireline access featuring PACS radio technology |
DE69728079T2 (en) | 1996-05-03 | 2005-01-20 | Agilent Technologies, Inc. (n.d.Ges.d.Staates Delaware), Palo Alto | Method and device for tracking the change of the identification code in a mobile communication system |
US5781864A (en) * | 1996-05-20 | 1998-07-14 | Metawave Communications Corporation | Cellular system conditioner which overrides a disconnect for active radios wirelessly communicating with mobiles located in pre-identified territorial positions |
US6396804B2 (en) * | 1996-05-28 | 2002-05-28 | Qualcomm Incorporated | High data rate CDMA wireless communication system |
JP2743912B2 (en) * | 1996-05-30 | 1998-04-28 | 日本電気株式会社 | CDMA interference canceller |
JP2746261B2 (en) * | 1996-06-10 | 1998-05-06 | 日本電気株式会社 | DS-CDMA interference cancellation device |
US5926761A (en) * | 1996-06-11 | 1999-07-20 | Motorola, Inc. | Method and apparatus for mitigating the effects of interference in a wireless communication system |
DE19623667C2 (en) * | 1996-06-13 | 2003-02-13 | Siemens Ag | Method and device for the detection of information transmitted according to the DS-CDMA principle in a receiving device |
JP2877199B2 (en) | 1996-06-21 | 1999-03-31 | 日本電気株式会社 | Roaming method |
US5812086A (en) | 1996-06-27 | 1998-09-22 | Motorola, Inc. | Method and apparatus for providing duplex communication service in geographical areas where conventional services are obstructed |
US6035193A (en) | 1996-06-28 | 2000-03-07 | At&T Wireless Services Inc. | Telephone system having land-line-supported private base station switchable into cellular network |
US6088591A (en) | 1996-06-28 | 2000-07-11 | Aironet Wireless Communications, Inc. | Cellular system hand-off protocol |
JPH1032610A (en) | 1996-07-12 | 1998-02-03 | Nec Corp | Virtual private network constituting method in mobile data communication |
US6101176A (en) | 1996-07-24 | 2000-08-08 | Nokia Mobile Phones | Method and apparatus for operating an indoor CDMA telecommunications system |
US6430216B1 (en) * | 1997-08-22 | 2002-08-06 | Data Fusion Corporation | Rake receiver for spread spectrum signal demodulation |
US5859613A (en) * | 1996-08-30 | 1999-01-12 | Harris Corporation | System and method for geolocating plural remote transmitters |
US6112088A (en) | 1996-08-30 | 2000-08-29 | Telefonaktiebolaget, L.M. Ericsson | Radio communications system and method for mobile assisted handover between a private network and a public mobile network |
US5936949A (en) | 1996-09-05 | 1999-08-10 | Netro Corporation | Wireless ATM metropolitan area network |
US6512481B1 (en) * | 1996-10-10 | 2003-01-28 | Teratech Corporation | Communication system using geographic position data |
JP3311943B2 (en) | 1996-10-18 | 2002-08-05 | 松下電器産業株式会社 | Interference signal canceller |
US5960361A (en) | 1996-10-22 | 1999-09-28 | Qualcomm Incorporated | Method and apparatus for performing a fast downward move in a cellular telephone forward link power control system |
US6222828B1 (en) * | 1996-10-30 | 2001-04-24 | Trw, Inc. | Orthogonal code division multiple access waveform format for use in satellite based cellular telecommunications |
US5960364A (en) | 1996-11-08 | 1999-09-28 | Ericsson Inc. | Satellite/cellular phone using different channel spacings on forward and return links |
US6243372B1 (en) * | 1996-11-14 | 2001-06-05 | Omnipoint Corporation | Methods and apparatus for synchronization in a wireless network |
US5946622A (en) | 1996-11-19 | 1999-08-31 | Ericsson Inc. | Method and apparatus for providing cellular telephone service to a macro-cell and pico-cell within a building using shared equipment |
US5844521A (en) | 1996-12-02 | 1998-12-01 | Trw Inc. | Geolocation method and apparatus for satellite based telecommunications system |
US5787130A (en) * | 1996-12-10 | 1998-07-28 | Motorola Inc. | Method and apparatus for canceling interference in a spread-spectrum communication system |
JP3390900B2 (en) * | 1996-12-20 | 2003-03-31 | 富士通株式会社 | Interference canceller and provisional determination method |
JPH10190495A (en) | 1996-12-20 | 1998-07-21 | Fujitsu Ltd | Interference canceler |
US6163696A (en) | 1996-12-31 | 2000-12-19 | Lucent Technologies Inc. | Mobile location estimation in a wireless communication system |
JP3326679B2 (en) * | 1997-01-31 | 2002-09-24 | 沖電気工業株式会社 | CDMA receiver |
US5943331A (en) | 1997-02-28 | 1999-08-24 | Interdigital Technology Corporation | Orthogonal code synchronization system and method for spread spectrum CDMA communications |
US6233459B1 (en) * | 1997-04-10 | 2001-05-15 | The Atlantis Company, Limited, Japan | System for providing Geolocation of a mobile transceiver |
FI106605B (en) | 1997-04-16 | 2001-02-28 | Nokia Networks Oy | authentication method |
KR100229042B1 (en) | 1997-04-26 | 1999-11-01 | 윤종용 | Rake receiver for reducing hardware consumption and enhancing search ability |
US6049564A (en) | 1997-04-28 | 2000-04-11 | Northern Telecom Limited | Method and apparatus for configuring PN-offsets for a non-uniform CDMA cellular network |
US6201799B1 (en) * | 1997-05-01 | 2001-03-13 | Lucent Technologies, Inc | Partial decorrelation for a coherent multicode code division multiple access receiver |
US5987010A (en) | 1997-05-15 | 1999-11-16 | Advanced Micro Devices, Inc. | System and method for providing FDD and TDD modes of operation for a wireless communications device |
US5894500A (en) * | 1997-06-13 | 1999-04-13 | Motorola, Inc. | Method and apparatus for canceling signals in a spread-spectrum communication system |
US5872540A (en) * | 1997-06-26 | 1999-02-16 | Electro-Radiation Incorporated | Digital interference suppression system for radio frequency interference cancellation |
US6359874B1 (en) * | 1998-05-21 | 2002-03-19 | Ericsson Inc. | Partially block-interleaved CDMA coding and decoding |
AU9027798A (en) * | 1997-08-21 | 1999-03-08 | Data Fusion Corporation | Method and apparatus for acquiring wide-band pseudorandom noise encoded waveforms |
FI104685B (en) | 1997-09-05 | 2000-04-14 | Nokia Networks Oy | Method for selecting a cell in a cellular radio network, mobile telephone system and a mobile station |
US6078611A (en) | 1997-09-16 | 2000-06-20 | Motorola, Inc. | Rake receiver and finger management method for spread spectrum communication |
US6101385A (en) * | 1997-10-09 | 2000-08-08 | Globalstar L.P. | Satellite communication service with non-congruent sub-beam coverage |
US6157842A (en) | 1997-10-16 | 2000-12-05 | Telefonaktiebolaget Lm Ericsson | System and method for positioning a mobile station in a CDMA cellular system |
US6295311B1 (en) | 1997-11-07 | 2001-09-25 | Hughes Electronics Corporation | Method and apparatus for compensating for phase differences in received signals |
US6327470B1 (en) | 1997-11-07 | 2001-12-04 | Ericsson Inc. | Handover between fixed and mobile networks for dual mode phones |
US6587444B1 (en) | 1997-11-14 | 2003-07-01 | Ericsson Inc. | Fixed frequency-time division duplex in radio communications systems |
US6175587B1 (en) * | 1997-12-30 | 2001-01-16 | Motorola, Inc. | Communication device and method for interference suppression in a DS-CDMA system |
US6269075B1 (en) | 1998-01-26 | 2001-07-31 | Nokia Mobile Phones Limited | Finger assignment in a CDMA rake receiver |
US6131013A (en) | 1998-01-30 | 2000-10-10 | Motorola, Inc. | Method and apparatus for performing targeted interference suppression |
DE69904146T2 (en) | 1998-02-02 | 2003-05-08 | Ericsson Inc., Research Triangle Park | SECTORIZATION FOR AREA COVERAGE IN A COMMUNICATION SYSTEM WITH TIME MULTIPLEXING AND FREQUENCY TIME DUPLEX |
DE69817145T2 (en) | 1998-02-13 | 2004-06-09 | Lucent Technologies Inc. | Integrated system of cordless telecommunications and a local network |
US6327471B1 (en) | 1998-02-19 | 2001-12-04 | Conexant Systems, Inc. | Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff |
US6219376B1 (en) * | 1998-02-21 | 2001-04-17 | Topcon Positioning Systems, Inc. | Apparatuses and methods of suppressing a narrow-band interference with a compensator and adjustment loops |
US6269086B1 (en) | 1998-02-27 | 2001-07-31 | Legerity, Inc. | Arrangement and method for selectable time/frequency division multiplex communication |
JP2937994B1 (en) * | 1998-03-04 | 1999-08-23 | 日本電気移動通信株式会社 | Cellular system, mobile portable device, base station device, and optimal path detection method and device |
FI107979B (en) | 1998-03-18 | 2001-10-31 | Nokia Mobile Phones Ltd | A system and device for utilizing mobile network services |
US5949773A (en) | 1998-03-31 | 1999-09-07 | Motorola, Inc. | Method for transferring a data signal in a wireless communications system |
JP2965202B1 (en) * | 1998-04-07 | 1999-10-18 | 日本電気株式会社 | Multi-user receiving apparatus and CDMA communication system |
SE514190C2 (en) | 1998-04-09 | 2001-01-22 | Ericsson Telefon Ab L M | Procedure and arrangement of a communication system |
FI108103B (en) | 1998-04-15 | 2001-11-15 | Nokia Mobile Phones Ltd | Intermediary level for implementing protocol adaptations in a digital wireless communication system |
US6324159B1 (en) | 1998-05-06 | 2001-11-27 | Sirius Communications N.V. | Method and apparatus for code division multiple access communication with increased capacity through self-noise reduction |
US6266529B1 (en) * | 1998-05-13 | 2001-07-24 | Nortel Networks Limited | Method for CDMA handoff in the vicinity of highly sectorized cells |
JP2970656B1 (en) | 1998-06-25 | 1999-11-02 | 日本電気株式会社 | DS-CDMA multi-user interference canceller |
KR100318959B1 (en) | 1998-07-07 | 2002-04-22 | 윤종용 | Apparatus and method for eliminating interference between different codes in a CDMA communication system |
US6154443A (en) | 1998-08-11 | 2000-11-28 | Industrial Technology Research Institute | FFT-based CDMA RAKE receiver system and method |
US6463307B1 (en) | 1998-08-14 | 2002-10-08 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for power saving in a mobile terminal with established connections |
US6320873B1 (en) | 1998-08-27 | 2001-11-20 | Qualcomm Incorporated | CDMA transmission of packet-switched data |
US6304618B1 (en) | 1998-08-31 | 2001-10-16 | Ericsson Inc. | Methods and systems for reducing co-channel interference using multiple timings for a received signal |
US6459740B1 (en) * | 1998-09-17 | 2002-10-01 | At&T Wireless Services, Inc. | Maximum ratio transmission |
US6263211B1 (en) | 1998-09-24 | 2001-07-17 | Telefonaktiebolaget L M Ericsson (Publ) | System and method of automatically conveying a Wireless Office System (WOS) frequency set to mobile stations |
US6363104B1 (en) * | 1998-10-02 | 2002-03-26 | Ericsson Inc. | Method and apparatus for interference cancellation in a rake receiver |
US6230180B1 (en) * | 1998-10-14 | 2001-05-08 | Conexant Systems, Inc. | Digital signal processor configuration including multiplying units coupled to plural accumlators for enhanced parallel mac processing |
US6321090B1 (en) | 1998-11-06 | 2001-11-20 | Samir S. Soliman | Mobile communication system with position detection to facilitate hard handoff |
US6539237B1 (en) | 1998-11-09 | 2003-03-25 | Cisco Technology, Inc. | Method and apparatus for integrated wireless communications in private and public network environments |
WO2000028762A1 (en) | 1998-11-09 | 2000-05-18 | Nortel Networks Corporation | System and method for controlling, maintaining and sharing calls and call data between networks |
US6333947B1 (en) | 1998-11-25 | 2001-12-25 | Nortel Networks Limited | Interference cancellation system and method and CDMA receiver including an interference cancellation circuit |
CN1329805A (en) | 1998-12-08 | 2002-01-02 | 英国电讯有限公司 | Method of operating cellular mobile telephone network having subset of base stations only available to some subscribers |
KR100378124B1 (en) * | 1998-12-10 | 2003-06-19 | 삼성전자주식회사 | Device and method for estimating the position of terminal in mobile communication system |
US6243581B1 (en) | 1998-12-11 | 2001-06-05 | Nortel Networks Limited | Method and system for seamless roaming between wireless communication networks with a mobile terminal |
US6236852B1 (en) | 1998-12-11 | 2001-05-22 | Nortel Networks Limited | Authentication failure trigger method and apparatus |
US6842462B1 (en) | 1998-12-18 | 2005-01-11 | Lucent Technologies Inc. | Wireless access of packet based networks |
US6668011B1 (en) | 1998-12-21 | 2003-12-23 | Nortel Networks Limited | Block detection receiver |
US6351642B1 (en) * | 1998-12-22 | 2002-02-26 | Telefonaktiebolaget Lm Ericsson (Publ) | CDMA soft hand-off |
US6374102B1 (en) | 1998-12-31 | 2002-04-16 | At+T Corp. | User proactive call handling |
US6184829B1 (en) * | 1999-01-08 | 2001-02-06 | Trueposition, Inc. | Calibration for wireless location system |
US6501788B1 (en) | 1999-01-22 | 2002-12-31 | Ericsson Inc. | Apparatus and methods for intereference cancellation in spread spectrum communications systems |
US6215812B1 (en) * | 1999-01-28 | 2001-04-10 | Bae Systems Canada Inc. | Interference canceller for the protection of direct-sequence spread-spectrum communications from high-power narrowband interference |
US6415158B1 (en) | 1999-02-01 | 2002-07-02 | Lucent Technologies Inc. | Dual mode mobile phone operating as a two-way radio |
US6104712A (en) * | 1999-02-22 | 2000-08-15 | Robert; Bruno G. | Wireless communication network including plural migratory access nodes |
CA2364722A1 (en) | 1999-02-24 | 2000-08-31 | Nokia Mobile Phones Limited | Telecommunication services identification |
US6498934B1 (en) | 1999-03-24 | 2002-12-24 | Telefonaktiebologet Lm Ericsson (Publ) | Channel allocation using enhanced pathloss estimates |
EP1039662A1 (en) | 1999-03-25 | 2000-09-27 | Alcatel | Improvements to a telecommunication system using code division multiple access (CDMA) |
GB2348778A (en) | 1999-04-08 | 2000-10-11 | Ericsson Telefon Ab L M | Authentication in mobile internet access |
SE514264C2 (en) | 1999-05-07 | 2001-01-29 | Ericsson Telefon Ab L M | A communication system |
US6947469B2 (en) | 1999-05-07 | 2005-09-20 | Intel Corporation | Method and Apparatus for wireless spread spectrum communication with preamble processing period |
US6263208B1 (en) * | 1999-05-28 | 2001-07-17 | Lucent Technologies Inc. | Geolocation estimation method for CDMA terminals based on pilot strength measurements |
US6385264B1 (en) * | 1999-06-08 | 2002-05-07 | Qualcomm Incorporated | Method and apparatus for mitigating interference between base stations in a wideband CDMA system |
US6285861B1 (en) | 1999-06-14 | 2001-09-04 | Qualcomm Incorporated | Receiving station with interference signal suppression |
US6115409A (en) | 1999-06-21 | 2000-09-05 | Envoy Networks, Inc. | Integrated adaptive spatial-temporal system for controlling narrowband and wideband sources of interferences in spread spectrum CDMA receivers |
US6574266B1 (en) | 1999-06-25 | 2003-06-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Base-station-assisted terminal-to-terminal connection setup |
US6801565B1 (en) | 1999-06-25 | 2004-10-05 | Ericsson Inc. | Multi-stage rake combining methods and apparatus |
US6157847A (en) | 1999-06-29 | 2000-12-05 | Lucent Technologies Inc. | Base station system including parallel interference cancellation processor |
US6166690A (en) | 1999-07-02 | 2000-12-26 | Sensor Systems, Inc. | Adaptive nulling methods for GPS reception in multiple-interference environments |
US6570909B1 (en) * | 1999-07-09 | 2003-05-27 | Nokia Mobile Phones | Interference suppression in a CDMA receiver |
DE69942589D1 (en) | 1999-07-15 | 2010-08-26 | Nokia Siemens Networks Oy | METHOD AND NETWORK ELEMENT FOR BUILDING A CONNECTION WITH A LOCAL SERVICE |
US6404760B1 (en) * | 1999-07-19 | 2002-06-11 | Qualcomm Incorporated | CDMA multiple access interference cancellation using signal estimation |
US6574270B1 (en) * | 1999-07-30 | 2003-06-03 | Ericsson Inc. | Baseband interference canceling spread spectrum communications methods and apparatus |
US6278726B1 (en) * | 1999-09-10 | 2001-08-21 | Interdigital Technology Corporation | Interference cancellation in a spread spectrum communication system |
US6643512B1 (en) | 1999-09-14 | 2003-11-04 | Motorola, Inc. | Method and apparatus for spanning operation of a cellular telephone |
US6449246B1 (en) | 1999-09-15 | 2002-09-10 | Telcordia Technologies, Inc. | Multicarrier personal access communication system |
US6515980B1 (en) * | 1999-09-22 | 2003-02-04 | Ericsson Inc. | Methods and apparatus for interference cancellation using complex interference orthogonalization techniques |
US6798737B1 (en) | 1999-10-06 | 2004-09-28 | Texas Instruments Incorporated | Use of Walsh-Hadamard transform for forward link multiuser detection in CDMA systems |
US6725025B1 (en) | 1999-10-15 | 2004-04-20 | Texas Instruments Incorporated | Interference cancellation among wireless units using Gibbs sampling |
AU2990700A (en) * | 1999-10-19 | 2001-04-30 | Interdigital Technology Corporation | Receiver for multiuser detection of cdma signals |
US6922434B2 (en) | 1999-10-19 | 2005-07-26 | Ericsson Inc. | Apparatus and methods for finger delay selection in RAKE receivers |
US6909705B1 (en) | 1999-11-02 | 2005-06-21 | Cello Partnership | Integrating wireless local loop networks with cellular networks |
US6377636B1 (en) * | 1999-11-02 | 2002-04-23 | Iospan Wirless, Inc. | Method and wireless communications system using coordinated transmission and training for interference mitigation |
EP1315395A1 (en) | 1999-11-09 | 2003-05-28 | Sony Corporation | Information communication system and method |
US6609148B1 (en) | 1999-11-10 | 2003-08-19 | Randy Salo | Clients remote access to enterprise networks employing enterprise gateway servers in a centralized data center converting plurality of data requests for messaging and collaboration into a single request |
US6282231B1 (en) * | 1999-12-14 | 2001-08-28 | Sirf Technology, Inc. | Strong signal cancellation to enhance processing of weak spread spectrum signal |
US6445921B1 (en) | 1999-12-20 | 2002-09-03 | Koninklijke Philips Electronics N.V. | Call re-establishment for a dual mode telephone |
US6975666B2 (en) * | 1999-12-23 | 2005-12-13 | Institut National De La Recherche Scientifique | Interference suppression in CDMA systems |
US6285316B1 (en) | 2000-06-02 | 2001-09-04 | Cellguide Ltd. | Locating a mobile unit using signals from both mobile beacons and stationary beacons |
US20010029186A1 (en) | 2000-01-24 | 2001-10-11 | James Canyon | Massively parallel cordless telephone network |
US6285319B1 (en) | 2000-01-27 | 2001-09-04 | Litton Systems, Inc. | Method for reducing geometrical dilution of precision in geolocation of emitters using phase circles |
GB2358771B (en) | 2000-01-27 | 2003-08-06 | Phillip Jarrett | Multi-purpose mobile cordless phone system |
JP4292442B2 (en) | 2000-01-31 | 2009-07-08 | ソニー株式会社 | Global positioning system receiver and portable radio terminal |
US6415018B1 (en) | 2000-02-08 | 2002-07-02 | Lucent Technologies Inc. | Telecommunication system and method for handling special number calls having geographic sensitivity |
US6556825B1 (en) | 2000-02-08 | 2003-04-29 | Sharp Laboratories Of America, Inc. | Method and apparatus for automatic adaptation of communications systems to regional spectrum variations |
US6665276B1 (en) | 2000-02-24 | 2003-12-16 | The United States Of America As Represented By The Secretary Of The Navy | Full duplex transceiver |
FI109443B (en) | 2000-03-16 | 2002-07-31 | Nokia Corp | Updating subscriber data |
US6430395B2 (en) | 2000-04-07 | 2002-08-06 | Commil Ltd. | Wireless private branch exchange (WPBX) and communicating between mobile units and base stations |
US6766160B1 (en) | 2000-04-11 | 2004-07-20 | Nokia Corporation | Apparatus, and associated method, for facilitating authentication of communication stations in a mobile communication system |
US6801519B1 (en) | 2000-04-11 | 2004-10-05 | Sprint Communications Company, L.P. | Traffic distribution in a wireless communication system |
US6714797B1 (en) | 2000-05-17 | 2004-03-30 | Nokia Corporation | System and method for the transfer of digital data to a mobile device |
US6680923B1 (en) | 2000-05-23 | 2004-01-20 | Calypso Wireless, Inc. | Communication system and method |
KR100362569B1 (en) | 2000-05-24 | 2002-11-29 | 삼성전자 주식회사 | Call originating service method of public and private common mobile communication system and apparatus therefor |
US6725036B1 (en) | 2000-05-30 | 2004-04-20 | Nokia Telecommunications Ojy | System and method of controlling application level access of a subscriber to a network |
US6970719B1 (en) | 2000-06-15 | 2005-11-29 | Sprint Spectrum L.P. | Private wireless network integrated with public wireless network |
GB0015715D0 (en) | 2000-06-27 | 2000-08-16 | Nokia Networks Oy | Maintaining association in a communications network |
US6633761B1 (en) | 2000-08-11 | 2003-10-14 | Reefedge, Inc. | Enabling seamless user mobility in a short-range wireless networking environment |
US6330460B1 (en) | 2000-08-21 | 2001-12-11 | Metawave Communications Corporation | Simultaneous forward link beam forming and learning method for mobile high rate data traffic |
US20020032030A1 (en) | 2000-08-28 | 2002-03-14 | Berglund Arne Kristian | Communication system |
US6545643B1 (en) | 2000-09-08 | 2003-04-08 | 3Com Corporation | Extendable planar diversity antenna |
JP2002124916A (en) | 2000-10-13 | 2002-04-26 | Nec Corp | Point-to-multipoint radio access system |
US6680727B2 (en) * | 2000-10-17 | 2004-01-20 | Qualcomm Incorporated | Method and apparatus for canceling pilot interference in a CDMA communication system |
TW532040B (en) | 2000-10-20 | 2003-05-11 | Koninkl Philips Electronics Nv | Method and system for transferring a communication session |
US6895255B1 (en) | 2000-10-20 | 2005-05-17 | Symbol Technologies, Inc. | Dual mode wireless data communications |
US6829227B1 (en) | 2000-10-27 | 2004-12-07 | Lucent Technologies Inc. | Dual polling media access control protocol for packet data in fixed wireless communication systems |
US7035932B1 (en) | 2000-10-27 | 2006-04-25 | Eric Morgan Dowling | Federated multiprotocol communication |
WO2002042861A2 (en) | 2000-11-13 | 2002-05-30 | Ecutel, Inc. | System and method for secure network mobility |
GB2363549B (en) | 2000-11-16 | 2002-05-29 | Ericsson Telefon Ab L M | Securing voice over IP traffic |
EP1351530B1 (en) | 2000-11-17 | 2005-04-27 | Telefonaktiebolaget LM Ericsson (publ) | A mobile communication network |
US6553218B1 (en) | 2000-11-17 | 2003-04-22 | Eimar M. Boesjes | Distributed wireless online access system |
DE60132351T2 (en) | 2000-11-28 | 2009-01-02 | Telefonaktiebolaget Lm Ericsson (Publ) | SUBSCRIBER DEPOSIT USING A CALL PROCESS IN A CELLULAR COMMUNICATION SYSTEM |
US6882678B2 (en) | 2000-12-01 | 2005-04-19 | Ning Kong | Method and system for canceling multiple access interference in CDMA wireless communication system |
US20020075844A1 (en) | 2000-12-15 | 2002-06-20 | Hagen W. Alexander | Integrating public and private network resources for optimized broadband wireless access and method |
KR100457185B1 (en) | 2000-12-23 | 2004-11-16 | 엘지전자 주식회사 | Tone Providing Method in Next Generation Network |
US7039027B2 (en) | 2000-12-28 | 2006-05-02 | Symbol Technologies, Inc. | Automatic and seamless vertical roaming between wireless local area network (WLAN) and wireless wide area network (WWAN) while maintaining an active voice or streaming data connection: systems, methods and program products |
NO20006720L (en) | 2000-12-29 | 2002-07-01 | Ericsson Telefon Ab L M | Procedure for maintaining connection in GPRS networks |
US6885869B2 (en) | 2001-01-26 | 2005-04-26 | Ericsson Inc. | Method for mating a mobile terminal with a cordless phone system |
US8019335B2 (en) | 2001-01-29 | 2011-09-13 | Nokia Corporation | Identifying neighboring cells in telecommunication network |
US20020142761A1 (en) | 2001-02-01 | 2002-10-03 | Wallstedt Yngve Kenneth | Handoff between digital wireless office system (DWOS) radio-infrastructure units using a conference call |
EP1360855B1 (en) | 2001-02-06 | 2007-11-21 | Nokia Corporation | Access system for a cellular network |
US6675009B1 (en) | 2001-02-15 | 2004-01-06 | Sprint Communications Company, L.P. | Automated configuration of a wireless communication device |
EA007357B1 (en) | 2001-02-16 | 2006-10-27 | Кейп Рэндж Уайэлесс, Инк. | Parallel spread spectrum communication system and method |
US20020118674A1 (en) | 2001-02-23 | 2002-08-29 | Faccin Stefano M. | Key distribution mechanism for IP environment |
US7308263B2 (en) | 2001-02-26 | 2007-12-11 | Kineto Wireless, Inc. | Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system |
US20030119548A1 (en) | 2001-02-26 | 2003-06-26 | Jahangir Mohammed | Method for extending the coverage area of a licensed wireless communications system using an unlicensed wireless communications system |
US20040009749A1 (en) | 2001-03-20 | 2004-01-15 | Nitzan Arazi | Wireless private branch exchange(wpbx) and communicating between mobile units and base stations |
JP2002290275A (en) * | 2001-03-26 | 2002-10-04 | Fujitsu Ltd | Spread spectrum signal receiver and interference canceller |
US6580771B2 (en) * | 2001-03-30 | 2003-06-17 | Nokia Corporation | Successive user data multipath interference cancellation |
US6941152B2 (en) | 2001-04-24 | 2005-09-06 | Ipr Licensing, Inc. | Wireless subscriber network registration system for configurable services |
US20020160811A1 (en) | 2001-04-25 | 2002-10-31 | Jannette Michele Ann | Radius profiles at a base station and methods of using the radius profiles |
US7158558B2 (en) | 2001-04-26 | 2007-01-02 | Interuniversitair Microelektronica Centrum (Imec) | Wideband multiple access telecommunication method and apparatus |
US6845095B2 (en) | 2001-04-27 | 2005-01-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Efficient header handling involving GSM/EDGE radio access networks |
US7089586B2 (en) | 2001-05-02 | 2006-08-08 | Ipr Licensing, Inc. | Firewall protection for wireless users |
US6826154B2 (en) | 2001-05-24 | 2004-11-30 | 3Com Corporation | Method and apparatus for seamless mobility between different access technologies |
US7009952B1 (en) | 2001-05-24 | 2006-03-07 | 3Com Corporation | Method and apparatus for seamless mobility with layer two assistance |
US8611311B2 (en) | 2001-06-06 | 2013-12-17 | Qualcomm Incorporated | Method and apparatus for canceling pilot interference in a wireless communication system |
JP3670624B2 (en) | 2001-06-07 | 2005-07-13 | 株式会社東芝 | Mobile terminal, mobile terminal communication method, mobile terminal control system driver, mobile terminal control system driver processing method, and computer program product |
CA2450434A1 (en) | 2001-06-18 | 2002-12-27 | Tatara Systems, Inc. | Method and apparatus for converging local area and wide area wireless data networks |
US20020197984A1 (en) | 2001-06-22 | 2002-12-26 | Tadlys Ltd. | Flexible wireless local networks |
US7209511B2 (en) | 2001-08-31 | 2007-04-24 | Ericsson Inc. | Interference cancellation in a CDMA receiving system |
US6996380B2 (en) | 2001-07-26 | 2006-02-07 | Ericsson Inc. | Communication system employing transmit macro-diversity |
US20030031151A1 (en) | 2001-08-10 | 2003-02-13 | Mukesh Sharma | System and method for secure roaming in wireless local area networks |
US20030043773A1 (en) | 2001-08-31 | 2003-03-06 | Hyokang Chang | Multilink wireless access scheme for multiband operation in wireless mobile networks |
US7184789B2 (en) | 2001-10-03 | 2007-02-27 | Qualcomm, Incorporated | Method and apparatus for data packet transport in a wireless communication system using an internet protocol |
US6744753B2 (en) | 2001-11-01 | 2004-06-01 | Nokia Corporation | Local service handover |
US20050101277A1 (en) * | 2001-11-19 | 2005-05-12 | Narayan Anand P. | Gain control for interference cancellation |
US6801777B2 (en) | 2001-11-27 | 2004-10-05 | Intel Corporation | Device and method for intelligent wireless communication selection |
US6842621B2 (en) | 2001-12-21 | 2005-01-11 | Motorola, Inc. | Method and apparatus for splitting control and media content from a cellular network connection |
US20040025018A1 (en) | 2002-01-23 | 2004-02-05 | Haas Zygmunt J. | Secure end-to-end communication in mobile ad hoc networks |
US20030139180A1 (en) | 2002-01-24 | 2003-07-24 | Mcintosh Chris P. | Private cellular network with a public network interface and a wireless local area network extension |
US6973086B2 (en) | 2002-01-28 | 2005-12-06 | Nokia Corporation | Method and system for securing mobile IPv6 home address option using ingress filtering |
US20030219022A1 (en) | 2002-01-28 | 2003-11-27 | Hughes Electronics | Method and system for utilizing virtual private network (VPN) connections in a performance enhanced network |
US20030172264A1 (en) | 2002-01-28 | 2003-09-11 | Hughes Electronics | Method and system for providing security in performance enhanced network |
US7324584B1 (en) | 2002-01-31 | 2008-01-29 | Nortel Networks Limited | Low complexity interference cancellation |
US20030193952A1 (en) | 2002-02-04 | 2003-10-16 | O'neill Alan | Mobile node handoff methods and apparatus |
KR100465208B1 (en) | 2002-04-02 | 2005-01-13 | 조광선 | System, Apparatus, and Method for Wireless Mobile Communication in association with Mobile AD-HOC Network Support |
US7623497B2 (en) | 2002-04-15 | 2009-11-24 | Qualcomm, Incorporated | Methods and apparatus for extending mobile IP |
US7400903B2 (en) | 2002-04-16 | 2008-07-15 | Texas Instruments Incorporated | Wireless communications system using both licensed and unlicensed frequency bands |
AU2003222307A1 (en) | 2002-04-24 | 2003-11-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Bypassing transcoding operations in a communication network |
US7006467B2 (en) | 2002-04-29 | 2006-02-28 | Hereuare Communications, Inc. | Method and system for simulating multiple independent client devices in a wired or wireless network |
US6937605B2 (en) | 2002-05-21 | 2005-08-30 | Nokia Corporation | Wireless gateway, and associated method, for a packet radio communication system |
US7529933B2 (en) | 2002-05-30 | 2009-05-05 | Microsoft Corporation | TLS tunneling |
JP4684649B2 (en) | 2002-06-21 | 2011-05-18 | トムソン ライセンシング | Registration of WLAN as a UMTS routing area in WLAN-UMTS interworking |
US7212537B2 (en) | 2002-07-10 | 2007-05-01 | Samsung Electronics Co., Ltd. | Apparatus and method for recovering communication sessions in a wireless network gateway |
US20040008648A1 (en) * | 2002-07-11 | 2004-01-15 | Schmidl Timothy M. | Diversity decisions for downlink antenna transmission |
US20040037312A1 (en) | 2002-08-23 | 2004-02-26 | Spear Stephen L. | Method and communication network for operating a cross coding element |
WO2004021581A2 (en) * | 2002-08-29 | 2004-03-11 | Zyray Wireless, Inc. | Adaptive pilot interference cancellation in cdma systems |
US7607015B2 (en) | 2002-10-08 | 2009-10-20 | Koolspan, Inc. | Shared network access using different access keys |
US20040071197A1 (en) * | 2002-10-10 | 2004-04-15 | Jia-Chin Lin | Modified PN code tracking loop for direct-sequence spread-spectrum communication over arbitrarily correlated multipath fading channels |
US7006481B2 (en) | 2002-10-10 | 2006-02-28 | Interdigital Technology Corporation | System and method for integrating WLAN and 3G |
WO2004036811A2 (en) | 2002-10-15 | 2004-04-29 | Tensorcomm Inc. | Method and apparatus for interference suppression with efficient matrix inversion in a ds-cdma system |
US7043208B2 (en) | 2002-10-15 | 2006-05-09 | Motorola, Inc. | Method and apparatus to reduce interference in a communication device |
US7640008B2 (en) | 2002-10-18 | 2009-12-29 | Kineto Wireless, Inc. | Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system |
CN101730180A (en) | 2002-10-18 | 2010-06-09 | 卡耐特无线有限公司 | Apparatus and method for extending the coverage area of a licensed wireless communication system |
US7369859B2 (en) | 2003-10-17 | 2008-05-06 | Kineto Wireless, Inc. | Method and system for determining the location of an unlicensed mobile access subscriber |
US7349698B2 (en) | 2002-10-18 | 2008-03-25 | Kineto Wireless, Inc. | Registration messaging in an unlicensed mobile access telecommunications system |
US7873015B2 (en) | 2002-10-18 | 2011-01-18 | Kineto Wireless, Inc. | Method and system for registering an unlicensed mobile access subscriber with a network controller |
US7634269B2 (en) | 2002-10-18 | 2009-12-15 | Kineto Wireless, Inc. | Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system |
US7471655B2 (en) | 2003-10-17 | 2008-12-30 | Kineto Wireless, Inc. | Channel activation messaging in an unlicensed mobile access telecommunications system |
US7565145B2 (en) | 2002-10-18 | 2009-07-21 | Kineto Wireless, Inc. | Handover messaging in an unlicensed mobile access telecommunications system |
US7606190B2 (en) | 2002-10-18 | 2009-10-20 | Kineto Wireless, Inc. | Apparatus and messages for interworking between unlicensed access network and GPRS network for data services |
US7953423B2 (en) | 2002-10-18 | 2011-05-31 | Kineto Wireless, Inc. | Messaging in an unlicensed mobile access telecommunications system |
US7835751B2 (en) | 2002-10-18 | 2010-11-16 | Ibe Oliver C | Method of seamless roaming between wireless local area networks and cellular carrier networks |
US7366519B2 (en) | 2002-10-21 | 2008-04-29 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Systems and methods for managing wireless communications using link space information |
US7518997B2 (en) | 2002-10-22 | 2009-04-14 | Texas Instruments Incorporated | Wireless mobile communication stations for operation in non-exclusive spectrum |
US20040203737A1 (en) | 2002-10-24 | 2004-10-14 | John Myhre | System and method for delivering data services in integrated wireless networks |
US20040203346A1 (en) | 2002-10-24 | 2004-10-14 | John Myhre | System and method for integrating local-area and wide-area wireless networks |
US20040203800A1 (en) | 2002-10-24 | 2004-10-14 | John Myhre | System and method for content delivery using alternate data paths in a wireless network |
US20040203812A1 (en) | 2003-02-18 | 2004-10-14 | Malladi Durga Prasad | Communication receiver with an adaptive equalizer that uses channel estimation |
US7272176B2 (en) | 2003-02-18 | 2007-09-18 | Qualcomm Incorporated | Communication receiver with an adaptive equalizer |
WO2004100416A1 (en) * | 2003-04-24 | 2004-11-18 | Bae Systems Information And Electronic Systems Integration, Inc. | Cross-system interference cancellation for multicarrier cdma and ofdm |
KR100735225B1 (en) | 2003-07-12 | 2007-07-03 | 삼성전자주식회사 | Method for Managing Vocoder Resource in a Mobile Communication System |
TWI357729B (en) * | 2003-07-14 | 2012-02-01 | Interdigital Tech Corp | High performance wireless receiver with cluster mu |
US6968948B2 (en) | 2003-08-15 | 2005-11-29 | Walter Scott | Container for holding live plants for display and sale for a long duration |
US7197291B2 (en) * | 2003-10-03 | 2007-03-27 | Motorola, Inc. | Multimode receiver and method for controlling signal interference |
US7272397B2 (en) | 2003-10-17 | 2007-09-18 | Kineto Wireless, Inc. | Service access control interface for an unlicensed wireless communication system |
WO2005055455A1 (en) * | 2003-12-04 | 2005-06-16 | Koninklijke Philips Electronics N.V. | Station comprising a rake receiver |
WO2005107297A1 (en) | 2004-04-21 | 2005-11-10 | Kineto Wireless, Inc. | A method and system for signaling traffic and media types within a communications network switching system |
US8041385B2 (en) | 2004-05-14 | 2011-10-18 | Kineto Wireless, Inc. | Power management mechanism for unlicensed wireless communication systems |
US20060098598A1 (en) | 2004-11-10 | 2006-05-11 | Michael Gallagher | Seamless transitions of active calls between enterprise telecommunications networks and licensed public telecommunications networks |
US20060153283A1 (en) | 2005-01-13 | 2006-07-13 | Scharf Louis L | Interference cancellation in adjoint operators for communication receivers |
US20060229051A1 (en) | 2005-04-07 | 2006-10-12 | Narayan Anand P | Interference selection and cancellation for CDMA communications |
US8493942B2 (en) * | 2005-08-01 | 2013-07-23 | Qualcomm Incorporated | Interference cancellation in wireless communication |
US8270453B2 (en) * | 2008-11-03 | 2012-09-18 | Telefonaktiebolaget L M Ericsson (Publ) | System and method for parallel interference cancellation with covariance root processing |
-
2005
- 2005-08-15 US US11/204,606 patent/US7787572B2/en active Active
-
2006
- 2006-08-10 WO PCT/US2006/031328 patent/WO2007021906A2/en active Application Filing
-
2010
- 2010-08-30 US US12/871,776 patent/US9647708B2/en active Active
- 2010-12-01 US US12/958,141 patent/US20110069796A1/en not_active Abandoned
- 2010-12-13 US US12/966,931 patent/US9544044B2/en not_active Expired - Lifetime
-
2015
- 2015-10-28 US US14/925,515 patent/US9490857B2/en not_active Expired - Lifetime
-
2016
- 2016-11-08 US US15/346,488 patent/US20170070260A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020041645A1 (en) * | 1999-04-30 | 2002-04-11 | Tamio Saito | Code division multiplex radio equipment with interference canceler |
US7012977B2 (en) * | 2000-12-29 | 2006-03-14 | Telefonaktiebolaget Lm Ericsson (Publ) | System, method and apparatus for wireless channel parameter estimation in spread spectrum communication systems |
US20030112904A1 (en) * | 2001-11-16 | 2003-06-19 | Fuller Arthur T.G. | Time variant filter implementation |
Also Published As
Publication number | Publication date |
---|---|
WO2007021906A2 (en) | 2007-02-22 |
US9647708B2 (en) | 2017-05-09 |
US20060227908A1 (en) | 2006-10-12 |
US20110069796A1 (en) | 2011-03-24 |
US20110096767A1 (en) | 2011-04-28 |
US20100329402A1 (en) | 2010-12-30 |
US20160049974A1 (en) | 2016-02-18 |
US9490857B2 (en) | 2016-11-08 |
US9544044B2 (en) | 2017-01-10 |
US7787572B2 (en) | 2010-08-31 |
WO2007021906A3 (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9490857B2 (en) | Systems and methods for parallel signal cancellation | |
US7039136B2 (en) | Interference cancellation in a signal | |
US7394879B2 (en) | Systems and methods for parallel signal cancellation | |
JP3202754B2 (en) | How to handle multiple multiple access transmissions | |
US6222498B1 (en) | CDMA multiuser receiver featuring a combination of array antenna and multiuser cancelers | |
US8311484B2 (en) | Method and system for interference suppression using information from non-listened base stations | |
US20040208238A1 (en) | Systems and methods for location estimation in spread spectrum communication systems | |
WO2002011309A1 (en) | Generic finger architecture for spread spectrum applications | |
US20040146093A1 (en) | Systems and methods for reducing interference in CDMA systems | |
US8503588B2 (en) | Method and system for compensation of interference cancellation delay | |
US20060125689A1 (en) | Interference cancellation in a receive diversity system | |
US7577186B2 (en) | Interference matrix construction | |
US7477710B2 (en) | Systems and methods for analog to digital conversion with a signal cancellation system of a receiver | |
CA2434116C (en) | Time tracking in a non-negligible multipath spacing environment | |
US20050123080A1 (en) | Systems and methods for serial cancellation | |
US6947473B1 (en) | Receiver and method of recovering data from radio signals | |
KR20000047073A (en) | Receiving circuit using adaptive antenna array of ds-cdma terminal and base station system | |
US7756191B2 (en) | Deconvolution searcher for wireless communication system | |
US6748012B2 (en) | Multiuser receiver and communication system that performs multicode transmission | |
WO2006028453A1 (en) | Interference matrix construction | |
US8116355B2 (en) | Method of selecting echoes of a signal for assignment to fingers of a Rake receiver and corresponding Rake receiver | |
KR100572675B1 (en) | Rake receiver and the method with finger equipment and the method using auto-interference cancellation technique | |
JP3147112B2 (en) | Direct spread receiver | |
WO2006028448A1 (en) | Systems and methods for parallel signal cancellation | |
WO2005114248A1 (en) | Systems and methods for location estimation in spread spectrum communication systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: III HOLDINGS 1, L.L.C., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RAMBUS INC.;REEL/FRAME:040258/0244 Effective date: 20140317 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |