US20170066684A1 - Optical coatings including buffer layers - Google Patents
Optical coatings including buffer layers Download PDFInfo
- Publication number
- US20170066684A1 US20170066684A1 US15/250,076 US201615250076A US2017066684A1 US 20170066684 A1 US20170066684 A1 US 20170066684A1 US 201615250076 A US201615250076 A US 201615250076A US 2017066684 A1 US2017066684 A1 US 2017066684A1
- Authority
- US
- United States
- Prior art keywords
- optical coating
- layer
- bias voltage
- buffer layer
- glass substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3417—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/245—Oxides by deposition from the vapour phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/245—Oxides by deposition from the vapour phase
- C03C17/2456—Coating containing TiO2
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/12—Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/213—SiO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/20—Materials for coating a single layer on glass
- C03C2217/21—Oxides
- C03C2217/218—V2O5, Nb2O5, Ta2O5
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/734—Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/152—Deposition methods from the vapour phase by cvd
- C03C2218/153—Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/327—Arrangements for generating the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3321—CVD [Chemical Vapor Deposition]
Definitions
- the present disclosure relates generally to optical system components, and more particularly, optical system components having one or more optical coatings thereon.
- Optical system components are designed to facilitate the transmission and shaping of visible and non-visible wavelengths of the electromagnetic spectrum such as light.
- these optical system components utilize one or more optical coatings to aid in the successful transmission of the light.
- the coating or application of the coating may harm the underlying material of the optical system components and thereby interfere with the transmission of light.
- an optics system component having a stainable glass substrate, an optical coating comprising alternating layers of dielectric materials, and a buffer layer positioned on the stainable glass substrate between the substrate and the optical coating, wherein the buffer layer comprises a dielectric material and has a thickness of less than about 20 nm.
- a method of forming an optical system component having the steps of providing a glass substrate comprising one or more fluorides, the glass substrate having a thermal damage threshold, depositing a first portion of a first layer of an optical coating via plasma deposition on the glass substrate at a first plasma bias voltage, depositing a second portion of the first layer of the optical coating via plasma deposition on the first portion at a second plasma bias voltage, wherein the second plasma bias voltage is greater than the first plasma bias voltage, and depositing a second layer of the optical coating on the first layer.
- a method of forming an optical coating having the steps of providing a glass substrate, depositing a buffer layer on the substrate via plasma deposition at a first plasma bias voltage, and depositing at least one layer of an optical coating on the buffer layer via plasma deposition, the deposition of the optical coating carried out at a second plasma bias voltage.
- the second plasma bias voltage is greater than the first plasma bias voltage.
- FIG. 1A is an enlarged cross-sectional view of an optics system component showing the layers thereof according to one embodiment of the disclosure
- FIG. 1B is an enlarged cross-sectional view of an optics system component according to another embodiment of the disclosure.
- FIG. 2 is an enlarged cross-sectional view of an optics system component according to yet another embodiment of the disclosure
- FIG. 3A is a graph depicting the transmittance of an optics system component made according to an aspect of this disclosure
- FIG. 3B is a graph depicting the transmittance of an optics system component made according to an aspect of this disclosure
- FIG. 4A is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure
- FIG. 4B is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure.
- FIG. 5A is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure.
- FIG. 5B is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure.
- the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivates thereof shall relate to the disclosure as oriented in FIG. 1 , unless stated otherwise.
- the optical probe 10 may assume various alternative orientations, except where expressly specified to the contrary.
- the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
- an optics system component 10 including a substrate 14 configured to transmit electromagnetic radiation, an optical coating 18 having alternating layers of dielectric materials, and a buffer layer 22 positioned on the substrate between the substrate 14 and the optical coating 18 .
- the optics system component 10 may be a lens (e.g., convex and/or concave), a prism, a fiber optic end, beam splitter, or other object configured to transmit both visible and non-visible electromagnetic radiation (e.g., light) there through.
- the optics system component 10 includes the substrate 14 on which the optical coating 18 is positioned.
- the substrate 14 may be a glass, glass-ceramic, ceramic, or polymeric material that is sufficiently translucent to allow the transmission of electromagnetic radiation (e.g., visible and non-visible light) through the optics system component 10 .
- the substrate 14 is substantially composed of glass which is prone to optical degradation under certain environmental conditions.
- the glass may be “stainable,” or subject to chemical reactions with its environment under certain conditions which may cause a decrease in optical performance (e.g., transmittance of light or shaping of light) of the optics system component 10 .
- the decrease in optical performance may result in a decreased transmittance of a band or wavelength of light (e.g., short wavelength blue light).
- Stainable glass may be subject to chemical reactions due to the chemical constituents present within the glass of the substrate 14 .
- the chemical constituents attributable to stainability may be fluorides such as SrF 2 , BaF 2 , MgF 2 , CaF 2 , AlF 3 , KF, NaF, and other fluorides.
- the fluorides may be present in stainable glasses between about 0.1 wt % and about 70 wt %, or between about 1.0 wt % and about 40 wt %.
- Such glasses may have a temperature damage threshold, or point where they experience damage from high temperatures.
- the temperature damage threshold may be below about 700° C., below about 600° C., below about 500° C., or below about 400° C.
- the low melting temperatures of the stainable glass may also contribute to the decrease in optical performance of the substrate 14 .
- the chemical constituents of the stainable glass, as well as its low melting temperature, may limit the type or manner of application of the optical coating 18 that may be applied to the substrate 14 .
- the optics system component 10 may include the optical coating 18 .
- the optical coating 18 may be a variety of coatings configured to provide a specific, or multiple, effects to the optics system component 10 .
- the optical coating 18 may be a spectral filter coating (e.g., bandpass filter and/or edgepass filter) a beamsplitter coating (e.g., dichroic filter), a high reflective coating (e.g., metallization using gold or silver), and/or an anti-reflective coating (e.g., both spectral and angle of incidence).
- the optical coating 18 is an antireflection coating including a first dielectric layer 18 A and a second dielectric layer 18 B.
- the first and second dielectric layers 18 A, 18 B are arranged in a dielectric stack configuration. It should be understood that although depicted with one dielectric stack, the optical coating 18 may have two or more stacks of the first or second dielectric layers 18 A, 18 B.
- the optical coating 18 may contain between two and ten layers (e.g., the first and second dielectric layers 18 A, 18 B).
- the first and second dielectric layers 18 A, 18 B are positioned in an alternating manner and comprise a dielectric material.
- Exemplary dielectric materials include SiO 2 , Ta 2 O 5 , NbO 5 , TiO 2 , HfO 2 , and combinations thereof.
- each layer 18 A, 18 B may be a single dielectric material.
- the first dielectric layer 18 A may be SiO 2 and the second dielectric layer 18 B may be Ta 2 O 5 .
- the thickness of the first and second dielectric layers 18 A, 18 B may each be between about 5 nm and about 500 nm. In some embodiments, the thickness of the first and second dielectric layers 18 A, 18 B may be different than one another and optionally vary across the thickness of the optical coating 18 . In some embodiments, the choice of which dielectric material to use for the alternating first and second dielectric layers 18 A, 18 B may be based on the refractive index of the material in order to increase or decrease a reflectivity of the optics system component 10 .
- a high refractive index material e.g., Ta 2 O 5 , NbO 5 , TiO 2 , HfO 2
- a low refractive index material e.g., SiO 2
- high refractive index materials may have indices greater than about 1.8, greater than about 1.9, greater than about 2.0, or greater than about 2.1.
- low index of refraction materials may have refractive indices of less than about 1.6, less than about 1.5, or less than about 1.4.
- the upper most layer (e.g., first or second dielectric layer 18 A, 18 B) comprises a high refractive index material (e.g., Ta 2 O 5 , Nb 2 O 5 , TiO 2 , HfO 2 ). Additionally or alternatively, the upper most layer may be thinner (e.g., half or quarter the thickness of the wavelength of the electromagnetic radiation being passed through the optics system component 10 ) or thicker than the other layers (e.g., first or second dielectric layers 18 A, 18 B).
- a high refractive index material e.g., Ta 2 O 5 , Nb 2 O 5 , TiO 2 , HfO 2
- the upper most layer may be thinner (e.g., half or quarter the thickness of the wavelength of the electromagnetic radiation being passed through the optics system component 10 ) or thicker than the other layers (e.g., first or second dielectric layers 18 A, 18 B).
- the buffer layer 22 is positioned on top of the substrate 14 between the substrate 14 and the optical coating 18 .
- the buffer layer 22 may include a low index of refraction material.
- the buffer layer may include SiO 2 .
- the buffer layer may have a thickness of between about 1 nm and about 20 nm, or between about 5 nm and about 15 nm. In specific embodiments, the thickness of the buffer layer 22 may be about 7 nm, about 8 nm, about 9 nm, about 10 nm, about 11 nm, or about 12 nm.
- the optical coating 18 and the buffer layer 22 may be applied to the substrate 14 via a plasma enhanced chemical vapor deposition process using a plasma reactor.
- the substrate 14 is placed within a vacuum chamber of the plasma reactor.
- the substrate 14 may be part of a larger work piece from which the substrate 14 will later be cut, or just the substrate 14 may be placed in the vacuum chamber.
- the vacuum chamber is then decompressed to a pressure of between about 760 Torr and about 10 ⁇ 12 Torr, or between about 25 Torr and about 10 ⁇ 9 Torr.
- a coating material e.g., Ta 2 O 5 , Nb 2 O 5 , TiO 2 , HfO 2 , SiO 2 , and mixtures thereof
- the coating material is vaporized and passed into a plasma stream.
- the plasma stream may be composed of a gas or element which has a high percentage of ionization.
- the gas used to form the plasma may be air, noble gases (e.g., He, Ar, Ne, Kr), Oxygen, Nitrogen, gases with low ionization potentials, and mixtures thereof.
- the coating material may react with the plasma stream in order to aid in the deposition of the coating material.
- the plasma deposition of the optical coating 18 is carried out at a plasma bias voltage which facilitates the movement of the plasma and coating material toward the substrate 14 and densification of the optical coating 18 .
- the plasma bias voltage may range from about 30 V to about 240 V.
- application of the optical coating 18 may be performed at different plasma bias voltages.
- the buffer layer 22 may be applied at a plasma bias voltage different than that of at least a portion of the optical coating 18 .
- the plasma deposition of the optical coating 18 and the buffer layer 22 may take place at a rate of between about 0.01 nm/s and about 10 nm/s, or between about 0.1 nm/s and about 1.0 nm/s.
- the deposition rate may be variable across the buffer layer 22 and/or optical coating 18 , or the deposition rate may be variable.
- the surface roughness and the relative packing density of the optical coating 18 and buffer layer 22 may be controlled based on the plasma bias voltage and/or deposition rate.
- the relative packing density of the buffer layer 22 or the first and second dielectric layers 18 A, 18 B of the optical coating 18 may be greater than about 80%, greater than about 85%, greater than about 90%, greater than about 95%, or approximately that of the bulk density of the material of the buffer layer 22 .
- the buffer layer 22 may be applied at a lower bias voltage than the optical coating 18 .
- the buffer layer may be applied at a plasma bias voltage of between about 50 V and about 90 V, or about 55 V to about 85 V.
- the optical coating 18 may be applied at a voltage between about 100 V and about 130 V, or between about 110 V and about 120 V.
- a lower plasma bias voltage is non-ideal as it may reduce the packing density of the buffer layer 22 and/or the optical coating 18 which may lead to a change in optical properties (e.g., refractive index) of the optics system component 10 .
- the use of the lower plasma bias voltage to apply the buffer layer 22 may decrease or eliminate damage to the substrate 14 which might otherwise decrease the optical performance of the optics system component 10 .
- the buffer layer 22 shields the substrate 14 from high plasma energies capable of damaging the substrate 14 such that the optical coating 18 may be applied at higher plasma bias voltages, thereby leading to greater packing densities and overall increased performance of the optical coating 18 .
- the thinness of the buffer layer 22 which was deposited at a non-ideal plasma bias voltage, relative to the thickness of the optical coating 18 , which was deposited at an ideal plasma bias voltage, may lead to low (e.g., less than about 1.0%, less than about 0.5%, less than about 0.4%, less than about 0.3%, less than about 0.2%, and less than about 0.1%) transmittance loss of electromagnetic radiation through the optics system component 10 .
- the transmittance loss may be low between wavelengths of about 150 nm to about 1000 nm, or between about 400 nm and about 800 nm.
- the application of the buffer layer 22 may aid in the adhesion of the optical coating 18 to the substrate 14 .
- the optics system component 10 does not incorporate the buffer layer 22 , but rather, utilize a layer (e.g., the first or second dielectric layer 18 A, 18 B) of the optical coating 18 to prevent damage to the substrate 14 .
- the first dielectric layer 18 A is split into two components, a barrier layer 30 (e.g., a first portion) and a standard layer 34 (e.g., a second portion).
- the standard layer 34 may comprise dielectric material deposited under standard plasma deposition conditions (i.e., the same conditions as the first and second dielectric layers 18 A, 18 B).
- the barrier layer 30 is positioned on top of the substrate 14 and the standard layer 34 is positioned between the barrier layer 30 and the second dielectric layer 18 B.
- the barrier layer 30 and the standard layer 34 may be composed of the same dielectric material (e.g., Ta 2 O 5 , NbO 5 , TiO 2 , HfO 2 , SiO 2 , and mixtures thereof).
- the dielectric material of the barrier layer 30 and the standard layer 34 may have a high index of refraction or a low index of refraction.
- the barrier layer 30 may have a thickness between about 1 nm and about 20 nm, or between about 5 nm and about 10 nm.
- the standard layer 34 may have a thickness between about 30 nm and about 50 nm. In some embodiments, the overall thickness of the barrier layer 30 and the standard layer 34 may be the same as the other first dielectric layers 18 A, or it may be different.
- the barrier layer 30 may be applied to the substrate 14 at a plasma bias voltage of between about 50 V and about 90 V, or about 55 V to about 85 V.
- the standard layer 34 may be deposited on the barrier layer 30 at a voltage between about 100 V and about 130 V, or between about 110 V and about 120 V.
- the barrier layer 30 shield the substrate 14 from potentially damaging plasma during deposition of the standard layer 34 and the following layers (e.g., first and second dielectric layers 18 A, 18 B) of the optical coating 18 .
- the standard layer 34 may be applied at the same plasma bias voltage first and second dielectric layers 18 A, 18 B and may have a thickness great enough that the combined thicknesses of the barrier layer 30 and the standard layer 34 is approximately that of the first or second dielectric layers 18 A, 18 B.
- the barrier layer 30 and standard layer 34 may allow for the realization of several advantages.
- the thinness of the barrier layer 30 which was deposited at a non-ideal plasma bias voltage, relative to the thickness of the optical coating 18 , which was deposited at an ideal plasma bias voltage, may lead to low (e.g., less than about 1.0%, less than about 0.5%, less than about 0.4%, less than about 0.3%, less than about 0.2%, and less than about 0.1%) transmittance loss of electromagnetic radiation through the optics system component 10 .
- the plasma deposition process may be continuous between the barrier layer 30 and the standard layer 34 such that does not need to be halted. This may be advantageous as it would reduce the chances of particle contamination occurring at interfaces between layers (e.g., first dielectric layer 18 A, second dielectric layer 18 B, standard layer 34 , and barrier layer 30 ) of the optical coating 18 .
- the optical component 10 may be a lens.
- layers e.g., the first dielectric layer 18 A, second dielectric layer 18 B, standard layer 34 , and barrier layer 30 ) of the optical coating 18 may vary in thickness across the length of the substrate 14 .
- the optical coating 18 and/or barrier layer may be thicker towards central portion of the substrate 14 and become thinner towards edges of the substrate 14 .
- the optical coating 18 and/or barrier layer may be thinner towards central portion of the substrate 14 and become thicker towards edges of the substrate 14 .
- FIGS. 3A-5B are graphs depicting reflectance or transmittance data about specific examples of the optics system component 10 made according to various aspects of this disclosure.
- FIG. 3A depicts the calculated and actual transmittance values for a 3.4 mm thick glass sample (e.g., component 10 ) containing fluorides.
- an anti-reflective film e.g., optical coating 18
- the sample has a transmittance loss (calculated transmittance minus the transmittance of the sample) of between about 1% to about 2.5% over a wavelength of between 375 nm and 700 nm.
- FIG. 3B depicted is the calculated and actual transmittance values for a 3.4 mm thick glass sample (e.g., substrate 14 ) containing fluorides.
- the sample has undergone a plasma deposition at a plasma bias voltage of 55 V for 100 seconds.
- the plasma deposition was carried out under conditions which did not exceed the thermal damage threshold of the sample.
- FIGS. 4A and B depicted are different compositions of glass samples containing fluorides, both with and without 10 nm SiO 2 buffer layers positioned between the samples and an antireflective coating.
- the addition of the SiO 2 layer e.g., buffer layer 22
- the SiO 2 layer may be introduced without highly detrimental results to the reflectance of the sample (e.g., substrate 14 ) or film (e.g., optical coating 18 ).
- FIGS. 5A and 5B depicted are glass samples containing fluorides having an anti-reflective film applied according to an embodiment of this disclosure.
- the graphs depict the reflectance of the samples when a first layer of the anti-reflective film is applied in two different manners to form two portions (e.g., formation of the barrier layer 30 and standard layer 34 ).
- the non-optimal plasma bias voltage which lays down the first portion e.g., barrier layer 30
- the 9 nm first portion has a mismatch in reflectance with the reflectance of the glass sample.
- the lower refractive index of the first portion may be corrected to increase the refractive index by increasing the thickness of the first portion (i.e., in this case from about 9 nm to about 11 nm).
- Vb(V) represents the plasma bias voltage used
- n at 550 nm represents the refractive index of the Ta 2 O 5 at a light wavelength of 550 nm
- RMS represents the surface roughness of the Ta 2 O 5 after deposition
- RPD represents the packing density of the Ta 2 O 5 after deposition.
- increasing plasma voltage increases the refractive index, decreases the surface roughness, and increases the packing density of the Ta 2 O 5 as it is deposited, which are all generally considered to be good qualities in a coating or film.
- the term “coupled” in all of its forms, couple, coupling, coupled, etc. generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated. It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Analytical Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
An optics system component has a stainable glass substrate, an optical coating comprising alternating layers of dielectric materials, and a buffer layer positioned on the stainable glass substrate between the substrate and the optical coating. The buffer layer comprises a dielectric material and has a thickness of less than about 20 nm.
Description
- This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 62/215,286 filed on Sep. 8, 2015 the content of which is relied upon and incorporated herein by reference in its entirety.
- The present disclosure relates generally to optical system components, and more particularly, optical system components having one or more optical coatings thereon.
- Optical system components are designed to facilitate the transmission and shaping of visible and non-visible wavelengths of the electromagnetic spectrum such as light. Typically, these optical system components utilize one or more optical coatings to aid in the successful transmission of the light. Occasionally, the coating or application of the coating may harm the underlying material of the optical system components and thereby interfere with the transmission of light.
- According to one embodiment of the present disclosure, an optics system component having a stainable glass substrate, an optical coating comprising alternating layers of dielectric materials, and a buffer layer positioned on the stainable glass substrate between the substrate and the optical coating, wherein the buffer layer comprises a dielectric material and has a thickness of less than about 20 nm.
- According to another embodiment of the present disclosure, a method of forming an optical system component, having the steps of providing a glass substrate comprising one or more fluorides, the glass substrate having a thermal damage threshold, depositing a first portion of a first layer of an optical coating via plasma deposition on the glass substrate at a first plasma bias voltage, depositing a second portion of the first layer of the optical coating via plasma deposition on the first portion at a second plasma bias voltage, wherein the second plasma bias voltage is greater than the first plasma bias voltage, and depositing a second layer of the optical coating on the first layer.
- According to yet another embodiment of the present disclosure, a method of forming an optical coating, having the steps of providing a glass substrate, depositing a buffer layer on the substrate via plasma deposition at a first plasma bias voltage, and depositing at least one layer of an optical coating on the buffer layer via plasma deposition, the deposition of the optical coating carried out at a second plasma bias voltage. The second plasma bias voltage is greater than the first plasma bias voltage.
- Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
- It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments, and together with the description serve to explain principles and operation of the various embodiments.
-
FIG. 1A is an enlarged cross-sectional view of an optics system component showing the layers thereof according to one embodiment of the disclosure; -
FIG. 1B is an enlarged cross-sectional view of an optics system component according to another embodiment of the disclosure; -
FIG. 2 is an enlarged cross-sectional view of an optics system component according to yet another embodiment of the disclosure; -
FIG. 3A is a graph depicting the transmittance of an optics system component made according to an aspect of this disclosure; -
FIG. 3B is a graph depicting the transmittance of an optics system component made according to an aspect of this disclosure; -
FIG. 4A is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure; -
FIG. 4B is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure; -
FIG. 5A is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure; and -
FIG. 5B is a graph depicting the reflectance of an optics system component made according to an aspect of this disclosure. - Reference will now be made in detail to the present preferred embodiments, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
- For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivates thereof shall relate to the disclosure as oriented in
FIG. 1 , unless stated otherwise. However, it is to be understood that theoptical probe 10 may assume various alternative orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise. - Depicted in
FIGS. 1-5B is anoptics system component 10 including asubstrate 14 configured to transmit electromagnetic radiation, anoptical coating 18 having alternating layers of dielectric materials, and abuffer layer 22 positioned on the substrate between thesubstrate 14 and theoptical coating 18. - Referring now to
FIG. 1 , theoptics system component 10 may be a lens (e.g., convex and/or concave), a prism, a fiber optic end, beam splitter, or other object configured to transmit both visible and non-visible electromagnetic radiation (e.g., light) there through. Theoptics system component 10 includes thesubstrate 14 on which theoptical coating 18 is positioned. Thesubstrate 14 may be a glass, glass-ceramic, ceramic, or polymeric material that is sufficiently translucent to allow the transmission of electromagnetic radiation (e.g., visible and non-visible light) through theoptics system component 10. In various embodiments, thesubstrate 14 is substantially composed of glass which is prone to optical degradation under certain environmental conditions. For example, the glass may be “stainable,” or subject to chemical reactions with its environment under certain conditions which may cause a decrease in optical performance (e.g., transmittance of light or shaping of light) of theoptics system component 10. For example, the decrease in optical performance may result in a decreased transmittance of a band or wavelength of light (e.g., short wavelength blue light). Stainable glass may be subject to chemical reactions due to the chemical constituents present within the glass of thesubstrate 14. In an exemplary embodiment, the chemical constituents attributable to stainability may be fluorides such as SrF2, BaF2, MgF2, CaF2, AlF3, KF, NaF, and other fluorides. The fluorides may be present in stainable glasses between about 0.1 wt % and about 70 wt %, or between about 1.0 wt % and about 40 wt %. Such glasses may have a temperature damage threshold, or point where they experience damage from high temperatures. The temperature damage threshold may be below about 700° C., below about 600° C., below about 500° C., or below about 400° C. The low melting temperatures of the stainable glass may also contribute to the decrease in optical performance of thesubstrate 14. The chemical constituents of the stainable glass, as well as its low melting temperature, may limit the type or manner of application of theoptical coating 18 that may be applied to thesubstrate 14. - Referring again to FIG.1A, the
optics system component 10 may include theoptical coating 18. Theoptical coating 18 may be a variety of coatings configured to provide a specific, or multiple, effects to theoptics system component 10. For example, theoptical coating 18 may be a spectral filter coating (e.g., bandpass filter and/or edgepass filter) a beamsplitter coating (e.g., dichroic filter), a high reflective coating (e.g., metallization using gold or silver), and/or an anti-reflective coating (e.g., both spectral and angle of incidence). In various embodiments, theoptical coating 18 is an antireflection coating including a firstdielectric layer 18A and a seconddielectric layer 18B. The first and seconddielectric layers optical coating 18 may have two or more stacks of the first or seconddielectric layers optical coating 18 may contain between two and ten layers (e.g., the first and seconddielectric layers dielectric layers layer dielectric layer 18A may be SiO2 and the seconddielectric layer 18B may be Ta2O5. The thickness of the first and seconddielectric layers dielectric layers optical coating 18. In some embodiments, the choice of which dielectric material to use for the alternating first and seconddielectric layers optics system component 10. For example, a high refractive index material (e.g., Ta2O5, NbO5, TiO2, HfO2) may be included in the firstdielectric layer 18A and a low refractive index material (e.g., SiO2) may be included in thesecond dielectric layer 18B. In various embodiments, high refractive index materials may have indices greater than about 1.8, greater than about 1.9, greater than about 2.0, or greater than about 2.1. In various embodiments, low index of refraction materials may have refractive indices of less than about 1.6, less than about 1.5, or less than about 1.4. In some embodiments, the upper most layer (e.g., first or seconddielectric layer dielectric layers - In various embodiments, the
buffer layer 22 is positioned on top of thesubstrate 14 between thesubstrate 14 and theoptical coating 18. Thebuffer layer 22 may include a low index of refraction material. For example, the buffer layer may include SiO2. The buffer layer may have a thickness of between about 1 nm and about 20 nm, or between about 5 nm and about 15 nm. In specific embodiments, the thickness of thebuffer layer 22 may be about 7 nm, about 8 nm, about 9 nm, about 10 nm, about 11 nm, or about 12 nm. - The
optical coating 18 and thebuffer layer 22 may be applied to thesubstrate 14 via a plasma enhanced chemical vapor deposition process using a plasma reactor. During plasma deposition, thesubstrate 14 is placed within a vacuum chamber of the plasma reactor. Thesubstrate 14 may be part of a larger work piece from which thesubstrate 14 will later be cut, or just thesubstrate 14 may be placed in the vacuum chamber. The vacuum chamber is then decompressed to a pressure of between about 760 Torr and about 10−12 Torr, or between about 25 Torr and about 10−9 Torr. Provided within the plasma reactor is a coating material (e.g., Ta2O5, Nb2O5, TiO2, HfO2, SiO2, and mixtures thereof) used to produce theoptical coating 18 and/or thebuffer layer 22. The coating material is vaporized and passed into a plasma stream. The plasma stream may be composed of a gas or element which has a high percentage of ionization. The gas used to form the plasma may be air, noble gases (e.g., He, Ar, Ne, Kr), Oxygen, Nitrogen, gases with low ionization potentials, and mixtures thereof. In various embodiments, the coating material may react with the plasma stream in order to aid in the deposition of the coating material. The plasma deposition of theoptical coating 18 is carried out at a plasma bias voltage which facilitates the movement of the plasma and coating material toward thesubstrate 14 and densification of theoptical coating 18. The plasma bias voltage may range from about 30 V to about 240 V. In various embodiments, application of theoptical coating 18 may be performed at different plasma bias voltages. Additionally or alternatively, thebuffer layer 22 may be applied at a plasma bias voltage different than that of at least a portion of theoptical coating 18. The plasma deposition of theoptical coating 18 and thebuffer layer 22 may take place at a rate of between about 0.01 nm/s and about 10 nm/s, or between about 0.1 nm/s and about 1.0 nm/s. The deposition rate may be variable across thebuffer layer 22 and/oroptical coating 18, or the deposition rate may be variable. The surface roughness and the relative packing density of theoptical coating 18 andbuffer layer 22 may be controlled based on the plasma bias voltage and/or deposition rate. For example, the relative packing density of thebuffer layer 22 or the first and seconddielectric layers optical coating 18 may be greater than about 80%, greater than about 85%, greater than about 90%, greater than about 95%, or approximately that of the bulk density of the material of thebuffer layer 22. - As explained above, materials forming the
substrate 14 which are subject to damage from the environment (e.g., stainable glasses, polymers) or have a low thermal damage threshold may be harmed during the deposition of thebuffer layer 22 and theoptical coating 18 due to the temperatures and conditions generated during plasma deposition of theoptical coating 18 andbuffer layer 22. Accordingly, it may be advantageous to apply thebuffer layer 22 at a lower bias voltage than theoptical coating 18. For example, the buffer layer may be applied at a plasma bias voltage of between about 50 V and about 90 V, or about 55 V to about 85 V. Thereafter, theoptical coating 18 may be applied at a voltage between about 100 V and about 130 V, or between about 110 V and about 120 V. Typically, a lower plasma bias voltage is non-ideal as it may reduce the packing density of thebuffer layer 22 and/or theoptical coating 18 which may lead to a change in optical properties (e.g., refractive index) of theoptics system component 10. However, the use of the lower plasma bias voltage to apply thebuffer layer 22 may decrease or eliminate damage to thesubstrate 14 which might otherwise decrease the optical performance of theoptics system component 10. Additionally, by applying thebuffer layer 22 before theoptical coating 18, thebuffer layer 22 shields thesubstrate 14 from high plasma energies capable of damaging thesubstrate 14 such that theoptical coating 18 may be applied at higher plasma bias voltages, thereby leading to greater packing densities and overall increased performance of theoptical coating 18. - Use of the
buffer layer 30 between theoptical coating 18 and thesubstrate 14 may allow for the realization of several advantages. The thinness of thebuffer layer 22, which was deposited at a non-ideal plasma bias voltage, relative to the thickness of theoptical coating 18, which was deposited at an ideal plasma bias voltage, may lead to low (e.g., less than about 1.0%, less than about 0.5%, less than about 0.4%, less than about 0.3%, less than about 0.2%, and less than about 0.1%) transmittance loss of electromagnetic radiation through theoptics system component 10. The transmittance loss may be low between wavelengths of about 150 nm to about 1000 nm, or between about 400 nm and about 800 nm. Additionally, the application of thebuffer layer 22 may aid in the adhesion of theoptical coating 18 to thesubstrate 14. - Referring now to
FIG. 1B , another embodiment of theoptics system component 10 is shown that does not incorporate thebuffer layer 22, but rather, utilize a layer (e.g., the first or seconddielectric layer optical coating 18 to prevent damage to thesubstrate 14. In the depicted embodiment, the firstdielectric layer 18A is split into two components, a barrier layer 30 (e.g., a first portion) and a standard layer 34 (e.g., a second portion). Thestandard layer 34 may comprise dielectric material deposited under standard plasma deposition conditions (i.e., the same conditions as the first and seconddielectric layers barrier layer 30 is positioned on top of thesubstrate 14 and thestandard layer 34 is positioned between thebarrier layer 30 and thesecond dielectric layer 18B. Thebarrier layer 30 and thestandard layer 34 may be composed of the same dielectric material (e.g., Ta2O5, NbO5, TiO2, HfO2, SiO2, and mixtures thereof). The dielectric material of thebarrier layer 30 and thestandard layer 34 may have a high index of refraction or a low index of refraction. Thebarrier layer 30 may have a thickness between about 1 nm and about 20 nm, or between about 5 nm and about 10 nm. Thestandard layer 34 may have a thickness between about 30 nm and about 50 nm. In some embodiments, the overall thickness of thebarrier layer 30 and thestandard layer 34 may be the same as the other firstdielectric layers 18A, or it may be different. - Similarly to that of the
buffer layer 22, thebarrier layer 30 may be applied to thesubstrate 14 at a plasma bias voltage of between about 50 V and about 90 V, or about 55 V to about 85 V. After the deposition of thebarrier layer 30 thestandard layer 34 may be deposited on thebarrier layer 30 at a voltage between about 100 V and about 130 V, or between about 110 V and about 120 V. Just as thebuffer layer 22 shields thesubstrate 14 from potentially damaging plasma during application of theoptical coating 18, so too does thebarrier layer 30 shield thesubstrate 14 from potentially damaging plasma during deposition of thestandard layer 34 and the following layers (e.g., first and seconddielectric layers optical coating 18. In a specific example, thestandard layer 34 may be applied at the same plasma bias voltage first and seconddielectric layers barrier layer 30 and thestandard layer 34 is approximately that of the first or seconddielectric layers - Use of the
barrier layer 30 andstandard layer 34 may allow for the realization of several advantages. Just as with use of thebuffer layer 22, the thinness of thebarrier layer 30, which was deposited at a non-ideal plasma bias voltage, relative to the thickness of theoptical coating 18, which was deposited at an ideal plasma bias voltage, may lead to low (e.g., less than about 1.0%, less than about 0.5%, less than about 0.4%, less than about 0.3%, less than about 0.2%, and less than about 0.1%) transmittance loss of electromagnetic radiation through theoptics system component 10. Additionally, by utilizing a portion of one of the first or seconddielectric layers barrier layer 30 and thestandard layer 34 such that does not need to be halted. This may be advantageous as it would reduce the chances of particle contamination occurring at interfaces between layers (e.g., firstdielectric layer 18A,second dielectric layer 18B,standard layer 34, and barrier layer 30) of theoptical coating 18. - Referring now to the depicted embodiment of
FIG. 2 , theoptical component 10 may be a lens. In such an embodiment, layers (e.g., the firstdielectric layer 18A,second dielectric layer 18B,standard layer 34, and barrier layer 30) of theoptical coating 18 may vary in thickness across the length of thesubstrate 14. In one embodiment, theoptical coating 18 and/or barrier layer may be thicker towards central portion of thesubstrate 14 and become thinner towards edges of thesubstrate 14. In an alternative embodiment, theoptical coating 18 and/or barrier layer may be thinner towards central portion of thesubstrate 14 and become thicker towards edges of thesubstrate 14. -
FIGS. 3A-5B are graphs depicting reflectance or transmittance data about specific examples of theoptics system component 10 made according to various aspects of this disclosure. -
FIG. 3A depicts the calculated and actual transmittance values for a 3.4 mm thick glass sample (e.g., component 10) containing fluorides. Coated on both sides of the sample is an anti-reflective film (e.g., optical coating 18) which has been deposited via plasma deposition at a plasma bias voltage of 110 V for 100 seconds without abuffer layer 22 or abarrier layer 30. As can be seen by the graph, the sample has a transmittance loss (calculated transmittance minus the transmittance of the sample) of between about 1% to about 2.5% over a wavelength of between 375 nm and 700 nm. - Referring now to
FIG. 3B , depicted is the calculated and actual transmittance values for a 3.4 mm thick glass sample (e.g., substrate 14) containing fluorides. The sample has undergone a plasma deposition at a plasma bias voltage of 55 V for 100 seconds. As can be seen, there is no appreciable difference between the transmittance of the sample and the calculated value indicating that the plasma deposition was done at a low enough plasma bias voltage to not damage the glass of the sample. In other words, the plasma deposition was carried out under conditions which did not exceed the thermal damage threshold of the sample. - Referring now to
FIGS. 4A and B, depicted are different compositions of glass samples containing fluorides, both with and without 10 nm SiO2 buffer layers positioned between the samples and an antireflective coating. As can be seen, the addition of the SiO2 layer (e.g., buffer layer 22) only slightly affects the reflectance of the samples as compared to the samples without the SiO2 layer. These results indicate that the SiO2 layer (e.g., buffer layer 22) may be introduced without highly detrimental results to the reflectance of the sample (e.g., substrate 14) or film (e.g., optical coating 18). - Referring now to
FIGS. 5A and 5B , depicted are glass samples containing fluorides having an anti-reflective film applied according to an embodiment of this disclosure. The graphs depict the reflectance of the samples when a first layer of the anti-reflective film is applied in two different manners to form two portions (e.g., formation of thebarrier layer 30 and standard layer 34). As disclosed above, the non-optimal plasma bias voltage which lays down the first portion (e.g., barrier layer 30) may lead to a decrease in the refractive index of the material of the first portion. As seen inFIGS. 5A and B, the 9 nm first portion has a mismatch in reflectance with the reflectance of the glass sample. However, as also explained above and shown in inFIGS. 5A and B, the lower refractive index of the first portion may be corrected to increase the refractive index by increasing the thickness of the first portion (i.e., in this case from about 9 nm to about 11 nm). -
TABLE 1 Ta2O5 single layer properties Run # K7- K7- K7- K7- K7- K7-7314 7304 7305 7308 7306 7307 Vb (V) Plasma PVD 55 75 85 110 shuttered only n at 1.952 2.062 2.059 2.118 2.156 2.159 550 nm RMS 3.6 2.9 3.2 2.8 1.3 1.2 (nm) RPD 88.0 94.6 94.5 97.8 99.8 100.0 (%) - Referring to Table 1, depicted is a summary of Ta2O5 single layer properties under a variety of plasma deposition conditions. Vb(V) represents the plasma bias voltage used, n at 550 nm represents the refractive index of the Ta2O5 at a light wavelength of 550 nm, RMS represents the surface roughness of the Ta2O5 after deposition, and RPD represents the packing density of the Ta2O5 after deposition. As can be seen in Table 1, increasing plasma voltage increases the refractive index, decreases the surface roughness, and increases the packing density of the Ta2O5 as it is deposited, which are all generally considered to be good qualities in a coating or film.
- While the embodiments disclosed herein have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the disclosure or the appended claims. It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the claims.
- It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein. In this specification and the amended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise.
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
- For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated. It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the claims.
Claims (20)
1. An optics system component comprising:
a stainable glass substrate;
an optical coating comprising alternating layers of first and second dielectric materials; and
a buffer layer positioned on the stainable glass substrate between the substrate and the optical coating, wherein the buffer layer comprises a third dielectric material and has a thickness of less than about 20 nm.
2. The optics system component of claim 1 , wherein the stainable glass substrate comprises at least one fluoride and the optics system component is configured as an optical lens.
3. The optics system component of claim 1 , wherein the buffer layer comprises SiO2 and the buffer layer has a thickness of between about 5 nm and about 15 nm.
4. The optics system component of claim 3 , wherein the stainable glass with the buffer layer and the optical coating has a transmittance loss of the electromagnetic radiation of less than about 0.2% over an electromagnetic wavelength of about 400 nm to about 900 nm.
5. The optics system component of claim 1 , wherein the optical coating comprises alternating layers of SiO2 and at least one of Ta2O5, Nb2O5, TiO2, and HfO2.
6. The optics system component of claim 1 , wherein the glass substrate has a melting temperature of less than about 500° C.
7. A method of forming an optical system component, comprising the steps of:
providing a glass substrate comprising one or more fluorides, the glass substrate having a thermal damage threshold;
depositing a first portion of a first layer of an optical coating via plasma deposition on the glass substrate at a first plasma bias voltage;
depositing a second portion of the first layer of the optical coating via plasma deposition on the first portion at a second plasma bias voltage, wherein the second plasma bias voltage is greater than the first plasma bias voltage; and
depositing a second layer of the optical coating on the first layer.
8. The method of claim 7 , wherein the thermal damage threshold of the glass substrate is less than about 500° C.
9. The method of claim 8 , wherein the first plasma bias voltage is between about 50 V and about 90 V.
10. The method of claim 7 , wherein the first layer comprises a material having a refractive index greater than about 2.0.
11. The method of claim 7 , wherein the first portion has a thickness between about 5 nm and about 10 nm and the overall thickness of the first layer is greater than about 20 nm.
12. The method of claim 11 , wherein the first portion and second portion of the first layer comprise a same dielectric material.
13. The method of claim 7 , wherein the optical coating comprises layers of alternating dielectric materials, the first layer comprising at least one of Ta2O5, Nb2O5, TiO2, and HfO2, and the second layer comprising SiO2.
14. The method of claim 7 , wherein the glass substrate with the optical coating has a transmittance loss of the electromagnetic radiation of less than about 0.1% over an electromagnetic wavelength of about 350 nm to about 800 nm.
15. A method of forming an optical coating, comprising the steps:
providing a glass substrate;
depositing a buffer layer on the substrate via plasma deposition at a first plasma bias voltage; and
depositing at least one layer of an optical coating on the buffer layer via plasma deposition, the deposition of the optical coating carried out at a second plasma bias voltage,
wherein the second plasma bias voltage is greater than the first plasma bias voltage.
16. The method of forming an optical coating of claim 15 , wherein the first plasma bias voltage ranges from about 50 V to about 90 V and the second plasma bias voltage ranges from about 100 V to about 140 V.
17. The method of forming an optical coating of claim 16 , wherein the glass substrate comprises at least one fluoride.
18. The method of forming an optical coating of claim 17 , wherein the buffer layer has a packing density greater than about 94%.
19. The method of forming an optical coating of claim 18 , wherein at least one of the buffer layer and the optical coating layers has a non-uniform thickness across the glass substrate.
20. The method of forming an optical coating of claim 19 , wherein the buffer layer and the at least one layer of the optical coating comprise the same material.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/250,076 US20170066684A1 (en) | 2015-09-08 | 2016-08-29 | Optical coatings including buffer layers |
US15/593,961 US10131571B2 (en) | 2015-09-08 | 2017-05-12 | Methods of forming optical system components and optical coatings |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562215286P | 2015-09-08 | 2015-09-08 | |
US15/250,076 US20170066684A1 (en) | 2015-09-08 | 2016-08-29 | Optical coatings including buffer layers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/593,961 Division US10131571B2 (en) | 2015-09-08 | 2017-05-12 | Methods of forming optical system components and optical coatings |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170066684A1 true US20170066684A1 (en) | 2017-03-09 |
Family
ID=57047286
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/250,076 Abandoned US20170066684A1 (en) | 2015-09-08 | 2016-08-29 | Optical coatings including buffer layers |
US15/593,961 Active US10131571B2 (en) | 2015-09-08 | 2017-05-12 | Methods of forming optical system components and optical coatings |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/593,961 Active US10131571B2 (en) | 2015-09-08 | 2017-05-12 | Methods of forming optical system components and optical coatings |
Country Status (4)
Country | Link |
---|---|
US (2) | US20170066684A1 (en) |
EP (1) | EP3347746B1 (en) |
JP (2) | JP2018527631A (en) |
WO (1) | WO2017044549A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018167126A1 (en) * | 2017-03-14 | 2018-09-20 | Schott Ag | Antireflection coating |
EP3790737A4 (en) * | 2018-05-11 | 2021-12-01 | Hewlett-Packard Development Company, L.P. | Passivation stacks |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10162083B2 (en) * | 2015-09-23 | 2018-12-25 | Apple Inc. | Transparent buffer layer for maintaining coated glass bend strength |
US10353123B2 (en) | 2017-08-08 | 2019-07-16 | Apple Inc. | Electronic Devices with glass layer coatings |
US20210325672A1 (en) * | 2018-10-24 | 2021-10-21 | Saint-Gobain Glass France | Projection assembly for a vehicle, comprising a side pane |
CN113950656A (en) * | 2019-06-25 | 2022-01-18 | 哈曼贝克自动系统股份有限公司 | Touch panel with haptic feedback and reduced reflection |
CN111443406B (en) * | 2020-05-13 | 2021-06-15 | 温州大学 | Method for improving laser damage resistance of optical film element |
CN113703078B (en) * | 2021-08-31 | 2022-06-07 | 重庆文理学院 | Broadband antireflection film for visible light region and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4285730A (en) * | 1979-10-05 | 1981-08-25 | Corning Glass Works | Moldable glasses |
US20140078589A1 (en) * | 2012-09-14 | 2014-03-20 | Ricoh Imaging Company, Ltd. | Anti-reflection coating, optical member having it, and optical equipment comprising such optical member |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61193469A (en) * | 1985-02-20 | 1986-08-27 | Mitsubishi Electric Corp | Manufacture of semiconductor device |
JPH01221914A (en) * | 1988-02-29 | 1989-09-05 | Nec Corp | Exciting circuit for electrostatic induction transistor |
JPH0289346A (en) * | 1988-09-27 | 1990-03-29 | Toshiba Corp | Semiconductor device |
DE3942990A1 (en) * | 1989-12-19 | 1991-06-20 | Leybold Ag | Anti-reflection coating for transparent substrates - comprises 1st layer of dielectric metal oxide, nitride 2nd layer, and 3rd layer of dielectric metal oxide |
JPH07130739A (en) * | 1993-10-29 | 1995-05-19 | Fujitsu Ltd | Semiconductor device and its production |
US5789040A (en) * | 1997-05-21 | 1998-08-04 | Optical Coating Laboratory, Inc. | Methods and apparatus for simultaneous multi-sided coating of optical thin film designs using dual-frequency plasma-enhanced chemical vapor deposition |
JPH1195003A (en) * | 1997-09-16 | 1999-04-09 | Canon Inc | Optical parts and manufacture thereof |
US6495202B1 (en) * | 1999-09-08 | 2002-12-17 | Nikon Corporation | Method for manufacturing an optical element containing fluoride in at least its surface portions |
DE19962144A1 (en) | 1999-12-22 | 2001-06-28 | Schott Desag Ag | UV-reflective interference layer system used for coating glass panes comprises four individual layers having different refractive indices and containing UV- and temperature-stable inorganic materials |
US7033679B2 (en) * | 2001-01-25 | 2006-04-25 | Kyocera Optec Co., Ltd. | Metal film and metal film-coated member, metal oxide film and metal oxide film-coated member, thin film forming apparatus and thin film forming method for producing metal film and metal oxide film |
JP3979814B2 (en) * | 2001-10-04 | 2007-09-19 | オリンパス株式会社 | Optical thin film manufacturing method |
US20030202770A1 (en) * | 2002-01-03 | 2003-10-30 | Garito Anthony F. | Optical waveguide amplifiers |
EP1598681A3 (en) * | 2004-05-17 | 2006-03-01 | Carl Zeiss SMT AG | Optical component with curved surface and multi-layer coating |
US20070099001A1 (en) * | 2005-10-27 | 2007-05-03 | Cymer, Inc. | Blister resistant optical coatings |
JP2007156321A (en) * | 2005-12-08 | 2007-06-21 | Seiko Epson Corp | Method for manufacturing optical multilayer filter |
JP2007171735A (en) | 2005-12-26 | 2007-07-05 | Epson Toyocom Corp | Wide band anti-reflection film |
US20080185041A1 (en) * | 2007-02-02 | 2008-08-07 | Guardian Industries Corp. | Method of making a photovoltaic device with antireflective coating containing porous silica and resulting product |
DE102007020266B3 (en) * | 2007-04-30 | 2008-11-13 | Advanced Micro Devices, Inc., Sunnyvale | Semiconductor structure with an electrically conductive structural element and method for its preparation |
JP2010537230A (en) * | 2007-08-16 | 2010-12-02 | ダウ コーニング コーポレーション | Dichroic filter formed using silicon carbide-based layers |
US20090075092A1 (en) * | 2007-09-18 | 2009-03-19 | Guardian Industries Corp. | Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same |
US8399110B2 (en) | 2008-05-29 | 2013-03-19 | Corning Incorporated | Adhesive, hermetic oxide films for metal fluoride optics and method of making same |
CN101640175B (en) * | 2008-07-31 | 2012-10-10 | 中芯国际集成电路制造(北京)有限公司 | Method for manufacturing semiconductor structure |
US20100180950A1 (en) * | 2008-11-14 | 2010-07-22 | University Of Connecticut | Low-temperature surface doping/alloying/coating of large scale semiconductor nanowire arrays |
US20120307353A1 (en) * | 2011-05-31 | 2012-12-06 | Horst Schreiber | DURABLE MgO-MgF2 COMPOSITE FILM FOR INFRARED ANTI-REFLECTION COATINGS |
US20130135712A1 (en) * | 2011-11-29 | 2013-05-30 | Horst Schreiber | Yttrium oxide coated optical elements with improved mid-infrared performance |
WO2013122253A1 (en) * | 2012-02-17 | 2013-08-22 | 株式会社ニコン・エシロール | Optical component, spectacle lens, and manufacturing methods therefor |
US9164309B2 (en) | 2012-05-25 | 2015-10-20 | Apple Inc. | Display with broadband antireflection film |
JP6241102B2 (en) * | 2013-07-19 | 2017-12-06 | リコーイメージング株式会社 | Antireflection film, optical member using the same, and optical instrument |
TR201906051T4 (en) * | 2013-09-18 | 2019-05-21 | Guardian Europe Sarl | Dielectric mirror. |
US10295707B2 (en) | 2014-02-27 | 2019-05-21 | Corning Incorporated | Durability coating for oxide films for metal fluoride optics |
-
2016
- 2016-08-29 US US15/250,076 patent/US20170066684A1/en not_active Abandoned
- 2016-09-08 WO PCT/US2016/050652 patent/WO2017044549A1/en active Application Filing
- 2016-09-08 JP JP2018531313A patent/JP2018527631A/en active Pending
- 2016-09-08 EP EP16775367.2A patent/EP3347746B1/en active Active
-
2017
- 2017-05-12 US US15/593,961 patent/US10131571B2/en active Active
-
2020
- 2020-11-19 JP JP2020192296A patent/JP2021047422A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4285730A (en) * | 1979-10-05 | 1981-08-25 | Corning Glass Works | Moldable glasses |
US20140078589A1 (en) * | 2012-09-14 | 2014-03-20 | Ricoh Imaging Company, Ltd. | Anti-reflection coating, optical member having it, and optical equipment comprising such optical member |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018167126A1 (en) * | 2017-03-14 | 2018-09-20 | Schott Ag | Antireflection coating |
EP3790737A4 (en) * | 2018-05-11 | 2021-12-01 | Hewlett-Packard Development Company, L.P. | Passivation stacks |
US11230098B2 (en) | 2018-05-11 | 2022-01-25 | Hewlett-Packard Development Company, L.P. | Passivation stacks |
Also Published As
Publication number | Publication date |
---|---|
EP3347746A1 (en) | 2018-07-18 |
US20170247290A1 (en) | 2017-08-31 |
EP3347746B1 (en) | 2023-05-17 |
JP2021047422A (en) | 2021-03-25 |
WO2017044549A1 (en) | 2017-03-16 |
US10131571B2 (en) | 2018-11-20 |
JP2018527631A (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10131571B2 (en) | Methods of forming optical system components and optical coatings | |
EP2798383B1 (en) | Article coated with an interference coating having properties that are stable over time | |
EP1697770B1 (en) | Optical article covered with a visible-absorbing, multi-layer anti-reflective coating, and production method thereof | |
JP4462273B2 (en) | Optical article and manufacturing method thereof | |
WO2013183457A1 (en) | Optical element | |
US20220373723A1 (en) | Optical element having a protective coating, method for the production thereof and optical arrangement | |
US10234697B2 (en) | Composite high index layers for anti reflective stacks | |
EP3076226B1 (en) | Spectacle lens | |
US11161778B2 (en) | Coated glass articles and processes for producing the same | |
US5688608A (en) | High refractive-index IR transparent window with hard, durable and antireflective coating | |
US10705273B2 (en) | Multispectral interference coating with diamond-like carbon (DLC) film | |
JP7041424B2 (en) | Thin film formation method and optical elements | |
JP7493918B2 (en) | Optical member with anti-reflection film and method for producing same | |
US10359544B2 (en) | Long-wave infrared anti-reflective laminate | |
JP2023049017A (en) | optical interference filter | |
US7180670B2 (en) | Chirped multilayer mirror | |
JP3979814B2 (en) | Optical thin film manufacturing method | |
EP3605154B1 (en) | Thin film forming method and porous thin film | |
JP2019066600A (en) | Plastic lens and manufacturing method for the same | |
JPH10123303A (en) | Antireflection optical parts | |
Fulton et al. | Approaches explored for producing a variety of ion-assisted deposited thin film coatings using an end-Hall ion source | |
FR2843406A1 (en) | Production of a stabilized thin layer of silica doped with silica oxyfluoride for ophthalmic applications by vapor phase deposition of a protective layer of silica or metal oxide with ionic bombardment | |
JP2001108802A (en) | Antireflection film | |
JP2009093067A (en) | Zirconium oxide layer, scratch-resistant article and optical article | |
KR20230012831A (en) | High hardness lens and protective window |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CORNING INCORPORATED, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OUDARD, JEAN-FRANCOIS;PLATTEN, JAMES EDWARD;WANG, JUE;SIGNING DATES FROM 20160815 TO 20160822;REEL/FRAME:039566/0167 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |