US20160305126A1 - Roofing systems and methods - Google Patents
Roofing systems and methods Download PDFInfo
- Publication number
- US20160305126A1 US20160305126A1 US15/193,729 US201615193729A US2016305126A1 US 20160305126 A1 US20160305126 A1 US 20160305126A1 US 201615193729 A US201615193729 A US 201615193729A US 2016305126 A1 US2016305126 A1 US 2016305126A1
- Authority
- US
- United States
- Prior art keywords
- density
- cover board
- facer
- composite
- core layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D12/00—Non-structural supports for roofing materials, e.g. battens, boards
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D3/00—Roof covering by making use of flat or curved slabs or stiff sheets
- E04D3/35—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
- E04D3/351—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/20—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
- B29C44/22—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length consisting of at least two parts of chemically or physically different materials, e.g. having different densities
- B29C44/24—Making multilayered articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/20—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
- B29C44/32—Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements
- B29C44/326—Joining the preformed parts, e.g. to make flat or profiled sandwich laminates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/001—Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/42—Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/10—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
- E04C2/20—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
- E04C2/205—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics of foamed plastics, or of plastics and foamed plastics, optionally reinforced
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
- E04C2/284—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
- E04C2/284—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
- E04C2/296—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D3/00—Roof covering by making use of flat or curved slabs or stiff sheets
- E04D3/02—Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant
- E04D3/18—Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant of specified materials, or of combinations of materials, not covered by any of groups E04D3/04, E04D3/06 or E04D3/16
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D3/00—Roof covering by making use of flat or curved slabs or stiff sheets
- E04D3/35—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
- E04D3/351—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
- E04D3/352—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material at least one insulating layer being located between non-insulating layers, e.g. double skin slabs or sheets
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04D—ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
- E04D3/00—Roof covering by making use of flat or curved slabs or stiff sheets
- E04D3/35—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
- E04D3/351—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
- E04D3/354—Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material more than one of the layers being composed of insulating material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B2038/0052—Other operations not otherwise provided for
- B32B2038/0084—Foaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
- B32B2419/06—Roofs, roof membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
- Y10T428/24331—Composite web or sheet including nonapertured component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/24992—Density or compression of components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249978—Voids specified as micro
- Y10T428/24998—Composite has more than two layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249987—With nonvoid component of specified composition
- Y10T428/249988—Of about the same composition as, and adjacent to, the void-containing component
- Y10T428/249989—Integrally formed skin
Definitions
- the subject invention relates to low-slope roofs that are typically found on commercial and industrial buildings and in particular to prefabricated high-density polymer or predominantly polymer material cover boards and cover board composites and prefabricated roofing panel composites which include high-density polymer or predominantly polymer material cover boards and low-density polymer or predominantly polymer material foam insulation boards, for use on such low-slope roofs and to a method of making the cover boards, the cover board composites, and the roofing panel composites.
- the roofing systems for these roofs with low-slope roof decks typically include one or more layers of a low-density roofing insulation, a layer of roofing cover boards that overlie the low-density roofing insulation layer(s), and a waterproofing membrane that overlies the layer of cover boards.
- the layer(s) of low-density insulation such as a low-density polymer-based foam insulation, if not protected, can be partially crushed or otherwise damaged from worker traffic over the insulation, the placement of heaving objects on the insulation, the weather, and other causes commonly encountered in roofing construction.
- the layer of roofing cover boards that overlies the one or more layers of low-density insulation, protects the more fragile low density insulation from damage, acts as a fire barrier, provides a suitable substrate for the attachment of the overlying waterproofing membrane, and augments the insulating function of the low-density insulation.
- the uppermost waterproofing membrane layer overlying the cover board layer protects the underlying cover board and insulation layers from moisture and other adverse climatic conditions. Normally, these three components (the low-density insulation boards, the roofing cover boards, and the waterproofing membrane) of the roofing system are separately manufactured and separately and successively applied to the low-slope roof deck.
- roofing systems function very well, there has remained a need to provide improved roofing cover boards and prefabricated cover board composites and to provide prefabricated roofing panel composites that include at least an insulation board and the improved roofing cover board, and that, preferably, include an insulation board and prefabricated the roofing cover board composite having a waterproofing membrane.
- roofing systems for low-slope roof decks can be improved and/or the time, labor, and other costs associated with the installation of roofing systems on low-slope roof decks can be reduced.
- the subject invention provides improved roofing cover boards, improved prefabricated roofing cover board and waterproofing membrane composites, improved prefabricated roofing panel cover board and insulation board composites, improved prefabricated roofing panel cover board, insulation board, and waterproofing membrane composites, and improved prefabricated roofing panel cover board, insulation board, baseboard, and waterproofing membrane composites.
- the subject invention also provides these roofing cover boards, roofing cover board composites, and roofing panel composites with reinforcing patches or strips that increase the per fastener wind uplift pull through rating for the cover boards, cover board composites, and roofing panel composites to thereby further reduce the labor and ultimately the overall installed cost of roofing systems utilizing these cover boards, cover board composites, and roofing panel composites.
- the subject invention also provides a method for making the improved roofing cover board and the prefabricated roofing panel composites including the improved roofing cover board that is highly productive, relatively economical, and efficient.
- a roofing system comprises a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation.
- Each of the plurality of insulation boards comprises a first polyisocyanurate foam having a first polyisocyanurate foam density.
- the roofing system further comprises a plurality of cover boards adapted for overlying the layer of insulation.
- Each of the plurality of cover boards comprises a second polyisocyanurate foam having a second polyisocyanurate foam density, and the second polyisocyanurate foam density is greater than the first polyisocyanurate foam density.
- each of the plurality of insulation boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the insulation board
- each of the plurality of cover boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the cover board.
- the second polyisocyanurate foam density may be selected to provide the cover boards with a compressive strength to resist deformation.
- the second polyisocyanurate foam density may be between 6 lbs/ft 3 and 25 lbs/ft 3 .
- the second polyisocyanurate foam density may be between 4 lbs/ft 3 and 25 lbs/ft 3 .
- each of the plurality of cover boards has a thickness, and the thickness and the second polyisocyanurate foam density are selected to provide the cover boards with a compressive strength to resist deformation and protect low-density insulation layers overlaid by the cover board from damage.
- each of the plurality of cover boards is bonded to a respective one of the plurality of insulation boards to form a roofing panel composite.
- the roofing system may further comprise a waterproofing membrane adapted for overlying the layer of cover boards.
- a roofing system comprises a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation.
- Each of the plurality of insulation boards has opposing planar surfaces and has a facer on at least one planar surface, and each of the plurality of insulation boards comprises polyisocyanurate foam having a first polyisocyanurate foam density.
- the roofing system further comprises a plurality of cover boards adapted for overlying the layer of insulation.
- Each of the plurality of cover boards has opposing planar surfaces and has a facer on at least one planar surface, and each of the plurality of cover boards comprises polyisocyanurate foam having a second polyisocyanurate foam density greater than the first polyisocyanurate foam density.
- the greater polyisocyanurate foam density provides for a compressive strength to resist deformation.
- the second polyisocyanurate foam density may be between 6 lbs/ft 3 and 25 lbs/ft 3 .
- the second polyisocyanurate foam density may be between 4 lbs/ft 3 and 25 lbs/ft 3 .
- the first polyisocyanurate foam density may be less than 4 lbs/ft 3 .
- the first polyisocyanurate foam density may be between about 1 lbs/ft 3 and about 3 lbs/ft 3 .
- the facers comprise glass fiber.
- each of the plurality of cover boards is bonded to a respective one of the plurality of insulation boards to form a roofing panel composite.
- the roofing system further comprises a waterproofing membrane adapted for overlying the layer of cover boards.
- a method of constructing a roof comprises receiving a plurality of insulation boards and a plurality of cover boards as recited above, and installing at least some of the insulation boards and at least some of the cover boards on the roof.
- a roofing system comprises a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation.
- Each of the plurality of insulation boards comprises a first polyisocyanurate or predominantly polyisocyanurate foam material having a first foam density.
- the roofing system further comprises a plurality of cover boards adapted for overlying the layer of insulation, each of the plurality of cover boards comprising a second polyisocyanurate or predominantly polyisocyanurate foam material having a second foam density.
- the second foam density is greater than the first foam density, and the greater foam density provides for a compressive strength to resist deformation.
- each of the plurality of insulation boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the insulation board
- each of the plurality of cover boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the cover board.
- the second foam density may be between 6 lbs/ft 3 and 25 lbs/ft 3 .
- the second foam density may be between 4 lbs/ft 3 and 25 lbs/ft 3 .
- each of the plurality of cover boards is bonded to a respective one of the plurality of insulation boards to form a roofing panel composite.
- the roofing system further comprises a waterproofing membrane adapted for overlying the layer of cover boards.
- FIG. 1 is a schematic perspective view of a prefabricated high-density polymer or predominantly polymer material cover board of the subject invention.
- FIG. 2 is a schematic perspective view of a cover board composite of the subject invention that includes a prefabricated high-density polymer or predominantly polymer material cover board and a top facer.
- FIG. 3 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board.
- FIG. 4 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board composite with a top facer and a low-density polymer or predominantly polymer material foam insulation board.
- FIG. 5 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board, a low-density polymer or predominantly polymer material foam insulation board, and a high-density polymer or predominantly polymer material baseboard.
- FIG. 6 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board composite with a top facer, a low-density polymer or predominantly polymer material foam insulation board, a high-density polymer or predominantly polymer material baseboard.
- FIG. 7 is a schematic side view of a first production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board.
- FIG. 8 is a schematic side view of a second production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board.
- FIG. 9 is a schematic side view of a production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board, a low-density polymer or predominantly polymer material foam insulation board, and a high-density polymer or predominantly polymer material baseboard.
- FIG. 10 is a schematic side view of a third production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board.
- FIG. 11 is a fragmentary, transverse schematic, perspective view of a cover board composite of the subject invention, at a fastener location, wherein the composite includes a reinforcement for increasing the fastener wind-uplift pull through rating of the cover board composite.
- the Figure also shows a portion of a fastener plate that can be used with the composite.
- FIG. 12 is a fragmentary, partially exploded, transverse schematic, perspective view of the cover board composite of FIG. 11 at a fastener location.
- FIG. 13 is a fragmentary, transverse schematic, perspective view of a prefabricated cover board/insulation board panel composite of the subject invention, at a fastener location, wherein the panel composite includes a reinforcement for increasing the fastener wind-uplift pull through rating of the panel composite.
- the Figure also shows a portion of a fastener plate that can be used with the panel composite.
- FIG. 14 is a fragmentary, schematic, perspective view of a prefabricated cover board/insulation board/baseboard panel composite of the subject invention, at a fastener location, wherein the panel composite includes a reinforcement for increasing the fastener wind-uplift pull through rating of the panel composite.
- the Figure also shows a portion of a fastener plate that can be used with the composite.
- FIG. 15 is a schematic bottom view of the prefabricated cover board, cover board/insulation board panel, or cover board/insulation board/baseboard panel composites of FIGS. 11 to 14 , with the bottom facer removed, to show a reinforcement patch pattern for increasing the fastener wind-uplift pull through rating of the composites.
- FIG. 16 is a schematic bottom view of the prefabricated cover board, cover board/insulation board panel, or cover board/insulation board/baseboard panel composites of FIGS. 11 to 14 , with the bottom facer removed, to show a double-layer reinforcement patch pattern for increasing the fastener wind-uplift pull through rating of the composites.
- FIG. 17 is a schematic bottom view of the prefabricated cover board, cover board/insulation board panel, or cover board/insulation board/baseboard panel composites of FIGS. 11 to 14 , with the bottom facer removed, to show a reinforcement strip pattern for increasing the fastener wind-uplift pull through rating of the composites.
- FIG. 1 is a schematic perspective view of the cover board 10 of the subject invention, which has a high-density polymer or predominantly polymer material core layer 12 .
- the high-density polymer or predominantly polymer material core layer 12 of the cover board 10 has a density of at least 4 lbs/ft 3 and preferably between 6 lbs/ft 3 and 25 lbs/ft 3 .
- the high-density polymer or predominantly polymer material core layer 12 of the cover board 10 has a thickness of about 0.08 inches or greater and, preferably, a thickness between about 0.25 inches and about 0.75 inches.
- the density and thickness of the high-density polymer or predominantly polymer material core layer 12 of the cover board 10 are selected to provide the cover board with the compressive strength to resist deformation and protect low-density insulation layers overlaid by the cover board from damage, and to provide surface characteristics that promote the bonding of a top facer, e.g. a waterproofing membrane, to the high-density core layer of the cover board.
- the high-density polymer or predominantly polymer material core layer 12 has a top major surface 14 and a bottom major surface 16 that are each defined by the length and the width of the high-density polymer or predominantly polymer material core layer.
- the high-density polymer or predominantly polymer material core layer 12 typically has a width of about four feet or greater and a length of about four feet or greater, preferably, about eight feet or greater and could have lengths that are limited only by the ability to store, transport, and handle the high-density polymer or predominantly polymer material cover board 10 prior to installation.
- the cover board 10 may have top and/or bottom facers that are not shown in FIG. 1 . When used, the top and/or bottom facers typically overlie the entire or substantially the entire major surface 14 and/or 16 of the high-density polymer or predominantly polymer material core layer 12 to which the facers are bonded.
- the top and bottom facers of the high-density polymer or predominantly polymer material cover board 10 may be any sheet material that provides suitable top and bottom major surfaces for the cover board, such as but not limited to paper, foil, woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- the high-density polymer or predominantly polymer material core layer 12 of the cover board 10 may be made of various high-density polymer or predominantly polymer materials [e.g. a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic material or a high-density material made of a blend of these materials; a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a high-density foam material made of a blend of these materials; a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or
- a preferred material for the high-density core layer 12 is a high-density polyisocyanurate or predominantly polyisocyanurate material or foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic.
- various fillers that may be used in the predominantly polymer materials of the high-density core layer 12 include but are not limited to powdered, liquid, and fiber fillers.
- the high-density polymer and predominantly polymer materials of the core layer 12 may also include fiber reinforcements, fungi growth-inhibiting agents, and fire-retardants to reduce the cost of and/or modify the properties of the high-density core layer 12 , such as but not limited to the compressive strength, the toughness, the flexibility, the friability, and the fire resistance of the core layer.
- Examples of fillers that may be used in the high-density predominantly polymer material core layer 12 are fillers such as but not limited to limestone (CaCO 3 ), fiberglass, recycled polyisocyanurate dust, extenders/plasticizers, ground up foam insulation, ground up rubber, wood dust, etc.
- the prefabricated high-density polymer or predominantly polymer material cover board of the subject invention is relatively lightweight and easily cut. This makes the cover board easier to install and increases the productivity of workers installing the cover boards.
- the high-density polymer or predominantly polymer material cover board of the subject invention does not support mold growth and the cover board is not negatively impacted by the application of solvents, hot asphalt, or adhesives.
- FIG. 2 is a schematic perspective view of a prefabricated cover board and facer composite 20 of the subject invention.
- the composite 20 includes the cover board 10 and a facer 22 , e.g. a waterproofing membrane.
- a facer 22 e.g. a waterproofing membrane.
- the prefabricated cover board and facer composite 20 is the same as the cover board 10 of FIG. 1 .
- the top facer 22 of the composite 20 may be any sheet material that provides a suitable top major surface for the cover board and facer composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred sheet material for the top facer 22 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Where the composite 20 is fully adhered to an underlying roofing layer (e.g.
- a sheet material may be used for the top facer 22 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane).
- a bituminous or modified bituminous membrane or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane).
- the facer may extend beyond the high-density polymer or predominantly polymer material core layer of the cover board 10 on one or more of the four sides of the core layer (e.g. beyond a side edge and an end edge of the top major surface of the core layer) to form membrane overlaps for sealing to the membranes of other composites 20 .
- the composite may also include a bottom facer that is bonded to the bottom major surface of the high-density polymer or predominantly polymer material core layer of the cover board.
- the bottom facer of the composite 20 may be any sheet material that provides a suitable bottom major surface for the cover board and facer composite for bonding to an underlying layer of the roofing system, such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- FIG. 3 is a schematic perspective view of a first prefabricated roofing panel composite 30 of the subject invention.
- the prefabricated roofing panel composite 30 includes a high-density polymer or predominantly polymer material cover board 32 and an insulation board 34 that, as shown, are bonded directly together.
- the prefabricated roofing panel composite 30 has a top major surface 36 and a bottom major surface 38 that are each defined by the length and the width of the roofing panel composite.
- the prefabricated roofing panel composite 30 typically has a width of about four feet or greater and a length of about four feet or greater, preferably, about eight feet or greater and could have lengths that are limited only by the ability to store, transport and handle the roofing panel composites prior to installation.
- the cover board 32 has a high-density polymer or predominantly polymer material core layer 40 .
- the high-density polymer or predominantly polymer material core layer 40 of the cover board 32 in the prefabricated roofing panel composite 30 has a density of at least 4 lbs/ft 3 and preferably, between 6 lbs/ft 3 and 25 lbs/ft 3 .
- the high-density polymer or predominantly polymer material core layer 40 of the cover board 32 in the prefabricated roofing panel composite has a thickness of about 0.08 inches or greater and, preferably, a thickness between about 0.25 inches and about 0.75 inches.
- the density and thickness of the high-density polymer or predominantly polymer material core layer 40 of the cover board 32 are selected to provide the cover board with the compressive strength to resist deformation and protect the low-density insulation board 34 that is overlaid by the cover board from damage, and to provide surface characteristics that promote the bonding of a top facer, e.g. a waterproofing membrane, to the high-density core layer 40 of the cover board.
- the insulation board 34 in the prefabricated roofing panel composite 30 includes a low-density polymer or predominantly polymer material foam core layer 42 .
- the low-density polymer or predominantly polymer material foam core layer 42 of the insulation board 34 has a density less than 6 lbs/ft 3 , preferably less than 4 lbs/ft 3 , and typically a density of less than 2.5 lbs/ft 3 .
- the low-density polymer or predominantly polymer material foam core layer 42 has a thickness of about 0.50 inches or greater and, preferably, a thickness between about 0.50 inches and about 6 inches.
- the density and thickness of the low-density polymer or predominantly polymer material foam core layer 42 of the insulation board 34 are selected to provide the prefabricated roofing panel composite 30 with the desired insulating properties for the roofing system application.
- the high-density polymer or predominantly polymer material core layer 40 of the cover board 32 may be made of various high-density polymer or predominantly polymer materials [e.g. a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic material or a high-density material made of a blend of these materials; a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a high-density foam material made of a blend of these materials; a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic fillers); a high-
- a preferred material for the high-density core layer 40 is a high-density polyisocyanurate or predominantly polyisocyanurate material or foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or filler(s) such as but not limited to those listed above in connection with the cover board 10 .
- the low-density polymer or predominantly polymer material foam core layer 42 of the insulation board 34 may be made of various low-density polymer or predominantly polymer foam materials [e.g. a low-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a low-density foam material made of a blend of these materials; a low-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a low-density foam material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or filler(s), a low-density foam material made of other thermoset matrix polymers; etc.].
- various low-density polymer or predominantly polymer foam materials e.g. a low-density poly
- a preferred material for the low-density core layer 42 is a low-density polyisocyanurate or predominantly polyisocyanurate foam material up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s).
- the high-density predominantly polymer material of the core layer 40 may contain various powdered, liquid, and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc. to reduce the cost and/or modify the properties of the high-density core layer 40 (such as but not limited to the compressive strength, the flexibility, the friability, the fire resistance of the core layer).
- the low-density core layer 42 is made of a predominantly polymer material foam
- the low-density predominantly polymer material foam core layer 42 may contain various powdered, liquid, and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc.
- fillers that may be used in the high-density core layer 40 of the cover board 32 and the low-density core layer 42 of the insulation board 34 are fillers such as but not limited to limestone (CaCO 3 ), fiberglass, recycled polyisocyanurate dust, extenders/plasticizers, ground up foam insulation, ground up rubber, wood dust, etc.
- the prefabricated roofing panel composite 30 has no facers, the prefabricated roofing panel composite 30 could have a common facer intermediate and bonded to both the bottom major surface of the cover board core layer 40 and the top major surface of the insulation board core layer 42 , a top facer bonded to the top major surface of the cover board core layer 40 , and/or a bottom facer bonded to the bottom major surface of the insulation board core layer 42 .
- the common facer of the prefabricated roofing panel composite 30 may be any sheet material with good bonding surfaces that facilitates a good bond between the cover board 32 and insulation board 34 , such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc.
- the top facer of the prefabricated roofing panel composite 30 overlies the entire or substantially the entire top major surface of the high-density core layer 40 of the cover board 32 .
- the top facer of the prefabricated roofing panel composite 30 may be any sheet material that provides a suitable top major surface for the prefabricated roofing panel composite 30 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- the bottom facer of the prefabricated roofing panel composite 30 overlies the entire or substantially the entire bottom surface of the low-density foam core layer 42 of the insulation board 34 .
- the bottom facer of the prefabricated roofing panel composite 30 may be any sheet material that provides a suitable bottom major surface for the roofing panel composite 30 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- FIG. 4 is a schematic perspective view of a prefabricated roofing panel composite 50 of the subject invention.
- the prefabricated roofing panel composite 50 includes the high-density polymer or predominantly polymer material cover board 32 and the low-density polymer or predominantly polymer material foam insulation board 34 that, as shown in FIG. 4 , are bonded directly together, and a top facer 52 .
- the prefabricated roofing panel composite 50 is the same as the prefabricated roofing panel composite 30 of FIG. 3 .
- the top facer 52 of the prefabricated roofing panel composite 50 is bonded to and overlies the entire or substantially the entire top surface of the high-density polymer or predominantly polymer material core layer of the cover board 32 .
- the top facer 52 of the prefabricated roofing panel composite 50 may be any sheet material that provides a suitable top major surface for the cover board of the prefabricated roofing panel composite 50 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred sheet material for the top facer 52 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating.
- a sheet material may be used for the top facer 52 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane).
- a bituminous or modified bituminous membrane e.g. a EPDM, PVC, or TPO membrane
- the facer may extend beyond the high-density core layer of the cover board 32 on one or more of the four sides of the core layer, e.g. beyond a side edge and an end edge of the top major surface of the core layer to provide overlaps for sealing with the membranes of adjacent panels.
- the prefabricated roofing panel composite 50 only has a top facer 52
- the prefabricated roofing panel composite 50 could have a common facer intermediate and bonded to both the bottom major surface of the cover board 32 core layer 40 and the top major surface of the insulation board 34 core layer 42 , and/or a bottom facer bonded to the bottom major surface of the insulation board 34 core layer 42 .
- the common facer of the prefabricated roofing panel composite 50 may be any sheet material with good bonding surfaces that facilitates a good bond between the cover board 32 and insulation board 34 , such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc.
- the bottom facer of the prefabricated roofing panel composite 50 overlies the entire or substantially the entire bottom surface of the low-density foam core layer of the insulation board 34 .
- the bottom facer of the prefabricated roofing panel composite 50 may be any sheet material that provides a suitable bottom major surface for the roofing panel composite 50 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- FIG. 5 is a schematic perspective view of a prefabricated roofing panel composite 60 of the subject invention that includes: a high-density polymer or predominantly polymer material cover board 62 , a low-density polymer or predominantly polymer material foam insulation board 64 , and a high-density polymer or predominantly polymer material baseboard 66 .
- the high-density polymer or predominantly polymer material cover board 62 and baseboard 66 may have the same density or different densities.
- the cover board 62 , the insulation board 64 , and the baseboard 66 are bonded directly together.
- the prefabricated roofing panel composite 60 has a top major surface 68 and a bottom major surface 70 that are each defined by the length and the width of the prefabricated roofing panel composite.
- the prefabricated roofing panel composite 60 typically has a width of about four feet or greater and a length of about four feet or greater, preferably, about eight feet or greater and could have lengths that are limited only by the ability to store, transport and handle the roofing panel composites prior to installation.
- the cover board 62 has a high-density polymer or predominantly polymer material core layer 72 and the baseboard 66 has a high-density polymer or predominantly polymer material core layer 74 .
- the high-density polymer or predominantly polymer material core layers 72 and 74 each have a density of at least 4 lbs/ft 3 and preferably, between 6 lbs/ft 3 and 25 lbs/ft 3 .
- the high-density polymer or predominantly polymer material core layer 72 of the cover board 62 and the high-density polymer or predominantly polymer material core layer 74 of the baseboard 66 each have a thickness of about 0.08 inches or greater and, preferably, a thickness between about 0.25 inches and about 0.75 inches.
- the density and thickness of the high-density polymer or predominantly polymer material core layer 72 of the cover board 62 are selected to provide the cover board with the compressive strength to resist deformation and protect the low-density insulation board 64 that is overlaid by the cover board from damage, and to provide surface characteristics that promote the bonding of a top facer, e.g. a waterproofing membrane, to the core layer 72 of the cover board.
- the insulation board 64 in the prefabricated roofing panel composite 60 includes a low-density polymer or predominantly polymer foam core layer 76 .
- the low-density polymer or predominantly polymer material foam core layer 76 of the insulation board 64 has a density less than 6 lbs/ft 3 , preferably less than 4 lbs/ft 3 , and typically a density of less than about 2.5 lbs/ft 3 .
- the low-density polymer or predominantly polymer material foam core layer 76 has a thickness of about 0.50 inches or greater and, preferably, a thickness between about 0.50 inches and about 6 inches.
- the density and thickness of the low-density polymer or predominantly polymer material foam core layer 76 of the insulation board 64 are selected to provide the prefabricated roofing panel composite 60 with the desired insulating properties for the roofing system application.
- the high-density polymer or predominantly polymer material core layers 72 and 74 of the cover board 62 and the baseboard 66 may be made of various high-density polymer or predominantly polymer materials [e.g. a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic material or a high-density material made of a blend of these materials; a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a high-density foam material made of a blend of these materials; a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or
- a preferred material for the high-density core layers 72 and 74 is a high-density polyisocyanurate or predominantly polyisocyanurate material or foam material up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s).
- the low-density polymer or predominantly polymer material foam core layer 76 of the insulation board 64 may be made of various low-density polymer or predominantly polymer foam materials [e.g. a low-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a low-density foam material made of a blend of these materials; a low-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a low-density foam material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s), a low-density material made of other thermoset matrix polymers; etc.].
- various low-density polymer or predominantly polymer foam materials e.g. a low-den
- a preferred material for the low-density core layer 76 is a low-density polyisocyanurate or predominantly polyisocyanurate foam material up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s).
- the high-density predominantly polymer material of the core layers 72 and 74 may contain various powdered, liquid, and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc. to reduce the cost and/or modify the properties of the high-density core layers 72 and 74 (such as but not limited to the compressive strength, the flexibility, the friability, the fire resistance of the core layer).
- the low-density predominantly polymer material foam core layer 76 may contain various powdered, liquid and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc. to reduce the cost and/or modify the properties of the low-density foam core layer.
- fillers that may be used in the high-density core layers 72 of the cover board 62 and the baseboard 66 and the low-density core layer 76 of the insulation board 64 are fillers such as but not limited to limestone (CaCO 3 ), fiberglass, recycled polyisocyanurate dust, extenders/plasticizers, ground up foam insulation, ground up rubber, wood dust, etc.
- the prefabricated roofing panel composite 60 has no facers, the prefabricated roofing panel composite 60 could have a common facer intermediate and bonded to both the bottom major surface of the cover board core layer 72 and the top major surface of the insulation board core layer 76 , a common facer intermediate and bonded to both the bottom major surface of the insulation board core layer 76 and the top major surface of the baseboard core layer 74 , a top facer bonded to the top major surface of the cover board core layer 72 , and/or a bottom facer bonded to the bottom major surface of the baseboard core layer 74 .
- the common facers of the prefabricated roofing panel composite 60 may be any sheet material with good bonding surfaces that facilitates a good bond between the cover board 62 , the insulation board 64 , and the baseboard 66 , such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc.
- the top facer of the prefabricated roofing panel composite 60 overlies the entire or substantially the entire top major surface of the high-density core layer 72 of the cover board 62 .
- the top facer of the prefabricated roofing panel composite 60 may be any sheet material that provides a suitable top major surface for the prefabricated roofing panel composite 60 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- the bottom facer of the prefabricated roofing panel composite 60 overlies the entire or substantially the entire bottom surface of the high-density core layer 74 of the baseboard 66 .
- the bottom facer of the prefabricated roofing panel composite 60 may be any sheet material that provides a suitable bottom major surface for the roofing panel composite 60 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- FIG. 6 is a schematic perspective view of a prefabricated roofing panel composite 80 of the subject invention.
- the prefabricated roofing panel composite 80 includes the high-density polymer or predominantly polymer material cover board 62 , the low-density polymer or predominantly polymer material foam insulation board 64 , and the high-density polymer or predominantly polymer material baseboard 66 , that, as shown in FIG. 6 , are bonded directly together, and a top facer 82 .
- the prefabricated roofing panel composite 80 of FIG. 6 is the same as the prefabricated roofing panel composite 60 of FIG. 5 .
- the top facer 82 of the prefabricated roofing panel composite 80 is bonded to and overlies the entire or substantially the entire top surface of the high-density polymer or predominantly polymer material core layer of the cover board 62 .
- the top facer 82 of the prefabricated roofing panel composite 80 may be any sheet material that provides a suitable top major surface for the cover board and facer composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred sheet material for the top facer 82 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating.
- a sheet material may be used for the top facer 82 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane).
- a bituminous or modified bituminous membrane e.g. a EPDM, PVC, or TPO membrane
- the facer may extend beyond the high-density polymer or predominantly polymer material core layer of the cover board 62 on one or more of the four sides of the core layer, e.g. beyond a side edge and an end edge of the top major surface of the core layer to provide membrane overlaps for sealing with the membranes of adjacent panels.
- the prefabricated roofing panel composite 80 only has a top facer 82
- the prefabricated roofing panel composite 80 could have a common facer intermediate and bonded to both the bottom major surface of the cover board core layer and the top major surface of the insulation board core layer, a common facer intermediate and bonded to both the bottom major surface of the insulation board core layer and the top major surface of the baseboard core layer, and/or a bottom facer bonded to the bottom major surface of the baseboard core layer.
- the common facers of the prefabricated roofing panel composite 80 may be any sheet material with good bonding surfaces that facilitates a good bond between the cover board and insulation board and the insulation board and the baseboard, such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc.
- the bottom facer of the prefabricated roofing panel composite 80 overlies the entire or substantially the entire bottom surface of the high-density core layer of the baseboard 66 .
- the bottom facer of the prefabricated roofing panel composite 80 may be any sheet material that provides a suitable bottom major surface for the prefabricated roofing panel composite 80 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- FIG. 7 is a schematic side view of a first production line 100 that can be used with the method of the subject invention to continuously make prefabricated roofing panel composites of the subject invention in line, such as the prefabricated roofing panel composites 30 of FIG. 3 and 50 of FIG. 4 .
- the prefabricated roofing panel composites 30 and 50 each include a high-density polymer or predominantly polymer material cover board 32 and a low-density polymer or predominantly polymer material foam insulation board 34 .
- the production line 100 includes: a first forming station 102 for forming the low-density polymer or predominantly polymer material foam insulation board 34 of the prefabricated roofing panel composites 30 and 50 ; a second forming station 104 for forming the high-density polymer or predominantly polymer material cover board 32 of the prefabricated roofing panel composites 30 and 50 ; and a cutting station 106 for cutting the prefabricated roofing panel composites 30 and 50 to length.
- the first forming station 102 for forming the low-density foam insulation board 34 includes a conventional dispenser 108 for dispensing a low-density polymer or predominantly polymer material foam precursor 110 (e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor) onto a facer, when used, overlying a conveyor 112 of two spaced-apart opposed forming conveyers 112 and 114 or directly onto the conveyor 112 .
- a low-density polymer or predominantly polymer material foam precursor 110 e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor
- the first forming station 102 also includes supplies (e.g. rolls) of facer materials 116 and 118 that can be fed over and/or beneath the low-density polymer or predominantly polymer material foam precursor 110 to form a common facer of the prefabricated roofing panel composites 30 and 50 and a bottom facer of the prefabricated roofing panel composites 30 and 50 .
- the second forming station 104 of the production line 100 for forming the high-density polymer or predominantly polymer material cover board 32 of the prefabricated roofing panel composites 30 and 50 includes a conventional dispenser 120 for dispensing a high-density polymer or predominantly polymer material or foam precursor 122 (e.g. a high-density polyisocyanurate or predominantly polyisocyanurate foam precursor) onto the low-density polymer or predominantly polymer material foam core layer 42 or, when used, a common facer overlying the low-density polymer or predominantly polymer material foam core layer 42 .
- a high-density polymer or predominantly polymer material or foam precursor 122 e.g. a high-density polyisocyanurate or predominantly polyisocyanurate foam precursor
- the high-density polymer or predominantly polymer material precursor 122 overlying the low-density foam core layer 42 or, when used, the common facer the high-density polymer or predominantly polymer material precursor 122 and the low-density foam core layer 42 pass between two spaced-apart opposed forming conveyers 112 and 124 where the high-density polymer or predominantly polymer material core layer 38 is formed and bonded directly to the low-density foam core layer 42 or to the common facer overlying the low-density foam core layer 42 .
- the spaced-apart opposed forming conveyors 112 and 124 cooperate to set the thickness of both the high-density polymer or predominantly polymer material core layer 40 and the prefabricated roofing panel composite 30 or 50 .
- the second forming station 104 also includes supplies (e.g. rolls) of a facer material 126 that is fed over the high-density polymer or predominantly polymer material precursor 122 to form the top facer 52 of both the high-density cover board 32 and the prefabricated roofing panel composite 50 .
- the prefabricated roofing panel composite 30 or 50 is then cut to length to complete the formation of the prefabricated roofing panel composite 30 or 50 .
- a cutter such as but not limited to a reciprocating cutter 128 , cuts the prefabricated roofing panel composite 30 or 50 coming from the second forming station 104 to length.
- the production line 100 is capable of applying three facer materials 116 , 118 , and 126 to the insulation board 34 and the cover board 32 to form the prefabricated roofing panel composites 30 and 50 .
- the application of any one, any two, or all of the facing materials 116 , 118 and 126 to the insulation board and cover board can be omitted to form the prefabricated roofing panel composite 30 and all but the top facing material can be omitted to form the prefabricated roofing panel composite 50 with the desired number of facers.
- the facers 116 , 118 and 126 normally prevent the polymer or predominantly polymer layers from sticking to the conveyors.
- any one or all of the facing materials are not needed for and could be eliminated from the manufacturing process.
- FIG. 8 is a schematic side view of a second production line 200 that can be used with the method of the subject invention to continuously make prefabricated roofing panel composites of the subject invention, such as the prefabricated roofing panel composites 30 of FIG. 3 and 50 of FIG. 4 .
- the prefabricated roofing panel composites 30 and 50 each include a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board.
- the production line 200 includes: an in-feed conveyor 202 for continuously feeding a series of low-density polymer or predominantly polymer material foam insulation boards 34 of the prefabricated roofing panel composite into a forming station 204 ; the forming station 204 for forming the high-density polymer or predominantly polymer material cover board 32 of the prefabricated roofing panel composites 30 and 50 ; and a cutting station 206 for cutting the prefabricated roofing panel composites 30 and 50 to length.
- the low-density polymer or predominantly polymer material foam insulation boards 34 may include a top facer that, when used, forms a common facer of the prefabricated roofing panel composites 30 and 50 and may include a bottom facer that, when used, forms a bottom facer of the prefabricated roofing panel composites.
- the low-density polymer or predominantly polymer material foam insulation boards 34 are fed into the forming station 204 lengthwise with the ends of successive insulation boards 34 in the continuous series of insulation boards abutting each other.
- the forming station 204 of the production line 200 for forming the high-density polymer or predominantly polymer material cover board 32 of the prefabricated roofing panel composite 30 includes a conventional dispenser 208 for dispensing the high-density polymer or predominantly polymer material precursor 210 (e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor) directly onto the low-density foam core layers 42 of the insulation boards 34 or, when used the common facers overlying the low-density foam core layers of the low-density foam insulation boards.
- the high-density polymer or predominantly polymer material precursor 210 e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor
- the high-density polymer or predominantly polymer material precursor 210 directly overlying the low-density foam core layers 42 of the insulation boards or the common facers 36 carried by the low-density foam insulation boards 34 , the high-density polymer or predominantly polymer material precursor 210 and the low-density foam insulation boards 34 pass between two spaced-apart opposed forming conveyers 212 and 214 where the high-density polymer or predominantly polymer material core layers 38 of the cover boards 32 are formed and bonded directly to the low-density foam core layers 42 of the insulation boards 34 or to the common facers overlying the low-density foam insulation board 34 .
- the spaced-apart opposed forming conveyors 212 and 214 cooperate to set the thickness of both the high-density polymer or predominantly polymer material core layer 40 and the prefabricated roofing panel composite 30 or 50 .
- the forming station 204 also includes supplies (e.g. rolls) of a facer material 216 that is fed over the high-density polymer or predominantly polymer material precursor 210 to form the top facer 52 of both the high-density polymer or predominantly polymer material cover board 32 and the prefabricated roofing panel composite 50 .
- the prefabricated roofing panel composite 30 or 50 is then cut to length to complete the formation of the prefabricated roofing panel composite 30 or 50 .
- a cutter such as but not limited to a reciprocating cutter 218 , cuts the prefabricated roofing panel composite 30 coming from the forming station 204 to length.
- the production line 200 is capable of making the prefabricated roofing panel composite 30 by feeding preformed low-density polymer or predominantly polymer material foam insulation boards 34 into the forming station 204 and omitting the application of the facer material 216 to the cover board 32 and is capable of making the prefabricated roofing panel composite 50 by feeding preformed low-density polymer or predominantly polymer material foam insulation boards 34 into the forming station 204 and applying of the facer material 216 to the cover board 32 .
- the facer 216 normally prevents the high-density polymer or predominantly polymer material layer from sticking to the conveyor 212 .
- the facing materials 216 is not needed for and could be eliminated from the manufacturing process.
- FIG. 9 is a schematic side view of a production line 300 that can be used with the method of the subject invention to continuously make a prefabricated roofing panel composite of the subject invention, such as the prefabricated roofing panel composites 60 of FIG. 5 and 80 of FIG. 6 .
- These prefabricated roofing panel composites each include: a high-density polymer or predominantly polymer material cover board 62 , a low-density polymer or predominantly polymer material foam insulation board 64 , and a high-density polymer or predominantly polymer material baseboard 66 .
- the production line 300 includes: a first forming station 302 for forming the high-density polymer or predominantly polymer material baseboard 66 of the prefabricated roofing panel composites 60 and 80 ; a second forming station 304 for forming the low-density polymer or predominantly polymer material foam insulation board 64 of the prefabricated roofing panel composites 60 and 80 ; a third forming station 306 for forming the high-density polymer or predominantly polymer material cover board 62 of the prefabricated roofing panel composites 60 and 80 ; and a cutting station 308 for cutting the prefabricated roofing panel composites 60 and 80 to length.
- the first forming station 302 for forming the high-density polymer or predominantly polymer material baseboard 56 includes a conventional dispenser 310 for dispensing a high-density polymer or predominantly polymer material precursor 312 (e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor) onto a facer, when used, overlying a conveyor 314 of two spaced-apart opposed forming conveyers 314 and 316 or directly onto the conveyor 314 .
- a high-density polymer or predominantly polymer material precursor 312 e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor
- the first forming station 302 also includes supplies (e.g. rolls) of facer materials 318 and 320 that may be fed over and/or beneath the high-density polymer or predominantly polymer material precursor 310 to form, when used, a common facer of the prefabricated roofing panel composites 60 and 80 and a bottom facer of the prefabricated roofing panel composites 60 and 80 .
- the second forming station 304 of the production line 300 for forming the low-density polymer or predominantly polymer material foam insulation board 64 of the prefabricated roofing panel composites 60 and 80 includes a conventional dispenser 322 for dispensing a low-density polymer or predominantly polymer material foam precursor 324 (e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor) directly onto the high-density core layer 74 or, when used, onto a common facer overlying the high-density core layer 74 of the baseboard 66 .
- a low-density polymer or predominantly polymer material foam precursor 324 e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor
- the low-density polymer or predominantly polymer material foam precursor 324 directly overlying high-density core layer 74 or the common facer overlying the high-density core layer 74 of the baseboard 66 , the low-density polymer or predominantly polymer material foam precursor 324 and the high-density core layer 74 pass between two spaced-apart opposed forming conveyers 314 and 326 where the low-density polymer or predominantly polymer material foam core layer 76 of the insulation board 64 is formed and bonded to the high-density core layer 74 or the common facer overlying the high-density core layer 74 of the baseboard 66 .
- the spaced-apart opposed forming conveyors 314 and 326 cooperate to set the thickness of the low-density polymer or predominantly polymer material foam core layer 76 of the insulation board 64 .
- the second forming station 304 also includes supplies (e.g. rolls) of a facer material 328 that can be fed over the low-density polymer or predominantly polymer material foam precursor 324 to form a common facer of the prefabricated roofing panel composites 60 and 80 .
- the third forming station 306 of the production line 300 for forming the high-density polymer or predominantly polymer material cover board 62 of the prefabricated roofing panel composites 60 and 80 includes a conventional dispenser 330 for dispensing a high-density polymer or predominantly polymer material precursor 332 (e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor) directly onto the low-density foam core layer 76 or the common facer overlying the low-density foam core layer 76 of the insulation board 64 .
- a high-density polymer or predominantly polymer material precursor 332 e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor
- the high-density polymer or predominantly polymer material precursor 332 overlying the low-density foam core layer 76 or the common facer overlying the low-density foam core layer 76
- the high-density polymer or predominantly polymer material precursor 332 , the low-density foam insulation board 64 , and the high-density baseboard 66 pass between two spaced-apart opposed forming conveyers 314 and 334 where the high-density polymer or predominantly polymer material core layer 72 of the cover board 62 is formed and bonded to the low-density foam core layer 76 or the common facer overlying the low-density foam core layer 76 of the insulation board 64 .
- the spaced-apart opposed forming conveyors 314 and 334 cooperate to set the thickness of both the high-density polymer or predominantly polymer material core layer 72 and the prefabricated roofing panel composite 60 or 80 .
- the third forming station 306 also includes supplies (e.g. rolls) of a facer material 336 that is fed over the high-density polymer or predominantly polymer material precursor 332 to form the top facer 82 of both the high-density cover board 62 and the prefabricated roofing panel composite 80 .
- the prefabricated roofing panel composite 60 or 80 is then cut to length to complete the formation of the prefabricated roofing panel composite 60 or 80 .
- a cutter such as but not limited to a reciprocating cutter 338 , cuts the continuous prefabricated roofing panel composite 60 or 80 coming from the third forming station 306 to length.
- the production line 300 is capable of applying four facer materials 318 , 320 , 328 , and 336 to the baseboard 66 , the insulation board 64 and the cover board 62 to form the prefabricated roofing panel composites 60 and 80 .
- the application of any one, any two, any three or all of the facing materials 318 , 320 , 328 , and 336 to the baseboard, the insulation board and the cover board can be omitted to form the prefabricated roofing panel composite 60 and all but the top facing material can be omitted to form the prefabricated roofing panel composite 80 with the desired number of facers.
- the facers 318 , 320 , 328 , and 336 normally prevent the composite layers from sticking to the conveyors.
- any one or all of the facing materials are not needed for and could be eliminated from the manufacturing process.
- FIG. 10 is a schematic side view of another production line 400 that can be used with the method of the subject invention to continuously make prefabricated roofing panel composites of the subject invention in line, such as the prefabricated roofing panel composites 30 of FIG. 3 and 50 of FIG. 4 .
- the prefabricated roofing panel composites 30 and 50 each include a high-density polymer or predominantly polymer material cover board 32 and a low-density polymer or predominantly polymer material foam insulation board 34 .
- the production line 400 includes: a forming station 402 for forming the low-density polymer or predominantly polymer material foam insulation board 34 and the high-density polymer or predominantly polymer material cover board 32 of the prefabricated roofing panel composites 30 and 50 ; and a cutting station 404 for cutting the prefabricated roofing panel composites 30 and 50 to length.
- the forming station 402 for forming the low-density foam insulation board 34 and the high-density cover board includes a conventional dispenser 406 for dispensing a low-density polymer or predominantly polymer material foam precursor 408 (e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor) onto a facer, when used, overlying a conveyor 410 of two spaced-apart opposed forming conveyers 410 and 412 or directly onto the conveyor 410 .
- the forming station 402 also includes a conventional dispenser 414 for dispensing a high-density polymer or predominantly polymer material precursor 416 (e.g.
- a high-density polyisocyanurate or predominantly polyisocyanurate material precursor onto the low-density polymer or predominantly polymer material foam precursor of the core layer 42 or, when used, a common facer overlying the low-density polymer or predominantly polymer material foam precursor of the core layer 42 .
- the forming conveyors 410 and 412 cooperate to set the thickness of the low-density polymer or predominantly polymer material foam core layer 42 of insulation board 34 formed from the precursor 408 , the thickness of the high-density polymer or predominantly polymer material core layer 40 of cover board 32 formed from the precursor 416 , and the thickness of the prefabricated roofing panel composite 30 or 50 .
- the forming station 402 also includes supplies (e.g.
- facer materials 418 , 420 , and 422 that can be fed over and/or beneath the low-density polymer or predominantly polymer material foam precursor 408 to form a common facer of the prefabricated roofing panel composites 30 and 50 and a bottom facer of the prefabricated roofing panel composites 30 and 50 and that can be fed over the high-density polymer or predominantly polymer material precursor 416 to form a top facer of the prefabricated roofing panel composites 30 and 50 .
- a cutter such as but not limited to a reciprocating cutter 424 , cuts the prefabricated roofing panel composite 30 or 50 coming from the forming station 402 to length.
- the production line 400 is capable of applying three facer materials 418 , 420 and 422 to the insulation board 34 and the cover board 32 to form the prefabricated roofing panel composites 30 and 50 .
- the application of any one, any two, or all of the facing materials 418 , 420 , and 422 to the insulation board and cover board can be omitted to form the prefabricated roofing panel composite 30 and all but the top facing material can be omitted to form the prefabricated roofing panel composite 50 with the desired number of facers.
- the facers 418 , 420 , and 422 normally prevent the layers of the composite from sticking to the conveyors.
- any one or all of the facing materials are not needed for and could be eliminated from the manufacturing process.
- the low-density polymer or predominantly polymer material foam precursors 110 , 324 , and 408 are low-density polyisocyanurate or predominantly polymer foam precursors.
- the high-density polymer or predominantly polymer material precursors 122 , 210 , 312 , 332 , and 416 are high-density polyisocyanurate or predominantly polyisocyanurate material precursors.
- the high-density polymer or predominantly polymer material precursors 122 , 210 , 312 , 332 , and 416 can be formulated to produce high-density materials or foams by significantly reducing or eliminating the blowing agent(s) from the precursors 122 , 210 , 312 , 332 , and 416 .
- Pentane (HFC), micro-spheres, CO 2 and water (as well as other materials) will act as blowing agents for the precursors.
- the relatively high-density layers produced using these types of precursors have improved strength characteristics over the low-density foams normally produced for insulation products.
- the density and the compressive strength of the high-density layers produced increase. These types of high-density core layers are much more resistant to deformation than the typical low-density foam core layers.
- FIGS. 11 and 12 are fragmentary, transverse schematic, perspective views of a prefabricated cover board composite 520 of the subject invention.
- the composite 520 includes the cover board 10 of FIG. 1 , a top facer 522 (e.g. a waterproofing membrane), a bottom facer 524 , and a plurality of wind-uplift reinforcement patches 526 (such as but not limited to the wind-uplift reinforcement patches shown in FIGS. 15 and 16 ) or strips 528 (such as but not limited to the wind-uplift reinforcement strips shown in FIG. 17 ).
- Conventional fastener plates such as but not limited to the disc shaped metallic fastener plate 530 , are typically used at each fastener penetration of the prefabricated cover board composite 520 to spread the forces exerted on the top major surface of the composite by the nails or other mechanical fasteners securing the composite to a roof deck over a greater surface area and thereby reduce the pressures exerted by the fasteners (not shown) on the top major surface of the composite.
- a top facer 522 , a bottom facer 524 , and a plurality of wind-uplift reinforcements such as the wind-uplift reinforcement patches 526 or strips 528 the prefabricated cover board composite 520 is the same as the cover board 10 of FIG. 1 .
- the top facer 522 that is bonded to the top major surface of the high-density polymer or predominantly polymer material core layer of the cover board composite 520 may be any sheet material that provides a suitable top major surface for the cover board composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred sheet material for the top facer 522 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Where the cover board composite 520 is fully adhered to an underlying roofing layer (e.g.
- a sheet material may be used for the top facer 522 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane).
- a bituminous or modified bituminous membrane or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane).
- the facer may extend beyond the high-density polymer or predominantly polymer material core layer of the cover board 10 on one or more of the four sides of the core layer (e.g.
- the bottom facer 524 is bonded to and typically coextensive with the bottom major surface of the high-density polymer or predominantly polymer material core layer of the cover board composite 520 .
- the bottom facer 524 of the composite 520 may be any sheet material that provides a suitable bottom major surface for the cover board composite 520 , such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred bottom facer 524 is a coated or uncoated woven or nonwoven fiberglass mat such as but not limited to the preferred top facer 522 .
- the wind-uplift reinforcements may be made of various reinforcement sheet or mat materials, such as but not limited to sheets or mats of glass, polyester, polypropylene, metal, wool, and other synthetic and natural fibers and combinations of such fibers.
- a preferred reinforcement material for the wind-uplift reinforcements e.g.
- the wind-uplift reinforcement patches and strips is a scrim such as fiberglass scrim with a minimum tensile strength of 30 lbs per linear inch and preferably, a minimum tensile strength of at least 100 lbs per linear inch, e.g. a fiberglass scrim that is 10 grams/ft 2 with 8 ⁇ 8 strands per inch wherein the mean diameter of the strands is 0.019 inches.
- a scrim such as fiberglass scrim with a minimum tensile strength of 30 lbs per linear inch and preferably, a minimum tensile strength of at least 100 lbs per linear inch, e.g. a fiberglass scrim that is 10 grams/ft 2 with 8 ⁇ 8 strands per inch wherein the mean diameter of the strands is 0.019 inches.
- wind-uplift forces exerted on a cover board composite When a cover board composite is subjected to wind-uplift forces from high winds during service, the wind-uplift forces exerted on a cover board composite, if not controlled, will tend to place the top portion of the composite in compression and the bottom portion of the composite in tension at the fastener locations to thereby place the composite under stress at these locations. Repeated cycles of stress exerted on a cover board composite at the fastener locations during service can result in a failure of the composite at one or more of the fastener locations.
- the wind-uplift reinforcements of the subject invention e.g. the wind-uplift reinforcement patches 526 or reinforcement strips 528 , greatly increase the pressures that the cover board composite can withstand before failure at a fastener location.
- the wind-uplift reinforcements of the subject invention extend or increase the load the bottom facer can withstand before the bottom facer 524 fails at a fastener location.
- the wind-uplift reinforcements e.g. the wind-uplift reinforcement patches 526 (such as but not limited to the wind-uplift reinforcement patches shown in FIGS. 15 and 16 ) or the wind-uplift reinforcement strips 528 (such as but not limited to the wind-uplift reinforcement strips shown in FIG.
- FIG. 13 is a fragmentary, transverse schematic, perspective view of a prefabricated cover board/insulation board panel composite 540 of the subject invention.
- the panel composite 540 includes the cover board/insulation board panel composite 30 of FIG. 3 , which includes a cover board 32 with a high-density polymer or predominantly polymer material core layer and an insulation board 34 with a low-density polymer or predominantly polymer material core layer; a top facer 542 (e.g. a waterproofing membrane); a bottom facer 544 ; and a plurality of wind-uplift reinforcement patches 546 (such as but not limited to the wind-uplift reinforcement patches shown in FIGS. 15 and 16 ) or strips 548 (such as but not limited to the wind-uplift reinforcement strips shown in FIG.
- wind-uplift reinforcement patches 546 such as but not limited to the wind-uplift reinforcement patches shown in FIGS. 15 and 16
- strips 548 such as but not limited to the wind-uplift reinforcement strips shown in FIG.
- Fastener plates such as but not limited to the fastener plate 550 , are typically used at each fastener penetration of the prefabricated cover board/insulation board panel composite 540 to spread the forces exerted on the top major surface of the panel composite by the fasteners securing the composite to a roof deck over a greater surface area and thereby reduce the pressures exerted by the fasteners (not shown) on the top major surface of the panel composite.
- the prefabricated cover board/insulation board panel composite 540 is the same as the cover board/insulation board panel composite 30 of FIG. 3 .
- the top facer 542 that is bonded to the top major surface of the high-density polymer or predominantly polymer material core layer of the cover board 32 may be any sheet material that provides a suitable top major surface for the cover board/insulation board panel composite 540 , such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred sheet material for the top facer 542 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating.
- the bottom facer 544 is bonded to and typically coextensive with the bottom major surface of the low-density polymer or predominantly polymer material core layer of the insulation board 34 .
- the bottom facer 544 of the composite 540 may be any sheet material that provides a suitable bottom major surface for the cover board/insulation board composite 540 , such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred bottom facer 544 is a coated or uncoated woven or nonwoven fiberglass mat such as but not limited to the preferred the top facer 542 .
- the wind-uplift reinforcements may be made of various reinforcement sheet or mat materials, such as but not limited to sheets or mats of glass, polyester, polypropylene, metal, wool, and other synthetic and natural fibers and combinations of such fibers.
- a preferred reinforcement material for the wind-uplift reinforcements e.g.
- the wind-uplift reinforcement patches and strips is a scrim such as fiberglass scrim with a minimum tensile strength of 30 lbs per linear inch and preferably, a minimum tensile strength of at least 100 lbs per linear inch, e.g. a fiberglass scrim that is 10 grams/ft 2 with 8 ⁇ 8 strands per inch wherein the mean diameter of the strands is 0.019 inches.
- the wind-uplift reinforcements e.g. the wind-uplift reinforcement patches 546 (such as but not limited to the wind-uplift reinforcement patches shown in FIGS. 15 and 16 ) or the wind-uplift reinforcement strips 548 (such as but not limited to the wind-uplift reinforcement strips shown in FIG.
- the wind-uplift reinforcements of the cover board/insulation board panel composite 540 perform the same or substantially the same function as the wind-uplift reinforcements of the cover board composite 520 .
- FIG. 14 is a fragmentary, transverse schematic, perspective view of a prefabricated cover board/insulation board/baseboard panel composite 560 of the subject invention.
- the panel composite 560 includes the roofing panel composite 60 of FIG. 5 , which includes a cover board 62 with a high-density polymer or predominantly polymer material core layer, an insulation board 64 with a low-density polymer or predominantly polymer material foam core layer; a baseboard 66 with a high-density polymer or predominantly polymer material core layer; a top facer 562 (e.g. a waterproofing membrane), a bottom facer 564 , and a plurality of wind-uplift reinforcement patches 566 (such as but not limited to the wind-uplift reinforcement patches shown in FIGS.
- a cover board 62 with a high-density polymer or predominantly polymer material core layer
- an insulation board 64 with a low-density polymer or predominantly polymer material foam core layer
- a baseboard 66 with a high-dens
- Fastener plates such as but not limited to the fastener plate 570 , are typically used at each fastener penetration of the prefabricated cover board/insulation board/baseboard panel composite 560 to spread the forces exerted on the top major surface of the composite by the fasteners securing the composite to a roof deck over a greater surface area and thereby reduce the pressures exerted by the fasteners (not shown) on the top major surface of the panel composite.
- the prefabricated cover board/insulation board/baseboard panel composite 560 is the same as the cover board/insulation board/baseboard panel composite 60 of FIG. 5 .
- the top facer 562 that is bonded to the top major surface of the high-density polymer or predominantly polymer material core layer of the cover board 62 may be any sheet material that provides a suitable top major surface for the cover board/insulation board/baseboard panel composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred sheet material for the top facer 522 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating.
- the bottom facer 564 is bonded to and typically coextensive with the bottom major surface of the high-density polymer or predominantly polymer material core layer of the baseboard 66 .
- the bottom facer 564 of the composite 560 may be any sheet material that provides a suitable bottom major surface for the cover board/insulation board/baseboard composite 560 , such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc.
- a preferred bottom facer 564 is a coated or uncoated woven or nonwoven fiberglass mat such as but not limited to the preferred top facer 562 .
- the wind-uplift reinforcements may be made of various reinforcement sheet or mat materials, such as but not limited to sheets or mats of glass, polyester, polypropylene, metal, wool, and other synthetic and natural fibers and combinations of such fibers.
- a preferred reinforcement material for the wind-uplift reinforcements e.g.
- the wind-uplift reinforcement patches and strips is a scrim such as fiberglass scrim with a minimum tensile strength of 30 lbs per linear inch and preferably, a minimum tensile strength of at least 100 lbs per linear inch, e.g. a fiberglass scrim that is 10 grams/ft 2 with 8 ⁇ 8 strands per inch wherein the mean diameter of the strands is 0.019 inches.
- the wind-uplift reinforcements e.g. the wind-uplift reinforcement patches 566 (such as but not limited to the wind-uplift reinforcement patches shown in FIGS. 15 and 16 ) or the wind-uplift reinforcement strips 568 (such as but not limited to the wind-uplift reinforcement strips shown in FIG.
- wind-uplift reinforcements of the cover board/insulation board/baseboard panel composite 560 perform the same or substantially the same function as the wind-uplift reinforcements of the cover board composite 520 .
- FIGS. 15 and 16 show an eight-fastener wind-uplift reinforcement patch placement pattern, utilizing a single patch and a double patch arrangement, for securing the cover board composite 520 , the cover board/insulation board panel composite 540 , and the cover board/insulation board/baseboard panel composite 560 to a roofing deck.
- the eight-fastener wind-uplift reinforcement patch placement pattern shown is exemplary and it is to be understood that the wind-uplift reinforcement patch placement patterns for the cover board composite 520 , the cover board/insulation board panel composite 540 , and the cover board/insulation board/baseboard panel composite 560 can be selected to accommodate any desired fastener placement pattern including any one or more of the fastener placement patterns commonly utilized in the roofing industry.
- single wind-uplift reinforcement patches 526 , 546 , and 566 are utilized.
- double wind-uplift patches 528 , 548 , and 568 are utilized with the overlying wind-uplift reinforcement patches having a 45° offset relative to the wind-uplift reinforcement patches overlaid.
- the wind-uplift reinforcement patches 528 , 548 , and 568 are at least three inches by three inches and centered over each of the fastener placement locations.
- Examples of preferred wind-uplift reinforcement patches are: generally square patches that have dimensions between about three inches by about three inches and about six inches by about six inches; generally round patches that have diameters between about three inches and about six inches; and generally rectangular, oval and other shaped patches having a minor dimension between about three inches and about six inches and a major dimension between about three inches and about six inches.
- the top surface of a cover board composite 520 , a cover board/insulation board panel composite 540 , or a cover board/insulation board/baseboard panel composite 560 utilizing the single or double wind-uplift reinforcement patches will be visibly marked to indicate the locations of the wind-uplift reinforcement patches on the underside of the composite so that a roofing installer will know exactly where to pass fasteners for securing the composite to a roof deck through the composite and the wind-uplift reinforcement patches located on the underside of the composite in the fastener placement pattern being utilized to secure the composite to a roof deck.
- visible X and/or 0 markings could be placed on the top surface of a composite that are centered over the centers of each of the single or double wind-uplift reinforcement patches on the underside of the composite.
- FIG. 17 shows a wind-uplift reinforcement strip placement pattern, which can be used for an eight-fastener placement or other fastener placement pattern, for securing the cover board composite 520 , the cover board/insulation board panel composite 540 , and the cover board/insulation board/baseboard panel composite 560 to a roofing deck.
- the wind-uplift reinforcement strip placement pattern shown for the wind-uplift reinforcement strips 528 , 548 and 568 is exemplary and it is to be understood that the reinforcement strip placement patterns for the cover board composite 520 , the cover board/insulation board panel composite 540 , and the cover board/insulation board/baseboard panel composite 560 can be selected to accommodate any desired fastener placement pattern including any one or more of the fastener placement patterns commonly utilized in the roofing industry.
- the wind-uplift reinforcement strips 528 , 548 and 568 are between about three and about six inches wide, run the length and/or width of the composite, and have their longitudinal centerlines centered over fastener placement locations.
- the top surface of a cover board composite 520 , a cover board/insulation board panel composite 540 , or a cover board/insulation board/baseboard panel composite 560 utilizing the wind-uplift reinforcement strips will be visibly marked to indicate the locations of the wind-uplift reinforcement strips on the underside of the composite so that a roofing installer will know exactly where to pass fasteners for securing the composite to a roof deck through the composite and the wind-uplift reinforcement strips located on the underside of the composite in the fastener placement pattern being utilized to secure the composite to a roof deck.
- visible solid or dashed line markings or visible solid or dashed line markings with X and 0 markings in various fastener placement patterns could be placed on the top surface of a composite with the line markings centered over and extending along the longitudinal centerlines of the wind-uplift reinforcement strips on the underside of the composite.
- Tests were conducted to determine fastener pull through strength for a 0.25 inch thick polyisocyanurate cover board: a) with only a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board; b) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and a scrim reinforcement interposed between the bottom facer and the bottom major surface of the cover board and also substantially coextensive with the bottom major surface of the cover board; c) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and six inch wide scrim reinforcement strips interposed between the bottom facer and the bottom major surface of the cover board, running the length of the cover board, and having longitudinal centerlines centered over the fastener penetration locations; d) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and three inch wide
- the scrim material used in the tests was a fiberglass scrim having a tensile strength of 105 lbs per linear inch.
- the scrim material was 10 grams/ft 2 with 8 ⁇ 8 strands per inch wherein the mean diameter of the strands was 0.019 inches.
- the measured per fastener wind-uplift pull through strengths for these composites was:
- the coverage rate of the scrim reinforcement (area of the bottom major surface of a cover board or other roofing panel composite covered by scrim reinforcement) for the scrim reinforcement embodiments set forth immediately above will vary with the fastener location pattern utilized. However, for the scrim reinforcement embodiments set forth immediately above, an eight fastener location pattern on a four by eight foot cover board or other roofing panel composite (i.e. a cover board or other roofing panel composite with a 32 ft 2 bottom major surface) results in the following coverage rates:
- a 90 pounds/ft 2 wind-uplift rating may be achieved for a cover board using only eight fasteners to secure the cover board whereas for embodiment “a” (coated nonwoven glass fiber facer alone) sixteen fasteners must be utilized to achieve a 90 pound/ft 2 wind-uplift rating for the cover board.
- Fasteners and their installation commonly represent approximately 40% of cover board installation costs.
- the scrim reinforcements of the subject invention enable a reduction in the number of fasteners required to achieve a specific wind-uplift rating for an installed cover board.
- the scrim reinforcements of the subject invention can significantly reduce the labor and ultimately, the overall installed cost of the roofing system.
- an installer can retain the normal number of fasteners utilized per cover board and significantly increase the wind-uplift rating for the installed cover board.
- the scrim reinforcement of the subject invention can substantially reduce the square footage of scrim reinforcement required to significantly increase the per fastener wind-uplift pull through rating (e.g. 32 ft 2 for full scrim reinforcement coverage vs. 8 ft 2 , 4 ft 2 , or 2 ft 2 coverage for reinforcements of the subject invention for an eight fastener location pattern on a four by eight foot cover board or other roofing panel composite).
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
- Building Environments (AREA)
- Roof Covering Using Slabs Or Stiff Sheets (AREA)
Abstract
According to one aspect, a roofing system comprises a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation. Each of the plurality of insulation boards has opposing planar surfaces and has a facer on at least one planar surface, and each of the plurality of insulation boards comprises polyisocyanurate foam having a first polyisocyanurate foam density. The roofing system further comprises a plurality of cover boards adapted for overlying the layer of insulation. Each of the plurality of cover boards has opposing planar surfaces and has a facer on at least one planar surface, and each of the plurality of cover boards comprises polyisocyanurate foam having a second polyisocyanurate foam density greater than the first polyisocyanurate foam density. The greater polyisocyanurate foam density provides for a compressive strength to resist deformation.
Description
- This patent application is a divisional of pending U.S. patent application Ser. No. 14/293,004, filed Jun. 2, 2014; U.S. patent application Ser. No. 14/293,004 is a continuation of U.S. patent application Ser. No. 13/908,505, filed Jun. 3, 2013 and titled “Prefabricated Roofing Panel Composite”, now abandoned; U.S. patent application Ser. No. 13/908,505 is a division of U.S. patent application Ser. No. 13/209,710, filed Aug. 15, 2011 and titled “Prefabricated Roofing Panel Composite”, (now U.S. Pat. No. 8,479,467); U.S. Pat. No. 8,479,467 is a continuation-in-part of U.S. patent application Ser. No. 12/703,308, filed Feb. 10, 2010 and titled “Roofing Cover Board, Roofing Panel Composites and Method”, (now U.S. Pat. No. 8,105,685); U.S. Pat. No. 8,105,685 is a continuation of U.S. patent application Ser. No. 11/519,042, filed Sep. 11, 2006 and titled “Roofing Cover Board, Roofing Panel Composites, and Method” (now U.S. Pat. No. 7,811,663); U.S. Pat. No. 7,811,663 is a continuation-in-part of U.S. patent application Ser. No. 10/984,122, filed Nov. 9, 2004 and titled “Roofing Cover Board, Roofing Panel Composite, and Method” (now abandoned), the entire disclosures of which are hereby incorporated by reference herein for all purposes.
- The subject invention relates to low-slope roofs that are typically found on commercial and industrial buildings and in particular to prefabricated high-density polymer or predominantly polymer material cover boards and cover board composites and prefabricated roofing panel composites which include high-density polymer or predominantly polymer material cover boards and low-density polymer or predominantly polymer material foam insulation boards, for use on such low-slope roofs and to a method of making the cover boards, the cover board composites, and the roofing panel composites.
- Commercial and industrial buildings typically have roofs with low-slope roof decks. The roofing systems for these roofs with low-slope roof decks typically include one or more layers of a low-density roofing insulation, a layer of roofing cover boards that overlie the low-density roofing insulation layer(s), and a waterproofing membrane that overlies the layer of cover boards. The layer(s) of low-density insulation, such as a low-density polymer-based foam insulation, if not protected, can be partially crushed or otherwise damaged from worker traffic over the insulation, the placement of heaving objects on the insulation, the weather, and other causes commonly encountered in roofing construction. The layer of roofing cover boards that overlies the one or more layers of low-density insulation, protects the more fragile low density insulation from damage, acts as a fire barrier, provides a suitable substrate for the attachment of the overlying waterproofing membrane, and augments the insulating function of the low-density insulation. The uppermost waterproofing membrane layer overlying the cover board layer protects the underlying cover board and insulation layers from moisture and other adverse climatic conditions. Normally, these three components (the low-density insulation boards, the roofing cover boards, and the waterproofing membrane) of the roofing system are separately manufactured and separately and successively applied to the low-slope roof deck.
- While these roofing systems function very well, there has remained a need to provide improved roofing cover boards and prefabricated cover board composites and to provide prefabricated roofing panel composites that include at least an insulation board and the improved roofing cover board, and that, preferably, include an insulation board and prefabricated the roofing cover board composite having a waterproofing membrane. With the use of such improved roofing cover boards and cover board composites and prefabricated roofing panel composites, roofing systems for low-slope roof decks can be improved and/or the time, labor, and other costs associated with the installation of roofing systems on low-slope roof decks can be reduced. The subject invention provides improved roofing cover boards, improved prefabricated roofing cover board and waterproofing membrane composites, improved prefabricated roofing panel cover board and insulation board composites, improved prefabricated roofing panel cover board, insulation board, and waterproofing membrane composites, and improved prefabricated roofing panel cover board, insulation board, baseboard, and waterproofing membrane composites. The subject invention also provides these roofing cover boards, roofing cover board composites, and roofing panel composites with reinforcing patches or strips that increase the per fastener wind uplift pull through rating for the cover boards, cover board composites, and roofing panel composites to thereby further reduce the labor and ultimately the overall installed cost of roofing systems utilizing these cover boards, cover board composites, and roofing panel composites. The subject invention also provides a method for making the improved roofing cover board and the prefabricated roofing panel composites including the improved roofing cover board that is highly productive, relatively economical, and efficient.
- According to one aspect, a roofing system comprises a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation. Each of the plurality of insulation boards comprises a first polyisocyanurate foam having a first polyisocyanurate foam density. The roofing system further comprises a plurality of cover boards adapted for overlying the layer of insulation. Each of the plurality of cover boards comprises a second polyisocyanurate foam having a second polyisocyanurate foam density, and the second polyisocyanurate foam density is greater than the first polyisocyanurate foam density. In some embodiments, each of the plurality of insulation boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the insulation board, and each of the plurality of cover boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the cover board. The second polyisocyanurate foam density may be selected to provide the cover boards with a compressive strength to resist deformation. The second polyisocyanurate foam density may be between 6 lbs/ft3 and 25 lbs/ft3. The second polyisocyanurate foam density may be between 4 lbs/ft3 and 25 lbs/ft3. In some embodiments, each of the plurality of cover boards has a thickness, and the thickness and the second polyisocyanurate foam density are selected to provide the cover boards with a compressive strength to resist deformation and protect low-density insulation layers overlaid by the cover board from damage. In some embodiments, each of the plurality of cover boards is bonded to a respective one of the plurality of insulation boards to form a roofing panel composite. The roofing system may further comprise a waterproofing membrane adapted for overlying the layer of cover boards.
- According to another aspect, a roofing system comprises a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation. Each of the plurality of insulation boards has opposing planar surfaces and has a facer on at least one planar surface, and each of the plurality of insulation boards comprises polyisocyanurate foam having a first polyisocyanurate foam density. The roofing system further comprises a plurality of cover boards adapted for overlying the layer of insulation. Each of the plurality of cover boards has opposing planar surfaces and has a facer on at least one planar surface, and each of the plurality of cover boards comprises polyisocyanurate foam having a second polyisocyanurate foam density greater than the first polyisocyanurate foam density. The greater polyisocyanurate foam density provides for a compressive strength to resist deformation. The second polyisocyanurate foam density may be between 6 lbs/ft3 and 25 lbs/ft3. The second polyisocyanurate foam density may be between 4 lbs/ft3 and 25 lbs/ft3. The first polyisocyanurate foam density may be less than 4 lbs/ft3. The first polyisocyanurate foam density may be between about 1 lbs/ft3 and about 3 lbs/ft3. In some embodiments, the facers comprise glass fiber. In some embodiments, each of the plurality of cover boards is bonded to a respective one of the plurality of insulation boards to form a roofing panel composite. In some embodiments, the roofing system further comprises a waterproofing membrane adapted for overlying the layer of cover boards.
- According to another aspect, a method of constructing a roof comprises receiving a plurality of insulation boards and a plurality of cover boards as recited above, and installing at least some of the insulation boards and at least some of the cover boards on the roof.
- According to another aspect, a roofing system comprises a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation. Each of the plurality of insulation boards comprises a first polyisocyanurate or predominantly polyisocyanurate foam material having a first foam density. The roofing system further comprises a plurality of cover boards adapted for overlying the layer of insulation, each of the plurality of cover boards comprising a second polyisocyanurate or predominantly polyisocyanurate foam material having a second foam density. The second foam density is greater than the first foam density, and the greater foam density provides for a compressive strength to resist deformation. In some embodiments, each of the plurality of insulation boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the insulation board, and each of the plurality of cover boards has opposing top and bottom major surfaces and comprises a facer on at least one of the major surfaces of the cover board. The second foam density may be between 6 lbs/ft3 and 25 lbs/ft3. The second foam density may be between 4 lbs/ft3 and 25 lbs/ft3. In some embodiments, each of the plurality of cover boards is bonded to a respective one of the plurality of insulation boards to form a roofing panel composite. In some embodiments, the roofing system further comprises a waterproofing membrane adapted for overlying the layer of cover boards.
-
FIG. 1 is a schematic perspective view of a prefabricated high-density polymer or predominantly polymer material cover board of the subject invention. -
FIG. 2 is a schematic perspective view of a cover board composite of the subject invention that includes a prefabricated high-density polymer or predominantly polymer material cover board and a top facer. -
FIG. 3 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board. -
FIG. 4 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board composite with a top facer and a low-density polymer or predominantly polymer material foam insulation board. -
FIG. 5 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board, a low-density polymer or predominantly polymer material foam insulation board, and a high-density polymer or predominantly polymer material baseboard. -
FIG. 6 is a schematic perspective view of a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board composite with a top facer, a low-density polymer or predominantly polymer material foam insulation board, a high-density polymer or predominantly polymer material baseboard. -
FIG. 7 is a schematic side view of a first production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board. -
FIG. 8 is a schematic side view of a second production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board. -
FIG. 9 is a schematic side view of a production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board, a low-density polymer or predominantly polymer material foam insulation board, and a high-density polymer or predominantly polymer material baseboard. -
FIG. 10 is a schematic side view of a third production line that can be used with the method of the subject invention to make a prefabricated roofing panel composite of the subject invention that includes a high-density polymer or predominantly polymer material cover board and a low-density polymer or predominantly polymer material foam insulation board. -
FIG. 11 is a fragmentary, transverse schematic, perspective view of a cover board composite of the subject invention, at a fastener location, wherein the composite includes a reinforcement for increasing the fastener wind-uplift pull through rating of the cover board composite. The Figure also shows a portion of a fastener plate that can be used with the composite. -
FIG. 12 is a fragmentary, partially exploded, transverse schematic, perspective view of the cover board composite ofFIG. 11 at a fastener location. -
FIG. 13 is a fragmentary, transverse schematic, perspective view of a prefabricated cover board/insulation board panel composite of the subject invention, at a fastener location, wherein the panel composite includes a reinforcement for increasing the fastener wind-uplift pull through rating of the panel composite. The Figure also shows a portion of a fastener plate that can be used with the panel composite. -
FIG. 14 is a fragmentary, schematic, perspective view of a prefabricated cover board/insulation board/baseboard panel composite of the subject invention, at a fastener location, wherein the panel composite includes a reinforcement for increasing the fastener wind-uplift pull through rating of the panel composite. The Figure also shows a portion of a fastener plate that can be used with the composite. -
FIG. 15 is a schematic bottom view of the prefabricated cover board, cover board/insulation board panel, or cover board/insulation board/baseboard panel composites ofFIGS. 11 to 14 , with the bottom facer removed, to show a reinforcement patch pattern for increasing the fastener wind-uplift pull through rating of the composites. -
FIG. 16 is a schematic bottom view of the prefabricated cover board, cover board/insulation board panel, or cover board/insulation board/baseboard panel composites ofFIGS. 11 to 14 , with the bottom facer removed, to show a double-layer reinforcement patch pattern for increasing the fastener wind-uplift pull through rating of the composites. -
FIG. 17 is a schematic bottom view of the prefabricated cover board, cover board/insulation board panel, or cover board/insulation board/baseboard panel composites ofFIGS. 11 to 14 , with the bottom facer removed, to show a reinforcement strip pattern for increasing the fastener wind-uplift pull through rating of the composites. -
FIG. 1 is a schematic perspective view of thecover board 10 of the subject invention, which has a high-density polymer or predominantly polymermaterial core layer 12. The high-density polymer or predominantly polymermaterial core layer 12 of thecover board 10 has a density of at least 4 lbs/ft3 and preferably between 6 lbs/ft3 and 25 lbs/ft3. The high-density polymer or predominantly polymermaterial core layer 12 of thecover board 10 has a thickness of about 0.08 inches or greater and, preferably, a thickness between about 0.25 inches and about 0.75 inches. The density and thickness of the high-density polymer or predominantly polymermaterial core layer 12 of thecover board 10 are selected to provide the cover board with the compressive strength to resist deformation and protect low-density insulation layers overlaid by the cover board from damage, and to provide surface characteristics that promote the bonding of a top facer, e.g. a waterproofing membrane, to the high-density core layer of the cover board. - The high-density polymer or predominantly polymer
material core layer 12 has a topmajor surface 14 and a bottommajor surface 16 that are each defined by the length and the width of the high-density polymer or predominantly polymer material core layer. The high-density polymer or predominantly polymermaterial core layer 12 typically has a width of about four feet or greater and a length of about four feet or greater, preferably, about eight feet or greater and could have lengths that are limited only by the ability to store, transport, and handle the high-density polymer or predominantly polymermaterial cover board 10 prior to installation. - The
cover board 10 may have top and/or bottom facers that are not shown inFIG. 1 . When used, the top and/or bottom facers typically overlie the entire or substantially the entiremajor surface 14 and/or 16 of the high-density polymer or predominantly polymermaterial core layer 12 to which the facers are bonded. The top and bottom facers of the high-density polymer or predominantly polymermaterial cover board 10 may be any sheet material that provides suitable top and bottom major surfaces for the cover board, such as but not limited to paper, foil, woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. - The high-density polymer or predominantly polymer material core layer 12 of the cover board 10 may be made of various high-density polymer or predominantly polymer materials [e.g. a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic material or a high-density material made of a blend of these materials; a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a high-density foam material made of a blend of these materials; a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s); a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density foam material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s), a high-density material made of other thermoset matrix polymers; etc.]. However, a preferred material for the high-
density core layer 12 is a high-density polyisocyanurate or predominantly polyisocyanurate material or foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic. Examples of various fillers that may be used in the predominantly polymer materials of the high-density core layer 12 include but are not limited to powdered, liquid, and fiber fillers. The high-density polymer and predominantly polymer materials of thecore layer 12 may also include fiber reinforcements, fungi growth-inhibiting agents, and fire-retardants to reduce the cost of and/or modify the properties of the high-density core layer 12, such as but not limited to the compressive strength, the toughness, the flexibility, the friability, and the fire resistance of the core layer. Examples of fillers that may be used in the high-density predominantly polymermaterial core layer 12 are fillers such as but not limited to limestone (CaCO3), fiberglass, recycled polyisocyanurate dust, extenders/plasticizers, ground up foam insulation, ground up rubber, wood dust, etc. - The prefabricated high-density polymer or predominantly polymer material cover board of the subject invention is relatively lightweight and easily cut. This makes the cover board easier to install and increases the productivity of workers installing the cover boards. The high-density polymer or predominantly polymer material cover board of the subject invention does not support mold growth and the cover board is not negatively impacted by the application of solvents, hot asphalt, or adhesives.
-
FIG. 2 is a schematic perspective view of a prefabricated cover board andfacer composite 20 of the subject invention. The composite 20 includes thecover board 10 and afacer 22, e.g. a waterproofing membrane. Other than the inclusion of atop facer 22, the prefabricated cover board andfacer composite 20 is the same as thecover board 10 ofFIG. 1 . - The
top facer 22 of the composite 20 may be any sheet material that provides a suitable top major surface for the cover board and facer composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. A preferred sheet material for thetop facer 22 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Where the composite 20 is fully adhered to an underlying roofing layer (e.g. an insulation layer) rather than being secured by mechanical fasteners, a sheet material may be used for thetop facer 22 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane). Where thetop facer 22 is a waterproofing membrane, the facer may extend beyond the high-density polymer or predominantly polymer material core layer of thecover board 10 on one or more of the four sides of the core layer (e.g. beyond a side edge and an end edge of the top major surface of the core layer) to form membrane overlaps for sealing to the membranes ofother composites 20. While not shown, the composite may also include a bottom facer that is bonded to the bottom major surface of the high-density polymer or predominantly polymer material core layer of the cover board. When used, the bottom facer of the composite 20 may be any sheet material that provides a suitable bottom major surface for the cover board and facer composite for bonding to an underlying layer of the roofing system, such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. -
FIG. 3 is a schematic perspective view of a first prefabricatedroofing panel composite 30 of the subject invention. The prefabricatedroofing panel composite 30 includes a high-density polymer or predominantly polymermaterial cover board 32 and aninsulation board 34 that, as shown, are bonded directly together. The prefabricatedroofing panel composite 30 has a topmajor surface 36 and a bottommajor surface 38 that are each defined by the length and the width of the roofing panel composite. The prefabricatedroofing panel composite 30 typically has a width of about four feet or greater and a length of about four feet or greater, preferably, about eight feet or greater and could have lengths that are limited only by the ability to store, transport and handle the roofing panel composites prior to installation. - In the prefabricated
roofing panel composite 30, thecover board 32 has a high-density polymer or predominantly polymermaterial core layer 40. The high-density polymer or predominantly polymermaterial core layer 40 of thecover board 32 in the prefabricatedroofing panel composite 30 has a density of at least 4 lbs/ft3 and preferably, between 6 lbs/ft3 and 25 lbs/ft3. The high-density polymer or predominantly polymermaterial core layer 40 of thecover board 32 in the prefabricated roofing panel composite has a thickness of about 0.08 inches or greater and, preferably, a thickness between about 0.25 inches and about 0.75 inches. The density and thickness of the high-density polymer or predominantly polymermaterial core layer 40 of thecover board 32 are selected to provide the cover board with the compressive strength to resist deformation and protect the low-density insulation board 34 that is overlaid by the cover board from damage, and to provide surface characteristics that promote the bonding of a top facer, e.g. a waterproofing membrane, to the high-density core layer 40 of the cover board. - The
insulation board 34 in the prefabricatedroofing panel composite 30 includes a low-density polymer or predominantly polymer materialfoam core layer 42. The low-density polymer or predominantly polymer materialfoam core layer 42 of theinsulation board 34 has a density less than 6 lbs/ft3, preferably less than 4 lbs/ft3, and typically a density of less than 2.5 lbs/ft3. The low-density polymer or predominantly polymer materialfoam core layer 42 has a thickness of about 0.50 inches or greater and, preferably, a thickness between about 0.50 inches and about 6 inches. The density and thickness of the low-density polymer or predominantly polymer materialfoam core layer 42 of theinsulation board 34 are selected to provide the prefabricatedroofing panel composite 30 with the desired insulating properties for the roofing system application. - The high-density polymer or predominantly polymer material core layer 40 of the cover board 32 may be made of various high-density polymer or predominantly polymer materials [e.g. a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic material or a high-density material made of a blend of these materials; a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a high-density foam material made of a blend of these materials; a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic fillers); a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density foam material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s), a high-density material made of other thermoset matrix polymers; etc.]. However, a preferred material for the high-
density core layer 40 is a high-density polyisocyanurate or predominantly polyisocyanurate material or foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or filler(s) such as but not limited to those listed above in connection with thecover board 10. - The low-density polymer or predominantly polymer material
foam core layer 42 of theinsulation board 34 may be made of various low-density polymer or predominantly polymer foam materials [e.g. a low-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a low-density foam material made of a blend of these materials; a low-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a low-density foam material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or filler(s), a low-density foam material made of other thermoset matrix polymers; etc.]. However, a preferred material for the low-density core layer 42 is a low-density polyisocyanurate or predominantly polyisocyanurate foam material up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s). - When the high-
density core layer 40 is made of a predominantly polymer material, the high-density predominantly polymer material of thecore layer 40 may contain various powdered, liquid, and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc. to reduce the cost and/or modify the properties of the high-density core layer 40 (such as but not limited to the compressive strength, the flexibility, the friability, the fire resistance of the core layer). When the low-density core layer 42 is made of a predominantly polymer material foam, the low-density predominantly polymer materialfoam core layer 42 may contain various powdered, liquid, and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc. to reduce the cost and/or modify the properties of the low-density predominantly polymer material foam core layer. Examples of fillers that may be used in the high-density core layer 40 of thecover board 32 and the low-density core layer 42 of theinsulation board 34 are fillers such as but not limited to limestone (CaCO3), fiberglass, recycled polyisocyanurate dust, extenders/plasticizers, ground up foam insulation, ground up rubber, wood dust, etc. - While, as shown in
FIG. 3 , the prefabricatedroofing panel composite 30 has no facers, the prefabricatedroofing panel composite 30 could have a common facer intermediate and bonded to both the bottom major surface of the coverboard core layer 40 and the top major surface of the insulationboard core layer 42, a top facer bonded to the top major surface of the coverboard core layer 40, and/or a bottom facer bonded to the bottom major surface of the insulationboard core layer 42. When used, the common facer of the prefabricatedroofing panel composite 30 may be any sheet material with good bonding surfaces that facilitates a good bond between thecover board 32 andinsulation board 34, such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc. When used, the top facer of the prefabricatedroofing panel composite 30 overlies the entire or substantially the entire top major surface of the high-density core layer 40 of thecover board 32. The top facer of the prefabricatedroofing panel composite 30 may be any sheet material that provides a suitable top major surface for the prefabricatedroofing panel composite 30, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. When used, the bottom facer of the prefabricatedroofing panel composite 30 overlies the entire or substantially the entire bottom surface of the low-densityfoam core layer 42 of theinsulation board 34. The bottom facer of the prefabricatedroofing panel composite 30 may be any sheet material that provides a suitable bottom major surface for theroofing panel composite 30, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. -
FIG. 4 is a schematic perspective view of a prefabricatedroofing panel composite 50 of the subject invention. The prefabricatedroofing panel composite 50 includes the high-density polymer or predominantly polymermaterial cover board 32 and the low-density polymer or predominantly polymer materialfoam insulation board 34 that, as shown inFIG. 4 , are bonded directly together, and atop facer 52. Other than the inclusion of thetop facer 52, the prefabricatedroofing panel composite 50 is the same as the prefabricatedroofing panel composite 30 ofFIG. 3 . - The
top facer 52 of the prefabricatedroofing panel composite 50 is bonded to and overlies the entire or substantially the entire top surface of the high-density polymer or predominantly polymer material core layer of thecover board 32. Thetop facer 52 of the prefabricatedroofing panel composite 50 may be any sheet material that provides a suitable top major surface for the cover board of the prefabricatedroofing panel composite 50, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. A preferred sheet material for thetop facer 52 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Where the prefabricatedroofing panel composite 50 is fully adhered to an underlying roofing layer (e.g. an insulation layer) rather than being secured by mechanical fasteners, a sheet material may be used for thetop facer 52 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane). Where thetop facer 52 is a waterproofing membrane, the facer may extend beyond the high-density core layer of thecover board 32 on one or more of the four sides of the core layer, e.g. beyond a side edge and an end edge of the top major surface of the core layer to provide overlaps for sealing with the membranes of adjacent panels. - While, as shown in
FIG. 4 , the prefabricatedroofing panel composite 50 only has atop facer 52, the prefabricatedroofing panel composite 50 could have a common facer intermediate and bonded to both the bottom major surface of thecover board 32core layer 40 and the top major surface of theinsulation board 34core layer 42, and/or a bottom facer bonded to the bottom major surface of theinsulation board 34core layer 42. When used, the common facer of the prefabricatedroofing panel composite 50 may be any sheet material with good bonding surfaces that facilitates a good bond between thecover board 32 andinsulation board 34, such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc. When used, the bottom facer of the prefabricatedroofing panel composite 50 overlies the entire or substantially the entire bottom surface of the low-density foam core layer of theinsulation board 34. The bottom facer of the prefabricatedroofing panel composite 50 may be any sheet material that provides a suitable bottom major surface for theroofing panel composite 50, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. -
FIG. 5 is a schematic perspective view of a prefabricatedroofing panel composite 60 of the subject invention that includes: a high-density polymer or predominantly polymermaterial cover board 62, a low-density polymer or predominantly polymer materialfoam insulation board 64, and a high-density polymer or predominantlypolymer material baseboard 66. The high-density polymer or predominantly polymermaterial cover board 62 andbaseboard 66 may have the same density or different densities. As shown inFIG. 5 , thecover board 62, theinsulation board 64, and thebaseboard 66 are bonded directly together. The prefabricatedroofing panel composite 60 has a topmajor surface 68 and a bottommajor surface 70 that are each defined by the length and the width of the prefabricated roofing panel composite. The prefabricatedroofing panel composite 60 typically has a width of about four feet or greater and a length of about four feet or greater, preferably, about eight feet or greater and could have lengths that are limited only by the ability to store, transport and handle the roofing panel composites prior to installation. - In the prefabricated
roofing panel composite 60, thecover board 62 has a high-density polymer or predominantly polymermaterial core layer 72 and thebaseboard 66 has a high-density polymer or predominantly polymermaterial core layer 74. The high-density polymer or predominantly polymer material core layers 72 and 74 each have a density of at least 4 lbs/ft3 and preferably, between 6 lbs/ft3 and 25 lbs/ft3. The high-density polymer or predominantly polymermaterial core layer 72 of thecover board 62 and the high-density polymer or predominantly polymermaterial core layer 74 of thebaseboard 66 each have a thickness of about 0.08 inches or greater and, preferably, a thickness between about 0.25 inches and about 0.75 inches. The density and thickness of the high-density polymer or predominantly polymermaterial core layer 72 of thecover board 62 are selected to provide the cover board with the compressive strength to resist deformation and protect the low-density insulation board 64 that is overlaid by the cover board from damage, and to provide surface characteristics that promote the bonding of a top facer, e.g. a waterproofing membrane, to thecore layer 72 of the cover board. - The
insulation board 64 in the prefabricatedroofing panel composite 60 includes a low-density polymer or predominantly polymerfoam core layer 76. The low-density polymer or predominantly polymer materialfoam core layer 76 of theinsulation board 64 has a density less than 6 lbs/ft3, preferably less than 4 lbs/ft3, and typically a density of less than about 2.5 lbs/ft3. The low-density polymer or predominantly polymer materialfoam core layer 76 has a thickness of about 0.50 inches or greater and, preferably, a thickness between about 0.50 inches and about 6 inches. The density and thickness of the low-density polymer or predominantly polymer materialfoam core layer 76 of theinsulation board 64 are selected to provide the prefabricatedroofing panel composite 60 with the desired insulating properties for the roofing system application. - The high-density polymer or predominantly polymer material core layers 72 and 74 of the cover board 62 and the baseboard 66 may be made of various high-density polymer or predominantly polymer materials [e.g. a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic material or a high-density material made of a blend of these materials; a high-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a high-density foam material made of a blend of these materials; a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s); a high-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a high-density foam material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s), a high-density material made of other thermoset matrix polymers; etc.]. However, a preferred material for the high-density core layers 72 and 74 is a high-density polyisocyanurate or predominantly polyisocyanurate material or foam material up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s).
- The low-density polymer or predominantly polymer material
foam core layer 76 of theinsulation board 64 may be made of various low-density polymer or predominantly polymer foam materials [e.g. a low-density polyisocyanurate, polyurethane, polystyrene, or phenolic foam material or a low-density foam material made of a blend of these materials; a low-density predominantly polyisocyanurate, polyurethane, polystyrene, or phenolic foam material with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s) or a low-density foam material made of a blend of these materials with up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s), a low-density material made of other thermoset matrix polymers; etc.]. However, a preferred material for the low-density core layer 76 is a low-density polyisocyanurate or predominantly polyisocyanurate foam material up to 40% by weight, but typically between about 1% and about 25% by weight organic and/or inorganic filler(s). - When the high-density core layers 72 and 74 are made of a predominantly polymer material, the high-density predominantly polymer material of the core layers 72 and 74 may contain various powdered, liquid, and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc. to reduce the cost and/or modify the properties of the high-density core layers 72 and 74 (such as but not limited to the compressive strength, the flexibility, the friability, the fire resistance of the core layer). When the low-
density core layer 76 is made of a predominantly polymer material foam, the low-density predominantly polymer materialfoam core layer 76 may contain various powdered, liquid and fiber fillers, fiber reinforcements, fire-retardants, fungi growth-inhibiting agents, etc. to reduce the cost and/or modify the properties of the low-density foam core layer. Examples of fillers that may be used in the high-density core layers 72 of thecover board 62 and thebaseboard 66 and the low-density core layer 76 of theinsulation board 64 are fillers such as but not limited to limestone (CaCO3), fiberglass, recycled polyisocyanurate dust, extenders/plasticizers, ground up foam insulation, ground up rubber, wood dust, etc. - While, as shown in
FIG. 5 , the prefabricatedroofing panel composite 60 has no facers, the prefabricatedroofing panel composite 60 could have a common facer intermediate and bonded to both the bottom major surface of the coverboard core layer 72 and the top major surface of the insulationboard core layer 76, a common facer intermediate and bonded to both the bottom major surface of the insulationboard core layer 76 and the top major surface of thebaseboard core layer 74, a top facer bonded to the top major surface of the coverboard core layer 72, and/or a bottom facer bonded to the bottom major surface of thebaseboard core layer 74. When used, the common facers of the prefabricatedroofing panel composite 60 may be any sheet material with good bonding surfaces that facilitates a good bond between thecover board 62, theinsulation board 64, and thebaseboard 66, such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc. When used, the top facer of the prefabricatedroofing panel composite 60 overlies the entire or substantially the entire top major surface of the high-density core layer 72 of thecover board 62. The top facer of the prefabricatedroofing panel composite 60 may be any sheet material that provides a suitable top major surface for the prefabricatedroofing panel composite 60, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. When used, the bottom facer of the prefabricatedroofing panel composite 60 overlies the entire or substantially the entire bottom surface of the high-density core layer 74 of thebaseboard 66. The bottom facer of the prefabricatedroofing panel composite 60 may be any sheet material that provides a suitable bottom major surface for theroofing panel composite 60, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. -
FIG. 6 is a schematic perspective view of a prefabricatedroofing panel composite 80 of the subject invention. The prefabricatedroofing panel composite 80 includes the high-density polymer or predominantly polymermaterial cover board 62, the low-density polymer or predominantly polymer materialfoam insulation board 64, and the high-density polymer or predominantlypolymer material baseboard 66, that, as shown inFIG. 6 , are bonded directly together, and atop facer 82. Other than the inclusion of atop facer 82, the prefabricatedroofing panel composite 80 ofFIG. 6 is the same as the prefabricatedroofing panel composite 60 ofFIG. 5 . - The
top facer 82 of the prefabricatedroofing panel composite 80 is bonded to and overlies the entire or substantially the entire top surface of the high-density polymer or predominantly polymer material core layer of thecover board 62. Thetop facer 82 of the prefabricatedroofing panel composite 80 may be any sheet material that provides a suitable top major surface for the cover board and facer composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. A preferred sheet material for thetop facer 82 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Where the prefabricatedroofing panel composite 80 is fully adhered to an underlying roofing layer (e.g. an insulation layer) rather than being secured by mechanical fasteners, a sheet material may be used for thetop facer 82 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane). Where thetop facer 82 is a waterproofing membrane, the facer may extend beyond the high-density polymer or predominantly polymer material core layer of thecover board 62 on one or more of the four sides of the core layer, e.g. beyond a side edge and an end edge of the top major surface of the core layer to provide membrane overlaps for sealing with the membranes of adjacent panels. - While, as shown in
FIG. 6 , the prefabricatedroofing panel composite 80 only has atop facer 82, the prefabricatedroofing panel composite 80 could have a common facer intermediate and bonded to both the bottom major surface of the cover board core layer and the top major surface of the insulation board core layer, a common facer intermediate and bonded to both the bottom major surface of the insulation board core layer and the top major surface of the baseboard core layer, and/or a bottom facer bonded to the bottom major surface of the baseboard core layer. When used, the common facers of the prefabricatedroofing panel composite 80 may be any sheet material with good bonding surfaces that facilitates a good bond between the cover board and insulation board and the insulation board and the baseboard, such as but not limited to woven or nonwoven mats made of glass fibers, other fibers or filaments, scrims, etc. When used, the bottom facer of the prefabricatedroofing panel composite 80 overlies the entire or substantially the entire bottom surface of the high-density core layer of thebaseboard 66. The bottom facer of the prefabricatedroofing panel composite 80 may be any sheet material that provides a suitable bottom major surface for the prefabricatedroofing panel composite 80, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. -
FIG. 7 is a schematic side view of afirst production line 100 that can be used with the method of the subject invention to continuously make prefabricated roofing panel composites of the subject invention in line, such as the prefabricatedroofing panel composites 30 ofFIG. 3 and 50 ofFIG. 4 . The prefabricatedroofing panel composites material cover board 32 and a low-density polymer or predominantly polymer materialfoam insulation board 34. Theproduction line 100 includes: a first formingstation 102 for forming the low-density polymer or predominantly polymer materialfoam insulation board 34 of the prefabricatedroofing panel composites station 104 for forming the high-density polymer or predominantly polymermaterial cover board 32 of the prefabricatedroofing panel composites station 106 for cutting the prefabricatedroofing panel composites - The first forming
station 102 for forming the low-densityfoam insulation board 34 includes a conventional dispenser 108 for dispensing a low-density polymer or predominantly polymer material foam precursor 110 (e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor) onto a facer, when used, overlying aconveyor 112 of two spaced-apart opposed formingconveyers conveyor 112. As thefoam precursor 110 passes between the formingconveyors conveyors foam core layer 42 of the low-density polymer or predominantly polymerfoam insulation board 34 formed from theprecursor 110. The first formingstation 102 also includes supplies (e.g. rolls) offacer materials material foam precursor 110 to form a common facer of the prefabricatedroofing panel composites roofing panel composites - The second forming
station 104 of theproduction line 100 for forming the high-density polymer or predominantly polymermaterial cover board 32 of the prefabricatedroofing panel composites foam core layer 42 or, when used, a common facer overlying the low-density polymer or predominantly polymer materialfoam core layer 42. With the high-density polymer or predominantlypolymer material precursor 122 overlying the low-densityfoam core layer 42 or, when used, the common facer, the high-density polymer or predominantlypolymer material precursor 122 and the low-densityfoam core layer 42 pass between two spaced-apart opposed formingconveyers material core layer 38 is formed and bonded directly to the low-densityfoam core layer 42 or to the common facer overlying the low-densityfoam core layer 42. The spaced-apart opposed formingconveyors material core layer 40 and the prefabricatedroofing panel composite station 104 also includes supplies (e.g. rolls) of afacer material 126 that is fed over the high-density polymer or predominantlypolymer material precursor 122 to form thetop facer 52 of both the high-density cover board 32 and the prefabricatedroofing panel composite 50. - With the high-
density core layer 40 and the low-densityfoam core layer 42 of the prefabricatedroofing panel composite station 104 to form a continuous length of the prefabricatedroofing panel composite roofing panel composite roofing panel composite reciprocating cutter 128, cuts the prefabricatedroofing panel composite station 104 to length. - While the
production line 100, as shown, is capable of applying threefacer materials insulation board 34 and thecover board 32 to form the prefabricatedroofing panel composites materials roofing panel composite 30 and all but the top facing material can be omitted to form the prefabricatedroofing panel composite 50 with the desired number of facers. Thefacers precursors -
FIG. 8 is a schematic side view of asecond production line 200 that can be used with the method of the subject invention to continuously make prefabricated roofing panel composites of the subject invention, such as the prefabricatedroofing panel composites 30 ofFIG. 3 and 50 ofFIG. 4 . The prefabricatedroofing panel composites production line 200 includes: an in-feed conveyor 202 for continuously feeding a series of low-density polymer or predominantly polymer materialfoam insulation boards 34 of the prefabricated roofing panel composite into a formingstation 204; the formingstation 204 for forming the high-density polymer or predominantly polymermaterial cover board 32 of the prefabricatedroofing panel composites station 206 for cutting the prefabricatedroofing panel composites - The low-density polymer or predominantly polymer material
foam insulation boards 34 may include a top facer that, when used, forms a common facer of the prefabricatedroofing panel composites foam insulation boards 34 are fed into the formingstation 204 lengthwise with the ends ofsuccessive insulation boards 34 in the continuous series of insulation boards abutting each other. - The forming
station 204 of theproduction line 200 for forming the high-density polymer or predominantly polymermaterial cover board 32 of the prefabricatedroofing panel composite 30 includes aconventional dispenser 208 for dispensing the high-density polymer or predominantly polymer material precursor 210 (e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor) directly onto the low-density foam core layers 42 of theinsulation boards 34 or, when used the common facers overlying the low-density foam core layers of the low-density foam insulation boards. With the high-density polymer or predominantlypolymer material precursor 210 directly overlying the low-density foam core layers 42 of the insulation boards or thecommon facers 36 carried by the low-densityfoam insulation boards 34, the high-density polymer or predominantlypolymer material precursor 210 and the low-densityfoam insulation boards 34 pass between two spaced-apart opposed formingconveyers 212 and 214 where the high-density polymer or predominantly polymer material core layers 38 of thecover boards 32 are formed and bonded directly to the low-density foam core layers 42 of theinsulation boards 34 or to the common facers overlying the low-densityfoam insulation board 34. The spaced-apart opposed formingconveyors 212 and 214 cooperate to set the thickness of both the high-density polymer or predominantly polymermaterial core layer 40 and the prefabricatedroofing panel composite station 204 also includes supplies (e.g. rolls) of afacer material 216 that is fed over the high-density polymer or predominantlypolymer material precursor 210 to form thetop facer 52 of both the high-density polymer or predominantly polymermaterial cover board 32 and the prefabricatedroofing panel composite 50. - With the high-
density core layer 40 and the low-densityfoam core layer 42 of the prefabricatedroofing panel composite station 204 to form a continuous length of the prefabricatedroofing panel composite roofing panel composite roofing panel composite reciprocating cutter 218, cuts the prefabricatedroofing panel composite 30 coming from the formingstation 204 to length. - The
production line 200, as shown, is capable of making the prefabricatedroofing panel composite 30 by feeding preformed low-density polymer or predominantly polymer materialfoam insulation boards 34 into the formingstation 204 and omitting the application of thefacer material 216 to thecover board 32 and is capable of making the prefabricatedroofing panel composite 50 by feeding preformed low-density polymer or predominantly polymer materialfoam insulation boards 34 into the formingstation 204 and applying of thefacer material 216 to thecover board 32. Thefacer 216 normally prevents the high-density polymer or predominantly polymer material layer from sticking to the conveyor 212. However, with a shift in the chemistry of theprecursor 210 to affect the tackiness of the layer produced so that the layer does not stick to the surface of the conveyor 212 or by applying a release film or coating to the surface of the conveyer 212 that will not allow the layer produced to stick to the surface of the conveyor, when desired, the facingmaterials 216 is not needed for and could be eliminated from the manufacturing process. -
FIG. 9 is a schematic side view of aproduction line 300 that can be used with the method of the subject invention to continuously make a prefabricated roofing panel composite of the subject invention, such as the prefabricatedroofing panel composites 60 ofFIG. 5 and 80 ofFIG. 6 . These prefabricated roofing panel composites each include: a high-density polymer or predominantly polymermaterial cover board 62, a low-density polymer or predominantly polymer materialfoam insulation board 64, and a high-density polymer or predominantlypolymer material baseboard 66. Theproduction line 300 includes: a first formingstation 302 for forming the high-density polymer or predominantlypolymer material baseboard 66 of the prefabricatedroofing panel composites station 304 for forming the low-density polymer or predominantly polymer materialfoam insulation board 64 of the prefabricatedroofing panel composites station 306 for forming the high-density polymer or predominantly polymermaterial cover board 62 of the prefabricatedroofing panel composites station 308 for cutting the prefabricatedroofing panel composites - The first forming
station 302 for forming the high-density polymer or predominantly polymer material baseboard 56 includes aconventional dispenser 310 for dispensing a high-density polymer or predominantly polymer material precursor 312 (e.g. a high-density polyisocyanurate or predominantly polyisocyanurate precursor) onto a facer, when used, overlying a conveyor 314 of two spaced-apart opposed formingconveyers 314 and 316 or directly onto the conveyor 314. As theprecursor 310 passes between the formingconveyors 314 and 316, forms and at least partially sets, the formingconveyors 314 and 316 cooperate to set the thickness of the high-density polymer or predominantly polymermaterial core layer 74 of the high-density baseboard 66 formed from theprecursor 310. The first formingstation 302 also includes supplies (e.g. rolls) offacer materials 318 and 320 that may be fed over and/or beneath the high-density polymer or predominantlypolymer material precursor 310 to form, when used, a common facer of the prefabricatedroofing panel composites roofing panel composites - The second forming
station 304 of theproduction line 300 for forming the low-density polymer or predominantly polymer materialfoam insulation board 64 of the prefabricatedroofing panel composites conventional dispenser 322 for dispensing a low-density polymer or predominantly polymer material foam precursor 324 (e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor) directly onto the high-density core layer 74 or, when used, onto a common facer overlying the high-density core layer 74 of thebaseboard 66. With the low-density polymer or predominantly polymermaterial foam precursor 324 directly overlying high-density core layer 74 or the common facer overlying the high-density core layer 74 of thebaseboard 66, the low-density polymer or predominantly polymermaterial foam precursor 324 and the high-density core layer 74 pass between two spaced-apart opposed formingconveyers 314 and 326 where the low-density polymer or predominantly polymer materialfoam core layer 76 of theinsulation board 64 is formed and bonded to the high-density core layer 74 or the common facer overlying the high-density core layer 74 of thebaseboard 66. The spaced-apart opposed formingconveyors 314 and 326 cooperate to set the thickness of the low-density polymer or predominantly polymer materialfoam core layer 76 of theinsulation board 64. The second formingstation 304 also includes supplies (e.g. rolls) of afacer material 328 that can be fed over the low-density polymer or predominantly polymermaterial foam precursor 324 to form a common facer of the prefabricatedroofing panel composites - The third forming
station 306 of theproduction line 300 for forming the high-density polymer or predominantly polymermaterial cover board 62 of the prefabricatedroofing panel composites foam core layer 76 or the common facer overlying the low-densityfoam core layer 76 of theinsulation board 64. With the high-density polymer or predominantlypolymer material precursor 332 overlying the low-densityfoam core layer 76 or the common facer overlying the low-densityfoam core layer 76, the high-density polymer or predominantlypolymer material precursor 332, the low-densityfoam insulation board 64, and the high-density baseboard 66 pass between two spaced-apart opposed formingconveyers 314 and 334 where the high-density polymer or predominantly polymermaterial core layer 72 of thecover board 62 is formed and bonded to the low-densityfoam core layer 76 or the common facer overlying the low-densityfoam core layer 76 of theinsulation board 64. The spaced-apart opposed formingconveyors 314 and 334 cooperate to set the thickness of both the high-density polymer or predominantly polymermaterial core layer 72 and the prefabricatedroofing panel composite station 306 also includes supplies (e.g. rolls) of afacer material 336 that is fed over the high-density polymer or predominantlypolymer material precursor 332 to form thetop facer 82 of both the high-density cover board 62 and the prefabricatedroofing panel composite 80. - With the high-density polymer or predominantly polymer
material cover board 62, the low-density polymer or predominantly polymer materialfoam insulation board 64, and the high-density polymer or predominantlypolymer material baseboard 66 of the prefabricatedroofing panel composites station 306 to form a continuous length of the prefabricatedroofing panel composite roofing panel composite roofing panel composite roofing panel composite station 306 to length. - While the
production line 300, as shown, is capable of applying fourfacer materials baseboard 66, theinsulation board 64 and thecover board 62 to form the prefabricatedroofing panel composites materials roofing panel composite 60 and all but the top facing material can be omitted to form the prefabricatedroofing panel composite 80 with the desired number of facers. Thefacers precursors -
FIG. 10 is a schematic side view of anotherproduction line 400 that can be used with the method of the subject invention to continuously make prefabricated roofing panel composites of the subject invention in line, such as the prefabricatedroofing panel composites 30 ofFIG. 3 and 50 ofFIG. 4 . The prefabricatedroofing panel composites material cover board 32 and a low-density polymer or predominantly polymer materialfoam insulation board 34. Theproduction line 400 includes: a formingstation 402 for forming the low-density polymer or predominantly polymer materialfoam insulation board 34 and the high-density polymer or predominantly polymermaterial cover board 32 of the prefabricatedroofing panel composites station 404 for cutting the prefabricatedroofing panel composites - The forming
station 402 for forming the low-densityfoam insulation board 34 and the high-density cover board includes aconventional dispenser 406 for dispensing a low-density polymer or predominantly polymer material foam precursor 408 (e.g. a low-density polyisocyanurate or predominantly polyisocyanurate foam precursor) onto a facer, when used, overlying aconveyor 410 of two spaced-apart opposed formingconveyers conveyor 410. The formingstation 402 also includes aconventional dispenser 414 for dispensing a high-density polymer or predominantly polymer material precursor 416 (e.g. a high-density polyisocyanurate or predominantly polyisocyanurate material precursor) onto the low-density polymer or predominantly polymer material foam precursor of thecore layer 42 or, when used, a common facer overlying the low-density polymer or predominantly polymer material foam precursor of thecore layer 42. As the layers ofprecursor conveyors conveyors foam core layer 42 ofinsulation board 34 formed from theprecursor 408, the thickness of the high-density polymer or predominantly polymermaterial core layer 40 ofcover board 32 formed from theprecursor 416, and the thickness of the prefabricatedroofing panel composite station 402 also includes supplies (e.g. rolls) offacer materials material foam precursor 408 to form a common facer of the prefabricatedroofing panel composites roofing panel composites polymer material precursor 416 to form a top facer of the prefabricatedroofing panel composites - With the high-
density core layer 40 and the low-densityfoam core layer 42 of the prefabricatedroofing panel composite roofing panel composite roofing panel composite roofing panel composite reciprocating cutter 424, cuts the prefabricatedroofing panel composite station 402 to length. - While the
production line 400, as shown, is capable of applying threefacer materials insulation board 34 and thecover board 32 to form the prefabricatedroofing panel composites materials roofing panel composite 30 and all but the top facing material can be omitted to form the prefabricatedroofing panel composite 50 with the desired number of facers. Thefacers precursors - Preferably, the low-density polymer or predominantly polymer
material foam precursors polymer material precursors polymer material precursors precursors precursors -
FIGS. 11 and 12 are fragmentary, transverse schematic, perspective views of a prefabricatedcover board composite 520 of the subject invention. The composite 520 includes thecover board 10 ofFIG. 1 , a top facer 522 (e.g. a waterproofing membrane), abottom facer 524, and a plurality of wind-uplift reinforcement patches 526 (such as but not limited to the wind-uplift reinforcement patches shown inFIGS. 15 and 16 ) or strips 528 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ). Conventional fastener plates, such as but not limited to the disc shapedmetallic fastener plate 530, are typically used at each fastener penetration of the prefabricatedcover board composite 520 to spread the forces exerted on the top major surface of the composite by the nails or other mechanical fasteners securing the composite to a roof deck over a greater surface area and thereby reduce the pressures exerted by the fasteners (not shown) on the top major surface of the composite. Other than the inclusion of atop facer 522, abottom facer 524, and a plurality of wind-uplift reinforcements, such as the wind-uplift reinforcement patches 526 or strips 528 the prefabricatedcover board composite 520 is the same as thecover board 10 ofFIG. 1 . - The
top facer 522 that is bonded to the top major surface of the high-density polymer or predominantly polymer material core layer of thecover board composite 520 may be any sheet material that provides a suitable top major surface for the cover board composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. A preferred sheet material for thetop facer 522 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Where thecover board composite 520 is fully adhered to an underlying roofing layer (e.g. an insulation layer) rather than being secured by mechanical fasteners, a sheet material may be used for thetop facer 522 that serves the dual function of providing a facing during the manufacturing process and a waterproofing membrane on the finished product such as but not limited to a bituminous or modified bituminous membrane, or a single ply membrane (e.g. a EPDM, PVC, or TPO membrane). Where thetop facer 522 is a waterproofing membrane, the facer may extend beyond the high-density polymer or predominantly polymer material core layer of thecover board 10 on one or more of the four sides of the core layer (e.g. beyond a side edge and an end edge of the top major surface of the core layer) to form membrane overlaps for sealing to the membranes ofother composites 520. Thebottom facer 524 is bonded to and typically coextensive with the bottom major surface of the high-density polymer or predominantly polymer material core layer of thecover board composite 520. Thebottom facer 524 of the composite 520 may be any sheet material that provides a suitable bottom major surface for thecover board composite 520, such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. However, a preferredbottom facer 524, is a coated or uncoated woven or nonwoven fiberglass mat such as but not limited to the preferredtop facer 522. - The wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches 526 (such as but not limited to the wind-uplift reinforcement patches shown in
FIGS. 15 and 16 ) or the wind-uplift reinforcement strips 528 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ), may be made of various reinforcement sheet or mat materials, such as but not limited to sheets or mats of glass, polyester, polypropylene, metal, wool, and other synthetic and natural fibers and combinations of such fibers. However, a preferred reinforcement material for the wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches and strips is a scrim such as fiberglass scrim with a minimum tensile strength of 30 lbs per linear inch and preferably, a minimum tensile strength of at least 100 lbs per linear inch, e.g. a fiberglass scrim that is 10 grams/ft2 with 8×8 strands per inch wherein the mean diameter of the strands is 0.019 inches. - When a cover board composite is subjected to wind-uplift forces from high winds during service, the wind-uplift forces exerted on a cover board composite, if not controlled, will tend to place the top portion of the composite in compression and the bottom portion of the composite in tension at the fastener locations to thereby place the composite under stress at these locations. Repeated cycles of stress exerted on a cover board composite at the fastener locations during service can result in a failure of the composite at one or more of the fastener locations. The wind-uplift reinforcements of the subject invention, e.g. the wind-uplift reinforcement patches 526 or reinforcement strips 528, greatly increase the pressures that the cover board composite can withstand before failure at a fastener location. While the cover board composite still flexes, the wind-uplift reinforcements of the subject invention extend or increase the load the bottom facer can withstand before the
bottom facer 524 fails at a fastener location. The wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches 526 (such as but not limited to the wind-uplift reinforcement patches shown inFIGS. 15 and 16 ) or the wind-uplift reinforcement strips 528 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ) are interposed between thebottom facer 524 and the bottom major surface of the core layer to coincide with a selected fastener pattern or selected fastener patterns for securing thecover board composite 520 to a roof deck and increase a per-fastener wind-uplift pull through rating for the cover board composite. -
FIG. 13 is a fragmentary, transverse schematic, perspective view of a prefabricated cover board/insulationboard panel composite 540 of the subject invention. Thepanel composite 540 includes the cover board/insulationboard panel composite 30 ofFIG. 3 , which includes acover board 32 with a high-density polymer or predominantly polymer material core layer and aninsulation board 34 with a low-density polymer or predominantly polymer material core layer; a top facer 542 (e.g. a waterproofing membrane); abottom facer 544; and a plurality of wind-uplift reinforcement patches 546 (such as but not limited to the wind-uplift reinforcement patches shown inFIGS. 15 and 16 ) or strips 548 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ). Fastener plates, such as but not limited to thefastener plate 550, are typically used at each fastener penetration of the prefabricated cover board/insulationboard panel composite 540 to spread the forces exerted on the top major surface of the panel composite by the fasteners securing the composite to a roof deck over a greater surface area and thereby reduce the pressures exerted by the fasteners (not shown) on the top major surface of the panel composite. Other than the inclusion of atop facer 542, abottom facer 544, and a plurality of wind-uplift reinforcements, such as the wind-uplift reinforcement patches 546 or strips 548 the prefabricated cover board/insulationboard panel composite 540 is the same as the cover board/insulationboard panel composite 30 ofFIG. 3 . - The
top facer 542 that is bonded to the top major surface of the high-density polymer or predominantly polymer material core layer of thecover board 32 may be any sheet material that provides a suitable top major surface for the cover board/insulationboard panel composite 540, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. A preferred sheet material for thetop facer 542 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Thebottom facer 544 is bonded to and typically coextensive with the bottom major surface of the low-density polymer or predominantly polymer material core layer of theinsulation board 34. Thebottom facer 544 of the composite 540 may be any sheet material that provides a suitable bottom major surface for the cover board/insulation board composite 540, such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. However, a preferredbottom facer 544, is a coated or uncoated woven or nonwoven fiberglass mat such as but not limited to the preferred thetop facer 542. - The wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches 546 (such as but not limited to the wind-uplift reinforcement patches shown in
FIGS. 15 and 16 ) or the wind-uplift reinforcement strips 548 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ), may be made of various reinforcement sheet or mat materials, such as but not limited to sheets or mats of glass, polyester, polypropylene, metal, wool, and other synthetic and natural fibers and combinations of such fibers. However, a preferred reinforcement material for the wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches and strips is a scrim such as fiberglass scrim with a minimum tensile strength of 30 lbs per linear inch and preferably, a minimum tensile strength of at least 100 lbs per linear inch, e.g. a fiberglass scrim that is 10 grams/ft2 with 8×8 strands per inch wherein the mean diameter of the strands is 0.019 inches. The wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches 546 (such as but not limited to the wind-uplift reinforcement patches shown inFIGS. 15 and 16 ) or the wind-uplift reinforcement strips 548 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ) are interposed between thebottom facer 544 and the bottom major surface of the insulation board core layer to coincide with a selected fastener pattern or selected fastener patterns for securing the cover board, insulationboard panel composite 540 to a roof deck and increase a per-fastener wind-uplift pull through rating for the cover board/insulation board panel composite. The wind-uplift reinforcements of the cover board/insulationboard panel composite 540 perform the same or substantially the same function as the wind-uplift reinforcements of thecover board composite 520. -
FIG. 14 is a fragmentary, transverse schematic, perspective view of a prefabricated cover board/insulation board/baseboard panel composite 560 of the subject invention. Thepanel composite 560 includes theroofing panel composite 60 ofFIG. 5 , which includes acover board 62 with a high-density polymer or predominantly polymer material core layer, aninsulation board 64 with a low-density polymer or predominantly polymer material foam core layer; abaseboard 66 with a high-density polymer or predominantly polymer material core layer; a top facer 562 (e.g. a waterproofing membrane), abottom facer 564, and a plurality of wind-uplift reinforcement patches 566 (such as but not limited to the wind-uplift reinforcement patches shown inFIGS. 15 and 16 ) or strips 568 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ). Fastener plates, such as but not limited to thefastener plate 570, are typically used at each fastener penetration of the prefabricated cover board/insulation board/baseboard panel composite 560 to spread the forces exerted on the top major surface of the composite by the fasteners securing the composite to a roof deck over a greater surface area and thereby reduce the pressures exerted by the fasteners (not shown) on the top major surface of the panel composite. Other than the inclusion of atop facer 562, abottom facer 564, and a plurality of wind-uplift reinforcements, such as the wind-uplift reinforcement patches 566 or strips 568 the prefabricated cover board/insulation board/baseboard panel composite 560 is the same as the cover board/insulation board/baseboard panel composite 60 ofFIG. 5 . - The
top facer 562 that is bonded to the top major surface of the high-density polymer or predominantly polymer material core layer of thecover board 62 may be any sheet material that provides a suitable top major surface for the cover board/insulation board/baseboard panel composite, such as but not limited to coated or uncoated paper, foil, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. A preferred sheet material for thetop facer 522 is a nonwoven fiberglass mat that is heavily coated with a mineral coating such as but not limited to a calcium carbonate/clay/SBR latex coating. Thebottom facer 564 is bonded to and typically coextensive with the bottom major surface of the high-density polymer or predominantly polymer material core layer of thebaseboard 66. Thebottom facer 564 of the composite 560 may be any sheet material that provides a suitable bottom major surface for the cover board/insulation board/baseboard composite 560, such as but not limited to coated or uncoated paper, coated or uncoated woven or nonwoven mats made of fiberglass or other fibers or filaments, scrims, etc. However, a preferredbottom facer 564, is a coated or uncoated woven or nonwoven fiberglass mat such as but not limited to the preferredtop facer 562. - The wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches 566 (such as but not limited to the wind-uplift reinforcement patches shown in
FIGS. 15 and 16 ) or the wind-uplift reinforcement strips 568 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ), may be made of various reinforcement sheet or mat materials, such as but not limited to sheets or mats of glass, polyester, polypropylene, metal, wool, and other synthetic and natural fibers and combinations of such fibers. However, a preferred reinforcement material for the wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches and strips is a scrim such as fiberglass scrim with a minimum tensile strength of 30 lbs per linear inch and preferably, a minimum tensile strength of at least 100 lbs per linear inch, e.g. a fiberglass scrim that is 10 grams/ft2 with 8×8 strands per inch wherein the mean diameter of the strands is 0.019 inches. The wind-uplift reinforcements, e.g. the wind-uplift reinforcement patches 566 (such as but not limited to the wind-uplift reinforcement patches shown inFIGS. 15 and 16 ) or the wind-uplift reinforcement strips 568 (such as but not limited to the wind-uplift reinforcement strips shown inFIG. 17 ) are interposed between thebottom facer 564 and the bottom major surface of the baseboard core layer to coincide with a selected fastener pattern or selected fastener patterns for securing the cover board/insulation board/baseboard panel composite 560 to a roof deck and increase a per-fastener wind-uplift pull through rating for the cover board/insulation board/baseboard panel composite. The wind-uplift reinforcements of the cover board/insulation board/baseboard panel composite 560 perform the same or substantially the same function as the wind-uplift reinforcements of thecover board composite 520. -
FIGS. 15 and 16 show an eight-fastener wind-uplift reinforcement patch placement pattern, utilizing a single patch and a double patch arrangement, for securing thecover board composite 520, the cover board/insulationboard panel composite 540, and the cover board/insulation board/baseboard panel composite 560 to a roofing deck. The eight-fastener wind-uplift reinforcement patch placement pattern shown is exemplary and it is to be understood that the wind-uplift reinforcement patch placement patterns for thecover board composite 520, the cover board/insulationboard panel composite 540, and the cover board/insulation board/baseboard panel composite 560 can be selected to accommodate any desired fastener placement pattern including any one or more of the fastener placement patterns commonly utilized in the roofing industry. In the embodiment shown inFIG. 15 , single wind-uplift reinforcement patches 526, 546, and 566 are utilized. In the embodiment ofFIG. 16 , double wind-uplift patches 528, 548, and 568 are utilized with the overlying wind-uplift reinforcement patches having a 45° offset relative to the wind-uplift reinforcement patches overlaid. Preferably, the wind-uplift reinforcement patches 528, 548, and 568 are at least three inches by three inches and centered over each of the fastener placement locations. Examples of preferred wind-uplift reinforcement patches are: generally square patches that have dimensions between about three inches by about three inches and about six inches by about six inches; generally round patches that have diameters between about three inches and about six inches; and generally rectangular, oval and other shaped patches having a minor dimension between about three inches and about six inches and a major dimension between about three inches and about six inches. Preferably, the top surface of acover board composite 520, a cover board/insulationboard panel composite 540, or a cover board/insulation board/baseboard panel composite 560 utilizing the single or double wind-uplift reinforcement patches will be visibly marked to indicate the locations of the wind-uplift reinforcement patches on the underside of the composite so that a roofing installer will know exactly where to pass fasteners for securing the composite to a roof deck through the composite and the wind-uplift reinforcement patches located on the underside of the composite in the fastener placement pattern being utilized to secure the composite to a roof deck. For example, visible X and/or 0 markings could be placed on the top surface of a composite that are centered over the centers of each of the single or double wind-uplift reinforcement patches on the underside of the composite. -
FIG. 17 shows a wind-uplift reinforcement strip placement pattern, which can be used for an eight-fastener placement or other fastener placement pattern, for securing thecover board composite 520, the cover board/insulationboard panel composite 540, and the cover board/insulation board/baseboard panel composite 560 to a roofing deck. The wind-uplift reinforcement strip placement pattern shown for the wind-uplift reinforcement strips 528, 548 and 568 is exemplary and it is to be understood that the reinforcement strip placement patterns for thecover board composite 520, the cover board/insulationboard panel composite 540, and the cover board/insulation board/baseboard panel composite 560 can be selected to accommodate any desired fastener placement pattern including any one or more of the fastener placement patterns commonly utilized in the roofing industry. Preferably, the wind-uplift reinforcement strips 528, 548 and 568 are between about three and about six inches wide, run the length and/or width of the composite, and have their longitudinal centerlines centered over fastener placement locations. Preferably, the top surface of acover board composite 520, a cover board/insulationboard panel composite 540, or a cover board/insulation board/baseboard panel composite 560 utilizing the wind-uplift reinforcement strips will be visibly marked to indicate the locations of the wind-uplift reinforcement strips on the underside of the composite so that a roofing installer will know exactly where to pass fasteners for securing the composite to a roof deck through the composite and the wind-uplift reinforcement strips located on the underside of the composite in the fastener placement pattern being utilized to secure the composite to a roof deck. For example, visible solid or dashed line markings or visible solid or dashed line markings with X and 0 markings in various fastener placement patterns could be placed on the top surface of a composite with the line markings centered over and extending along the longitudinal centerlines of the wind-uplift reinforcement strips on the underside of the composite. - Tests were conducted to determine fastener pull through strength for a 0.25 inch thick polyisocyanurate cover board: a) with only a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board; b) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and a scrim reinforcement interposed between the bottom facer and the bottom major surface of the cover board and also substantially coextensive with the bottom major surface of the cover board; c) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and six inch wide scrim reinforcement strips interposed between the bottom facer and the bottom major surface of the cover board, running the length of the cover board, and having longitudinal centerlines centered over the fastener penetration locations; d) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and three inch wide scrim reinforcement strips interposed between the bottom facer and the bottom major surface of the cover board, running the length of the cover board, and having longitudinal centerlines centered over the fastener penetration locations; e) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and six inch square scrim reinforcement patches interposed between the bottom facer and the bottom major surface of the cover board and centered over the fastener penetration locations; and f) with a coated nonwoven glass fiber bottom facer bonded to and substantially coextensive with the bottom major surface of the cover board and two layers of six inch square scrim reinforcement patches interposed between the bottom facer and the bottom major surface of the cover board and centered over the fastener penetration locations. The scrim material used in the tests was a fiberglass scrim having a tensile strength of 105 lbs per linear inch. The scrim material was 10 grams/ft2 with 8×8 strands per inch wherein the mean diameter of the strands was 0.019 inches. The measured per fastener wind-uplift pull through strengths for these composites was:
- a) coated nonwoven glass fiber facer alone—160 lbf (pounds of force);
- b) coated nonwoven glass fiber facer and scrim reinforcement that is substantially coextensive with the bottom major surface of the cover board—300 lbf;
- c) coated nonwoven glass fiber facer and six-inch wide scrim reinforcement strips—275 lbf;
- d) coated nonwoven glass fiber facer and three-inch wide scrim reinforcement strips—250 lbf;
- e) coated nonwoven glass fiber facer and six inch square scrim reinforcement patches—240 lbf; and
- f) coated nonwoven glass fiber facer and two layers of six-inch square scrim reinforcement patches—350 lbf.
- The coverage rate of the scrim reinforcement (area of the bottom major surface of a cover board or other roofing panel composite covered by scrim reinforcement) for the scrim reinforcement embodiments set forth immediately above will vary with the fastener location pattern utilized. However, for the scrim reinforcement embodiments set forth immediately above, an eight fastener location pattern on a four by eight foot cover board or other roofing panel composite (i.e. a cover board or other roofing panel composite with a 32 ft2 bottom major surface) results in the following coverage rates:
- a) coated nonwoven glass fiber facer alone—0 ft2 coverage;
- b) coated nonwoven glass fiber facer and scrim reinforcement that is substantially coextensive with the bottom major surface of the cover board—32 ft2 coverage;
- c) coated nonwoven glass fiber facer and six inch wide scrim reinforcement strips—8 ft2 coverage;
- d) coated nonwoven glass fiber facer and three inch wide scrim reinforcement strips—4 ft2 coverage;
- e) coated nonwoven glass fiber facer and six inch square scrim reinforcement patches—2 ft2 coverage; and
- f) coated nonwoven glass fiber facer and two layers of six inch square scrim reinforcement patches—2 ft2 coverage with 4 ft2 of scrim utilized.
- With embodiment “f” (coated nonwoven glass fiber facer and two layers of six inch square scrim reinforcement patches—2 ft2 coverage with 4 ft2 of scrim utilized) a 90 pounds/ft2 wind-uplift rating may be achieved for a cover board using only eight fasteners to secure the cover board whereas for embodiment “a” (coated nonwoven glass fiber facer alone) sixteen fasteners must be utilized to achieve a 90 pound/ft2 wind-uplift rating for the cover board. Fasteners and their installation commonly represent approximately 40% of cover board installation costs. The scrim reinforcements of the subject invention enable a reduction in the number of fasteners required to achieve a specific wind-uplift rating for an installed cover board. Thus, for a roofing system with a specific wind-uplift rating, the scrim reinforcements of the subject invention can significantly reduce the labor and ultimately, the overall installed cost of the roofing system. Of course, an installer can retain the normal number of fasteners utilized per cover board and significantly increase the wind-uplift rating for the installed cover board. In addition, while the use of a scrim reinforcement that is substantially coextensive with the bottom major surface of a cover board or other roofing panel composite can significantly increase the per fastener wind-uplift pull through rating, the scrim reinforcement of the subject invention can substantially reduce the square footage of scrim reinforcement required to significantly increase the per fastener wind-uplift pull through rating (e.g. 32 ft2 for full scrim reinforcement coverage vs. 8 ft2, 4 ft2, or 2 ft2 coverage for reinforcements of the subject invention for an eight fastener location pattern on a four by eight foot cover board or other roofing panel composite).
- In describing the invention, certain embodiments have been used to illustrate the invention and the practices thereof. However, the invention is not limited to these specific embodiments as other embodiments and modifications within the spirit of the invention will readily occur to those skilled in the art on reading this specification. For example, the prefabricated roofing panel composites could be in an upside down orientation to that shown and described in connection with
FIGS. 7 to 9 . Thus, the invention is not intended to be limited to the specific embodiments disclosed, but is to be limited only by the claims appended hereto.
Claims (8)
1. A roofing system, comprising:
a plurality of insulation boards adapted for overlying a roof deck to form a layer of insulation, each of the plurality of insulation boards having opposing planar surfaces and having a facer on at least one planar surface, and each of the plurality of insulation boards comprising polyisocyanurate foam having a first polyisocyanurate foam density; and
a plurality of cover boards adapted for overlying the layer of insulation, each of the plurality of cover boards having opposing planar surfaces and having a facer on at least one planar surface, and each of the plurality of cover boards comprising polyisocyanurate foam having a second polyisocyanurate foam density greater than the first polyisocyanurate foam density, which greater polyisocyanurate foam density provides for a compressive strength to resist deformation.
2. The roofing system of claim 1 , wherein the second polyisocyanurate foam density is between 6 lbs/ft3 and 25 lbs/ft3.
3. The roofing system of claim 1 , wherein the second polyisocyanurate foam density is between 4 lbs/ft3 and 25 lbs/ft3.
4. The roofing system of claim 1 , wherein the first polyisocyanurate foam density is less than 4 lbs/ft3.
5. The roofing system of claim 1 , wherein the first polyisocyanurate foam density is between about 1 lbs/ft3 and about 3 lbs/ft3.
6. The roofing system of claim 1 , wherein the facers comprise glass fiber.
7. The roofing system of claim 1 , wherein each of the plurality of cover boards is bonded to a respective one of the plurality of insulation boards to form a roofing panel composite.
8. The roofing system of claim 1 , further comprising a waterproofing membrane adapted for overlying the layer of cover boards.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/193,729 US9909317B2 (en) | 2004-11-09 | 2016-06-27 | Roofing systems and methods |
US15/874,770 US10087634B2 (en) | 2004-11-09 | 2018-01-18 | Roofing systems and methods |
US16/122,771 US20180371758A1 (en) | 2004-11-09 | 2018-09-05 | Roofing systems and methods |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/984,122 US20060096205A1 (en) | 2004-11-09 | 2004-11-09 | Roofing cover board, roofing panel composite, and method |
US11/519,042 US7811663B2 (en) | 2004-11-09 | 2006-09-11 | Roofing cover board, roofing panel composites, and method |
US12/703,308 US8105685B2 (en) | 2004-11-09 | 2010-02-10 | Roofing cover board, roofing panel composites, and method |
US13/209,710 US8479467B2 (en) | 2004-11-09 | 2011-08-15 | Prefabricated roofing panel composite |
US13/908,505 US20130264012A1 (en) | 2004-11-09 | 2013-06-03 | Prefabricated roofing panel composite |
US14/293,004 US9404261B2 (en) | 2004-11-09 | 2014-06-02 | Roofing systems and methods |
US15/193,729 US9909317B2 (en) | 2004-11-09 | 2016-06-27 | Roofing systems and methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/293,004 Division US9404261B2 (en) | 2004-11-09 | 2014-06-02 | Roofing systems and methods |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/874,770 Continuation US10087634B2 (en) | 2004-11-09 | 2018-01-18 | Roofing systems and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160305126A1 true US20160305126A1 (en) | 2016-10-20 |
US9909317B2 US9909317B2 (en) | 2018-03-06 |
Family
ID=36314876
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/984,122 Abandoned US20060096205A1 (en) | 2004-11-09 | 2004-11-09 | Roofing cover board, roofing panel composite, and method |
US11/408,231 Active 2026-01-25 US7718253B2 (en) | 2004-11-09 | 2006-04-20 | Roofing cover board, roofing panel composite, and method |
US11/519,042 Expired - Lifetime US7811663B2 (en) | 2004-11-09 | 2006-09-11 | Roofing cover board, roofing panel composites, and method |
US12/703,308 Expired - Lifetime US8105685B2 (en) | 2004-11-09 | 2010-02-10 | Roofing cover board, roofing panel composites, and method |
US12/754,141 Abandoned US20100189977A1 (en) | 2004-11-09 | 2010-04-05 | Roofing cover board, roofing panel composite, and method |
US12/792,901 Active 2025-02-20 US8426017B2 (en) | 2004-11-09 | 2010-06-03 | Roofing cover board, roofing panel composites, and method |
US13/442,946 Expired - Fee Related US8287997B2 (en) | 2004-11-09 | 2012-04-10 | Roofing cover board, roofing panel composites, and method |
US13/758,111 Expired - Lifetime US8617699B2 (en) | 2004-11-09 | 2013-02-04 | Manufacturing and assembly of roofing components |
US13/758,034 Active 2025-02-26 US8597779B2 (en) | 2004-11-09 | 2013-02-04 | Roofing system including roofing components and methods |
US13/758,077 Expired - Lifetime US8470436B1 (en) | 2004-11-09 | 2013-02-04 | Roofing system including insulation and cover boards |
US15/193,729 Expired - Lifetime US9909317B2 (en) | 2004-11-09 | 2016-06-27 | Roofing systems and methods |
US15/874,770 Expired - Lifetime US10087634B2 (en) | 2004-11-09 | 2018-01-18 | Roofing systems and methods |
US16/122,771 Abandoned US20180371758A1 (en) | 2004-11-09 | 2018-09-05 | Roofing systems and methods |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/984,122 Abandoned US20060096205A1 (en) | 2004-11-09 | 2004-11-09 | Roofing cover board, roofing panel composite, and method |
US11/408,231 Active 2026-01-25 US7718253B2 (en) | 2004-11-09 | 2006-04-20 | Roofing cover board, roofing panel composite, and method |
US11/519,042 Expired - Lifetime US7811663B2 (en) | 2004-11-09 | 2006-09-11 | Roofing cover board, roofing panel composites, and method |
US12/703,308 Expired - Lifetime US8105685B2 (en) | 2004-11-09 | 2010-02-10 | Roofing cover board, roofing panel composites, and method |
US12/754,141 Abandoned US20100189977A1 (en) | 2004-11-09 | 2010-04-05 | Roofing cover board, roofing panel composite, and method |
US12/792,901 Active 2025-02-20 US8426017B2 (en) | 2004-11-09 | 2010-06-03 | Roofing cover board, roofing panel composites, and method |
US13/442,946 Expired - Fee Related US8287997B2 (en) | 2004-11-09 | 2012-04-10 | Roofing cover board, roofing panel composites, and method |
US13/758,111 Expired - Lifetime US8617699B2 (en) | 2004-11-09 | 2013-02-04 | Manufacturing and assembly of roofing components |
US13/758,034 Active 2025-02-26 US8597779B2 (en) | 2004-11-09 | 2013-02-04 | Roofing system including roofing components and methods |
US13/758,077 Expired - Lifetime US8470436B1 (en) | 2004-11-09 | 2013-02-04 | Roofing system including insulation and cover boards |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/874,770 Expired - Lifetime US10087634B2 (en) | 2004-11-09 | 2018-01-18 | Roofing systems and methods |
US16/122,771 Abandoned US20180371758A1 (en) | 2004-11-09 | 2018-09-05 | Roofing systems and methods |
Country Status (4)
Country | Link |
---|---|
US (13) | US20060096205A1 (en) |
EP (1) | EP1815079B1 (en) |
CA (1) | CA2586357C (en) |
WO (1) | WO2006052789A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140130435A1 (en) * | 2012-11-09 | 2014-05-15 | Johns Manville | Fire resistant composite boards and methods |
US10087634B2 (en) * | 2004-11-09 | 2018-10-02 | Johns Manville | Roofing systems and methods |
WO2019212782A1 (en) * | 2018-05-01 | 2019-11-07 | Kps Global Llc | Insulated structural members for insulated panels and a method for making same |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090104407A1 (en) * | 2007-10-17 | 2009-04-23 | Walter Alexander Johnson | Prefabricated roofing panel composite |
US7972688B2 (en) * | 2005-02-01 | 2011-07-05 | Letts John B | High density polyurethane and polyisocyanurate construction boards and composite boards |
US20060283140A1 (en) * | 2005-06-03 | 2006-12-21 | Intelligent Engineering (Bahamas) Limited | Wooden decks |
US7694480B2 (en) * | 2005-06-27 | 2010-04-13 | Niese Michael W | Panel-type subfloor for athletic floor |
MX2008013202A (en) * | 2006-04-12 | 2009-01-09 | James Hardie Int Finance Bv | A surface sealed reinforced building element. |
US20080075945A1 (en) * | 2006-09-22 | 2008-03-27 | Paradis Duane R | Polymer-based composite structural boards and structural systems |
WO2008094606A2 (en) | 2007-01-30 | 2008-08-07 | Firestone Building Products, Llc | High density polyurethane and polyisocyanurate construction boards and composite boards |
US8546278B2 (en) * | 2007-09-28 | 2013-10-01 | Johns Manville | Composite board containing glass fiber mat |
US9637926B2 (en) | 2008-04-10 | 2017-05-02 | Velcro BVBA | Membrane roofing |
US20090255213A1 (en) * | 2008-04-11 | 2009-10-15 | Innovida Holdings, Inc. | Sandwich panel with closed edge and methods of fabricating |
US20090282777A1 (en) * | 2008-05-13 | 2009-11-19 | Innovida Factories, Ltd. | Angle joint for sandwich panels and method of fabricating same |
US20090307995A1 (en) * | 2008-06-13 | 2009-12-17 | Innovida Factories, Ltd. | Roof construction joints made of sandwich panels |
US8733033B2 (en) | 2008-06-27 | 2014-05-27 | Millport Associates, SA | Sandwich panel ground anchor and ground preparation for sandwich panel structures |
US8782991B2 (en) * | 2008-07-10 | 2014-07-22 | Millport Associates S.A. | Building roof structure having a round corner |
US20100050549A1 (en) * | 2008-08-29 | 2010-03-04 | Innovida Factories, Ltd. | Joint of parallel sandwich panels |
US20100050553A1 (en) * | 2008-08-29 | 2010-03-04 | Innovida Factories, Ltd. | sandwich panel joint and method of joining sandwich panels |
ITMI20091776A1 (en) * | 2009-10-15 | 2011-04-16 | Dow Global Technologies Inc | POLYESOCYANURATE-BASED ADHESIVE WITH TWO COMPONENTS AND INSULATING PANELS PREPARED WITH ITS USE |
WO2011044715A1 (en) * | 2009-10-16 | 2011-04-21 | Dow Global Technologies Llc. | Lightweight water resistant panels with integrated decorative and thermal insulation layers |
WO2011084256A1 (en) * | 2009-12-16 | 2011-07-14 | Owens Corning Intellectual Capital, Llc | Apparatus and methods for application of foam and foam/loosefill insulation systems |
WO2011088184A2 (en) * | 2010-01-13 | 2011-07-21 | Pacific Insulated Panel, Llc | Composite insulating building panel and system and method for attaching building panels |
US9500555B2 (en) * | 2010-01-19 | 2016-11-22 | Clark Robert Gunness | Method and system for leak detection in roofing and waterproofing membranes |
US8484922B2 (en) * | 2010-02-17 | 2013-07-16 | Sealed Air Corporation (Us) | Alkaline and heat resistant foam composite and floor underlayment |
AU2011223427A1 (en) * | 2010-03-05 | 2012-09-06 | Innovative Composites International Inc. | Modular building system utilizing composite, foam core panels |
SE535637C2 (en) * | 2010-07-08 | 2012-10-23 | Brod N Bengt-Inge | Mobile house with height adjustable feet and floor with an upper and lower layer |
DE102010062061A1 (en) * | 2010-11-26 | 2012-05-31 | Wacker Chemie Ag | Components in plate form |
US10000922B1 (en) | 2011-03-24 | 2018-06-19 | Firestone Building Products Co., LLC | Construction boards with coated inorganic facer |
WO2012167270A1 (en) | 2011-06-03 | 2012-12-06 | Hercuwall Inc | Stronger wall system |
US8635825B2 (en) | 2011-09-07 | 2014-01-28 | Green Tech Products, Llc | Modular roof panels |
USD734127S1 (en) * | 2012-01-16 | 2015-07-14 | Niva | Fastening device for sampler |
US9309671B2 (en) * | 2012-03-01 | 2016-04-12 | Owens Corning Intellectual Capital, Llc | Structural panel and method for making same |
ITMI20121330A1 (en) * | 2012-07-31 | 2014-02-01 | Dow Global Technologies Llc | METHOD FOR THE PREPARATION OF INSULATING PANELS EXPANDED IN FLAME RESISTANT |
EP2703153A1 (en) | 2012-08-27 | 2014-03-05 | Bayer MaterialScience AG | Sandwich compound element with improved mechanical properties and method for manufacturing same |
US10822470B2 (en) * | 2012-09-07 | 2020-11-03 | Johns Manville | Polyolefin materials with reduced oxygen permeability |
US9963885B2 (en) | 2012-09-27 | 2018-05-08 | Max Life, LLC | Wall panel |
US9353523B2 (en) * | 2012-09-27 | 2016-05-31 | Max Life, LLC | Insulated wall panel |
US8863442B2 (en) | 2013-03-13 | 2014-10-21 | Thurman W. Freeman | Protected membrane roof system |
US10633863B2 (en) | 2013-03-13 | 2020-04-28 | Thurman W. Freeman | Protected membrane roof system |
US8875475B2 (en) | 2013-03-14 | 2014-11-04 | Millport Associates S.A. | Multiple panel beams and methods |
CA2858911A1 (en) * | 2013-08-09 | 2015-02-09 | Firestone Building Products Co., LLC | Roofing system and method for preparing the same |
US10344469B2 (en) | 2013-11-08 | 2019-07-09 | Piotr Robert Tauferner | Reinforced water-resistant board with traffic coat |
US9267285B2 (en) | 2013-11-08 | 2016-02-23 | Piotr Robert Tauferner | Reinforced water-resistant board with traffic coat |
EP2905117A1 (en) * | 2014-02-11 | 2015-08-12 | Bayer MaterialScience AG | Method for the preparation of polyurethane multilayer elements |
US9528269B2 (en) * | 2014-06-09 | 2016-12-27 | Johns Manville | Roofing systems and roofing boards with non-halogenated fire retardant |
AU2014271266B2 (en) * | 2014-12-03 | 2020-05-14 | Ptt Management Pty Ltd | Fall arrest product |
WO2016205091A1 (en) * | 2015-06-13 | 2016-12-22 | Ciuperca Romeo Iiarian | Foam sheathing reinforced with hybrid laminated fabric impregnated with vapor permeable air barrier material |
US9950957B2 (en) | 2015-10-16 | 2018-04-24 | United States Gypsum Company | Light weight gypsum fiber panel suitable for use as roof cover board |
US10287770B2 (en) * | 2015-11-04 | 2019-05-14 | Omnis Advanced Technologies | Systems, methods, apparatus, and compositions for building materials and construction |
WO2017083345A2 (en) * | 2015-11-09 | 2017-05-18 | Firestone Building Products Co., LLC | Foam construction boards with expandable graphite |
US10316515B2 (en) * | 2016-01-29 | 2019-06-11 | Owens Corning Intellectual Capital, Llc | Structural insulated sheathing |
EP3222795B1 (en) * | 2016-03-23 | 2022-07-27 | Li & Co AG | Wall or floor covering element |
ES2580839B1 (en) * | 2016-04-05 | 2017-05-10 | Flexicel Industrial, S.L.U. | Self-supporting insulating block and method for its manufacture |
US10094113B2 (en) * | 2016-05-12 | 2018-10-09 | Rmax Operating, Llc | Insulated roof diaphragms and methods |
EP3455426A1 (en) | 2016-05-14 | 2019-03-20 | Firestone Building Products Co., LLC | Adhesive-backed composite insulation boards with vacuum-insulated capsules |
US20210198527A1 (en) * | 2016-05-14 | 2021-07-01 | Firestone Building Products Company, Llc | Adhesive-backed composite insulation boards with vacuum-insulated capsules |
WO2018118476A1 (en) | 2016-12-20 | 2018-06-28 | Dow Global Technologies Llc | Reinforced sandwich panels |
FI12012U1 (en) * | 2016-12-27 | 2018-03-29 | Finnfoam Oy | Upper floor structure |
USD854193S1 (en) * | 2017-02-16 | 2019-07-16 | Huntsman International Llc | Foam board with facer |
NL2018440B1 (en) * | 2017-02-28 | 2018-09-19 | Champion Link Int Corp | Panel suitable for assembling a waterproof floor or wall covering, method of producing a panel |
US10808405B2 (en) * | 2017-03-16 | 2020-10-20 | Thomas L. Kelly | Roofing cover board with coating |
US10731346B2 (en) | 2017-03-16 | 2020-08-04 | Thomas L. Kelly | Roofing cover board with coating |
WO2019038574A1 (en) * | 2017-08-22 | 2019-02-28 | Christophe Portugues | Multi-density moulded expanded polystyrene panel, process for the manufacture thereof, and apparatus therefor |
US11186993B2 (en) * | 2017-10-24 | 2021-11-30 | Thomas L. Kelly | Enhanced roofing cover board |
RU2020119817A (en) | 2017-11-28 | 2021-12-16 | Дау Глоубл Текнолоджиз Ллк | POLYURETHANE / POLYISOCYANURATE FOAM INSULATION PANEL REINFORCED WITH FIBERGLASS |
CN111386422A (en) | 2017-11-28 | 2020-07-07 | 陶氏环球技术有限责任公司 | Heat insulation box |
WO2019108350A1 (en) * | 2017-11-28 | 2019-06-06 | Dow Global Technologies Llc | Polyurethane-based insulation board |
US10815666B2 (en) * | 2018-02-22 | 2020-10-27 | Thomas L. Kelly | Roofing cover board shingles |
US10982446B2 (en) | 2018-04-06 | 2021-04-20 | Tamko Building Products, Llc | Heavy glass mat impact resistant roofing |
CA3043743A1 (en) * | 2018-05-18 | 2019-11-18 | Thomas L. Kelly | Enhanced roofing system |
NL2021134B1 (en) * | 2018-06-15 | 2019-12-20 | Isobouw Systems Bv | Insulation panel and method for insulating a roof structure from a building. |
US10934716B2 (en) | 2018-09-17 | 2021-03-02 | Velcro Ip Holdings Llc | Construction underpayment |
SG11202103971TA (en) | 2018-10-23 | 2021-05-28 | Carlisle Construction Materials Llc | Insulation board with improved performance |
US11319708B2 (en) | 2018-10-23 | 2022-05-03 | Carlisle Construction Materials, LLC | Insulation board with improved performance |
US10731341B2 (en) * | 2018-11-05 | 2020-08-04 | Covestro Llc | Floor assemblies, methods for their manufacture, and the use of such assemblies in a building |
US10590653B1 (en) * | 2018-11-05 | 2020-03-17 | Covestro Llc | Roof assemblies with inset solar panels, methods for their manufacture, and the use of such assemblies in a building |
US10570622B1 (en) * | 2018-11-05 | 2020-02-25 | Covestro Llc | Roof assemblies, methods for their manufacture, and the use of such assemblies in a building |
CN109440955B (en) * | 2018-12-04 | 2023-09-15 | 南通四方节能科技有限公司 | Thermal insulation board and manufacturing and mounting method thereof |
TR201906279A2 (en) * | 2019-04-29 | 2020-11-23 | Dalsan Yatirim Ve Enerji A S | A THERMAL INSULATION BOARD PRODUCTION METHOD AND THERMAL INSULATION BOARD PRODUCED BY THIS METHOD |
MX2021014667A (en) | 2019-06-07 | 2022-01-11 | Georgia Pacific Gypsum Llc | Building panels, assemblies, and associated methods. |
CN110541657A (en) * | 2019-09-30 | 2019-12-06 | 重庆美心·麦森门业有限公司 | Steel fireproof door core plate |
CN112177247B (en) * | 2019-10-24 | 2021-11-12 | 辽宁红山木屋有限公司 | Quickly-installed roof and manufacturing method thereof |
US11566426B2 (en) | 2019-11-26 | 2023-01-31 | Bmic Llc | Roofing panels with water shedding features |
WO2021138256A1 (en) | 2019-12-30 | 2021-07-08 | Building Materials Investment Corporation | Roofing system with changeable decorative elements |
CN111218026A (en) * | 2020-01-14 | 2020-06-02 | 滁州市精美家电设备有限责任公司 | High-efficient special box customization foaming |
WO2021202327A1 (en) * | 2020-03-30 | 2021-10-07 | Building Materials Investment Corporation | Interlocking laminated structural roofing panels |
US11685140B2 (en) * | 2020-06-05 | 2023-06-27 | Johns Manville | Non-wicking underlayment board |
US11773586B2 (en) * | 2020-06-05 | 2023-10-03 | Johns Manville | Non-wicking underlayment board |
WO2022026050A1 (en) * | 2020-07-27 | 2022-02-03 | Boral Ip Holdings (Australia) Pty Limited | Panels and methods of preparation thereof |
US11855580B2 (en) | 2020-11-09 | 2023-12-26 | Bmic Llc | Interlocking structural roofing panels with integrated solar panels |
US11866940B2 (en) | 2021-02-10 | 2024-01-09 | Bmic Llc | Roofing systems utilizing embedded decorative layer |
US20220314584A1 (en) * | 2021-03-31 | 2022-10-06 | Westlake Royal Building Products Inc. | Composite materials and methods of preparation thereof |
DE102021204351A1 (en) | 2021-04-30 | 2022-11-03 | Hofer Textilveredelungs GmbH | Method and device for back-foaming an upper material |
CA3160250A1 (en) | 2021-05-25 | 2022-11-25 | Bmic Llc | Panelized roofing system |
FR3124531B1 (en) * | 2021-06-29 | 2024-06-28 | Knauf | Thermal and acoustic insulating panels |
CN114277963B (en) * | 2021-12-26 | 2023-08-22 | 山东盛通建筑工程有限公司 | Splicing structure of modularized energy-saving assembled building |
WO2024044399A1 (en) * | 2022-08-26 | 2024-02-29 | Louisiana-Pacific Corporation | Structural panel with exterior insulating foam layer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5695870A (en) * | 1995-04-06 | 1997-12-09 | The Dow Chemical Company | Laminated foam insulation board of enhanced strength |
US6044604A (en) * | 1996-09-23 | 2000-04-04 | Bridgestone/Firestone, Inc. | Composite roofing members having improved dimensional stability and related methods |
US6093481A (en) * | 1998-03-06 | 2000-07-25 | Celotex Corporation | Insulating sheathing with tough three-ply facers |
US6117375A (en) * | 1996-09-23 | 2000-09-12 | Bridgestone/Firestone, Inc. | Roofing members without auxiliary facers and related methods |
US20050106379A1 (en) * | 2003-11-13 | 2005-05-19 | Deslauriers, Inc. | Unbonded system for strength testing of concrete masonry units |
US20060096213A1 (en) * | 2004-11-09 | 2006-05-11 | Griffin Christopher J | Prefabricated multi-layer roofing panel and system |
US20140033627A1 (en) * | 2012-06-26 | 2014-02-06 | Roy Dean Stephens, JR. | Modular building panel with frame |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3111787A (en) | 1960-12-16 | 1963-11-26 | Koppers Co Inc | Sandwich roofing element |
US3223576A (en) | 1961-08-11 | 1965-12-14 | Nat Gypsum Co | Fibrous panels impregnated with foam plastic |
US3138251A (en) | 1961-12-18 | 1964-06-23 | Johns Manville | Method for packaging self-sealing aspalt shingles |
US3266206A (en) * | 1962-07-03 | 1966-08-16 | Allied Chem | Insulated built up roof and insulation therefor |
US3284980A (en) * | 1964-07-15 | 1966-11-15 | Paul E Dinkel | Hydraulic cement panel with low density core and fiber reinforced high density surface layers |
US3332386A (en) | 1965-10-28 | 1967-07-25 | Technigaz | Tanker |
FR94327E (en) * | 1967-03-22 | 1969-08-01 | Saint Gobain | Manufacturing process of panels intended in particular for the building. |
US3468086A (en) | 1968-04-09 | 1969-09-23 | A C Hathorne Co The | Prefabricated roofing construction and method |
US3657035A (en) * | 1969-07-23 | 1972-04-18 | Nylonge Corp | Water absorbent web and its production |
US3657036A (en) | 1969-10-02 | 1972-04-18 | Nat Gypsum Co | Method for production of rigid polyurethane articles |
US3677874A (en) | 1970-03-24 | 1972-07-18 | Grace W R & Co | Insulation product and method |
GB1341684A (en) | 1970-06-27 | 1973-12-25 | Robertson Co H H | Roof structures for industrial and like buildings |
US3814659A (en) * | 1971-02-01 | 1974-06-04 | Upjohn Co | Novel compositions |
BE786217A (en) | 1971-07-14 | 1973-01-15 | Dow Chemical Co | ROOF ELEMENT AND ITS MANUFACTURING PROCESS |
US3895087A (en) | 1971-11-26 | 1975-07-15 | Champion Int Corp | Method of manufacturing a molded composite urethane foam structural panel |
JPS5221563B2 (en) * | 1973-07-04 | 1977-06-11 | ||
US4021981A (en) | 1975-03-05 | 1977-05-10 | Robert M. Barlow | Insulated water impermeable roofing system |
US3991252A (en) * | 1975-04-29 | 1976-11-09 | The Upjohn Company | Novel product and process |
US4351138A (en) | 1979-05-16 | 1982-09-28 | The Dow Chemical Company | Roof construction and method thereof |
JPS55161150A (en) | 1979-06-01 | 1980-12-15 | Tajima Roofing Co | Heattinsulating asphalt waterproof board laying method thereof |
DE2924184A1 (en) * | 1979-06-15 | 1980-12-18 | Bayer Ag | DEVICE FOR PRODUCING ENDLESS FOAM SHEETS, IN PARTICULAR HARD FOAM SHEETS |
CA1147541A (en) * | 1979-08-30 | 1983-06-07 | Alfredo A. Bondoc | Glass fiber mat |
US4450663A (en) | 1981-06-15 | 1984-05-29 | Watkins Norman C | Insulative roof structure |
IT8122713A0 (en) | 1981-07-02 | 1981-07-02 | Danese Marco Nord Bitumi | COMPOSITE INSULATING ITEM FOR THE CREATION OF PREFABRICATED ROOFS. |
US4459334A (en) * | 1981-10-08 | 1984-07-10 | Rmax, Inc. | Composite building panel |
US4756860A (en) * | 1982-06-07 | 1988-07-12 | Rmax, Inc. | Apparatus for manufacturing insulation panels |
US4388366A (en) * | 1982-06-21 | 1983-06-14 | Rosato Dennis W | Insulation board |
US4572865A (en) * | 1983-12-05 | 1986-02-25 | The Celotex Corporation | Faced foam insulation board and froth-foaming method for making same |
US4677800A (en) | 1984-08-10 | 1987-07-07 | The Dow Chemical Company | Lightweight roofing system |
US4564554A (en) * | 1984-08-21 | 1986-01-14 | Anthony Industries, Inc. | Composite sheathing |
US4680909A (en) | 1984-09-11 | 1987-07-21 | Industrial Research Development, Inc. | Roofing system |
EP0178353B1 (en) | 1984-10-16 | 1988-06-01 | Coal Industry (Patents) Limited | Improvements in roofing |
US4680214A (en) * | 1986-03-12 | 1987-07-14 | Polymetrics Corporation | Reinforced foam composites |
US4706435A (en) | 1986-12-02 | 1987-11-17 | Industrial Research Development, Inc. | Prefabricated interlocking roofing system |
US4726973A (en) | 1987-03-02 | 1988-02-23 | Thompson Gerald M | Laminated subdividable panel |
US5373674A (en) | 1987-04-27 | 1994-12-20 | Winter, Iv; Amos G. | Prefabricated building panel |
CA1291605C (en) * | 1987-06-08 | 1991-11-05 | Seiji Ishii | Manufacturing method of a rigid or semi-rigid foamed material and a composite panel |
US5580367A (en) | 1987-11-30 | 1996-12-03 | Cabot Corporation | Flaked tantalum powder and method of using same flaked tantalum powder |
US4874648A (en) | 1988-03-17 | 1989-10-17 | Sorrento Engineer, Inc. | Method of making flame resistant polyimide foam insulation and the resulting insulation |
US5349804A (en) * | 1989-01-06 | 1994-09-27 | Illinois Tool Works Inc. | Method of forming a building structure incorporating a seamless tube useful to make roofing battens and related method |
US4936070A (en) | 1989-02-22 | 1990-06-26 | Michaud Robert E | Roof covering panel |
CH674042A5 (en) * | 1989-07-27 | 1990-04-30 | August Kunz | Insulating panel - comprises body of insulating material and cover with overlapping portion on one or more sides protruding beyond edge of body |
US4996803A (en) | 1989-08-10 | 1991-03-05 | Bridgestone/Firestone, Inc. | Roofing systems and insulation attachment method |
US4992315A (en) | 1989-11-13 | 1991-02-12 | Gaf Buildinhg Materials Corp. | Roofing membrane and method |
US4965977A (en) | 1990-02-13 | 1990-10-30 | White Daniel R | Insulated panelized roofing system |
US5221395A (en) * | 1990-03-16 | 1993-06-22 | Amoco Corporation | Method for producing a foamed core-reclaim multi-layer sheet |
US5069950A (en) | 1990-04-11 | 1991-12-03 | Old Reliable Wholesale, Inc. | Insulated roof board |
US5251416A (en) | 1991-10-17 | 1993-10-12 | White Daniel R | Insulated panelized roofing system |
US5433050A (en) * | 1992-01-14 | 1995-07-18 | Atlas Roofing Corporation | Vented insulation panel with foamed spacer members |
US5403645A (en) * | 1993-04-01 | 1995-04-04 | General Motors Corporation | Molded-in cloth insert door trim |
US5394672A (en) | 1993-07-26 | 1995-03-07 | Insulok Corp. | Interlocking insulated roof panel system |
US5352510A (en) * | 1993-09-27 | 1994-10-04 | The Celotex Corporation | Method for continuous manufacture of foam boards with isocyanate-impregnated facers |
US5593748A (en) * | 1994-02-09 | 1997-01-14 | Gencorp Inc. | Reinforced tape strip for perimeter securement of a membrane roof and method of attaching |
ATE213996T1 (en) | 1994-10-20 | 2002-03-15 | George F Thagard Iii | ASPHALT FOAM |
US5580637A (en) * | 1994-12-13 | 1996-12-03 | Ig-Technical Research Inc. | Sandwich panel having internal gas discharge member |
US6055786A (en) * | 1996-05-30 | 2000-05-02 | Omnova Solutions Inc. | Heat weld indicator for thermoplastic roofing membrane |
US5882776A (en) * | 1996-07-09 | 1999-03-16 | Sentinel Products Corp. | Laminated foam structures with enhanced properties |
US6004645A (en) * | 1996-08-30 | 1999-12-21 | Omnova Solutions Inc. | Single-ply membrane roofing system |
US5891563A (en) * | 1996-10-08 | 1999-04-06 | Bridgestone/Firestone, Inc. | Polyisocyanurate boards with reduced moisture absorbency and lower air permeability and related methods |
US5817260A (en) * | 1996-11-20 | 1998-10-06 | Celotex Corporation | Method of using a heated metering device for foam production |
US6418686B1 (en) * | 1997-04-25 | 2002-07-16 | Leading Edge Earth Products, Inc. | Insulated asymmetrical directional force resistant building panel with symmetrical joinery, integral shear resistance connector and thermal break |
US5927032A (en) * | 1997-04-25 | 1999-07-27 | Record; Grant C. | Insulated building panel with a unitary shear resistance connector array |
US6140383A (en) | 1998-04-23 | 2000-10-31 | Johns Manville International, Inc. | Process for manufacturing rigid polyisocyanurate foam products |
IE990600A1 (en) * | 1998-07-21 | 2000-03-22 | Kingspan Res And Dev Ltd | A method for manufacturing a foam panel |
US6368991B1 (en) * | 1998-09-08 | 2002-04-09 | Building Materials Investment Corporation | Foamed facer and insulation boards made therefrom |
US6308482B1 (en) * | 1999-03-15 | 2001-10-30 | Mark C. Strait | Reinforced roof underlayment and method of making the same |
US6850514B1 (en) * | 2000-05-17 | 2005-02-01 | Interdigital Technology Corporation | Channel assignment in a spread spectrum CDMA communication system |
CA2370863A1 (en) | 1999-05-19 | 2000-11-23 | The Dow Chemical Company | Extruded polystyrene foam insulation with high thermal resistance |
FI19991831A (en) | 1999-08-30 | 2001-02-28 | Upm Kymmene Corp | Coating of insulating materials |
US6524980B1 (en) * | 1999-10-01 | 2003-02-25 | The Garland Company, Inc. | Roofing membranes using composite reinforcement constructions |
US20010031336A1 (en) * | 2000-01-14 | 2001-10-18 | Born David W. | Composite backerboard articles for construction |
US20020155274A1 (en) | 2001-02-13 | 2002-10-24 | Ramesh Natarajan S. | Polyolefin film/foam/film composite materials and methods for producing same |
CA2441927C (en) * | 2001-03-27 | 2010-02-16 | Owens Corning | Structural insulated sheathing and related sheathing methods |
US20020187693A1 (en) * | 2001-04-23 | 2002-12-12 | Cherry David J. | Method and apparatus to increase wind uplift resistance in roofing membranes |
US20030186045A1 (en) | 2001-05-31 | 2003-10-02 | Trevor Wardle | Built-up roof system |
US7168221B2 (en) | 2001-06-15 | 2007-01-30 | Hunter Jr John P | Fireproof seamless foam panel roofing system |
US20030082365A1 (en) | 2001-10-30 | 2003-05-01 | Geary John R. | Tough and durable insulation boards produced in-part with scrap rubber materials and related methods |
US20040001945A1 (en) | 2002-06-27 | 2004-01-01 | Cate Peter J. | Composite foam structure having an isotropic strength region and anisotropic strength region |
US7028438B2 (en) * | 2002-07-03 | 2006-04-18 | Johns Manville | Roofing system and method |
US6872673B2 (en) * | 2002-07-18 | 2005-03-29 | Edward Sider & Company | Laminate and use of such laminate as a facer in making insulation boards and other products |
US20040109983A1 (en) | 2002-12-10 | 2004-06-10 | Rotter George E. | Foamed roofing materials and methods of use |
US20040157945A1 (en) * | 2002-12-30 | 2004-08-12 | Barber Thomas Allan | Rigid urethane foams |
US20040226247A1 (en) | 2003-05-13 | 2004-11-18 | Byrd Bobby Joe | Building panel with impermeable surface layer |
US7430837B2 (en) * | 2003-08-14 | 2008-10-07 | Bfs Diversified Products, Llc. | Membrane with mechanical securement attached |
US20050144850A1 (en) | 2003-12-11 | 2005-07-07 | Hageman John P. | Roof having improved base sheet using metal/fabric layers with overhangs |
US7625827B2 (en) * | 2003-12-19 | 2009-12-01 | Basf Construction Chemicals, Llc | Exterior finishing system and building wall containing a corrosion-resistant enhanced thickness fabric and method of constructing same |
US20060096205A1 (en) | 2004-11-09 | 2006-05-11 | Griffin Christopher J | Roofing cover board, roofing panel composite, and method |
US20090104407A1 (en) | 2007-10-17 | 2009-04-23 | Walter Alexander Johnson | Prefabricated roofing panel composite |
US8763330B2 (en) | 2004-12-09 | 2014-07-01 | Robert W. Pollack | Devices and methods to provide air circulation space proximate to insulation material |
US7972688B2 (en) | 2005-02-01 | 2011-07-05 | Letts John B | High density polyurethane and polyisocyanurate construction boards and composite boards |
US7785703B2 (en) * | 2005-05-11 | 2010-08-31 | Johns Manville | Facer and faced polymeric roofing board |
US7749598B2 (en) * | 2005-05-11 | 2010-07-06 | Johns Manville | Facer and faced polymeric roofing board |
EP2040923A2 (en) | 2006-05-18 | 2009-04-01 | BFS Diversified Products, LLC | Polymeric laminates including nanoclay |
US7765761B2 (en) * | 2006-09-22 | 2010-08-03 | Johns Manville | Polymer-based composite structural sheathing board and wall and/or ceiling system |
US7735279B2 (en) * | 2006-09-22 | 2010-06-15 | Johns Manville | Polymer-based composite structural underlayment board and flooring system |
WO2008094606A2 (en) | 2007-01-30 | 2008-08-07 | Firestone Building Products, Llc | High density polyurethane and polyisocyanurate construction boards and composite boards |
US7658045B2 (en) | 2007-06-23 | 2010-02-09 | Specialty Hardware L.P. | Wall structure for protection against wind-caused uplift |
US20090320383A1 (en) | 2008-06-30 | 2009-12-31 | Building Materials Investment Corporation | Tpo roofing membrane fastening system and method |
US8156700B2 (en) | 2009-08-18 | 2012-04-17 | Terry Umlor | Continuous heat welded flexible PVC membrane with an interlocking vapor barrier system |
CA2786529C (en) | 2010-01-11 | 2019-06-25 | Mannington Mills, Inc. | Floor covering with interlocking design |
US8484922B2 (en) | 2010-02-17 | 2013-07-16 | Sealed Air Corporation (Us) | Alkaline and heat resistant foam composite and floor underlayment |
SE535637C2 (en) | 2010-07-08 | 2012-10-23 | Brod N Bengt-Inge | Mobile house with height adjustable feet and floor with an upper and lower layer |
US8863442B2 (en) | 2013-03-13 | 2014-10-21 | Thurman W. Freeman | Protected membrane roof system |
US9255403B1 (en) * | 2014-08-19 | 2016-02-09 | Usg Interiors, Llc | Free span ceiling grid system |
-
2004
- 2004-11-09 US US10/984,122 patent/US20060096205A1/en not_active Abandoned
-
2005
- 2005-11-07 EP EP05849184.6A patent/EP1815079B1/en active Active
- 2005-11-07 CA CA2586357A patent/CA2586357C/en active Active
- 2005-11-07 WO PCT/US2005/040104 patent/WO2006052789A2/en active Application Filing
-
2006
- 2006-04-20 US US11/408,231 patent/US7718253B2/en active Active
- 2006-09-11 US US11/519,042 patent/US7811663B2/en not_active Expired - Lifetime
-
2010
- 2010-02-10 US US12/703,308 patent/US8105685B2/en not_active Expired - Lifetime
- 2010-04-05 US US12/754,141 patent/US20100189977A1/en not_active Abandoned
- 2010-06-03 US US12/792,901 patent/US8426017B2/en active Active
-
2012
- 2012-04-10 US US13/442,946 patent/US8287997B2/en not_active Expired - Fee Related
-
2013
- 2013-02-04 US US13/758,111 patent/US8617699B2/en not_active Expired - Lifetime
- 2013-02-04 US US13/758,034 patent/US8597779B2/en active Active
- 2013-02-04 US US13/758,077 patent/US8470436B1/en not_active Expired - Lifetime
-
2016
- 2016-06-27 US US15/193,729 patent/US9909317B2/en not_active Expired - Lifetime
-
2018
- 2018-01-18 US US15/874,770 patent/US10087634B2/en not_active Expired - Lifetime
- 2018-09-05 US US16/122,771 patent/US20180371758A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5695870A (en) * | 1995-04-06 | 1997-12-09 | The Dow Chemical Company | Laminated foam insulation board of enhanced strength |
US6044604A (en) * | 1996-09-23 | 2000-04-04 | Bridgestone/Firestone, Inc. | Composite roofing members having improved dimensional stability and related methods |
US6117375A (en) * | 1996-09-23 | 2000-09-12 | Bridgestone/Firestone, Inc. | Roofing members without auxiliary facers and related methods |
US6093481A (en) * | 1998-03-06 | 2000-07-25 | Celotex Corporation | Insulating sheathing with tough three-ply facers |
US20050106379A1 (en) * | 2003-11-13 | 2005-05-19 | Deslauriers, Inc. | Unbonded system for strength testing of concrete masonry units |
US20060096213A1 (en) * | 2004-11-09 | 2006-05-11 | Griffin Christopher J | Prefabricated multi-layer roofing panel and system |
US20140033627A1 (en) * | 2012-06-26 | 2014-02-06 | Roy Dean Stephens, JR. | Modular building panel with frame |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10087634B2 (en) * | 2004-11-09 | 2018-10-02 | Johns Manville | Roofing systems and methods |
US20140130435A1 (en) * | 2012-11-09 | 2014-05-15 | Johns Manville | Fire resistant composite boards and methods |
US9605433B2 (en) * | 2012-11-09 | 2017-03-28 | Johns Manville | Fire resistant composite boards and methods |
US10450752B2 (en) | 2012-11-09 | 2019-10-22 | Johns Manville | Fire resistant composite boards and methods |
WO2019212782A1 (en) * | 2018-05-01 | 2019-11-07 | Kps Global Llc | Insulated structural members for insulated panels and a method for making same |
Also Published As
Publication number | Publication date |
---|---|
US20100313514A1 (en) | 2010-12-16 |
US20110131910A1 (en) | 2011-06-09 |
US20130139471A1 (en) | 2013-06-06 |
US20060260237A1 (en) | 2006-11-23 |
WO2006052789A2 (en) | 2006-05-18 |
CA2586357C (en) | 2010-06-15 |
US20100189977A1 (en) | 2010-07-29 |
EP1815079A2 (en) | 2007-08-08 |
US8287997B2 (en) | 2012-10-16 |
EP1815079B1 (en) | 2021-01-06 |
CA2586357A1 (en) | 2006-05-18 |
US20180155930A1 (en) | 2018-06-07 |
US20180371758A1 (en) | 2018-12-27 |
US8426017B2 (en) | 2013-04-23 |
US20120196106A1 (en) | 2012-08-02 |
US8470436B1 (en) | 2013-06-25 |
US9909317B2 (en) | 2018-03-06 |
US7718253B2 (en) | 2010-05-18 |
US20130145722A1 (en) | 2013-06-13 |
US20130139470A1 (en) | 2013-06-06 |
US20070022711A1 (en) | 2007-02-01 |
US10087634B2 (en) | 2018-10-02 |
US8105685B2 (en) | 2012-01-31 |
US7811663B2 (en) | 2010-10-12 |
US20060096205A1 (en) | 2006-05-11 |
WO2006052789A3 (en) | 2007-12-27 |
US8597779B2 (en) | 2013-12-03 |
US8617699B2 (en) | 2013-12-31 |
EP1815079A4 (en) | 2009-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10087634B2 (en) | Roofing systems and methods | |
US9404261B2 (en) | Roofing systems and methods | |
US6044604A (en) | Composite roofing members having improved dimensional stability and related methods | |
EP1655421B1 (en) | Roof system with prefabricated multi-layer roofing panel | |
US5735092A (en) | Composite roofing members having improved dimensional stability and related methods | |
US20180087277A1 (en) | High density polyurethane and polyisocyanurate construction boards and composite boards | |
MXPA97006590A (en) | Roofing members who have improved dimensional stability and related methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JOHNS MANVILLE, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, WALTER ALEXANDER;HAZY, JOEL EVAN;PARADIS, DUANE;AND OTHERS;SIGNING DATES FROM 20160726 TO 20160831;REEL/FRAME:039739/0574 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |