US20160300602A1 - Semiconductor memory apparatus - Google Patents
Semiconductor memory apparatus Download PDFInfo
- Publication number
- US20160300602A1 US20160300602A1 US14/807,224 US201514807224A US2016300602A1 US 20160300602 A1 US20160300602 A1 US 20160300602A1 US 201514807224 A US201514807224 A US 201514807224A US 2016300602 A1 US2016300602 A1 US 2016300602A1
- Authority
- US
- United States
- Prior art keywords
- delay
- command
- voltage level
- delay control
- delayed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 38
- 230000003111 delayed effect Effects 0.000 claims abstract description 61
- 230000004044 response Effects 0.000 claims abstract description 19
- 238000013500 data storage Methods 0.000 claims abstract description 14
- 230000001934 delay Effects 0.000 claims description 21
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 15
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/109—Control signal input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1093—Input synchronization
Definitions
- Various embodiments relate to a semiconductor integrated circuit, and more particularly to a semiconductor memory apparatus.
- a semiconductor memory apparatus may store data or output data stored therein in response to a command inputted from an external device such as a memory controller.
- timing requirements must be met such that requested operations are done within a predetermined time after a command is inputted.
- a semiconductor memory apparatus may include: a command decoder configured to decode an external command and output the decoded command as an internal command; a command transmitter configured to determine a delay time in response to the voltage level of an external voltage, delay the internal command by the determined delay time, and output the delayed internal command as a delayed command; and a data storage area configured to receive the delayed command, and perform an operation according to the delayed command.
- a semiconductor memory apparatus may include: a command transmitter configured to receive an internal command, delay the received internal command, and output the delayed internal command as a delayed command; and a data storage area configured to perform an operation according to the delayed command.
- the command transmitter may determine the number of delays through which the internal command is passed according to the voltage level of an external voltage.
- a semiconductor memory apparatus may include: a delay control unit configured to detect an external voltage level being applied to the semiconductor memory apparatus, and provide a delay control signal selected, depending on the external voltage level, between a plurality of delay control signals; and a variable delay unit comprising a plurality of delays coupled in series, each delay having an input node for receiving an internal command generated based on the delay control signal.
- a total delay time of the variable delay unit may vary depending on which delay receives the internal command.
- FIG. 1 is a configuration diagram of a semiconductor memory apparatus according to an embodiment of the present disclosure
- FIG. 2 is a configuration diagram of a delay control unit of FIG. 1 ;
- FIG. 3 is a configuration diagram of a variable delay unit of FIG. 1 .
- FIG. 1 is a configuration diagram of a semiconductor memory apparatus according to an embodiment of the present disclosure.
- a semiconductor memory apparatus may include a command decoder 100 , a command transmitter 200 , and a data storage area 300 .
- the command decoder 100 may receive an external command CMD_ext from external devices such as a controller (not illustrated), and generate an internal command CMD_int. For example, the command decoder 100 may generate the internal command CMD_int by decoding the external command CMD_ext.
- the command transmitter 200 may delay the internal command CMD_int by a preset time, and output the delayed internal command as a delayed command CMD_d.
- the command transmitter 200 may increase or decrease the preset time according to a voltage level of an external voltage VDD.
- the external voltage VDD may include an operating voltage of the semiconductor memory apparatus.
- the command transmitter 200 may include a delay control unit 210 and a variable delay unit 220 .
- the delay control unit 210 may detect the voltage level of the external voltage VDD, and generate first to fourth delay control signals Delay_ctrl ⁇ 0:3>. For example, the delay control unit 210 may enable one of the first to fourth delay control signals Delay_ctrl ⁇ 0:3> in response to the voltage level of the external voltage VDD. In an embodiment, when the voltage level of the external voltage VDD is lower than a first preset voltage level, the delay control unit 210 may enable the first delay control signal Delay_ctrl ⁇ 0 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may enable the second delay control signal Delay_ctrl ⁇ 1 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may enable the third delay control signal Delay_ctrl ⁇ 2 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may enable the fourth delay control signal Delay_ctrl ⁇ 3 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the variable delay unit 220 may determine a delay time in response to the first to fourth delay control signals Delay_ctrl ⁇ 0:3>, delay the internal command CMD_int by the determined delay time, and output the delayed internal command as the delayed command CMD_d. For example, when the first delay control signal Delay_ctrl ⁇ 0 > is enabled, the variable delay unit 220 may delay the internal command CMD_int by a first delay time (e.g., the shortest delay time), and output the delayed internal command as the delayed command CMD_d.
- a first delay time e.g., the shortest delay time
- variable delay unit 220 may delay the internal command CMD_int by a second delay time, which has a longer delay time than the first delay time but has a shorter delay time than a third delay time that is a delay time when the first delay control signal Delay_ctrl ⁇ 0 > is enabled, and output the delayed internal command as the delayed command CMD_d.
- the variable delay unit 220 may delay the internal command CMD_int by the third delay time, which is a longer delay time than the second delay time, and output the delayed internal command as the delayed command CMD_d.
- variable delay unit 220 may delay the internal command CMD_int by a fourth delay time, which is a longer delay time than the third delay time, and output the delayed internal command as the delayed command CMD_d.
- the data storage area 300 may receive the delayed command CMD_d, and perform an operation according to the delayed command CMD_d.
- the delay control unit 210 may include a divided voltage generation unit 211 , a comparison signal generation unit 212 , and a decoding unit 213 .
- the divided voltage generation unit 211 may generate first to third divided voltages V_d 1 to V_d 3 by dividing the external voltage VDD.
- the first divided voltage V_d 1 may have the lowest voltage level
- the third divided voltage V_d 1 may have the highest voltage level.
- the second divided voltage V_d 2 may have a voltage level between the voltage levels of the first and third divided voltages V_d 1 and V_d 3 .
- the divided voltage generation unit 211 may include first to fourth resistors R 1 to R 4 .
- the first to fourth resistors R 1 to R 4 may be coupled in series, and the external voltage VDD and a ground voltage VSS may be applied across the first to fourth resistors R 1 to R 4 coupled in series. More specifically, the first resistor R 1 may receive the ground voltage VSS through one end thereof.
- the second resistor R 2 may have one end coupled to the other end of the first resistor R 1 .
- the third resistor R 3 may have one end coupled to the other end of the second resistor R 2 .
- the fourth resistor R 4 may have one end coupled to the other end of the third resistor R 3 , and receive the external voltage VDD through the other end thereof.
- the first divided voltage V_d 1 may be outputted from a node to which the first and second resistors R 1 and R 2 are coupled.
- the second divided voltage V_d 2 may be outputted from a node to which the second and third resistors R 2 and R 3 are coupled.
- the third divided voltage V_d 3 may be outputted from a node to which the third and fourth resistors R 3 and R 4 are coupled.
- the comparison signal generation unit 212 may compare each of the first to third divided voltages V_d 1 to V_d 3 to the voltage level of a reference voltage Vref, and generate first to third comparison signals COM_ 1 to COM_ 3 . For example, when the voltage levels of the first to third divided voltages V_d 1 to V_d 3 are lower than the voltage level of the first reference voltage Vref, the comparison signal generation unit 212 may disable all of the first to third comparison signals COM_ 1 to COM_ 3 . When only the voltage level of the third divided voltage V_d 3 is higher than the voltage level of the reference voltage Vref, the comparison signal generation unit 212 may enable only the third comparison signal COM_ 3 .
- the comparison signal generation unit 212 may enable only the second and third comparison signal COM_ 2 and COM_ 3 .
- the comparison signal generation unit 212 may enable all of the first to third comparison signals COM_ 1 to COM_ 3 when the voltage levels of the first to third divided voltages V_d 1 to V_d 3 are higher than the voltage level of the reference voltage Vref.
- the comparison signal generation unit 212 may include first to third comparators 212 - 1 to 212 - 3 .
- the first comparator 212 - 1 may generate the first comparison signal COM_ 1 by comparing the first divided voltage V_d 1 and the reference voltage Vref, when an enable signal EN_s is enabled. For example, when the voltage level of the first divided voltage V_d 1 is lower than the voltage level of the reference voltage Vref, the first comparator 212 - 1 may disable the first comparison signal COM_ 1 . When the voltage level of the first divided voltage V_d 1 is higher than the voltage level of the reference voltage Vref, the first comparator 212 - 1 may enable the first comparison signal COM_ 1 .
- the second comparator 212 - 2 may generate the second comparison signal COM_ 1 by comparing the second divided voltage V_d 2 and the reference voltage Vref, when the enable signal EN_s is enabled. For example, when the voltage level of the second divided voltage V_d 2 is lower than the voltage level of the reference voltage Vref, the second comparator 212 - 2 may disable the second comparison signal COM_ 2 . When the voltage level of the second divided voltage V_d 2 is higher than the voltage level of the reference voltage Vref, the second comparator 212 - 2 may enable the second comparison signal COM_ 2 .
- the third comparator 212 - 3 may generate the third comparison signal COM_ 1 by comparing the third divided voltage V_d 2 and the reference voltage Vref, when the enable signal EN_s is enabled. For example, when the voltage level of the third divided voltage V_d 3 is lower than the voltage level of the reference voltage Vref, the third comparator 212 - 3 may disable the third comparison signal COM_ 3 . When the voltage level of the third divided voltage V_d 3 is higher than the voltage level of the reference voltage Vref, the third comparator 212 - 3 may enable the third comparison signal COM_ 3 .
- the decoding unit 213 may generate the first to fourth delay control signals Delay_ctrl ⁇ 0:3> in response to the first to third comparison signals COM_ 1 to COM 3 .
- the decoding unit 213 may enable one of the first to third delay control signals Delay_ctrl ⁇ 0:3> by decoding the first to third comparison signals COM_ 1 to COM 3 .
- the decoding unit 213 may enable only the first delay signal Delay_ctrl ⁇ 0 >.
- the decoding unit 213 may enable only the second delay control signal Delay_ctrl ⁇ 1 >.
- the decoding unit 213 may enable only the third delay control signal Delay_ctrl ⁇ 2 > When all of the first to third comparison signals COM_ 1 to COM 3 are enabled, the decoding unit 213 may enable only the fourth delay signal Delay_ctrl ⁇ 3 >.
- the decoding unit 213 may be operated as illustrated in the following table.
- variable delay unit 220 may include a delay chain 221 and an input selection unit 222 .
- the delay chain 221 may include first to fourth delays 221 - 1 to 221 - 4 coupled in series.
- the first delay 221 - 1 may delay an output signal of the second delay 221 - 2 or an output signal of the input selection unit 222 , and output the delayed signal as the delayed command CMD_d.
- the second delay 221 - 1 may delay an output signal of the third delay 221 - 3 or an output signal of the input selection unit 222 , and output the delayed signal as an input signal of the first delay 221 - 1 .
- the third delay 221 - 3 may delay an output signal of the fourth delay 221 - 4 or an output signal of the input selection unit 222 , and output the delayed signal as an input signal of the second delay 221 - 2 .
- the fourth delay 221 - 4 may receive an output signal of the input selection unit 222 , and output the received signal as an input signal of the third delay 221 - 3 .
- the input selection unit 222 may input the internal command CMD_int to one of the first to fourth delays 221 - 1 to 221 - 4 in response to the first to fourth delay control signals Delay_ctrl ⁇ 0:3>. For example, when the first delay control signal Delay_ctrl ⁇ 0 > is enabled, the input selection unit 222 may input the internal command CMD_int to the first delay 221 - 1 . When the second delay control signal Delay_ctrl ⁇ 1 > is enabled, the input selection unit 222 may input the internal command CMD_int to the second delay 221 - 2 .
- the input selection unit 222 may input the internal command CMD_int to the third delay 221 - 3 .
- the input selection unit 222 may input the internal command CMD_int to the fourth delay 221 - 4 .
- the input selection unit 222 may include an inverter IV 1 and first to fourth NAND gates ND 1 to ND 4 .
- the inverter IV 1 may receive the internal command CMD_int.
- the first NAND gate ND 1 may receive an output signal of the inverter IV 1 and the first delay control signal Delay_ctrl ⁇ 0 >, and output an output signal to the first delay 221 - 1 .
- the second NAND gate ND 2 may receive the output signal of the inverter IV 1 and the second delay control signal Delay_ctrl ⁇ 0 >, and output an output signal to the second delay 221 - 2 .
- the third NAND gate ND 3 may receive the output signal of the inverter IV 1 and the third delay control signal Delay_ctrl ⁇ 2 >, and output an output signal to the third delay 221 - 3 .
- the fourth NAND gate ND 4 may receive the output signal of the inverter IV 1 and the fourth delay control signal Delay_ctrl ⁇ 3 >, and output an output signal to the fourth delay 221 - 4 .
- an external command CMD_ext from outside the semiconductor memory apparatus may be inputted to the semiconductor memory apparatus.
- the command decoder 100 may generate an internal command CMD_int by decoding the external command CMD_ext. For example, the command decoder 100 may decode the external command CMD_ext, and generate the internal command CMD_int corresponding to a read command or write command when the external command CMD_ext is the read command or write command.
- the command transmitter 200 may delay the internal command CMD_int during a preset delay time, and transmit the delayed command to the data storage area 300 .
- the command transmitter 200 may generate a delayed command CMD_d by delaying the internal command CMD_int, and output the delayed command CMD_d to the data storage area 300 .
- the command transmitter 200 may increase or decrease the delay time by which the internal command CMD_int is to be delayed. For example, when the voltage level of the external voltage VDD is higher than a preset voltage level, the command transmitter 200 may increase the delay time by which the internal command CMD_int is to be delayed. Furthermore, when the voltage level of the external voltage VDD is lower than the preset voltage level, the command transmitter 200 may decrease the delay time by which the internal command CMD_int is to be delayed.
- command transmitter 200 The operation of the command transmitter 200 will be described in detail as follows.
- the command transmitter 200 may include the delay control unit 210 and the variable delay unit 220 .
- the delay control unit 210 may enable one of the first to fourth delay control signals Delay_ctrl ⁇ 0:3> according to the voltage level of the external voltage VDD.
- the delay control unit 210 may include the divided voltage generation unit 211 , the comparison signal generation unit 212 , and the decoding unit 213 .
- the divided voltage generation unit 211 may divide the external voltage VDD, and generate first to third divided voltages V_d 1 to V_d 3 .
- the first divided voltage V_d 1 may have the lowest voltage level
- the third divided voltage V_d 3 may have the highest voltage level.
- the voltage level of the second divided voltage V_d 2 may correspond to an intermediate level between the voltage levels of the first and third divided voltages V_d 1 and V_d 3 . Since the first to third divided voltages V_d 1 to V_d 3 are generated by dividing the external voltage VDD, the first to third divided voltages V_d 1 to V_d 3 may rise as the voltage level of the external voltage VDD rises, and fall as the voltage level of the external voltage VDD falls.
- the comparison signal generation unit 212 may disable all of the first to third comparison signals COM_ 1 to COM_ 3 .
- the first to third comparison signals COM_ 1 to COM_ 3 are disabled, it may indicate that the voltage level of the external voltage VDD is lower than a first preset voltage level.
- the comparison signal generation unit 212 may enable only the third comparison signal COM_ 3 out of the three comparison signals COM_ 1 to COM_ 3 .
- the third comparison signal COM_ 3 When only the third comparison signal COM_ 3 is enabled, it may indicate that the voltage level of the external voltage VDD is equal to the first preset voltage level.
- the comparison signal generation unit 212 may enable the second and third comparison signal COM_ 2 and COM_ 3 out of the three comparison signals COM_ 1 to COM_ 3 .
- the second and third comparison signal COM_ 2 and COM_ 3 may indicate that the voltage level of the external voltage VDD is higher than the first preset voltage level.
- the comparison signal generation unit 212 may enable all of the first to third comparison signals COM_ 1 to COM_ 3 .
- the first to third comparison signals COM_ 1 to COM_ 3 it may indicate that the voltage level of the external voltage VDD is higher than a second preset voltage level, which is higher than the first preset voltage level.
- the decoding unit 213 may enable one of the first to fourth delay control signals Delay_ctrl ⁇ 0:3> by decoding the first to third comparison signals COM_ 1 to COM 3 .
- the decoding unit 213 may enable the first delay signal Delay_ctrl ⁇ 0 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the decoding unit 213 may enable only the second delay control signal Delay_ctrl ⁇ 1 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the decoding unit 213 may enable only the third delay control signal Delay_ctrl ⁇ 2 > of the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the decoding unit 213 may enable only the fourth delay signal Delay_ctrl ⁇ 0 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may enable the first delay control signal Delay_ctrl ⁇ 0 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may enable the second delay control signal Delay_ctrl ⁇ 1 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may enable the third delay control signal Delay_ctrl ⁇ 2 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may enable the fourth delay control signal Delay_ctrl ⁇ 3 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3>.
- the delay control unit 210 may sequentially enable the first to fourth delay control signals Delay_ctrl ⁇ 0:3> by one, as the voltage level of the external voltage VDD increases.
- the variable delay unit 220 may determine a delay time in response to the first to fourth delay control signals Delay_ctrl ⁇ 0:3>, delay the internal command CMD_int by the determined delay time, and output the delayed internal command as the delayed command CMD_d. For example, when only the first delay control Delay_ctrl ⁇ 0 > selected between the first to fourth delay control signals Delay_ctrl ⁇ 0:3> is enabled, the internal command CMD_int may be outputted as the delayed command CMD_d only through the first delay 221 - 1 .
- the internal command CMD_int may be outputted as the delayed command CMD_d through the first and second delays 221 - 1 and 221 - 2 .
- the internal command CMD_int may be outputted as the delayed command CMD_d through the first and second delays 221 - 1 and 221 - 2 and the third delay 221 - 3 .
- the internal command CMD_int may be outputted as the delayed command CMD_d through the first to third delays 221 - 1 to 221 - 3 and the third delay 221 - 4 .
- variable delay unit 220 may allow the internal command CMD to pass through a larger number of delays and output the delayed internal command as the delayed command CMD_d. That is, the variable delay unit 220 may increase the delay time as the voltage level of the external voltage VDD increases. The variable delay unit 220 may delay the internal command CMD_int by the increased delay time, and output the delayed internal command as the delayed command CMD_d.
- the command transmitter 200 may delay the internal command CMD by a larger delay time, and output the delayed internal command as the delayed command CMD_d.
- the data storage area 300 may operate in response to the delayed command CMD_d.
- the delayed command CMD_d is a column-related command such as a read or write command
- the data storage area 300 may perform a column operation.
- the semiconductor memory apparatus may control the time at which a command for performing an operation is inputted to an internal circuit (e.g., data storage area) according to the voltage level of an operating voltage applied from outside (e.g., an external voltage for the operation of the semiconductor memory apparatus). More specifically, the semiconductor memory apparatus may increase the delay time by which the command is delayed as the voltage level of the external voltage increases, thereby increasing the time at which the command is transmitted to the data storage area. Furthermore, since the delay time of the delays decreases as the voltage level of the external voltage increases, the semiconductor memory apparatus may generate the delayed command by increasing the number of delays through which the internal command passes when the voltage level of the external voltage increases. Therefore, regardless of the change in voltage level of the external voltage, the command may be transmitted to the data storage area at predetermined times.
- an operating voltage applied from outside e.g., an external voltage for the operation of the semiconductor memory apparatus.
Landscapes
- Engineering & Computer Science (AREA)
- Dram (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
Description
- The present application claims priority under 35 U.S.C. §119(a) to Korean application number 10-2015-0050959 filed on Apr. 10, 2015, in the Korean Intellectual Property Office, which is incorporated herein by reference in its entirety.
- 1. Technical Field
- Various embodiments relate to a semiconductor integrated circuit, and more particularly to a semiconductor memory apparatus.
- 2. Related Art
- In general, a semiconductor memory apparatus may store data or output data stored therein in response to a command inputted from an external device such as a memory controller.
- Due to the high speed of the semiconductor memory apparatus and the memory controller, timing requirements must be met such that requested operations are done within a predetermined time after a command is inputted.
- However, process variation of transistors, which form the semiconductor memory apparatus, may cause the performance of the requested operations to fall below the timing requirements.
- In an embodiment of the present disclosure, a semiconductor memory apparatus may include: a command decoder configured to decode an external command and output the decoded command as an internal command; a command transmitter configured to determine a delay time in response to the voltage level of an external voltage, delay the internal command by the determined delay time, and output the delayed internal command as a delayed command; and a data storage area configured to receive the delayed command, and perform an operation according to the delayed command.
- In an embodiment of the present disclosure, a semiconductor memory apparatus may include: a command transmitter configured to receive an internal command, delay the received internal command, and output the delayed internal command as a delayed command; and a data storage area configured to perform an operation according to the delayed command. The command transmitter may determine the number of delays through which the internal command is passed according to the voltage level of an external voltage.
- In an embodiment of the present disclosure, a semiconductor memory apparatus may include: a delay control unit configured to detect an external voltage level being applied to the semiconductor memory apparatus, and provide a delay control signal selected, depending on the external voltage level, between a plurality of delay control signals; and a variable delay unit comprising a plurality of delays coupled in series, each delay having an input node for receiving an internal command generated based on the delay control signal. A total delay time of the variable delay unit may vary depending on which delay receives the internal command.
- Features, aspects, and embodiments are described in conjunction with the attached drawings, in which:
-
FIG. 1 is a configuration diagram of a semiconductor memory apparatus according to an embodiment of the present disclosure; -
FIG. 2 is a configuration diagram of a delay control unit ofFIG. 1 ; and -
FIG. 3 is a configuration diagram of a variable delay unit ofFIG. 1 . -
FIG. 1 is a configuration diagram of a semiconductor memory apparatus according to an embodiment of the present disclosure. - As illustrated in
FIG. 1 , a semiconductor memory apparatus according to an embodiment of the present disclosure may include acommand decoder 100, acommand transmitter 200, and adata storage area 300. - The
command decoder 100 may receive an external command CMD_ext from external devices such as a controller (not illustrated), and generate an internal command CMD_int. For example, thecommand decoder 100 may generate the internal command CMD_int by decoding the external command CMD_ext. - The
command transmitter 200 may delay the internal command CMD_int by a preset time, and output the delayed internal command as a delayed command CMD_d. Here, thecommand transmitter 200 may increase or decrease the preset time according to a voltage level of an external voltage VDD. The external voltage VDD may include an operating voltage of the semiconductor memory apparatus. - The
command transmitter 200 may include adelay control unit 210 and avariable delay unit 220. - The
delay control unit 210 may detect the voltage level of the external voltage VDD, and generate first to fourth delay control signals Delay_ctrl<0:3>. For example, thedelay control unit 210 may enable one of the first to fourth delay control signals Delay_ctrl<0:3> in response to the voltage level of the external voltage VDD. In an embodiment, when the voltage level of the external voltage VDD is lower than a first preset voltage level, thedelay control unit 210 may enable the first delay control signal Delay_ctrl<0> selected between the first to fourth delay control signals Delay_ctrl<0:3>. When the voltage level of the external voltage VDD is equal to the first preset voltage level, thedelay control unit 210 may enable the second delay control signal Delay_ctrl<1> selected between the first to fourth delay control signals Delay_ctrl<0:3>. when the voltage level of the external voltage VDD is higher than the first preset voltage level but lower than a second preset voltage level, thedelay control unit 210 may enable the third delay control signal Delay_ctrl<2> selected between the first to fourth delay control signals Delay_ctrl<0:3>. When the voltage level of the external voltage VDD is higher than the second preset voltage level, thedelay control unit 210 may enable the fourth delay control signal Delay_ctrl<3> selected between the first to fourth delay control signals Delay_ctrl<0:3>. - The
variable delay unit 220 may determine a delay time in response to the first to fourth delay control signals Delay_ctrl<0:3>, delay the internal command CMD_int by the determined delay time, and output the delayed internal command as the delayed command CMD_d. For example, when the first delay control signal Delay_ctrl<0> is enabled, thevariable delay unit 220 may delay the internal command CMD_int by a first delay time (e.g., the shortest delay time), and output the delayed internal command as the delayed command CMD_d. When the second delay control signal Delay_ctrl<1> is enabled, thevariable delay unit 220 may delay the internal command CMD_int by a second delay time, which has a longer delay time than the first delay time but has a shorter delay time than a third delay time that is a delay time when the first delay control signal Delay_ctrl<0> is enabled, and output the delayed internal command as the delayed command CMD_d. When the third delay control signal Delay_ctrl<2> is enabled, thevariable delay unit 220 may delay the internal command CMD_int by the third delay time, which is a longer delay time than the second delay time, and output the delayed internal command as the delayed command CMD_d. When the fourth delay control signal Delay_ctrl<3> is enabled, thevariable delay unit 220 may delay the internal command CMD_int by a fourth delay time, which is a longer delay time than the third delay time, and output the delayed internal command as the delayed command CMD_d. - The
data storage area 300 may receive the delayed command CMD_d, and perform an operation according to the delayed command CMD_d. - As illustrated in
FIG. 2 , thedelay control unit 210 may include a dividedvoltage generation unit 211, a comparisonsignal generation unit 212, and adecoding unit 213. - The divided
voltage generation unit 211 may generate first to third divided voltages V_d1 to V_d3 by dividing the external voltage VDD. Here, the first divided voltage V_d1 may have the lowest voltage level, and the third divided voltage V_d1 may have the highest voltage level. The second divided voltage V_d2 may have a voltage level between the voltage levels of the first and third divided voltages V_d1 and V_d3. - The divided
voltage generation unit 211 may include first to fourth resistors R1 to R4. The first to fourth resistors R1 to R4 may be coupled in series, and the external voltage VDD and a ground voltage VSS may be applied across the first to fourth resistors R1 to R4 coupled in series. More specifically, the first resistor R1 may receive the ground voltage VSS through one end thereof. The second resistor R2 may have one end coupled to the other end of the first resistor R1. The third resistor R3 may have one end coupled to the other end of the second resistor R2. The fourth resistor R4 may have one end coupled to the other end of the third resistor R3, and receive the external voltage VDD through the other end thereof. The first divided voltage V_d1 may be outputted from a node to which the first and second resistors R1 and R2 are coupled. The second divided voltage V_d2 may be outputted from a node to which the second and third resistors R2 and R3 are coupled. The third divided voltage V_d3 may be outputted from a node to which the third and fourth resistors R3 and R4 are coupled. - The comparison
signal generation unit 212 may compare each of the first to third divided voltages V_d1 to V_d3 to the voltage level of a reference voltage Vref, and generate first to third comparison signals COM_1 to COM_3. For example, when the voltage levels of the first to third divided voltages V_d1 to V_d3 are lower than the voltage level of the first reference voltage Vref, the comparisonsignal generation unit 212 may disable all of the first to third comparison signals COM_1 to COM_3. When only the voltage level of the third divided voltage V_d3 is higher than the voltage level of the reference voltage Vref, the comparisonsignal generation unit 212 may enable only the third comparison signal COM_3. When only the voltage levels of the second and third divided voltages V_d2 and V_d3 are higher than the voltage level of the reference voltage Vref, the comparisonsignal generation unit 212 may enable only the second and third comparison signal COM_2 and COM_3. The comparisonsignal generation unit 212 may enable all of the first to third comparison signals COM_1 to COM_3 when the voltage levels of the first to third divided voltages V_d1 to V_d3 are higher than the voltage level of the reference voltage Vref. - The comparison
signal generation unit 212 may include first to third comparators 212-1 to 212-3. - The first comparator 212-1 may generate the first comparison signal COM_1 by comparing the first divided voltage V_d1 and the reference voltage Vref, when an enable signal EN_s is enabled. For example, when the voltage level of the first divided voltage V_d1 is lower than the voltage level of the reference voltage Vref, the first comparator 212-1 may disable the first comparison signal COM_1. When the voltage level of the first divided voltage V_d1 is higher than the voltage level of the reference voltage Vref, the first comparator 212-1 may enable the first comparison signal COM_1.
- The second comparator 212-2 may generate the second comparison signal COM_1 by comparing the second divided voltage V_d2 and the reference voltage Vref, when the enable signal EN_s is enabled. For example, when the voltage level of the second divided voltage V_d2 is lower than the voltage level of the reference voltage Vref, the second comparator 212-2 may disable the second comparison signal COM_2. When the voltage level of the second divided voltage V_d2 is higher than the voltage level of the reference voltage Vref, the second comparator 212-2 may enable the second comparison signal COM_2.
- The third comparator 212-3 may generate the third comparison signal COM_1 by comparing the third divided voltage V_d2 and the reference voltage Vref, when the enable signal EN_s is enabled. For example, when the voltage level of the third divided voltage V_d3 is lower than the voltage level of the reference voltage Vref, the third comparator 212-3 may disable the third comparison signal COM_3. When the voltage level of the third divided voltage V_d3 is higher than the voltage level of the reference voltage Vref, the third comparator 212-3 may enable the third comparison signal COM_3.
- The
decoding unit 213 may generate the first to fourth delay control signals Delay_ctrl<0:3> in response to the first to third comparison signals COM_1 to COM3. For example, thedecoding unit 213 may enable one of the first to third delay control signals Delay_ctrl<0:3> by decoding the first to third comparison signals COM_1 to COM3. In an embodiment, when all of the first to third comparison signals COM_1 to COM3 are disabled, thedecoding unit 213 may enable only the first delay signal Delay_ctrl<0>. When only the third comparison signal COM_3 is enabled, thedecoding unit 213 may enable only the second delay control signal Delay_ctrl<1>. When only the second and third comparison signals COM_2 and COM_3 are enabled, thedecoding unit 213 may enable only the third delay control signal Delay_ctrl<2> When all of the first to third comparison signals COM_1 to COM3 are enabled, thedecoding unit 213 may enable only the fourth delay signal Delay_ctrl<3>. - The
decoding unit 213 may be operated as illustrated in the following table. -
COM _1 COM _2 COM _3 Delay_ctrl<0> Delay_ctrl<0> Delay_ctrl<0> Delay_ctrl<0> Disable Disable Disable Enable Disable Disable Disable Disable Disable Enable Disable Enable Disable Disable Disable Enable Enable Disable Disable Enable Disable Enable Enable Enable Disable Disable Disable Enable - As illustrated in
FIG. 3 , thevariable delay unit 220 may include adelay chain 221 and aninput selection unit 222. - The
delay chain 221 may include first to fourth delays 221-1 to 221-4 coupled in series. - The first delay 221-1 may delay an output signal of the second delay 221-2 or an output signal of the
input selection unit 222, and output the delayed signal as the delayed command CMD_d. - The second delay 221-1 may delay an output signal of the third delay 221-3 or an output signal of the
input selection unit 222, and output the delayed signal as an input signal of the first delay 221-1. - The third delay 221-3 may delay an output signal of the fourth delay 221-4 or an output signal of the
input selection unit 222, and output the delayed signal as an input signal of the second delay 221-2. - The fourth delay 221-4 may receive an output signal of the
input selection unit 222, and output the received signal as an input signal of the third delay 221-3. - The
input selection unit 222 may input the internal command CMD_int to one of the first to fourth delays 221-1 to 221-4 in response to the first to fourth delay control signals Delay_ctrl<0:3>. For example, when the first delay control signal Delay_ctrl<0> is enabled, theinput selection unit 222 may input the internal command CMD_int to the first delay 221-1. When the second delay control signal Delay_ctrl<1> is enabled, theinput selection unit 222 may input the internal command CMD_int to the second delay 221-2. When the third delay control signal Delay_ctrl<2> is enabled, theinput selection unit 222 may input the internal command CMD_int to the third delay 221-3. When the fourth delay control signal Delay_ctrl<3> is enabled, theinput selection unit 222 may input the internal command CMD_int to the fourth delay 221-4. - The
input selection unit 222 may include an inverter IV1 and first to fourth NAND gates ND1 to ND4. The inverter IV1 may receive the internal command CMD_int. The first NAND gate ND1 may receive an output signal of the inverter IV1 and the first delay control signal Delay_ctrl<0>, and output an output signal to the first delay 221-1. The second NAND gate ND2 may receive the output signal of the inverter IV1 and the second delay control signal Delay_ctrl<0>, and output an output signal to the second delay 221-2. The third NAND gate ND3 may receive the output signal of the inverter IV1 and the third delay control signal Delay_ctrl<2>, and output an output signal to the third delay 221-3. The fourth NAND gate ND4 may receive the output signal of the inverter IV1 and the fourth delay control signal Delay_ctrl<3>, and output an output signal to the fourth delay 221-4. - The operation of the semiconductor memory apparatus having the above configuration according to the embodiment of the present disclosure will be described below.
- First, an external command CMD_ext from outside the semiconductor memory apparatus may be inputted to the semiconductor memory apparatus.
- The
command decoder 100 may generate an internal command CMD_int by decoding the external command CMD_ext. For example, thecommand decoder 100 may decode the external command CMD_ext, and generate the internal command CMD_int corresponding to a read command or write command when the external command CMD_ext is the read command or write command. - The
command transmitter 200 may delay the internal command CMD_int during a preset delay time, and transmit the delayed command to thedata storage area 300. Thecommand transmitter 200 may generate a delayed command CMD_d by delaying the internal command CMD_int, and output the delayed command CMD_d to thedata storage area 300. Furthermore, according to an operating voltage level (e.g., an external voltage VDD) of the semiconductor memory apparatus, thecommand transmitter 200 may increase or decrease the delay time by which the internal command CMD_int is to be delayed. For example, when the voltage level of the external voltage VDD is higher than a preset voltage level, thecommand transmitter 200 may increase the delay time by which the internal command CMD_int is to be delayed. Furthermore, when the voltage level of the external voltage VDD is lower than the preset voltage level, thecommand transmitter 200 may decrease the delay time by which the internal command CMD_int is to be delayed. - The operation of the
command transmitter 200 will be described in detail as follows. - The
command transmitter 200 may include thedelay control unit 210 and thevariable delay unit 220. - The
delay control unit 210 may enable one of the first to fourth delay control signals Delay_ctrl<0:3> according to the voltage level of the external voltage VDD. - Referring to
FIG. 2 , thedelay control unit 210 may include the dividedvoltage generation unit 211, the comparisonsignal generation unit 212, and thedecoding unit 213. - The divided
voltage generation unit 211 may divide the external voltage VDD, and generate first to third divided voltages V_d1 to V_d3. Here, the first divided voltage V_d1 may have the lowest voltage level, and the third divided voltage V_d3 may have the highest voltage level. The voltage level of the second divided voltage V_d2 may correspond to an intermediate level between the voltage levels of the first and third divided voltages V_d1 and V_d3. Since the first to third divided voltages V_d1 to V_d3 are generated by dividing the external voltage VDD, the first to third divided voltages V_d1 to V_d3 may rise as the voltage level of the external voltage VDD rises, and fall as the voltage level of the external voltage VDD falls. - When all of the voltage levels of the first to third divided voltages V_d1 to V_d3 are lower than the voltage level of the first reference voltage Vref, the comparison
signal generation unit 212 may disable all of the first to third comparison signals COM_1 to COM_3. When the first to third comparison signals COM_1 to COM_3 are disabled, it may indicate that the voltage level of the external voltage VDD is lower than a first preset voltage level. - When only the third divided voltage V_d3 out of the three divided voltages V_d1 to V_d3 is higher than the voltage level of the reference voltage Vref, the comparison
signal generation unit 212 may enable only the third comparison signal COM_3 out of the three comparison signals COM_1 to COM_3. When only the third comparison signal COM_3 is enabled, it may indicate that the voltage level of the external voltage VDD is equal to the first preset voltage level. - When only the voltage levels of the second and third divided voltages V_d2 and V_d3 out of the three divided voltages V_d1 to V_d3 are higher than the voltage level of the reference voltage Vref, the comparison
signal generation unit 212 may enable the second and third comparison signal COM_2 and COM_3 out of the three comparison signals COM_1 to COM_3. When only the second and third comparison signal COM_2 and COM_3 are enabled, it may indicate that the voltage level of the external voltage VDD is higher than the first preset voltage level. - When all of the voltage levels of the first to third divided voltages V_d1 to V_d3 are higher than the voltage level of the reference voltage Vref, the comparison
signal generation unit 212 may enable all of the first to third comparison signals COM_1 to COM_3. When all of the first to third comparison signals COM_1 to COM_3 are enabled, it may indicate that the voltage level of the external voltage VDD is higher than a second preset voltage level, which is higher than the first preset voltage level. - The
decoding unit 213 may enable one of the first to fourth delay control signals Delay_ctrl<0:3> by decoding the first to third comparison signals COM_1 to COM3. - For example, when all of the first to third comparison signals COM_1 to COM3 are disabled, the
decoding unit 213 may enable the first delay signal Delay_ctrl<0> selected between the first to fourth delay control signals Delay_ctrl<0:3>. When only the third comparison signal COM_3 out of the three comparison signals COM_1 to COM3 is enabled, thedecoding unit 213 may enable only the second delay control signal Delay_ctrl<1> selected between the first to fourth delay control signals Delay_ctrl<0:3>. When only the second and third comparison signals COM_2 and COM_3 out of the three comparison signals COM_1 to COM3 are enabled, thedecoding unit 213 may enable only the third delay control signal Delay_ctrl<2> of the first to fourth delay control signals Delay_ctrl<0:3>. When all of the first to third comparison signals COM_1 to COM3 are disabled, thedecoding unit 213 may enable only the fourth delay signal Delay_ctrl<0> selected between the first to fourth delay control signals Delay_ctrl<0:3>. - When all of the first to third comparison signals COM_1 to COM_3 are disabled, that is, when the voltage level of the external voltage VDD is lower than the preset voltage levels, the
delay control unit 210 may enable the first delay control signal Delay_ctrl<0> selected between the first to fourth delay control signals Delay_ctrl<0:3>. - When only the third comparison signal COM_3 out of the three comparison signals COM_1 to COM_3 is disabled, that is, when the voltage level of the external voltage VDD is equal to the preset voltage level, the
delay control unit 210 may enable the second delay control signal Delay_ctrl<1> selected between the first to fourth delay control signals Delay_ctrl<0:3>. - When only the second and third comparison signals COM_2 and COM_3 of the first to third comparison signals COM_1 to COM_3 are enabled, that is, when the voltage level of the external voltage VDD is higher than the first preset voltage level, the
delay control unit 210 may enable the third delay control signal Delay_ctrl<2> selected between the first to fourth delay control signals Delay_ctrl<0:3>. - When all of the first to third comparison signals COM_1 to COM_3 are enabled, that is, when the voltage level of the external voltage VDD is higher than the second preset voltage level, the
delay control unit 210 may enable the fourth delay control signal Delay_ctrl<3> selected between the first to fourth delay control signals Delay_ctrl<0:3>. - The
delay control unit 210 may sequentially enable the first to fourth delay control signals Delay_ctrl<0:3> by one, as the voltage level of the external voltage VDD increases. - The
variable delay unit 220 may determine a delay time in response to the first to fourth delay control signals Delay_ctrl<0:3>, delay the internal command CMD_int by the determined delay time, and output the delayed internal command as the delayed command CMD_d. For example, when only the first delay control Delay_ctrl<0> selected between the first to fourth delay control signals Delay_ctrl<0:3> is enabled, the internal command CMD_int may be outputted as the delayed command CMD_d only through the first delay 221-1. When only the second delay control Delay_ctrl<1> selected between the first to fourth delay control signals Delay_ctrl<0:3> is enabled, the internal command CMD_int may be outputted as the delayed command CMD_d through the first and second delays 221-1 and 221-2. When only the third delay control Delay_ctrl<2> selected between the first to fourth delay control signals Delay_ctrl<0:3> is enabled, the internal command CMD_int may be outputted as the delayed command CMD_d through the first and second delays 221-1 and 221-2 and the third delay 221-3. When only the fourth delay control Delay_ctrl<3> selected between the first to fourth delay control signals Delay_ctrl<0:3> is enabled, the internal command CMD_int may be outputted as the delayed command CMD_d through the first to third delays 221-1 to 221-3 and the third delay 221-4. - As the voltage level of the external voltage VDD increases, the
variable delay unit 220 may allow the internal command CMD to pass through a larger number of delays and output the delayed internal command as the delayed command CMD_d. That is, thevariable delay unit 220 may increase the delay time as the voltage level of the external voltage VDD increases. Thevariable delay unit 220 may delay the internal command CMD_int by the increased delay time, and output the delayed internal command as the delayed command CMD_d. - Therefore, as the voltage level of the external voltage VDD increases, the
command transmitter 200 may delay the internal command CMD by a larger delay time, and output the delayed internal command as the delayed command CMD_d. - The
data storage area 300 may operate in response to the delayed command CMD_d. For example, when the delayed command CMD_d is a column-related command such as a read or write command, thedata storage area 300 may perform a column operation. - The semiconductor memory apparatus according to an embodiment of the present disclosure may control the time at which a command for performing an operation is inputted to an internal circuit (e.g., data storage area) according to the voltage level of an operating voltage applied from outside (e.g., an external voltage for the operation of the semiconductor memory apparatus). More specifically, the semiconductor memory apparatus may increase the delay time by which the command is delayed as the voltage level of the external voltage increases, thereby increasing the time at which the command is transmitted to the data storage area. Furthermore, since the delay time of the delays decreases as the voltage level of the external voltage increases, the semiconductor memory apparatus may generate the delayed command by increasing the number of delays through which the internal command passes when the voltage level of the external voltage increases. Therefore, regardless of the change in voltage level of the external voltage, the command may be transmitted to the data storage area at predetermined times.
- While certain embodiments have been described above, it will be understood to those skilled in the art that the embodiments described are by way of example only. Accordingly, the semiconductor memory apparatus described herein should not be limited based on the described embodiments. Rather, the semiconductor memory apparatus described herein should only be limited in light of the claims that follow when taken in conjunction with the above description and accompanying drawings.
Claims (13)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0050959 | 2015-04-10 | ||
KR1020150050959A KR20160121233A (en) | 2015-04-10 | 2015-04-10 | Semiconductor Memory Apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
US9449662B1 US9449662B1 (en) | 2016-09-20 |
US20160300602A1 true US20160300602A1 (en) | 2016-10-13 |
Family
ID=56896138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/807,224 Active US9449662B1 (en) | 2015-04-10 | 2015-07-23 | Semiconductor memory apparatus |
Country Status (2)
Country | Link |
---|---|
US (1) | US9449662B1 (en) |
KR (1) | KR20160121233A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11677391B1 (en) * | 2021-01-28 | 2023-06-13 | Rambus Inc. | Low-power multi-domain synchronizer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060091903A (en) | 2005-02-16 | 2006-08-22 | 삼성전자주식회사 | Method of controlling signal delay for semiconductor memory device and signal delay control circuit for the same |
KR101157021B1 (en) | 2006-03-13 | 2012-06-21 | 에스케이하이닉스 주식회사 | DLL Circuit and Method for Delaying and Locking Clock in Semiconductor Memory Apparatus |
KR20100064103A (en) * | 2008-12-04 | 2010-06-14 | 주식회사 하이닉스반도체 | Semiconductor memory device and the method for operating the same |
KR101039884B1 (en) * | 2009-06-12 | 2011-06-09 | 주식회사 하이닉스반도체 | Non volatile memory device and operating method of the same |
US8879337B1 (en) * | 2013-04-22 | 2014-11-04 | Micron Technology, Inc. | Dynamic burst length output control in a memory |
-
2015
- 2015-04-10 KR KR1020150050959A patent/KR20160121233A/en unknown
- 2015-07-23 US US14/807,224 patent/US9449662B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9449662B1 (en) | 2016-09-20 |
KR20160121233A (en) | 2016-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10410686B2 (en) | Memory modules storing a trimming control code associated with a minimum level of a power supply voltage, methods of operating the memory modules, and test systems of the memory modules | |
US9324410B2 (en) | Semiconductor memory device having an output buffer controller | |
US9294072B2 (en) | Semiconductor device and method for adjusting impedance of output circuit | |
US10515697B1 (en) | Apparatuses and methods to control operations performed on resistive memory cells | |
US9390811B2 (en) | Semiconductor device with fuse array and method for operating the same | |
US20190109584A1 (en) | Duty cycle and vox correction for complementary signals | |
US9197209B2 (en) | Semiconductor device | |
US9559691B1 (en) | Semiconductor device and semiconductor system | |
KR20210012558A (en) | Calibration Circuit controlling resistance of output driver circuit, Memory Device having the same and Operating Method of Memory Device | |
US10529393B2 (en) | Semiconductor device and method of operating and controlling a semiconductor device | |
US9659608B2 (en) | Semiconductor memory apparatus, and method for training reference voltage | |
US8692604B2 (en) | Impedance calibration circuit | |
US9449662B1 (en) | Semiconductor memory apparatus | |
US9478262B2 (en) | Semiconductor device including input/output circuit | |
US9722583B2 (en) | Periodic signal generation circuit and semiconductor system including the same | |
US9195617B2 (en) | Semiconductor memory devices and semiconductor systems including the same | |
US9390776B1 (en) | Data strobing circuit and semiconductor apparatus using the same | |
US9196326B2 (en) | Semiconductor memory apparatus | |
US8254185B2 (en) | Semiconductor device for generating internal voltage and memory system including the semiconductor device | |
US10291209B2 (en) | Semiconductor device for generating mode signals including information on the current characteristics | |
US8593878B2 (en) | Program method and flash memory using the same | |
KR101053540B1 (en) | External signal input circuit of semiconductor memory | |
KR101223538B1 (en) | Command buffer circuit of semiconductor apparatus | |
US9093991B2 (en) | Line driving circuit improving signal characteristic and semiconductor device including the same | |
JP2015159407A (en) | semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SK HYNIX INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KWAK, SEUNG WOOK;REEL/FRAME:036165/0364 Effective date: 20150710 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |