US20160268225A1 - Chip and manufacturing method thereof - Google Patents
Chip and manufacturing method thereof Download PDFInfo
- Publication number
- US20160268225A1 US20160268225A1 US15/158,560 US201615158560A US2016268225A1 US 20160268225 A1 US20160268225 A1 US 20160268225A1 US 201615158560 A US201615158560 A US 201615158560A US 2016268225 A1 US2016268225 A1 US 2016268225A1
- Authority
- US
- United States
- Prior art keywords
- dimension
- structure according
- bonding pad
- pillar part
- bump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
- H01L23/4827—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/50—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L24/17—Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03444—Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
- H01L2224/0345—Physical vapour deposition [PVD], e.g. evaporation, or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/039—Methods of manufacturing bonding areas involving a specific sequence of method steps
- H01L2224/03912—Methods of manufacturing bonding areas involving a specific sequence of method steps the bump being used as a mask for patterning the bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05075—Plural internal layers
- H01L2224/0508—Plural internal layers being stacked
- H01L2224/05082—Two-layer arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05075—Plural internal layers
- H01L2224/0508—Plural internal layers being stacked
- H01L2224/05083—Three-layer arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05144—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05155—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05163—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05164—Palladium [Pd] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05163—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05166—Titanium [Ti] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05099—Material
- H01L2224/051—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05163—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05184—Tungsten [W] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05553—Shape in top view being rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05575—Plural external layers
- H01L2224/0558—Plural external layers being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05644—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/0612—Layout
- H01L2224/0615—Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
- H01L2224/06153—Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry with a staggered arrangement, e.g. depopulated array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/114—Manufacturing methods by blanket deposition of the material of the bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/114—Manufacturing methods by blanket deposition of the material of the bump connector
- H01L2224/1146—Plating
- H01L2224/11462—Electroplating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/1147—Manufacturing methods using a lift-off mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
- H01L2224/116—Manufacturing methods by patterning a pre-deposited material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1301—Shape
- H01L2224/13012—Shape in top view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1301—Shape
- H01L2224/13016—Shape in side view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13023—Disposition the whole bump connector protruding from the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13026—Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body
- H01L2224/13027—Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body the bump connector being offset with respect to the bonding area, e.g. bond pad
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13075—Plural core members
- H01L2224/1308—Plural core members being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13075—Plural core members
- H01L2224/1308—Plural core members being stacked
- H01L2224/13082—Two-layer arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13116—Lead [Pb] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13139—Silver [Ag] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13144—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13155—Nickel [Ni] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/14—Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
- H01L2224/141—Disposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00013—Fully indexed content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01018—Argon [Ar]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01024—Chromium [Cr]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01028—Nickel [Ni]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01076—Osmium [Os]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/206—Length ranges
- H01L2924/2064—Length ranges larger or equal to 1 micron less than 100 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/38—Effects and problems related to the device integration
- H01L2924/384—Bump effects
Definitions
- the invention relates in general to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device with fine pitch and a manufacturing method thereof.
- FIGS. 1-2 are side views of a conventional semiconductor device 900 .
- FIG. 3 is a top view of a semiconductor device 900 of FIGS. 1-2 .
- the semiconductor device 900 is a semiconductor device with fine pitch.
- the semiconductor device 900 includes a plurality of bonding pads 910 and bumps 920 .
- the bonding pad 910 is disposed on an active surface 900 a of the semiconductor device 900 and arranged along the direction of X-axis, wherein the bump 920 is a column structure.
- the pitch G 910 of the bonding pad 910 is as small as 50 um or even under 35 um.
- the bump 920 has a circular cross-section parallel to the active surface 900 a.
- the column-shaped bump 920 is vertically disposed on the bonding pad 910 .
- the semiconductor device 900 is electrically connected to the contact points (not illustrated in the diagram) disposed on a flip-chip carrier (normally, the flip-chip carrier is a PCB) via the column bump 920 to form a packing structure by a manufacturing process of sealing for example.
- electrical signals are transmitted between the flip-chip carrier and the semiconductor device 900 via the bump 920 .
- the column-shaped bump 920 will bend easily during the process of moving or aligning as indicated in the rightmost bump of FIG. 1 and the bump of FIG. 2 . Consequently, the semiconductor device can not be firmly assembled on the flip-chip carrier. To the worse, shortcircuit may occur, severely affecting the electrical functions of the packing structure.
- the above defected semiconductor device 900 is hard to be re-worked, and is thus wasted.
- the cost involved is expensive. Therefore, several monitor and inspection systems are employed in the manufacturing process to avoid the defected product going to the next manufacturing process, which may cause an even larger loss. However, the manufacturing process will incur more costs.
- a semiconductor device and a manufacturing method thereof are provided.
- the first dimension of the bump is longer than 1.2 times the second dimension, or the width of the extension of the bump is longer than 1.2 times the width of the bonding pad, such that the semiconductor device and manufacturing method thereof still possess excellent structural strength under the restriction of fine pitches.
- the semiconductor device and manufacturing method thereof disclosed in the above embodiments of the invention at least has the advantages of having enhanced structural strength, improved yield rate and reduced manufacturing cost.
- a semiconductor device has an active surface.
- the semiconductor device includes at least a bonding pad and at least a bump.
- the bonding pad has a minimum dimension smaller than 100 microns.
- the connecting element is disposed on the activate surface and has a max dimension smaller than 100 microns.
- the bump is disposed on the connecting element and is electrically connected to the active surface by the connecting element.
- the bump includes a pillar part is disposed on the connecting element and a top part is disposed at the top of the pillar part.
- the pillar part has a first dimension and a second dimension both parallel to the active surface. The first dimension is longer than 1.2 times the second dimension.
- the top part is composed of solder and will melt under the determined temperature.
- the pillar part will not melt under a determined temperature.
- a semiconductor device has an active surface.
- the semiconductor device includes a plurality of bonding pads and a plurality of bumps.
- the bonding pads are disposed on the active surface.
- Each of the bumps is disposed on the corresponding bonding pad.
- Each of the bumps includes a solder part. Wherein there are a plurality of contact points disposed on a package substrate corresponding to the bumps, the contact points directly contact the solder part, the pitch between the contact points is large than the pitch between the bonding pads of active surface.
- a semiconductor device has an active surface.
- the semiconductor device includes a plurality of bonding pads and a plurality of bumps.
- the bonding pads are disposed on the active surface.
- Each of the bumps is disposed on the corresponding bonding pad.
- Each of the bumps includes a solder part. Wherein there are a plurality of contact points disposed on a package substrate corresponding to the bumps, the contact points directly contact the solder part, the center of each of the bump is not directly above the corresponding contact point.
- a manufacturing method of semiconductor device includes a bonding pad disposed on an active surface of the semiconductor device.
- the manufacturing method of semiconductor device at least includes the following steps. Firstly, a first metal layer is deposited above the bonding pad and part of the active surface, wherein the first metal layer has a first dimension and a second dimension both parallel to the active surface, the first dimension is longer than 1.2 times the second dimension, and the first metal layer will not melt under a pre-determined temperature. Secondly, a second metal layer is formed above the first metal layer, wherein the second metal layer will melt under the pre-determined temperature, and the first metal layer and the second metal layer form a bump.
- the die is placed in a solution including first metal ions, wherein the solution includes copper ions (Cu ++ ), sulfuric acid (H 2 SO 4 ) and chloride ions, the copper ions have a concentration between 10 ⁇ 40 gram/liter, the sulfuric acid has a concentration between 120 ⁇ 300 gram/liter, the chloride ions have a concentration between 30 ⁇ 70 ppm such that a first metal layer is electroplated in the opening, wherein the first metal layer contacts the UBM layer.
- a second metal layer is underfilled in part of the opening, wherein the second metal layer contacts the first metal layer, such that the first metal layer and the second metal layer form a bump.
- the photosensitive material is removed.
- a semiconductor device comprising at least a connecting element and at least a bump.
- the connecting element has a minimum dimension smaller than 100 microns, wherein the connecting element is disposed on the active surface.
- the bump is disposed on the connecting element and electrically connected to the active surface by the connecting element, wherein the bump comprises a pillar part disposed on the connecting element and a top part disposed at the top of the pillar part, the pillar part has a first dimension and a second dimension both parallel to the active surface, the first dimension is longer than 1.2 times the second dimension, the top part is composed of solder and will melt under the pre-determined temperature, and the pillar part will not melt under a determined temperature.
- the material of the pillar part is selected from a group consisting of copper (Cu), gold (Au), nickel (Ni) or a combination thereof, and the top part extending toward the top of the pillar part and disposed thereon is made from tin (Sn)-lead (Pb) or any lead free solders.
- a semiconductor device with an active surface comprises a plurality of bonding pads and a plurality of bumps.
- the bonding pads are disposed on the active surface.
- the bumps are disposed on the bonding pads respectively, wherein each bump comprises a pillar part disposed on the bonding pad and a top part composed of solder solder, the top part is disposed on the top of the pillar part, and the connecting lines of the bonding pads and the bumps are arranged in off-centered arrangement.
- FIGS. 1 ⁇ 2 are side views of a conventional semiconductor device
- FIG. 3 is a top view of a semiconductor device of FIGS. 1-2 ;
- FIGS. 4 ⁇ 5 are side views of a semiconductor device according to a first embodiment of the invention.
- FIG. 6 is a top view of a semiconductor device of FIGS. 4 ⁇ 5 ;
- FIG. 7 is a flowchart of a method for manufacturing a semiconductor device according to a preferred embodiment of the invention.
- FIG. 8 is detailed flowchart of a method for manufacturing a semiconductor device according to a preferred embodiment of the invention.
- FIGS. 9A ⁇ 9 F illustrate each step of the method for manufacturing a bump and a semiconductor device using the same
- FIG. 10 is a top view of a die and a photosensitive material of FIG. 9C ;
- FIG. 11 illustrates the disposition of a bump of a semiconductor device according to a second embodiment of the invention.
- FIG. 12 illustrates the disposition of a bump of a semiconductor device according to a third embodiment of the invention.
- FIGS. 4 ⁇ 5 are side views of a semiconductor device 100 according to a first embodiment of the invention.
- FIG. 6 is a top view of a semiconductor device of FIGS. 4 ⁇ 5 .
- the semiconductor device 100 has an active surface 100 a and includes at least a bonding pad 110 and at least a bump 120 .
- the bonding pad 110 disposed on the active surface 100 a is a connecting element for electrically connecting the active surface 100 a to the bump 120 .
- the bump 120 is vertically disposed on the bonding pad 110 .
- FIG. 4 is a top view of a semiconductor device of FIGS. 4 ⁇ 5 .
- the semiconductor device 100 has an active surface 100 a and includes at least a bonding pad 110 and at least a bump 120 .
- the bonding pad 110 disposed on the active surface 100 a is a connecting element for electrically connecting the active surface 100 a to the bump 120 .
- the bump 120 is vertically disposed on the bonding pad 110 .
- the bump has a first dimension D 121 and a second dimension D 122 both parallel to the active surface 100 a , wherein the first dimension D 121 is illustrated in FIG. 5 and FIG. 6 , and the second dimension D 122 is illustrated in FIG. 4 and FIG. 6 .
- the first dimension D 121 is longer than 1.2 times the second dimension D 122 .
- the shorter dimension of the bump 120 should be smaller than 100 microns.
- the minimum dimension of the bonding pad 110 is preferably smaller than the minimum dimension of the bump 120 , that is, smaller than 100 microns, and the minimum dimension of the bonding pad 110 is preferred to be smaller than 80 microns.
- the cross-section of the bonding pad 110 is preferred to be symmetric with respect to the center.
- the shape of the cross-section is circular, squared, diamond-shaped, rectangular or elliptical, but is not limited thereto.
- the extending center line of the bonding pad 110 disposed in the active surface 100 a and the extending center line of the bump 120 are not the same. That is, the connecting lines of the boding pads 110 and the bumps 120 are disposed in an off-centered arrangement.
- the first dimension D 121 is perpendicular to the second dimension D 122 , wherein the first dimension D 121 is the maximum dimension of the bump 120 parallel to the active surface 100 a , and the second dimension D 122 is the minimum dimension of the bump 120 parallel to the active surface 100 a .
- the cross-section of the bump 120 parallel to the active surface 100 a is preferably an I-shaped structure but is not limited thereto. Normally, the I-shaped bump 120 is stronger than the column-shaped bump.
- one end of the bump 120 at least extends from the bonding pad 110 in a direction C 1 (the direction of the Y-axis).
- the extending direction C 1 is parallel to the active surface 100 a , and the length D 121 of the extending direction C 1 of the bump 120 is longer than 1.2 times the width D 110 of the bonding pad 110 .
- the length D 121 of the extending direction C 1 of the bump 120 is equivalent to the maximum dimension D 121 of the bump 120 . That is, the bump 120 not only covers the bonding pad 110 but also extends in the direction C 1 .
- the edge of the bump 120 covers the bonding pad 110 , and the other part of the bump 120 covers part of the active surface 100 a .
- the bump 120 contacts the active surface 100 a by an area larger than 1.2 times the area of the bonding pad 110 . Therefore, under the trend of miniaturization in the design of the semiconductor device 100 , despite the dimension and the pitch of the bonding pad 110 are reduced, the bump 120 still maintains a certain level of structural strength.
- the comparison between the width D 110 of the bonding pad 110 and the height H 120 of the bump 120 shows that the height H 120 of the bump 120 is preferably larger than the width D 110 of the bonding pad 110 .
- the conventional bump 920 can only cover the bonding pad 910 (the bump 920 and the bonding pad 910 are illustrated in FIG. 1 )
- the bump 920 is slim and will tilt or bend easily.
- the bump 120 of the invention not only covers the bonding pad 110 , but also extends from the bonding pad 110 in the direction C 1 and further covers part of the active surface 110 a , such that the bump 120 has a strong structure and will not tilt or bend easily.
- the bump 120 includes a pillar part 121 and a top part 122 .
- the bottom of the pillar part 121 is disposed on the bonding pad 110
- the top part 122 is disposed at the top of the pillar part 121 and extends toward the top of the pillar part 121 .
- the top part 122 which will melt and reflow under the pre-determined temperature, can be selected from a group consisting of solder, tin (Sn)-lead (Pb) or any lead free solder.
- the pillar part 121 Under a pre-determined temperature, the pillar part 121 will not melt and the material thereof is selected from a group consisting of copper (Cu), gold (Au), nickel (Ni) or a combination thereof, wherein copper is preferred in the present embodiment of the invention.
- the manufacturing method of the pillar part 121 and the top part 122 of the bump 120 is exemplified in FIG. 7 .
- FIG. 7 is a flowchart of a method for manufacturing a semiconductor device according to a preferred embodiment of the invention.
- FIGS. 9A ⁇ 9 F illustrate each step of the method for manufacturing a bump and a semiconductor device using the same.
- the manufacturing method of the bump of the invention and a semiconductor device using the same at least includes the following two steps.
- the method begins at step S 701 .
- a first metal layer 151 is deposited on the bonding pad 110 and part of the active surface 100 a , wherein the first metal layer 151 has a first dimension D 121 and a second dimension D 122 both parallel to the active surface 100 a , and the first dimension D 121 is longer than 1.2 times the second dimension D 122 . That is, the second dimension D 122 of the first metal layer 151 is equivalent to the second dimension D 122 of FIG. 5 .
- the material of the first metal layer 151 is selected from a group consisting of copper, gold, nickel or the alloy thereof.
- the material of the first metal layer 151 is selected from the same group with that of the pillar part 121 to form the above pillar part 121 .
- the first metal layer 151 can be deposited by a semi-conductor manufacturing process such as electroplating, evaporating or sputtering.
- a second metal layer 152 is formed above the first metal layer 151 , such that the first metal layer 151 and the second metal layer 152 form the bump 120 .
- the material of the second metal layer 152 is selected from a group consisting of tin(sn)-lead(Pb) or any lead free solder. That is, the material of the second metal layer 152 is selected from the same group with that of the top part 122 to form the above top part 122 , wherein the second metal layer 152 is mainly composed of solder.
- the second metal layer 152 can be underfilled by a manufacturing process such as electroplating, evaporating or sputtering or printing.
- FIG. 8 is a detailed flowchart of a method for manufacturing a semiconductor device 100 according to a preferred embodiment of the invention.
- the method begins at step S 801 of FIG. 8 .
- a die 160 is provided, wherein the die 160 includes a bonding pad 110 disposed on the active surface 100 a of the die 160 .
- the die 160 is formed by dividing a wafer. Normally, the wafer is used as a manufacturing unit, and the wafer is divided into a plurality of semiconductor devices 100 after the bump 120 is formed.
- an under bump metallurgy (UBM) layer 130 is formed on the bonding pad 110 and the entire active surface 100 a using sputtering or evaporation.
- An apparatus is used to vacuum the chamber to achieve the level of 1 ⁇ 10 ⁇ 7 torr ⁇ 1 ⁇ 10-8 torr.
- the pressure inside the chamber can be appropriately adjusted according to actual needs during the manufacturing process.
- the apparatus vacuums the chamber to achieve a level of 5 ⁇ 10-7 torr ⁇ 1 ⁇ 10-8 torr.
- argon is infused to the chamber until the pressure inside the chamber reaches few millitorr upto 100 millitorr, and the manufacturing process of sputtering is performed under the inert gasenvironment.
- step S 802 titanium (Ti), copper (Cu), wolfram (W), nickel (Ni) palladium (Pd) or gold (Au) is used as a target material for sputtering or evaporating a titanium-copper (Ti—Cu) stacked structure, a titanium-wolfram-copper (Ti—W—Cu) stacked structure, a titanium-nickel (Ti—Ni) stacked structure or a titanium-palladium-gold (Ti—Pd—Au) stacked structure to form the UBM layer 130 .
- the UBM layer 130 is composed of an adhesive layer, a barrier layer or a wetting layer, and the material for the UBM layer 130 is determined according to the design of the product.
- a photosensitive material 140 is formed on the UBM layer 130 and the active surface 100 a .
- the photosensitive material 140 is patterned to form at least an opening 140 a for exposing the UBM layer 130 and part of the active surface 100 a.
- the opening 140 a has a first inner diameter D 141 and a second inner diameter D 142 both parallel to the active surface 100 a , wherein the first inner diameter D 141 is longer than 1.2 times the second inner diameter D 142 . That is, the cross-section of the opening 140 a parallel to the active surface 100 a is an I-shaped structure.
- the bonding pad 110 and the UBM layer 130 are positioned at the edge of the opening 140 a , wherein the bonding pad 110 is covered under the UBM layer 130 and is indicated in dotted line in FIG. 10 .
- the area of the opening 140 a is preferably longer than 1.2 times the area of the bonding pad 110 .
- the opening 140 a extends from the bonding pad 110 in a direction C 1 , wherein the length D 141 of the extending direction C 1 of the opening 140 a is longer than 1.2 times the width D 110 of the bonding pad 110 . That is, the extended length D 141 of the opening 140 a is equivalent to the first inner diameter D 141 of the opening 140 a.
- the method proceeds to step S 804 of FIG. 8 .
- the die 160 is placed into a solution including the first metal ions so as to electroplate the first metal layer 151 in the opening 140 a .
- the first metal layer 151 contacts the UBM layer 130 .
- the solution includes copper ions (Cu), sulfuric acid (H 2 SO 4 ) and chloride ions to form the first metal layer 151 whose material includes copper.
- step S 804 copper ions have a concentration between 10 ⁇ 40 gram/liter, sulfuric acid has a concentration between 120 ⁇ 300 gram/liter, chloride ions have a concentration between 30 ⁇ 70 ppm.
- the components and concentrations of the solution can be adjusted and controlled according to the machine parameters and the to-be-formed first metal layer 151 .
- the operating temperature is preferably set to be 20 ⁇ 30° C.
- the concentration of the copper ions is controlled to be between 20 ⁇ 35 gram/liter
- the concentration of the sulfuric acid is controlled to be between 150 ⁇ 250 gram/liter
- the concentration of the chloride ions is controlled to be between 35 ⁇ 60 ppm.
- the area of the opening 140 a is larger than 1.2 times the area of the bonding pad 110 . Therefore, when the first metal layer 151 is formed in the opening 140 a , the area of the part of the active surface 100 a covered by the first metal layer 151 is larger than the area of the part of the active surface covered by the bonding pad 100 . Preferably, the first metal layer 151 contacts the active surface 100 a by an area larger than 1.2 times the area of the part of the active surface covered by the bonding pad 100 .
- step S 805 of FIG. 8 the method proceeds to step S 805 of FIG. 8 .
- the second metal layer 152 is underfilled to part of the opening 140 a , and the second metal layer 152 contacts the first metal layer 151 .
- the second metal layer 152 is reflown, such that the first metal layer 151 and the second metal layer 152 form a bump 120 as indicated in FIG. 9F .
- the ways of underfilling the second metal layer 152 include electroplating, evaporating, sputtering and printing.
- the above photosensitive material 140 is removed, then the part of the UBM layer 130 not covered by the bump 120 is etched.
- the step of removing the photosensitive material 140 can be performed before or after the step of reflowing the second metal layer 152 , and the sequence of the manufacturing process can be designed to fit actual needs.
- the bump 120 is completed by reflowing the second metal layer 152 first and removing the photosensitive material 140 .
- the semiconductor device 100 includes a plurality of bonding pads 110 and bumps 120 .
- Each of the bumps 120 corresponds to each of the bonding pads 110 , and the directions C 1 in which the bumps 120 extend from the bonding pads 110 are substantially parallel to each other.
- the bonding pads 110 are arranged along a line L 110 .
- the bumps 120 extend in the same direction C 1 from the bonding pads 110 .
- the pitch G 120 between the bumps 120 still remains approximately the same with the pitch G 110 between the bonding pads 110 without significant reduction.
- the bumps 120 formed according to the structural design and manufacturing method thereof disclosed in the above embodiment have better structural strength.
- a plurality of trace contact points can be disposed on the flip-chip carrier corresponding to the bump 120 to be electrically connected with the bump 120 .
- the contact points are outwardly disposed on the flip-chip carrier in a fan-out arrangement or a fan-in arrangement.
- the distance between the contact points disposed on the flip-chip carrier is larger than the distance between the bonding pads 110 disposed on the active surface. That is, in prior arts, the bonding pads disposed on the active surface 100 a are arranged in a line, and the contact points disposed on the flip-chip carrier are positioned directly above the line to form the other line.
- the contact points disposed on the flip-chip carrier contact the bumps disposed on the die and form electrical connection with thereto. Due to the shape of the extension of the bump 120 , the contact points disposed on the flip-chip carrier do not need to form another line directly above the line formed by the bonding pads disposed on the active surface, but rather the contact points disposed on the flip-chip carrier can be arranged in a line not directly above the line formed by the bonding pads disposed on the active surface, or can be arranged not in a line. Further, as applied in a memory module, the connecting lines of the boding pads 110 and the bumps 120 disclosed in the embodiment of the present invention are disposed in an off-centered arrangement.
- the bumps 120 can extend toward various directions and connect with the contact points disposed on a flip-chip carrier. Therefore, the bonding pads 110 disposed on the active surface 100 a would not be disposed in only one line, but can be disposed in two lines or a non-straight line.
- the structural design of the shape of the extension of the bump 120 in the present invention can replaces the conventional way of extending the length of the bonding pad for enabling the non-extendable bump to contact the contact points disposed on the flip-chip carrier. Further with the arrangement of the contact points, such as the fan-out arrangement, the distance between the contact points can be further enlarged for the manufacturing process with lower requirements of wire width. Preferably, the distance between the contact points is larger than the structure manufacturing process of 30 microns, but the technology of the invention is not limited thereto.
- the semiconductor device 200 and manufacturing method thereof of the present embodiment of the invention differs with the semiconductor device 100 and manufacturing method thereof of the first embodiment in the disposition of the bump 220 , and other similarities are not repeated here.
- FIG. 11 the disposition of a bump 220 of a semiconductor device 200 according to a second embodiment of the invention is shown.
- the semiconductor device 200 includes a plurality of bonding pads 110 and bumps 220 .
- Each of the bumps 220 corresponds to each of the bonding pads 110 , and the directions C 1 and C 2 in which the bumps 220 extend from the bonding pads 110 are substantially parallel to each other.
- the bonding pads 110 are arranged along a line L 110 , and the bumps 220 alternately extend in opposite directions C 1 and C 2 from the bonding pads 110 to form a fan-out arrangement.
- the pitch G 220 is equivalent to more than two times the pitch G 110 of the bonding pad 110 . Therefore, during the assembly of the semiconductor device 200 , the bump 220 and the flip-chip carrier are more easily connected electrically, hence preventing the shortcircuit between neighboring bumps.
- a plurality of trace contact points are disposed on the flip-chip carrier corresponding to the bump 220 for electrically connecting the top part (the solder) of the bump 220 .
- the contact points are outwardly disposed on the flip-chip carrier in a fan-out arrangement.
- the distance between the contact points disposed on the flip-chip carrier is larger than the distance between the bonding pads 110 disposed on the active surface. That is, in prior arts, the bonding pads disposed on the active surface are arranged in a line, and the contact points disposed on the flip-chip carrier are positioned directly above the line to form the other line.
- the contact points disposed on the flip-chip carrier contact the bumps disposed on the die and form electrical connection with thereto. Due to the shape of the extension of the bump 220 , the contact points disposed on the flip-chip carrier do not need to form the other line directly above the line formed by the bonding pads disposed on the active surface, but rather, the contact points disposed on the flip-chip carrier can be arranged in a line not directly above the line formed by the bonding pads disposed on the active surface, or can be arranged not in a line.
- the structural design of the shape of the extension of the bump 220 in the present invention can replace the conventional way of extending the length of the bonding pad for the non-extendable bump to contact the contact points disposed on the flip-chip carrier. Further with the arrangement of the contact points, such as the fan-out arrangement, the distance between the contact points can be further enlarged for the manufacturing process with lower requirements of wire width.
- the semiconductor device 300 and manufacturing method thereof of the present embodiment of the invention differs with the semiconductor device 200 and manufacturing method thereof of the second embodiment in the structural design of the bump 320 , and other similarities are not repeated here.
- FIG. 12 the disposition of a bump 320 of a semiconductor device 300 according to a third embodiment of the invention is shown.
- the bump 320 of the semiconductor device 300 has a substantially T-shaped cross-section parallel to the active surface 300 a.
- the bump 320 extends a second distance D 32 in a second direction C 32 and a third direction C 33 respectively.
- the first distance D 31 is longer than 1.2 times the width D 110 of the bonding pad 110 .
- the cross-section of the bump is exemplified by an I-shaped structure or a T-shaped structure in the above embodiments.
- the cross-section of the bump can also be an elliptical structure or a rectangular structure as long as the first dimension of the bump is longer than 1.2 times the second dimension.
- the two lines forming the T-shaped structure can have the same length.
- the dimension of the length of the line divided by the other line is not the physical dimension because the dimension of the length amounts to a smaller proportion of the overall dimension.
- the physical dimension is the average of the width.
- the length of the extension of the bump is longer than 1.2 times the width of the bonding pad.
- the bump does not need to completely cover the bonding pad, the bump only needs to cover part of the bonding pad, and such variation is still within the scope of technology of the invention.
- the bump covers the bonding pad by the edge of the bump.
- the bump can also cover the bonding pad by the central part of the bump is within the scope of technology of the invention as long as the area of the part of the active surface covered by the bump is larger than 1.2 times the area of the bonding pad.
- the bonding pad can also be positioned at the central part of the opening.
- the semiconductor device and manufacturing method thereof disclosed in the above embodiments of the invention at least has the following advantages:
- the structural strength is enhanced.
- the structural strength of the bump of the semiconductor device is greatly enhanced, hence preventing the bump from being bent or shortcuited.
- the yield rate is improved. As the structural strength of the bump is enhanced, the semiconductor device is less likely to be defected during the process of assembly or removal, and the yield rate is thus improved.
- the manufacturing cost is reduced. During the manufacturing process, there is no need to input large amount of labor and material for inspection or re-work and the defected products are largely reduced, so the manufacturing cost is largely reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Wire Bonding (AREA)
Abstract
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device has an active surface. The semiconductor device includes at least a connecting element and at least a bump. The connecting element is disposed on the activate surface and has a minimum dimension smaller than 100 microns. The bump is disposed on the connecting element and is electrically connected to the active surface by the connecting element. The bump includes a pillar part disposed on the connecting element and a top part disposed at the top of the pillar part. The pillar part has a first dimension and a second dimension both parallel to the active surface. The first dimension is longer than 1.2 times the second dimension. The top part is composed of solder and will melt under the determined temperature. The pillar part will not melt under a determined temperature.
Description
- This application is a continuation application of co-pending application Ser. No. 14/312,443, filed on Jun. 23, 2014, which is a divisional application of U.S. application Ser. No. 13/467,635, filed May 9, 2012, which is a divisional application of U.S. application Ser. No. 11/905,482, filed Oct. 1, 2007, which is a continuation-in-part application of U.S. application Ser. No. 11/889,879, filed Aug. 17, 2007 (now abandoned), which claims the benefit of Taiwan application Serial No. 95137971, filed Oct. 14, 2006. These related applications are incorporated herein by reference.
- 1. Field of the Invention
- The invention relates in general to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device with fine pitch and a manufacturing method thereof.
- 2. Description of the Related Art
- With the advance in science and technology, various electronic products are invented and marketed. As the electronic products are widely applied in everyday life, the demand for semiconductor devices is increasing. Due to the trend of slimness and lightweight in the design of semiconductor device, despite the size of a semiconductor device is reduced, the number of I/O actually increases not decreases such that the wire pitch and the wire width are both miniaturized. And fine pitch technology is thus developed to resolve the above problem.
- Referring to both
FIG. 1-3 .FIGS. 1-2 are side views of aconventional semiconductor device 900.FIG. 3 is a top view of asemiconductor device 900 ofFIGS. 1-2 . Thesemiconductor device 900 is a semiconductor device with fine pitch. Thesemiconductor device 900 includes a plurality ofbonding pads 910 andbumps 920. As indicated inFIG. 1 , thebonding pad 910 is disposed on anactive surface 900 a of thesemiconductor device 900 and arranged along the direction of X-axis, wherein thebump 920 is a column structure. In the fine pitch technology, the pitch G910 of thebonding pad 910 is as small as 50 um or even under 35 um. As viewed from the view-angle ofFIG. 3 , thebump 920 has a circular cross-section parallel to theactive surface 900 a. - The column-
shaped bump 920 is vertically disposed on thebonding pad 910. Thesemiconductor device 900 is electrically connected to the contact points (not illustrated in the diagram) disposed on a flip-chip carrier (normally, the flip-chip carrier is a PCB) via thecolumn bump 920 to form a packing structure by a manufacturing process of sealing for example. Thus, electrical signals are transmitted between the flip-chip carrier and thesemiconductor device 900 via thebump 920. - However, during the process of assembling the
semiconductor device 900 to the flip-chip carrier, the column-shaped bump 920 will bend easily during the process of moving or aligning as indicated in the rightmost bump ofFIG. 1 and the bump ofFIG. 2 . Consequently, the semiconductor device can not be firmly assembled on the flip-chip carrier. To the worse, shortcircuit may occur, severely affecting the electrical functions of the packing structure. - The above defected
semiconductor device 900 is hard to be re-worked, and is thus wasted. In case the defectedsemiconductor device 900 can be re-worked, the cost involved is expensive. Therefore, several monitor and inspection systems are employed in the manufacturing process to avoid the defected product going to the next manufacturing process, which may cause an even larger loss. However, the manufacturing process will incur more costs. - Thus, how to resolve the above problem has become an important issue in the research and development of semiconductor device.
- According to an aspect of an embodiment of the invention, a semiconductor device and a manufacturing method thereof are provided. The first dimension of the bump is longer than 1.2 times the second dimension, or the width of the extension of the bump is longer than 1.2 times the width of the bonding pad, such that the semiconductor device and manufacturing method thereof still possess excellent structural strength under the restriction of fine pitches. Thus, the semiconductor device and manufacturing method thereof disclosed in the above embodiments of the invention at least has the advantages of having enhanced structural strength, improved yield rate and reduced manufacturing cost.
- According to another aspect of an embodiment of the present invention, a semiconductor device is provided. The semiconductor device has an active surface. The semiconductor device includes at least a bonding pad and at least a bump. The bonding pad has a minimum dimension smaller than 100 microns. The connecting element is disposed on the activate surface and has a max dimension smaller than 100 microns. The bump is disposed on the connecting element and is electrically connected to the active surface by the connecting element. The bump includes a pillar part is disposed on the connecting element and a top part is disposed at the top of the pillar part. The pillar part has a first dimension and a second dimension both parallel to the active surface. The first dimension is longer than 1.2 times the second dimension. The top part is composed of solder and will melt under the determined temperature. The pillar part will not melt under a determined temperature.
- According to another aspect of an embodiment of the present invention, a semiconductor device is provided. The semiconductor device has an active surface. The semiconductor device includes a plurality of bonding pads and a plurality of bumps. The bonding pads are disposed on the active surface. Each of the bumps is disposed on the corresponding bonding pad. Each of the bumps includes a solder part. Wherein there are a plurality of contact points disposed on a package substrate corresponding to the bumps, the contact points directly contact the solder part, the pitch between the contact points is large than the pitch between the bonding pads of active surface.
- According to another aspect of an embodiment of the present invention, a semiconductor device is provided. The semiconductor device has an active surface. The semiconductor device includes a plurality of bonding pads and a plurality of bumps. The bonding pads are disposed on the active surface. Each of the bumps is disposed on the corresponding bonding pad. Each of the bumps includes a solder part. Wherein there are a plurality of contact points disposed on a package substrate corresponding to the bumps, the contact points directly contact the solder part, the center of each of the bump is not directly above the corresponding contact point.
- According to another aspect of an embodiment of the present invention, a manufacturing method of semiconductor device is provided. The semiconductor device includes a bonding pad disposed on an active surface of the semiconductor device. The manufacturing method of semiconductor device at least includes the following steps. Firstly, a first metal layer is deposited above the bonding pad and part of the active surface, wherein the first metal layer has a first dimension and a second dimension both parallel to the active surface, the first dimension is longer than 1.2 times the second dimension, and the first metal layer will not melt under a pre-determined temperature. Secondly, a second metal layer is formed above the first metal layer, wherein the second metal layer will melt under the pre-determined temperature, and the first metal layer and the second metal layer form a bump.
- According to another aspect of an embodiment of the present invention, a manufacturing method of semiconductor device is provided. The manufacturing method of semiconductor device at least includes the following steps. Firstly, a die is provided, wherein the die includes a bonding pad disposed on an active surface of the die. Secondly, a UBM layer is formed on the bonding pad under an inert gas environment. Thirdly, a photosensitive material is formed on the UBM layer and the active surface and the photosensitive material is patterned to form at least an opening for exposing the UBM layer and part of the active surface. Fourthly, the die is placed in a solution including first metal ions, wherein the solution includes copper ions (Cu++), sulfuric acid (H2SO4) and chloride ions, the copper ions have a concentration between 10˜40 gram/liter, the sulfuric acid has a concentration between 120˜300 gram/liter, the chloride ions have a concentration between 30˜70 ppm such that a first metal layer is electroplated in the opening, wherein the first metal layer contacts the UBM layer. Fifthly, a second metal layer is underfilled in part of the opening, wherein the second metal layer contacts the first metal layer, such that the first metal layer and the second metal layer form a bump. Lastly, the photosensitive material is removed.
- According to another aspect of an embodiment of the present invention, a semiconductor device is provided. The semiconductor device comprise at least a connecting element and at least a bump. The connecting element has a minimum dimension smaller than 100 microns, wherein the connecting element is disposed on the active surface. The bump is disposed on the connecting element and electrically connected to the active surface by the connecting element, wherein the bump comprises a pillar part disposed on the connecting element and a top part disposed at the top of the pillar part, the pillar part has a first dimension and a second dimension both parallel to the active surface, the first dimension is longer than 1.2 times the second dimension, the top part is composed of solder and will melt under the pre-determined temperature, and the pillar part will not melt under a determined temperature. Wherein the material of the pillar part is selected from a group consisting of copper (Cu), gold (Au), nickel (Ni) or a combination thereof, and the top part extending toward the top of the pillar part and disposed thereon is made from tin (Sn)-lead (Pb) or any lead free solders.
- According to another aspect of an embodiment of the present invention, a semiconductor device with an active surface is provided. The semiconductor device comprises a plurality of bonding pads and a plurality of bumps. The bonding pads are disposed on the active surface. The bumps are disposed on the bonding pads respectively, wherein each bump comprises a pillar part disposed on the bonding pad and a top part composed of solder solder, the top part is disposed on the top of the pillar part, and the connecting lines of the bonding pads and the bumps are arranged in off-centered arrangement.
- The invention with the above advantages and other advantages will become apparent from the following detailed description of the preferred embodiment. The following description is made with reference to the accompanying drawings.
- (Prior Art)
FIGS. 1 ˜2 are side views of a conventional semiconductor device; - (Prior Art)
FIG. 3 is a top view of a semiconductor device ofFIGS. 1-2 ; -
FIGS. 4 ˜5 are side views of a semiconductor device according to a first embodiment of the invention; -
FIG. 6 is a top view of a semiconductor device ofFIGS. 4 ˜5; -
FIG. 7 is a flowchart of a method for manufacturing a semiconductor device according to a preferred embodiment of the invention; -
FIG. 8 is detailed flowchart of a method for manufacturing a semiconductor device according to a preferred embodiment of the invention; -
FIGS. 9A ˜9F illustrate each step of the method for manufacturing a bump and a semiconductor device using the same; -
FIG. 10 is a top view of a die and a photosensitive material ofFIG. 9C ; -
FIG. 11 illustrates the disposition of a bump of a semiconductor device according to a second embodiment of the invention; and -
FIG. 12 illustrates the disposition of a bump of a semiconductor device according to a third embodiment of the invention. - Referring to both
FIG. 4 ˜6.FIGS. 4 ˜5 are side views of asemiconductor device 100 according to a first embodiment of the invention.FIG. 6 is a top view of a semiconductor device ofFIGS. 4 ˜5. As indicated inFIG. 4 , thesemiconductor device 100 has anactive surface 100 a and includes at least abonding pad 110 and at least abump 120. Thebonding pad 110 disposed on theactive surface 100 a is a connecting element for electrically connecting theactive surface 100 a to thebump 120. Thebump 120 is vertically disposed on thebonding pad 110. As indicated inFIG. 6 , the bump has a first dimension D121 and a second dimension D122 both parallel to theactive surface 100 a, wherein the first dimension D121 is illustrated inFIG. 5 andFIG. 6 , and the second dimension D122 is illustrated inFIG. 4 andFIG. 6 . The first dimension D121 is longer than 1.2 times the second dimension D122. As the structural strength of miniaturized elements is emphasized in the present embodiment of the invention, the shorter dimension of the bump 120 (the second dimension in the present embodiment of the invention) should be smaller than 100 microns. The minimum dimension of thebonding pad 110 is preferably smaller than the minimum dimension of thebump 120, that is, smaller than 100 microns, and the minimum dimension of thebonding pad 110 is preferred to be smaller than 80 microns. Meanwhile, the cross-section of thebonding pad 110 is preferred to be symmetric with respect to the center. For example, the shape of the cross-section is circular, squared, diamond-shaped, rectangular or elliptical, but is not limited thereto. Further, as shown in said drawings, the extending center line of thebonding pad 110 disposed in theactive surface 100 a and the extending center line of thebump 120 are not the same. That is, the connecting lines of the bodingpads 110 and thebumps 120 are disposed in an off-centered arrangement. - In the present embodiment of the invention, the first dimension D121 is perpendicular to the second dimension D122, wherein the first dimension D121 is the maximum dimension of the
bump 120 parallel to theactive surface 100 a, and the second dimension D122 is the minimum dimension of thebump 120 parallel to theactive surface 100 a. As indicated inFIG. 6 , the cross-section of thebump 120 parallel to theactive surface 100 a is preferably an I-shaped structure but is not limited thereto. Normally, the I-shapedbump 120 is stronger than the column-shaped bump. - Besides, as indicated in
FIG. 6 , one end of thebump 120 at least extends from thebonding pad 110 in a direction C1 (the direction of the Y-axis). The extending direction C1 is parallel to theactive surface 100 a, and the length D121 of the extending direction C1 of thebump 120 is longer than 1.2 times the width D110 of thebonding pad 110. In the present embodiment of the invention, the length D121 of the extending direction C1 of thebump 120 is equivalent to the maximum dimension D121 of thebump 120. That is, thebump 120 not only covers thebonding pad 110 but also extends in the direction C1. - Moreover, the edge of the
bump 120 covers thebonding pad 110, and the other part of thebump 120 covers part of theactive surface 100 a. Thebump 120 contacts theactive surface 100 a by an area larger than 1.2 times the area of thebonding pad 110. Therefore, under the trend of miniaturization in the design of thesemiconductor device 100, despite the dimension and the pitch of thebonding pad 110 are reduced, thebump 120 still maintains a certain level of structural strength. - As indicated in
FIG. 5 , the comparison between the width D110 of thebonding pad 110 and the height H120 of thebump 120 shows that the height H120 of thebump 120 is preferably larger than the width D110 of thebonding pad 110. As theconventional bump 920 can only cover the bonding pad 910 (thebump 920 and thebonding pad 910 are illustrated inFIG. 1 ), thebump 920 is slim and will tilt or bend easily. Thebump 120 of the invention not only covers thebonding pad 110, but also extends from thebonding pad 110 in the direction C1 and further covers part of the active surface 110 a, such that thebump 120 has a strong structure and will not tilt or bend easily. - Referring to
FIG. 5 again. Thebump 120 includes apillar part 121 and atop part 122. The bottom of thepillar part 121 is disposed on thebonding pad 110, and thetop part 122 is disposed at the top of thepillar part 121 and extends toward the top of thepillar part 121. Thetop part 122, which will melt and reflow under the pre-determined temperature, can be selected from a group consisting of solder, tin (Sn)-lead (Pb) or any lead free solder. Under a pre-determined temperature, thepillar part 121 will not melt and the material thereof is selected from a group consisting of copper (Cu), gold (Au), nickel (Ni) or a combination thereof, wherein copper is preferred in the present embodiment of the invention. The manufacturing method of thepillar part 121 and thetop part 122 of thebump 120 is exemplified inFIG. 7 . - Referring to both
FIG. 7 andFIGS. 9A ˜9F.FIG. 7 is a flowchart of a method for manufacturing a semiconductor device according to a preferred embodiment of the invention.FIGS. 9A ˜9F illustrate each step of the method for manufacturing a bump and a semiconductor device using the same. The manufacturing method of the bump of the invention and a semiconductor device using the same at least includes the following two steps. - Firstly, the method begins at step S701. As indicated in
FIGS. 9A ˜9D, afirst metal layer 151 is deposited on thebonding pad 110 and part of theactive surface 100 a, wherein thefirst metal layer 151 has a first dimension D121 and a second dimension D122 both parallel to theactive surface 100 a, and the first dimension D121 is longer than 1.2 times the second dimension D122. That is, the second dimension D122 of thefirst metal layer 151 is equivalent to the second dimension D122 ofFIG. 5 . The material of thefirst metal layer 151 is selected from a group consisting of copper, gold, nickel or the alloy thereof. That is, the material of thefirst metal layer 151 is selected from the same group with that of thepillar part 121 to form theabove pillar part 121. Thefirst metal layer 151 can be deposited by a semi-conductor manufacturing process such as electroplating, evaporating or sputtering. - Secondly, the method proceeds to step S702. As indicated in
FIGS. 9E ˜9F, asecond metal layer 152 is formed above thefirst metal layer 151, such that thefirst metal layer 151 and thesecond metal layer 152 form thebump 120. The material of thesecond metal layer 152 is selected from a group consisting of tin(sn)-lead(Pb) or any lead free solder. That is, the material of thesecond metal layer 152 is selected from the same group with that of thetop part 122 to form the abovetop part 122, wherein thesecond metal layer 152 is mainly composed of solder. Thesecond metal layer 152 can be underfilled by a manufacturing process such as electroplating, evaporating or sputtering or printing. - The manufacturing method of the
semiconductor device 100 of the present embodiment of the invention is exemplified by a plurality of semi-conductor manufacturing processes. Referring to bothFIG. 8 andFIGS. 9A ˜9F.FIG. 8 is a detailed flowchart of a method for manufacturing asemiconductor device 100 according to a preferred embodiment of the invention. - Firstly, the method begins at step S801 of
FIG. 8 . As indicated inFIG. 9A , adie 160 is provided, wherein thedie 160 includes abonding pad 110 disposed on theactive surface 100 a of thedie 160. In the manufacturing process of semi-conductor, thedie 160 is formed by dividing a wafer. Normally, the wafer is used as a manufacturing unit, and the wafer is divided into a plurality ofsemiconductor devices 100 after thebump 120 is formed. - Next, the method proceeds to step S802 of
FIG. 8 . As indicated inFIG. 9B , under an inert environment, an under bump metallurgy (UBM)layer 130 is formed on thebonding pad 110 and the entireactive surface 100 a using sputtering or evaporation. An apparatus is used to vacuum the chamber to achieve the level of 1×10−7 torr˜1×10-8 torr. The pressure inside the chamber can be appropriately adjusted according to actual needs during the manufacturing process. In the present embodiment of the invention, preferably, the apparatus vacuums the chamber to achieve a level of 5×10-7 torr˜1×10-8 torr. Then, argon is infused to the chamber until the pressure inside the chamber reaches few millitorr upto 100 millitorr, and the manufacturing process of sputtering is performed under the inert gasenvironment. - In step S802, titanium (Ti), copper (Cu), wolfram (W), nickel (Ni) palladium (Pd) or gold (Au) is used as a target material for sputtering or evaporating a titanium-copper (Ti—Cu) stacked structure, a titanium-wolfram-copper (Ti—W—Cu) stacked structure, a titanium-nickel (Ti—Ni) stacked structure or a titanium-palladium-gold (Ti—Pd—Au) stacked structure to form the
UBM layer 130. TheUBM layer 130 is composed of an adhesive layer, a barrier layer or a wetting layer, and the material for theUBM layer 130 is determined according to the design of the product. - Next, the method proceeds to step S803 of
FIG. 8 . As indicated inFIG. 9C , aphotosensitive material 140 is formed on theUBM layer 130 and theactive surface 100 a. Thephotosensitive material 140 is patterned to form at least an opening 140 a for exposing theUBM layer 130 and part of theactive surface 100 a. - Referring to
FIG. 10 , a top view of adie 160 and aphotosensitive material 140 ofFIG. 9C is shown. In step S803, the opening 140 a has a first inner diameter D141 and a second inner diameter D142 both parallel to theactive surface 100 a, wherein the first inner diameter D141 is longer than 1.2 times the second inner diameter D142. That is, the cross-section of the opening 140 a parallel to theactive surface 100 a is an I-shaped structure. Thebonding pad 110 and theUBM layer 130 are positioned at the edge of the opening 140 a, wherein thebonding pad 110 is covered under theUBM layer 130 and is indicated in dotted line inFIG. 10 . The area of the opening 140 a is preferably longer than 1.2 times the area of thebonding pad 110. The opening 140 a extends from thebonding pad 110 in a direction C1, wherein the length D141 of the extending direction C1 of the opening 140 a is longer than 1.2 times the width D110 of thebonding pad 110. That is, the extended length D141 of the opening 140 a is equivalent to the first inner diameter D141 of the opening 140 a. - Next, the method proceeds to step S804 of
FIG. 8 . As indicated inFIG. 9D , thedie 160 is placed into a solution including the first metal ions so as to electroplate thefirst metal layer 151 in theopening 140 a. Thefirst metal layer 151 contacts theUBM layer 130. In the present embodiment of the invention, the solution includes copper ions (Cu), sulfuric acid (H2SO4) and chloride ions to form thefirst metal layer 151 whose material includes copper. - In step S804, copper ions have a concentration between 10˜40 gram/liter, sulfuric acid has a concentration between 120˜300 gram/liter, chloride ions have a concentration between 30˜70 ppm. The components and concentrations of the solution can be adjusted and controlled according to the machine parameters and the to-be-formed
first metal layer 151. In the present embodiment of the invention, the operating temperature is preferably set to be 20˜30° C., and the concentration of the copper ions is controlled to be between 20˜35 gram/liter, the concentration of the sulfuric acid is controlled to be between 150˜250 gram/liter, the concentration of the chloride ions is controlled to be between 35˜60 ppm. - The area of the opening 140 a is larger than 1.2 times the area of the
bonding pad 110. Therefore, when thefirst metal layer 151 is formed in theopening 140 a, the area of the part of theactive surface 100 a covered by thefirst metal layer 151 is larger than the area of the part of the active surface covered by thebonding pad 100. Preferably, thefirst metal layer 151 contacts theactive surface 100 a by an area larger than 1.2 times the area of the part of the active surface covered by thebonding pad 100. - Then, the method proceeds to step S805 of
FIG. 8 . As indicated inFIGS. 9E ˜9F, thesecond metal layer 152 is underfilled to part of the opening 140 a, and thesecond metal layer 152 contacts thefirst metal layer 151. Next, thesecond metal layer 152 is reflown, such that thefirst metal layer 151 and thesecond metal layer 152 form abump 120 as indicated inFIG. 9F . The ways of underfilling thesecond metal layer 152 include electroplating, evaporating, sputtering and printing. - Next, as indicated in
FIG. 9F , the abovephotosensitive material 140 is removed, then the part of theUBM layer 130 not covered by thebump 120 is etched. The step of removing thephotosensitive material 140 can be performed before or after the step of reflowing thesecond metal layer 152, and the sequence of the manufacturing process can be designed to fit actual needs. In the present embodiment of the invention, thebump 120 is completed by reflowing thesecond metal layer 152 first and removing thephotosensitive material 140. - Referring to
FIG. 6 , thesemiconductor device 100 includes a plurality ofbonding pads 110 and bumps 120. Each of thebumps 120 corresponds to each of thebonding pads 110, and the directions C1 in which thebumps 120 extend from thebonding pads 110 are substantially parallel to each other. - The
bonding pads 110 are arranged along a line L110. Thebumps 120 extend in the same direction C1 from thebonding pads 110. The pitch G120 between thebumps 120 still remains approximately the same with the pitch G110 between thebonding pads 110 without significant reduction. Thus, under the circumstance that the pitch G120 between thebumps 120 is not reduced, thebumps 120 formed according to the structural design and manufacturing method thereof disclosed in the above embodiment have better structural strength. - Beside, a plurality of trace contact points (not illustrated in the diagram) can be disposed on the flip-chip carrier corresponding to the
bump 120 to be electrically connected with thebump 120. Compared with the bumps, the contact points are outwardly disposed on the flip-chip carrier in a fan-out arrangement or a fan-in arrangement. The distance between the contact points disposed on the flip-chip carrier is larger than the distance between thebonding pads 110 disposed on the active surface. That is, in prior arts, the bonding pads disposed on theactive surface 100 a are arranged in a line, and the contact points disposed on the flip-chip carrier are positioned directly above the line to form the other line. In the present embodiment of the invention, the contact points disposed on the flip-chip carrier contact the bumps disposed on the die and form electrical connection with thereto. Due to the shape of the extension of thebump 120, the contact points disposed on the flip-chip carrier do not need to form another line directly above the line formed by the bonding pads disposed on the active surface, but rather the contact points disposed on the flip-chip carrier can be arranged in a line not directly above the line formed by the bonding pads disposed on the active surface, or can be arranged not in a line. Further, as applied in a memory module, the connecting lines of the bodingpads 110 and thebumps 120 disclosed in the embodiment of the present invention are disposed in an off-centered arrangement. And thebumps 120 can extend toward various directions and connect with the contact points disposed on a flip-chip carrier. Therefore, thebonding pads 110 disposed on theactive surface 100 a would not be disposed in only one line, but can be disposed in two lines or a non-straight line. - The structural design of the shape of the extension of the
bump 120 in the present invention can replaces the conventional way of extending the length of the bonding pad for enabling the non-extendable bump to contact the contact points disposed on the flip-chip carrier. Further with the arrangement of the contact points, such as the fan-out arrangement, the distance between the contact points can be further enlarged for the manufacturing process with lower requirements of wire width. Preferably, the distance between the contact points is larger than the structure manufacturing process of 30 microns, but the technology of the invention is not limited thereto. - The
semiconductor device 200 and manufacturing method thereof of the present embodiment of the invention differs with thesemiconductor device 100 and manufacturing method thereof of the first embodiment in the disposition of thebump 220, and other similarities are not repeated here. Referring toFIG. 11 , the disposition of abump 220 of asemiconductor device 200 according to a second embodiment of the invention is shown. In the present embodiment of the invention, thesemiconductor device 200 includes a plurality ofbonding pads 110 and bumps 220. Each of thebumps 220 corresponds to each of thebonding pads 110, and the directions C1 and C2 in which thebumps 220 extend from thebonding pads 110 are substantially parallel to each other. Thebonding pads 110 are arranged along a line L110, and thebumps 220 alternately extend in opposite directions C1 and C2 from thebonding pads 110 to form a fan-out arrangement. - There is a larger pitch G220 between the
bumps 220 extending in the same direction C1. Likewise, there is a larger pitch G220 between thebumps 220 extending in the same direction C2. The pitch G220 is equivalent to more than two times the pitch G110 of thebonding pad 110. Therefore, during the assembly of thesemiconductor device 200, thebump 220 and the flip-chip carrier are more easily connected electrically, hence preventing the shortcircuit between neighboring bumps. - Like the first embodiment, a plurality of trace contact points (not illustrated in the diagram) are disposed on the flip-chip carrier corresponding to the
bump 220 for electrically connecting the top part (the solder) of thebump 220. Compared with the bump, the contact points are outwardly disposed on the flip-chip carrier in a fan-out arrangement. The distance between the contact points disposed on the flip-chip carrier is larger than the distance between thebonding pads 110 disposed on the active surface. That is, in prior arts, the bonding pads disposed on the active surface are arranged in a line, and the contact points disposed on the flip-chip carrier are positioned directly above the line to form the other line. In the present embodiment of the invention, the contact points disposed on the flip-chip carrier contact the bumps disposed on the die and form electrical connection with thereto. Due to the shape of the extension of thebump 220, the contact points disposed on the flip-chip carrier do not need to form the other line directly above the line formed by the bonding pads disposed on the active surface, but rather, the contact points disposed on the flip-chip carrier can be arranged in a line not directly above the line formed by the bonding pads disposed on the active surface, or can be arranged not in a line. - The structural design of the shape of the extension of the
bump 220 in the present invention can replace the conventional way of extending the length of the bonding pad for the non-extendable bump to contact the contact points disposed on the flip-chip carrier. Further with the arrangement of the contact points, such as the fan-out arrangement, the distance between the contact points can be further enlarged for the manufacturing process with lower requirements of wire width. - The
semiconductor device 300 and manufacturing method thereof of the present embodiment of the invention differs with thesemiconductor device 200 and manufacturing method thereof of the second embodiment in the structural design of thebump 320, and other similarities are not repeated here. Referring toFIG. 12 , the disposition of abump 320 of asemiconductor device 300 according to a third embodiment of the invention is shown. In the present embodiment of the invention, thebump 320 of thesemiconductor device 300 has a substantially T-shaped cross-section parallel to the active surface 300 a. - As indicated in
FIG. 12 , after the T-shapedbump 320 substantially extends a first distance D31 in a first direction C31 from thebonding pad 110, thebump 320 extends a second distance D32 in a second direction C32 and a third direction C33 respectively. The first distance D31 is longer than 1.2 times the width D110 of thebonding pad 110. - The cross-section of the bump is exemplified by an I-shaped structure or a T-shaped structure in the above embodiments. However, the cross-section of the bump can also be an elliptical structure or a rectangular structure as long as the first dimension of the bump is longer than 1.2 times the second dimension. For example, in the T-shaped structure, the two lines forming the T-shaped structure can have the same length. However, the dimension of the length of the line divided by the other line is not the physical dimension because the dimension of the length amounts to a smaller proportion of the overall dimension. The physical dimension is the average of the width. Meanwhile, the length of the extension of the bump is longer than 1.2 times the width of the bonding pad. Moreover, the bump does not need to completely cover the bonding pad, the bump only needs to cover part of the bonding pad, and such variation is still within the scope of technology of the invention.
- In the above embodiments, the bump covers the bonding pad by the edge of the bump. However, the bump can also cover the bonding pad by the central part of the bump is within the scope of technology of the invention as long as the area of the part of the active surface covered by the bump is larger than 1.2 times the area of the bonding pad. Likewise, during the manufacturing process of the bump and a semiconductor device using the same, the bonding pad can also be positioned at the central part of the opening.
- In the semiconductor device and manufacturing method thereof disclosed in the above embodiments of the invention, the first dimension of the bump is longer than 1.2 times the second dimension, or the width of the extension of the bump is longer than 1.2 times the width of the bonding pad, such that the semiconductor device and manufacturing method thereof still possess excellent structural strength under the restriction of fine pitches. Thus, the semiconductor device and manufacturing method thereof disclosed in the above embodiments of the invention at least has the following advantages:
- Firstly, the structural strength is enhanced. The structural strength of the bump of the semiconductor device is greatly enhanced, hence preventing the bump from being bent or shortcuited.
- Secondly, the yield rate is improved. As the structural strength of the bump is enhanced, the semiconductor device is less likely to be defected during the process of assembly or removal, and the yield rate is thus improved.
- Thirdly, the manufacturing cost is reduced. During the manufacturing process, there is no need to input large amount of labor and material for inspection or re-work and the defected products are largely reduced, so the manufacturing cost is largely reduced.
- While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Claims (25)
1. A column structure extending vertically from a semiconductor device for connecting to a carrier, comprising:
a pillar part having a first dimension and a second dimension, wherein the first dimension is longer than the second dimension; and
a top part disposed on the pillar part, wherein the pillar part comprises materials that will not melt under a pre-determined temperature and top part comprises materials that will melt under the pre-determined temperature,
wherein the pillar part is formed on a bonding pad having a geometric center, metallization layer connects the bonding pad and the pillar part, and the geometric center of the bonding pad is not aligned vertically with the center of the pillar part.
2. The column structure according to claim 1 , wherein the first dimension is the maximum dimension and the second dimension is the minimum dimension.
3. The column structure according to claim 1 , wherein the first dimension is perpendicular to the second dimension.
4. The column structure according to claim 1 , wherein the first and second dimensions are parallel to a cross-section of the pillar part.
5. The column structure according to claim 4 , wherein the cross-section of the pillar part has an elliptical or rectangular shaped structure.
6. The column structure according to claim 4 , wherein the cross-section of the pillar part composes of at least two lines, each line having a length and a width.
7. The column structure according to claim 6 , wherein the lines extend in different directions.
8. The column structure according to claim 6 , wherein the cross-section of the pillar part has a T-shaped structure or an I-shaped structure.
9. The column structure according to claim 1 , wherein the pillar part comprises copper (Cu), gold (Au), nickel (Ni) or a combination thereof.
10. The column structure according to claim 1 , wherein the top part comprises tin (Sn), silver (Ag), lead (Pb) or a combination thereof.
11. The column structure according to claim 1 , wherein the column structure completely covers the bonding pad.
12. The column structure according to claim 1 , wherein the column structure is disposed on part of the bonding pad.
13. A package structure, comprising:
a semiconductor device having a contacting position;
a carrier having a contact point; and
a column structure comprising a pillar part and a top part, and disposed between the semiconductor device and the carrier, wherein the pillar part is connected to the contacting position and the top part is connected to the contact point, the pillar part comprises materials that will not melt under a pre-determined temperature and top part comprises materials that will melt under the pre-determined temperature,
wherein the pillar part is formed on a bonding pad having a geometric center, a metallization layer connects the bonding pad and the pillar part, and the geometric center of the bonding pad is not aligned vertically with the center of the pillar part.
14. The package structure according to claim 13 , wherein the first dimension is the maximum dimension and the second dimension is the minimum dimension.
15. The package structure according to claim 13 , wherein the first dimension is perpendicular to the second dimension.
16. The package structure according to claim 13 , wherein the first and second dimensions are parallel to a cross-section of the pillar part.
17. The package structure according to claim 16 , wherein the cross-section of the pillar part has an elliptical or rectangular shaped structure.
18. The package structure according to claim 13 , wherein the column structure completely covers the bonding pad.
19. The package structure according to claim 13 , wherein the column structure is disposed on part of the bonding pad.
20. The package structure according to claim 13 , wherein a center of the column structure is offset from a center of the bonding pad.
21. The package structure according to claim 13 , wherein a center of the bonding pad is offset from a center of the contact point.
22. The package structure according to claim 13 , wherein a center of the column structure is offset from a center of the contact point.
23. The package structure according to claim 13 , wherein the metallization layer comprises an adhesive layer, a barrier layer or a wetting layer.
24. The package structure according to claim 13 , wherein the pillar part comprises copper (Cu), gold (Au), nickel (Ni) or a combination thereof.
25. The package structure according to claim 13 , wherein the top part comprises tin (Sn), silver (Ag), lead (Pb) or a combination thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/158,560 US20160268225A1 (en) | 2006-10-14 | 2016-05-18 | Chip and manufacturing method thereof |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95137971 | 2006-10-14 | ||
TW95137971 | 2006-10-14 | ||
US88987907A | 2007-08-17 | 2007-08-17 | |
US11/905,482 US8207608B2 (en) | 2006-10-14 | 2007-10-01 | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US13/467,635 US8846519B2 (en) | 2006-10-14 | 2012-05-09 | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US14/312,443 US9362206B2 (en) | 2006-10-14 | 2014-06-23 | Chip and manufacturing method thereof |
US15/158,560 US20160268225A1 (en) | 2006-10-14 | 2016-05-18 | Chip and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/312,443 Continuation US9362206B2 (en) | 2006-10-14 | 2014-06-23 | Chip and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160268225A1 true US20160268225A1 (en) | 2016-09-15 |
Family
ID=39302389
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/905,482 Active 2029-08-01 US8207608B2 (en) | 2006-10-14 | 2007-10-01 | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US13/467,635 Active US8846519B2 (en) | 2006-10-14 | 2012-05-09 | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US14/312,443 Active US9362206B2 (en) | 2006-10-14 | 2014-06-23 | Chip and manufacturing method thereof |
US15/158,560 Abandoned US20160268225A1 (en) | 2006-10-14 | 2016-05-18 | Chip and manufacturing method thereof |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/905,482 Active 2029-08-01 US8207608B2 (en) | 2006-10-14 | 2007-10-01 | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US13/467,635 Active US8846519B2 (en) | 2006-10-14 | 2012-05-09 | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US14/312,443 Active US9362206B2 (en) | 2006-10-14 | 2014-06-23 | Chip and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
US (4) | US8207608B2 (en) |
TW (1) | TWI378540B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8350384B2 (en) * | 2009-11-24 | 2013-01-08 | Stats Chippac, Ltd. | Semiconductor device and method of forming electrical interconnect with stress relief void |
US8574959B2 (en) | 2003-11-10 | 2013-11-05 | Stats Chippac, Ltd. | Semiconductor device and method of forming bump-on-lead interconnection |
US9029196B2 (en) | 2003-11-10 | 2015-05-12 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US8216930B2 (en) | 2006-12-14 | 2012-07-10 | Stats Chippac, Ltd. | Solder joint flip chip interconnection having relief structure |
US8026128B2 (en) | 2004-11-10 | 2011-09-27 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US8129841B2 (en) | 2006-12-14 | 2012-03-06 | Stats Chippac, Ltd. | Solder joint flip chip interconnection |
USRE47600E1 (en) | 2003-11-10 | 2019-09-10 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming electrical interconnect with stress relief void |
KR101286379B1 (en) | 2003-11-10 | 2013-07-15 | 스태츠 칩팩, 엘티디. | Bump-on-lead flip chip interconnection |
WO2006105015A2 (en) | 2005-03-25 | 2006-10-05 | Stats Chippac Ltd. | Flip chip interconnection having narrow interconnection sites on the substrate |
US8841779B2 (en) | 2005-03-25 | 2014-09-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate |
TWI378540B (en) * | 2006-10-14 | 2012-12-01 | Advanpack Solutions Pte Ltd | Chip and manufacturing method thereof |
WO2009138048A1 (en) * | 2008-05-14 | 2009-11-19 | Pac Tech - Packaging Technologies Gmbh | Contact structure and method for producing a contact structure |
DE102009043403B4 (en) * | 2009-09-29 | 2012-04-12 | Siemens Aktiengesellschaft | Method for establishing a bidirectional communication path in a wireless network |
US8304919B2 (en) * | 2010-03-26 | 2012-11-06 | Stats Chippac Ltd. | Integrated circuit system with stress redistribution layer and method of manufacture thereof |
US20120178189A1 (en) * | 2011-01-06 | 2012-07-12 | Reber Douglas M | Method for forming an over pad metalization (opm) on a bond pad |
US8288871B1 (en) | 2011-04-27 | 2012-10-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduced-stress bump-on-trace (BOT) structures |
KR101782503B1 (en) * | 2011-05-18 | 2017-09-28 | 삼성전자 주식회사 | Solder collapse free bumping process of semiconductor device |
US8598691B2 (en) * | 2011-09-09 | 2013-12-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor devices and methods of manufacturing and packaging thereof |
US8431478B2 (en) * | 2011-09-16 | 2013-04-30 | Chipmos Technologies, Inc. | Solder cap bump in semiconductor package and method of manufacturing the same |
US8866041B2 (en) * | 2012-04-12 | 2014-10-21 | Tdk Corporation | Apparatus and method of manufacturing laser diode unit utilizing submount bar |
TWI562295B (en) | 2012-07-31 | 2016-12-11 | Mediatek Inc | Semiconductor package and method for fabricating base for semiconductor package |
US9177899B2 (en) | 2012-07-31 | 2015-11-03 | Mediatek Inc. | Semiconductor package and method for fabricating base for semiconductor package |
US10991669B2 (en) | 2012-07-31 | 2021-04-27 | Mediatek Inc. | Semiconductor package using flip-chip technology |
US9263409B2 (en) * | 2013-05-21 | 2016-02-16 | Esilicon Corporation | Mixed-sized pillars that are probeable and routable |
US9653442B2 (en) * | 2014-01-17 | 2017-05-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit package and methods of forming same |
US9508671B2 (en) | 2015-04-20 | 2016-11-29 | Advanced Semiconductor Engineering, Inc. | Semiconductor device and semiconductor package |
KR102678759B1 (en) | 2016-10-14 | 2024-06-27 | 삼성전자주식회사 | Semiconductor device |
US11127704B2 (en) * | 2017-11-28 | 2021-09-21 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device with bump structure and method of making semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8207608B2 (en) * | 2006-10-14 | 2012-06-26 | Advanpack Solutions Pte Ltd. | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US20130075901A1 (en) * | 2005-10-07 | 2013-03-28 | Renesas Electronics Corporation | Semiconductor device and a method of manufacturing the same |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4531803A (en) * | 1982-08-23 | 1985-07-30 | Amp Incorporated | Electrical terminal and terminal housing for making connections to insulated wires |
US5431803A (en) | 1990-05-30 | 1995-07-11 | Gould Electronics Inc. | Electrodeposited copper foil and process for making same |
JP3217624B2 (en) * | 1994-11-12 | 2001-10-09 | 東芝マイクロエレクトロニクス株式会社 | Semiconductor device |
JPH0997791A (en) | 1995-09-27 | 1997-04-08 | Internatl Business Mach Corp <Ibm> | Bump structure, formation of bump and installation connection body |
JP3201957B2 (en) | 1996-06-27 | 2001-08-27 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Metal bump, method for manufacturing metal bump, connection structure |
TW324847B (en) * | 1996-12-13 | 1998-01-11 | Ind Tech Res Inst | The structure of composite bump |
US6565729B2 (en) * | 1998-03-20 | 2003-05-20 | Semitool, Inc. | Method for electrochemically depositing metal on a semiconductor workpiece |
US6198170B1 (en) * | 1999-12-16 | 2001-03-06 | Conexant Systems, Inc. | Bonding pad and support structure and method for their fabrication |
US6578754B1 (en) | 2000-04-27 | 2003-06-17 | Advanpack Solutions Pte. Ltd. | Pillar connections for semiconductor chips and method of manufacture |
US6592019B2 (en) | 2000-04-27 | 2003-07-15 | Advanpack Solutions Pte. Ltd | Pillar connections for semiconductor chips and method of manufacture |
JP4120133B2 (en) * | 2000-04-28 | 2008-07-16 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
JP3968554B2 (en) * | 2000-05-01 | 2007-08-29 | セイコーエプソン株式会社 | Bump forming method and semiconductor device manufacturing method |
JP3440070B2 (en) | 2000-07-13 | 2003-08-25 | 沖電気工業株式会社 | Wafer and method of manufacturing wafer |
SG148877A1 (en) * | 2003-07-22 | 2009-01-29 | Micron Technology Inc | Semiconductor substrates including input/output redistribution using wire bonds and anisotropically conductive film, methods of fabrication and assemblies including same |
US7462942B2 (en) * | 2003-10-09 | 2008-12-09 | Advanpack Solutions Pte Ltd | Die pillar structures and a method of their formation |
TWI255514B (en) | 2004-01-02 | 2006-05-21 | Phipal Technologies Co Ltd | Method for fabricating under bump pads |
TWI235470B (en) * | 2004-05-26 | 2005-07-01 | Advanced Semiconductor Eng | Asymmetric bump structure |
TWI259572B (en) * | 2004-09-07 | 2006-08-01 | Siliconware Precision Industries Co Ltd | Bump structure of semiconductor package and fabrication method thereof |
TWI244152B (en) * | 2004-10-22 | 2005-11-21 | Advanced Semiconductor Eng | Bumping process and structure thereof |
TWI248221B (en) | 2005-05-05 | 2006-01-21 | Po-Chien Li | Bump structure of LED flip chip |
US7534715B2 (en) * | 2005-12-29 | 2009-05-19 | Intel Corporation | Methods including fluxless chip attach processes |
CN200965875Y (en) | 2006-10-16 | 2007-10-24 | 先进封装技术私人有限公司 | Semiconductor element |
US7834449B2 (en) * | 2007-04-30 | 2010-11-16 | Broadcom Corporation | Highly reliable low cost structure for wafer-level ball grid array packaging |
-
2007
- 2007-09-27 TW TW096136056A patent/TWI378540B/en active
- 2007-10-01 US US11/905,482 patent/US8207608B2/en active Active
-
2012
- 2012-05-09 US US13/467,635 patent/US8846519B2/en active Active
-
2014
- 2014-06-23 US US14/312,443 patent/US9362206B2/en active Active
-
2016
- 2016-05-18 US US15/158,560 patent/US20160268225A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130075901A1 (en) * | 2005-10-07 | 2013-03-28 | Renesas Electronics Corporation | Semiconductor device and a method of manufacturing the same |
US8207608B2 (en) * | 2006-10-14 | 2012-06-26 | Advanpack Solutions Pte Ltd. | Interconnections for fine pitch semiconductor devices and manufacturing method thereof |
US9362206B2 (en) * | 2006-10-14 | 2016-06-07 | Advanpack Solutions Pte Ltd. | Chip and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
US8207608B2 (en) | 2012-06-26 |
TW200818437A (en) | 2008-04-16 |
US8846519B2 (en) | 2014-09-30 |
TWI378540B (en) | 2012-12-01 |
US20120220118A1 (en) | 2012-08-30 |
US9362206B2 (en) | 2016-06-07 |
US20080088013A1 (en) | 2008-04-17 |
US20140299984A1 (en) | 2014-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9362206B2 (en) | Chip and manufacturing method thereof | |
JP5629580B2 (en) | Flip chip interconnect with double posts | |
KR101479512B1 (en) | Method for manufacturing semiconductor package | |
US6656827B1 (en) | Electrical performance enhanced wafer level chip scale package with ground | |
US6153940A (en) | Core metal soldering knob flip-chip technology | |
US6849944B2 (en) | Using a supporting structure to control collapse of a die towards a die pad during a reflow process for coupling the die to the die pad | |
US20090289360A1 (en) | Workpiece contact pads with elevated ring for restricting horizontal movement of terminals of ic during pressing | |
US11894330B2 (en) | Methods of manufacturing a semiconductor device including a joint adjacent to a post | |
JP2017022408A (en) | Microelectronic package with dual or multiple-etched flip-chip connector and corresponding manufacturing method | |
US20080088019A1 (en) | Structure and manufacturing method of a chip scale package | |
US20080230925A1 (en) | Solder-bumping structures produced by a solder bumping method | |
US9721913B2 (en) | Semiconductor package and method of manufacturing thereof | |
US7626263B2 (en) | Semiconductor device and package including the same | |
US10483196B2 (en) | Embedded trace substrate structure and semiconductor package structure including the same | |
JP5208500B2 (en) | Assembling method and assembly produced by this method | |
EP2075834A1 (en) | Solder bumps for flip chip bonding with higher density | |
US8823183B2 (en) | Bump for semiconductor package, semiconductor package having bump, and stacked semiconductor package | |
JP5778557B2 (en) | Semiconductor device manufacturing method, semiconductor device, and semiconductor element | |
CN100593239C (en) | Chip and its making method | |
KR101009192B1 (en) | Bump structure for semiconductor device and fabrication method thereof | |
US20240079299A1 (en) | Semiconductor package and method of manufacturing the semiconductor package | |
KR100715969B1 (en) | Semiconductor chip having metal lead and manufacturing method thereof | |
CN116247022A (en) | Semiconductor package | |
CN117438407A (en) | Flip-chip bonding structure convenient to weld and preparation method thereof | |
CN117393532A (en) | Semiconductor structure, packaging device and manufacturing method of semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANPACK SOLUTIONS PTE LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEW, HWEE-SENG JIMMY;ONG, CHEE-KIAN;REEL/FRAME:038639/0788 Effective date: 20140616 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |