[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20160252594A1 - Local shim coil within a local coil for local b0 homogenization in an mrt examination - Google Patents

Local shim coil within a local coil for local b0 homogenization in an mrt examination Download PDF

Info

Publication number
US20160252594A1
US20160252594A1 US15/150,200 US201615150200A US2016252594A1 US 20160252594 A1 US20160252594 A1 US 20160252594A1 US 201615150200 A US201615150200 A US 201615150200A US 2016252594 A1 US2016252594 A1 US 2016252594A1
Authority
US
United States
Prior art keywords
coil
shim
local
head
local coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/150,200
Inventor
Stephan Biber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to US15/150,200 priority Critical patent/US20160252594A1/en
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIBER, STEPHAN
Publication of US20160252594A1 publication Critical patent/US20160252594A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils

Definitions

  • the present embodiments relate to a local shim coil within a local coil for an imaging system.
  • Magnetic resonance imaging scanners for examining patients using magnetic resonance imaging are known, for example, as disclosed by DE10314215B4, U.S. Pat. No. 6,100,695, U.S. Pat. No. 6,023,167.
  • SNR signal-to-noise ratio
  • Local coils are antenna systems that may be provided in the immediate vicinity above (anterior) or below (posterior) a patient.
  • excited cores induce a voltage in the individual antennae of the local coils.
  • the voltage may be amplified by a low-noise amplifier (e.g., LNA, preamp) and forwarded in a wired manner to an electronic receiving device.
  • LNA low-noise amplifier
  • High-field units e.g., 1.5 T to 12 T and more
  • FatSat is a method in which the frequency shift of the protons bound in the fat is used to fade out the signals of fatty tissue by a strong transmission pulse (e.g., a saturation pulse) in the case of the fat frequency.
  • FatSat may use the frequency or the phase shift of the two signals to fade out the fatty tissue, in part, in image processing.
  • the FatSat method is highly dependent on the spatial homogeneity of the basic field.
  • the spatial homogeneity is currently determined by way of volumes of approximately 30 ⁇ 30 ⁇ 30 cm (+ ⁇ 20 cm) with up to, for example, approximately 0.5 ppm.
  • Distortions of the B 0 basic field may occur in bodily regions due to the spatially inhomogeneous distribution of the susceptibility (mu_r or ⁇ r ) of the body tissue. These distortions may be corrected by shim coils fitted in the MRI scanner system. Current shim coils are installed in the system spatially in the region of the gradient coils, relatively far away from the patient. The number of different shim coils, the arrangement and activation of which allows a certain number of degrees of freedom, may be used to compensate for B 0 inhomogeneities of the usually super-conducting basic field magnets using shim currents in conventional copper coils.
  • Shim coils of a higher order e.g., a strong local field variation
  • B0 current or output versus change in B0.
  • Shim coils are also described in the following documents: Christoph Juchem et al., Magnetic field homogenization of the human prefrontal cortex with a set of localized electrical coils , Journal of Magnetic Resonance Imaging, MRM, 63: 171-180, 2010; G H Glover et al., Mitigation of susceptibility induced signal loss in neuroimaging using localized shim coils , MRM 2005, 243-248; R.
  • gel cushions may be placed in the nape region of the neck of the patient to be examined if the shim orders are not sufficient.
  • the residual susceptibility of such cushions in the best case scenario, counteracts the B 0 distortions such that a more homogeneous field results.
  • a local coil for an imaging system e.g., an MRI scanner
  • MRI scanner is configured to receive the head of a patient positioned therein and includes at least one shim coil.
  • the MRI scanner local coil is configured to shim the magnetic field.
  • FIG. 1 shows a view from one side and in a longitudinal section of a patient and one embodiment of a head coil
  • FIG. 2 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil
  • FIG. 3 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil
  • FIG. 4 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil
  • FIG. 5 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil having local coil conductor assemblies with each local coil including a plurality of conductors;
  • FIG. 7 shows a schematic of an MRI scanner system.
  • Signals from the local coil arrangement 106 may be evaluated, for example, converted into images, stored, or displayed, by an evaluation device (e.g., including elements 168 , 115 , 117 , 119 , 120 , 121 ) of the MRI scanner 101 .
  • the MRI scanner 101 may be connected via coaxial cables or radio ( 167 ), for example, to the local coil arrangement 106 .
  • a strong magnet e.g., a cryomagnet 107
  • the value of the main magnetic field B 0 may be, for example, 0.2 Tesla to 3 Tesla or more.
  • the body 105 to be examined may be positioned on an examination table 104 and moved into a region of the main magnetic field B 0 . Such a region may be roughly homogenous in the FOV.
  • the nuclear spin of atomic nuclei in the body 105 is excited by magnetic high frequency excitation pulses radiated via a high frequency antenna and/or optionally a local coil arrangement.
  • the local coil arrangement is shown in FIG. 7 in a simplified form as a multi-part body coil 108 a , 108 b , 108 c .
  • High frequency excitation pulses may be produced, for example, by a pulse-generating unit 109 controlled by a pulse sequence control unit 110 . Following amplification by a high frequency amplifier 111 , the high frequency excitation pulses may be conveyed to the high frequency antenna 108 .
  • the high frequency system illustrated here is merely schematically shown in FIG. 7 . In other embodiments, more than one pulse-generating unit 109 , more than one high frequency amplifier 111 , and a plurality of high frequency antennae 108 a, b, c are used in a magnetic resonance imaging scanner 101 .
  • the magnetic resonance imaging scanner 101 also includes gradient coils 112 x , 112 y , 112 z . Magnetic gradient fields are radiated using the gradient coils 112 x , 122 y , 112 z during a measurement for selective layer excitation and for spatial encoding of the measuring signal.
  • the gradient coils 112 x , 112 y , 112 z are controlled by a gradient coil control unit 114 that like the pulse-generating unit 109 , is connected to the pulse sequence control unit 110 .
  • Signals emitted by the excited nuclear spin of the atomic nuclei in the object being examined are received by the body coil 108 and/or at least one local coil arrangement 106 .
  • the signals are amplified by associated high frequency amplifiers 116 , processed further and digitized by a receiving unit 117 .
  • the recorded measuring data are digitized and stored in a k-space matrix as complex numerical values.
  • An associated MR image may be reconstructed from the k-space matrix occupied by values by a multi-dimensional Fourier transformation.
  • a transceiver switch 118 For a coil, which may be operated in both transmitting and receiving modes, such as the body coil 108 or a local coil 106 , correct signal forwarding is regulated by a transceiver switch 118 connected upstream.
  • An image processing unit 119 produces an image from the measuring data.
  • the image is displayed to a user via a control panel 120 and/or is stored in a memory unit 121 .
  • a central computer unit 122 controls the individual unit components.
  • local coil arrangements e.g., coils, local coils.
  • Local coil arrangements may be antenna systems provided in the immediate vicinity above (anterior), below (posterior), on or in the body 105 .
  • the excited cores induce a voltage in the individual antennae of the local coil.
  • the induced voltage is amplified by a low-noise preamplifier (e.g., LNA or preamp) and is forwarded to the electronic receiving device.
  • High-field units e.g., 1.5 T-12 T or more
  • a switch matrix e.g., an RCCS
  • Such a switch matrix routes the instantaneously active receiving channels (e.g., the receiving channels located precisely in the FOV of the magnet) to the available receivers.
  • more coil elements than there are receivers available may be connected in the case of whole body coverage since only the coils located in the field of view or the homogeneity volume of the magnet have to be read out.
  • An antenna system which may include one antenna element or an array coil of a plurality of antenna elements (e.g., coil elements), may be designated a local coil arrangement 106 .
  • Individual antenna elements may be configured as loop antennae, butterfly antennae, flex coils, or saddle coils.
  • a local coil arrangement may include coil elements, a preamplifier, further electronic devices (e.g., baluns), a housing, supports, and a cable, with which the local coil may be connected to the MRT unit.
  • a receiver 168 may be provided on the unit that filters and digitizes a signal received from a local coil 106 , for example, via radio, and passes the data to a digital signal processing device. Such a signal processing device derives an image or a spectrum from the data obtained by a measurement and makes the image available to the user for subsequent diagnosis by the user and/or storage.
  • FIGS. 1-6 show in a side view an exemplary local coil 106 , with one or more local shim coils therein, positioned on the head and/or neck of a patient 106 at a region/a position PP.
  • Such a susceptibility jump may be caused by spatially inhomogeneous field or susceptibility, distribution in the transition from thorax to the comparatively narrower neck-nape-head region, and/or due to air in the region of the patient's esophagus/windpipe.
  • the MRI scanner local coil 106 has an interior A (e.g., a cavity open only counter to the z direction, in the housing G or a region or space A surrounded only right+left+cranial+below or right+left+below by the housing G of the local coil).
  • the head K, or the head K and neck H of a patient 105 may be positioned within the interior space A (e.g., position PP of the head K in the local coil 106 in FIG. 1 ).
  • the patient may put the local coil 106 on in the manner of a helmet, or the patient may lie on a lower part of the local coil, whereupon an upper part of the local coil may be folded over the patient's face.
  • FIG. 2 shows one embodiment of integration of shim coil elements in a head-nape-local coil 106 .
  • the coil 106 is shown schematically simplified as a rectangle.
  • the current directions e.g., the directions, in which current I may flow in local shim coil elements LS in the local coil
  • a field B LS produced by the local shim coil elements LS e.g., a static B 0 ′ field
  • a plurality of conductors L 1 , L 2 (e.g., more than two conductors, of which two conductors L 1 , L 2 are shown by way of example) of a local shim coil element LS in the local coil run approximately in the position of the nape region, and/or mouth region, and/or approximately/partially below ( ⁇ y) a problem zone P of a patient.
  • a patient may wear the local coil 105 like a helmet while lying.
  • the local coil may extend around the head K, neck H of the patient, and/or the z axis in, for example, an approximately elliptical or oval or rectangular form.
  • the conductors L 1 , L 2 are at the same height (e.g., above an examination table) in FIG. 2 .
  • FIG. 3 also shows integration of shim coil elements in a head-nape local coil 106 .
  • the coil 106 is shown schematically simplified as a rectangle.
  • the conductors L 1 , L 2 are also at the same height as each other above an examination table in FIG. 3 .
  • conductors L 1 , L 2 of a local shim coil element LS of the local coil 105 are shown arranged jointly in different positions relative to the problem zone P (e.g., the nape region of a patient) when viewed in the z direction.
  • the different positions relative to the problem zone P cause a different magnetic field B LS produced by the local shim coil element LS of the local coil 105 (e.g., at a different position).
  • stray fields of the shim coil are used differently to compensate for the B 0 inhomogeneity due to the problem zone P.
  • the conductors L 1 , L 2 may be provided at a plurality of positions P 1 , P 2 in a local coil 105 .
  • the conductors may be loaded with current only at one or some of the positions respectively to produce a magnetic field B LS in order to adjust the local coil to different patients.
  • Coils or conductors L 1 , L 2 of the coils of a shim coil element LS may be located in the local coil 106 at a position P 1 , P 2 anterior and/or posterior of a position PP for a patient.
  • the position of the coils may be arranged on the head and/or neck of a patient and/or encompass a position PP for a patient.
  • FIG. 4 also shows integration of shim coil elements in a head-nape local coil 106 .
  • the coil 106 is shown schematically simplified as a rectangle.
  • the conductors L 1 , L 2 are arranged at different heights d 1 , d 2 relative to the problem zone P and/or above an examination table in the local coil (e.g., in the housing of the local coil) in FIG. 3 .
  • the shim field of the conductor L 1 or plurality of conductors, which conduct(s) the current in one direction directly next to the problem zone P, may be used for homogenization.
  • the return takes place a relatively long distance from the problem zone, as shown here in the conductor L 2 .
  • the shim coil may be adapted in an iterative method including acts of estimating a shim current, adjusting the shim current, measuring homogeneity, estimating a new shim current, and repeating the acts.
  • a plurality of spatially distributed local shim coils in the local coil may be operated together or alternately by switching on and off and/or by the controller of the current, so the fields of the local shim coils overlap constructively or destructively.
  • the local shim coils may be in the head, nape, and/or in a spine coil.
  • Local shim coils for extremity coils located a distance out in the X direction may also be provided.
  • FIG. 6 shows a circuit diagram of an exemplary power supply SV of a local coil 106 , indicated by a rectangle in broken lines.
  • Shim coils of the local coil are intended to suppress high currents in the HF transmitting frequency by baluns MS or parallel resonance filters (e.g., a coil and a capacitor).
  • the DC current source Q of the power supply SV may be controlled, for example.
  • the DC source may be protected against an induction of high voltage fields by the gradient fields of the MRI scanner.
  • a protective circuit S may be provided as a diode bridge.
  • the shim coils may be securely mechanically connected to the local coil ( 106 ) housing G to be able to absorb the Lorentz forces of the gradient fields.
  • Local shim coils may be integrated in the local coil and therefore compensate locally severely limited effects.
  • the coil arrangement shown in FIG. 4 is suitable if B 0 inhomogeneities are such that the field distortion in the nape region and in the shoulder region have opposing signs. These inhomogeneities may be compensated with at least one shim coil in that the feed conductors and return conductors (L 1 , L 2 ) of the shim coils are used for precisely such compensating.
  • the conductors or conductor arrangements L 1 , L 2 shown schematically in the figures may be a single conductor or a single wire in each case.
  • the conductor arrangements L 1 , L 2 may also potentially contain a plurality of conductors L 1 a , L 1 b , L 1 c , L 1 d or L 2 a , L 2 b , L 2 c , L 2 d that run side by side and parallel to each other.
  • FIG. 5 shows from one side in a longitudinal section a shimmed local coil having local coil conductor arrangements L 1 , L 2 that each include a plurality of conductors or wires L 1 a , L 1 b , L 1 c , L 1 d or L 2 a , L 2 b , L 2 c , L 2 d.
  • the y spacing and possibly also the z spacing of the conductors L 1 and L 2 in FIG. 5 may be configured so as to be variable.
  • the variable spacing may be achieved, for example, by electrically switching different conductor structures (e.g., simultaneously present in the local coil) or by different mechanical placement.
  • the different spacings are advantageous for optimum adaptation to the susceptibility rates individual to the patient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A local coil for an imaging system, in particular an MRI scanner. The local coil is an MRI scanner local coil within which the head of a patient may be positioned, and that includes at least one shim coil.

Description

  • This application is a continuation of U.S. application Ser. No. 13/525,198, filed on Jun. 15, 2012, which claims the benefit of DE 10 2011 077 724.5, filed on Jun. 17, 2011. The entire contents of these documents are hereby incorporated herein by reference.
  • BACKGROUND
  • The present embodiments relate to a local shim coil within a local coil for an imaging system.
  • Magnetic resonance imaging scanners (MRI scanners) for examining patients using magnetic resonance imaging are known, for example, as disclosed by DE10314215B4, U.S. Pat. No. 6,100,695, U.S. Pat. No. 6,023,167.
  • In MR imaging, images with a high signal-to-noise ratio (SNR) may be recorded using local coils. Local coils are antenna systems that may be provided in the immediate vicinity above (anterior) or below (posterior) a patient. During an MR measurement, excited cores induce a voltage in the individual antennae of the local coils. The voltage may be amplified by a low-noise amplifier (e.g., LNA, preamp) and forwarded in a wired manner to an electronic receiving device. High-field units (e.g., 1.5 T to 12 T and more) may be used to improve the signal-to-noise ratio even in the case of high resolution images.
  • The homogeneity of the B0 basic field is important in many clinical MR applications. Artifacts or distortions may occur. Some applications, such as FatSat, may no longer operate optimally in the case of differences in the homogeneity. FatSat is a method in which the frequency shift of the protons bound in the fat is used to fade out the signals of fatty tissue by a strong transmission pulse (e.g., a saturation pulse) in the case of the fat frequency. Alternatively, FatSat may use the frequency or the phase shift of the two signals to fade out the fatty tissue, in part, in image processing. Since the difference between the proton frequency in water and in fat is very slight (e.g., a few ppm of the basic field), the FatSat method is highly dependent on the spatial homogeneity of the basic field. The spatial homogeneity is currently determined by way of volumes of approximately 30×30×30 cm (+−20 cm) with up to, for example, approximately 0.5 ppm.
  • Distortions of the B0 basic field may occur in bodily regions due to the spatially inhomogeneous distribution of the susceptibility (mu_r or □r) of the body tissue. These distortions may be corrected by shim coils fitted in the MRI scanner system. Current shim coils are installed in the system spatially in the region of the gradient coils, relatively far away from the patient. The number of different shim coils, the arrangement and activation of which allows a certain number of degrees of freedom, may be used to compensate for B0 inhomogeneities of the usually super-conducting basic field magnets using shim currents in conventional copper coils. The number of degrees of freedom is insufficient in many systems to compensate for inhomogeneities in the region of, for example, the cervical spine (HWS). Shim coils of a higher order (e.g., a strong local field variation), which are provided in the system, may be extremely inefficient with respect to current or output versus change in B0.
  • Shim coils are also described in the following documents: Christoph Juchem et al., Magnetic field homogenization of the human prefrontal cortex with a set of localized electrical coils, Journal of Magnetic Resonance Imaging, MRM, 63: 171-180, 2010; G H Glover et al., Mitigation of susceptibility induced signal loss in neuroimaging using localized shim coils, MRM 2005, 243-248; R. Cusack et al., An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI, Neuroimage, 2005, 24, 82-91; and J L Wilson et al., Utilization of an intra-oral diamagnetic passive shim in functional MRI scanner of the inferior frontal cortex, MRM 2003, 50, 1089-1094
  • According to one current solution (e.g. http://www/satpadinc.com/photos/), gel cushions may be placed in the nape region of the neck of the patient to be examined if the shim orders are not sufficient. The residual susceptibility of such cushions, in the best case scenario, counteracts the B0 distortions such that a more homogeneous field results.
  • SUMMARY AND DESCRIPTION
  • The present embodiments may obviate one or more of the drawbacks or limitations in the related art. For example, the field homogeneity for an imaging system may be optimized. In one example, a local coil for an imaging system (e.g., an MRI scanner) is configured to receive the head of a patient positioned therein and includes at least one shim coil.
  • In another example, the MRI scanner local coil is configured to shim the magnetic field.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a view from one side and in a longitudinal section of a patient and one embodiment of a head coil;
  • FIG. 2 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil;
  • FIG. 3 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil;
  • FIG. 4 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil;
  • FIG. 5 shows a view from one side and in a longitudinal section of one embodiment of a shimmed local coil having local coil conductor assemblies with each local coil including a plurality of conductors;
  • FIG. 6 shows a detailed view of a circuit diagram of a power supply of an exemplary local coil;
  • FIG. 7 shows a schematic of an MRI scanner system.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • FIG. 7 shows, as background, an imaging scanner MRI scanner 101 located in a screened space or Faraday cage F. The imaging scanner has a whole body coil 102 with, for example, a tubular space 103, in which an examination table 104 with a body of an object to be examined 105 (e.g., a patient; with or without a local coil arrangement 106) may be moved in the direction of the arrow z to generate images of the patient 105 using an imaging method. According to one embodiment, the local coil arrangement 106 may be arranged on the patient in a local region (e.g., a field of view (FOV)) of the MRI scanner. Images of a section of the body 105 may be generated in the FOV. Signals from the local coil arrangement 106 may be evaluated, for example, converted into images, stored, or displayed, by an evaluation device (e.g., including elements 168, 115, 117, 119, 120, 121) of the MRI scanner 101. The MRI scanner 101 may be connected via coaxial cables or radio (167), for example, to the local coil arrangement 106.
  • To examine the body 105 (e.g., the object to be examined or the patient) using the magnetic resonance imaging scanner 101 by magnetic resonance imaging, various magnetic fields are matched as accurately as possible in terms of temporal and spatial characteristics and are radiated onto the body 105. A strong magnet, (e.g., a cryomagnet 107) in a measuring cabin having a tunnel-shaped opening 103 produces a static strong main magnetic field B0. The value of the main magnetic field B0 may be, for example, 0.2 Tesla to 3 Tesla or more. The body 105 to be examined may be positioned on an examination table 104 and moved into a region of the main magnetic field B0. Such a region may be roughly homogenous in the FOV. The nuclear spin of atomic nuclei in the body 105 is excited by magnetic high frequency excitation pulses radiated via a high frequency antenna and/or optionally a local coil arrangement. The local coil arrangement is shown in FIG. 7 in a simplified form as a multi-part body coil 108 a, 108 b, 108 c. High frequency excitation pulses may be produced, for example, by a pulse-generating unit 109 controlled by a pulse sequence control unit 110. Following amplification by a high frequency amplifier 111, the high frequency excitation pulses may be conveyed to the high frequency antenna 108. The high frequency system illustrated here is merely schematically shown in FIG. 7. In other embodiments, more than one pulse-generating unit 109, more than one high frequency amplifier 111, and a plurality of high frequency antennae 108 a, b, c are used in a magnetic resonance imaging scanner 101.
  • The magnetic resonance imaging scanner 101 also includes gradient coils 112 x, 112 y, 112 z. Magnetic gradient fields are radiated using the gradient coils 112 x, 122 y, 112 z during a measurement for selective layer excitation and for spatial encoding of the measuring signal. The gradient coils 112 x, 112 y, 112 z are controlled by a gradient coil control unit 114 that like the pulse-generating unit 109, is connected to the pulse sequence control unit 110.
  • Signals emitted by the excited nuclear spin of the atomic nuclei in the object being examined are received by the body coil 108 and/or at least one local coil arrangement 106. The signals are amplified by associated high frequency amplifiers 116, processed further and digitized by a receiving unit 117. The recorded measuring data are digitized and stored in a k-space matrix as complex numerical values. An associated MR image may be reconstructed from the k-space matrix occupied by values by a multi-dimensional Fourier transformation.
  • For a coil, which may be operated in both transmitting and receiving modes, such as the body coil 108 or a local coil 106, correct signal forwarding is regulated by a transceiver switch 118 connected upstream.
  • An image processing unit 119 produces an image from the measuring data. The image is displayed to a user via a control panel 120 and/or is stored in a memory unit 121. A central computer unit 122 controls the individual unit components.
  • In MR imaging, images with a high signal-to-noise ratio (SNR) are recorded using local coil arrangements (e.g., coils, local coils). Local coil arrangements may be antenna systems provided in the immediate vicinity above (anterior), below (posterior), on or in the body 105.
  • During an MR measurement, the excited cores induce a voltage in the individual antennae of the local coil. The induced voltage is amplified by a low-noise preamplifier (e.g., LNA or preamp) and is forwarded to the electronic receiving device. High-field units (e.g., 1.5 T-12 T or more) are used to improve the signal-to-noise ratio even in the case of high resolution images. To connect more individual antennae to an MR receiving system than there are receivers available, a switch matrix (e.g., an RCCS) may be fitted between receiving antennae and receivers. Such a switch matrix routes the instantaneously active receiving channels (e.g., the receiving channels located precisely in the FOV of the magnet) to the available receivers. Thus, more coil elements than there are receivers available may be connected in the case of whole body coverage since only the coils located in the field of view or the homogeneity volume of the magnet have to be read out.
  • An antenna system, which may include one antenna element or an array coil of a plurality of antenna elements (e.g., coil elements), may be designated a local coil arrangement 106. Individual antenna elements may be configured as loop antennae, butterfly antennae, flex coils, or saddle coils. A local coil arrangement may include coil elements, a preamplifier, further electronic devices (e.g., baluns), a housing, supports, and a cable, with which the local coil may be connected to the MRT unit. A receiver 168 may be provided on the unit that filters and digitizes a signal received from a local coil 106, for example, via radio, and passes the data to a digital signal processing device. Such a signal processing device derives an image or a spectrum from the data obtained by a measurement and makes the image available to the user for subsequent diagnosis by the user and/or storage.
  • FIGS. 1-6 show in a side view an exemplary local coil 106, with one or more local shim coils therein, positioned on the head and/or neck of a patient 106 at a region/a position PP.
  • As FIG. 1 shows, a certain susceptibility jump may exist in a problem zone P in the transition region between the thorax and nape/head of a patient 105.
  • Such a susceptibility jump may be caused by spatially inhomogeneous field or susceptibility, distribution in the transition from thorax to the comparatively narrower neck-nape-head region, and/or due to air in the region of the patient's esophagus/windpipe.
  • The MRI scanner local coil 106 has an interior A (e.g., a cavity open only counter to the z direction, in the housing G or a region or space A surrounded only right+left+cranial+below or right+left+below by the housing G of the local coil). The head K, or the head K and neck H of a patient 105 may be positioned within the interior space A (e.g., position PP of the head K in the local coil 106 in FIG. 1). In the example of FIG. 1, the patient may put the local coil 106 on in the manner of a helmet, or the patient may lie on a lower part of the local coil, whereupon an upper part of the local coil may be folded over the patient's face.
  • FIG. 2 shows one embodiment of integration of shim coil elements in a head-nape-local coil 106. The coil 106 is shown schematically simplified as a rectangle. The current directions (e.g., the directions, in which current I may flow in local shim coil elements LS in the local coil), and a field BLS produced by the local shim coil elements LS (e.g., a static B0′ field) are shown in an exemplary and simplified manner.
  • In FIG. 2, a plurality of conductors L1, L2 (e.g., more than two conductors, of which two conductors L1, L2 are shown by way of example) of a local shim coil element LS in the local coil run approximately in the position of the nape region, and/or mouth region, and/or approximately/partially below (−y) a problem zone P of a patient. Such a patient may wear the local coil 105 like a helmet while lying. The local coil may extend around the head K, neck H of the patient, and/or the z axis in, for example, an approximately elliptical or oval or rectangular form.
  • In FIG. 2, current I1 flows in the conductor L1 in the illustrated sectional position above the head K out of the drawing plane counter to the x direction, as symbolized by a point in the conductor L1. In the illustrated sectional position below the head K, current I1 flows in the conductor L1 into the drawing plane in the x direction, as symbolized by a cross in the conductor L1. In the illustrated sectional position above the head K, current I2 flows in FIG. 2 in the conductor L2 out of the drawing plane counter to the x direction, as symbolized by a point in the conductor L2. In the illustrated sectional position below the head K, current I2 flows in the conductor L2 into the drawing plane in the x direction, as symbolized by a cross in the conductor L2.
  • The directional current flow in conductors L1 and L2 results in a magnetic field BLS produced by the local shim coil element LS in the local coil 105. The magnetic field BLS compensates, with respect to the B0 field therein, the problem zone P to optimize images, which may be produced by the MRI scanner.
  • Viewed in the y direction, the conductors L1, L2 are at the same height (e.g., above an examination table) in FIG. 2.
  • As another embodiment, FIG. 3 also shows integration of shim coil elements in a head-nape local coil 106. The coil 106 is shown schematically simplified as a rectangle.
  • Viewed in the y direction, the conductors L1, L2 are also at the same height as each other above an examination table in FIG. 3. In FIG. 3, conductors L1, L2 of a local shim coil element LS of the local coil 105 are shown arranged jointly in different positions relative to the problem zone P (e.g., the nape region of a patient) when viewed in the z direction. Depending on the position P1, P2, the different positions relative to the problem zone P cause a different magnetic field BLS produced by the local shim coil element LS of the local coil 105 (e.g., at a different position).
  • Depending on the spacing in the z direction of the shim coil center M (e.g., between the two conductors L1, L2 that are furthest apart from each other) from the problem zone P, stray fields of the shim coil are used differently to compensate for the B0 inhomogeneity due to the problem zone P.
  • The conductors L1, L2 may be provided at a plurality of positions P1, P2 in a local coil 105. The conductors may be loaded with current only at one or some of the positions respectively to produce a magnetic field BLS in order to adjust the local coil to different patients.
  • Coils or conductors L1, L2 of the coils of a shim coil element LS may be located in the local coil 106 at a position P1, P2 anterior and/or posterior of a position PP for a patient. The position of the coils may be arranged on the head and/or neck of a patient and/or encompass a position PP for a patient.
  • As one embodiment, FIG. 4 also shows integration of shim coil elements in a head-nape local coil 106. The coil 106 is shown schematically simplified as a rectangle.
  • Viewed in the y direction, the conductors L1, L2 are arranged at different heights d1, d2 relative to the problem zone P and/or above an examination table in the local coil (e.g., in the housing of the local coil) in FIG. 3.
  • The shim field of the conductor L1 or plurality of conductors, which conduct(s) the current in one direction directly next to the problem zone P, may be used for homogenization. The return takes place a relatively long distance from the problem zone, as shown here in the conductor L2.
  • Further possible embodiments may include the following examples. The shim current of the local coil 106 may be adapted by a current controller in the local coil and/or by a controller of the MRI scanner system 101, 117,168.
  • The shim coil may be adapted in an iterative method including acts of estimating a shim current, adjusting the shim current, measuring homogeneity, estimating a new shim current, and repeating the acts.
  • A plurality of spatially distributed local shim coils in the local coil may be operated together or alternately by switching on and off and/or by the controller of the current, so the fields of the local shim coils overlap constructively or destructively. The local shim coils may be in the head, nape, and/or in a spine coil.
  • Local shim coils for extremity coils located a distance out in the X direction, such as a shoulder coil, may also be provided.
  • FIG. 6 shows a circuit diagram of an exemplary power supply SV of a local coil 106, indicated by a rectangle in broken lines.
  • Shim coils of the local coil are intended to suppress high currents in the HF transmitting frequency by baluns MS or parallel resonance filters (e.g., a coil and a capacitor).
  • In the illustrated example, current I flows across the low-resistance coils L.
  • The DC current source Q of the power supply SV may be controlled, for example. The DC source may be protected against an induction of high voltage fields by the gradient fields of the MRI scanner. A protective circuit S may be provided as a diode bridge.
  • A low-pass filter with very low frequency in the DC source power pack (f<ca 0 Hz) may be provided.
  • The shim coils, L1, L2, LS etc., may be securely mechanically connected to the local coil (106) housing G to be able to absorb the Lorentz forces of the gradient fields. Local shim coils may be integrated in the local coil and therefore compensate locally severely limited effects.
  • One possible advantage of an embodiment lies in integration of shim coil elements directly at the site of the local B0 inhomogeneity within a local coil. Such integration allows the technical implementation of the shim coil, so the shim coil may be constructed to be resistant to high HF alternating fields and gradient fields and may be operated in a manner safe for the patient.
  • FIG. 4 shows an exemplary embodiment with a conductor L2 carrying current I2 in the “x” direction on the right. The conductor L2 is located approximately or exactly below the molded nape section (e.g., the nape region P2). The example of FIG. 4 also shows another conductor L1 carrying current I1 in the x direction. The conductor L1 is located approximately or exactly below the shoulder region (P1) (e.g., in the region of the C5/C6 vertebral bodies of a patient).
  • The coil arrangement shown in FIG. 4 is suitable if B0 inhomogeneities are such that the field distortion in the nape region and in the shoulder region have opposing signs. These inhomogeneities may be compensated with at least one shim coil in that the feed conductors and return conductors (L1, L2) of the shim coils are used for precisely such compensating.
  • The conductors or conductor arrangements L1, L2 shown schematically in the figures may be a single conductor or a single wire in each case. The conductor arrangements L1, L2 may also potentially contain a plurality of conductors L1 a, L1 b, L1 c, L1 d or L2 a, L2 b, L2 c, L2 d that run side by side and parallel to each other.
  • FIG. 5 shows from one side in a longitudinal section a shimmed local coil having local coil conductor arrangements L1, L2 that each include a plurality of conductors or wires L1 a, L1 b, L1 c, L1 d or L2 a, L2 b, L2 c, L2 d.
  • The y spacing and possibly also the z spacing of the conductors L1 and L2 in FIG. 5 may be configured so as to be variable. The variable spacing may be achieved, for example, by electrically switching different conductor structures (e.g., simultaneously present in the local coil) or by different mechanical placement. The different spacings are advantageous for optimum adaptation to the susceptibility rates individual to the patient.
  • While the present invention has been described above by reference to various embodiments, it should be understood that many changes and modifications can be made to the described embodiments. It is therefore intended that the foregoing description be regarded as illustrative rather than limiting, and that it be understood that all equivalents and/or combinations of embodiments are intended to be included in this description.

Claims (20)

1. A local coil for an imaging system, the local coil comprising:
a head coil comprising a housing, the head coil being configured so that the head of a patient is positionable in the head coil and the neck of the patient is positionable on a nape section of the housing; and
at least one shim coil, a conductor of a shim coil of the at least one shim coil being disposed in the nape section of the housing,
wherein a power supply, a controller, or the power supply and the controller of the at least one shim coil are arranged in the housing.
2. The local coil of claim 1, wherein the head coil comprises one or more coils, the one or more coils being located in the local coil at a position anterior, a position posterior, or a position anterior and posterior of a position for the head, a position for the neck, or a position for the head and the neck, the one or more coils being located in the local coil encompassing a position for the head, a position for the neck, or a position for the head and the neck of the patient, or a combination thereof.
3. The local coil of claim 1, wherein the at least one shim coil comprises exactly one shim coil.
4. The local coil of claim 1, wherein the at least one shim coil comprises two or more shim coils.
5. The local coil of claim 1, wherein the local coil is configured for use with a magnetic resonance imaging (MRI) scanner, and the head coil is an MRI scanner head coil,
wherein the at least one shim coil comprises a plurality of shim coils, and
wherein the head coil, the MRI scanner, or the head coil and the MRI scanner comprise a controller of shim current in the plurality of shim coils.
6. The local coil of claim 5, wherein the plurality of shim coils are spatially distributed in the local coil and are operable together, are operable alternately to each other, or are operable together and alternately to each other, by switching on or off, via the controller of the shim current in the shim coils, or by switching on or off and via the controller of the shim current in the shim coils.
7. The local coil of claim 1, wherein a current source of the power supply comprises a protective circuit.
8. The local coil of claim 7, wherein the imaging system is a magnetic resonance imaging (MRI) scanner, and
wherein the protective circuit is operable to protect against an induction of high voltage fields through gradient fields of the MRI scanner.
9. The local coil of claim 1, wherein the power supply comprises a diode bridge, a low-pass filter, or the diode bridge and the low pass filter, the low pass filter having a frequency in a DC source power pack of the power supply of less than 10 Hz.
10. The local coil of claim 1, wherein the at least one shim coil comprises a plurality of shim coils, and
wherein the plurality of shim coils are mechanically connected to the housing.
11. The local coil of claim 1, wherein the at least one shim coil comprises a plurality of shim coils,
wherein the shim coil is a first shim coil of the plurality of shim coils, and
wherein a conductor of a second shim coil of the plurality of shim coils is arranged in a region for a shoulder region, a vertebral body, or the shoulder region and the vertebral body of the patient.
12. The local coil of claim 1, wherein a shim coil of the at least one shim coil includes a first conductor and a second conductor, and
wherein, in at least a region of the local coil provided for positioning under the patient, current flows in mutually opposed directions in the first conductor and the second conductor.
13. The local coil of claim 1, wherein a shim coil of the at least one shim coil comprises a conductor, and
wherein the conductor is a conductor arrangement including a plurality of lines that run, are located, or run and are located side by side.
14. The local coil of claim 1, wherein a shim coil of the at least one shim coil comprises two or more assemblies of conductors, and
wherein a y spacing, a z spacing, or the y spacing and the z spacing of first conductors of the two or more assemblies of conductors from each other is greater or smaller, respectively, than a y spacing, a z spacing, or the y spacing and the z spacing of second conductors of the two or more assemblies of conductors from each other.
15. The local coil of claim 1, further comprising a switching device operable to electrically switch on various conductor structures in the local coil,
wherein the switching device is operable to switch on only first conductors of the various conductor structures for shimming, only second conductors of the various conductor structures for shimming, or the first conductors and the second conductors for shimming.
16. A local coil for an imaging system, the local coil comprising:
a head coil comprising a housing, the head coil being configured so that the head of a patient is positionable in the head coil and the neck of the patient is positionable on a nape section of the housing; and
two or more shim coils, a conductor of a shim coil of the two or more shim coils being disposed in the nape section of the housing.
17. The local coil of claim 16, wherein the local coil is configured for use with a magnetic resonance imaging (MRI) scanner, and the head coil is an MRI scanner head coil,
wherein the head coil, the MRI scanner, or the head coil and the MRI scanner comprise a controller of shim current in the two or more shim coils.
18. The local coil of claim 17, wherein the two or more shim coils are spatially distributed in the local coil and are operable together, are operable alternately to each other, or are operable together and alternately to each other, by switching on or off, via the controller, or by switching on or off and via the controller.
19. A local coil for an imaging system, the local coil comprising:
a head coil comprising a housing, the head coil being configured so that the head of a patient is positionable in the head coil and the neck of the patient is positionable on a nape section of the housing; and
at least one shim coil, a conductor of a shim coil of the at least one shim coil being disposed in the nape section of the housing,
wherein the at least one shim coil comprises a power supply, a current source of the power supply being controllable, and
wherein the current source of the power supply comprises a protective circuit.
20. The local coil of claim 19, wherein the imaging system is a magnetic resonance imaging (MRI) scanner, and
wherein the protective circuit is operable to protect against an induction of high voltage fields through gradient fields of the MRI scanner.
US15/150,200 2011-06-17 2016-05-09 Local shim coil within a local coil for local b0 homogenization in an mrt examination Abandoned US20160252594A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/150,200 US20160252594A1 (en) 2011-06-17 2016-05-09 Local shim coil within a local coil for local b0 homogenization in an mrt examination

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102011077724A DE102011077724A1 (en) 2011-06-17 2011-06-17 Local shim coil within a local coil, as local BO homogenization in an MRI
DE102011077724.5 2011-06-17
US13/525,198 US9360541B2 (en) 2011-06-17 2012-06-15 Local shim coil within a local coil for local B0 homogenization in an MRT examination
US15/150,200 US20160252594A1 (en) 2011-06-17 2016-05-09 Local shim coil within a local coil for local b0 homogenization in an mrt examination

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/525,198 Continuation US9360541B2 (en) 2011-06-17 2012-06-15 Local shim coil within a local coil for local B0 homogenization in an MRT examination

Publications (1)

Publication Number Publication Date
US20160252594A1 true US20160252594A1 (en) 2016-09-01

Family

ID=47228298

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/525,198 Active 2032-08-09 US9360541B2 (en) 2011-06-17 2012-06-15 Local shim coil within a local coil for local B0 homogenization in an MRT examination
US15/150,200 Abandoned US20160252594A1 (en) 2011-06-17 2016-05-09 Local shim coil within a local coil for local b0 homogenization in an mrt examination

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/525,198 Active 2032-08-09 US9360541B2 (en) 2011-06-17 2012-06-15 Local shim coil within a local coil for local B0 homogenization in an MRT examination

Country Status (3)

Country Link
US (2) US9360541B2 (en)
CN (1) CN102830377B (en)
DE (1) DE102011077724A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488478B2 (en) 2014-04-16 2019-11-26 Siemens Aktiengesellschaft Method, system and magnetic resonance apparatus for compensating for inhomogeneities in the magnetic field
US11047940B2 (en) 2017-07-13 2021-06-29 Koninklijke Philips N.V. Passive RF shim resonator FR field homogenization of an RF antenna device for TX mode and RX mode
WO2022170186A1 (en) * 2021-02-08 2022-08-11 Resonance Research, Inc. Minimally coupled shim coils

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080275B4 (en) 2011-08-02 2018-10-25 Siemens Healthcare Gmbh Local coil, in particular neck coil, with a number of separately switchable local coil shim coils
DE102011086658B3 (en) 2011-11-18 2013-03-28 Siemens Aktiengesellschaft Shim coil device for use in local coil of magnetic resonance apparatus, has shim coil and compensation coil arranged in coil plane, where overall assembly of shim coil and compensation coil is symmetrical with respect to two central axes
DE102011087485B3 (en) * 2011-11-30 2013-05-29 Siemens Aktiengesellschaft Magnetic resonance imaging system, method for compensating field inhomogeneity in the system and shim coil assembly
DE102012204527B4 (en) 2012-03-21 2015-05-13 Siemens Aktiengesellschaft Multi-ply cushion for optimal adaptation to anatomy and susceptibility adjustment
DE102012206300B3 (en) 2012-04-17 2013-07-25 Siemens Aktiengesellschaft Shim coil arrangement for local coil for performing MRI process in e.g. forearm of patient, has shim coils provided in common coil planes, which lie vertical to direction of base magnetic field in usage state and/or direction of retainer
CN103913711B (en) * 2012-12-31 2020-11-13 深圳联影医疗科技有限公司 Head coil
DE102013214125A1 (en) 2013-07-18 2014-04-03 Siemens Aktiengesellschaft Local coil for image-forming magnetic resonance apparatus-system, particularly breast coil or shoulder coil, has two shim coils, from which two of shim coils are extended side by side in plane
DE102013216529B4 (en) 2013-08-21 2019-05-23 Siemens Healthcare Gmbh Method in particular for the patient-adaptive B0 homogenization of MR systems using different types of shim coils
CN105555189B (en) * 2013-09-17 2020-03-17 小利兰·斯坦福大学托管委员会 Device for obtaining high-quality optical image in nuclear magnetic resonance imaging system
DE102014219682B4 (en) 2014-09-29 2019-06-06 Siemens Healthcare Gmbh Shim coil device and a magnetic resonance coil system with a Shimspulenvorrichtung
JP6647314B2 (en) 2015-04-10 2020-02-14 シナプティヴ メディカル (バルバドス) インコーポレイテッドSynaptive Medical (Barbados) Inc. Shim coil and method for nuclear magnetic resonance imaging
US9797967B2 (en) * 2015-07-15 2017-10-24 Synaptive Medical (Barbados) Inc. Active coil to shift a volume of uniform magnetic field
US10254362B2 (en) * 2015-10-30 2019-04-09 General Electric Company Magnetic resonance imaging matrix shim coil system and method
DE102017200960A1 (en) 2017-01-20 2018-07-26 Siemens Healthcare Gmbh A local coil device for a patient's head, a shim coil device, and a method for compensating for basic field inhomogeneities in a region of interest of the patient's prefrontal cortex
US10921398B2 (en) * 2017-05-25 2021-02-16 Synaptive Medical Inc. System and method for using coils in magnetic resonance imaging
DE102017213026A1 (en) * 2017-07-28 2019-01-31 Siemens Healthcare Gmbh Gradient coil for generating a magnetic field gradient and a higher-order magnetic field
CN111133326A (en) * 2017-09-28 2020-05-08 西达-赛奈医疗中心 Magnetic resonance coil for simultaneous imaging and B0 shimming
EP3486673A1 (en) 2017-11-21 2019-05-22 Siemens Healthcare GmbH Foot rf coil with b0-shim coil assembly
EP3489966A1 (en) * 2017-11-23 2019-05-29 Esaote S.p.A. An mri apparatus control system, a user interface for managing the said control system and an mri system comprising the said control system and the said user interface
WO2019126934A1 (en) 2017-12-25 2019-07-04 深圳先进技术研究院 Local shimming system and shimming method for magnetic resonance imaging
EP3570059B1 (en) 2018-05-16 2024-06-26 Siemens Healthineers AG Method and mri device for performing a quality analysis of an rf coil
US12055610B2 (en) 2020-02-03 2024-08-06 Quality Electrodynamics, Llc Single shim coil design for B0 shimming
EP4075157A1 (en) 2021-04-14 2022-10-19 Siemens Healthcare GmbH Method for correcting object specific inhomogeneities in an mr imaging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650724A (en) * 1993-09-13 1997-07-22 Kabushiki Kaisha Toshiba Magnetic-resonance imaging apparatus
US6023167A (en) * 1998-01-26 2000-02-08 Picker International, Inc. Surface coils with integrated shims
US6157193A (en) * 1997-11-18 2000-12-05 Siemens Aktiengesellschaft MR imaging system with electrically insulated coil element
US20020057078A1 (en) * 1999-04-14 2002-05-16 Thomas Mullner Protective circuit for an electronic device
US7414401B1 (en) * 2007-03-26 2008-08-19 General Electric Company System and method for shielded dynamic shimming in an MRI scanner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3917619A1 (en) 1989-05-31 1990-12-06 Philips Patentverwaltung COIL ARRANGEMENT FOR VOLUME SELECTIVE NUCLEAR RESONANCE SPECTROSCOPY
US5136244A (en) * 1990-10-22 1992-08-04 Medical Advances, Inc. Articulated NMR shoulder coil with fusible link
US7276025B2 (en) * 2003-03-20 2007-10-02 Welch Allyn, Inc. Electrical adapter for medical diagnostic instruments using LEDs as illumination sources
DE10314215B4 (en) 2003-03-28 2006-11-16 Siemens Ag Magnetic resonance antenna and method for detuning their natural resonance frequency
TW201036593A (en) * 2009-04-09 2010-10-16 Univ Chung Yuan Christian Method for measuring heart rhythm variability
US8441258B2 (en) * 2009-12-30 2013-05-14 General Electric Company Quadrature and linear RF coil array for MRI of human spine and torso

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650724A (en) * 1993-09-13 1997-07-22 Kabushiki Kaisha Toshiba Magnetic-resonance imaging apparatus
US6157193A (en) * 1997-11-18 2000-12-05 Siemens Aktiengesellschaft MR imaging system with electrically insulated coil element
US6023167A (en) * 1998-01-26 2000-02-08 Picker International, Inc. Surface coils with integrated shims
US20020057078A1 (en) * 1999-04-14 2002-05-16 Thomas Mullner Protective circuit for an electronic device
US7414401B1 (en) * 2007-03-26 2008-08-19 General Electric Company System and method for shielded dynamic shimming in an MRI scanner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488478B2 (en) 2014-04-16 2019-11-26 Siemens Aktiengesellschaft Method, system and magnetic resonance apparatus for compensating for inhomogeneities in the magnetic field
US11047940B2 (en) 2017-07-13 2021-06-29 Koninklijke Philips N.V. Passive RF shim resonator FR field homogenization of an RF antenna device for TX mode and RX mode
WO2022170186A1 (en) * 2021-02-08 2022-08-11 Resonance Research, Inc. Minimally coupled shim coils
US12123929B2 (en) 2021-02-08 2024-10-22 Resonance Research, Inc. Minimally coupled shim coils

Also Published As

Publication number Publication date
US20120323113A1 (en) 2012-12-20
CN102830377A (en) 2012-12-19
DE102011077724A1 (en) 2012-12-20
US9360541B2 (en) 2016-06-07
CN102830377B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US9360541B2 (en) Local shim coil within a local coil for local B0 homogenization in an MRT examination
US9322891B2 (en) Local coil with a number of separately switchable local coil shim coils
US8901929B2 (en) D-shaped coil
US9194924B2 (en) MRT local coil
US10274560B2 (en) Use of a plurality of TX coils
US20110279119A1 (en) Combinable multipart surface coil for magnetic resonance tomography
CN111904420B (en) Magnetic resonance tomography system
CN111913142B (en) Basic field magnet device, magnetic resonance tomography system and measuring method
CN102129054A (en) Spine coil array applied on a magnetic resonance device using improved imaging possibility
US9864023B2 (en) Combined shim and RF coil arrangement
CN103123388B (en) The shim coil unrelated with gradient for the local coil of magnetic resonance device
Gilbert et al. Integration of an RF coil and commercial field camera for ultrahigh‐field MRI
Gilbert et al. A geometrically adjustable receive array for imaging marmoset cohorts
US9958517B2 (en) Shoulder coil having a flexible top part and/or a mounting-dependent element selection
US9588197B2 (en) Combined HF/shim/gradient signal routing
US10031193B2 (en) Local SAR behavior of MRI transmission coils by use of orthogonal loop antennas
US9182465B2 (en) MRT gradient system with integrated main magnetic field generation
US20130211241A1 (en) Local Coil System
US20150309131A1 (en) Knee Coil
US8674699B2 (en) Magnetic resonance tomography local coil
US9404982B2 (en) MRT-RF push pull power modules
US20130123612A1 (en) Mrt surface coil array
Gilbert et al. Integration of a radiofrequency coil and commercial field camera for ultra-high-field MRI
US10330753B2 (en) Output combination of transistors in an MRT radio-frequency power amplifier
Grotz et al. A User-Configurable 96 Channel Head Array for Use in a 32 Channel 3T System

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIBER, STEPHAN;REEL/FRAME:039497/0817

Effective date: 20160718

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION