[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20160144929A1 - Bicycle sprocket for use with a multi-gear rear cassette - Google Patents

Bicycle sprocket for use with a multi-gear rear cassette Download PDF

Info

Publication number
US20160144929A1
US20160144929A1 US14/660,823 US201514660823A US2016144929A1 US 20160144929 A1 US20160144929 A1 US 20160144929A1 US 201514660823 A US201514660823 A US 201514660823A US 2016144929 A1 US2016144929 A1 US 2016144929A1
Authority
US
United States
Prior art keywords
sprocket
engaging portion
mounting portion
bicycle
chain engaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/660,823
Inventor
Jonathan Staples
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
D3 Innovation Inc
Original Assignee
D3 Innovation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by D3 Innovation Inc filed Critical D3 Innovation Inc
Priority to US14/660,823 priority Critical patent/US20160144929A1/en
Assigned to D3 Innovation Inc. reassignment D3 Innovation Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STAPLES, JONATHAN
Publication of US20160144929A1 publication Critical patent/US20160144929A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • B62M9/12Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like the chain, belt, or the like being laterally shiftable, e.g. using a rear derailleur

Definitions

  • the present invention relates to a bicycle sprocket and, more specifically, to a rear bicycle sprocket for use with a multi-gear rear cassette and to a multi-gear rear cassette and a bicycle having a multi-gear rear cassette including the rear sprocket.
  • a plurality of sprockets of variable diameter are axially distributed along and co-axially mounted to a freehub body.
  • Each sprocket has a plurality of teeth about its perimeter for engaging a bicycle chain.
  • a mountain bicycle rear cassette with ten sprockets, S 1 -S 10 could have sprockets with the following teeth (T) profiles: 11T, 13T, 15T, 17T, 19T, 21T, 24T, 28T, 32T, and 36T (i.e., 11T to 36T).
  • a sprocket carrier has been used to support a plurality of sprockets.
  • a relatively low density metal such as aluminum is typically used for the carrier, while various types of steel materials provide the sprockets with adequate strength.
  • the carrier comprises a plurality of radially extending mounting arms. Each mounting arm includes a sprocket mounting portion. Fasteners, such as bolts, mating threads, coupling projections, rivets, and the like, are used to fasten the sprockets to the sprocket mounting portion of the carrier.
  • the bicyclist may be able to increase the range of the multi-gear rear cassette (i.e., the ratio derived from dividing the teeth profile of the sprocket having the largest diameter by the teeth profile of the sprocket having the smallest diameter) thereby providing the bicyclist with a greater range of gears to choose from.
  • the range of a typical mountain bicycle multi-gear rear cassette having ten sprockets ranging from 11T to 36T has a range of 327%, which is greater than the range of a typical mountain bicycle multi-gear cassette having nine sprockets ranging from 11T to 34T (i.e., a 309% range).
  • the range of a typical mountain bicycle multi-gear cassette having eleven sprockets ranging from 10T to 42T is greater still (i.e., 420%).
  • an eleven sprocket rear cassette is incompatible with drivetrains designed for use with nine or ten sprocket rear cassettes.
  • the bicyclist For a bicyclist to install an eleven sprocket rear cassette on a bicycle having a drivetrain using a nine or ten sprocket cassette, the bicyclist must purchase and install a new bicycle chain, rear derailleur, shift control device, and/or front chain rings. This can be prohibitively expensive.
  • One aspect of the present invention provides a bicycle sprocket for use with a multi-gear rear cassette that improves the gear range of the cassette and can be used with most conventional drivetrains designed for use with a ten sprocket rear cassette.
  • Another object of the present invention is to provide a bicycle multi-gear rear cassette having an improved gear range that can be installed for use with most conventional drivetrains designed for use with a ten sprocket rear cassette.
  • the sprocket for use with a multi-gear rear cassette.
  • the sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis.
  • a radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain.
  • a radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body.
  • a radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion.
  • a plurality of spaced support arms integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion.
  • the sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • an axially forward surface of the mounting portion and an axially forward surface of each space maintaining protrusion extend further axially forwardly than an axially forward surface of the chain engaging portion.
  • the axially forward surface of the mounting portion extends further axially forwardly than the axially forward surface of each space maintaining protrusion.
  • the support arms may be circumferentially spaced apart from one another about the radially outward edge of the mounting portion and/or about the radially inward edge of the chain engaging portion.
  • the support arms may be circumferentially spaced apart from one another at the radially inward edge of the chain engaging portion and may merge with the circumferentially adjacent support arms at the radially outward edge of the mounting portion.
  • the support arms may be circumferentially spaced apart from one another at the radially outward edge of the mounting portion and may merge with the circumferentially adjacent support arms at the radially inward edge of the chain engaging portion.
  • the support arms may merge with circumferentially adjacent support arms at the radially outward edge of the mounting portion and at the radially inward edge of the chain engaging portion and may be circumferentially spaced apart at radial locations therebetween.
  • the support arms may be circumferentially spaced apart from one another at the radially outward edge of the mounting portion and the radially inward edge of the chain engaging portion and may merge with circumferentially adjacent support arms at radial locations therebetween.
  • each support arm includes a radially inward arm portion and a plurality of radially outward arm portions.
  • the radially inward arm portion extends radially outwardly from the radially outward edge of the mounting portion and the plurality of radially outward arm portions extend radially outwardly from a radially outward edge of the radially inward arm portion to the radially inward edge of the chain engaging portion.
  • each support arm includes a radially outward arm portion extending radially inwardly from the radially inward edge of the chain engaging portion and a plurality of radially inward arm portions extending radially inwardly from a radially inward edge of radially outward arm portion to the radially outward edge of the mounting portion.
  • Another aspect of the present invention provides a bicycle multi-gear rear cassette having a plurality of sprockets coaxially mounted to a freehub body wherein the plurality of sprockets includes an axially rearmost sprocket.
  • the axially rearmost sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis.
  • a radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain.
  • a radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body.
  • a radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion.
  • a plurality of spaced support arms integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion.
  • the sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • a bicycle comprising a multi-gear rear cassette having a plurality of sprockets coaxially mounted to a freehub body, wherein the plurality of sprockets includes an axially rearmost sprocket.
  • the axially rearmost sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis.
  • a radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain.
  • a radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body.
  • a radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion.
  • a plurality of spaced support arms integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion.
  • the sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • Another aspect of the present invention provides a method for installing a rear bicycle sprocket for use with a multi-gear rear cassette.
  • the method includes the steps of removing the sprockets from a freehub body of a multi-gear rear cassette, discarding at least one of the removed sprockets, mounting a rear sprocket to the freehub body, and mounting the remaining removed sprockets to the freehub body axially forwardly of the rear sprocket.
  • the rear sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis.
  • a radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain.
  • a radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body.
  • a radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion.
  • a plurality of spaced support arms, integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion.
  • the sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • FIG. 1 is an axially forward-side elevation view of the drivetrain of a conventional bicycle.
  • FIG. 2 is an axially forward-side isometric view of a conventional ten-sprocket bicycle rear cassette.
  • FIG. 3 is an axially forward-side elevation view of a rear bicycle sprocket according to an embodiment of the present invention.
  • FIG. 4 is an axially forward-side isometric view of the FIG. 3 embodiment.
  • FIG. 5 is an axially rearward-side elevation view of the FIG. 3 embodiment.
  • FIG. 6 is a partially broken-away side elevation view of a bicycle multi-gear rear cassette according to an embodiment of the present invention.
  • FIG. 7 is an exploded axially rearward-side isometric view of the FIG. 6 embodiment.
  • FIG. 8 is an axially forward-side elevation view of a drivetrain of a bicycle including the FIG. 3 embodiment.
  • FIG. 9 is an axially forward-side elevation view of a bicycle according to an embodiment of the present invention.
  • a drivetrain 10 of a conventional multi-speed bicycle typically includes a front crankset 20 , a multi-gear rear cassette 30 , and a chain 40 that connects front crankset 20 to rear cassette 30 .
  • Crankset 20 is rotatably mounted to a bicycle frame (not shown) via a bottom bracket (not shown) and cassette 30 is rotatably mounted to a rear wheel (not shown).
  • Pedalling motion of a bicyclist is transferred into rotational motion of crankset 20 , which drives chain 40 to rotate cassette 30 and rotate the rear wheel of the bicycle.
  • Crankset 20 includes one or more chainrings 22 coaxially mounted and having varying diameters.
  • Cassette 30 includes a plurality of sprockets coaxially mounted and having varying diameters.
  • An exemplary cassette, shown in FIG. 2 includes ten sprockets, S 1 -S 10 , coaxially mounted to a freehub body (not shown).
  • S 1 has the largest diameter and is mounted to the freehub body axially rearwardly of S 2 -S 10 .
  • S 2 -S 10 have progressively smaller diameters and are mounted to the freehub body progressively axially forwardly of S 1 , with S 10 mounted axially forwardly of S 1 -S 9 .
  • S 1 -S 10 may have the following teeth (T) profiles: 11T, 13T, 15T, 17T, 19T, 21T, 24T, 28T, 32T, and 36T. In some embodiments, S 1 -S 10 may have the following teeth (T) profiles: 11T, 12T, 14T, 16T, 18T, 21T, 24T, 28T, 32T, and 36T.
  • T teeth
  • ten-sprocket rear cassettes may have a variety of teeth profiles.
  • a drivetrain including a single front chainring 22 and a rear cassette 30 having ten sprockets (as shown in the FIG. 1 example) is referred to as a 1 ⁇ 10 drivetrain.
  • a drivetrain including two front chainrings and a cassette having ten sprockets (not shown) is referred to as a 2 ⁇ 10 drivetrain.
  • the terms “axial”, “axially”, and/or the like refer to directions that are parallel to central axis 2 of a bicycle sprocket, of a rear cassette, or of sprockets in the rear cassette, or, where the context dictates, have components that extend in directions parallel to central axis 2 .
  • the terms “axially forward”, “axially forwardly”, “axially foremost”, and/or the like refer to directions that are parallel to central axis 2 and extend out of the page with reference to FIGS. 1, 2, 3, 4, 8, and 9 , into the page with reference to FIGS. 5 and 7 , and to the right of the page with reference to FIG.
  • the terms “radially outward”, “radially outwardly”, and/or the like refer to directions that extend generally orthogonal to and away from central axis 2 or, where the context dictates, have components that extend generally orthogonal to and away from central axis 2 .
  • the terms “radially inward”, “radially inwardly”, and/or the like refer to directions that extend generally orthogonal and toward central axis 2 or, where the context dictates, have components that extend generally orthogonal to and toward central axis 2 .
  • radial refers to directions that are either radially inward, radially outward, or both.
  • radial refers to directions that are either radially inward, radially outward, or both.
  • radial is most commonly used in connection with circular objects or features, it should be understood for the purpose of this description and accompanying aspects that the term “radial” is used in a broader context and is not limited to describing strictly circular objects or features or objects or features with strictly circular cross-section.
  • Chain 40 selectively engages one of sprockets S 1 -S 10 of cassette 30 and chainring 22 of crankset 20 .
  • a rear derailleur 50 having a guide pulley 52 and a tension pulley 54 is provided to move chain 40 between sprockets S 1 -S 10 .
  • a front derailleur (not shown) having a chain guide (not shown) may be provided to move chain 40 between front chainrings of a crankset having more than one chainring.
  • Shift control devices (not shown) operated by the bicyclist are used to control the front and rear derailleurs.
  • FIGS. 3-5 show various views of a sprocket 60 according to a particular embodiment.
  • Sprocket 60 shown in FIGS. 3-5 , comprises a mounting portion 70 and a chain engaging portion 80 , each having an annular shape about central axis 2 .
  • mounting portion 70 comprises a radially inward edge 72 and a radially outward edge 74 .
  • Chain engaging portion 80 defines an aperture 76 shaped to receive therein a freehub body 32 .
  • Chain engaging portion 80 includes a radially inward edge 82 and a radially outward edge 84 .
  • Radially outward edge 74 of mounting portion 70 is radially spaced apart from radially inward edge 82 of chain engaging portion 80 .
  • Radially outward edge 84 of chain engaging portion 80 comprises a plurality of circumferentially spaced and radially outwardly extending teeth 86 for mechanical engagement with a bicycle chain in the usual way.
  • chain engaging portion 80 may be provided with 40 or 42 teeth 86 . In some other embodiments, chain engaging portion 80 may be provided with different numbers of teeth 86 .
  • a plurality of support arms 90 extend radially outwardly from radially outward edge 74 of mounting portion 70 to radially inward edge 82 of chain engaging portion 80 .
  • Support arms 90 may be circumferentially spaced apart from one another about radially outward edge 74 of mounting portion 70 and/or about radially inward edge 82 of chain engaging portion 80 .
  • support arms 90 may be circumferentially spaced apart from one another at radially inward edge 82 of chain engaging portion 80 and my merge with circumferentially adjacent support arms 90 at radially outward edge 74 of mounting portion 70 .
  • support arms 90 may be circumferentially spaced apart from one another at radially outward edge 74 of mounting portion 70 and may merge with circumferentially adjacent support arms 90 at radially inward edge 82 of chain engaging portion 80 . In some embodiments, support arms 90 may merge with circumferentially adjacent support arms 90 at radially outward edge 74 of mounting portion 70 and at radially inward edge 82 of chain engaging portion 80 and may be circumferentially spaced apart at radial locations therebetween.
  • support arms 90 may be circumferentially spaced apart from one another at radially outward edge 74 of mounting portion 70 and radially inward edge 82 of chain engaging portion 80 and may merge with circumferentially adjacent support arms 90 at radial locations therebetween.
  • Support arms 90 are integrally formed with mounting portion 70 and chain engaging portion 80 .
  • Sprocket 60 further comprises a plurality of space maintaining protrusions 100 .
  • Each space maintaining protrusion 100 extends axially forwardly from an axially forward surface 90 a of a corresponding support arm 90 .
  • Each space maintaining protrusion 100 is integrally formed with its corresponding support arm 90 —i.e., space maintaining protrusions 100 and support arms 90 are monolithically fabricated (i.e., as one piece).
  • the distance between space maintaining protrusions 100 and mounting portion 70 may be optimized to resist deformation of sprocket 60 when in use.
  • an axially forward surface 70 a of mounting portion 70 and an axially forward surface 100 a of each space maintaining protrusion 100 extend further axially forwardly than an axially forward surface 80 a of chain engaging portion 80 .
  • axially forward surface 70 a of mounting portion 70 extends further axially forwardly than axially forward surface 100 a of each space maintaining protrusion 100 and axially forward surface 100 a of each space maintaining protrusion 100 extends further axially forwardly than axially forward surface 80 a of chain engaging portion 80 .
  • the number of support arms 90 may be sufficient to support chain engaging portion 80 and withstand forces and torques associated with bicycle riding to prevent or mitigate deformation of sprocket 60 . However, it may be desirable to minimize the number of support arms 90 to minimize the corresponding weight of sprocket 60 . A person skilled in the art would recognize that there is also a trade-off between the durability and weight provided by the number of support arms 90 and by the axial thickness of sprocket 60 and that these parameters can be adjusted depending on desired weight versus durability objectives.
  • sprocket 60 comprises six support arms 90 . In some embodiments, sprocket 60 may comprise other numbers of support arms 90 .
  • each support arm 90 comprises a radially inward arm portion 92 extending radially outwardly from radially outward edge 74 of mounting portion 70 and a plurality of radially outward arm portions 94 , 96 extending radially outwardly from a radially outward edge 98 of radially inward arm portion 92 to radially inward edge 82 of chain engaging portion 80 .
  • Radially outward arm portions 94 , 96 may be circumferentially spaced apart from one another at radially inward edge 82 of chain engaging portion 80 but each radially outward arm portion 94 , 96 may merge into one another where they meet radially outward edge 98 of radially inward arm portion 92 .
  • each support arm 90 includes two or more radially outward arm portions.
  • each support arm 90 comprises a radially outward arm portion (not shown) extending radially inwardly from radially inward edge 82 of chain engaging portion 80 and a plurality of radially inward arm portions (not shown) extending radially inwardly from a radially inward edge (not shown) of radially outward arm portion to radially outward edge 74 of mounting portion 70 .
  • Radially inward arm portions may be circumferentially spaced apart from one another at radially outward edge 74 of mounting portion 70 but each radially inward arm portion may merge into one another where they meet radially inward edge (not shown) of radially outward arm portion (not shown).
  • each space maintaining protrusion 100 extends axially forwardly from a corresponding axially forward surface 94 a , 96 a of radially outward arm portion 94 , 96 and is integrally formed with its corresponding radially outward arm portion 94 , 96 .
  • sprocket 60 comprises two radially outward arm portions 94 , 96 .
  • sprocket 60 and/or each support arm 90 may comprise other numbers of radially outward arm portions.
  • Sprocket 60 may be constructed in one piece, preferably of lightweight, rigid material such as a suitable metal, metal alloy, carbon fibre, or the like.
  • sprocket 60 may be machined, stamped, punched, forged, cast, injection moulded, or made using three-dimensional printing techniques.
  • Sprocket 60 may be made of aluminum, titanium, or steel. Since sprocket 60 may be constructed in one piece (i.e., integrally) and does not include non-integral features, sprocket 60 is not susceptible to the corrosion generally associated with using dissimilar metals or to mechanical weakness attributable to the vibrations, forces, and/or torques associated with riding a bicycle when sprocket 60 is in use.
  • Sprocket 60 may be installed for use with many conventional bicycle rear cassettes and may be compatible with a variety of conventional freehub bodies (for example, by suitably shaping radially inward edge 72 of mounting portion 70 ).
  • sprocket 60 may be installed for use with a ten-sprocket rear cassette, such as cassette 30 ( FIG. 2 ).
  • Sprockets S 1 -S 10 (and spacers (not shown)) are removed from free hub body 32 and freehub body 32 is inserted through aperture 76 of sprocket 60 .
  • radially inward edge 72 of mounting portion 70 includes a plurality of circumferentially spaced grooves 73 mateably engageable with a plurality of splines 34 circumferentially spaced about freehub body 32 , such that sprocket 60 may be mounted on freehub body 32 in a conventional, non-rotatable manner.
  • One of sprockets S 1 -S 10 may be discarded (i.e., will not be reinstalled on freehub body 32 ) and the remaining sprockets (and spacers (not shown)) may be reinstalled on freehub body 32 such that the sprockets having a smaller diameter (and a lower teeth profile) are mounted axially forwardly of those sprockets having a larger diameter (and higher teeth profile).
  • the assembled cassette 110 shown in FIGS. 6 and 7 , includes ten sprockets including sprocket 60 mounted axially rearmost of the remaining sprockets.
  • a drivetrain 120 comprising cassette 110 is shown in FIG.
  • Drivetrain 120 includes chain 40 , rear derailleur 50 , a shift control device (not shown), and front crankset 20 that are compatible with most conventional ten sprocket rear cassettes.
  • cassette 110 may have the following teeth (T) profiles: 11T, 13T, 15T, 19T, 21T, 24T, 28T, 32T, 36T, and 40T (i.e., 11T to 40T) or 11T, 13T, 15T, 19T, 21T, 24T, 28T, 32T, 36T, and 42T (i.e., 11T to 42T).
  • a sprocket other than sprocket S 7 may be discarded from cassette 110 .
  • cassette 110 may have a variety of teeth profiles.
  • cassette 30 having ten sprockets ranging from 11T to 36T has a range of 327%
  • cassette 110 having ten sprockets ranging from 11T to 40T or 42T has a range of 364% or 382%.
  • the range of gears available to a bicyclist using cassette 110 is greater than the range of gears available to a bicyclist using cassette 30 .
  • two sprockets from sprockets S 1 -S 10 are discarded (i.e., will not be reinstalled on freehub body 32 ) and the remaining sprockets (and spacers (not shown)) and a new sprocket are reinstalled on freehub body 32 as described above.
  • sprockets S 7 and S 8 having 17 (17T) and 15 (15T) teeth, respectively may be discarded and a sprocket having 16 teeth (16T) installed.
  • sprockets other than sprockets S 7 and S 8 may be discarded from the cassette and a sprocket other than a sprocket having 16 teeth (16T) may be installed.
  • the assembled cassette includes ten sprockets (including axially rearmost sprocket 60 ) and may have the following teeth (T) profiles: 11T, 13T, 16T, 19T, 21T, 24T, 28T, 32T, 36T, and 40T (i.e., 11T to 40T) or 11T, 13T, 16T, 19T, 21T, 24T, 28T, 32T, 36T, and 42T (i.e., 11T to 42T).
  • the assembled cassette (including axially rearmost sprocket 60 ) may have a variety of teeth profiles.
  • the bicyclist is not required to make substantial changes to an existing drivetrain or to considerably increase the weight a bicycle to install sprocket 60 for use with a drivetrain using a conventional ten sprocket rear cassette.
  • a conventional rear derailleur may be used with cassette 110 when mounted to the rear wheel of a bicycle.
  • axially forward surface 70 a of mounting portion 70 and axially forward surface 100 a of each space maintaining protrusion 100 may extend further axially forwardly than axially forward surface 80 a of chain engaging portion 80 .
  • the distance between axially forward surface 80 a of chain engaging portion 80 and a first axially rearward surface 140 of sprocket S 1 adjacent to sprocket 60 may be optimized depending on the thickness of the bicycle chain.
  • the number of space maintaining protrusions 100 may also be optimized to resist deformation of sprocket 60 due to the forces and torques associated with bicycle riding (for example, the rotational force of the chain). If the number of space maintaining protrusions 100 is too few, then the risk of deformation of sprocket 60 may become greater.
  • sprocket 60 includes six or more space maintaining protrusions 100 integrally formed with support arms 90 . In some embodiments, sprocket 60 includes 10 to 12 space maintaining protrusions 100 integrally formed with support arms 90 .
  • radially inward edge 82 of chain engaging portion 80 , radially outward edge 74 of mounting portion 70 , and axially outwardly extending edges 91 of adjacent support arms 90 may define a plurality of apertures 160 (see FIG. 3 ).
  • Apertures 160 may be located between circumferentially adjacent space maintaining protrusions 100 such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110 , dirt and debris may flush between axially forward surface 80 a , axially forward surface 90 a , and axially forward surface 74 a of sprocket 60 and the axially rearward surface of the adjacent sprocket S 1 .
  • radially inward edge 82 of chain engaging portion 80 , radially outward edge 74 of mounting portion 70 , and axially outwardly extending edges 91 of adjacent support arms 90 and radially inward edge 82 of chain engaging portion 80 and axially outwardly extending edges 93 of radially outward arm portions 94 , 96 may define a plurality of apertures 160 , 170 , respectively (see FIG. 3 ).
  • Apertures 160 , 170 may be located between circumferentially adjacent space maintaining protrusions 100 such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110 , dirt and debris may flush between axially forward surface 80 a , axially forward surface 90 a , and axially forward surface 74 a of sprocket 60 and the axially rearward surface of the adjacent sprocket S 1 . In this way, dirt and debris may move radially inwardly away from chain engaging portion 80 , between circumferentially adjacent space maintaining protrusions 100 .
  • radially inward edge 82 of chain engaging portion 80 , radially outward edge 74 of mounting portion 70 , and axially outwardly extending edges 91 of adjacent support arms 90 may define a plurality of spacing portions (not shown).
  • the spacing portions may be located between circumferentially adjacent space maintaining protrusions 100 and axially forward surface 100 a of each space maintaining protrusion 100 extends further axially forwardly than an axially forward surface (not shown) of each spacing portion such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110 , dirt dirt and debris may flush between axially forward surface 80 a , axially forward surface 90 a , axially forward surface 74 a , and the axially forward surface of each spacing portion of sprocket 60 and the axially rearward surface of the adjacent sprocket S 1 .
  • radially inward edge 82 of chain engaging portion 80 , radially outward edge 74 of mounting portion 70 , and axially outwardly extending edges 91 of adjacent support arms 90 and radially inward edge 82 of chain engaging portion 80 and axially outwardly extending edges 93 of radially outward arm portions 94 , 96 may define a plurality of spacing portions (not shown).
  • the spacing portions may be located between circumferentially adjacent space maintaining protrusions 100 and axially forward surface 100 a of each space maintaining protrusion 100 extends further axially forwardly than an axially forward surface (not shown) of each spacing portion such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110 , dirt and debris may flush between axially forward surface 80 a , axially forward surface 90 a , axially forward surface 74 a , and the axially forward surface of each spacing portion of sprocket 60 and the axially rearward surface of the adjacent sprocket S 1 . In this way, dirt and debris may move radially inwardly away from chain engaging portion 80 , between circumferentially adjacent space maintaining protrusions 100 .
  • axially forward surface 70 a of mounting portion 70 extends further axially forwardly than axially forward surface 100 a of each space maintaining protrusion 100 . Since first axially rearward surface 140 of sprocket S 1 adjacent to sprocket 60 extends further axially rearwardly of an axially rearward surface 150 of a sprocket carrier 180 (see FIG.
  • axially forward surface 100 a of each space maintaining protrusion 100 contacts first axially rearward surface 140 of sprocket S 1 before axially forward surface 70 a of the mounting portion 70 contacts axially rearward surface 150 of sprocket carrier 180 or the second axially rearward surface (not shown) of adjacent sprocket S 1 .
  • sprocket 60 flexes and axially forward surface 70 a of mounting portion 70 contacts axially rearward surface 150 of sprocket carrier 180 or the second axially rearward surface (not shown) of adjacent sprocket S 1 .
  • chain engaging portion 80 may be stiffened and/or biased axially rearwardly to optimize movement of bicycle chain 40 between sprocket 60 and adjacent sprocket S 1 of cassette 110 .
  • chain engaging portion 80 of sprocket 60 may include a plurality of circumferentially spaced, axial recesses 88 shaped to assist upshifting of chain 40 to sprocket 60 from an adjacent sprocket of cassette 110 during an upshift operation by a rear derailleur.
  • a conventional bicycle is typically easiest for a bicyclist to pedal uphill when the lowest gear ratio is used (i.e., the chain mechanically engages the chainring of the front crankset having the lowest teeth profile and the sprocket of the rear cassette having the highest teeth profile.
  • Cassette 110 comprising axially rearmost sprocket 60 facilitates uphill pedaling since a lower gear ratio is available to a bicyclist using cassette 110 than the gear ratio that is available to a bicyclist using a conventional ten sprocket rear cassette, such as cassette 30 , since sprocket 60 has a teeth profile that is higher than any of the sprockets of a conventional ten sprocket cassette.
  • sprocket 60 may be used with many conventional 1 ⁇ 10 and 2 ⁇ 10 drivetrains, in some embodiments, sprocket 60 may be used with a 1 ⁇ 10 drivetrain to optimize the gear ratio available to a bicyclist while eliminating the front derailleur, a front chainring, a shift control device, and the weight (and mechanical problems) associated with these extra components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)

Abstract

A rear bicycle sprocket for use with a multi-gear rear cassette is provided. The sprocket includes a chain engaging portion and a mounting portion having generally annular shape about a central axis and a plurality of support arms, integrally formed with the chain engaging portion and with the mounting portion. The sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion extending axially forwardly from an axially forward surface of a corresponding support arm and integrally formed therewith. A multi-gear rear cassette having a plurality of sprockets coaxially mounted together wherein the plurality of sprockets includes the rear bicycle sprocket mounted axially rearmost and a bicycle including the multi-gear rear cassette are further provided.

Description

    TECHNICAL FIELD
  • The present invention relates to a bicycle sprocket and, more specifically, to a rear bicycle sprocket for use with a multi-gear rear cassette and to a multi-gear rear cassette and a bicycle having a multi-gear rear cassette including the rear sprocket.
  • BACKGROUND
  • In a conventional bicycle multi-gear rear cassette, a plurality of sprockets of variable diameter are axially distributed along and co-axially mounted to a freehub body. Each sprocket has a plurality of teeth about its perimeter for engaging a bicycle chain. For example, a mountain bicycle rear cassette with ten sprockets, S1-S10, could have sprockets with the following teeth (T) profiles: 11T, 13T, 15T, 17T, 19T, 21T, 24T, 28T, 32T, and 36T (i.e., 11T to 36T). When a shift control device is actuated by a bicyclist, a rear derailleur transfers the chain from the teeth of one sprocket to another.
  • To reduce the weight of the cassette, a sprocket carrier has been used to support a plurality of sprockets. A relatively low density metal such as aluminum is typically used for the carrier, while various types of steel materials provide the sprockets with adequate strength. The carrier comprises a plurality of radially extending mounting arms. Each mounting arm includes a sprocket mounting portion. Fasteners, such as bolts, mating threads, coupling projections, rivets, and the like, are used to fasten the sprockets to the sprocket mounting portion of the carrier. These mechanical connections not only require additional materials making the sprocket assembly heavier, but also weaken the mating parts and provide possible fatigue and fracture failure points on both the sprockets and carrier. Further, such mechanical connections introduce additional unwanted flexibility as they twist and deform under loading.
  • It may be desirable to increase the number of sprockets available in a bicycle multi-gear rear cassette to provide the bicyclist with a greater choice of gears. In relatively recent years, the number of sprockets in a typical mountain bicycle multi-gear rear cassette has increased from nine to ten sprockets. Even more recently, the number of sprockets has increased from ten to eleven. By increasing the number of sprockets, the bicyclist may be able to increase the range of the multi-gear rear cassette (i.e., the ratio derived from dividing the teeth profile of the sprocket having the largest diameter by the teeth profile of the sprocket having the smallest diameter) thereby providing the bicyclist with a greater range of gears to choose from. Thus, the range of a typical mountain bicycle multi-gear rear cassette having ten sprockets ranging from 11T to 36T has a range of 327%, which is greater than the range of a typical mountain bicycle multi-gear cassette having nine sprockets ranging from 11T to 34T (i.e., a 309% range). The range of a typical mountain bicycle multi-gear cassette having eleven sprockets ranging from 10T to 42T is greater still (i.e., 420%).
  • While a drivetrain having an eleven sprocket rear cassette is advantageous to bicyclists due to the enhanced range, an eleven sprocket rear cassette is incompatible with drivetrains designed for use with nine or ten sprocket rear cassettes. For a bicyclist to install an eleven sprocket rear cassette on a bicycle having a drivetrain using a nine or ten sprocket cassette, the bicyclist must purchase and install a new bicycle chain, rear derailleur, shift control device, and/or front chain rings. This can be prohibitively expensive.
  • There is a general desire to increase the range of gears available to a bicyclist without the bicyclist having to make substantial changes to the drivetrain and/or considerably increasing the weight of the bicycle.
  • The foregoing examples of the related art and limitations related thereto are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification and a study of the drawings.
  • SUMMARY
  • The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools, and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above-described problems have been reduced or eliminated, while other embodiments are directed to other improvements.
  • One aspect of the present invention provides a bicycle sprocket for use with a multi-gear rear cassette that improves the gear range of the cassette and can be used with most conventional drivetrains designed for use with a ten sprocket rear cassette.
  • Another object of the present invention is to provide a bicycle multi-gear rear cassette having an improved gear range that can be installed for use with most conventional drivetrains designed for use with a ten sprocket rear cassette.
  • One aspect of the present invention provides a bicycle sprocket for use with a multi-gear rear cassette. The sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis. A radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain. A radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body. A radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion. A plurality of spaced support arms, integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion. The sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • In some embodiments, an axially forward surface of the mounting portion and an axially forward surface of each space maintaining protrusion extend further axially forwardly than an axially forward surface of the chain engaging portion.
  • In some embodiments, the axially forward surface of the mounting portion extends further axially forwardly than the axially forward surface of each space maintaining protrusion.
  • In some embodiments, the support arms may be circumferentially spaced apart from one another about the radially outward edge of the mounting portion and/or about the radially inward edge of the chain engaging portion.
  • In some embodiments, the support arms may be circumferentially spaced apart from one another at the radially inward edge of the chain engaging portion and may merge with the circumferentially adjacent support arms at the radially outward edge of the mounting portion.
  • In some embodiments, the support arms may be circumferentially spaced apart from one another at the radially outward edge of the mounting portion and may merge with the circumferentially adjacent support arms at the radially inward edge of the chain engaging portion.
  • In some embodiments, the support arms may merge with circumferentially adjacent support arms at the radially outward edge of the mounting portion and at the radially inward edge of the chain engaging portion and may be circumferentially spaced apart at radial locations therebetween.
  • In some embodiments, the support arms may be circumferentially spaced apart from one another at the radially outward edge of the mounting portion and the radially inward edge of the chain engaging portion and may merge with circumferentially adjacent support arms at radial locations therebetween.
  • In some embodiments, each support arm includes a radially inward arm portion and a plurality of radially outward arm portions. The radially inward arm portion extends radially outwardly from the radially outward edge of the mounting portion and the plurality of radially outward arm portions extend radially outwardly from a radially outward edge of the radially inward arm portion to the radially inward edge of the chain engaging portion.
  • In some embodiments, each support arm includes a radially outward arm portion extending radially inwardly from the radially inward edge of the chain engaging portion and a plurality of radially inward arm portions extending radially inwardly from a radially inward edge of radially outward arm portion to the radially outward edge of the mounting portion.
  • Another aspect of the present invention provides a bicycle multi-gear rear cassette having a plurality of sprockets coaxially mounted to a freehub body wherein the plurality of sprockets includes an axially rearmost sprocket. The axially rearmost sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis. A radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain. A radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body. A radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion. A plurality of spaced support arms, integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion. The sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • Another aspect of the present invention provides a bicycle comprising a multi-gear rear cassette having a plurality of sprockets coaxially mounted to a freehub body, wherein the plurality of sprockets includes an axially rearmost sprocket. The axially rearmost sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis. A radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain. A radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body. A radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion. A plurality of spaced support arms, integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion. The sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • Another aspect of the present invention provides a method for installing a rear bicycle sprocket for use with a multi-gear rear cassette. The method includes the steps of removing the sprockets from a freehub body of a multi-gear rear cassette, discarding at least one of the removed sprockets, mounting a rear sprocket to the freehub body, and mounting the remaining removed sprockets to the freehub body axially forwardly of the rear sprocket. The rear sprocket includes a chain engaging portion and a mounting portion, both having a generally annular shape about a central axis. A radially outward edge of the chain engaging portion comprises a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain. A radially inward edge of the mounting portion defines an aperture shaped to receive therein a freehub body. A radially outward edge of the mounting portion is radially spaced apart from a radially inward edge of the chain engaging portion. A plurality of spaced support arms, integrally formed with the chain engaging portion and with the mounting portion, extends radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion. The sprocket further includes a plurality of space maintaining protrusions, each space maintaining protrusion integrally formed with and extending axially forwardly from an axially forward surface of a corresponding support arm.
  • In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following detailed descriptions.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Exemplary embodiments are illustrated in referenced figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
  • FIG. 1 is an axially forward-side elevation view of the drivetrain of a conventional bicycle.
  • FIG. 2 is an axially forward-side isometric view of a conventional ten-sprocket bicycle rear cassette.
  • FIG. 3 is an axially forward-side elevation view of a rear bicycle sprocket according to an embodiment of the present invention.
  • FIG. 4 is an axially forward-side isometric view of the FIG. 3 embodiment.
  • FIG. 5 is an axially rearward-side elevation view of the FIG. 3 embodiment.
  • FIG. 6 is a partially broken-away side elevation view of a bicycle multi-gear rear cassette according to an embodiment of the present invention.
  • FIG. 7 is an exploded axially rearward-side isometric view of the FIG. 6 embodiment.
  • FIG. 8 is an axially forward-side elevation view of a drivetrain of a bicycle including the FIG. 3 embodiment.
  • FIG. 9 is an axially forward-side elevation view of a bicycle according to an embodiment of the present invention.
  • DESCRIPTION
  • Throughout the following description specific details are set forth in order to provide a more thorough understanding to persons skilled in the art. However, well known elements may not have been shown or described in detail to avoid unnecessarily obscuring the disclosure. Accordingly, the description and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
  • A drivetrain 10 of a conventional multi-speed bicycle, as shown in FIG. 1, typically includes a front crankset 20, a multi-gear rear cassette 30, and a chain 40 that connects front crankset 20 to rear cassette 30. Crankset 20 is rotatably mounted to a bicycle frame (not shown) via a bottom bracket (not shown) and cassette 30 is rotatably mounted to a rear wheel (not shown). Pedalling motion of a bicyclist is transferred into rotational motion of crankset 20, which drives chain 40 to rotate cassette 30 and rotate the rear wheel of the bicycle. Crankset 20 includes one or more chainrings 22 coaxially mounted and having varying diameters.
  • Cassette 30 includes a plurality of sprockets coaxially mounted and having varying diameters. An exemplary cassette, shown in FIG. 2, includes ten sprockets, S1-S10, coaxially mounted to a freehub body (not shown). S1 has the largest diameter and is mounted to the freehub body axially rearwardly of S2-S10. S2-S10 have progressively smaller diameters and are mounted to the freehub body progressively axially forwardly of S1, with S10 mounted axially forwardly of S1-S9. In some embodiments, S1-S10 may have the following teeth (T) profiles: 11T, 13T, 15T, 17T, 19T, 21T, 24T, 28T, 32T, and 36T. In some embodiments, S1-S10 may have the following teeth (T) profiles: 11T, 12T, 14T, 16T, 18T, 21T, 24T, 28T, 32T, and 36T. Persons skilled in the art will recognize that ten-sprocket rear cassettes may have a variety of teeth profiles. A drivetrain including a single front chainring 22 and a rear cassette 30 having ten sprockets (as shown in the FIG. 1 example) is referred to as a 1×10 drivetrain. A drivetrain including two front chainrings and a cassette having ten sprockets (not shown) is referred to as a 2×10 drivetrain.
  • Unless the context dictates otherwise, the terms “axial”, “axially”, and/or the like (as used herein) refer to directions that are parallel to central axis 2 of a bicycle sprocket, of a rear cassette, or of sprockets in the rear cassette, or, where the context dictates, have components that extend in directions parallel to central axis 2. Unless the context dictates otherwise, the terms “axially forward”, “axially forwardly”, “axially foremost”, and/or the like (as used herein) refer to directions that are parallel to central axis 2 and extend out of the page with reference to FIGS. 1, 2, 3, 4, 8, and 9, into the page with reference to FIGS. 5 and 7, and to the right of the page with reference to FIG. 6 or, where the context dictates, have components that extend parallel to central axis 2 and extend out of the page with reference to FIGS. 1, 2, 3, 4, 8, and 9, into the page with reference to FIGS. 5 and 7, and to the right of the page with reference to FIG. 6. Unless the context dictates otherwise, the terms “axially rearward”, “axially rearwardly”, “axially rearmost”, and/or the like (as used herein) refer to directions that are parallel to central axis 2 and extend into the page with reference to FIGS. 1, 2, 3, 4, 8, and 9, out of the page with reference to FIGS. 5 and 7, and to the left of the page with reference to FIG. 6 or, where the context dictates, have components that extend parallel to central axis 2 and extend into the page with reference to FIGS. 1, 2, 3, 4, 8, and 9, out of the page with reference to FIGS. 5 and 7, and to the left of the page with reference to FIG. 6.
  • Unless the context dictates otherwise, the terms “radially outward”, “radially outwardly”, and/or the like (as used herein) refer to directions that extend generally orthogonal to and away from central axis 2 or, where the context dictates, have components that extend generally orthogonal to and away from central axis 2. Unless the context dictates otherwise, the terms “radially inward”, “radially inwardly”, and/or the like (as used herein) refer to directions that extend generally orthogonal and toward central axis 2 or, where the context dictates, have components that extend generally orthogonal to and toward central axis 2. Unless the context dictates otherwise, the terms “radial”, “radially”, and/or the like (as used herein) refer to directions that are either radially inward, radially outward, or both. Although the term “radial” is most commonly used in connection with circular objects or features, it should be understood for the purpose of this description and accompanying aspects that the term “radial” is used in a broader context and is not limited to describing strictly circular objects or features or objects or features with strictly circular cross-section.
  • Chain 40 selectively engages one of sprockets S1-S10 of cassette 30 and chainring 22 of crankset 20. A rear derailleur 50 having a guide pulley 52 and a tension pulley 54 is provided to move chain 40 between sprockets S1-S10. In some embodiments, a front derailleur (not shown) having a chain guide (not shown) may be provided to move chain 40 between front chainrings of a crankset having more than one chainring. Shift control devices (not shown) operated by the bicyclist are used to control the front and rear derailleurs.
  • FIGS. 3-5 show various views of a sprocket 60 according to a particular embodiment. Sprocket 60, shown in FIGS. 3-5, comprises a mounting portion 70 and a chain engaging portion 80, each having an annular shape about central axis 2. Although the term “annular” is most commonly used in connection with objects and/or features having circular profiles, it should be understood for the purpose of this description and accompanying claims that the term “annular” is used in a broader context and is not limited to describing strictly circular objects or features or objects or features with strictly circular profiles or cross-sections. Mounting portion 70 comprises a radially inward edge 72 and a radially outward edge 74. Radially inward edge 72 defines an aperture 76 shaped to receive therein a freehub body 32. Chain engaging portion 80 includes a radially inward edge 82 and a radially outward edge 84. Radially outward edge 74 of mounting portion 70 is radially spaced apart from radially inward edge 82 of chain engaging portion 80. Radially outward edge 84 of chain engaging portion 80 comprises a plurality of circumferentially spaced and radially outwardly extending teeth 86 for mechanical engagement with a bicycle chain in the usual way. In some embodiments, chain engaging portion 80 may be provided with 40 or 42 teeth 86. In some other embodiments, chain engaging portion 80 may be provided with different numbers of teeth 86.
  • A plurality of support arms 90 extend radially outwardly from radially outward edge 74 of mounting portion 70 to radially inward edge 82 of chain engaging portion 80. Support arms 90 may be circumferentially spaced apart from one another about radially outward edge 74 of mounting portion 70 and/or about radially inward edge 82 of chain engaging portion 80. In some embodiments, support arms 90 may be circumferentially spaced apart from one another at radially inward edge 82 of chain engaging portion 80 and my merge with circumferentially adjacent support arms 90 at radially outward edge 74 of mounting portion 70. In some embodiments, support arms 90 may be circumferentially spaced apart from one another at radially outward edge 74 of mounting portion 70 and may merge with circumferentially adjacent support arms 90 at radially inward edge 82 of chain engaging portion 80. In some embodiments, support arms 90 may merge with circumferentially adjacent support arms 90 at radially outward edge 74 of mounting portion 70 and at radially inward edge 82 of chain engaging portion 80 and may be circumferentially spaced apart at radial locations therebetween. In some embodiments, support arms 90 may be circumferentially spaced apart from one another at radially outward edge 74 of mounting portion 70 and radially inward edge 82 of chain engaging portion 80 and may merge with circumferentially adjacent support arms 90 at radial locations therebetween. Support arms 90 are integrally formed with mounting portion 70 and chain engaging portion 80. Sprocket 60 further comprises a plurality of space maintaining protrusions 100. Each space maintaining protrusion 100 extends axially forwardly from an axially forward surface 90 a of a corresponding support arm 90. Each space maintaining protrusion 100 is integrally formed with its corresponding support arm 90—i.e., space maintaining protrusions 100 and support arms 90 are monolithically fabricated (i.e., as one piece). The distance between space maintaining protrusions 100 and mounting portion 70 may be optimized to resist deformation of sprocket 60 when in use.
  • In some embodiments, an axially forward surface 70 a of mounting portion 70 and an axially forward surface 100 a of each space maintaining protrusion 100 extend further axially forwardly than an axially forward surface 80 a of chain engaging portion 80. In some embodiments, axially forward surface 70 a of mounting portion 70 extends further axially forwardly than axially forward surface 100 a of each space maintaining protrusion 100 and axially forward surface 100 a of each space maintaining protrusion 100 extends further axially forwardly than axially forward surface 80 a of chain engaging portion 80.
  • The number of support arms 90 may be sufficient to support chain engaging portion 80 and withstand forces and torques associated with bicycle riding to prevent or mitigate deformation of sprocket 60. However, it may be desirable to minimize the number of support arms 90 to minimize the corresponding weight of sprocket 60. A person skilled in the art would recognize that there is also a trade-off between the durability and weight provided by the number of support arms 90 and by the axial thickness of sprocket 60 and that these parameters can be adjusted depending on desired weight versus durability objectives. In the illustrated embodiment, sprocket 60 comprises six support arms 90. In some embodiments, sprocket 60 may comprise other numbers of support arms 90.
  • In the illustrated embodiment, each support arm 90 comprises a radially inward arm portion 92 extending radially outwardly from radially outward edge 74 of mounting portion 70 and a plurality of radially outward arm portions 94, 96 extending radially outwardly from a radially outward edge 98 of radially inward arm portion 92 to radially inward edge 82 of chain engaging portion 80. Radially outward arm portions 94, 96 may be circumferentially spaced apart from one another at radially inward edge 82 of chain engaging portion 80 but each radially outward arm portion 94, 96 may merge into one another where they meet radially outward edge 98 of radially inward arm portion 92. In some embodiments, each support arm 90 includes two or more radially outward arm portions. In some embodiments, each support arm 90 comprises a radially outward arm portion (not shown) extending radially inwardly from radially inward edge 82 of chain engaging portion 80 and a plurality of radially inward arm portions (not shown) extending radially inwardly from a radially inward edge (not shown) of radially outward arm portion to radially outward edge 74 of mounting portion 70. Radially inward arm portions (not shown) may be circumferentially spaced apart from one another at radially outward edge 74 of mounting portion 70 but each radially inward arm portion may merge into one another where they meet radially inward edge (not shown) of radially outward arm portion (not shown). In the illustrated embodiments, each space maintaining protrusion 100 extends axially forwardly from a corresponding axially forward surface 94 a, 96 a of radially outward arm portion 94, 96 and is integrally formed with its corresponding radially outward arm portion 94, 96.
  • In the illustrated embodiment, sprocket 60 comprises two radially outward arm portions 94, 96. In some embodiments, sprocket 60 and/or each support arm 90 may comprise other numbers of radially outward arm portions.
  • Sprocket 60 may be constructed in one piece, preferably of lightweight, rigid material such as a suitable metal, metal alloy, carbon fibre, or the like. For example, sprocket 60 may be machined, stamped, punched, forged, cast, injection moulded, or made using three-dimensional printing techniques. Sprocket 60 may be made of aluminum, titanium, or steel. Since sprocket 60 may be constructed in one piece (i.e., integrally) and does not include non-integral features, sprocket 60 is not susceptible to the corrosion generally associated with using dissimilar metals or to mechanical weakness attributable to the vibrations, forces, and/or torques associated with riding a bicycle when sprocket 60 is in use.
  • Sprocket 60 may be installed for use with many conventional bicycle rear cassettes and may be compatible with a variety of conventional freehub bodies (for example, by suitably shaping radially inward edge 72 of mounting portion 70). For example, sprocket 60 may be installed for use with a ten-sprocket rear cassette, such as cassette 30 (FIG. 2). Sprockets S1-S10 (and spacers (not shown)) are removed from free hub body 32 and freehub body 32 is inserted through aperture 76 of sprocket 60. In some embodiments, radially inward edge 72 of mounting portion 70 includes a plurality of circumferentially spaced grooves 73 mateably engageable with a plurality of splines 34 circumferentially spaced about freehub body 32, such that sprocket 60 may be mounted on freehub body 32 in a conventional, non-rotatable manner. One of sprockets S1-S10 (and one or more spacers (not shown)) may be discarded (i.e., will not be reinstalled on freehub body 32) and the remaining sprockets (and spacers (not shown)) may be reinstalled on freehub body 32 such that the sprockets having a smaller diameter (and a lower teeth profile) are mounted axially forwardly of those sprockets having a larger diameter (and higher teeth profile). The assembled cassette 110, shown in FIGS. 6 and 7, includes ten sprockets including sprocket 60 mounted axially rearmost of the remaining sprockets. A drivetrain 120 comprising cassette 110 is shown in FIG. 8 and a bicycle 130 comprising cassette 110 is shown in FIG. 9. Drivetrain 120 includes chain 40, rear derailleur 50, a shift control device (not shown), and front crankset 20 that are compatible with most conventional ten sprocket rear cassettes.
  • In the embodiment of FIGS. 6 and 7, sprocket S7 having 17 teeth (17T) is discarded from cassette 110 and cassette 110 may have the following teeth (T) profiles: 11T, 13T, 15T, 19T, 21T, 24T, 28T, 32T, 36T, and 40T (i.e., 11T to 40T) or 11T, 13T, 15T, 19T, 21T, 24T, 28T, 32T, 36T, and 42T (i.e., 11T to 42T). In some embodiments, a sprocket other than sprocket S7 may be discarded from cassette 110. In some embodiments, cassette 110 may have a variety of teeth profiles. While cassette 30 having ten sprockets ranging from 11T to 36T has a range of 327%, cassette 110 having ten sprockets ranging from 11T to 40T or 42T has a range of 364% or 382%. Thus, the range of gears available to a bicyclist using cassette 110 is greater than the range of gears available to a bicyclist using cassette 30.
  • In some embodiments, two sprockets from sprockets S1-S10 (and one spacer (not shown)) are discarded (i.e., will not be reinstalled on freehub body 32) and the remaining sprockets (and spacers (not shown)) and a new sprocket are reinstalled on freehub body 32 as described above. In some embodiments, sprockets S7 and S8 having 17 (17T) and 15 (15T) teeth, respectively, may be discarded and a sprocket having 16 teeth (16T) installed. In some embodiments, sprockets other than sprockets S7 and S8 may be discarded from the cassette and a sprocket other than a sprocket having 16 teeth (16T) may be installed. The assembled cassette includes ten sprockets (including axially rearmost sprocket 60) and may have the following teeth (T) profiles: 11T, 13T, 16T, 19T, 21T, 24T, 28T, 32T, 36T, and 40T (i.e., 11T to 40T) or 11T, 13T, 16T, 19T, 21T, 24T, 28T, 32T, 36T, and 42T (i.e., 11T to 42T). In some embodiments, the assembled cassette (including axially rearmost sprocket 60) may have a variety of teeth profiles.
  • The bicyclist is not required to make substantial changes to an existing drivetrain or to considerably increase the weight a bicycle to install sprocket 60 for use with a drivetrain using a conventional ten sprocket rear cassette. For example, a conventional rear derailleur may be used with cassette 110 when mounted to the rear wheel of a bicycle. To optimize shifting of the rear derailleur and movement of the bicycle chain between the sprockets of cassette 110, axially forward surface 70 a of mounting portion 70 and axially forward surface 100 a of each space maintaining protrusion 100 may extend further axially forwardly than axially forward surface 80 a of chain engaging portion 80. In this way, the distance between axially forward surface 80 a of chain engaging portion 80 and a first axially rearward surface 140 of sprocket S1 adjacent to sprocket 60 may be optimized depending on the thickness of the bicycle chain. The number of space maintaining protrusions 100 may also be optimized to resist deformation of sprocket 60 due to the forces and torques associated with bicycle riding (for example, the rotational force of the chain). If the number of space maintaining protrusions 100 is too few, then the risk of deformation of sprocket 60 may become greater. In some embodiments, sprocket 60 includes six or more space maintaining protrusions 100 integrally formed with support arms 90. In some embodiments, sprocket 60 includes 10 to 12 space maintaining protrusions 100 integrally formed with support arms 90.
  • In some embodiments, radially inward edge 82 of chain engaging portion 80, radially outward edge 74 of mounting portion 70, and axially outwardly extending edges 91 of adjacent support arms 90 may define a plurality of apertures 160 (see FIG. 3). Apertures 160 may be located between circumferentially adjacent space maintaining protrusions 100 such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110, dirt and debris may flush between axially forward surface 80 a, axially forward surface 90 a, and axially forward surface 74 a of sprocket 60 and the axially rearward surface of the adjacent sprocket S1. In this way, dirt and debris may move radially inwardly away from chain engaging portion 80, between circumferentially adjacent space maintaining protrusions 100. In some embodiments, radially inward edge 82 of chain engaging portion 80, radially outward edge 74 of mounting portion 70, and axially outwardly extending edges 91 of adjacent support arms 90 and radially inward edge 82 of chain engaging portion 80 and axially outwardly extending edges 93 of radially outward arm portions 94, 96 may define a plurality of apertures 160, 170, respectively (see FIG. 3). Apertures 160, 170 may be located between circumferentially adjacent space maintaining protrusions 100 such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110, dirt and debris may flush between axially forward surface 80 a, axially forward surface 90 a, and axially forward surface 74 a of sprocket 60 and the axially rearward surface of the adjacent sprocket S1. In this way, dirt and debris may move radially inwardly away from chain engaging portion 80, between circumferentially adjacent space maintaining protrusions 100. In some embodiments, radially inward edge 82 of chain engaging portion 80, radially outward edge 74 of mounting portion 70, and axially outwardly extending edges 91 of adjacent support arms 90 may define a plurality of spacing portions (not shown). The spacing portions may be located between circumferentially adjacent space maintaining protrusions 100 and axially forward surface 100 a of each space maintaining protrusion 100 extends further axially forwardly than an axially forward surface (not shown) of each spacing portion such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110, dirt dirt and debris may flush between axially forward surface 80 a, axially forward surface 90 a, axially forward surface 74 a, and the axially forward surface of each spacing portion of sprocket 60 and the axially rearward surface of the adjacent sprocket S1. In this way, dirt and debris may move radially inwardly away from chain engaging portion 80, between circumferentially adjacent space maintaining protrusions 100. In some embodiments, radially inward edge 82 of chain engaging portion 80, radially outward edge 74 of mounting portion 70, and axially outwardly extending edges 91 of adjacent support arms 90 and radially inward edge 82 of chain engaging portion 80 and axially outwardly extending edges 93 of radially outward arm portions 94, 96 may define a plurality of spacing portions (not shown). The spacing portions may be located between circumferentially adjacent space maintaining protrusions 100 and axially forward surface 100 a of each space maintaining protrusion 100 extends further axially forwardly than an axially forward surface (not shown) of each spacing portion such that, when sprocket 60 is coaxially mounted to the freehub body of cassette 110, dirt and debris may flush between axially forward surface 80 a, axially forward surface 90 a, axially forward surface 74 a, and the axially forward surface of each spacing portion of sprocket 60 and the axially rearward surface of the adjacent sprocket S1. In this way, dirt and debris may move radially inwardly away from chain engaging portion 80, between circumferentially adjacent space maintaining protrusions 100.
  • In some embodiments, axially forward surface 70 a of mounting portion 70 extends further axially forwardly than axially forward surface 100 a of each space maintaining protrusion 100. Since first axially rearward surface 140 of sprocket S1 adjacent to sprocket 60 extends further axially rearwardly of an axially rearward surface 150 of a sprocket carrier 180 (see FIG. 6) or a second axially rearward surface (not shown) of sprocket S1, as cassette 110 is assembled, axially forward surface 100 a of each space maintaining protrusion 100 contacts first axially rearward surface 140 of sprocket S1 before axially forward surface 70 a of the mounting portion 70 contacts axially rearward surface 150 of sprocket carrier 180 or the second axially rearward surface (not shown) of adjacent sprocket S1. As cassette 110 is fastened during the assembly process, sprocket 60 flexes and axially forward surface 70 a of mounting portion 70 contacts axially rearward surface 150 of sprocket carrier 180 or the second axially rearward surface (not shown) of adjacent sprocket S1. In this way, chain engaging portion 80 may be stiffened and/or biased axially rearwardly to optimize movement of bicycle chain 40 between sprocket 60 and adjacent sprocket S1 of cassette 110. In some embodiments, chain engaging portion 80 of sprocket 60 may include a plurality of circumferentially spaced, axial recesses 88 shaped to assist upshifting of chain 40 to sprocket 60 from an adjacent sprocket of cassette 110 during an upshift operation by a rear derailleur.
  • A conventional bicycle is typically easiest for a bicyclist to pedal uphill when the lowest gear ratio is used (i.e., the chain mechanically engages the chainring of the front crankset having the lowest teeth profile and the sprocket of the rear cassette having the highest teeth profile. Cassette 110 comprising axially rearmost sprocket 60 facilitates uphill pedaling since a lower gear ratio is available to a bicyclist using cassette 110 than the gear ratio that is available to a bicyclist using a conventional ten sprocket rear cassette, such as cassette 30, since sprocket 60 has a teeth profile that is higher than any of the sprockets of a conventional ten sprocket cassette.
  • While sprocket 60 may be used with many conventional 1×10 and 2×10 drivetrains, in some embodiments, sprocket 60 may be used with a 1×10 drivetrain to optimize the gear ratio available to a bicyclist while eliminating the front derailleur, a front chainring, a shift control device, and the weight (and mechanical problems) associated with these extra components.
  • While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.

Claims (11)

1.-10. (canceled)
11. A bicycle comprising a multi-gear rear cassette having a plurality of sprockets coaxially mounted to a freehub body, wherein the plurality of sprockets includes an axially rearmost sprocket, the axially rearmost sprocket comprising:
a chain engaging portion having a generally annular shape about a central axis, a radially outward edge of the chain engaging portion comprising a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain;
a mounting portion having a generally annular shape about the central axis, a radially inward edge of the mounting portion defining an aperture shaped to receive therein the freehub body and a radially outward edge of the mounting portion radially spaced apart from a radially inward edge of the chain engaging portion;
a plurality of circumferentially spaced support arms, integrally formed with the chain engaging portion and with the mounting portion, extending radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion; and
a plurality of space maintaining protrusions, each space maintaining protrusion extending axially forwardly from an axially forward surface of a corresponding support arm and integrally formed therewith,
wherein the support arms are circumferentially spaced apart from one another about the radially outward edge of the mounting portion.
12. The bicycle according to claim 11, wherein the support arms are circumferentially spaced apart from one another about the radially inward edge of the chain engaging portion.
13. The bicycle according to claim 11, wherein the radially inward edge of the mounting portion comprises a plurality of circumferentially spaced grooves mateably engageable with a plurality of splines circumferentially spaced about the freehub body.
14. The bicycle according to claim 11, wherein the chain engaging portion comprises a plurality of circumferentially spaced axial recesses shaped for upshifting a bicycle chain to the rear bicycle sprocket from an adjacent sprocket of the rear cassette.
15. The bicycle according to claim 11, wherein the sprocket is constructed from a metallic material.
16. A bicycle multi-gear rear cassette having a plurality of sprockets coaxially mounted to a freehub body, wherein the plurality of sprockets includes an axially rearmost sprocket, the axially rearmost sprocket comprising:
a chain engaging portion having a generally annular shape about a central axis, a radially outward edge of the chain engaging portion comprising a plurality of circumferentially spaced and radially outwardly extending teeth for mechanical engagement with a bicycle chain;
a mounting portion having a generally annular shape about the central axis, a radially inward edge of the mounting portion defining an aperture shaped to receive therein the freehub body and a radially outward edge of the mounting portion radially spaced apart from a radially inward edge of the chain engaging portion;
a plurality of circumferentially spaced support arms, integrally formed with the chain engaging portion and with the mounting portion, extending radially outwardly from the radially outward edge of the mounting portion to the radially inward edge of the chain engaging portion; and
a plurality of space maintaining protrusions, each space maintaining protrusion extending axially forwardly from an axially forward surface of a corresponding support arm and integrally formed therewith,
wherein the support arms are circumferentially spaced apart from one another about the radially outward edge of the mounting portion.
17. The multi-gear rear cassette according to claim 16, wherein the support arms are circumferentially spaced apart from one another about the radially inward edge of the chain engaging portion.
18. The multi-gear rear cassette according to claim 16, wherein the radially inward edge of the mounting portion comprises a plurality of circumferentially spaced grooves mateably engageable with a plurality of splines circumferentially spaced about the freehub body.
19. The multi-gear rear cassette according to claim 16, wherein the chain engaging portion comprises a plurality of circumferentially spaced axial recesses shaped for upshifting a bicycle chain to the rear bicycle sprocket from an adjacent sprocket of the rear cassette.
20. The multi-gear rear cassette according to claim 16, wherein the sprocket is constructed from a metallic material.
US14/660,823 2014-11-21 2015-03-17 Bicycle sprocket for use with a multi-gear rear cassette Abandoned US20160144929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/660,823 US20160144929A1 (en) 2014-11-21 2015-03-17 Bicycle sprocket for use with a multi-gear rear cassette

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/550,569 US9011282B2 (en) 2014-11-21 2014-11-21 Bicycle sprocket for use with a multi-gear rear cassette
US14/660,823 US20160144929A1 (en) 2014-11-21 2015-03-17 Bicycle sprocket for use with a multi-gear rear cassette

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/550,569 Continuation US9011282B2 (en) 2014-11-21 2014-11-21 Bicycle sprocket for use with a multi-gear rear cassette

Publications (1)

Publication Number Publication Date
US20160144929A1 true US20160144929A1 (en) 2016-05-26

Family

ID=52668497

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/550,569 Expired - Fee Related US9011282B2 (en) 2014-11-21 2014-11-21 Bicycle sprocket for use with a multi-gear rear cassette
US14/660,823 Abandoned US20160144929A1 (en) 2014-11-21 2015-03-17 Bicycle sprocket for use with a multi-gear rear cassette

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/550,569 Expired - Fee Related US9011282B2 (en) 2014-11-21 2014-11-21 Bicycle sprocket for use with a multi-gear rear cassette

Country Status (1)

Country Link
US (2) US9011282B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160368561A1 (en) * 2015-06-16 2016-12-22 Shimano Inc. Bicycle crank assembly
US9868491B1 (en) * 2016-07-21 2018-01-16 Shimano Inc. Bicycle sprocket assembly
US20180229802A1 (en) * 2017-02-13 2018-08-16 Campagnolo S.R.L. Toothed wheel assembly for sprocket assembly
CN112455597A (en) * 2018-05-24 2021-03-09 株式会社岛野 Bicycle chain wheel

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403578B1 (en) * 2015-02-05 2016-08-02 Shimano Inc. Bicycle sprocket assembly and bicycle rear sprocket assembly
DE102015203709A1 (en) * 2015-03-02 2016-09-08 Sram Deutschland Gmbh Pinion arrangement with adapter
DE102015203708A1 (en) * 2015-03-02 2016-09-08 Sram Deutschland Gmbh Gear for a bicycle drive
DE102015205736B4 (en) * 2015-03-30 2024-05-16 Sram Deutschland Gmbh Bicycle rear wheel sprocket arrangement
DE102015210503A1 (en) * 2015-06-09 2016-12-15 Sram Deutschland Gmbh Rear sprocket assembly for a bicycle, especially a pedelec
US10703441B2 (en) * 2015-07-03 2020-07-07 Sram Deutschland Gmbh Drive arrangement for a bicycle
US10562588B2 (en) 2015-09-01 2020-02-18 The Hive Global, Inc Bicycle cassette with locking connection
US10005520B2 (en) * 2016-02-12 2018-06-26 Shimano Inc. Bicycle driving system and a multiple rear sprocket assembly thereof
WO2017165226A1 (en) 2016-03-24 2017-09-28 The Hive Global, Inc. Bicycle crank with spindle attachment structure
US20180194431A1 (en) * 2017-01-06 2018-07-12 Shimano Inc. Bicycle sprocket, sprocket assembly, rear sprocket assembly, and drive train of bicycle
US10618597B2 (en) * 2017-02-17 2020-04-14 Shimano Inc. Bicycle sprocket assembly
IT201700035716A1 (en) * 2017-03-31 2018-10-01 Campagnolo Srl Bicycle rear derailleur
US10550925B2 (en) * 2017-06-02 2020-02-04 Shimano Inc. Bicycle sprocket
US10808824B2 (en) * 2017-07-13 2020-10-20 Shimano Inc. Bicycle sprocket assembly
EP3672864A4 (en) * 2017-08-21 2021-04-14 The Hive Global, Inc. Bicycle cassette with clamping connection
US10926836B2 (en) * 2017-08-24 2021-02-23 Shimano Inc. Bicycle rear sprocket assembly
US11208171B2 (en) 2017-09-21 2021-12-28 Veselin Mandaric Drive assembly for a bicycle
US11305837B2 (en) * 2017-10-31 2022-04-19 Shimano Inc. Bicycle rear sprocket assembly
EP3533701B1 (en) * 2018-02-28 2021-01-20 SRAM Deutschland GmbH Rear wheel pinion assembly with two pieces for joint rotation of partial assemblies connected to each other
US11008065B2 (en) * 2018-11-07 2021-05-18 Shimano Inc. Bicycle sprocket arrangement
US11661138B2 (en) * 2019-01-07 2023-05-30 Shimano Inc. Drive train and sprocket arrangement for human-powered vehicle
TWI821507B (en) * 2019-01-29 2023-11-11 義大利商坎帕克諾羅公司 Cogset with increasing jump
US11333235B2 (en) * 2019-06-14 2022-05-17 NHI Mechanical Motion, LLC Hybrid drive component
US11932351B2 (en) 2020-07-17 2024-03-19 The Hive Global, Inc. Conical bicycle cassette sprocket structure
US12030586B2 (en) 2021-07-12 2024-07-09 The Hive Global, Inc. Seal for bicycle crank with differential chainring motion
USD1040033S1 (en) * 2022-11-16 2024-08-27 Sram Deutschland Gmbh Bicycle sprocket assembly

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477303A (en) * 1967-11-28 1969-11-11 Schwinn Bicycle Co Double plateau sprocket assembly
JPS4825541Y1 (en) * 1969-03-07 1973-07-25
US4044621A (en) * 1975-06-09 1977-08-30 Mcgregor Sr John C Sprocket structure and chain guard
JPS5810706Y2 (en) * 1979-10-11 1983-02-26 株式会社シマノ Multi-stage sprocket device
IT7923049V0 (en) * 1979-11-07 1979-11-07 Catene Calibrate Regina MULTIPLE FREE WHEEL PERFECTED FOR BICYCLE EXCHANGE.
FR2602841B1 (en) * 1986-08-05 1990-11-23 Maillard Maurice Ets BICYCLE FREE WHEEL CROWN, METHOD FOR FIXING PINIONS ON SUCH A CROWN AND FREE WHEEL THUS OBTAINED
JP3111072B2 (en) * 1990-02-28 2000-11-20 株式会社シマノ Multi-stage sprocket device for bicycle
JPH04297390A (en) * 1991-03-27 1992-10-21 Shimano Inc Multistage wheel for bicycle rear wheel
US5503600A (en) * 1994-11-17 1996-04-02 Kaynar Technologies, Inc. Derailleur gear assembly
DE4445035C1 (en) * 1994-12-16 1996-06-05 Fichtel & Sachs Ag Derailleur
US5788593A (en) * 1996-10-02 1998-08-04 Shimano (Singapore) Private, Limited Multiple sprocket assembly adapted to secure a sprocket to an outer race
US5954604A (en) * 1996-11-21 1999-09-21 Shimano, Inc. Multiple sprocket assembly for a bicycle
IT1289715B1 (en) * 1996-12-05 1998-10-16 Campagnolo Srl PINION SUPPORT GROUP FOR A BICYCLE
TW373616U (en) * 1997-04-16 1999-11-01 Ind Tech Res Inst Tooth structure of the chainwheels set of the bicycle
US5733215A (en) * 1997-06-23 1998-03-31 Industrial Technology Research Institute Multi-speed sprocket assembly of a bicycle
DE29722971U1 (en) * 1997-12-30 1998-02-19 Leng, Chi Chih, Nan Tou Bicycle sprocket
US5947852A (en) * 1998-05-18 1999-09-07 Tmj Properties, L.L.C. Sprocket or gear with metal hub
US6264575B1 (en) * 1999-04-08 2001-07-24 Shimano, Inc. Freewheel for a bicycle
US6428437B1 (en) * 1999-06-10 2002-08-06 Raphael Schlanger Power transmission assembly
US6293884B1 (en) * 1999-09-08 2001-09-25 Chattin Cluster Gears, Inc. Cluster sprockets for bicycle transmissions and other prime movers
EP1407962A1 (en) * 2002-10-11 2004-04-14 Campagnolo Srl Sprocket support member for a bicycle sprocket assembly
JP2005029072A (en) * 2003-07-09 2005-02-03 Shimano Inc Outer for bicycle hub and bicycle hub
US7846047B2 (en) * 2004-09-10 2010-12-07 Shimano, Inc. Bicycle sprocket having a thickened spline
US7585240B2 (en) * 2005-02-03 2009-09-08 Shimano Inc. Bicycle sprocket assembly
US8057338B2 (en) * 2005-08-30 2011-11-15 Shimano, Inc. Bicycle sprocket apparatus with reinforcement between sprockets
DE102006022343B4 (en) * 2006-05-12 2010-04-15 Shimano Inc., Sakai Multicomponent gear
US20080004143A1 (en) * 2006-06-16 2008-01-03 Shimano Inc. Bicycle sprocket assembly
US7854673B2 (en) * 2006-08-31 2010-12-21 Shimano Inc. Bicycle sprocket assembly having a reinforcement member coupled between sprockets
JP2008189254A (en) * 2007-02-07 2008-08-21 Shimano Inc Rear sprocket assembly for bicycle, and sprocket
US9150280B2 (en) 2007-03-21 2015-10-06 Sram, Llc Bicycle multi-gear cassette
ITMI20071660A1 (en) * 2007-08-09 2009-02-10 Campagnolo Srl MOTION BIKE TRANSMISSION SYSTEM
ITMI20071658A1 (en) * 2007-08-09 2009-02-10 Campagnolo Srl PINION MODULE FOR A BICYCLE AND SPROCKET PACK INCLUDING THIS MODULE
US7871347B2 (en) * 2007-10-11 2011-01-18 Shimano Inc. Bicycle rear sprocket assembly
US20100099530A1 (en) * 2008-03-28 2010-04-22 Douglas Chiang Bicycle Cogset
US20100009794A1 (en) * 2008-07-10 2010-01-14 Douglas Chiang Sprocket assembly
US8235850B2 (en) * 2008-12-01 2012-08-07 Tien Hsin Industries Co., Ltd. Multiple sprocket assembly
US9376165B2 (en) * 2009-10-16 2016-06-28 Shimano Inc. Bicycle sprocket
DE102010027228B4 (en) * 2009-11-04 2021-12-09 Sram Deutschland Gmbh Multiple sprocket arrangement for bicycles
DE102010053597B4 (en) * 2010-12-07 2021-12-02 Sram Deutschland Gmbh Multiple sprocket assembly for a bicycle
US8905878B2 (en) * 2011-01-28 2014-12-09 Shimano (Singapore) Pte., Ltd. Bicycle sprocket assembly
US8696503B2 (en) * 2011-03-01 2014-04-15 Shimano Inc. Bicycle sprocket assembly
US8968130B2 (en) * 2011-03-23 2015-03-03 Tien Hsin Industries Co., Ltd. Bicycle cogset with support element
US20120322598A1 (en) * 2011-06-17 2012-12-20 Chang Hui Lin Ratchet Structure of a freewheel and a hub

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160368561A1 (en) * 2015-06-16 2016-12-22 Shimano Inc. Bicycle crank assembly
US10625814B2 (en) * 2015-06-16 2020-04-21 Shimano Inc. Bicycle crank assembly
US9868491B1 (en) * 2016-07-21 2018-01-16 Shimano Inc. Bicycle sprocket assembly
US20180022416A1 (en) * 2016-07-21 2018-01-25 Shimano Inc. Bicycle sprocket assembly
US20180229802A1 (en) * 2017-02-13 2018-08-16 Campagnolo S.R.L. Toothed wheel assembly for sprocket assembly
US10647383B2 (en) * 2017-02-13 2020-05-12 Campagnolo S.R.L. Toothed wheel assembly for sprocket assembly
CN112455597A (en) * 2018-05-24 2021-03-09 株式会社岛野 Bicycle chain wheel

Also Published As

Publication number Publication date
US9011282B2 (en) 2015-04-21
US20150080160A1 (en) 2015-03-19

Similar Documents

Publication Publication Date Title
US9011282B2 (en) Bicycle sprocket for use with a multi-gear rear cassette
TWI697441B (en) Bicycle sprocket assembly
EP2554468B1 (en) Bicycle sprocket assembly
CN107521610B (en) Multiple bicycle sprocket assembly
CN107839832B (en) Bicycle front chain wheel assembly
US9868491B1 (en) Bicycle sprocket assembly
CN102653306B (en) Bicycle sprocket assembly
EP1495879B1 (en) Bicycle hub outer and bicycle hub
EP0765802B1 (en) Sprocket assembly for a bicycle
US9297450B2 (en) Bicycle rear sprocket
US8978514B2 (en) Bicycle front sprocket
US20080058144A1 (en) Bicycle sprocket assembly
US6475110B1 (en) Bicycle front chainwheel assembly
US20080176691A1 (en) Bicycle chain wheel assembly
EP1721823A2 (en) Rear sprocket for bicycle transmission
US5772547A (en) Bicycle crankset
US9555855B2 (en) Bicycle sprocket
EP1995166A2 (en) Bicycle sprocket assembley with chain protector
US20110319209A1 (en) Integrated bicycle chainring assembly
EP1652767A2 (en) Bicycle crankset
CA2871899A1 (en) Bicycle sprocket for use with a multi-gear rear cassette

Legal Events

Date Code Title Description
AS Assignment

Owner name: D3 INNOVATION INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STAPLES, JONATHAN;REEL/FRAME:035186/0199

Effective date: 20141127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION