US20160130943A1 - Manufacture of Cable Bolts - Google Patents
Manufacture of Cable Bolts Download PDFInfo
- Publication number
- US20160130943A1 US20160130943A1 US14/997,784 US201614997784A US2016130943A1 US 20160130943 A1 US20160130943 A1 US 20160130943A1 US 201614997784 A US201614997784 A US 201614997784A US 2016130943 A1 US2016130943 A1 US 2016130943A1
- Authority
- US
- United States
- Prior art keywords
- cable
- filaments
- bulbing
- bolt
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title description 6
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 14
- 239000010959 steel Substances 0.000 claims abstract description 14
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 238000005520 cutting process Methods 0.000 claims description 4
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 239000011440 grout Substances 0.000 description 5
- -1 polypropylene Polymers 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0026—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
- E21D21/006—Anchoring-bolts made of cables or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F11/00—Cutting wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F15/00—Connecting wire to wire or other metallic material or objects; Connecting parts by means of wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21F—WORKING OR PROCESSING OF METAL WIRE
- B21F9/00—Straining wire
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B7/00—Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
- D07B7/16—Auxiliary apparatus
- D07B7/18—Auxiliary apparatus for spreading or untwisting ropes or cables into constituent parts for treatment or splicing purposes
- D07B7/187—Auxiliary apparatus for spreading or untwisting ropes or cables into constituent parts for treatment or splicing purposes for forming bulbs in ropes or cables
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0026—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0026—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
- E21D21/0046—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts formed by a plurality of elements arranged longitudinally
Definitions
- This invention relates to cable for use in strata control, especially to reinforce the roof and/or walls of underground mines and tunnels, to methods of manufacturing cable bolts and to manufacturing components and systems used in such methods.
- Cable bolts are usually made from cable comprising a plurality of steel filaments wound together around a central wire to form a tendon. Resin and/or cement grout is used to fix the cable bolt to a borehole. To increase the effective bond strength between the cable bolt and resin or grout the bolts are often provided with spaced protuberances along the length of the cable. These protuberances are often known as bulbs or cages. The protuberances assist in preventing cable bolts from being pulled through the resin or grout, thus providing improved anchorage and load transfer between the cable, resin/grout and the surrounding strata.
- a cable bolt comprising a plurality of flexible steel filaments formed around a central member, the cable bolt having spaced bulbous portions along the length of the bolt each bulbous portion defining a cavity containing a segmented ring that surrounds the central member to engage the filaments of the bulbous portion.
- a method of manufacturing a cable having twisted flexible steel filaments over a central member comprising forcing the filaments apart without plastically deforming the filaments, inserting a spacer through the parted filaments to sit between the filaments and the central member, and releasing the parted filaments to return against the spacer to form a bulbous portion.
- the filaments are forced apart by applying torsion to the filaments.
- the torsion is applied over a length of the cable to form bulbous portions spaced along the cable.
- the filaments are forced apart by inserting a spreading tool between the filaments.
- the spacer extends around the central member.
- the spacer is a segmented ring that is placed in pieces through the parted filaments and formed into a ring surrounding the central member.
- the spacer may be a unitary element, such as helical wound member that is rotated onto the inner member through the parted filaments.
- the torsion and/or spreading is applied over a section of the pre-wound cable to open the outer filaments over a set length to allow insertion of the ring segments around the central member before releasing the filaments forming a permanent non-collapsible single protrusion.
- the process may be repeated further along the pre-wound cable.
- an apparatus for forming bulbs in a cable having twisted flexible steel filaments over a central member comprising:
- a bulbing assembly releasably engagable with said cable, said assembly being operative to force the filaments apart without plastically deforming the filaments;
- an inserting device operative to insert a spacer through the parted filaments to sit between the filaments and the central member.
- the apparatus further comprises a frame; and a securing device for holding at least a portion of a cable with respect to frame.
- the cable is fed through the bulbing assembly so that a plurality of bulbing portions are able to be formed along the cable.
- the bulbing assembly is movable relative to the apparatus frame to form spaced apart bulbing portions in the cable.
- the cable remains stationary during forming of the plurality of bulbs but in another form, the cable may be moved so that both the cable and the bulbing apparatus move during bulb forming.
- the apparatus includes a feed assembly to feed the cable from a coil into the apparatus.
- the cable, with bulbs formed therein is progressed to a table and the apparatus further includes a cutting device to cut the cable to length as required in formation of cable bolts.
- FIG. 1 is a part sectioned side view of a typical cable bolt
- FIG. 2 is a cross sectional view of the cable bolt
- FIG. 3 is a schematic view of an apparatus for forming bulbs in a cable in accordance with an embodiment of this invention
- FIG. 4 is a plan view of a bulbing apparatus of the apparatus of FIG. 3 .
- FIG. 5 is a detailed view of the bulbing apparatus of FIG. 4 .
- FIG. 6 is a perspective view of the bulb illustrating insertion of a segmented ring. For convenience components of the bulbing apparatus are not shown; and
- FIG. 7 is a perspective view illustrating the location of the segmented ring on a central strand of the cable bolt.
- FIGS. 1 and 2 illustrate a cable bolt 10 .
- These drawings are taken from our earlier Australian patent application 2008200918, corresponding to U. S. Pat. No. 8,322,950, incorporated herein by reference.
- an embodiment of a resin anchorable cable bolt 10 comprises a flexible cable 11 formed from a plurality of wound co-extending strands in the form of wound co-extending steel filaments that extends along an axis C between opposite ends (being, relative to the direction the bolt 10 is installed in a bore in a substrate, such as a mine shaft roof, a distal end 13 and a proximal end 14 ).
- the cable 11 has a first portion 15 adapted primarily for resin point anchoring, and a second portion 16 adapted predominantly for cement grouting.
- the filaments comprise nine outer steel filaments 12 a spiral wound about a central hollow filament, or strand 12 b , located axially within the cable 11 .
- the hollow strand 12 b may comprise at least one region for resisting radial compression, in particular of a tensioning assembly which is discussed in more detail below.
- the hollow strand 12 b may be plain, and/or more or fewer outer steel filaments 12 a may be used, in which case their relative diameter with respect to the hollow strand 12 b would be adjusted accordingly such that they are close fitting about the hollow strand 12 b .
- the outer steel filaments, or strands, 12 a are typically solid and of the type used for cable bolt or pre-stressed concrete applications.
- the hollow strand 12 b extends in the second portion 16 and not in the first portion 15 , however in alternative embodiments, the hollow strand may extend into the first portion 15 also.
- the central hollow strand 12 b comprises profiling allowing flexibility of the cable 11 , while providing strength to resist crushing of the strand (i.e. radial compression of the cable).
- the hollow strand 12 b is flexible to allow coiling of the cable 11 such that the coil has a minimum diameter of 1.2 m without kinking the hollow strand 12 b .
- the minimum coiling diameter without kinking the hollow strand may fall within the range of 0.8 m to 2.5 m, or 1 m to 2 m.
- the profiling is in the form of a helical or spiral ribs 17 (see FIG. 7 ) along its entire length.
- the hollow strand 12 b is formed from a metal material, in this embodiment steel, but may be formed from a polymeric material, such as polypropylene, a polyethylene, or other appropriate polymer.
- the cable bolt 10 further comprises a resin retainer 22 disposed between the first and second portions 15 , 16 of the cable 11 .
- the resin retainer 22 is affixed to the cable 11 and extends radially outwardly from the cable so as to substantially reduce the migration of resin from the first portion to the second portion within the bore during point anchoring of the bolt 10 .
- the resin retainer is typically formed from metal, however may be formed from any suitable polymer such as polypropylene or a polyethylene.
- the hollow strand 12 b is located in the second portion 16 of the cable bolt 10 and extends from the proximal end 14 of the cable 11 to a location 24 in the second portion 16 at or adjacent the retainer 22 .
- a nut 26 is located on or near the hollow strand 12 b at location 24 within the outer filaments 12 a , forming a bulb, or “nut cage” 28 .
- the nut cage is formed by spacing apart and forcing outwardly all of the steel filaments 12 along a discrete section of the cable 11 and placing the nut 26 about the hollow strand end 24 .
- the first portion 15 includes an end collar 31 for holding together the strands 12 a at the distal end 13 , and a plurality (three in the illustrated case) of radially outwardly extending resin mixing protrusions in the form of “bird cages” 32 , where a ball bearing (or other rigid object) is inserted in a partially unwound portion of strands 12 a.
- the bulbs are formed without unwinding of the steel filaments.
- FIGS. 3 to 6 illustrate an apparatus for forming non collapsible spaced protrusions (or bulbs) 18 about the hollow strand 12 b of the flexible cable 11 .
- These bulbs 18 incorporate a segmented ring 40 ( FIG. 7 ) that prevents collapse of the bulb 18 whilst ensuring against radial compression of the hollow strand 12 b.
- the method of forming the bulbs 18 and locating the segmenting ring 20 is discussed with particular reference to the bulbing apparatus 100 shown FIGS. 3 to 5 .
- the apparatus 100 includes a bulbing assembly 102 mounted on a frame 104 .
- a cable 11 is arranged to be fed from a coil (not shown) mounted within a coil handler 106 . Once bulbs are formed in the cable 11 (as discussed in more detail below) by the bulbing assembly 102 , the cable is progressed to a payout table 108 .
- a cutting device 110 is disposed between the frame 104 and the payout table 108 and is arranged to cut the cable once a desired length (typically of 8 m but it may be more or less depending on requirements) is passed onto to the table. The cut lengths of cable can then be further processed to form the final cable bolts as required.
- the bulbing process is preferably fully automated and controlled by a control system 112 which may include, as illustrated, a control cabinet 114 and operator interface 116 .
- bulbing assembly 102 includes three components; namely torsioning device 118 , spreader 120 , and inserter 122 .
- the torsioning device 118 is designed to twist the cable bolt 10 to force the filaments 12 a apart to define a gap.
- the spreader 120 (shown in the form as a pair of plates or knives 56 , 57 ) is designed to further spread adjacent filaments that allows the inserter 122 adequate space to enable the segmented ring 40 to pass through the parted filaments 12 a to be located in an interfitting arrangement on the central strand 12 b.
- the torsioning device 118 discloses the use of mandrels 51 , 52 positioned around the cable 11 at spaced intervals to define a length of cable as shown in FIGS. 4 and 5 .
- Each mandrel 51 or 52 includes a three jaw chuck 53 , 54 which can be brought into clamped engagement with the periphery of the cable 11 .
- the chucks 53 , 54 are clamped to the cable and are either rotated in opposite directions or one is rotated relative to the other to place the filaments 12 a of the cable into torsion which has the effect of parting the filaments 12 a and forming a protrusion 18 at the mid span of cable between the chucks 53 , 54 .
- each ring segment 41 , 42 has a projection 43 that is a snug fit within a similarly profiled recess 44 on the other segment 42 of the ring to allow the segments 41 , 42 to form a circular one piece ring 40 as shown in the left hand side of FIG. 6 .
- the knives 56 , 57 can be removed and, the torsion applied by the mandrels 51 , 52 can be released causing the parted filaments 12 a to close onto the periphery of the ring 40 thereby locating the ring 40 in the cavity of each protrusion 18 on the central strand 12 b .
- the parted gap between the filaments closes and the filaments 12 a contact the ring 40 to form an expanded non-collapsible bulb 18 .
- the location of the ring 40 on the hollow central strand 12 b ensures that when the cable bolt is tensioned the protrusion 18 does not collapse.
- the segmented ring 40 by forming a single annular ring ensures that there is no danger of the segments 41 , 42 crushing the central strand 12 b .
- the dovetailed inter fitting of the segments 41 , 42 ensure that radial forces on the ring 40 are evenly distributed around the periphery of the strand 12 b .
- the segmented ring 40 whilst preventing radial collapse of the strand 12 b can also allow a degree of movement between the strand 12 b and ring 40 thus maintaining the flexibility of the final cable.
- the torsional and spreading forces that are placed on the cable bolt as it is twisted through use of the mandrels 51 , 52 and spreader 120 is insufficient to cause plastic deformation of the wire filaments 12 a.
- the cable 11 can then be fed through the bulbing assembly 102 (in a direction towards the payout table 108 ) such a subsequent portion of the cable 11 aligns with the bulbing assembly.
- the bulbing assembly is then able to form a further bulb 18 in the cable allowing separate spaced bulbs 18 to be formed in the cable 11 .
- the bulbing assembly may be designed to move along the length of the cable 11 to form spaced apart bulbs in the cable 11 .
- the cable 11 can have non collapsible grouting protrusions (in the form of bulbs 18 ) at desired intervals along the length of the cable 11 .
- This process can be completed off a reel and wound back into smaller reels; or to cut to lengths. Alternatively, the process can use precut lengths.
- mandrels 51 , 52 and chucks 53 , 54 may be split to facilitate attachment to the cable 10 without the need to pass the cable through the mandrels and chucks.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Ropes Or Cables (AREA)
- Installation Of Indoor Wiring (AREA)
- Suspension Of Electric Lines Or Cables (AREA)
Abstract
A cable bolt comprising a plurality of flexible steel filaments formed around a central member, the cable bolt having spaced bulbous portions along the length of the bolt each bulbous portion defining a cavity containing a segmented ring that surrounds the central member to engage the filaments of the bulbous portion.
Description
- This Application is a divisional of U.S. patent application Ser. No. 13/852,503, filed on Mar. 28, 2013, which claims priority to AU 2012901303, filed on Apr. 2, 2012, the disclosures of which are incorporated herein by reference in their entirety.
- 1. Technical Field
- This invention relates to cable for use in strata control, especially to reinforce the roof and/or walls of underground mines and tunnels, to methods of manufacturing cable bolts and to manufacturing components and systems used in such methods.
- 2. Description of Related Art
- Cable bolts are usually made from cable comprising a plurality of steel filaments wound together around a central wire to form a tendon. Resin and/or cement grout is used to fix the cable bolt to a borehole. To increase the effective bond strength between the cable bolt and resin or grout the bolts are often provided with spaced protuberances along the length of the cable. These protuberances are often known as bulbs or cages. The protuberances assist in preventing cable bolts from being pulled through the resin or grout, thus providing improved anchorage and load transfer between the cable, resin/grout and the surrounding strata.
- It is known that tensioning of the cable prior to cement grouting can cause the protuberance to collapse thus reducing the cable's effectiveness. In Australian patent 2004260817 there is a proposal to insert ball bearings into the cavities defined by the protuberances to reduce the likelihood of the protuberances collapsing when the cable is tensioned. This proposal has proved expensive to manufacture and unreliable due to the ball bearings being pushed out of the protuberances. There is also a need to displace the central wire to locate each ball bearing. In some cable bolts the central wire is replaced by a hollow tube which extends along the centre of the cable. Other disadvantages relate to the difficulty in automating the placement of the ball bearings and the ball bearing creates a stress concentration on the strands of the cable creating loads that lead to failure loads up to 25% less than the original strands ultimate tensile strength.
- In our earlier Australian patent application 2008200918 we disclose a cable bolt having a hollow strand which facilitates the passage of grout along the cable. It is important that the hollow strand does not get crushed by radial loads in non collapsible protrusions.
- It is these issues that have brought about the present invention.
- According to one aspect of the present invention there is provided a cable bolt comprising a plurality of flexible steel filaments formed around a central member, the cable bolt having spaced bulbous portions along the length of the bolt each bulbous portion defining a cavity containing a segmented ring that surrounds the central member to engage the filaments of the bulbous portion.
- In accordance with a further aspect of the present invention there is provided a method of manufacturing a cable having twisted flexible steel filaments over a central member, the method comprising forcing the filaments apart without plastically deforming the filaments, inserting a spacer through the parted filaments to sit between the filaments and the central member, and releasing the parted filaments to return against the spacer to form a bulbous portion.
- In one form, the filaments are forced apart by applying torsion to the filaments. In one form, the torsion is applied over a length of the cable to form bulbous portions spaced along the cable.
- In one form, in addition to or instead of, the filaments are forced apart by inserting a spreading tool between the filaments.
- In one form, the spacer extends around the central member. In a particular form, the spacer is a segmented ring that is placed in pieces through the parted filaments and formed into a ring surrounding the central member. In another form, the spacer may be a unitary element, such as helical wound member that is rotated onto the inner member through the parted filaments.
- In one form the torsion and/or spreading is applied over a section of the pre-wound cable to open the outer filaments over a set length to allow insertion of the ring segments around the central member before releasing the filaments forming a permanent non-collapsible single protrusion. The process may be repeated further along the pre-wound cable.
- In a further aspect of the present invention, there is provided an apparatus for forming bulbs in a cable having twisted flexible steel filaments over a central member, the apparatus comprising:
- a bulbing assembly releasably engagable with said cable, said assembly being operative to force the filaments apart without plastically deforming the filaments; and
- an inserting device operative to insert a spacer through the parted filaments to sit between the filaments and the central member.
- In use on releasing the parted filaments they return against the spacer to form a bulbous portion in the cable.
- In one form, the apparatus further comprises a frame; and a securing device for holding at least a portion of a cable with respect to frame.
- In one form the cable is fed through the bulbing assembly so that a plurality of bulbing portions are able to be formed along the cable.
- In another form, the bulbing assembly is movable relative to the apparatus frame to form spaced apart bulbing portions in the cable. Typically in this latter arrangement the cable remains stationary during forming of the plurality of bulbs but in another form, the cable may be moved so that both the cable and the bulbing apparatus move during bulb forming.
- In one form, the apparatus includes a feed assembly to feed the cable from a coil into the apparatus. In one form the cable, with bulbs formed therein, is progressed to a table and the apparatus further includes a cutting device to cut the cable to length as required in formation of cable bolts.
- An embodiment of the present invention will now be described by way of example only with reference to the accompanying drawings in which:
-
FIG. 1 is a part sectioned side view of a typical cable bolt, -
FIG. 2 is a cross sectional view of the cable bolt, -
FIG. 3 is a schematic view of an apparatus for forming bulbs in a cable in accordance with an embodiment of this invention, -
FIG. 4 is a plan view of a bulbing apparatus of the apparatus ofFIG. 3 , -
FIG. 5 is a detailed view of the bulbing apparatus ofFIG. 4 , -
FIG. 6 is a perspective view of the bulb illustrating insertion of a segmented ring. For convenience components of the bulbing apparatus are not shown; and -
FIG. 7 is a perspective view illustrating the location of the segmented ring on a central strand of the cable bolt. -
FIGS. 1 and 2 illustrate acable bolt 10. These drawings are taken from our earlier Australian patent application 2008200918, corresponding to U. S. Pat. No. 8,322,950, incorporated herein by reference. - As illustrated in
FIG. 1 , an embodiment of a resinanchorable cable bolt 10 comprises aflexible cable 11 formed from a plurality of wound co-extending strands in the form of wound co-extending steel filaments that extends along an axis C between opposite ends (being, relative to the direction thebolt 10 is installed in a bore in a substrate, such as a mine shaft roof, adistal end 13 and a proximal end 14). Thecable 11 has afirst portion 15 adapted primarily for resin point anchoring, and asecond portion 16 adapted predominantly for cement grouting. - As illustrated in
FIG. 2 , the filaments comprise nineouter steel filaments 12 a spiral wound about a central hollow filament, orstrand 12 b, located axially within thecable 11. In one form, thehollow strand 12 b may comprise at least one region for resisting radial compression, in particular of a tensioning assembly which is discussed in more detail below. In alternative arrangements, thehollow strand 12 b may be plain, and/or more or fewerouter steel filaments 12 a may be used, in which case their relative diameter with respect to thehollow strand 12 b would be adjusted accordingly such that they are close fitting about thehollow strand 12 b. The outer steel filaments, or strands, 12 a are typically solid and of the type used for cable bolt or pre-stressed concrete applications. Thehollow strand 12 b extends in thesecond portion 16 and not in thefirst portion 15, however in alternative embodiments, the hollow strand may extend into thefirst portion 15 also. - In the embodiment of
FIG. 1 , the centralhollow strand 12 b comprises profiling allowing flexibility of thecable 11, while providing strength to resist crushing of the strand (i.e. radial compression of the cable). Thehollow strand 12 b is flexible to allow coiling of thecable 11 such that the coil has a minimum diameter of 1.2 m without kinking thehollow strand 12 b. In alternative embodiments, the minimum coiling diameter without kinking the hollow strand may fall within the range of 0.8 m to 2.5 m, or 1 m to 2 m. In the embodiment illustrated inFIG. 1 , the profiling is in the form of a helical or spiral ribs 17 (seeFIG. 7 ) along its entire length. Thehollow strand 12 b is formed from a metal material, in this embodiment steel, but may be formed from a polymeric material, such as polypropylene, a polyethylene, or other appropriate polymer. - Referring again to
FIG. 1 , thecable bolt 10 further comprises aresin retainer 22 disposed between the first andsecond portions cable 11. Theresin retainer 22 is affixed to thecable 11 and extends radially outwardly from the cable so as to substantially reduce the migration of resin from the first portion to the second portion within the bore during point anchoring of thebolt 10. The resin retainer is typically formed from metal, however may be formed from any suitable polymer such as polypropylene or a polyethylene. - The
hollow strand 12 b is located in thesecond portion 16 of thecable bolt 10 and extends from theproximal end 14 of thecable 11 to alocation 24 in thesecond portion 16 at or adjacent theretainer 22. As illustrated inFIG. 1 , anut 26 is located on or near thehollow strand 12 b atlocation 24 within theouter filaments 12 a, forming a bulb, or “nut cage” 28. The nut cage is formed by spacing apart and forcing outwardly all of the steel filaments 12 along a discrete section of thecable 11 and placing thenut 26 about thehollow strand end 24. - The
first portion 15 includes anend collar 31 for holding together thestrands 12 a at thedistal end 13, and a plurality (three in the illustrated case) of radially outwardly extending resin mixing protrusions in the form of “bird cages” 32, where a ball bearing (or other rigid object) is inserted in a partially unwound portion ofstrands 12 a. - It is desirable in some instances to form bulbs along the second portion 16 (in addition to the first portion 15) and/or to extend the
hollow strand 12 b into thefirst portion 16. As such it is desirable to be able to form bulbs about thehollow strand 12 b. Further to facilitate manufacturing processes, it is desirable that the bulbs are formed without unwinding of the steel filaments. -
FIGS. 3 to 6 illustrate an apparatus for forming non collapsible spaced protrusions (or bulbs) 18 about thehollow strand 12 b of theflexible cable 11. Thesebulbs 18 incorporate a segmented ring 40 (FIG. 7 ) that prevents collapse of thebulb 18 whilst ensuring against radial compression of thehollow strand 12 b. - The method of forming the
bulbs 18 and locating the segmenting ring 20 is discussed with particular reference to thebulbing apparatus 100 shownFIGS. 3 to 5 . - As best shown in
FIG. 3 , theapparatus 100 includes abulbing assembly 102 mounted on aframe 104. Acable 11 is arranged to be fed from a coil (not shown) mounted within acoil handler 106. Once bulbs are formed in the cable 11 (as discussed in more detail below) by thebulbing assembly 102, the cable is progressed to a payout table 108. Acutting device 110 is disposed between theframe 104 and the payout table 108 and is arranged to cut the cable once a desired length (typically of 8 m but it may be more or less depending on requirements) is passed onto to the table. The cut lengths of cable can then be further processed to form the final cable bolts as required. The bulbing process is preferably fully automated and controlled by acontrol system 112 which may include, as illustrated, acontrol cabinet 114 andoperator interface 116. - As best shown in
FIGS. 4 and 5 , bulbingassembly 102 includes three components; namely torsioningdevice 118,spreader 120, andinserter 122. In general, thetorsioning device 118 is designed to twist thecable bolt 10 to force thefilaments 12 a apart to define a gap. The spreader 120 (shown in the form as a pair of plates orknives 56,57) is designed to further spread adjacent filaments that allows theinserter 122 adequate space to enable the segmentedring 40 to pass through the partedfilaments 12 a to be located in an interfitting arrangement on thecentral strand 12 b. - In the illustrated embodiment, the
torsioning device 118 discloses the use ofmandrels cable 11 at spaced intervals to define a length of cable as shown inFIGS. 4 and 5 . Eachmandrel jaw chuck cable 11. Thechucks filaments 12 a of the cable into torsion which has the effect of parting thefilaments 12 a and forming aprotrusion 18 at the mid span of cable between thechucks chucks spreader knives filaments 12 a and rotated to further move the filaments apart. This provides access to the inserter 122 (in the form ofrobotic arms 59, 60) whichplace segments ring 40 on opposite sides of thehollow strand 12 b and then fitted together as shown inFIGS. 6 and 7 . - As shown in FIG.7, each
ring segment projection 43 that is a snug fit within a similarly profiledrecess 44 on theother segment 42 of the ring to allow thesegments piece ring 40 as shown in the left hand side ofFIG. 6 . Once thering 40 has been placed on thecentral strand 12 b theknives mandrels filaments 12 a to close onto the periphery of thering 40 thereby locating thering 40 in the cavity of eachprotrusion 18 on thecentral strand 12 b. By a steady release of the torsional load the parted gap between the filaments closes and thefilaments 12 a contact thering 40 to form an expandednon-collapsible bulb 18. - The location of the
ring 40 on the hollowcentral strand 12 b ensures that when the cable bolt is tensioned theprotrusion 18 does not collapse. The segmentedring 40, by forming a single annular ring ensures that there is no danger of thesegments central strand 12 b. The dovetailed inter fitting of thesegments ring 40 are evenly distributed around the periphery of thestrand 12 b. The segmentedring 40 whilst preventing radial collapse of thestrand 12 b can also allow a degree of movement between thestrand 12 b andring 40 thus maintaining the flexibility of the final cable. - In the form illustrated, the torsional and spreading forces that are placed on the cable bolt as it is twisted through use of the
mandrels spreader 120 is insufficient to cause plastic deformation of thewire filaments 12 a. - Once the
bulb 18 is formed, thecable 11 can then be fed through the bulbing assembly 102 (in a direction towards the payout table 108) such a subsequent portion of thecable 11 aligns with the bulbing assembly. The bulbing assembly is then able to form afurther bulb 18 in the cable allowing separate spacedbulbs 18 to be formed in thecable 11. - In an alternative form, the bulbing assembly may be designed to move along the length of the
cable 11 to form spaced apart bulbs in thecable 11. In either process, in this manner thecable 11 can have non collapsible grouting protrusions (in the form of bulbs 18) at desired intervals along the length of thecable 11. - This process can be completed off a reel and wound back into smaller reels; or to cut to lengths. Alternatively, the process can use precut lengths.
- It is also envisaged that the
mandrels cable 10 without the need to pass the cable through the mandrels and chucks. - It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
- In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
Claims (9)
1. A cable bolt comprising a plurality of flexible steel filaments formed around a central member, the cable bolt having spaced bulbous portions along the length of the bolt each bulbous portion defining a cavity containing a segmented ring that surrounds the central member to engage the filaments of the bulbous portion.
2. A cable bolt according to claim 1 , wherein segments of the segmented ring include interfitting projections and recesses that interengage on assembly of the ring.
3. An apparatus for forming bulbs in a cable having twisted flexible steel filaments over a central member, the apparatus comprising:
a bulbing assembly releasably engagable with said cable, said assembly being operative to force the filaments apart without plastically deforming the filaments; and
an inserting device operative to insert a spacer through the parted filaments to sit between the filaments and the central member.
4. The apparatus according claim 3 wherein on releasing the parted filaments they return against the spacer to form a bulbous portion in the cable bolt.
5. The apparatus according to claim 3 further comprising a securing device for holding at least a portion of a cable.
6. The apparatus according to claim 3 , further comprising a frame and wherein the bulbing assembly is movable relative to the frame so that a plurality of bulbing portions are able to be formed along the cable.
7. The apparatus according to claim 3 , wherein the cable is fed through the bulbing assembly so that a plurality of bulbing portions are able to be formed along the cable.
8. The apparatus according to claim 3 , further comprising a cable feeding device operative to feed the cable into the bulbing assembly.
9. The apparatus according to claim 3 , further comprising a cutting device to cut cable, the cutting device being arranged to cut the cable incorporating one or more bulbing portions into discrete lengths.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/997,784 US20160130943A1 (en) | 2012-04-02 | 2016-01-18 | Manufacture of Cable Bolts |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2012901303 | 2012-04-02 | ||
AU2012901303A AU2012901303A0 (en) | 2012-04-02 | Manufacture of cable bolts | |
US13/852,503 US9267376B2 (en) | 2012-04-02 | 2013-03-28 | Manufacture of cable bolts |
US14/997,784 US20160130943A1 (en) | 2012-04-02 | 2016-01-18 | Manufacture of Cable Bolts |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/852,503 Division US9267376B2 (en) | 2012-04-02 | 2013-03-28 | Manufacture of cable bolts |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160130943A1 true US20160130943A1 (en) | 2016-05-12 |
Family
ID=48087394
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/852,503 Active US9267376B2 (en) | 2012-04-02 | 2013-03-28 | Manufacture of cable bolts |
US14/997,784 Abandoned US20160130943A1 (en) | 2012-04-02 | 2016-01-18 | Manufacture of Cable Bolts |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/852,503 Active US9267376B2 (en) | 2012-04-02 | 2013-03-28 | Manufacture of cable bolts |
Country Status (5)
Country | Link |
---|---|
US (2) | US9267376B2 (en) |
EP (1) | EP2647792A3 (en) |
AU (2) | AU2013202092B2 (en) |
CA (1) | CA2810887A1 (en) |
ZA (1) | ZA201302365B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104695436A (en) * | 2015-04-10 | 2015-06-10 | 郑卫华 | Expansion type pre-stress anchor cable |
JP6442104B1 (en) * | 2017-07-31 | 2018-12-19 | 東京製綱株式会社 | Continuous fiber reinforced strand fixing tool |
US11213873B2 (en) * | 2019-06-21 | 2022-01-04 | Fci Holdings Delaware, Inc. | Mine bolt bending system |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5000640A (en) * | 1988-03-28 | 1991-03-19 | Haas Jr Edward T | Split nut |
US5531545A (en) * | 1995-05-11 | 1996-07-02 | Seegmiller; Ben L. | Cable bolt structure and method |
US5954455A (en) * | 1996-01-11 | 1999-09-21 | Jennmar Corporation | Combination bolt system |
US6270290B1 (en) * | 1997-02-14 | 2001-08-07 | Jennmar Corporation | Tensionable cable bolt |
US6626610B1 (en) * | 2002-04-02 | 2003-09-30 | Ben L. Seegmiller | Cable bolt apparatus and method of installation for mines |
US6799930B1 (en) * | 1999-04-27 | 2004-10-05 | Torque Tension Systems Limited | Quick release nut |
US20050158127A1 (en) * | 2004-01-21 | 2005-07-21 | Fergusson Jeffrey R. | Yielding strata bolt |
US20080247828A1 (en) * | 2007-02-28 | 2008-10-09 | Jennmar Corporation | Cable Bolt |
US8277149B2 (en) * | 2010-08-04 | 2012-10-02 | Fci Holdings Delaware, Inc. | Tensionable cable bolt with crimped shaft |
US8297903B2 (en) * | 2010-05-03 | 2012-10-30 | Frank Hohmann | Segmented nut for screw connections |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE234890C (en) * | 1909-04-19 | |||
FR1546511A (en) * | 1967-06-13 | 1968-11-22 | Baudin Chateauneuf | Process for manufacturing a bump on a stranded cable, machine for implementing this process, and cables with bumps thus obtained |
GB1326142A (en) | 1970-07-02 | 1973-08-08 | Debry M | Machine for the automatic continuous manufacture of re inforcements |
DE3207957C2 (en) * | 1982-03-05 | 1986-01-16 | Dyckerhoff & Widmann AG, 8000 München | Method for producing a bulge on a strand of steel wires for anchoring it in concrete components and device for carrying out this method |
US5344256A (en) | 1988-11-14 | 1994-09-06 | Garford Pty Ltd | Rock anchor and method of manufacture |
CA2129220A1 (en) | 1992-01-31 | 1993-08-05 | Maxwell Thomas Renwick | Cable bolt |
DE4203740C2 (en) | 1992-02-09 | 1996-07-11 | Dyckerhoff & Widmann Ag | Method for producing an anchor element from a strand made of twisted steel wires |
US5699572A (en) * | 1994-12-20 | 1997-12-23 | Jennmar Corporation | Combination cable spreader and cable driver |
US5560740A (en) * | 1994-12-20 | 1996-10-01 | Scott Investment Partners | Cable attachment device to spin single cables into resinous anchors in boreholes in geologic formation |
AUPQ274599A0 (en) | 1999-09-13 | 1999-10-07 | Garford Pty Ltd | Apparatus for the manufacture of rock bolts |
CA2300742C (en) * | 2000-03-15 | 2004-04-27 | Mine Design Technologies Inc. | Cable bolt with a yielding fixture and method of forming the same |
AU2004260817B2 (en) | 2003-08-01 | 2008-03-13 | Garford Pty Ltd | Improved cable bolt |
AU2003904006A0 (en) * | 2003-08-01 | 2003-08-14 | Garford Pty Ltd | Improved cable bolt |
AU2003262444B2 (en) * | 2003-11-20 | 2011-04-07 | Fci Holdings Delaware, Inc. | Cable bolt |
US7458242B2 (en) | 2004-09-13 | 2008-12-02 | Dywidag-Systems International Pty Limited | Apparatus and method for manufacturing a rock bolt |
AU2005200714B2 (en) | 2005-02-17 | 2011-10-27 | Fci Holdings Delaware, Inc. | Cable bulbing apparatus and method for forming bulbs in a cable bolt |
US20110259072A1 (en) | 2008-12-24 | 2011-10-27 | David William Evans | Apparatus and method for manufacturing a cable bolt |
US8371015B2 (en) * | 2009-09-24 | 2013-02-12 | Bright Technologies, Llc | Method of terminating a stranded synthetic filament cable |
-
2013
- 2013-03-27 AU AU2013202092A patent/AU2013202092B2/en active Active
- 2013-03-28 US US13/852,503 patent/US9267376B2/en active Active
- 2013-04-02 EP EP13161941.3A patent/EP2647792A3/en not_active Withdrawn
- 2013-04-02 ZA ZA2013/02365A patent/ZA201302365B/en unknown
- 2013-04-02 CA CA2810887A patent/CA2810887A1/en not_active Abandoned
-
2016
- 2016-01-18 US US14/997,784 patent/US20160130943A1/en not_active Abandoned
- 2016-05-31 AU AU2016100788A patent/AU2016100788A4/en not_active Expired
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5000640A (en) * | 1988-03-28 | 1991-03-19 | Haas Jr Edward T | Split nut |
US5531545A (en) * | 1995-05-11 | 1996-07-02 | Seegmiller; Ben L. | Cable bolt structure and method |
US5954455A (en) * | 1996-01-11 | 1999-09-21 | Jennmar Corporation | Combination bolt system |
US6270290B1 (en) * | 1997-02-14 | 2001-08-07 | Jennmar Corporation | Tensionable cable bolt |
US6799930B1 (en) * | 1999-04-27 | 2004-10-05 | Torque Tension Systems Limited | Quick release nut |
US6626610B1 (en) * | 2002-04-02 | 2003-09-30 | Ben L. Seegmiller | Cable bolt apparatus and method of installation for mines |
US20050158127A1 (en) * | 2004-01-21 | 2005-07-21 | Fergusson Jeffrey R. | Yielding strata bolt |
US20080247828A1 (en) * | 2007-02-28 | 2008-10-09 | Jennmar Corporation | Cable Bolt |
US8297903B2 (en) * | 2010-05-03 | 2012-10-30 | Frank Hohmann | Segmented nut for screw connections |
US8277149B2 (en) * | 2010-08-04 | 2012-10-02 | Fci Holdings Delaware, Inc. | Tensionable cable bolt with crimped shaft |
Also Published As
Publication number | Publication date |
---|---|
EP2647792A2 (en) | 2013-10-09 |
ZA201302365B (en) | 2013-12-23 |
EP2647792A3 (en) | 2016-06-22 |
US20140119840A1 (en) | 2014-05-01 |
AU2016100788A4 (en) | 2016-07-21 |
AU2013202092A1 (en) | 2013-10-17 |
AU2013202092B2 (en) | 2016-06-09 |
US9267376B2 (en) | 2016-02-23 |
CA2810887A1 (en) | 2013-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2889347C (en) | Improved cable bolt | |
US20160130943A1 (en) | Manufacture of Cable Bolts | |
EP3269894A1 (en) | Encapsulated splice chuck | |
CN107708948A (en) | The tensioning method and wedge of continuous lod material tensioning apparatus, continuous lod material | |
US6561721B2 (en) | Cable bolt with a yielding fixture and method of forming the same | |
US10815665B2 (en) | Concrete anchor with retainer | |
GB2081340A (en) | Deformable mine prop | |
US20080247839A1 (en) | Tensionable Cable Bolt Apparatus and System | |
AU746675B2 (en) | A rock bolt | |
JP2004277922A (en) | Terminal fixture for cable and method for producing the terminal fixture | |
US20200340359A1 (en) | End Fitting for a Cable Bolt Assembly | |
AU2017201806B2 (en) | Rock bolt | |
AU2021204317A1 (en) | Rock Bolt | |
KR20020087642A (en) | Inner fixing device for a tension member removetype ground anchor | |
US20020150440A1 (en) | Wrapped shift washer | |
US20020151371A1 (en) | Wrapped driving anvil | |
AU2019208454A1 (en) | Improvements in or relating to rock bolts | |
JPH0232404B2 (en) | KEEBURUNOKASETSUHOHO | |
AU2022215315A1 (en) | Rock Bolt | |
AU2005203205A1 (en) | A rock bolt | |
EP3225373A1 (en) | Method for producing a hose-shaped body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FCI HOLDINGS DELAWARE, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARNOT, JEREMY ROSS;SARGOOD, KENNETH;REEL/FRAME:037511/0118 Effective date: 20130408 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |