[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20160112990A1 - Paging over a high-speed downlink shared channel - Google Patents

Paging over a high-speed downlink shared channel Download PDF

Info

Publication number
US20160112990A1
US20160112990A1 US14/981,009 US201514981009A US2016112990A1 US 20160112990 A1 US20160112990 A1 US 20160112990A1 US 201514981009 A US201514981009 A US 201514981009A US 2016112990 A1 US2016112990 A1 US 2016112990A1
Authority
US
United States
Prior art keywords
pich
wtru
paging
high speed
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/981,009
Inventor
Christopher R. Cave
Rocco Di Girolamo
Diana Pani
Alexander Reznik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to US14/981,009 priority Critical patent/US20160112990A1/en
Publication of US20160112990A1 publication Critical patent/US20160112990A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the subject matter disclosed herein relates to wireless communications methods and apparatus.
  • High-Speed Downlink Packet Access was introduced in Release 5 of the Third Generation Partnership Project (3GPP) standards for wideband code division multiple access (WCDMA) wireless communication networks.
  • a key operating principle of HSDPA is to share a fast downlink (DL) pipe.
  • An example of a fast DL pipe is a high-speed downlink physical shared channel (HS-DPSCH).
  • HS-DPSCH high-speed downlink physical shared channel
  • UMTS universal mobile telecommunication system Terrestrial Radio Access Network
  • UTRAN may configure up to 15 HS-DPSCHs.
  • Each HS-DPSCH may be shared by all wireless transmit/receive units (WTRUs) operating within the network on a per transmission time interval (TTI) basis, for example, every 2 millisecond.
  • TTI transmission time interval
  • a base station In order to allow WTRUs to determine ownership of the information on HS-DPSCH shared channels, a base station also sends one or more parallel high-speed shared control channels (HS-SCCHs).
  • HS-SCCHs provide detailed data to enable receiving WTRUs to determine which information transmitted on the HS-DPSCH is addressed to a particular WTRU and to enable the particular WTRU to recover the transmitted information.
  • a base station utilizes three key concepts to achieve high-speed data transmission.
  • the three key concepts are: adaptive modulation and coding (AMC), retransmissions using a hybrid-automatic repeat request (HARQ), and base station scheduling.
  • AMC adaptive modulation and coding
  • HARQ hybrid-automatic repeat request
  • a base station may take advantage of the changing channel conditions as perceived by a WTRU in communication with the base station.
  • the base station can schedule transmissions to maximize DL throughput, for example, using 16 quadrature amplitude modulation (QAM) for a WTRU close to the base station and using quadrature phase shift keying (QPSK) for a WTRU at cell edge.
  • QAM quadrature amplitude modulation
  • QPSK quadrature phase shift keying
  • Such fast scheduling is complemented with the use of HARQs, allowing retransmission of transport blocks that are received at a WTRU with errors.
  • the HARQs are implemented at a physical layer and multiple simultaneous HARQ processes are permitted in order to maximize utilization.
  • An ongoing problem in HSDPA compliant networks is latency within the UTRAN, especially in setup delays for packet switched (PS) and circuit switched (CS) calls. Reducing the delay during WTRU state transitions is one way to improve network performance.
  • PS packet switched
  • CS circuit switched
  • a WTRU compliant with current standards can be in one of 4 possible states when in a connected mode, CELL_DCH, CELL_FACH, URA_PCH, or CELL_PCH.
  • the WTRU state is based on WTRU traffic volume and mobility.
  • the WTRU may communicate with the UTRAN only when in Cell_FACH or Cell_DCH states.
  • Cell_PCH and URA_PCH states are intended for power saving operation.
  • URA_PCH is used by a highly mobile WTRU that changes cells frequently. In both of these power saving states, the WTRU has no uplink mechanism to send traffic to the UTRAN. However, the WTRU can be paged to notify it to change states to either a Cell_FACH state or Cell_DCH state.
  • the paging procedure is a two step process.
  • a WTRU is configured with a discontinuous reception (DRX) cycle that shuts off the WTRU's receiver chain periodically. This is known as sleep mode.
  • a WTRU is only awake (the receiver chain is on) for certain frames known as paging occasions.
  • a WTRU listens for a Paging Indicator on a Paging Indicator Channel (PICH).
  • PICH Paging Indicator Channel
  • the Paging Indicator instructs a WTRU to monitor the paging channel (PCH) carried in the Secondary Common Control Physical Channel (S-CCPCH).
  • the PCH is a transport channel that is mapped to a logical Paging Control Channel (PCCH).
  • the WTRU selects from among the multiple S-CCPCHs based on an Initial WTRU Identity.
  • the selected S-CCPCH is associated with a single PICH. This is the PICH that the WTRU monitors for paging indications.
  • This delay offset is defined to allow the WTRU to receive the PICH and then the paging message. 3GPP Release 6 specifies this offset as 7,680 chips, or 2 millisecond.
  • the WTRU can either enter the Cell_FACH state and perform a CELL UPDATE or return to sleep mode until the next paging occasion.
  • One technique for reducing this state transition time is to map the PCCH to a high-speed downlink shared channel (HS-DSCH) instead of the PCH.
  • HS-DSCH high-speed downlink shared channel
  • a faster downlink rate results in a shorter transmission time for the paging message and faster state transitions.
  • This protocol stack architecture is shown in FIG. 2 .
  • the inventors have recognized several problems that exist when mapping the PCCH to the HS-DSCH.
  • HSDPA is currently only allowed in the Cell_PCH state and is controlled by the WTRU variable HS-DSCH_RECEPTION.
  • the HS-DSCH must be configured to operate in the downlink. This involves assigning a WTRU an address HS-DSCH Radio Network Temporary Identifier (H-RNTI), configuring a HS-SCCH channelization code, and configuring HARQ information, such as the number of HARQ processes and memory partition.
  • H-RNTI HS-DSCH Radio Network Temporary Identifier
  • HARQ information such as the number of HARQ processes and memory partition.
  • HARQ information such as the number of HARQ processes and memory partition.
  • a WTRU in Cell_PCH or URA_PCH state is unable to send channel quality indication (CQI) information to the UTRAN because no uplink communication is possible.
  • CQI channel quality indication
  • a base station schedules WTRU traffic. While it is possible to maintain a strict timing relationship between the PICH and the HS-DSCH, maintaining this relationship restricts the base station scheduling flexibility for transmission over HS-DSCH. Limiting the base station scheduling flexibility for HS-DSCH is undesirable since other types of traffic (for example, dedicated traffic channel (DTCH) and dedicated control channel (DCCH) are also carried over HS-DSCH.
  • DTCH dedicated traffic channel
  • DCCH dedicated control channel
  • a WTRU is configured to select various PICH information that is broadcast by a base station.
  • the WTRU is preferably configured to receive paging messages, based on the selected PICH information.
  • a preferred WTRU is configured to receive paging messages, based on a PICH, a HS-SCCH, and a HS-PDSCH.
  • a preferred WTRU is configured to receive paging messages, based on a PICH and a HS-PDSCH.
  • a time delay parameter is preferably used so that the WTRU may listen for either the HS-SCCH or HS-PDSCH for a period of time and return to a sleep mode if no paging message is received.
  • FIG. 1 is a block drawing of conventional WTRU states for a radio resource control (RRC) connected mode.
  • RRC radio resource control
  • FIG. 2 are comparative stack diagrams providing a comparison of a conventional Paging Channel (PCH) protocol stack architecture for mapping a logical Paging Control Channel (PCCH) with the mapping of a PCCH to a HS-DSCH for HSDPA paging and a mapping of a DCCH/DTCH to a HS-DSCH for HSPDA paging.
  • PCH Paging Channel
  • PCCH logical Paging Control Channel
  • FIG. 3 is a flow diagram of a method for selecting PICH information from received system information broadcasts.
  • FIG. 4 is a procedural diagram illustrating several HSDPA paging procedures in accordance with the teachings of the present invention.
  • FIG. 5 is a timing diagram showing a timing relationship between a PICH frame and associated high-speed shared control channel (HS-SCCH) subframes.
  • HS-SCCH high-speed shared control channel
  • FIG. 6 is a timing diagram showing a timing relationship between a PICH frame and associated HS-PDSCH subframes.
  • FIG. 7 is an illustration of an HSDPA network configured for paging in accordance with the teachings of the present invention.
  • wireless transmit/receive unit includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment.
  • base station includes but is not limited to a Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.
  • HSDPA high speed downlink packet access
  • Three preferred WTRU configurations and methods are disclosed, one in which utilization of a Paging Indicator Channel (PICH) is optional.
  • PICH Paging Indicator Channel
  • a first preferred configuration and method utilizes a PICH and paging groups.
  • a second preferred configuration and method utilizes paging groups, but instead of using a PICH, a high-speed shared control channel (HS-SCCH) signaling procedure allows each paging group to be associated with its own group high-speed downlink shared channel (HS-DSCH) radio network transaction identifier (H-RNTI).
  • HS-SCCH high-speed shared control channel
  • H-RNTI radio network transaction identifier
  • the PICH may optionally be retained for support of legacy WTRUs.
  • a third preferred configuration and method utilizes a PICH and a high-speed downlink physical shared channel (HS-DPSCH).
  • high-speed channel configuration information in order to map a Paging Control Channel (PCCH) to the HS-DSCH, high-speed channel configuration information must be provided to the WTRU.
  • This configuration information may be received in a base station broadcast as part of the system information by adding a new information element to an existing system information block (SIB) and/or defining a new SIB and associated schedule.
  • SIB system information block
  • the broadcasted configuration information may include: PCCH over HSDPA capability; a common HS-DSCH radio network transaction identifier (H-RNTI) to be used for paging messages; common high-speed downlink physical shared channel (HS-PDSCH) information including a HS-SCCH scrambling code and channelization code; common HARQ information including a number of HARQ processes, memory partitioning related parameters, and the like.
  • H-RNTI high-speed downlink physical shared channel
  • HARQ information including a number of HARQ processes, memory partitioning related parameters, and the like.
  • the Need column indicates if the information element (IE) is a mandatory or optional parameter.
  • MD indicates the IE is “mandatory” and must be broadcast and then received by UEs to be able to use the feature.
  • the Multi column indicates for a parent parameter how many instances of the child parameter are allowed. For example, there can be 1 to ⁇ maxSCCPCH> of the PICH for HSDPA supported paging list.
  • the HSDPA associated PICH information element shown in Table 1 may also be broadcast and received along with an information element DL-HSPDSCH system information that is used for a WTRU operating in CELL_FACH state, or these elements may be broadcast to WTRUs only operating in CELL_PCH or URA_PCH states.
  • a method 300 for selecting PICH information for HSPDA based paging is illustrated for an appropriately configured WTRU.
  • the method 300 begins with receiving an “HSDPA Associated PICH Info” information element (IE), (step 310 ).
  • This IE is transmitted from a base station, and may be broadcast.
  • a WTRU compiles a list of candidate PICH for HSDPA information and determines a value k that corresponds to the number of candidates, (step 320 ).
  • the WTRU calculates a PICH candidate selection index, Index PICH according to equation (1):
  • U-RNTI is the UTRAN radio network temporary identifier
  • the WTRU finally selects the PICH information from the compiled list based on the calculated Index PICH , (step 340 ).
  • a signal flow diagram 400 of preferred HSDPA paging procedures disclosed herein includes a Serving Radio Network Controller (SRNC) 405 , a Controlling Radio Network Controller (CRNC) 410 , a Base Station 415 , and a WTRU 420 .
  • the signal flow diagram 400 generally shows the radio resource control (RRC) layer of all entities depicted, with the exception of the WTRU 420 , which shows both a WTRU physical layer, WTRU-L 1 , 425 and a WTRU RRC 430 layer. It should be understood however that various layers may perform the described functions.
  • the example signal flow diagram 400 is based on a WTRU in discontinuous reception (DRX) mode.
  • DRX discontinuous reception
  • the base station 415 uses the DRX information of the WTRU 420 for scheduling paging messages destined for the WTRU 420 . In this manner, the base station 415 will schedule paging messages destined for the WTRU 420 when the WTRU 420 is not in a sleep mode, thereby reducing the amount of time the WTRU 420 must monitor the HS-SCCH.
  • the WTRU 420 enters a CELL_PCH or a URA_PCH state, the WTRU 420 receives system information to configure the HSDPA paging channel, (step 435 ). The WTRU 420 may then determine its common paging H-RNTI as well as the HS-SCCH and/or HS-PDSCH and HARQ setup details.
  • a WTRU-specific H-RNTI may be used for paging.
  • a signal is received at the SRNC 405 .
  • the SRNC 405 forwards the message to the CRNC 410 via the lur interface, if necessary, (step 440 ).
  • the CRNC 410 forwards a message that is destined to the WTRU (for example, a Paging Type 1 message) to the base station 415 via the lub interface, (step 445 ).
  • a scheduler function resident in the base station 415 which has information relating to the DRX timing of the WTRU-L 1 425 , guarantees that the message is sent only during the WTRU awake time.
  • the base station 415 may maintain a paging transmit queue common to all WTRU being served by the base station 415 .
  • the scheduling function of the base station 415 queries the paging transmit queue to determine whether a message is destined for WTRU-L 1 415 . If the determination is positive, the base station 415 transmits a paging indicator on the PICH, (step 450 ).
  • the base station 415 After a time interval T PICH , which is between a minimum time delay T PICH _ HSSCCH _ MIN and a maximum time delay T PICH _ HSSCCH _ MAX , the base station 415 transmits the corresponding message using a common or WTRU-specific paging H-RNTI address on the HS-SCCH, (step 455 ), and the message is mapped to the HS-PDSCH, (step 460 ).
  • the parameter T PICH _ HSSCCH_MIN may be hard coded and predetermined.
  • the parameter T PICH _ HSSCCH _ MAX may be broadcast from the base station 415 as part of the system information or other system transmission or broadcast.
  • the time delay parameter T PICH may be defined mathematically as follows:
  • An alternative method for timing the transmission of the PICH and subsequent transmission channels may be used.
  • the base station 415 When the message is forwarded by the CRNC 410 to the base station 415 , the base station 415 again stores the message in a WTRU specific transmission queue.
  • a scheduling function of the base station 415 schedules the message for transmission to WTRU 420 during an awake time based on DRX information of the WTRU 420 .
  • the message is scheduled during a future transmission time interval (TTI).
  • TTI Current a current TTI
  • time delta
  • the base station 415 may perform further scheduling algorithms to determine whether any MAC-hs packet data units (PDUs) require transmission in the current TTI, TTI Current .
  • the base station 415 may then transmit the paging indicator on the PICH immediately prior to the scheduled future time (TTI Current + ⁇ ).
  • TTI Current the scheduled future time
  • the time between PICH and associated TTI may be fixed or variable and may be hard-coded or broadcast as part of the system information.
  • the WTRU-L 1 425 monitors the PICH when awake looking for a paging indicator. When a paging indicator is found, the WTRU-L 1 425 monitors the HS-SCCH during the time interval, T PICH or ⁇ , depending on which of the above embodiments are utilized, looking for a H-RNTI. If the paging indicator is not found, the WTRU-L 1 425 re-enters sleep mode and waits for the next paging indicator opportunity.
  • the WTRU-L 1 425 retrieves the message from the HS-PDSCH and forwards the message to the higher layer WTRU RRC 430 , (step 465 ).
  • no PICH is used.
  • the base station 415 Upon receiving a message via the lub interface from the CRNC 410 , such as a paging type I message, the base station 415 transmits a message to the WTRU-L 1 425 over the HS-SCCH via the Uu interface, (step 470 ).
  • Either a group or WTRU-specific H-RNTI may be used.
  • the paging message may be transmitted within a predetermined number of TTIs after the WTRU's 420 scheduled DRX wakeup time, or within a time interval window T PICH as described above.
  • the WTRU 420 determines that a paging indicator is present and addressed to the WTRU 420 , the appropriate HS-PDSCH is monitored by the WTRU-L 1 425 , (step 475 ), and the message is received and forwarded to higher layers, (step 480 ).
  • a PICH is used but no HS-SCCH is required.
  • the base station 415 Upon receiving a message via the lub interface from the CRNC 410 such as a paging type I message, the base station 415 transmits a message to the WTRU-L 1 425 over the PICH via the Uu interface, (step 485 ). After a time interval T PICH , which is between T PICH _ HSPDSCH _ MIN and T PICH _ HSPDSCH _ MAX , as described below with reference to Equation 3, the base station 415 transmits a HS-PDSCH(s), (step 490 ).
  • the WTRU-L 1 425 receives the transmitted HS-PDSCHs transmitted between T PICH _ HSSCCH _ MIN and T PICH _ HSSCCH _ MAX after detection of the PICH. No HS-SCCH is required. If a positive CRC is obtained from one or a soft-combination of any of the HS-PDSCHs, the received message is forwarded to higher layers, (step 495 ).
  • the WTRU may then re-enter a sleep mode.
  • a cell update procedure that is known to those skilled in the art may be performed after the WTRU 420 receives and processes the paging message, (step 500 ).
  • a time delay exists between the PICH frame that includes the paging indicators and the first received subframe of the associated HS-SCCH received at the WTRU.
  • the delay T PICH between the PICH and following message transmitted over the HS-SCCH is defined by Equation 2 above and is between T PICH _ HSSCCH _ MIN and T PICH _ HSSCCH _ MAX .
  • the base station will start transmitting the HS-SCCH T PICH _ HSSCCH _ MIN after the PICH is transmitted. However, the base station could wait until T PICH _ HSSCCH _ MAX to transmit the HS-SCCH. This timing relationship is shown in FIG. 5 .
  • the first subframe of the associated HS-SCCH begins after a time delay, T PICH , after the transmitted PICH frame.
  • a time delay exists between the PICH frame that includes the paging indicators and the first received subframe of the associated HS-PDSCH(s). Similar to Equation 2 above, the delay T PICH between the PICH and following message transmitted over the HS-PDSCH(s) is defined as:
  • the base station will start transmitting the HS-PDSCH T PICH _ HSPDSCH _ MIN after the PICH is transmitted. However, the base station could wait until T PICH _ HSPDSCH _ MAX to transmit the HS-PDSCH. This timing relationship is shown in FIG. 6 .
  • the first subframe of the associated HS-PDSCH begins after a time delay, T PICH , after the transmitted PICH frame.
  • the rules for evaluating the Boolean variable HS_DSCH_RECEPTION may be modified to allow HSDPA reception in the Cell_PCH state and the URA_PCH state.
  • the variable should evaluate to TRUE (i.e. paging via HSDPA is supported) when: a WTRU is in Cell_PCH and URA_PCH state, the DL radio link is configured as the serving HS-DSCH radio link, and there is at least one radio bearer mapped to HS-DSCH.
  • a HSDPA capable wireless communication network 700 includes a WTRU 710 , a base station 720 , an RNC 730 , and a core network 740 .
  • Base station 720 includes a scheduler 750 for scheduling paging messages over the PICH, HS-SCCH, and HS-PDSCH as described herein.
  • the scheduler 750 may also include processing capabilities for processing various base station information received from both the RNC 730 and the WTRU 710 via the base station 720 transceiver 760 .
  • the WTRU 710 includes a processor 770 and a transceiver 780 .
  • the processor 770 is preferably configured to perform various processing tasks required by the WTRU 710 , such as those described above with reference to FIG.
  • the processor 770 is further preferably configured to control a DRX cycle of the WTRU 710 and provide DRX information to the base station 720 as desired.
  • the transceiver 780 is preferably configured to receive various channels transmitted by the base station 720 , including the PICH, HS-SCCH, and HS-PDSCH.
  • ROM read only memory
  • RAM random access memory
  • register cache memory
  • semiconductor memory devices magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
  • Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • a processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer.
  • the WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) or Ultra Wide Band (UWB) module.
  • WLAN wireless local area network
  • UWB Ultra Wide Band

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An apparatus and methods are provided for paging in a HSDPA connected mode CELL_PCH or URA_PCH state. Preferably, a WTRU is configured to select various PICH information that is broadcast by a base station. The WTRU is preferably configured to receive paging messages, based on the selected PICH information. In one embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH, a HS-SCCH, and a HS-PDSCH. In another embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH and a HS-PDSCH. In both embodiments, a time delay parameter is preferably used so that the WTRU may listen for either the HS-SCCH or HS-PDSCH for a period of time and return to a sleep mode if no paging message is received.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. patent application Ser. No. 14/172,318 filed Feb. 4, 2014, which is a Continuation of U.S. patent application Ser. No. 12/026,093 filed Feb. 5, 2008, now U.S. Pat. No. 8,744,496, which claims the benefit of U.S. Provisional Application Nos. 60/888,209 filed Feb. 5, 2007, 60/894,611 filed Mar. 13, 2007, and 60/895,248 filed Mar. 16, 2007, the contents of each of which being incorporated by reference as if fully set forth.
  • TECHNICAL FIELD
  • The subject matter disclosed herein relates to wireless communications methods and apparatus.
  • BACKGROUND
  • High-Speed Downlink Packet Access (HSDPA) was introduced in Release 5 of the Third Generation Partnership Project (3GPP) standards for wideband code division multiple access (WCDMA) wireless communication networks. A key operating principle of HSDPA is to share a fast downlink (DL) pipe. An example of a fast DL pipe is a high-speed downlink physical shared channel (HS-DPSCH). A universal mobile telecommunication system (UMTS) Terrestrial Radio Access Network (UTRAN) may configure up to 15 HS-DPSCHs. Each HS-DPSCH may be shared by all wireless transmit/receive units (WTRUs) operating within the network on a per transmission time interval (TTI) basis, for example, every 2 millisecond. As a result, information on the downlink channels may be sent to a different WTRU in every 2 millisecond interval.
  • In order to allow WTRUs to determine ownership of the information on HS-DPSCH shared channels, a base station also sends one or more parallel high-speed shared control channels (HS-SCCHs). Among other things, the HS-SCCHs provide detailed data to enable receiving WTRUs to determine which information transmitted on the HS-DPSCH is addressed to a particular WTRU and to enable the particular WTRU to recover the transmitted information.
  • In HSDPA, a base station utilizes three key concepts to achieve high-speed data transmission. The three key concepts are: adaptive modulation and coding (AMC), retransmissions using a hybrid-automatic repeat request (HARQ), and base station scheduling.
  • A base station may take advantage of the changing channel conditions as perceived by a WTRU in communication with the base station. In order to accomplish this, the base station can schedule transmissions to maximize DL throughput, for example, using 16 quadrature amplitude modulation (QAM) for a WTRU close to the base station and using quadrature phase shift keying (QPSK) for a WTRU at cell edge. Such fast scheduling is complemented with the use of HARQs, allowing retransmission of transport blocks that are received at a WTRU with errors. The HARQs are implemented at a physical layer and multiple simultaneous HARQ processes are permitted in order to maximize utilization.
  • An ongoing problem in HSDPA compliant networks is latency within the UTRAN, especially in setup delays for packet switched (PS) and circuit switched (CS) calls. Reducing the delay during WTRU state transitions is one way to improve network performance.
  • As illustrated in FIG. 1, a WTRU compliant with current standards can be in one of 4 possible states when in a connected mode, CELL_DCH, CELL_FACH, URA_PCH, or CELL_PCH. The WTRU state is based on WTRU traffic volume and mobility. The WTRU may communicate with the UTRAN only when in Cell_FACH or Cell_DCH states. Cell_PCH and URA_PCH states are intended for power saving operation. URA_PCH is used by a highly mobile WTRU that changes cells frequently. In both of these power saving states, the WTRU has no uplink mechanism to send traffic to the UTRAN. However, the WTRU can be paged to notify it to change states to either a Cell_FACH state or Cell_DCH state.
  • The paging procedure is a two step process. To save battery power, a WTRU is configured with a discontinuous reception (DRX) cycle that shuts off the WTRU's receiver chain periodically. This is known as sleep mode. A WTRU is only awake (the receiver chain is on) for certain frames known as paging occasions. Within each paging occasion, a WTRU listens for a Paging Indicator on a Paging Indicator Channel (PICH). The Paging Indicator instructs a WTRU to monitor the paging channel (PCH) carried in the Secondary Common Control Physical Channel (S-CCPCH). The PCH is a transport channel that is mapped to a logical Paging Control Channel (PCCH).
  • Multiple S-CCPCHs may be used. The WTRU selects from among the multiple S-CCPCHs based on an Initial WTRU Identity. The selected S-CCPCH is associated with a single PICH. This is the PICH that the WTRU monitors for paging indications. There is a strict delay requirement between the PICH and the associated paging message on the S-CCPCH. This delay offset is defined to allow the WTRU to receive the PICH and then the paging message. 3GPP Release 6 specifies this offset as 7,680 chips, or 2 millisecond. After recovering the PCCH, the WTRU can either enter the Cell_FACH state and perform a CELL UPDATE or return to sleep mode until the next paging occasion.
  • One technique for reducing this state transition time is to map the PCCH to a high-speed downlink shared channel (HS-DSCH) instead of the PCH. A faster downlink rate results in a shorter transmission time for the paging message and faster state transitions. This protocol stack architecture is shown in FIG. 2. The inventors have recognized several problems that exist when mapping the PCCH to the HS-DSCH.
  • First, HSDPA is currently only allowed in the Cell_PCH state and is controlled by the WTRU variable HS-DSCH_RECEPTION.
  • Second, the HS-DSCH must be configured to operate in the downlink. This involves assigning a WTRU an address HS-DSCH Radio Network Temporary Identifier (H-RNTI), configuring a HS-SCCH channelization code, and configuring HARQ information, such as the number of HARQ processes and memory partition. Currently, there is no mechanism defined to allow such a configuration in Cell_PCH and URA_PCH states.
  • Third, a WTRU in Cell_PCH or URA_PCH state is unable to send channel quality indication (CQI) information to the UTRAN because no uplink communication is possible. Thus, the base station cannot take full advantage of the AMC techniques required by HSDPA.
  • Fourth, once a WTRU receives a Paging Indicator on the PICH, the WTRU expects a paging message in the associated S-CCPCH. This S-CCPCH occurs 7,680 chips after the PICH. In HSDPA, a base station schedules WTRU traffic. While it is possible to maintain a strict timing relationship between the PICH and the HS-DSCH, maintaining this relationship restricts the base station scheduling flexibility for transmission over HS-DSCH. Limiting the base station scheduling flexibility for HS-DSCH is undesirable since other types of traffic (for example, dedicated traffic channel (DTCH) and dedicated control channel (DCCH) are also carried over HS-DSCH.
  • Therefore, HSDPA paging of a WTRU in CELL_PCH and URA_PCH states without the above mentioned disadvantages is desired.
  • SUMMARY
  • An apparatus and methods are provided for paging in a HSDPA connected mode CELL_PCH or URA_PCH state. Preferably, a WTRU is configured to select various PICH information that is broadcast by a base station. The WTRU is preferably configured to receive paging messages, based on the selected PICH information. In one embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH, a HS-SCCH, and a HS-PDSCH. In another embodiment, a preferred WTRU is configured to receive paging messages, based on a PICH and a HS-PDSCH. In both embodiments, a time delay parameter is preferably used so that the WTRU may listen for either the HS-SCCH or HS-PDSCH for a period of time and return to a sleep mode if no paging message is received.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings.
  • FIG. 1 is a block drawing of conventional WTRU states for a radio resource control (RRC) connected mode.
  • FIG. 2 are comparative stack diagrams providing a comparison of a conventional Paging Channel (PCH) protocol stack architecture for mapping a logical Paging Control Channel (PCCH) with the mapping of a PCCH to a HS-DSCH for HSDPA paging and a mapping of a DCCH/DTCH to a HS-DSCH for HSPDA paging.
  • FIG. 3 is a flow diagram of a method for selecting PICH information from received system information broadcasts.
  • FIG. 4 is a procedural diagram illustrating several HSDPA paging procedures in accordance with the teachings of the present invention.
  • FIG. 5 is a timing diagram showing a timing relationship between a PICH frame and associated high-speed shared control channel (HS-SCCH) subframes.
  • FIG. 6 is a timing diagram showing a timing relationship between a PICH frame and associated HS-PDSCH subframes.
  • FIG. 7 is an illustration of an HSDPA network configured for paging in accordance with the teachings of the present invention.
  • DETAILED DESCRIPTION
  • When referred to herein, the terminology “wireless transmit/receive unit (WTRU)” includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment. When referred to herein, the terminology “base station” includes but is not limited to a Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.
  • Apparatus and methods for paging in Cell_PCH and URA_PCH states in a high speed downlink packet access (HSDPA) wireless communication system are disclosed. Three preferred WTRU configurations and methods are disclosed, one in which utilization of a Paging Indicator Channel (PICH) is optional. A first preferred configuration and method utilizes a PICH and paging groups. A second preferred configuration and method utilizes paging groups, but instead of using a PICH, a high-speed shared control channel (HS-SCCH) signaling procedure allows each paging group to be associated with its own group high-speed downlink shared channel (HS-DSCH) radio network transaction identifier (H-RNTI). The PICH may optionally be retained for support of legacy WTRUs. A third preferred configuration and method utilizes a PICH and a high-speed downlink physical shared channel (HS-DPSCH).
  • In all three preferred configurations and methods, in order to map a Paging Control Channel (PCCH) to the HS-DSCH, high-speed channel configuration information must be provided to the WTRU. This configuration information may be received in a base station broadcast as part of the system information by adding a new information element to an existing system information block (SIB) and/or defining a new SIB and associated schedule.
  • The broadcasted configuration information may include: PCCH over HSDPA capability; a common HS-DSCH radio network transaction identifier (H-RNTI) to be used for paging messages; common high-speed downlink physical shared channel (HS-PDSCH) information including a HS-SCCH scrambling code and channelization code; common HARQ information including a number of HARQ processes, memory partitioning related parameters, and the like.
  • An exemplary broadcasted configuration information message is shown below in Table 1. The Need column indicates if the information element (IE) is a mandatory or optional parameter. MD indicates the IE is “mandatory” and must be broadcast and then received by UEs to be able to use the feature. The Multi column indicates for a parent parameter how many instances of the child parameter are allowed. For example, there can be 1 to <maxSCCPCH> of the PICH for HSDPA supported paging list.
  • TABLE 1
    Information Type and
    Element/Group Name Need Multi Reference Semantics Description
    DL Scrambling Code MD Secondary DL Scrambling code to be
    scrambling applied for HS-DSCH and
    code HS-SCCH. Default is same
    scrambling code as for the
    primary CPICH.
    PICH for HSDPA MP 1 to
    supported paging list <maxSCCPCH>
    >HSDPA associated MP PICH info
    PICH info
    >HS-PDSCH MP Integer HS-PDSCH channel,
    Channelisation Code (0 . . . 15) associated with the PICH for
    HS-SCCH less PAGING
    TYPE
    1 message
    transmission.
    Number of PCCH MP Integer (1 . . . 5) number of subframes used to
    transmissions transmit the PAGING TYPE 1.
    Transport Block Size List MP 1 . . . 2
    >Transport Block Size MP Integer Index of valuerange 1 to 32 of
    Index (1 . . . 32) the MAC-ehs transport block
    size
  • The HSDPA associated PICH information element shown in Table 1 may also be broadcast and received along with an information element DL-HSPDSCH system information that is used for a WTRU operating in CELL_FACH state, or these elements may be broadcast to WTRUs only operating in CELL_PCH or URA_PCH states.
  • Referring to FIG. 3, a method 300 for selecting PICH information for HSPDA based paging is illustrated for an appropriately configured WTRU. The method 300 begins with receiving an “HSDPA Associated PICH Info” information element (IE), (step 310). This IE is transmitted from a base station, and may be broadcast. After receiving the IE, a WTRU compiles a list of candidate PICH for HSDPA information and determines a value k that corresponds to the number of candidates, (step 320). The WTRU then calculates a PICH candidate selection index, IndexPICH according to equation (1):

  • IndexPICH=U_RNTI mod k;   Equation (1)
  • where U-RNTI is the UTRAN radio network temporary identifier, (step 330). The WTRU finally selects the PICH information from the compiled list based on the calculated IndexPICH, (step 340).
  • Referring to FIG. 4, a signal flow diagram 400 of preferred HSDPA paging procedures disclosed herein includes a Serving Radio Network Controller (SRNC) 405, a Controlling Radio Network Controller (CRNC) 410, a Base Station 415, and a WTRU 420. The signal flow diagram 400 generally shows the radio resource control (RRC) layer of all entities depicted, with the exception of the WTRU 420, which shows both a WTRU physical layer, WTRU-L1, 425 and a WTRU RRC 430 layer. It should be understood however that various layers may perform the described functions. The example signal flow diagram 400 is based on a WTRU in discontinuous reception (DRX) mode.
  • The base station 415 uses the DRX information of the WTRU 420 for scheduling paging messages destined for the WTRU 420. In this manner, the base station 415 will schedule paging messages destined for the WTRU 420 when the WTRU 420 is not in a sleep mode, thereby reducing the amount of time the WTRU 420 must monitor the HS-SCCH. When the WTRU 420 enters a CELL_PCH or a URA_PCH state, the WTRU 420 receives system information to configure the HSDPA paging channel, (step 435). The WTRU 420 may then determine its common paging H-RNTI as well as the HS-SCCH and/or HS-PDSCH and HARQ setup details. Alternatively, a WTRU-specific H-RNTI may be used for paging. There can be any number of HS-SCCHs associated with the paging channel and the WTRU 420 can select from among these using procedures known to those skilled in the art, such as those based on the initial WTRU identity.
  • With specific reference now to Case 1 within FIG. 4, when the UTRAN needs to page the WTRU 420, a signal is received at the SRNC 405. The SRNC 405 forwards the message to the CRNC 410 via the lur interface, if necessary, (step 440). The CRNC 410 forwards a message that is destined to the WTRU (for example, a Paging Type 1 message) to the base station 415 via the lub interface, (step 445). A scheduler function resident in the base station 415, which has information relating to the DRX timing of the WTRU-L1 425, guarantees that the message is sent only during the WTRU awake time. This can be implemented in a variety of ways that will be apparent to those skilled in the art. Purely for example, the base station 415 may maintain a paging transmit queue common to all WTRU being served by the base station 415. Immediately prior to the WTRU-L1 425 entering an awake state of its DRX mode, the scheduling function of the base station 415 queries the paging transmit queue to determine whether a message is destined for WTRU-L1 415. If the determination is positive, the base station 415 transmits a paging indicator on the PICH, (step 450).
  • After a time interval TPICH, which is between a minimum time delay TPICH _ HSSCCH _ MIN and a maximum time delay TPICH _ HSSCCH _ MAX, the base station 415 transmits the corresponding message using a common or WTRU-specific paging H-RNTI address on the HS-SCCH, (step 455), and the message is mapped to the HS-PDSCH, (step 460). The parameter TPICH _HSSCCH_MIN may be hard coded and predetermined. The parameter TPICH _ HSSCCH _ MAX may be broadcast from the base station 415 as part of the system information or other system transmission or broadcast. The time delay parameter TPICH may be defined mathematically as follows:

  • TPICH _ HSSCCH _ MIN≦TPICH≦TPICH _ HSSCCH _ MAX.   Equation (2)
  • An alternative method for timing the transmission of the PICH and subsequent transmission channels may be used. When the message is forwarded by the CRNC 410 to the base station 415, the base station 415 again stores the message in a WTRU specific transmission queue. A scheduling function of the base station 415 schedules the message for transmission to WTRU 420 during an awake time based on DRX information of the WTRU 420. The message is scheduled during a future transmission time interval (TTI). In other words, the message is scheduled for transmission based on a current TTI (TTICurrent), plus a time delta, Δ. The base station 415 calculates Δ based on the WTRU-L1 425 DRX cycle. During the time interval Δ, the base station 415 may perform further scheduling algorithms to determine whether any MAC-hs packet data units (PDUs) require transmission in the current TTI, TTICurrent. The base station 415 may then transmit the paging indicator on the PICH immediately prior to the scheduled future time (TTICurrent+Δ). The time between PICH and associated TTI may be fixed or variable and may be hard-coded or broadcast as part of the system information.
  • The WTRU-L1 425 monitors the PICH when awake looking for a paging indicator. When a paging indicator is found, the WTRU-L1 425 monitors the HS-SCCH during the time interval, TPICH or Δ, depending on which of the above embodiments are utilized, looking for a H-RNTI. If the paging indicator is not found, the WTRU-L1 425 re-enters sleep mode and waits for the next paging indicator opportunity. If the WTRU-L1 425 successfully receives a paging indicator and the common or WTRU-specific paging H-RNTI, the WTRU-L1 425 retrieves the message from the HS-PDSCH and forwards the message to the higher layer WTRU RRC 430, (step 465).
  • Alternatively, in Case 2 as shown in FIG. 4, no PICH is used. Upon receiving a message via the lub interface from the CRNC 410, such as a paging type I message, the base station 415 transmits a message to the WTRU-L1 425 over the HS-SCCH via the Uu interface, (step 470). Either a group or WTRU-specific H-RNTI may be used. The paging message may be transmitted within a predetermined number of TTIs after the WTRU's 420 scheduled DRX wakeup time, or within a time interval window TPICH as described above. When the WTRU 420 determines that a paging indicator is present and addressed to the WTRU 420, the appropriate HS-PDSCH is monitored by the WTRU-L1 425, (step 475), and the message is received and forwarded to higher layers, (step 480).
  • Alternatively, in Case 3 as shown in FIG. 4, a PICH is used but no HS-SCCH is required. Upon receiving a message via the lub interface from the CRNC 410 such as a paging type I message, the base station 415 transmits a message to the WTRU-L1 425 over the PICH via the Uu interface, (step 485). After a time interval TPICH, which is between TPICH _ HSPDSCH _ MIN and TPICH _ HSPDSCH _ MAX, as described below with reference to Equation 3, the base station 415 transmits a HS-PDSCH(s), (step 490). When the WTRU 420 is configured for operation with common H-RNTI (in other words a dedicated H-RNTI has not been assigned), the WTRU-L1 425 receives the transmitted HS-PDSCHs transmitted between TPICH _ HSSCCH _ MIN and TPICH _ HSSCCH _ MAX after detection of the PICH. No HS-SCCH is required. If a positive CRC is obtained from one or a soft-combination of any of the HS-PDSCHs, the received message is forwarded to higher layers, (step 495).
  • In the cases described above, if no message is received over any of the various channels within the determined time interval (TPICH or Δ), the WTRU may then re-enter a sleep mode. In the various embodiments described above, a cell update procedure that is known to those skilled in the art may be performed after the WTRU 420 receives and processes the paging message, (step 500).
  • In Case 1 of FIG. 4, a time delay exists between the PICH frame that includes the paging indicators and the first received subframe of the associated HS-SCCH received at the WTRU. The delay TPICH between the PICH and following message transmitted over the HS-SCCH is defined by Equation 2 above and is between TPICH _ HSSCCH _ MIN and TPICH _ HSSCCH _ MAX. Typically, the base station will start transmitting the HS-SCCH TPICH _ HSSCCH _ MIN after the PICH is transmitted. However, the base station could wait until TPICH _ HSSCCH _ MAX to transmit the HS-SCCH. This timing relationship is shown in FIG. 5. The first subframe of the associated HS-SCCH begins after a time delay, TPICH, after the transmitted PICH frame.
  • In case 3 of FIG. 4, a time delay exists between the PICH frame that includes the paging indicators and the first received subframe of the associated HS-PDSCH(s). Similar to Equation 2 above, the delay TPICH between the PICH and following message transmitted over the HS-PDSCH(s) is defined as:

  • TPICH _ HSPDSCH _ MIN≦TPICH≦TPICH _ HSPDSCH _ MAX. Equation (3)
  • Typically, the base station will start transmitting the HS-PDSCH TPICH _ HSPDSCH _ MIN after the PICH is transmitted. However, the base station could wait until TPICH _ HSPDSCH _ MAX to transmit the HS-PDSCH. This timing relationship is shown in FIG. 6. The first subframe of the associated HS-PDSCH begins after a time delay, TPICH, after the transmitted PICH frame.
  • In addition to the configurations and methods described above, the rules for evaluating the Boolean variable HS_DSCH_RECEPTION may be modified to allow HSDPA reception in the Cell_PCH state and the URA_PCH state. In particular, the variable should evaluate to TRUE (i.e. paging via HSDPA is supported) when: a WTRU is in Cell_PCH and URA_PCH state, the DL radio link is configured as the serving HS-DSCH radio link, and there is at least one radio bearer mapped to HS-DSCH.
  • Referring to FIG. 7, a HSDPA capable wireless communication network 700 includes a WTRU 710, a base station 720, an RNC 730, and a core network 740. Base station 720 includes a scheduler 750 for scheduling paging messages over the PICH, HS-SCCH, and HS-PDSCH as described herein. The scheduler 750 may also include processing capabilities for processing various base station information received from both the RNC 730 and the WTRU 710 via the base station 720 transceiver 760. The WTRU 710 includes a processor 770 and a transceiver 780. The processor 770 is preferably configured to perform various processing tasks required by the WTRU 710, such as those described above with reference to FIG. 3 and FIG. 4. The processor 770 is further preferably configured to control a DRX cycle of the WTRU 710 and provide DRX information to the base station 720 as desired. The transceiver 780 is preferably configured to receive various channels transmitted by the base station 720, including the PICH, HS-SCCH, and HS-PDSCH.
  • Although features and elements are described above in particular combinations, each feature or element can be used alone without the other features and elements or in various combinations with or without other features and elements. The methods or flow charts provided herein may be implemented in a computer program, software, or firmware incorporated in a computer-readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
  • Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
  • A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) or Ultra Wide Band (UWB) module.

Claims (5)

What is claimed is:
1. A method implemented by a network entity to facilitate paging of a wireless transmit/receive unit (WTRU) for high speed downlink packet access (HSDPA) wireless communications, the method comprising:
sending, via a broadcast, system information indicating a delay between reception of a paging indicator and reception of a message;
sending, from the network entity, HSDPA associated paging indicator channel (PICH) information elements comprising PICH information;
sending, during one or more paging occasions of the WTRU, a paging indicator over a PICH; and
sending a message on a high speed physical downlink shared channel (HS-PDSCH), wherein a maximum delay between the reception of the paging indicator and the reception of the message is pre-determined.
2. A network entity configured for high speed downlink packet access (HSDPA) wireless communications with a wireless transmit/receive unit (WTRU), comprising
a transmit/receive unit and a processor configured to:
send, via a broadcast, system information indicating a delay between reception of a paging indicator and reception of a message;
send HSDPA associated paging indicator channel (PICH) information elements comprising PICH information;
send, during one or more paging occasions, the paging indicator over a PICH using the selected PICH information; and
send the message on a high speed physical downlink shared channel (HS-PDSCH), wherein a maximum delay between the receptions of the paging indicator and the message is pre-determined.
3. The network entity of claim 2, wherein the network entity is configured to:
send a common high speed downlink shared channel (HS-DSCH) radio network transaction identity (H-RNTI).
4. A method implemented by a network entity to facilitate paging of a wireless transmit/receive unit (WTRU) for high speed downlink packet access (HSDPA) wireless communications, the method comprising:
sending, via a broadcast, system information indicating a delay between reception of a paging indicator and reception using a high speed shared channel;
sending, from a base station, HSDPA associated paging indicator channel (PICH) information elements comprising PICH information;
sending, during paging occasions, the paging indicator over a PICH;
sending a high speed downlink shared channel (HS-DSCH) radio network transaction identity (H-RNTI); and
sending the high speed shared channel, wherein a maximum delay between the reception of the paging indicator and the reception using the high speed shared channel is pre-determined.
5. A network entity configured for high speed downlink packet access (HSDPA) wireless communications with wireless transmit/receive unit (WTRU), comprising:
a transmit/receive unit and a processor configured to:
send, via a broadcast, system information indicating a delay between reception of a paging indicator and reception using a high speed shared channel;
send HSDPA associated paging indicator channel (PICH) information elements comprising PICH information;
send, during paging occasions, the paging indicator over a PICH;
send a high speed downlink shared channel (HS-DSCH) radio network transaction identity (H-RNTI); and
send a high speed shared channel, wherein a maximum delay between the reception of the paging indicator and the reception using the high speed shared channel is pre-determined.
US14/981,009 2007-02-05 2015-12-28 Paging over a high-speed downlink shared channel Abandoned US20160112990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/981,009 US20160112990A1 (en) 2007-02-05 2015-12-28 Paging over a high-speed downlink shared channel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US88820907P 2007-02-05 2007-02-05
US89461107P 2007-03-13 2007-03-13
US89524807P 2007-03-16 2007-03-16
US12/026,093 US8744496B2 (en) 2007-02-05 2008-02-05 Paging over a high-speed downlink shared channel
US14/172,318 US9264990B2 (en) 2007-02-05 2014-02-04 Paging over a high-speed downlink shared channel
US14/981,009 US20160112990A1 (en) 2007-02-05 2015-12-28 Paging over a high-speed downlink shared channel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/172,318 Continuation US9264990B2 (en) 2007-02-05 2014-02-04 Paging over a high-speed downlink shared channel

Publications (1)

Publication Number Publication Date
US20160112990A1 true US20160112990A1 (en) 2016-04-21

Family

ID=39665937

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/026,093 Active 2031-08-16 US8744496B2 (en) 2007-02-05 2008-02-05 Paging over a high-speed downlink shared channel
US14/172,318 Active US9264990B2 (en) 2007-02-05 2014-02-04 Paging over a high-speed downlink shared channel
US14/981,009 Abandoned US20160112990A1 (en) 2007-02-05 2015-12-28 Paging over a high-speed downlink shared channel

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/026,093 Active 2031-08-16 US8744496B2 (en) 2007-02-05 2008-02-05 Paging over a high-speed downlink shared channel
US14/172,318 Active US9264990B2 (en) 2007-02-05 2014-02-04 Paging over a high-speed downlink shared channel

Country Status (16)

Country Link
US (3) US8744496B2 (en)
EP (2) EP2658327B1 (en)
JP (5) JP5085663B2 (en)
KR (6) KR101574038B1 (en)
CN (1) CN103037509B (en)
AR (1) AR065177A1 (en)
AU (1) AU2008214331B2 (en)
BR (1) BRPI0806449B8 (en)
CA (1) CA2677551C (en)
HK (1) HK1139272A1 (en)
IL (2) IL200243A0 (en)
MX (1) MX2009008326A (en)
MY (1) MY158156A (en)
RU (1) RU2481743C2 (en)
TW (4) TW201538014A (en)
WO (1) WO2008097593A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220104173A1 (en) * 2019-11-18 2022-03-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2526439T3 (en) 2006-10-23 2015-01-12 Interdigital Technology Corporation Method and apparatus for sending and receiving channel quality indicators
US8923236B2 (en) * 2006-11-01 2014-12-30 Lg Electronics Inc. Method of transmitting and receiving paging messages in a wireless communication system
US8582512B2 (en) 2006-11-01 2013-11-12 Lg Electronics Inc. Method of transmitting and receiving downlink data in wireless communication system
TW201538014A (en) * 2007-02-05 2015-10-01 Interdigital Tech Corp Paging over a high-speed downlink shared channel
US20080267168A1 (en) * 2007-04-27 2008-10-30 Zhijun Cai Slow Adaptation of Modulation and Coding for Packet Transmission
JP4801696B2 (en) * 2007-05-06 2011-10-26 イノヴァティヴ ソニック リミテッド Method and apparatus for transmitting paging information in a wireless communication system
US8964650B2 (en) 2007-06-15 2015-02-24 Blackberry Limited System and method for semi-persistent and dynamic scheduling and discontinuous reception control
EP2163056A4 (en) * 2007-06-15 2011-12-14 Research In Motion Ltd System and method for large packet delivery during semi persistently allocated session
US8432818B2 (en) * 2007-06-15 2013-04-30 Research In Motion Limited System and method for link adaptation overhead reduction
US20090046639A1 (en) * 2007-08-14 2009-02-19 Zhijun Cai System and Method for Handling Large IP Packets During VoIP Session
EP3651395B1 (en) * 2007-08-20 2021-11-24 BlackBerry Limited System and method for drx control and nack/ack
EP2413638B1 (en) * 2007-09-14 2015-10-07 BlackBerry Limited System and method for discontinuous reception control start time
US8027291B2 (en) 2007-09-27 2011-09-27 Wireless Technology Solutions Llc Method and apparatus for transmitting transport channels over a physical channel of a cellular communication system
KR101461971B1 (en) * 2007-10-23 2014-11-20 엘지전자 주식회사 Method of transmitting Broadcasting Information
US20090197606A1 (en) * 2008-01-31 2009-08-06 Telefonaktiebolaget L M Ericsson High-speed serving cell change
CN101605385B (en) * 2008-06-13 2016-09-28 华为技术有限公司 A kind of method of indicating discontinuous dispatching data, Apparatus and system
WO2010037417A1 (en) * 2008-10-01 2010-04-08 Nokia Siemens Networks Oy Method for controlling a user equipment in idle mode for warning notification purposes
US9839001B2 (en) * 2009-03-23 2017-12-05 Apple Inc. Methods and apparatus for optimizing paging mechanisms and publication of dynamic paging mechanisms
US8542620B2 (en) * 2009-05-05 2013-09-24 Qualcomm Incorporated Dynamic energy saving mechanism for access points
US8811979B2 (en) * 2009-06-10 2014-08-19 Htc Corporation Method for providing private information to mobile user and associated wireless communication network and mobile station
EP2265079B1 (en) 2009-06-17 2016-08-10 HTC Corporation Method for providing private information to mobile user and associated wireless communication network and mobile station
WO2011053219A1 (en) 2009-10-30 2011-05-05 Telefonaktiebolaget L M Ericsson (Publ) Method for contacting a group of terminals within a communication network, arrangement and terminal within a communication network
EP2522192B1 (en) 2010-01-08 2018-07-04 InterDigital Patent Holdings, Inc. Method and apparatus for performing discontinuous reception and/or discontinuous transmission for a multi-carrier/multi-cell operation
US8537733B1 (en) 2010-02-12 2013-09-17 Qualcomm Incorporated Dynamic power mode switch in a wireless ad-hoc system
US9311446B1 (en) 2010-03-19 2016-04-12 Qualcomm Incorporated Multicast transmission for power management in an ad-hoc wireless system
US8588156B1 (en) 2010-04-27 2013-11-19 Qualcomm Incorporated Direct data communication in infrastructure mode in wireless communication systems
WO2012039650A1 (en) * 2010-09-22 2012-03-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for transmission of paging in a communication system
CN102469582B (en) * 2010-11-01 2014-07-16 普天信息技术研究院有限公司 Method and device for paging called user equipment
JP5432110B2 (en) 2010-11-09 2014-03-05 株式会社Nttドコモ User terminal, wireless communication method, and wireless communication system
CN102802254B (en) * 2011-05-24 2018-11-16 中兴通讯股份有限公司 Utilize the method and system of paging channel transmission services data, user equipment
US9204316B2 (en) 2011-09-30 2015-12-01 Blackberry Limited Enhancement and improvement for hetnet deployments
US8964672B2 (en) 2011-11-04 2015-02-24 Blackberry Limited Paging in heterogeneous networks with discontinuous reception
US8885509B2 (en) 2011-11-04 2014-11-11 Blackberry Limited Paging in heterogeneous networks using restricted subframe patterns
US8976764B2 (en) 2011-11-04 2015-03-10 Blackberry Limited Accommodating semi-persistent scheduling in heterogeneous networks with restricted subframe patterns
JP6256005B2 (en) * 2012-01-16 2018-01-10 日本電気株式会社 Paging area control apparatus and method, mobile communication system, and program
US9049658B2 (en) 2012-03-06 2015-06-02 Qualcomm Incorporated Power save mechanism for peer-to-peer communication networks
US8917736B2 (en) * 2012-12-19 2014-12-23 International Business Machines Corporation Unified system networking with PCIE-CEE tunneling
GB2514117A (en) * 2013-05-13 2014-11-19 Nec Corp Communication system
WO2015025418A1 (en) * 2013-08-23 2015-02-26 アクセスネットワークテクノロジ株式会社 Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system
US20150163827A1 (en) * 2013-12-06 2015-06-11 Broadcom Corporation Apparatus and Method for Paging for Mutli-Standby Devices
TWI665926B (en) 2014-01-30 2019-07-11 新力股份有限公司 Telecommunications apparatus and methods
CN107889216B (en) * 2016-09-30 2022-04-29 中兴通讯股份有限公司 Data transmitting and receiving method and device, base station and terminal
US10542491B2 (en) 2017-03-17 2020-01-21 Qualcomm Incorporated Techniques and apparatuses for control channel monitoring using a wakeup signal
US11071087B2 (en) 2017-04-13 2021-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods performed therein
IL270373B (en) * 2017-05-04 2022-08-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Wireless communication method and device
MX2020001679A (en) 2017-08-18 2020-03-20 Guangdong Oppo Mobile Telecommunications Corp Ltd Method for paging, and access network device, terminal device and core network device.
US10932225B2 (en) 2017-08-28 2021-02-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for paging, access network device, and terminal device
EP3909303A2 (en) 2019-01-11 2021-11-17 Telefonaktiebolaget Lm Ericsson (Publ) Power saving signal configurations for connected discontinuous reception
US11265845B2 (en) * 2019-05-02 2022-03-01 Mediatek Singapore Pte. Ltd. Backup paging opportunities in new radio unlicensed
JP7442562B2 (en) 2022-03-25 2024-03-04 ロックペイント株式会社 Solvent-free polyurethane adhesive for lamination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324775A (en) * 2002-04-25 2003-11-14 Lg Electronics Inc Apparatus and method for processing paging for wcdma terminal
US20060291501A1 (en) * 2005-06-24 2006-12-28 Nicol Christopher J Reconfigurable communications circuit operable with data channel and control channel
US8744496B2 (en) * 2007-02-05 2014-06-03 Interdigital Technology Corporation Paging over a high-speed downlink shared channel

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283648A1 (en) * 2001-08-07 2003-02-12 Siemens Aktiengesellschaft Method, Terminal and radiocommunications system for transmission of group messages
GB2380366B (en) 2001-08-14 2003-11-12 Samsung Electronics Co Ltd Method for transmitting and receiving common information in a cdma communication system hsdpa service
GB2371179B (en) * 2001-09-28 2004-01-07 Ericsson Telefon Ab L M Cell updates in a UMTS terrestrial radio access network
DK1446970T3 (en) * 2001-11-03 2010-04-12 Ericsson Telefon Ab L M Method and node for setting up a connection in a telecommunications network
DE10159637C1 (en) * 2001-12-05 2003-08-07 Siemens Ag Method for assigning transmission channels in a mobile radio cell for a multicast service
AU2002219235A1 (en) 2002-01-04 2003-07-15 Nokia Corporation Method and device for downlink packet access signalling for time division duplex (tdd) mode of a wireless communication system
KR100970206B1 (en) 2002-01-08 2010-07-16 노키아 코포레이션 Method and apparatus for cell-specific HSDPA parameter configuration and reconfiguration
US7068636B2 (en) 2002-06-21 2006-06-27 Asustek Computer Inc. Method for determining RLC entity re-establishment during SRNS relocation
DK1529404T3 (en) 2002-08-01 2010-08-23 Interdigital Tech Corp Procedure for coordinating search events on a common search channel
CN1476259A (en) * 2002-08-16 2004-02-18 ��������ͨ�ż����о����޹�˾ Multi media broadcasting and method of organizing broadcasting business call finding
GB0225903D0 (en) 2002-11-07 2002-12-11 Siemens Ag Method for uplink access transmissions in a radio communication system
US7649865B2 (en) * 2002-11-08 2010-01-19 Nokia Corporation Service-activation based state switching
KR20040061705A (en) * 2002-12-31 2004-07-07 삼성전자주식회사 Method for transmitting the paging message of multimedia broadcast/multicast service in mobile communication system
US20040157626A1 (en) * 2003-02-10 2004-08-12 Vincent Park Paging methods and apparatus
CN1527622A (en) * 2003-03-07 2004-09-08 �ʼҷ����ֵ��ӹɷ����޹�˾ Method and apparatus for up-link hold-in of point-to-point coordinate communication in radio communication network
US7406314B2 (en) 2003-07-11 2008-07-29 Interdigital Technology Corporation Wireless transmit receive unit having a transition state for transitioning from monitoring to duplex connected states and method
WO2005020474A1 (en) 2003-08-22 2005-03-03 Samsung Electronics Co., Ltd. Cell reselection method for receiving packet data in a mobile communication system supporting mbms
RU2316895C2 (en) * 2003-08-22 2008-02-10 Самсунг Электроникс Ко., Лтд. Method for repeated selection of cells for receiving packet data in mobile communications system with mbms support
CA2534279A1 (en) * 2003-08-29 2005-03-10 Samsung Electronics Co., Ltd. Apparatus and method for controlling operational states of medium access control layer in a broadband wireless access communication system
DE60318056T2 (en) 2003-09-29 2008-08-14 Research In Motion Ltd., Waterloo A method for handling cell update during reconfiguration in a subscriber device of a UMTS network and subscriber device therefor
KR101042803B1 (en) * 2003-11-06 2011-06-20 삼성전자주식회사 Paging method for a mbms service in a mobile communication system
US7590080B2 (en) * 2003-11-07 2009-09-15 Interdigital Technology Corporation Channel assignment to maximize battery efficiency in wireless systems
CN1278532C (en) * 2004-04-15 2006-10-04 华为技术有限公司 Statistic method for multimedium broadcast and group broadcast service user number
US7636331B2 (en) * 2004-04-19 2009-12-22 Lg Electronic Inc. Transmission of control information in wireless communication system
US7354793B2 (en) * 2004-08-12 2008-04-08 Micron Technology, Inc. Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element
SE0402321D0 (en) 2004-09-23 2004-09-23 Ericsson Telefon Ab L M Method in a communication system
EP1795039B1 (en) * 2004-09-29 2016-12-21 Core Wireless Licensing S.a.r.l. Active set update (asu) with high speed downlink shared channel (hs-dsch) information
US20060154980A1 (en) * 2005-01-11 2006-07-13 Finley John W Improved cox-2 inhibitory compositions and therapeutic regimen
US7529211B2 (en) * 2005-04-04 2009-05-05 Motorola, Inc. Method and apparatus for managing paging related delays
US8094595B2 (en) * 2005-08-26 2012-01-10 Qualcomm Incorporated Method and apparatus for packet communications in wireless systems
GB2435157B (en) * 2006-02-10 2011-01-19 Nokia Corp Communicating Data to User Equipment Outside of Dedicated Channel State
ES2324736T3 (en) * 2006-03-28 2009-08-13 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR THE DISCONTINUOUS RECEPTION OF A TERMINAL CONNECTED IN A MOBILE COMMUNICATION SYSTEM.
US8862160B2 (en) * 2006-07-14 2014-10-14 Qualcomm Incorporated Method and apparatus for paging terminals in an OFDM system for achieving both fast paging response and low power consumption by utilizing a multi-step paging process
EP2062453B1 (en) 2006-09-13 2017-11-08 Telefonaktiebolaget LM Ericsson (publ) Method for mapping logical channel on shared channel
KR100938754B1 (en) * 2006-10-30 2010-01-26 엘지전자 주식회사 Data transmission method and data receiving method using discontinuous reception
WO2008054159A2 (en) 2006-11-01 2008-05-08 Lg Electronics Inc. Method of transmitting and receiving paging messages in a wireless communication system
WO2008053344A2 (en) * 2006-11-03 2008-05-08 Nokia Corporation Control signaling for multimedia broadcast multicast service point-to-multi point over high speed downlink packet access information
US8515478B2 (en) 2006-12-18 2013-08-20 Qualcomm Incorporated Fast state transition for a UE with reconfiguration over paging
KR101155237B1 (en) * 2007-01-10 2012-06-13 엘지전자 주식회사 Method for network's transmitting data in mobile communication
US9094976B2 (en) * 2007-03-08 2015-07-28 Innovative Sonic Limited Method and related apparatus for enhancing resource utility rate in a wireless communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324775A (en) * 2002-04-25 2003-11-14 Lg Electronics Inc Apparatus and method for processing paging for wcdma terminal
US20060291501A1 (en) * 2005-06-24 2006-12-28 Nicol Christopher J Reconfigurable communications circuit operable with data channel and control channel
US8744496B2 (en) * 2007-02-05 2014-06-03 Interdigital Technology Corporation Paging over a high-speed downlink shared channel
US9264990B2 (en) * 2007-02-05 2016-02-16 Interdigital Technology Corporation Paging over a high-speed downlink shared channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220104173A1 (en) * 2019-11-18 2022-03-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication

Also Published As

Publication number Publication date
RU2481743C2 (en) 2013-05-10
TWI504186B (en) 2015-10-11
US9264990B2 (en) 2016-02-16
JP5085663B2 (en) 2012-11-28
WO2008097593A3 (en) 2009-02-12
KR20140069376A (en) 2014-06-09
TW200835205A (en) 2008-08-16
JP6049655B2 (en) 2016-12-21
JP2013017217A (en) 2013-01-24
KR20140135266A (en) 2014-11-25
AR065177A1 (en) 2009-05-20
CN103037509A (en) 2013-04-10
EP2658327B1 (en) 2020-04-08
KR101479383B1 (en) 2015-01-05
EP2658327A1 (en) 2013-10-30
CN103037509B (en) 2017-06-09
AU2008214331B2 (en) 2011-11-10
IL200243A0 (en) 2010-04-29
US20140153467A1 (en) 2014-06-05
MY158156A (en) 2016-09-15
US8744496B2 (en) 2014-06-03
BRPI0806449B1 (en) 2020-10-06
KR101127716B1 (en) 2012-03-22
AU2008214331A1 (en) 2008-08-14
EP2127444A2 (en) 2009-12-02
MX2009008326A (en) 2010-02-18
KR101522133B1 (en) 2015-05-20
CA2677551C (en) 2015-07-14
WO2008097593A2 (en) 2008-08-14
KR20090119877A (en) 2009-11-20
IL225186A (en) 2015-06-30
BRPI0806449B8 (en) 2021-08-17
KR101574038B1 (en) 2015-12-02
BRPI0806449A2 (en) 2011-09-06
JP2017077004A (en) 2017-04-20
KR20120043125A (en) 2012-05-03
JP2014168275A (en) 2014-09-11
JP2010518747A (en) 2010-05-27
TWM341354U (en) 2008-09-21
KR101574045B1 (en) 2015-12-02
KR20100016105A (en) 2010-02-12
US20080207229A1 (en) 2008-08-28
TW201538014A (en) 2015-10-01
HK1139272A1 (en) 2010-09-10
RU2009133327A (en) 2011-03-20
KR20140008443A (en) 2014-01-21
TW201220750A (en) 2012-05-16
CA2677551A1 (en) 2008-08-14
JP2016076992A (en) 2016-05-12
JP6055072B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
US8744496B2 (en) Paging over a high-speed downlink shared channel
US9918257B2 (en) Method and apparatus for cell update while in an enhanced Cell—FACH state
US20080144593A1 (en) Method of improving continuous packet connectivity in a wireless communications system and related apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE