US20160095507A1 - Laser video endoscope - Google Patents
Laser video endoscope Download PDFInfo
- Publication number
- US20160095507A1 US20160095507A1 US14/966,151 US201514966151A US2016095507A1 US 20160095507 A1 US20160095507 A1 US 20160095507A1 US 201514966151 A US201514966151 A US 201514966151A US 2016095507 A1 US2016095507 A1 US 2016095507A1
- Authority
- US
- United States
- Prior art keywords
- probe
- hand piece
- endoscope
- laser
- approximately
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00103—Constructional details of the endoscope body designed for single use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00165—Optical arrangements with light-conductive means, e.g. fibre optics
- A61B1/00167—Details of optical fibre bundles, e.g. shape or fibre distribution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/042—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/15—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
- A61B3/156—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
Definitions
- This invention relates in general to a medical laser video endoscope and more particularly to one in which the operating probe can be economically disposed of after each use and/or can have a relatively small gage size.
- Laser video endoscopes are used in glaucoma, retinal and vitrectomy operations, and some conventional endoscopes can be reused after autoclaving or other sterilization. Reuse occurs in large part because of the expense of the endoscope. The most significant expense factor is the image guide which has a large number of micron size optical fibers. For example, for an endoscope employing 17,000 fibers to provide a 17,000 pixel image (a 17 k endoscope) image guide alone can cost about $340.00, while the price of a fully assemble 17 k endoscope can be in the $2,000 range. This is a major incentive for the re-use of the endoscope after sterilization rather than disposing of the endoscope after each procedure.
- the expense factor means that as a practical matter the endoscope will be reused after sterilization rather than disposed of. However, there is greater security from infection if the probe of the endoscope can be disposed of after each usage instead of being subject to the possibilities of human error in the sterilization process.
- Another feature of conventional endoscopes is employing a probe passing through a 20 gauge tissue incision during ophthalmological surgery.
- a 20 gauge incision has been a standard in the art of ophthalmological surgery and is used for entry by instruments employed during an ophthalmological surgical routine.
- This sleeve such as a trocar sleeve is a tube implanted in a body wall which permits insertion and removal of a surgical instrument without touching the body wall tissue.
- the value of the 23 gauge sleeve is that it involves a smaller incision and therefore quicker recovery time.
- the 23 gauge sleeve provides an opening smaller than the 20 gauge incision and thus requires the probes thereof to be smaller in diameter so that they can fit through the 23 gauge sleeve.
- Exemplary embodiments of the present invention address at least some of the drawbacks of conventional endoscopes by providing endoscope designs for which the cost is reasonable enough to permit and encourage disposal of the probe after each use rather than have recourse to sterilization.
- exemplary embodiments of the present invention address at least some of the drawbacks of conventional endoscopes by providing endoscope designs which include a probe that can be inserted through, for example, a 23 gauge sleeve and can maintain sufficient robustness so as to minimize the amount of breaking.
- Exemplary embodiments of the present invention provide endoscope designs, which permit disposal of the probe after each use and/or include a probe that can be inserted through, for example, a 23 gauge sleeve, while maintaining a probe look and feel familiar to surgeons and including operating characteristics of imaging, illumination, and laser oblation.
- a laser video endoscope comprises a laser guide, an illumination guide and an image guide, which can be fiber optical guides extending through a probe portions of the endoscope and through a hand piece that supports the probe portion which can protrude from the distal end of the hand piece.
- the hand piece includes one or more channels having a distal end at the distal end of the hand piece.
- the one or more channels can be configured to accommodate at least one of the laser guide, an illumination guide and/or an image guide extending from the probe portion into the hand piece.
- the hand piece includes a first channel having a distal end at the distal end of the hand piece such that an illumination guide and a laser guide can continue to extend from the probe portion to an illumination source and a laser energy source, respectively, via the first channel of the hand piece and through a relatively long flexible optical fiber cable connected to the hand piece at a proximal end of the first channel.
- the hand piece includes a second channel having a distal end at the distal end of the hand piece such that an optical image guide extends from the probe portion through the second channel of the hand piece and ends at a proximal end of a second channel.
- the proximal end of the second channel is at the proximal end of the hand piece, and the proximal end of the hand piece is configured for removable attachment to a camera assembly such that the camera assembly can be optically coupled to the end of the optical fiber image guide.
- Exemplary embodiments of the present invention provide an endoscope system comprising: a laser video endoscope including a hand piece supporting a probe, with a laser guide, an illumination guide and an image guide extending through the probe and the hand piece; and a camera assembly, which can be removably attached directly to the hand piece and has an input optically coupled to an end of the image guide extending though the hand piece.
- the camera assembly includes an output having an electrical cable extended from the camera assembly to transmit an electrical image signal from the camera assembly to an image processor, an image display device, or any site where an image can be provided for the surgery.
- camera assembly and its electrical cable can be uncoupled from the hand piece and reused in a plurality of endoscopic routines, while the laser video endoscope including the probe portion and the hand piece can be disposed of after each medical routine thereby providing assurance of an antiseptic procedure.
- Exemplary embodiments of the present invention provide laser video endo scopes for use in ophthalmology operations, the endoscopes including a probe portion which, for example, can be passed through a 23 gauge sleeve, such as a trocar sleeve.
- a laser video endoscope includes a, for example stainless steel, probe having a distal portion and a proximal portion, such that the proximal portion extends from the distal end of a hand piece of the laser video endoscope, and the outside diameter (OD) of the proximal portion as measured at least near the distal end of the hand piece is greater than the OD of the distal portion.
- the distal portion has an OD less than 25 mils (thousandths of an inch), or about 0.64 mm, and about 2 mils, or 0.05 mm, wall thickness, such that at least the distal portion of the probe can be inserted through a 23 gauge sleeve.
- the proximal portion of the probe, exiting from the hand piece has an OD of about 31 mils, or 0.79 mm, and about 5 mil, or 0.13 mm, wall thickness.
- the distal portion has a length of about 710 mils, or 18 mm, at OD of less than about 25 mils, or 0.64 mm.
- a distal portion of a probe of a laser video endoscope includes: a laser guide comprising a laser fiber disposed within the inner diameter of the distal portion of the probe; an image guide comprising an image bundle, which has a plurality of fibers arranged in an essentially circular configuration, disposed within the inner diameter of the distal portion of the probe not occupied by the laser fiber; and an illumination guide comprising an illumination bundle, which has a plurality of fibers filling the remaining of the inner diameter of the distal portion of the probe not occupied by the laser fiber and the image bundle.
- the inner diameter of the distal portion of the probe is about 21 mils, or 0.54 mm
- the laser fiber of the laser guide has an OD of about 100 microns, or 0.1 mm
- the image bundle of the image guide has about 6,000 fibers arranged in an essentially circular configuration having an OD of about 14 mils, or 0.36 mm
- the illumination bundle of the illumination guide has about 210 fibers filling the remaining 21 mils, or 0.54 mm, inner diameter of the distal portion of the probe not occupied by the laser fiber and the image bundle.
- Exemplary embodiments of the present invention provide endoscope designs where a laser fiber can selectively accommodate input from laser energy sources having different wavelengths, such as for example a green laser having a wavelength of 532 nanometers.
- FIG. 1 is a schematic illustration of a conventional endoscope design.
- FIG. 2 is a schematic illustration of an endoscope system according to an exemplary embodiment of the present invention.
- FIG. 3 is a longitudinal view of a camera assembly of an endoscope system according to an exemplary embodiment of the present invention.
- FIG. 4 is a partial longitudinal sectional view of a camera assembly including exemplary implementation of camera assembly components according to an exemplary embodiment of the present invention.
- FIG. 5A and FIG. 5B are sectional views of a hand piece of an endoscope according to an exemplary embodiment of the present invention.
- FIG. 6 is a schematic illustration of an endoscope system, including a probe, a hand piece, and a camera assembly, according to an exemplary embodiment of the present invention.
- FIG. 7 is an illustration of a distal end of a hand piece and a probe according to an exemplary embodiment the present invention.
- FIG. 8 is a cross sectional view of a distal portion of the probe of an exemplary embodiment illustrated in FIG. 7 .
- FIGS. 9A, 9B, 9C and 9D are multiple views illustrating a distal portion of a hand piece according to an exemplary embodiment of the present invention.
- FIGS. 10A, 10B, 10C and 10D are multiple views illustrating a proximal portion of a hand piece according to an exemplary embodiment of the present invention.
- FIG. 11 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, of an endoscope according to an exemplary embodiment of the present invention.
- FIG. 12 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, showing an exemplary configuration of a laser guide, an illumination guide and an image guide, of an endoscope according to an exemplary embodiment of the present invention.
- FIG. 13 is a sectional view of an endoscope system including probe, hand piece and camera system, according to an exemplary embodiment of the present invention.
- FIG. 14 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, of an endoscope according to another exemplary embodiment of the present invention.
- FIG. 15 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, showing an exemplary configuration of a laser guide, an illumination guide and an image guide, of an endoscope according to another exemplary embodiment of the present invention.
- FIG. 16 is a sectional view of an endoscope system including probe, hand piece and camera system, according to another exemplary embodiment of the present invention.
- FIG. 17 is a schematic diagram illustrating components of an endoscopy system according to exemplary embodiments of the present invention including illumination source, laser energy source, and image processing and/or display device interface.
- FIG. 1 illustrates a configuration of a conventional laser video endoscope 10 having an operating probe 24 , a hand piece 22 , and a cable 18 which carries a laser guide 12 , an illumination guide 14 and an image guide 16 .
- These are all fiber optic guides which extend from the distal end of the probe 24 to the terminals 12 C, 14 C and 16 C, respectively. Distal of the trifurcation zone 20 , the fiber optic guides are combined geometrically to provide a minimum diameter cable.
- a laser video endoscope according to an exemplary embodiment of the present invention includes a hand piece 32 , a probe 30 extending from the distal end of the hand piece 32 , and a camera assembly 34 removably coupled to the proximal end of the hand piece 32 .
- the camera assembly 34 is directly connected to the proximal end of the hand piece 32 through engagement of a nose 54 of the hand piece 32 and recess 52 of the camera assembly 34 .
- probe 30 is illustrated as an essentially straight, other probes, such as curved probes can be interchangeably used without departing from the scope of the exemplary embodiments of the present invention described herein.
- a laser guide comprising fiber 40 , an illumination guide comprising fibers 42 , and an image guide comprising fibers 35 extend form distal end of probe 30 into hand piece 32 .
- the proximal end of probe 30 can be fixedly attached to distal end of hand piece 32 , for example by being cemented together by a known process.
- the hand piece 32 contains channels 55 , 56 and 57 .
- the hand piece 32 separates the image guide fibers 37 , laser guide fiber 40 , and illumination guide fibers 42 entering channel 55 at the distal end of hand piece 32 from the proximal end of probe 30 , such that only image guide fibers 37 extend through channel 57 , while the laser guide fiber 40 and the illumination guide fibers 42 extend through channel 56 .
- Channel 57 terminates at surface 58 at the proximal end of hand piece 32 and is used to optically couple the image guide fibers 37 extending from distal end of probe 30 to the lens or input optics of the camera assembly 34 .
- Channel 56 terminates at hand piece surface 59 and is used to accommodate the laser guide fiber 40 and the illumination guide fibers 42 extending from the distal end of probe 30 to be carried proximately by the cable 38 .
- channels 56 and 57 extend from channel 55 at a non-zero angle with respect to ache other, as shown in the example of FIG. 5A where channels 56 and 15 extend (or meet) at an acute angle.
- image guide fibers 37 which extend through the probe 30 and hand piece 32 carry the image and can be removably coupled directly to the optics of the camera assembly 34 .
- the distal end of the camera assembly 34 has a recess 52 which removably engages a nose 54 of the hand piece 32 .
- Positioning of the camera assembly 34 at the hand piece 32 can permit a standard optical coupling of the image output at the proximal end of the optical image guide fibers 37 to the optics of camera assembly 34 .
- camera assembly 34 can provide an electrical image that is transmitted proximally along the electrical cable 36 connected at the output of camera assembly 34 .
- the camera may be any one of a number of known types, which include for example optical and/or image processing elements, and may be specially designed to fit the geometry of the camera assembly to ensure usable image input from image guide fibers 37 at the proximal end of hand piece 32 .
- an optical guide cable 38 extends in the proximal direction from the hand piece 32 and carries the laser guide fiber 40 and the illumination guide fibers 42 for conveying the laser energy and the illumination energy, respectively, to the probe 30 .
- cable 38 extends in the proximal direction to a bifurcation junction 44 where the laser guide fiber 40 and illumination guide fibers 42 are separated and terminated at terminals 40 C and 42 C for connection to sources of laser energy and illumination energy, respectively.
- image carrying electrical cable 36 terminating at terminal 36 C can be about as long as the optical guide cable 38 , and each cable 36 and 38 can be as long as required for an installation.
- the resent invention it becomes possible to terminate image guide fibers 37 at the proximal end of hand piece 32 due to direct optical coupling of image guide fibers 37 to the optics of camera assembly 34 as provided by hand piece 32 .
- the camera assembly 34 can be uncoupled from the hand piece 32 so that the relatively expensive camera assembly can be reused. Also, by positioning the camera assembly 34 at the hand piece 32 , the lengthy and expensive optical image guide proximal of the hand piece 32 is avoided.
- laser video endoscopes can eliminate the conventional costly and lengthy image fibers such as those extending from the hand piece 22 to terminal 16 C as shown in FIG. 1 .
- the image can be carried to terminal 36 C in an electric cable 36 proximally of the camera assembly 34 coupled directly to hand piece 32 .
- a relatively long electrical cable 36 can extend from proximal end of camera assembly 34 to a terminal 36 C which is coupled to an appropriate image processing or display mechanism, for example a video screen so that the operating surgeon can view the image during the course of manipulating the probe 30 .
- camera assembly 34 can include a laser filter 46 for example to protect the camera film from laser energy and to permit the surgeon to observe the operation when laser pulses are firing.
- a filter for multiple wavelength lasers can be present, such that for example 810 nm and 532 nm laser can be used.
- camera assembly 34 can include a manually operated spring latch (not shown) to facilitate readily mounting the camera assembly 34 to the hand piece 32 and readily removing the camera assembly 34 from the hand piece 32 .
- the camera assembly 34 can include a focus ring 50 to assure adequate focus of the image provided onto the image receptors of the camera assembly 34 positioned at the proximal end of image guide fibers 37 which extends from the distal end of the probe 30 and through channels 55 and 57 of the hand piece 32 .
- a variant on exemplary embodiments of the present invention as illustrated for example in FIGS. 2 through 6 is an arrangement in which the uncoupling at the proximal end of the hand piece 32 will uncouple not only the camera assembly 34 at surface 58 , but also the cable 38 , for example at or near surface 59 , so that only the probe 30 and the hand piece 32 would be disposed of between each operation.
- the image guide 37 within the probe 30 and hand piece 32 can be a fiber optic bundle; however, other exemplary configurations can provide an image guide function, such as for example a gradient index lens, often referred to as a GRIN lens.
- a laser video endoscope includes a probe 78 , and a hand piece 74 (partially illustrated).
- the probe 78 has a proximal portion 70 and a distal portion 72 such that the proximal portion 70 extends from the distal end 73 of hand piece 74 of the laser video endoscope, and the outside diameter (OD) of the proximal portion 70 as measured at least near the distal end 73 of hand piece 74 is greater than the OD of the distal portion 72 .
- a cross sectional view of distal portion 72 of probe 78 illustrates a configuration of image guide comprising fibers 86 , laser guide comprising fiber 88 , and illumination guide comprising fibers 80 within probe 78 .
- image guide 86 and laser guide 88 are arranged such that OD of fibers of image guide 86 and OD of fiber of laser guide 88 do not intersect or overlap at any cross section of distal portion 72 of probe 78 .
- FIG. 8 a cross sectional view of distal portion 72 of probe 78 according to an exemplary implementation of the embodiments of the present invention illustrates a configuration of image guide comprising fibers 86 , laser guide comprising fiber 88 , and illumination guide comprising fibers 80 within probe 78 .
- image guide 86 and laser guide 88 are arranged such that OD of fibers of image guide 86 and OD of fiber of laser guide 88 do not intersect or overlap at any cross section of distal portion 72 of probe 78 .
- fibers of illumination guide 80 fill the remaining volume of distal portion 72 of probe 78 such that OD of fibers of image guide 86 and OD of fiber of laser guide 88 do not intersect or overlap OD of any fiber of illumination guide 80 at any cross section of distal portion 72 of probe 78 .
- the proximal portion 70 can have between about 20 and 22 gauge (35 and 31 mils, or 0 . 89 and 0.79 mm) outer diameter and about a 5 mil, or 0.13 mm, wall thickness.
- the probe can be stainless steel.
- the proximal portion 70 extends into the hand piece 74 .
- there is a diameter having sufficient robustness to contribute to minimizing the likelihood of breaking at the juncture between distal end 73 of hand piece 74 and the proximal end of probe 78 .
- the length of the proximal portion 70 of the probe 78 can be about 120 mils, or 3 mm, and the length of the distal portion 72 can be about 710 mils, or 18 mm, for a probe 78 length of about 830 mils, or 21 mm.
- the distal portion 72 of the probe 78 can have OD of about 25 mils, or 0.64 mm, or less, and can extend through a 23 gauge sleeve to provide illumination and laser energy delivery within the eye during a surgical procedure and to transmit image from the eye.
- This distal portion 72 can have a wall thickness of about 2 mils, or 0.05 mm, and a length of about 710 mils, or 18 mm. The 710 mil, or 18 mm, length is long enough for most applications and short enough to minimize breaking.
- exemplary length described herein for distal portion 72 contributes to the robustness of probe 78
- the dimensional values can be varied slightly to provide a probe that can be used with other small size sleeves.
- Probe 78 having OD of about 25 mil, or 0.64 mm, according to exemplary embodiments of the present invention can meet the need of providing enough light and enough laser energy while maintaining an adequate image guide by providing trade-off of dimensions for each of respective fibers transmitting illumination light, laser energy, and images as follows.
- image guide 86 comprises a bundle of about 6,000 fibers arranged in an essentially circular cross-sectional configuration with OD of about 14 mils, or 0.36 mm
- laser guide 88 comprises a fiber with OD of about a 100 micron, or 0.1 mm.
- Image guide 86 and laser guide 88 are contained within the distal portion 72 of the probe 78 having OD of approximately 25 mils, or 0.64 mm, wall thickness of approximately 2 mils, or 0.05 mm, and an inner diameter of approximately 21 mils, or 0.54 mm, with fibers of illumination guide 80 filling the remaining volume of distal portion 72 of probe 78 .
- probe 78 can be made robust enough to minimize breakage by a combination of: (a) rigid construction for probe 78 wall, (b) two-diameter design for proximal portion 70 and distal portion 72 and (c) limited length for distal portion 72 .
- a particularly advantageous configuration according to an exemplary implementation of probe 78 includes a combination of: (a) probe 78 having a metallic wall, (b) proximal portion 70 having OD of 35 mil and wall thickness of 5 mils that extends through the hand piece 74 , and distal portion 72 having OD of 25 mil and wall thickness of 2 mils, and (c) distal portion 72 having a length of no more than 710 mils.
- a design according to exemplary embodiments of the present invention as illustrated in FIGS. 7 and 8 can provides sufficient illumination to illuminate a 90 degree field.
- One of the compromises made in order to get a small diameter probe is to reduce the laser guide 88 fiber diameter from 200 microns to 100 microns.
- a 532 nanometer (nm) laser source, or a green laser can be advantageously provide a desirable laser energy.
- output of a 532 nm laser is more coherent and less divergent than the 810 nm laser.
- the use of a 532 nm laser in combination with the reduced size of the laser fiber 88 provides a reasonable amount of laser energy for the ophthalmological operations involved.
- the illumination guide 80 can be reduced from approximately 220 fibers to about 70 fibers thereby materially contributing to a smaller diameter of probe 78 .
- Exemplary embodiments of the present invention have been described in connection with an implementation that permits use with a 23 gauge sleeve. It should be understood that variations could be made to adapt the design described to use with sleeves having variations on the 23 gauge or to be used without a sleeve.
- the exemplary embodiments of the present invention describe combinations of a number of features and trade-offs designed to work together to provide an operable and useful laser video endoscope having a small probe that provides access for eye operations with minimum trauma and reduced healing time.
- an exemplary embodiment of the present invention provides a hand piece design comprising a distal portion 90 and a proximal portion 100 fixedly assembled to form hand piece, such as hand piece 110 as illustrated for example in FIG. 11 .
- distal portion 90 includes an opening 92 terminating at surface 94 of the distal end or portion 90 , and an opening 93 terminating at the proximal end of portion 90 .
- Opening 92 is configured for accommodating the proximal end of a probe, such as proximal end 114 of probe 112 as illustrated for example in FIG.
- Distal portion 90 contains channel 95 and defines at least a first portion 99 of the inner wall of channel 96 by a protruding section 91 , which can also serve as a guide for holding the hand piece.
- Proximal portion 100 contains channel 97 , which extends from surface 103 of distal end 102 and terminates at surface 105 of the proximal end of portion 100 .
- Proximal portion 100 defines at least a second portion 109 of the inner wall of channel 96 .
- hand piece 120 comprising distal portion 90 and proximal portion 100 separates the image guide fibers 37 , laser guide fiber 40 , and illumination guide fibers 42 entering channel 95 at the distal end of distal portion 90 from the proximal end 114 of probe 112 , such that only image guide fibers 37 extend through channel 97 , while the laser guide fiber 40 and the illumination guide fibers 42 extend through channel 96 .
- Channel 97 terminates at surface 105 at the proximal end of proximal portion 100 and is used to optically couple the image guide fibers 97 extending from distal end of probe 112 to the lens or input optics 130 of the camera assembly 134 .
- Channel 96 terminates at exterior side surface 101 of proximal portion 100 and is used to accommodate the laser guide fiber 40 and the illumination guide fibers 42 extending from the distal end of probe 112 to be carried proximately by a cable, such as cable 38 .
- camera assembly 134 can provide an electrical image that is transmitted proximally along the electrical cable 136 connected at the output of camera assembly 134 .
- a connection 138 of camera assembly 134 with hand piece 110 can comprise, for example, a snap fit connection achieved by physical characteristics of the proximal end of proximal portion 100 and the distal end of camera assembly 135 to facilitate readily mounting the camera assembly 134 to the hand piece 110 and readily removing the camera assembly 134 from the hand piece 110 .
- the camera assembly 134 can include a focus ring 150 to assure adequate focus of the image provided onto the image receptors of the camera assembly 134 positioned at the proximal end of the image guide fibers 37 which extends from the distal end of the probe 30 and through channels 95 and 97 of the hand piece 110 .
- hand piece 140 comprising distal portion 90 and proximal portion 200 separates the image guide fibers 37 , laser guide fiber 40 , and illumination guide fibers 42 entering channel 95 at the distal end of distal portion 90 from the proximal end 114 of probe 112 , such that only image guide fibers 37 extend through channel 207 , while the laser guide fiber 40 and the illumination guide fibers 42 extend through channel 96 .
- channel 207 terminates at surface 205 at distal end of a cavity 220 having an opening 222 at proximal end face 105 of portion 200 .
- Channel 207 is used to optically couple the image guide fibers 97 extending from distal end of probe 112 to the lens or input optics 165 disposed in a protruding portion 162 , which extends distally from surface 163 of the camera assembly 164 into cavity 220 of hand piece 140 .
- Channel 96 terminates at exterior side surface 101 of proximal portion 200 and is used to accommodate the laser guide fiber 40 and the illumination guide fibers 42 extending from the distal end of probe 112 to be carried proximately by a cable, such as cable 38 .
- camera assembly 164 can provide an electrical image that is transmitted proximally along the electrical cable 166 connected at the output of camera assembly 164 .
- a connection 168 of camera assembly 164 with hand piece 140 can comprise, for example, a snap fit connection achieved when protruding portion 162 is inserted into cavity 220 to facilitate readily mounting the camera assembly 164 to the hand piece 140 and readily removing the camera assembly 164 from the hand piece 140 .
- connection 168 allows hand piece 140 and probe 112 to be axially rotated (about axis A-A) with respect to camera assembly 164 .
- image output from the image guide 37 of a probe 112 can be properly oriented in the camera assembly 164 for display and/or further image processing output via electrical cable 166 connected at the output of camera assembly 164 .
- Such desired orientation of the image for display and/or further image processing can be performed through electronic image processing, or optically, using components disposed within camera assembly 164 or connected to cable 166 at output of camera assembly 164 , or any combination thereof.
- the hand piece 140 is connected to the camera assembly 164 no manual orientation of probe 112 with respect to subject such as an operating site (not shown) at distal end of probe 112 is needed.
- Endoscope user can rotate probe 112 with respect to the subject by rotating hand piece 140 , which rotates with respect to the camera assembly 164 , without disrupting the image of the subject, which may be particularly advantageous when using a curved endoscopes.
- the camera assembly 164 can include a focus ring 160 to assure adequate focus of the image provided onto the image receptors of the camera assembly 164 positioned at the proximal end of the image guide fibers 37 which extends from the distal end of the probe 30 and through channels 95 and 97 of the hand piece 110 .
- an exemplary embodiment of the present invention provides a system 1000 comprising a console 170 and an endoscope 500 including camera assembly 179 , hand piece 177 and probe 175 which can be configured and constructed in various combinations of exemplary implementations of camera assembly, hand piece, and probe as described herein with reference to FIGS. 2 through 16 .
- console 170 can comprise one or any combination of multiple laser energy sources 172 and/or 178 for connection to laser guide fiber 40 via, for example uniquely configured connectors 152 C and/or 158 C respectively, one or more illumination light sources 174 for connection to illumination guide fibers 42 via connector 154 C, and one or more image display or image processing interfaces 176 for connection to image guide fibers 37 via connector 156 C.
- laser energy source 172 can be a 532 nm laser source which can be connected to endoscope 500 whose probe is configured as in the example of FIGS.
- laser energy source 178 can be a 810 nm laser source which can be connected to endoscope 500 whose probe is configured as in the example of FIG. 2 , FIG. 13 , or FIG. 16 (notably, any of the hand pieces in FIG. 2, 13 or 16 can be configured with a probe of FIGS. 7 and 8 ).
- image output from image guide fibers 37 of probe 175 can be oriented in the camera assembly 179 using components disposed within camera assembly 179 , components disposed within image processing interface 176 , and/or other components of console 170 , so that when hand piece 177 is connected to camera assembly 179 no manual image orientation is needed and the user can rotate probe 175 with respect to camera assembly 179 without disrupting the image output by manipulating hand piece 177 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Ophthalmology & Optometry (AREA)
- Vascular Medicine (AREA)
- Endoscopes (AREA)
- Laser Surgery Devices (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 13/084,789 filed on Apr. 12, 2011, and U.S. patent application Ser. No. 13/314,371 filed on Dec. 8, 2011, which is a continuation-in-part of U.S. patent application Ser. No. 12/779,214 filed on May 13, 2010, the entire disclosures of which are hereby incorporated by reference.
- Other prior applications are U.S. Pat. No. 5,121,740 issued on Jun. 16, 1992 and U.S. Pat. No. 6,997,868 issued on Feb. 14, 2006, the entire disclosures of which are incorporated herein by reference.
- This invention relates in general to a medical laser video endoscope and more particularly to one in which the operating probe can be economically disposed of after each use and/or can have a relatively small gage size.
- Laser video endoscopes are used in glaucoma, retinal and vitrectomy operations, and some conventional endoscopes can be reused after autoclaving or other sterilization. Reuse occurs in large part because of the expense of the endoscope. The most significant expense factor is the image guide which has a large number of micron size optical fibers. For example, for an endoscope employing 17,000 fibers to provide a 17,000 pixel image (a 17 k endoscope) image guide alone can cost about $340.00, while the price of a fully assemble 17 k endoscope can be in the $2,000 range. This is a major incentive for the re-use of the endoscope after sterilization rather than disposing of the endoscope after each procedure.
- The expense factor means that as a practical matter the endoscope will be reused after sterilization rather than disposed of. However, there is greater security from infection if the probe of the endoscope can be disposed of after each usage instead of being subject to the possibilities of human error in the sterilization process.
- Another feature of conventional endoscopes is employing a probe passing through a 20 gauge tissue incision during ophthalmological surgery. A 20 gauge incision has been a standard in the art of ophthalmological surgery and is used for entry by instruments employed during an ophthalmological surgical routine.
- However, a smaller 23 gauge sleeve has been employed more recently. This sleeve, such as a trocar sleeve is a tube implanted in a body wall which permits insertion and removal of a surgical instrument without touching the body wall tissue. The value of the 23 gauge sleeve is that it involves a smaller incision and therefore quicker recovery time. The 23 gauge sleeve provides an opening smaller than the 20 gauge incision and thus requires the probes thereof to be smaller in diameter so that they can fit through the 23 gauge sleeve.
- One problem is that a 23 gauge probe is so small in diameter (25 mils, or 0.635 mm) that it is fragile and tends to break. Most breakage occurs at the juncture between the hand piece and the probe. This breakage problem becomes a major concern when using a laser video endoscope because of the cost of these endoscopes.
- Exemplary embodiments of the present invention address at least some of the drawbacks of conventional endoscopes by providing endoscope designs for which the cost is reasonable enough to permit and encourage disposal of the probe after each use rather than have recourse to sterilization.
- Also, exemplary embodiments of the present invention address at least some of the drawbacks of conventional endoscopes by providing endoscope designs which include a probe that can be inserted through, for example, a 23 gauge sleeve and can maintain sufficient robustness so as to minimize the amount of breaking.
- Exemplary embodiments of the present invention provide endoscope designs, which permit disposal of the probe after each use and/or include a probe that can be inserted through, for example, a 23 gauge sleeve, while maintaining a probe look and feel familiar to surgeons and including operating characteristics of imaging, illumination, and laser oblation.
- According to an exemplary embodiment of the present invention, a laser video endoscope comprises a laser guide, an illumination guide and an image guide, which can be fiber optical guides extending through a probe portions of the endoscope and through a hand piece that supports the probe portion which can protrude from the distal end of the hand piece.
- According to an exemplary implementation of the embodiments of the present invention, the hand piece includes one or more channels having a distal end at the distal end of the hand piece. The one or more channels can be configured to accommodate at least one of the laser guide, an illumination guide and/or an image guide extending from the probe portion into the hand piece.
- According to another exemplary implementation of the embodiments of the present invention, the hand piece includes a first channel having a distal end at the distal end of the hand piece such that an illumination guide and a laser guide can continue to extend from the probe portion to an illumination source and a laser energy source, respectively, via the first channel of the hand piece and through a relatively long flexible optical fiber cable connected to the hand piece at a proximal end of the first channel.
- According to yet another exemplary implementation of the embodiments of the present invention, the hand piece includes a second channel having a distal end at the distal end of the hand piece such that an optical image guide extends from the probe portion through the second channel of the hand piece and ends at a proximal end of a second channel.
- According to yet further exemplary implementation of the embodiments of the present invention, the proximal end of the second channel is at the proximal end of the hand piece, and the proximal end of the hand piece is configured for removable attachment to a camera assembly such that the camera assembly can be optically coupled to the end of the optical fiber image guide.
- Exemplary embodiments of the present invention provide an endoscope system comprising: a laser video endoscope including a hand piece supporting a probe, with a laser guide, an illumination guide and an image guide extending through the probe and the hand piece; and a camera assembly, which can be removably attached directly to the hand piece and has an input optically coupled to an end of the image guide extending though the hand piece.
- According to still further exemplary implementation of the embodiments of the present invention, the camera assembly includes an output having an electrical cable extended from the camera assembly to transmit an electrical image signal from the camera assembly to an image processor, an image display device, or any site where an image can be provided for the surgery. According to still further exemplary implementation of the embodiments of the present invention, camera assembly and its electrical cable can be uncoupled from the hand piece and reused in a plurality of endoscopic routines, while the laser video endoscope including the probe portion and the hand piece can be disposed of after each medical routine thereby providing assurance of an antiseptic procedure.
- Exemplary embodiments of the present invention provide laser video endo scopes for use in ophthalmology operations, the endoscopes including a probe portion which, for example, can be passed through a 23 gauge sleeve, such as a trocar sleeve.
- According to an exemplary implementation of the embodiments of the present invention, a laser video endoscope includes a, for example stainless steel, probe having a distal portion and a proximal portion, such that the proximal portion extends from the distal end of a hand piece of the laser video endoscope, and the outside diameter (OD) of the proximal portion as measured at least near the distal end of the hand piece is greater than the OD of the distal portion.
- According to another exemplary implementation of the embodiments of the present invention, the distal portion has an OD less than 25 mils (thousandths of an inch), or about 0.64 mm, and about 2 mils, or 0.05 mm, wall thickness, such that at least the distal portion of the probe can be inserted through a 23 gauge sleeve.
- According to yet another exemplary implementation of the embodiments of the present invention, the proximal portion of the probe, exiting from the hand piece, has an OD of about 31 mils, or 0.79 mm, and about 5 mil, or 0.13 mm, wall thickness.
- According to yet further exemplary implementation of the embodiments of the present invention, the distal portion has a length of about 710 mils, or 18 mm, at OD of less than about 25 mils, or 0.64 mm.
- According to yet another exemplary implementation of the embodiments of the present invention, a distal portion of a probe of a laser video endoscope includes: a laser guide comprising a laser fiber disposed within the inner diameter of the distal portion of the probe; an image guide comprising an image bundle, which has a plurality of fibers arranged in an essentially circular configuration, disposed within the inner diameter of the distal portion of the probe not occupied by the laser fiber; and an illumination guide comprising an illumination bundle, which has a plurality of fibers filling the remaining of the inner diameter of the distal portion of the probe not occupied by the laser fiber and the image bundle.
- According to still further exemplary implementation of the embodiments of the present invention, the inner diameter of the distal portion of the probe is about 21 mils, or 0.54 mm, the laser fiber of the laser guide has an OD of about 100 microns, or 0.1 mm, the image bundle of the image guide has about 6,000 fibers arranged in an essentially circular configuration having an OD of about 14 mils, or 0.36 mm, and the illumination bundle of the illumination guide has about 210 fibers filling the remaining 21 mils, or 0.54 mm, inner diameter of the distal portion of the probe not occupied by the laser fiber and the image bundle.
- Exemplary embodiments of the present invention provide endoscope designs where a laser fiber can selectively accommodate input from laser energy sources having different wavelengths, such as for example a green laser having a wavelength of 532 nanometers.
- A more complete appreciation of the present invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
-
FIG. 1 is a schematic illustration of a conventional endoscope design. -
FIG. 2 is a schematic illustration of an endoscope system according to an exemplary embodiment of the present invention. -
FIG. 3 is a longitudinal view of a camera assembly of an endoscope system according to an exemplary embodiment of the present invention. -
FIG. 4 is a partial longitudinal sectional view of a camera assembly including exemplary implementation of camera assembly components according to an exemplary embodiment of the present invention. -
FIG. 5A andFIG. 5B are sectional views of a hand piece of an endoscope according to an exemplary embodiment of the present invention. -
FIG. 6 is a schematic illustration of an endoscope system, including a probe, a hand piece, and a camera assembly, according to an exemplary embodiment of the present invention. -
FIG. 7 is an illustration of a distal end of a hand piece and a probe according to an exemplary embodiment the present invention. -
FIG. 8 is a cross sectional view of a distal portion of the probe of an exemplary embodiment illustrated inFIG. 7 . -
FIGS. 9A, 9B, 9C and 9D are multiple views illustrating a distal portion of a hand piece according to an exemplary embodiment of the present invention. -
FIGS. 10A, 10B, 10C and 10D are multiple views illustrating a proximal portion of a hand piece according to an exemplary embodiment of the present invention. -
FIG. 11 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, of an endoscope according to an exemplary embodiment of the present invention. -
FIG. 12 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, showing an exemplary configuration of a laser guide, an illumination guide and an image guide, of an endoscope according to an exemplary embodiment of the present invention. -
FIG. 13 is a sectional view of an endoscope system including probe, hand piece and camera system, according to an exemplary embodiment of the present invention. -
FIG. 14 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, of an endoscope according to another exemplary embodiment of the present invention. -
FIG. 15 is a sectional view of an assembled hand piece, including distal and proximal portions, and a probe, showing an exemplary configuration of a laser guide, an illumination guide and an image guide, of an endoscope according to another exemplary embodiment of the present invention. -
FIG. 16 is a sectional view of an endoscope system including probe, hand piece and camera system, according to another exemplary embodiment of the present invention. -
FIG. 17 is a schematic diagram illustrating components of an endoscopy system according to exemplary embodiments of the present invention including illumination source, laser energy source, and image processing and/or display device interface. - The matters defined in the description such as a detailed construction and elements are nothing but the ones provided to assist in a comprehensive understanding of the invention. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, well-known functions or constructions are omitted for clarity and conciseness. Certain exemplary embodiments of the present invention may be described below in the context of commercial application. Such exemplary implementations are not intended to limit the scope of the present invention, which is defined in the appended claims.
- It is to be noted that, while descriptive terms such as “hand piece”, “probe”, and “fiber” are used throughout this specification, it is not intended to limit components that can be used in combinations or individually to implement various aspects of the embodiments of the present invention.
- Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, embodiments of the present invention are shown in schematic detail.
-
FIG. 1 illustrates a configuration of a conventional laser video endoscope 10 having an operatingprobe 24, ahand piece 22, and acable 18 which carries a laser guide 12, an illumination guide 14 and an image guide 16. These are all fiber optic guides which extend from the distal end of theprobe 24 to the terminals 12C, 14C and 16C, respectively. Distal of the trifurcation zone 20, the fiber optic guides are combined geometrically to provide a minimum diameter cable. - Referring to
FIGS. 2 through 6 , a laser video endoscope according to an exemplary embodiment of the present invention includes ahand piece 32, aprobe 30 extending from the distal end of thehand piece 32, and acamera assembly 34 removably coupled to the proximal end of thehand piece 32. In an exemplary implementation of the present invention, thecamera assembly 34 is directly connected to the proximal end of thehand piece 32 through engagement of anose 54 of thehand piece 32 andrecess 52 of thecamera assembly 34. Whileprobe 30 is illustrated as an essentially straight, other probes, such as curved probes can be interchangeably used without departing from the scope of the exemplary embodiments of the present invention described herein. - As illustrated in
FIG. 2 , according to exemplary embodiments of the present invention a laserguide comprising fiber 40, an illuminationguide comprising fibers 42, and an image guide comprising fibers 35 extend form distal end ofprobe 30 intohand piece 32. The proximal end ofprobe 30 can be fixedly attached to distal end ofhand piece 32, for example by being cemented together by a known process. - As further illustrated in
FIG. 2 ,FIG. 5A andFIG. 5B , according to an exemplary implementation of embodiments of the present invention, thehand piece 32 containschannels hand piece 32 separates theimage guide fibers 37,laser guide fiber 40, andillumination guide fibers 42 enteringchannel 55 at the distal end ofhand piece 32 from the proximal end ofprobe 30, such that onlyimage guide fibers 37 extend throughchannel 57, while thelaser guide fiber 40 and theillumination guide fibers 42 extend throughchannel 56.Channel 57 terminates atsurface 58 at the proximal end ofhand piece 32 and is used to optically couple theimage guide fibers 37 extending from distal end ofprobe 30 to the lens or input optics of thecamera assembly 34.Channel 56 terminates athand piece surface 59 and is used to accommodate thelaser guide fiber 40 and theillumination guide fibers 42 extending from the distal end ofprobe 30 to be carried proximately by thecable 38. In an exemplary implementation,channels channel 55 at a non-zero angle with respect to ache other, as shown in the example ofFIG. 5A wherechannels 56 and 15 extend (or meet) at an acute angle. - In an exemplary implementation of embodiments of the present invention,
image guide fibers 37 which extend through theprobe 30 andhand piece 32 carry the image and can be removably coupled directly to the optics of thecamera assembly 34. In an exemplary implementation of the embodiments of the present invention as illustrated inFIGS. 4, 5A, 5B , and 6, the distal end of thecamera assembly 34 has arecess 52 which removably engages anose 54 of thehand piece 32. Positioning of thecamera assembly 34 at thehand piece 32 can permit a standard optical coupling of the image output at the proximal end of the opticalimage guide fibers 37 to the optics ofcamera assembly 34. - In an exemplary implementation of embodiments of the present invention,
camera assembly 34 can provide an electrical image that is transmitted proximally along theelectrical cable 36 connected at the output ofcamera assembly 34. The camera may be any one of a number of known types, which include for example optical and/or image processing elements, and may be specially designed to fit the geometry of the camera assembly to ensure usable image input fromimage guide fibers 37 at the proximal end ofhand piece 32. - In an exemplary implementation of embodiments of the present invention, an
optical guide cable 38 extends in the proximal direction from thehand piece 32 and carries thelaser guide fiber 40 and theillumination guide fibers 42 for conveying the laser energy and the illumination energy, respectively, to theprobe 30. In a further exemplary implementation of embodiments of the present invention,cable 38 extends in the proximal direction to a bifurcation junction 44 where thelaser guide fiber 40 andillumination guide fibers 42 are separated and terminated at terminals 40C and 42C for connection to sources of laser energy and illumination energy, respectively. In yet further exemplary implementation of embodiments of the present invention, image carryingelectrical cable 36 terminating atterminal 36C can be about as long as theoptical guide cable 38, and eachcable - According to exemplary embodiments of the resent invention, it becomes possible to terminate
image guide fibers 37 at the proximal end ofhand piece 32 due to direct optical coupling ofimage guide fibers 37 to the optics ofcamera assembly 34 as provided byhand piece 32. Thecamera assembly 34 can be uncoupled from thehand piece 32 so that the relatively expensive camera assembly can be reused. Also, by positioning thecamera assembly 34 at thehand piece 32, the lengthy and expensive optical image guide proximal of thehand piece 32 is avoided. - Thus, laser video endoscopes according to exemplary embodiments of the present invention can eliminate the conventional costly and lengthy image fibers such as those extending from the
hand piece 22 to terminal 16C as shown inFIG. 1 . Instead, in laser video endoscopes according to exemplary embodiments of the present invention, the image can be carried to terminal 36C in anelectric cable 36 proximally of thecamera assembly 34 coupled directly tohand piece 32. For example, a relatively longelectrical cable 36 can extend from proximal end ofcamera assembly 34 to a terminal 36C which is coupled to an appropriate image processing or display mechanism, for example a video screen so that the operating surgeon can view the image during the course of manipulating theprobe 30. - This combination of reuse of the
camera assembly 34 and elimination of an extensive length of expensive fiber optic image guide means that disposability of theprobe 30 is economically acceptable even though thehand piece 32 and thelaser guide fiber 40 andillumination guide fibers 42 in thecable 38 are also disposed of after each medical routine. - In an exemplary implementation,
camera assembly 34 can include alaser filter 46 for example to protect the camera film from laser energy and to permit the surgeon to observe the operation when laser pulses are firing. In yet further exemplary implementation, a filter for multiple wavelength lasers can be present, such that for example 810 nm and 532 nm laser can be used. - In another exemplary implementation of embodiments of the present invention,
camera assembly 34 can include a manually operated spring latch (not shown) to facilitate readily mounting thecamera assembly 34 to thehand piece 32 and readily removing thecamera assembly 34 from thehand piece 32. - In yet another exemplary implementation, the
camera assembly 34 can include afocus ring 50 to assure adequate focus of the image provided onto the image receptors of thecamera assembly 34 positioned at the proximal end ofimage guide fibers 37 which extends from the distal end of theprobe 30 and throughchannels hand piece 32. - A variant on exemplary embodiments of the present invention as illustrated for example in
FIGS. 2 through 6 is an arrangement in which the uncoupling at the proximal end of thehand piece 32 will uncouple not only thecamera assembly 34 atsurface 58, but also thecable 38, for example at or nearsurface 59, so that only theprobe 30 and thehand piece 32 would be disposed of between each operation. - In the exemplary implementations of
FIGS. 1 through 6 , theimage guide 37 within theprobe 30 andhand piece 32 can be a fiber optic bundle; however, other exemplary configurations can provide an image guide function, such as for example a gradient index lens, often referred to as a GRIN lens. - Referring to
FIG. 7 andFIG. 8 , a laser video endoscope according to an exemplary embodiment of the present invention includes aprobe 78, and a hand piece 74 (partially illustrated). Theprobe 78 has aproximal portion 70 and adistal portion 72 such that theproximal portion 70 extends from thedistal end 73 ofhand piece 74 of the laser video endoscope, and the outside diameter (OD) of theproximal portion 70 as measured at least near thedistal end 73 ofhand piece 74 is greater than the OD of thedistal portion 72. - Referring to
FIG. 8 , a cross sectional view ofdistal portion 72 ofprobe 78 according to an exemplary implementation of the embodiments of the present invention illustrates a configuration of image guide comprising fibers 86, laserguide comprising fiber 88, and illuminationguide comprising fibers 80 withinprobe 78. As shown inFIG. 8 , image guide 86 andlaser guide 88 are arranged such that OD of fibers of image guide 86 and OD of fiber oflaser guide 88 do not intersect or overlap at any cross section ofdistal portion 72 ofprobe 78. As further shown inFIG. 8 , according to an exemplary implementation of the embodiments of the present invention, fibers ofillumination guide 80 fill the remaining volume ofdistal portion 72 ofprobe 78 such that OD of fibers of image guide 86 and OD of fiber oflaser guide 88 do not intersect or overlap OD of any fiber ofillumination guide 80 at any cross section ofdistal portion 72 ofprobe 78. - In an exemplary implementation of the embodiments of the present invention, the
proximal portion 70 can have between about 20 and 22 gauge (35 and 31 mils, or 0.89 and 0.79 mm) outer diameter and about a 5 mil, or 0.13 mm, wall thickness. The probe can be stainless steel. Theproximal portion 70 extends into thehand piece 74. Thus, at the juncture of the end of thehand piece 74 and theprobe 78, there is a diameter having sufficient robustness to contribute to minimizing the likelihood of breaking at the juncture betweendistal end 73 ofhand piece 74 and the proximal end ofprobe 78. - In an exemplary implementation of the embodiments of the present invention, the length of the
proximal portion 70 of theprobe 78 can be about 120 mils, or 3 mm, and the length of thedistal portion 72 can be about 710 mils, or 18 mm, for aprobe 78 length of about 830 mils, or 21 mm. - In an exemplary implementation of the embodiments of the present invention, the
distal portion 72 of theprobe 78 can have OD of about 25 mils, or 0.64 mm, or less, and can extend through a 23 gauge sleeve to provide illumination and laser energy delivery within the eye during a surgical procedure and to transmit image from the eye. Thisdistal portion 72 can have a wall thickness of about 2 mils, or 0.05 mm, and a length of about 710 mils, or 18 mm. The 710 mil, or 18 mm, length is long enough for most applications and short enough to minimize breaking. - While it has been found that exemplary length described herein for
distal portion 72 contributes to the robustness ofprobe 78, the dimensional values can be varied slightly to provide a probe that can be used with other small size sleeves. -
Probe 78 having OD of about 25 mil, or 0.64 mm, according to exemplary embodiments of the present invention can meet the need of providing enough light and enough laser energy while maintaining an adequate image guide by providing trade-off of dimensions for each of respective fibers transmitting illumination light, laser energy, and images as follows. - In the example of
FIG. 8 , image guide 86 comprises a bundle of about 6,000 fibers arranged in an essentially circular cross-sectional configuration with OD of about 14 mils, or 0.36 mm, andlaser guide 88 comprises a fiber with OD of about a 100 micron, or 0.1 mm. Image guide 86 andlaser guide 88 are contained within thedistal portion 72 of theprobe 78 having OD of approximately 25 mils, or 0.64 mm, wall thickness of approximately 2 mils, or 0.05 mm, and an inner diameter of approximately 21 mils, or 0.54 mm, with fibers ofillumination guide 80 filling the remaining volume ofdistal portion 72 ofprobe 78. - According to exemplary embodiments of the present invention, probe 78 can be made robust enough to minimize breakage by a combination of: (a) rigid construction for
probe 78 wall, (b) two-diameter design forproximal portion 70 anddistal portion 72 and (c) limited length fordistal portion 72. A particularly advantageous configuration according to an exemplary implementation ofprobe 78 includes a combination of: (a)probe 78 having a metallic wall, (b)proximal portion 70 having OD of 35 mil and wall thickness of 5 mils that extends through thehand piece 74, anddistal portion 72 having OD of 25 mil and wall thickness of 2 mils, and (c)distal portion 72 having a length of no more than 710 mils. - It has been found that such a design according to exemplary embodiments of the present invention as illustrated in
FIGS. 7 and 8 can provides sufficient illumination to illuminate a 90 degree field. One of the compromises made in order to get a small diameter probe is to reduce thelaser guide 88 fiber diameter from 200 microns to 100 microns. In an exemplary implementation, a 532 nanometer (nm) laser source, or a green laser, can be advantageously provide a desirable laser energy. For example, output of a 532 nm laser is more coherent and less divergent than the 810 nm laser. Accordingly, in an exemplary implementation of the present invention, the use of a 532 nm laser in combination with the reduced size of thelaser fiber 88 provides a reasonable amount of laser energy for the ophthalmological operations involved. - In yet another exemplary implementation of the embodiments of the present invention, the
illumination guide 80 can be reduced from approximately 220 fibers to about 70 fibers thereby materially contributing to a smaller diameter ofprobe 78. - Exemplary embodiments of the present invention have been described in connection with an implementation that permits use with a 23 gauge sleeve. It should be understood that variations could be made to adapt the design described to use with sleeves having variations on the 23 gauge or to be used without a sleeve. The exemplary embodiments of the present invention describe combinations of a number of features and trade-offs designed to work together to provide an operable and useful laser video endoscope having a small probe that provides access for eye operations with minimum trauma and reduced healing time.
- Referring to
FIGS. 9A, 9B, 9C, 9D andFIGS. 10A, 10B, 10C, 10D , an exemplary embodiment of the present invention provides a hand piece design comprising adistal portion 90 and aproximal portion 100 fixedly assembled to form hand piece, such ashand piece 110 as illustrated for example inFIG. 11 . According to an exemplary implementation of embodiments of the present inventiondistal portion 90 includes anopening 92 terminating atsurface 94 of the distal end orportion 90, and anopening 93 terminating at the proximal end ofportion 90.Opening 92 is configured for accommodating the proximal end of a probe, such asproximal end 114 ofprobe 112 as illustrated for example inFIG. 11 , which can be fixedly attached to extend distally fromsurface 94.Opening 93 is configured to interface with thedistal end 102 ofproximal portion 100 wherebydistal portion 90 andproximal portion 100 can be fixedly assembled to form a hand piece, for example as illustrated inFIG. 11 .Distal portion 90 containschannel 95 and defines at least afirst portion 99 of the inner wall ofchannel 96 by a protrudingsection 91, which can also serve as a guide for holding the hand piece.Proximal portion 100 containschannel 97, which extends fromsurface 103 ofdistal end 102 and terminates atsurface 105 of the proximal end ofportion 100.Proximal portion 100 defines at least asecond portion 109 of the inner wall ofchannel 96. - Referring to
FIGS. 11, 12, and 13 , in an exemplary implementation of embodiments of the present invention,hand piece 120 comprisingdistal portion 90 andproximal portion 100 separates theimage guide fibers 37,laser guide fiber 40, andillumination guide fibers 42 enteringchannel 95 at the distal end ofdistal portion 90 from theproximal end 114 ofprobe 112, such that onlyimage guide fibers 37 extend throughchannel 97, while thelaser guide fiber 40 and theillumination guide fibers 42 extend throughchannel 96.Channel 97 terminates atsurface 105 at the proximal end ofproximal portion 100 and is used to optically couple theimage guide fibers 97 extending from distal end ofprobe 112 to the lens orinput optics 130 of thecamera assembly 134.Channel 96 terminates atexterior side surface 101 ofproximal portion 100 and is used to accommodate thelaser guide fiber 40 and theillumination guide fibers 42 extending from the distal end ofprobe 112 to be carried proximately by a cable, such ascable 38. - In an exemplary implementation of embodiments of the present invention,
camera assembly 134 can provide an electrical image that is transmitted proximally along theelectrical cable 136 connected at the output ofcamera assembly 134. - In another exemplary implementation of embodiments of the present invention, a
connection 138 ofcamera assembly 134 withhand piece 110 can comprise, for example, a snap fit connection achieved by physical characteristics of the proximal end ofproximal portion 100 and the distal end of camera assembly 135 to facilitate readily mounting thecamera assembly 134 to thehand piece 110 and readily removing thecamera assembly 134 from thehand piece 110. - In yet another exemplary implementation, the
camera assembly 134 can include afocus ring 150 to assure adequate focus of the image provided onto the image receptors of thecamera assembly 134 positioned at the proximal end of theimage guide fibers 37 which extends from the distal end of theprobe 30 and throughchannels hand piece 110. - Referring to
FIGS. 14, 15, and 16 , in an exemplary implementation of embodiments of the present invention,hand piece 140 comprisingdistal portion 90 andproximal portion 200 separates theimage guide fibers 37,laser guide fiber 40, andillumination guide fibers 42 enteringchannel 95 at the distal end ofdistal portion 90 from theproximal end 114 ofprobe 112, such that onlyimage guide fibers 37 extend throughchannel 207, while thelaser guide fiber 40 and theillumination guide fibers 42 extend throughchannel 96. In contrast to exemplary embodiment ofFIGS. 11, 12 and 13 ,channel 207 terminates atsurface 205 at distal end of acavity 220 having anopening 222 atproximal end face 105 ofportion 200.Channel 207 is used to optically couple theimage guide fibers 97 extending from distal end ofprobe 112 to the lens orinput optics 165 disposed in a protrudingportion 162, which extends distally from surface 163 of thecamera assembly 164 intocavity 220 ofhand piece 140.Channel 96 terminates atexterior side surface 101 ofproximal portion 200 and is used to accommodate thelaser guide fiber 40 and theillumination guide fibers 42 extending from the distal end ofprobe 112 to be carried proximately by a cable, such ascable 38. - In an exemplary implementation of embodiments of the present invention,
camera assembly 164 can provide an electrical image that is transmitted proximally along theelectrical cable 166 connected at the output ofcamera assembly 164. - In another exemplary implementation of embodiments of the present invention, a
connection 168 ofcamera assembly 164 withhand piece 140 can comprise, for example, a snap fit connection achieved when protrudingportion 162 is inserted intocavity 220 to facilitate readily mounting thecamera assembly 164 to thehand piece 140 and readily removing thecamera assembly 164 from thehand piece 140. In an exemplary implementation,connection 168 allowshand piece 140 and probe 112 to be axially rotated (about axis A-A) with respect tocamera assembly 164. - In yet another exemplary implementation of the embodiments of the present invention, image output from the
image guide 37 of aprobe 112 can be properly oriented in thecamera assembly 164 for display and/or further image processing output viaelectrical cable 166 connected at the output ofcamera assembly 164. Such desired orientation of the image for display and/or further image processing can be performed through electronic image processing, or optically, using components disposed withincamera assembly 164 or connected tocable 166 at output ofcamera assembly 164, or any combination thereof. For example, when thehand piece 140 is connected to thecamera assembly 164 no manual orientation ofprobe 112 with respect to subject such as an operating site (not shown) at distal end ofprobe 112 is needed. Endoscope user can rotate probe 112 with respect to the subject by rotatinghand piece 140, which rotates with respect to thecamera assembly 164, without disrupting the image of the subject, which may be particularly advantageous when using a curved endoscopes. - In yet another exemplary implementation, the
camera assembly 164 can include afocus ring 160 to assure adequate focus of the image provided onto the image receptors of thecamera assembly 164 positioned at the proximal end of theimage guide fibers 37 which extends from the distal end of theprobe 30 and throughchannels hand piece 110. - Referring to conceptual diagram of
FIG. 17 , an exemplary embodiment of the present invention provides asystem 1000 comprising aconsole 170 and anendoscope 500 includingcamera assembly 179,hand piece 177 and probe 175 which can be configured and constructed in various combinations of exemplary implementations of camera assembly, hand piece, and probe as described herein with reference toFIGS. 2 through 16 . - In an exemplary implementation of the embodiments of the present invention,
console 170 can comprise one or any combination of multiplelaser energy sources 172 and/or 178 for connection tolaser guide fiber 40 via, for example uniquely configuredconnectors 152C and/or 158C respectively, one or more illuminationlight sources 174 for connection toillumination guide fibers 42 viaconnector 154C, and one or more image display or image processing interfaces 176 for connection to imageguide fibers 37 viaconnector 156C. For example,laser energy source 172 can be a 532 nm laser source which can be connected toendoscope 500 whose probe is configured as in the example ofFIGS. 7 and 8 , whilelaser energy source 178 can be a 810 nm laser source which can be connected toendoscope 500 whose probe is configured as in the example ofFIG. 2 ,FIG. 13 , orFIG. 16 (notably, any of the hand pieces inFIG. 2, 13 or 16 can be configured with a probe ofFIGS. 7 and 8 ). - Further, referring to example of
FIG. 17 , image output fromimage guide fibers 37 ofprobe 175 can be oriented in thecamera assembly 179 using components disposed withincamera assembly 179, components disposed withinimage processing interface 176, and/or other components ofconsole 170, so that whenhand piece 177 is connected tocamera assembly 179 no manual image orientation is needed and the user can rotate probe 175 with respect tocamera assembly 179 without disrupting the image output by manipulatinghand piece 177. - While the present invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention and the scope of the claims.
Claims (30)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/966,151 US20160095507A1 (en) | 2010-05-13 | 2015-12-11 | Laser video endoscope |
CN201680081299.5A CN108601513A (en) | 2015-12-11 | 2016-12-09 | Laser video endoscope |
EP16873968.8A EP3386372A4 (en) | 2015-12-11 | 2016-12-09 | Laser video endoscope |
PCT/US2016/065939 WO2017100651A1 (en) | 2015-12-11 | 2016-12-09 | Laser video endoscope |
JP2018530056A JP2018538069A (en) | 2015-12-11 | 2016-12-09 | Laser video endoscope |
US16/365,853 US11337598B2 (en) | 2010-05-13 | 2019-03-27 | Laser video endoscope |
JP2022001881A JP2022050567A (en) | 2015-12-11 | 2022-01-07 | Laser video endoscope |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/779,214 US20110282139A1 (en) | 2010-05-13 | 2010-05-13 | Laser Video Endoscope |
US13/084,789 US20120265010A1 (en) | 2011-04-12 | 2011-04-12 | Laser Video Endoscope |
US13/314,371 US10226167B2 (en) | 2010-05-13 | 2011-12-08 | Laser video endoscope |
US14/966,151 US20160095507A1 (en) | 2010-05-13 | 2015-12-11 | Laser video endoscope |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/084,789 Continuation-In-Part US20120265010A1 (en) | 2010-05-13 | 2011-04-12 | Laser Video Endoscope |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/365,853 Continuation US11337598B2 (en) | 2010-05-13 | 2019-03-27 | Laser video endoscope |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160095507A1 true US20160095507A1 (en) | 2016-04-07 |
Family
ID=55631891
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/966,151 Abandoned US20160095507A1 (en) | 2010-05-13 | 2015-12-11 | Laser video endoscope |
US16/365,853 Active 2030-09-23 US11337598B2 (en) | 2010-05-13 | 2019-03-27 | Laser video endoscope |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/365,853 Active 2030-09-23 US11337598B2 (en) | 2010-05-13 | 2019-03-27 | Laser video endoscope |
Country Status (1)
Country | Link |
---|---|
US (2) | US20160095507A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017100651A1 (en) * | 2015-12-11 | 2017-06-15 | Beaver-Visitec International, Inc. | Laser video endoscope |
US10226167B2 (en) | 2010-05-13 | 2019-03-12 | Beaver-Visitec International, Inc. | Laser video endoscope |
US10408770B2 (en) | 2017-08-31 | 2019-09-10 | George Glover | Video borescope device |
CN110730676A (en) * | 2017-06-15 | 2020-01-24 | 奥林巴斯株式会社 | Guiding tube |
US20210152786A1 (en) * | 2019-11-18 | 2021-05-20 | Schölly Fiberoptic GmbH | Endoscope and endoscope assembly |
US20210169311A1 (en) * | 2018-08-29 | 2021-06-10 | Ok Fiber Technology Co., Ltd. | Fiberscope having excellent insertability |
US20220192884A1 (en) * | 2020-12-22 | 2022-06-23 | A.R.C. Laser Gmbh | Eye treatment device, in particular for glaucoma |
JP7546258B2 (en) | 2018-08-29 | 2024-09-06 | 株式会社Okファイバーテクノロジー | Easy-to-insert fiberscope |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220151475A1 (en) * | 2020-11-16 | 2022-05-19 | Alcon Inc. | Ophthalmic endoscope utilizing near-infrared spectrum |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3941121A (en) * | 1974-12-20 | 1976-03-02 | The University Of Cincinnati | Focusing fiber-optic needle endoscope |
US4607622A (en) * | 1985-04-11 | 1986-08-26 | Charles D. Fritch | Fiber optic ocular endoscope |
US5121740A (en) * | 1991-05-06 | 1992-06-16 | Martin Uram | Laser video endoscope |
US5868665A (en) * | 1996-12-30 | 1999-02-09 | Biggs; Robert C. | Endocoupler system |
US20050143626A1 (en) * | 2003-12-24 | 2005-06-30 | Prescott James T. | Fiberoptic otoscope system |
US7404794B2 (en) * | 2002-05-22 | 2008-07-29 | Scholly Fiberoptic Gmbh | Microendoscope |
US20090025909A1 (en) * | 2007-07-25 | 2009-01-29 | Tsung-Hsien Huang | Cooler module |
US20090259098A1 (en) * | 2008-04-11 | 2009-10-15 | Beat Krattiger | Apparatus and method for endoscopic 3D data collection |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3858577A (en) | 1974-04-05 | 1975-01-07 | Univ Southern California | Fiber optic laser light delivery system |
US4072147A (en) | 1976-03-04 | 1978-02-07 | American Cystoscope Makers Inc. | Radiation endoscope |
US4170997A (en) | 1977-08-26 | 1979-10-16 | Hughes Aircraft Company | Medical laser instrument for transmitting infrared laser energy to a selected part of the body |
US4448188A (en) | 1982-02-18 | 1984-05-15 | Laserscope, Inc. | Method for providing an oxygen bearing liquid to a blood vessel for the performance of a medical procedure |
US4537193A (en) | 1982-10-28 | 1985-08-27 | Hgm, Inc. | Laser endocoagulator apparatus |
DE3339370A1 (en) | 1983-10-29 | 1985-05-09 | Meditec GmbH, 8501 Heroldsberg | PULSE LASER FOR MEDICAL APPLICATIONS |
JPS60137342A (en) | 1983-12-27 | 1985-07-20 | オリンパス光学工業株式会社 | Electronic scope |
US4754328A (en) | 1984-01-03 | 1988-06-28 | Medical Dynamics, Inc. | Laser endoscope |
US4589404A (en) | 1984-01-03 | 1986-05-20 | Medical Dynamics, Inc. | Laser endoscope |
US4700694A (en) | 1984-02-20 | 1987-10-20 | Olympus Optical Co., Ltd. | Endoscope means and ovum picker employed by inserting through endoscope means |
US4671273A (en) | 1984-03-19 | 1987-06-09 | Lindsey Ernest J | Laser hand piece, for use in opthalmic, plastic, and ear, nose, and throat surgery |
JPS6150546A (en) | 1984-08-20 | 1986-03-12 | 富士写真光機株式会社 | Endoscope |
US4830460A (en) | 1987-05-19 | 1989-05-16 | Advanced Interventional Systems, Inc. | Guidance system and method for delivery system for high-energy pulsed ultraviolet laser light |
US4624243A (en) | 1985-04-08 | 1986-11-25 | American Hospital Supply Corp. | Endoscope having a reusable eyepiece and a disposable distal section |
JPS61250605A (en) | 1985-04-27 | 1986-11-07 | Power Reactor & Nuclear Fuel Dev Corp | Image fiber with optical waveguide |
JPS6337310A (en) | 1986-08-01 | 1988-02-18 | Olympus Optical Co Ltd | Tip part of endoscope |
US4856495A (en) | 1986-09-25 | 1989-08-15 | Olympus Optical Co., Ltd. | Endoscope apparatus |
US4837857A (en) | 1986-11-06 | 1989-06-06 | Storz Instrument Company | Foot pedal assembly for ophthalmic surgical instrument |
US4790295A (en) | 1986-12-16 | 1988-12-13 | Olympus Optical Co., Ltd. | Endoscope having transparent resin sealing layer |
JPH0640173B2 (en) | 1987-02-05 | 1994-05-25 | オリンパス光学工業株式会社 | Endoscope |
JP2572394B2 (en) | 1987-03-19 | 1997-01-16 | オリンパス光学工業株式会社 | Electronic endoscope |
CH672255A5 (en) | 1987-06-29 | 1989-11-15 | Renaud Croisy | |
JPS6486937A (en) | 1987-09-30 | 1989-03-31 | Toshiba Corp | Measuring endoscopic apparatus |
US4807594A (en) | 1988-01-15 | 1989-02-28 | Medical Concepts, Incorporated | Adapter assembly for endoscopic video camera |
US4965960A (en) | 1988-04-26 | 1990-10-30 | Moore James E | Methods and devices for using porous materials in the controlled feeding, distribution, and application of liquid agricultural chemicals |
US5116317A (en) | 1988-06-16 | 1992-05-26 | Optimed Technologies, Inc. | Angioplasty catheter with integral fiber optic assembly |
US4948894A (en) | 1989-02-21 | 1990-08-14 | American Cyanamid Company | 8-fluoro and 7, 8, 10-trifluoro-9-(substituted)-6-oxo-6H-benzo-(C)quinolizine-5-carboxylic acids |
DE69220720T2 (en) | 1991-05-06 | 1998-01-22 | Martin M D Uram | Laser video endoscope |
JPH0680401U (en) | 1991-07-29 | 1994-11-15 | ディ フリッチ チャールズ | Fundus endoscope |
US5643250A (en) | 1992-08-07 | 1997-07-01 | O'donnell, Jr.; Francis E. | Laser probe hand piece |
US5409480A (en) | 1993-02-16 | 1995-04-25 | Uram; Martin | Laser endoscope system console |
US5419312A (en) | 1993-04-20 | 1995-05-30 | Wildflower Communications, Inc. | Multi-function endoscope apparatus |
US6368269B1 (en) | 1993-05-20 | 2002-04-09 | Tilane Corporation | Apparatus for concurrent actuation of multiple foot pedal operated switches |
US5443057A (en) | 1993-10-12 | 1995-08-22 | International Bioview, Inc. | Sterilizable endoscope and method for constructing the same |
JPH07113920A (en) | 1993-10-19 | 1995-05-02 | Olympus Optical Co Ltd | Image fiber |
US5788628A (en) | 1994-05-26 | 1998-08-04 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscope |
US5738676A (en) | 1995-01-03 | 1998-04-14 | Hammer; Daniel X. | Laser surgical probe for use in intraocular surgery |
US5916149A (en) | 1995-10-25 | 1999-06-29 | Ryan, Jr.; Edwin H. | Shielded illumination device for ophthalmic surgery and the like |
DE19542955C2 (en) | 1995-11-17 | 1999-02-18 | Schwind Gmbh & Co Kg Herbert | endoscope |
US5865831A (en) | 1996-04-17 | 1999-02-02 | Premier Laser Systems, Inc. | Laser surgical procedures for treatment of glaucoma |
US5893828A (en) | 1996-05-02 | 1999-04-13 | Uram; Martin | Contact laser surgical endoscope and associated myringotomy procedure |
US5810713A (en) | 1996-07-10 | 1998-09-22 | Valquest Medical, Inc. | Autoclavable endoscope |
US5807242A (en) | 1997-03-24 | 1998-09-15 | Synergetics, Inc. | Microsurgical laser probe with homogeneous laser light field |
US5980450A (en) | 1997-05-07 | 1999-11-09 | Pinotage, Llc | Coupling device for use in an imaging system |
IL121450A0 (en) | 1997-08-01 | 1998-02-08 | Smollett Neil | Ophthalmic surgical equipment |
US6179829B1 (en) | 1997-08-28 | 2001-01-30 | Bausch & Lomb Surgical, Inc. | Foot controller for microsurgical system |
US5983749A (en) | 1997-09-12 | 1999-11-16 | Allergan Sales, Inc. | Dual position foot pedal for ophthalmic surgery apparatus |
US6080101A (en) | 1998-08-26 | 2000-06-27 | Olympus Optical Co. Ltd. | Endoscope video camera head which can be autoclaved |
US6355027B1 (en) | 1999-06-09 | 2002-03-12 | Possis Medical, Inc. | Flexible microcatheter |
US6572536B1 (en) | 1999-11-05 | 2003-06-03 | Visionary Biomedical, Inc. | Autoclavable flexible fiberscope |
JP3915862B2 (en) | 2000-02-09 | 2007-05-16 | テルモ株式会社 | catheter |
US6452123B1 (en) | 2000-06-27 | 2002-09-17 | Advanced Medical Optics | Surgical foot pedal control including ribbon switch arrangement |
DE10121450A1 (en) | 2001-04-27 | 2002-11-21 | Storz Endoskop Gmbh Schaffhaus | Optical instrument, in particular an endoscope, with an exchangeable head |
EP1425919A4 (en) | 2001-08-15 | 2005-08-24 | Reliant Technologies Inc | Method and apparatus for thermal ablation of biological tissue |
US7012203B2 (en) | 2001-09-07 | 2006-03-14 | Carl Zeiss Surgical Gmbh | Foot switch pedal controller for a surgical instrument |
US7470277B2 (en) | 2001-10-16 | 2008-12-30 | Alcon, Inc. | Simultaneous proportional control of surgical parameters in a microsurgical system |
US8038602B2 (en) | 2001-10-19 | 2011-10-18 | Visionscope Llc | Portable imaging system employing a miniature endoscope |
US6863651B2 (en) | 2001-10-19 | 2005-03-08 | Visionscope, Llc | Miniature endoscope with imaging fiber system |
US6689975B2 (en) | 2001-12-19 | 2004-02-10 | Bausch & Lomb Incorporated | Foot controller including multiple switch arrangement with heel operated, door-type switch actuator |
US6639332B2 (en) | 2001-12-19 | 2003-10-28 | Bausch & Lomb Incorporated | Foot controller with ophthalmic surgery interlock circuit and method |
US8194122B2 (en) | 2002-03-12 | 2012-06-05 | Karl Storz Imaging, Inc. | Universal scope reader |
US7289139B2 (en) | 2002-03-12 | 2007-10-30 | Karl Storz Imaging, Inc. | Endoscope reader |
US8599250B2 (en) | 2002-03-12 | 2013-12-03 | Karl Storz Imaging, Inc. | Wireless camera coupling |
JP4124423B2 (en) | 2002-06-13 | 2008-07-23 | ファイバーテック株式会社 | Lacrimal endoscope |
US7470269B2 (en) | 2002-07-10 | 2008-12-30 | Synergetics, Inc. | Ophthalmic surgery light transmitting apparatus |
US6862951B2 (en) | 2002-08-26 | 2005-03-08 | Alcon, Inc. | Footswitch |
US8202277B2 (en) | 2003-01-29 | 2012-06-19 | Edwin Ryan | Small gauge surgical instrument with support device |
US9035741B2 (en) | 2003-06-27 | 2015-05-19 | Stryker Corporation | Foot-operated control console for wirelessly controlling medical devices |
EP2292174B1 (en) | 2003-07-28 | 2013-06-12 | Synergetics, Inc. | Illumination source |
PT2293127E (en) | 2003-07-28 | 2014-10-30 | Synergetics Inc | Ferrule connector for use with an illumination or laser source |
ITBO20030521A1 (en) | 2003-09-05 | 2005-03-06 | Knit Ventures Llc | ENDOSCOPE FOR OCULISTIC USE. |
EP1686910B1 (en) | 2003-11-13 | 2015-08-12 | Synergetics, Inc. | Illuminated laser probe with adjustble area of illumination |
US20050113641A1 (en) | 2003-11-22 | 2005-05-26 | Bala John L. | Endoscopic imaging and intervention system |
KR101195052B1 (en) | 2004-01-23 | 2012-10-29 | 아이싸이언스 인터벤셔날 코포레이션 | Composite ophthalmic microcannula |
US7582057B2 (en) * | 2004-02-24 | 2009-09-01 | Japan Atomic Energy Research Institute | Endoscopic system using an extremely fine composite optical fiber |
US20070167682A1 (en) | 2004-04-21 | 2007-07-19 | Acclarent, Inc. | Endoscopic methods and devices for transnasal procedures |
US6997868B1 (en) | 2004-07-27 | 2006-02-14 | Martin Uram | Autoclavable endoscope |
US7218822B2 (en) | 2004-09-03 | 2007-05-15 | Chemimage Corporation | Method and apparatus for fiberscope |
US20060084952A1 (en) | 2004-09-03 | 2006-04-20 | Pallikaris Ioannis G | Device for the irradiation of the ciliary body of the eye |
ES2372061T3 (en) | 2004-11-01 | 2012-01-13 | Stryker Corporation | SAFE TRANSMISSION OF WIRELESS CONTROL TO A CENTRAL UNIT. |
JP4747321B2 (en) | 2005-02-21 | 2011-08-17 | 独立行政法人 日本原子力研究開発機構 | Ileus tube type small intestine endoscope that can be laser-examined and treated |
CA2539271C (en) | 2005-03-31 | 2014-10-28 | Alcon, Inc. | Footswitch operable to control a surgical system |
WO2006122303A2 (en) | 2005-05-11 | 2006-11-16 | Boston Scientific Limited | Visualization system |
US7626132B2 (en) | 2005-10-13 | 2009-12-01 | Alcon, Inc. | Foot controller |
US7439463B2 (en) | 2006-01-17 | 2008-10-21 | Dentsply International Inc. | Foot switch for activating a dental or medical treatment apparatus |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
JP5185505B2 (en) | 2006-03-07 | 2013-04-17 | オリンパスメディカルシステムズ株式会社 | Endoscope system and adapter applied to this endoscope system |
DE102006058359A1 (en) | 2006-12-05 | 2008-06-12 | Carl Zeiss Surgical Gmbh | Remote control system for medical devices |
US8666479B2 (en) | 2006-07-10 | 2014-03-04 | Boston Scientific Scimed, Inc. | Optical spectroscopic injection needle |
US8248414B2 (en) | 2006-09-18 | 2012-08-21 | Stryker Corporation | Multi-dimensional navigation of endoscopic video |
DE102007049239A1 (en) | 2006-10-20 | 2008-04-24 | Carl Zeiss Meditec Ag | Endo probe for microsurgery i.e. eye surgery, has optical fibers, into which laser light is directly injected, and casing, where coupling of illuminating light is provided in casing or transparent form element over optical element |
US20080108979A1 (en) * | 2006-11-03 | 2008-05-08 | William Telfair | Flush Tip Illuminating Laser Probe Treatment Apparatus |
US20080114387A1 (en) | 2006-11-10 | 2008-05-15 | Hertweck David W | Dual linear ultrasound control |
AU2007322085B2 (en) | 2006-11-16 | 2013-06-27 | Stryker Corporation | Wireless endoscopic camera |
US8641701B2 (en) | 2007-03-06 | 2014-02-04 | Kyoto University | Probe type device for removing living body tissue |
US8647333B2 (en) * | 2007-11-03 | 2014-02-11 | Cygnus Llc | Ophthalmic surgical device |
EP3954345B1 (en) | 2008-11-07 | 2023-11-22 | Johnson & Johnson Surgical Vision, Inc. | Adjustable foot pedal control for ophthalmic surgery |
US8159370B2 (en) | 2008-11-17 | 2012-04-17 | Canyon Ridge Resources, Llc | System and method for control of medical equipment using multiple wireless devices |
US20100198200A1 (en) | 2009-01-30 | 2010-08-05 | Christopher Horvath | Smart Illumination for Surgical Devices |
US20100204609A1 (en) | 2009-02-10 | 2010-08-12 | Howard Worth | Microendoscope and methods of use |
US20100318074A1 (en) | 2009-06-10 | 2010-12-16 | Bruno Dacquay | Ophthalmic endoillumination using low-power laser light |
US20110282139A1 (en) | 2010-05-13 | 2011-11-17 | Endo Optiks, Inc. | Laser Video Endoscope |
US20120083800A1 (en) | 2010-10-04 | 2012-04-05 | Lutz Andersohn | Systems and methods for defining a transition point of a foot pedal of an ophthalmic surgery system |
TWI554243B (en) | 2011-01-21 | 2016-10-21 | 愛爾康研究有限公司 | Combined surgical endoprobe for optical coherence tomography, illumination or photocoagulation |
US20120203075A1 (en) | 2011-02-08 | 2012-08-09 | Christopher Horvath | White coherent laser light launched into nano fibers for surgical illumination |
US8323181B2 (en) | 2011-02-17 | 2012-12-04 | Apurba Mukherjee | Endoscope with variable incident light and laser source platform |
US20140121653A1 (en) | 2012-10-31 | 2014-05-01 | Nidek Co., Ltd. | Ophthalmic laser treatment apparatus |
-
2015
- 2015-12-11 US US14/966,151 patent/US20160095507A1/en not_active Abandoned
-
2019
- 2019-03-27 US US16/365,853 patent/US11337598B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3941121A (en) * | 1974-12-20 | 1976-03-02 | The University Of Cincinnati | Focusing fiber-optic needle endoscope |
US4607622A (en) * | 1985-04-11 | 1986-08-26 | Charles D. Fritch | Fiber optic ocular endoscope |
US5121740A (en) * | 1991-05-06 | 1992-06-16 | Martin Uram | Laser video endoscope |
US5868665A (en) * | 1996-12-30 | 1999-02-09 | Biggs; Robert C. | Endocoupler system |
US7404794B2 (en) * | 2002-05-22 | 2008-07-29 | Scholly Fiberoptic Gmbh | Microendoscope |
US20050143626A1 (en) * | 2003-12-24 | 2005-06-30 | Prescott James T. | Fiberoptic otoscope system |
US20090025909A1 (en) * | 2007-07-25 | 2009-01-29 | Tsung-Hsien Huang | Cooler module |
US20090259098A1 (en) * | 2008-04-11 | 2009-10-15 | Beat Krattiger | Apparatus and method for endoscopic 3D data collection |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10226167B2 (en) | 2010-05-13 | 2019-03-12 | Beaver-Visitec International, Inc. | Laser video endoscope |
WO2017100651A1 (en) * | 2015-12-11 | 2017-06-15 | Beaver-Visitec International, Inc. | Laser video endoscope |
CN110730676A (en) * | 2017-06-15 | 2020-01-24 | 奥林巴斯株式会社 | Guiding tube |
US10408770B2 (en) | 2017-08-31 | 2019-09-10 | George Glover | Video borescope device |
US20210169311A1 (en) * | 2018-08-29 | 2021-06-10 | Ok Fiber Technology Co., Ltd. | Fiberscope having excellent insertability |
JP7546258B2 (en) | 2018-08-29 | 2024-09-06 | 株式会社Okファイバーテクノロジー | Easy-to-insert fiberscope |
US20210152786A1 (en) * | 2019-11-18 | 2021-05-20 | Schölly Fiberoptic GmbH | Endoscope and endoscope assembly |
US11589741B2 (en) * | 2019-11-18 | 2023-02-28 | Schölly Fiberoptic GmbH | Endoscope and endoscope assembly |
US20220192884A1 (en) * | 2020-12-22 | 2022-06-23 | A.R.C. Laser Gmbh | Eye treatment device, in particular for glaucoma |
Also Published As
Publication number | Publication date |
---|---|
US20190216306A1 (en) | 2019-07-18 |
US11337598B2 (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11337598B2 (en) | Laser video endoscope | |
US10226167B2 (en) | Laser video endoscope | |
JP6630697B2 (en) | Laser video endoscope | |
EP1478264B1 (en) | Miniature endoscope with imaging fiber system | |
CA2297221C (en) | Endoscope with reusable core and disposable sheath with passageways | |
EP0280384B1 (en) | Endoscope with removable eyepiece | |
JP2022050567A (en) | Laser video endoscope | |
US20050085692A1 (en) | Endoscope | |
US20030163030A1 (en) | Hollow endoscopy | |
US5411500A (en) | Portable arthroscope with disposable probe | |
JP2012518464A (en) | Disposable sheath for use in imaging systems | |
AU2014100607A4 (en) | Laser video endoscope | |
US5951463A (en) | Hand-held endoscopic viewing system | |
JP3506999B2 (en) | Endoscope device | |
AU2017201452B2 (en) | Laser video endoscope | |
CN114569040A (en) | Endoscope device supporting disassembly and assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONN Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNOR:BEAVER-VISITEC INTERNATIONAL, INC.;REEL/FRAME:039781/0469 Effective date: 20160819 |
|
AS | Assignment |
Owner name: CORTLAND CAPITAL MARKET SERVICES, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:BEAVER-VISITEC INTERNATIONAL, INC.;REEL/FRAME:039529/0665 Effective date: 20160819 |
|
AS | Assignment |
Owner name: BEAVER-VISITEC INTERNATIONAL, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT;REEL/FRAME:043373/0849 Effective date: 20170821 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
AS | Assignment |
Owner name: BEAVER-VISITEC INTERNATIONAL, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:URAM, MARTIN;ENDER, PAULA;SIGNING DATES FROM 20181212 TO 20181213;REEL/FRAME:047767/0914 |
|
AS | Assignment |
Owner name: BEAVER-VISITEC INTERNATIONAL, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH;REEL/FRAME:048466/0301 Effective date: 20190228 Owner name: GOLDMAN SACHS BANK USA, AS FIRST LIEN COLLATERAL A Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:BEAVER-VISITEC INTERNATIONAL (US), INC.;BEAVER-VISITEC INTERNATIONAL, INC.;REEL/FRAME:048473/0367 Effective date: 20190228 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS SECOND Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:BEAVER-VISITEC INTERNATIONAL (US), INC.;BEAVER-VISITEC INTERNATIONAL, INC.;REEL/FRAME:048478/0301 Effective date: 20190228 Owner name: GOLDMAN SACHS BANK USA, AS FIRST LIEN COLLATERAL AGENT, NEW YORK Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:BEAVER-VISITEC INTERNATIONAL (US), INC.;BEAVER-VISITEC INTERNATIONAL, INC.;REEL/FRAME:048473/0367 Effective date: 20190228 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS SECOND LIEN COLLATERAL AGENT, DELAWARE Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:BEAVER-VISITEC INTERNATIONAL (US), INC.;BEAVER-VISITEC INTERNATIONAL, INC.;REEL/FRAME:048478/0301 Effective date: 20190228 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |