US20160073524A1 - Assembly structure for use in storage media of server - Google Patents
Assembly structure for use in storage media of server Download PDFInfo
- Publication number
- US20160073524A1 US20160073524A1 US14/477,939 US201414477939A US2016073524A1 US 20160073524 A1 US20160073524 A1 US 20160073524A1 US 201414477939 A US201414477939 A US 201414477939A US 2016073524 A1 US2016073524 A1 US 2016073524A1
- Authority
- US
- United States
- Prior art keywords
- storage media
- base
- plate
- assembly structure
- rotary cover
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/12—Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
- G11B33/121—Disposition of constructional parts in the apparatus, e.g. of power supply, of modules the apparatus comprising a single recording/reproducing device
- G11B33/123—Mounting arrangements of constructional parts onto a chassis
- G11B33/124—Mounting arrangements of constructional parts onto a chassis of the single recording/reproducing device, e.g. disk drive, onto a chassis
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0217—Mechanical details of casings
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/02—Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
- G11B33/022—Cases
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/0004—Casings, cabinets or drawers for electric apparatus comprising several parts forming a closed casing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0217—Mechanical details of casings
- H05K5/0221—Locks; Latches
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0217—Mechanical details of casings
- H05K5/0226—Hinges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/0247—Electrical details of casings, e.g. terminals, passages for cables or wiring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/02—Details
- H05K5/03—Covers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1485—Servers; Data center rooms, e.g. 19-inch computer racks
- H05K7/1487—Blade assemblies, e.g. blade cases or inner arrangements within a blade
Definitions
- the present invention relates to an assembly structure, especially to an assembly structure for use in a storage media of a server.
- the cloud computing which has been very popular in recent years and the cloud computing is capable of sharing software, hardware resources and various type of information via the mutual connection through network.
- the cloud computing utilizes the high-speed calculation and massive storage capability of a server group through the internet thereby being able to replace the software which has been installed in a personal computer or replace the hard disk drive for allowing the data to be accessed via the internet.
- a computer server is categorized into a vertical-type server and a frame-type server, the appearance of the vertical-type server is similar to a general personal computer, and a greater expansion space is provided during operation and the quantity of hard disk drives or other electronic devices can be adjusted according to user's requirements.
- the frame-type server the internal accommodation space of a machine case is able to be distributed, so the frame-type server can be easily removed from a frame for replacement.
- the frame used for installing the frame-type server is able to be installed with a plurality of frame-type servers, so the frame-type server is more suitable to be applied in a large-scale machine room thereby being commonly adopted in a large-scale customer data center.
- the hard disk drive fastening rack adopted in a server frame is divided into several chassis kits with respect to the specification of the server for allowing one or more hard disk drive modules to be installed.
- the interior of the hard disk drive fastening rack is divided into a plurality of chassis kits along single direction so as to be formed as a 1 ⁇ 4 or 1 ⁇ 5 hard disk drive fastening rack.
- the plurality of chassis kits divided in the hard disk drive fastening rack are arranged with a layered means in the hard disk drive fastening rack so as to be formed as a 2 ⁇ 3, 2 ⁇ 4 or 3 ⁇ 5 hard disk drive fastening rack.
- chassis kits all require at least a hand tool, screw(s) or special tool for fastening the hard disk drive onto the frame. As such, inconvenience is cause during assembling or detaching the hard disk drive.
- the applicant of the present invention has devoted himself for researching and inventing a novel design for improving the above-mentioned disadvantages.
- the present invention is to provide an assembly structure for use in a storage media of server, so a storage media can be easily assembled or detached through a rotary cover plate being closed or opened.
- the present invention provides an assembly structure for use in a storage media of server, allowing a storage media to be assembled in or detaching from a frame.
- the assembly structure includes a base and a rotary cover plate.
- the base is formed with an accommodation space and installed on the frame for accommodating the storage media.
- One end of the rotary cover plate is rotatably pivoted on the base.
- the rotary cover plate includes a top plate, a push plate and a force plate.
- the push plate and the force plate are oppositely arranged at two sides of the top plate.
- the rotary cover plate is able to be engaged relative to the base thereby enabling the force plate to push the storage media for being electrically connected to the base.
- the rotary cover plate is able to be opened relative to the base thereby enabling the push plate to push the storage media for being disconnected with the base.
- a user can easily assemble or detach the storage media without any hand tool, so the operation is very simple and high efficiency is provided; especially, through the rotary cover plate being engaged or opened, the storage media is enabled to be connected or disconnected with (separated from) a base connector of the base.
- FIG. 1 is an exploded view showing the assembly structure for use in a storage media of server according to one embodiment of the present invention
- FIG. 2 is a perspective view showing the rotary cover plate according to one embodiment of the present invention.
- FIG. 3 is a schematic view showing the storage media being assembled according to one embodiment of the present invention.
- FIG. 4 is a side view showing the rotary cover plate being engaged relative to the base according to one embodiment of the present invention
- FIG. 5 is a side view showing the storage media shown in FIG. 4 already being assembled on the base, in other words the storage media being electrically connected to the base;
- FIG. 6 is a perspective view of FIG. 5 ;
- FIG. 7 is a side view showing the rotary cover plate being opened relative to the base according to one embodiment of the present invention.
- FIG. 8 is a perspective view of FIG. 7 ;
- FIG. 9 is a schematic showing another embodiment of the present invention.
- the present invention provides an assembly structure for use in a storage media of server which allows a storage media to be easily assembled and detached.
- the storage media is preferably to be a hard disk drive or a solid state drive (SSD), and what shall be addressed is that the scope of the present invention is not limited to the hard disk drive or the solid state drive.
- the present invention provides an assembly structure 100 for use in a storage media of server, which allows a storage media 150 to be assembled in or detached from a frame 110 .
- the storage media 150 is preferably to be, but not limited to, a hard disk drive.
- the assembly structure 100 includes a rotary cover plate 200 and a base 300 .
- the base 300 is formed with an accommodation space 310 and installed on the frame 110 for accommodating the storage media 150 .
- the base 300 further includes two first lateral plates 330 , a base connector 340 and an external connector 350 .
- the accommodation space 310 is defined by each of the first lateral plates 330 and the base connector 340 .
- the base connector 340 is respectively and electrically connected to an insertion slot (not shown in figures) of the storage media 150 and the external connector 350 .
- the base connector 340 is preferably to be a connector mated with the insertion slot of the storage media 150 , for example: a SATA, USB, SAS (Serial Attached SCSI) or other suitable connection interface.
- the external connector 350 is electrically connected to the base connector 340 through a circuit board 360 , and what shall be addressed is that the external connector 350 is not limited to any specific type.
- the rotary cover plate 200 includes a top plate 210 , a push plate 220 , a force plate 230 and two second lateral plates 250 .
- the push plate 220 and the force plate 230 are oppositely arranged at two sides of the top plate 210 .
- Each of the second lateral plates 250 is respectively arranged at another two sides of the top plate 210 opposite to the push plate 220 and the force plate 230 , thereby enabling the rotary covert plate 200 to be formed in a substantially-rectangular cover member.
- each of the second lateral plates 250 is oppositely arranged with each of the first lateral plates 330 , wherein each of the pivotal shafts 120 is respectively connected to one end of each of the first lateral plates 330 and one end of each of the second lateral plates 250 , thereby allowing the rotary cover plate 200 to rotate relative to the base 300 through the pivotal shaft 120 being served as a pivotal center.
- the base 300 is further formed with an elastic latch slot 320 allowing the latch unit 240 to be latched.
- the elastic latch slot 320 is preferably to be a latch slot having elasticity.
- the elastic latch slot 320 can also be formed as a push-push structure or other suitable structure.
- a stop plate 322 extended from the frame 110 is further provided.
- One lateral surface of the stop plate 322 is used for limiting the displacement of the storage media 150 in the accommodation space 310 , and another lateral surface thereof is adjacent to the elastic latch slot 320 .
- one end of each of the first lateral plates 330 is formed with a stop piece 332 , and each of the stop pieces 332 is arranged to be parallel to the stop plate 322 and used for the same purpose of limiting the displacement of the storage media 150 in the accommodation space 310 .
- the push plate 220 of the rotary cover plate 200 is further formed with a folded part 222 .
- the folded part 222 is preferably to be a folded structure formed through outwardly (or inwardly) folding one distal end of the push plate 220 , thereby allowing the push plate 200 to be provided with a better structural strength and prevented from being deformed when pushing the storage media (not shown in figure).
- Two ends of the push plate 220 defined between the two second lateral plates 250 are respectively formed as a free end thereby being provided with a function of elastically abutting and pushing the storage media 150 .
- the force plate 230 is preferably to be integrally formed with the top cover 210 and extended to the accommodation space 310 , and disposed adjacent to the latch unit 240 .
- the force plate 230 can be disposed at the same side as the press plate 248 of the latch unit 240 , and can also be varied with respect to the dimension of the storage media, what shall be addressed is that the scope of the present invention is not limited to the above-mentioned arrangement.
- the force plate 230 is further formed with a bent part 232 and an extended part 234 .
- the extended part 234 is connected to the bent part 232 and extended to the accommodation space 310 .
- the quantity of the force plate 230 is preferably to be two, and the two force plates 230 are arranged in parallel.
- the force plate 230 can also be formed in a single plate status or other status according to actual needs.
- the extended part 234 formed with an inclined plane is provided with a function of guiding the storage media 150 to be moved towards the interior of the base 300
- the bent part 232 having elasticity is provided with a function of physically abutting and pushing the storage media 150 for establishing the electrical connection with the base 300 .
- one component force thereof allows the force plate 230 (i.e. the bent part 232 ) to push the storage media 150 for being moved with a distance D in a direction parallel to the base 300 until an electrical connection is established between an insertion slot 152 of the storage media 150 and the base connector 340 of the base 300 .
- Another component force perpendicular to the base 300 allows the latch unit 240 to be latched in the elastic latch slot 320 , thereby achieving objectives of positioning the storage media 150 and electrically connecting the storage media 150 and the base 300 , as shown in FIG. 5 and FIG. 6 .
- FIG. 7 and FIG. 8 are a side view and a perspective view showing the rotary cover plate being opened relative to the base according to one embodiment of the present invention.
- the press plate 248 of the rotary cover plate 200 is pulled for allowing the latch unit 240 to be separated from the elastic latch slot 320 (or the latch unit 240 to be elastically retracted from the elastic latch slot 320 ).
- the extended part 234 of the force plate 230 is in contact with one end of the storage media 150 , but the insertion slot 152 of the storage media 150 and the base connector 340 are still electrically connected (as shown in FIG. 4 ).
- the push plate 220 is enabled to achieve the effect of pushing the storage media 150 and the push plate 220 is prevented from being deformed. Accordingly, by opening the rotary cover plate 200 , the storage media 150 is able to be easily released from the base connector 340 of the base 300 , thereby enabling the storage media 150 to be easily taken out.
- FIG. 9 is a schematic showing another embodiment of the present invention.
- the present invention further provides an assembly structure for use in a storage media of server, in which a frame 110 includes a plurality of bases 300 for allowing a plurality of storage medias (not shown in figure) to be assembled or detached. Because the structure, the components, the connection relation and the operation relation are the same as the previous embodiment, no further illustration is provided.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Casings For Electric Apparatus (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to an assembly structure, especially to an assembly structure for use in a storage media of a server.
- 2. Description of Related Art
- With the network being more prevalent and the network bandwidth being wider, the data process which used to be done in a computer now can be achieved via the network. Because the application of network is commonly seen in our daily lives, a special case is the cloud computing which has been very popular in recent years and the cloud computing is capable of sharing software, hardware resources and various type of information via the mutual connection through network. The cloud computing utilizes the high-speed calculation and massive storage capability of a server group through the internet thereby being able to replace the software which has been installed in a personal computer or replace the hard disk drive for allowing the data to be accessed via the internet.
- At present, a computer server is categorized into a vertical-type server and a frame-type server, the appearance of the vertical-type server is similar to a general personal computer, and a greater expansion space is provided during operation and the quantity of hard disk drives or other electronic devices can be adjusted according to user's requirements. In the frame-type server, the internal accommodation space of a machine case is able to be distributed, so the frame-type server can be easily removed from a frame for replacement. Generally speaking, the frame used for installing the frame-type server is able to be installed with a plurality of frame-type servers, so the frame-type server is more suitable to be applied in a large-scale machine room thereby being commonly adopted in a large-scale customer data center.
- For satisfying different requirements of customer data, one or more hard disk drives may be frequently assembled in or detached from the large-scale data center. In prior art, the hard disk drive fastening rack adopted in a server frame is divided into several chassis kits with respect to the specification of the server for allowing one or more hard disk drive modules to be installed. For example: for a server with 1 U specification, the interior of the hard disk drive fastening rack is divided into a plurality of chassis kits along single direction so as to be formed as a 1×4 or 1×5 hard disk drive fastening rack. For a server with 2 U or higher specification, the plurality of chassis kits divided in the hard disk drive fastening rack are arranged with a layered means in the hard disk drive fastening rack so as to be formed as a 2×3, 2×4 or 3×5 hard disk drive fastening rack.
- However, the mentioned chassis kits all require at least a hand tool, screw(s) or special tool for fastening the hard disk drive onto the frame. As such, inconvenience is cause during assembling or detaching the hard disk drive.
- Accordingly, the applicant of the present invention has devoted himself for researching and inventing a novel design for improving the above-mentioned disadvantages.
- The present invention is to provide an assembly structure for use in a storage media of server, so a storage media can be easily assembled or detached through a rotary cover plate being closed or opened.
- Accordingly, the present invention provides an assembly structure for use in a storage media of server, allowing a storage media to be assembled in or detaching from a frame. The assembly structure includes a base and a rotary cover plate. The base is formed with an accommodation space and installed on the frame for accommodating the storage media. One end of the rotary cover plate is rotatably pivoted on the base. The rotary cover plate includes a top plate, a push plate and a force plate. The push plate and the force plate are oppositely arranged at two sides of the top plate. The rotary cover plate is able to be engaged relative to the base thereby enabling the force plate to push the storage media for being electrically connected to the base. The rotary cover plate is able to be opened relative to the base thereby enabling the push plate to push the storage media for being disconnected with the base.
- Advantages achieved by the preset invention are as followings: a user can easily assemble or detach the storage media without any hand tool, so the operation is very simple and high efficiency is provided; especially, through the rotary cover plate being engaged or opened, the storage media is enabled to be connected or disconnected with (separated from) a base connector of the base.
-
FIG. 1 is an exploded view showing the assembly structure for use in a storage media of server according to one embodiment of the present invention; -
FIG. 2 is a perspective view showing the rotary cover plate according to one embodiment of the present invention; -
FIG. 3 is a schematic view showing the storage media being assembled according to one embodiment of the present invention; -
FIG. 4 is a side view showing the rotary cover plate being engaged relative to the base according to one embodiment of the present invention; -
FIG. 5 is a side view showing the storage media shown inFIG. 4 already being assembled on the base, in other words the storage media being electrically connected to the base; -
FIG. 6 is a perspective view ofFIG. 5 ; -
FIG. 7 is a side view showing the rotary cover plate being opened relative to the base according to one embodiment of the present invention; -
FIG. 8 is a perspective view ofFIG. 7 ; and -
FIG. 9 is a schematic showing another embodiment of the present invention. - Preferred embodiments of the present invention will be described with reference to the drawings.
- The present invention provides an assembly structure for use in a storage media of server which allows a storage media to be easily assembled and detached. The storage media is preferably to be a hard disk drive or a solid state drive (SSD), and what shall be addressed is that the scope of the present invention is not limited to the hard disk drive or the solid state drive.
- Referring from
FIG. 1 toFIG. 3 , the present invention provides anassembly structure 100 for use in a storage media of server, which allows astorage media 150 to be assembled in or detached from aframe 110. As shown in figures, thestorage media 150 is preferably to be, but not limited to, a hard disk drive. Theassembly structure 100 includes arotary cover plate 200 and abase 300. Thebase 300 is formed with anaccommodation space 310 and installed on theframe 110 for accommodating thestorage media 150. - As shown in
FIG. 1 andFIG. 3 , thebase 300 further includes two firstlateral plates 330, abase connector 340 and anexternal connector 350. Theaccommodation space 310 is defined by each of the firstlateral plates 330 and thebase connector 340. Thebase connector 340 is respectively and electrically connected to an insertion slot (not shown in figures) of thestorage media 150 and theexternal connector 350. Thebase connector 340 is preferably to be a connector mated with the insertion slot of thestorage media 150, for example: a SATA, USB, SAS (Serial Attached SCSI) or other suitable connection interface. Theexternal connector 350 is electrically connected to thebase connector 340 through acircuit board 360, and what shall be addressed is that theexternal connector 350 is not limited to any specific type. - One end of the
rotary cover plate 200 is rotatably pivoted on thebase 300. Therotary cover plate 200 includes atop plate 210, apush plate 220, aforce plate 230 and two secondlateral plates 250. Thepush plate 220 and theforce plate 230 are oppositely arranged at two sides of thetop plate 210. Each of the secondlateral plates 250 is respectively arranged at another two sides of thetop plate 210 opposite to thepush plate 220 and theforce plate 230, thereby enabling the rotarycovert plate 200 to be formed in a substantially-rectangular cover member. - According to the embodiment disclosed in
FIG. 1 andFIG. 3 , twopivotal shafts 120 are further provided. Each of the secondlateral plates 250 is oppositely arranged with each of the firstlateral plates 330, wherein each of thepivotal shafts 120 is respectively connected to one end of each of the firstlateral plates 330 and one end of each of the secondlateral plates 250, thereby allowing therotary cover plate 200 to rotate relative to thebase 300 through thepivotal shaft 120 being served as a pivotal center. - In addition, another end of the
rotary cover plate 200 opposite to thepush plate 220 is further provided with alatch unit 240. Thebase 300 is further formed with anelastic latch slot 320 allowing thelatch unit 240 to be latched. According to this embodiment, theelastic latch slot 320 is preferably to be a latch slot having elasticity. However, in other embodiments, theelastic latch slot 320 can also be formed as a push-push structure or other suitable structure. When therotary cover plate 200 is engaged relative to thebase 300, thelatch unit 240 of therotary cover plate 200 is able to be correspondingly latched with theelastic latch slot 320 of thebase 300, thereby allowing thestorage media 150 to be positioned and to form an electrical connection with thebase 300. When thestorage media 150 is desired to be taken out, apress plate 248 of therotary cover plate 200 is pulled for allowing thelatch unit 240 and theelastic latch slot 320 to be separated (please refer toFIG. 4 ). - According to this embodiment, a
stop plate 322 extended from theframe 110 is further provided. One lateral surface of thestop plate 322 is used for limiting the displacement of thestorage media 150 in theaccommodation space 310, and another lateral surface thereof is adjacent to theelastic latch slot 320. In addition, one end of each of the firstlateral plates 330 is formed with astop piece 332, and each of thestop pieces 332 is arranged to be parallel to thestop plate 322 and used for the same purpose of limiting the displacement of thestorage media 150 in theaccommodation space 310. - As shown in
FIG. 2 , thepush plate 220 of therotary cover plate 200 is further formed with a foldedpart 222. The foldedpart 222 is preferably to be a folded structure formed through outwardly (or inwardly) folding one distal end of thepush plate 220, thereby allowing thepush plate 200 to be provided with a better structural strength and prevented from being deformed when pushing the storage media (not shown in figure). Two ends of thepush plate 220 defined between the two secondlateral plates 250 are respectively formed as a free end thereby being provided with a function of elastically abutting and pushing thestorage media 150. In other words, two short sides of thepush plate 220 are not connected to each of the secondlateral plates 250, thereby enabling thepush plate 220 to elastically abut and push thestorage media 150. In addition, according to this embodiment, theforce plate 230 is preferably to be integrally formed with thetop cover 210 and extended to theaccommodation space 310, and disposed adjacent to thelatch unit 240. However, in another embodiment, theforce plate 230 can be disposed at the same side as thepress plate 248 of thelatch unit 240, and can also be varied with respect to the dimension of the storage media, what shall be addressed is that the scope of the present invention is not limited to the above-mentioned arrangement. - Moreover, the
force plate 230 is further formed with abent part 232 and anextended part 234. Theextended part 234 is connected to thebent part 232 and extended to theaccommodation space 310. The quantity of theforce plate 230 is preferably to be two, and the twoforce plates 230 are arranged in parallel. However, in another embodiment, theforce plate 230 can also be formed in a single plate status or other status according to actual needs. Theextended part 234 formed with an inclined plane is provided with a function of guiding thestorage media 150 to be moved towards the interior of thebase 300, and thebent part 232 having elasticity is provided with a function of physically abutting and pushing thestorage media 150 for establishing the electrical connection with thebase 300. - How to easily enable the storage media to be assembled on or detached from the base by utilizing the rotary cover plate without any tool is illustrated as following. Please refer from
FIG. 4 toFIG. 6 , when therotary cover plate 200 is engaged relative to thebase 300, theforce plate 230 having theextended part 234 formed with the inclined plane is abutted against one end of thestorage media 150. When therotary cover plate 200 is further engaged towards theelastic latch slot 320, the contact point formed between theforce plate 230 and thestorage media 150 is gradually shifted from theextended part 234 to thebent part 232. In other words, during the engaging process, thebent part 232 is enabled to push thestorage media 150 so as to finish the assembly. - At the moment, in the downward-rotating force applied to the
rotary cover plate 200, one component force thereof allows the force plate 230 (i.e. the bent part 232) to push thestorage media 150 for being moved with a distance D in a direction parallel to the base 300 until an electrical connection is established between aninsertion slot 152 of thestorage media 150 and thebase connector 340 of thebase 300. Another component force perpendicular to thebase 300 allows thelatch unit 240 to be latched in theelastic latch slot 320, thereby achieving objectives of positioning thestorage media 150 and electrically connecting thestorage media 150 and thebase 300, as shown inFIG. 5 andFIG. 6 . - Please refer to
FIG. 7 andFIG. 8 , which are a side view and a perspective view showing the rotary cover plate being opened relative to the base according to one embodiment of the present invention. When therotary cover plate 200 is desired to be opened relative to thebase 300, thepress plate 248 of therotary cover plate 200 is pulled for allowing thelatch unit 240 to be separated from the elastic latch slot 320 (or thelatch unit 240 to be elastically retracted from the elastic latch slot 320). At this moment, theextended part 234 of theforce plate 230 is in contact with one end of thestorage media 150, but theinsertion slot 152 of thestorage media 150 and thebase connector 340 are still electrically connected (as shown inFIG. 4 ). - As shown in
FIG. 7 , when therotary cover plate 200 is further lifted to be away from theelastic latch slot 320, thepush plate 200 is enabled to be abutted against thestorage media 150. The higher the angle or the large the force generated during therotary cover plate 200 being opened, the greater pushing force is provided by thepush plate 220 to thestorage media 150 until thestorage media 150 is disconnected with thebase connector 340. In other words, the electrical connection between theinsertion slot 152 of thestorage media 150 and thebase connector 340 is no longer established, thereby allowing thestorage media 150 to be taken out from theaccommodation space 310 of thebase 300. As shown inFIG. 8 , because the length of thepush plate 200 is greater than the length of the insertion slot (not shown in figure) and thebase connector 340, and thepush plate 220 is formed with the foldedpart 222, so when thepush plate 220 is served to push thestorage media 150, thepush plate 220 is enabled to achieve the effect of pushing thestorage media 150 and thepush plate 220 is prevented from being deformed. Accordingly, by opening therotary cover plate 200, thestorage media 150 is able to be easily released from thebase connector 340 of thebase 300, thereby enabling thestorage media 150 to be easily taken out. - Please refer to
FIG. 9 , which is a schematic showing another embodiment of the present invention. The present invention further provides an assembly structure for use in a storage media of server, in which aframe 110 includes a plurality ofbases 300 for allowing a plurality of storage medias (not shown in figure) to be assembled or detached. Because the structure, the components, the connection relation and the operation relation are the same as the previous embodiment, no further illustration is provided. - Although the present invention has been described with reference to the foregoing preferred embodiment, it will be understood that the invention is not limited to the details thereof. Various equivalent variations and modifications can still occur to those skilled in this art in view of the teachings of the present invention. Thus, all such variations and equivalent modifications are also embraced within the scope of the invention as defined in the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/477,939 US9282658B1 (en) | 2014-09-05 | 2014-09-05 | Assembly structure for use in storage media of server |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/477,939 US9282658B1 (en) | 2014-09-05 | 2014-09-05 | Assembly structure for use in storage media of server |
Publications (2)
Publication Number | Publication Date |
---|---|
US9282658B1 US9282658B1 (en) | 2016-03-08 |
US20160073524A1 true US20160073524A1 (en) | 2016-03-10 |
Family
ID=55410601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/477,939 Expired - Fee Related US9282658B1 (en) | 2014-09-05 | 2014-09-05 | Assembly structure for use in storage media of server |
Country Status (1)
Country | Link |
---|---|
US (1) | US9282658B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170027076A1 (en) * | 2013-06-26 | 2017-01-26 | Zodiac Aero Electric | Electrical equipment comprising electronic cards |
CN107145200A (en) * | 2017-05-17 | 2017-09-08 | 郑州云海信息技术有限公司 | A kind of high density storage server |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9635776B2 (en) * | 2014-04-25 | 2017-04-25 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Cabinet |
US9491884B2 (en) * | 2015-01-15 | 2016-11-08 | Aic Inc. | Server cabinet drawer structure |
CN105578815B (en) * | 2016-01-05 | 2018-08-28 | 英业达科技有限公司 | The cover-lifting type structure of electronic device |
TWI625090B (en) * | 2016-05-30 | 2018-05-21 | 仁寶電腦工業股份有限公司 | Chassis structure |
US10356927B2 (en) * | 2017-08-01 | 2019-07-16 | Facebook, Inc. | Storage card adapter with compression latch |
US10054992B1 (en) * | 2017-08-22 | 2018-08-21 | Facebook, Inc. | Storage card adapter with latch |
TWM555054U (en) * | 2017-10-06 | 2018-02-01 | 勤誠興業股份有限公司 | Disk loading device and its multi-unit receiving mechanism |
US11277927B2 (en) | 2019-11-05 | 2022-03-15 | Lear Corporation | System and method for mounting an electronics arrangement |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5828546A (en) * | 1995-03-20 | 1998-10-27 | Emc Corporation | Device cover and ejection apparatus and method |
TWM272357U (en) * | 2005-02-02 | 2005-08-01 | Wistron Corp | Hard disk fixing module |
US7492607B2 (en) * | 2005-06-08 | 2009-02-17 | Lineage Power Corporation | Ejector faceplate for electronics module |
US20070014085A1 (en) * | 2005-07-18 | 2007-01-18 | International Business Machines Corporation | Mounting tray and release mechanism for a disk drive |
TWM350781U (en) * | 2008-10-14 | 2009-02-11 | Quanta Comp Inc | Hard disk securing apparatus |
TWI493320B (en) * | 2010-04-28 | 2015-07-21 | Hannstar Display Corp | Position-shifting structure |
CN102340959B (en) * | 2010-07-21 | 2014-04-30 | 鸿富锦精密工业(深圳)有限公司 | Disassembling mechanism and electronic device using disassembling mechanism |
TWI481338B (en) * | 2013-11-05 | 2015-04-11 | Quanta Comp Inc | Hard disk assembly |
-
2014
- 2014-09-05 US US14/477,939 patent/US9282658B1/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170027076A1 (en) * | 2013-06-26 | 2017-01-26 | Zodiac Aero Electric | Electrical equipment comprising electronic cards |
US9980406B2 (en) * | 2013-06-26 | 2018-05-22 | Zodiac Aero Electric | Electrical equipment comprising electronic cards |
CN107145200A (en) * | 2017-05-17 | 2017-09-08 | 郑州云海信息技术有限公司 | A kind of high density storage server |
Also Published As
Publication number | Publication date |
---|---|
US9282658B1 (en) | 2016-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9282658B1 (en) | Assembly structure for use in storage media of server | |
US9829939B1 (en) | Hard disk mounting device | |
US9025326B1 (en) | Server | |
US8947872B2 (en) | Holding frame for hard disk drive | |
US9703332B2 (en) | Hard disk assembly | |
US8915557B2 (en) | Locking mechanism for adaptor assembly of a server rack chassis | |
US7491070B2 (en) | Fixing structure | |
US8045339B2 (en) | Multiple component mounting system | |
US7466561B2 (en) | System for insertion and extraction of an electronic module | |
US9999153B1 (en) | Server | |
TWM510035U (en) | Server, server case and hard disk fixing device | |
US20160054765A1 (en) | Locking assembly and communication apparatus using same | |
US8553404B2 (en) | Mounting apparatus for data storage device | |
US8512062B1 (en) | Electronic device having assisting apparatus for unplugging RJ-45 connector | |
US8599549B2 (en) | Mounting apparatus for backplane | |
US8789901B2 (en) | Locking assembly and communication apparatus using same | |
US8353720B2 (en) | Cable connector assembly for connecting hard disk drive | |
TWM495605U (en) | Storage medium adapting structure and server using the structure | |
US20130163179A1 (en) | Electronic device with dummy hard disk drive | |
US8500479B2 (en) | Cable connector assembly for connecting hard disk drive | |
CN109388199B (en) | Hard disk fixing device | |
US8545249B2 (en) | Locking assembly and communication apparatus using same | |
US20150179229A1 (en) | Hard disk drive mounting device | |
US20100323237A1 (en) | Battery connector coupling | |
TWM488726U (en) | Assembling structure of server storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AIC INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSAI, LIN-KUEI;JHANG, FU-AN;REEL/FRAME:033673/0929 Effective date: 20140902 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200308 |