US20150345029A1 - Metal removal - Google Patents
Metal removal Download PDFInfo
- Publication number
- US20150345029A1 US20150345029A1 US14/289,190 US201414289190A US2015345029A1 US 20150345029 A1 US20150345029 A1 US 20150345029A1 US 201414289190 A US201414289190 A US 201414289190A US 2015345029 A1 US2015345029 A1 US 2015345029A1
- Authority
- US
- United States
- Prior art keywords
- containing precursor
- nitrogen
- processing region
- carbon
- substrate processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 31
- 239000002184 metal Substances 0.000 title claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 157
- 238000012545 processing Methods 0.000 claims abstract description 133
- 239000002243 precursor Substances 0.000 claims abstract description 129
- 238000000034 method Methods 0.000 claims abstract description 97
- 239000010941 cobalt Substances 0.000 claims abstract description 50
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 50
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000460 chlorine Substances 0.000 claims abstract description 30
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 30
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000005530 etching Methods 0.000 claims abstract description 15
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052736 halogen Inorganic materials 0.000 claims description 42
- 150000002367 halogens Chemical class 0.000 claims description 42
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- 238000010926 purge Methods 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 239000011261 inert gas Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 claims description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 claims description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229940018564 m-phenylenediamine Drugs 0.000 claims description 2
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 19
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 abstract description 11
- 239000007789 gas Substances 0.000 description 58
- 230000008569 process Effects 0.000 description 56
- 239000012530 fluid Substances 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 17
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 13
- 239000012159 carrier gas Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000005281 excited state Effects 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 239000002156 adsorbate Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- ZDICFBIJLKDJAQ-UHFFFAOYSA-N dichloroxenon Chemical compound Cl[Xe]Cl ZDICFBIJLKDJAQ-UHFFFAOYSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- HPIZMYFHVMMQMK-UHFFFAOYSA-N cobalt;$l^{3}-carbane Chemical class [Co]C HPIZMYFHVMMQMK-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/12—Gaseous compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
Definitions
- Embodiments of the invention relate to gas-phase etching metal.
- Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process which etches one material faster than another helping e.g. a pattern transfer process proceed. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits and processes, etch processes have been developed with a selectivity towards a variety of materials.
- Methods are described herein for etching metal films, such as cobalt and nickel, which are difficult to volatize.
- the methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl 2 ). Chlorine is then removed from the substrate processing region.
- a carbon-and-nitrogen-containing precursor e.g. TMEDA
- TMEDA carbon-and-nitrogen-containing precursor
- Embodiments of the invention include methods of etching metal from a substrate.
- the methods include transferring the substrate into the substrate processing region.
- the methods further include flowing a halogen-containing precursor into the substrate processing region.
- the substrate processing region is plasma-free during the flowing of the halogen-containing precursor.
- the methods further include purging the substrate processing region with a relatively inert gas to remove the halogen-containing precursor from the substrate processing region.
- the methods further include flowing a carbon-and-nitrogen-containing precursor in to the substrate processing region.
- the substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor. Flowing of the carbon-and-nitrogen-containing precursor occurs after purging the substrate processing region.
- the methods further include removing the substrate from the substrate processing region.
- Embodiments of the invention include methods of etching metal from a substrate.
- the methods include flowing a halogen-containing precursor into a substrate processing region housing the substrate.
- the substrate processing region is plasma-free during the flowing of the halogen-containing precursor.
- the methods further include removing unreacted halogen-containing precursor from the substrate processing region.
- the methods further include flowing a carbon-and-nitrogen-containing precursor into the substrate processing region.
- the substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor. Flowing of the carbon-and-nitrogen-containing precursor occurs after removing unreacted halogen-containing precursor.
- FIG. 1 is a flow chart of a cobalt etch process according to embodiments.
- FIG. 2 is a flow chart of a cobalt etch process according to embodiments.
- FIG. 3C shows a bottom plan view of a showerhead according to the disclosed technology.
- FIG. 4 shows a top plan view of an exemplary substrate processing system according to the disclosed technology.
- Methods are described herein for etching metal films, such as cobalt and nickel, which are difficult to volatize.
- the methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl 2 ). Chlorine is then removed from the substrate processing region.
- a carbon-and-nitrogen-containing precursor e.g. TMEDA
- TMEDA carbon-and-nitrogen-containing precursor
- FIG. 1 is a flow chart of a cobalt etch process 100 according to embodiments.
- the cobalt film of this example may be in the form of a blanket layer on a substrate or cobalt may reside in discrete regions of a patterned substrate surface. In either case, regions of exposed cobalt are present on the surface of the substrate.
- the substrate is delivered into a substrate processing region (operation 110 ).
- a flow of chlorine (Cl 2 ) is introduced into a substrate processing region in operation 120 .
- Other sources of chlorine may be used to augment or replace the chlorine.
- Residual halogen-containing precursor e.g. Cl 2 in the example
- Purging operation 130 may involve flowing a relatively inert gas into the substrate processing region to actively displace the halogen-containing precursor.
- the substrate processing region may be evacuated in another manner to remove residual halogen-containing precursor.
- a carbon-and-nitrogen-containing precursor is flowed into the substrate processing region in operation 140 of cobalt etch process 100 .
- the carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments.
- the carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments.
- the carbon-and-nitrogen-containing precursor may consist of carbon, nitrogen and hydrogen in embodiments.
- the carbon-and-nitrogen-containing precursor comprises at least two, three or four methyl groups according to embodiments.
- An exemplary carbon-and-nitrogen-containing precursor is tetramethylethylenediamine (aka TMEDA or C 6 H 16 N 2 ).
- FIG. 2 is a flow chart of a cobalt etch process 200 according to embodiments.
- Exposed cobalt in a cobalt film may be in the form of a blanket layer in discrete regions of a patterned substrate surface.
- the substrate is delivered into a substrate processing region (operation 210 ).
- a flow of chlorine (Cl 2 ) is introduced into a substrate processing region in operation 220 .
- a chlorine-containing precursor may generally be flowed into the substrate processing region, such as chlorine (Cl 2 ), xenon dichloride or boron trichloride.
- a halogen-containing precursor may most generally be used. Exposing the cobalt to chlorine may occur with plasma or without any plasma in the substrate processing region in embodiments.
- the substrate processing region may be plasma-free during operation 220 of cobalt etch process 200 .
- the cobalt reacts with the chlorine to presumably form cobalt-chloride adsorbates which are desorbed in a subsequent operation to remove cobalt from the substrate.
- Residual halogen-containing precursor e.g. Cl 2 in the example
- Purging operation 230 may involve flowing a relatively inert gas (e.g. helium or argon) into the substrate processing region to actively displace the halogen-containing precursor.
- the substrate processing region may be evacuated in another manner to remove residual halogen-containing precursor.
- a carbon-and-nitrogen-containing precursor is flowed into the substrate processing region in operation 240 of cobalt etch process 200 .
- the carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments.
- the carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments.
- the carbon-and-nitrogen-containing precursor may consist of carbon, nitrogen and hydrogen in embodiments.
- the carbon-and-nitrogen-containing precursor comprises at least two, three or four methyl groups according to embodiments.
- An exemplary carbon-and-nitrogen-containing precursor is tetramethylethylenediamine (aka TMEDA or C 6 H 16 N 2 ).
- the carbon-and-nitrogen-containing precursor is flowed into the plasma region after the operation of purging the substrate processing region to avoid having the carbon-and-nitrogen-containing precursor react with the halogen-containing precursor.
- the reaction between the carbon-and-nitrogen-containing precursor and the chlorine-containing precursor may produce undesirable deposition and accumulation on the substrate or processing system hardware in embodiments.
- the substrate is removed in operation 270 of cobalt etch process 200 . If additional cobalt needs to be removed, the substrate processing region is purged to remove residual carbon-and-nitrogen-containing precursor and operations 220 - 240 are repeated before making the decision to continue again or stop the etch process (decision operation 250 ).
- a halogen-containing precursor may be used in place of the chlorine-containing precursor (e.g. Cl 2 ) of cobalt etch process 200 .
- the halogen-containing precursor may include at least one of chlorine or bromine in embodiments.
- the halogen-containing precursor may be a diatomic halogen, a homonuclear diatomic halogen or a heteronuclear diatomic halogen according to embodiments.
- the substrate processing region may be purged between the operations of flowing the halogen-containing precursor (operations 120 or 220 ) and flowing the carbon-and-nitrogen-containing precursor (operations 140 or 240 ) into the substrate processing region. Flowing the carbon-and-nitrogen-containing precursor ( 140 or 240 ) occurs after flowing the halogen-containing precursor ( 120 or 220 ) in embodiments.
- the operations may be repeated (in an “etch cycle” as referred to herein) to remove additional cobalt when desired (depicted in cobalt etch process 200 ).
- the substrate processing region may be purged (in operation 260 ) with a relatively inert gas following operation 240 , at which point operation 220 may be repeated to rechlorinate the cobalt surface.
- Operation 240 may then be repeated after another optional purging operation (operation 230 ).
- a relatively inert gas may be, for example, helium and/or argon.
- etch cycle will be used to describe operation 220 (involving the halogen-containing precursor) followed by operation 240 (involving the carbon-and-nitrogen-containing precursor). Each etch cycle may remove between about 2 ⁇ and about 8 ⁇ or between about 3 ⁇ and about 6 ⁇ according to embodiments.
- the carbon-and-nitrogen-containing precursor may be TMEDA (C 6 H 16 N 2 ) as in the example.
- the carbon-and-hydrogen-containing precursor may include carbon and nitrogen and may consist only of carbon, nitrogen and hydrogen.
- the carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments.
- the carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments.
- the carbon-and-nitrogen-containing precursor may include a phenyl group in embodiments.
- the carbon-and-nitrogen-containing precursor may include o-phenylenediamine, p-phenylenediamine and/or m-phenylenediamine according to embodiments.
- the carbon-and-nitrogen-containing precursor may be of the form R 2 —N—[CH 2 ] m N—R 2 , where m is 1, 2 or 3 and R is H, CH 3 , C 2 H 5 or a higher order hydrocarbon in embodiments.
- Creating volatile reaction products from cobalt removes material during cobalt etch process 100 or cobalt etch process 200 .
- the volatile reaction products are thought to include methyl cobalt complexes such as Co(CH 3 ) 4 .
- Exposing cobalt first to chlorine (operations 120 or 220 ) and then to the carbon-and-nitrogen-containing precursor (operations 140 or 240 ) has been found to produce the production worthy etch rate of cobalt and presumably makes volatile reaction products which leave the surface by desorption.
- Cobalt chloride complexes have been found to be nonvolatile with or without plasma treatment. However, the formation of cobalt chloride complexes have been found to be a conducive intermediate state toward volatization and desorption.
- the chlorine-containing precursor (e.g. Cl 2 ) may be flowed into the substrate processing region at a flow rate of between about 3 sccm (standard cubic centimeters per minute) and about 50 sccm or between about 3 sccm and about 20 sccm in embodiments.
- the carbon-and-nitrogen-containing precursor may be flowed at a flow rate of between about 10 sccm and about 300 sccm or between about 20 sccm and about 200 sccm according to embodiments.
- the carbon-and-nitrogen-containing precursor may be a liquid prior to entering the substrate processing region, in which case a bubbler and carrier gas may be used to flow the precursor into the substrate processing region.
- the bubbler may heat the precursor above room temperature, for example to between about 25° C. and about 60° C., to increase the vapor pressure while the carrier gas is flowed through the liquid.
- the carrier gas may be relatively inert in comparison to the carbon-and-nitrogen-containing precursor.
- Helium may be used as the carrier gas.
- the carrier gas may be flowed at between about 1 slm (standard liters per minute) and about 5 slm according to embodiments.
- gases and/or flows may be used depending on a number of factors including processing chamber configuration, substrate size, geometry and layout of features being etched.
- the substrate processing region may be devoid of plasma or “plasma-free” during all etch operations depicted in cobalt etch process 100 or cobalt etch process 200 .
- the substrate processing region may be plasma-free during an etch cycle according to embodiments.
- a plasma-free substrate processing region means there is essentially no concentration of ionized species and free electrons within the substrate processing region.
- the substrate may be maintained may be between about ⁇ 30° C. and about 400° C. in general.
- the temperature of the substrate during the operations described may be greater than or about ⁇ 30° C., greater than or about ⁇ 10° C., greater than or about 10° C., or greater than or about 25° C.
- the substrate temperatures may be less than or about 400° C., less than or about 350° C., less than or about 250° C. in embodiments.
- the pressure in the substrate processing region may be about or below 20 Torr during each of the operations (e.g. operations 120 , 140 and 220 , 240 ), and may be about or below 15 Torr, 5 Torr or 3 Torr.
- the pressure may be between about 10 mTorr and about 10 Torr.
- the cobalt is a “metal” and may be one of cobalt or nickel. Both cobalt and nickel have been found to etch using the methods described herein.
- the metal layer may consist of or consist essentially of cobalt and may consist of or consist essentially of nickel according to embodiments.
- the metal layer may consist of or consist essentially of a single element according to embodiments.
- FIG. 3A shows a cross-sectional view of an exemplary substrate processing chamber 1001 with partitioned plasma generation regions within the processing chamber.
- a process gas may be flowed into chamber plasma region 1015 through a gas inlet assembly 1105 .
- a remote plasma system (RPS) 1002 may optionally be included in the system, and may process a first gas which then travels through gas inlet assembly 1105 .
- the inlet assembly 1105 may include two or more distinct gas supply channels where the second channel (not shown) may bypass the RPS 1002 , if included. Accordingly, in embodiments the precursor gases may be delivered to the processing chamber in an unexcited state.
- the first channel provided through the RPS may be used for the process gas and the second channel bypassing the RPS may be used for a treatment gas in embodiments.
- the process gas may be excited within the RPS 1002 prior to entering the chamber plasma region 1015 .
- the chlorine-containing precursor as discussed above, for example may pass through RPS 1002 or bypass the RPS unit in embodiments.
- this arrangement will be similarly understood.
- a cooling plate 1003 , faceplate 1017 , ion suppressor 1023 , showerhead 1025 , and a substrate support 1065 (also known as a pedestal), having a substrate 1055 disposed thereon, are shown and may each be included according to embodiments.
- the pedestal 1065 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration may allow the substrate 1055 temperature to be cooled or heated to maintain relatively low temperatures, such as between about ⁇ 20° C. to about 200° C., or therebetween.
- the heat exchange fluid may comprise ethylene glycol and/or water.
- the wafer support platter of the pedestal 1065 which may comprise aluminum, ceramic, or a combination thereof, may also be resistively heated to achieve relatively high temperatures, such as from up to or about 100° C. to above or about 1100° C., using an embedded resistive heater element.
- the heating element may be formed within the pedestal as one or more loops, and an outer portion of the heater element may run adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius.
- the wiring to the heater element may pass through the stem of the pedestal 1065 , which may be further configured to rotate.
- the faceplate 1017 may be pyramidal, conical, or of another similar structure with a narrow top portion expanding to a wide bottom portion.
- the faceplate 1017 may additionally be flat as shown and include a plurality of through-channels used to distribute process gases. Plasma generating gases and/or plasma excited species, depending on use of the RPS 1002 , may pass through a plurality of holes, shown in FIG. 3B , in faceplate 1017 for a more uniform delivery into the chamber plasma region 1015 .
- Exemplary configurations may include having the gas inlet assembly 1105 open into a gas supply region 1058 partitioned from the chamber plasma region 1015 by faceplate 1017 so that the gases/species flow through the holes in the faceplate 1017 into the chamber plasma region 1015 .
- Structural and operational features may be selected to prevent significant backflow of plasma from the chamber plasma region 1015 back into the supply region 1058 , gas inlet assembly 1105 , and fluid supply system 1010 .
- the structural features may include the selection of dimensions and cross-sectional geometries of the apertures in faceplate 1017 to deactivate back-streaming plasma.
- the operational features may include maintaining a pressure difference between the gas supply region 1058 and chamber plasma region 1015 that maintains a unidirectional flow of plasma through the showerhead 1025 .
- the faceplate 1017 , or a conductive top portion of the chamber, and showerhead 1025 are shown with an insulating ring 1020 located between the features, which allows an AC potential to be applied to the faceplate 1017 relative to showerhead 1025 and/or ion suppressor 1023 .
- the insulating ring 1020 may be positioned between the faceplate 1017 and the showerhead 1025 and/or ion suppressor 1023 enabling a capacitively coupled plasma (CCP) to be formed in the first plasma region.
- a baffle (not shown) may additionally be located in the chamber plasma region 1015 , or otherwise coupled with gas inlet assembly 1105 , to affect the flow of fluid into the region through gas inlet assembly 1105 .
- the ion suppressor 1023 may comprise a plate or other geometry that defines a plurality of apertures throughout the structure that are configured to suppress the migration of ionically-charged species out of chamber plasma region 1015 while allowing uncharged neutral or radical species to pass through the ion suppressor 1023 into an activated gas delivery region between the suppressor and the showerhead.
- the ion suppressor 1023 may comprise a perforated plate with a variety of aperture configurations. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the apertures. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed.
- the plurality of holes in the ion suppressor 1023 may be configured to control the passage of the activated gas, i.e., the ionic, radical, and/or neutral species, through the ion suppressor 1023 .
- the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through the ion suppressor 1023 is reduced.
- the holes in the ion suppressor 1023 may include a tapered portion that faces chamber plasma region 1015 , and a cylindrical portion that faces the showerhead 1025 .
- the cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to the showerhead 1025 .
- An adjustable electrical bias may also be applied to the ion suppressor 1023 as an additional means to control the flow of ionic species through the suppressor.
- the ion suppression element 1023 may function to reduce or eliminate the amount of ionically charged species traveling from the plasma generation region to the substrate.
- showerhead 1025 in combination with ion suppressor 1023 may allow a plasma present in chamber plasma region 1015 to avoid directly exciting gases in substrate processing region 1033 , while still allowing excited species to travel from chamber plasma region 1015 into substrate processing region 1033 .
- the chamber may be configured to prevent the plasma from contacting a substrate 1055 being etched. This may advantageously protect a variety of intricate structures and films patterned on the substrate, which may be damaged, dislocated, or otherwise warped if directly contacted by a generated plasma.
- the processing system may further include a power supply 1040 electrically coupled with the processing chamber to provide electric power to the faceplate 1017 , ion suppressor 1023 , showerhead 1025 , and/or pedestal 1065 to generate a plasma in the chamber plasma region 1015 or processing region 1033 .
- the power supply may be configured to deliver an adjustable amount of power to the chamber depending on the process performed. Such a configuration may allow for a tunable plasma to be used in the processes being performed. Unlike a remote plasma unit, which is often presented with on or off functionality, a tunable plasma may be configured to deliver a specific amount of power to chamber plasma region 1015 . This in turn may allow development of particular plasma characteristics such that precursors may be dissociated in specific ways to enhance the etching profiles produced by these precursors.
- a plasma may be ignited in chamber plasma region 1015 above showerhead 1025 and/or substrate processing region 1033 below showerhead 1025 .
- the etch cycle may be performed in the substrate processing region and the substrate processing region may be plasma-free during each operation of the etch cycle (for example during flowing of the halogen-containing precursor and the subsequent flowing of the carbon-and-nitrogen-containing precursor).
- an AC voltage typically in the radio frequency (RF) range may be applied between the conductive top portion of the processing chamber, such as faceplate 1017 , and showerhead 1025 and/or ion suppressor 1023 to ignite a plasma in chamber plasma region 1015 during processes.
- An RF power supply may generate a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency.
- Plasma power can be of a variety of frequencies or a combination of multiple frequencies.
- the plasma may be provided by RF power delivered to faceplate 1017 relative to ion suppressor 1023 and/or showerhead 1025 .
- the RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz, or microwave frequencies greater than or about 1 GHz in different embodiments.
- the plasma power may be capacitively-coupled (CCP) or inductively-coupled (ICP) into the remote plasma region.
- Plasma power may also be simultaneously applied to both chamber plasma region 1015 and substrate processing region 1033 during etching processes described herein.
- the frequencies and powers above apply to both regions.
- Either region may be excited using either a capacitively-coupled plasma (CCP) or an inductively-coupled plasma (ICP).
- CCP capacitively-coupled plasma
- ICP inductively-coupled plasma
- Chamber plasma region 1015 may be left at low or no power when a bottom plasma in the substrate processing region 1033 is turned on to, for example, cure a film or clean the interior surfaces bordering substrate processing region 1033 .
- a plasma in substrate processing region 1033 may be ignited by applying an AC voltage between showerhead 1055 and the pedestal 1065 or bottom of the chamber.
- a cleaning gas may be introduced into substrate processing region 1033 while the plasma is present.
- a fluid such as a precursor, for example a chlorine-containing precursor
- a precursor for example a chlorine-containing precursor
- Excited species derived from the process gas in chamber plasma region 1015 may travel through apertures in the ion suppressor 1023 , and/or showerhead 1025 and react with an additional precursor flowing into the processing region 1033 from a separate portion of the showerhead.
- no additional precursors may be flowed through the separate portion of the showerhead. Little or no plasma may be present in the processing region 1033 .
- Excited derivatives of the precursors may combine in the region above the substrate and, on occasion, on the substrate to etch structures or remove species on the substrate in disclosed applications.
- Exciting the fluids in the chamber plasma region 1015 directly, or exciting the fluids in the RPS units 1002 may provide several benefits.
- the concentration of the excited species derived from the fluids may be increased within the processing region 1033 due to the plasma in the chamber plasma region 1015 . This increase may result from the location of the plasma in the chamber plasma region 1015 .
- the processing region 1033 may be located closer to the chamber plasma region 1015 than the remote plasma system (RPS) 1002 , leaving less time for the excited species to leave excited states through collisions with other gas molecules, walls of the chamber, and surfaces of the showerhead.
- RPS remote plasma system
- the uniformity of the concentration of the excited species derived from the process gas may also be increased within the processing region 1033 . This may result from the shape of the chamber plasma region 1015 , which may be more similar to the shape of the processing region 1033 . Excited species created in the RPS 1002 may travel greater distances to pass through apertures near the edges of the showerhead 1025 relative to species that pass through apertures near the center of the showerhead 1025 . The greater distance may result in a reduced excitation of the excited species and, for example, may result in a slower growth rate near the edge of a substrate. Exciting the fluids in the chamber plasma region 1015 may mitigate this variation for the fluid flowed through RPS 1002 , or alternatively bypassed around the RPS unit.
- the processing gases may be excited in chamber plasma region 1015 and may be passed through the showerhead 1025 to the processing region 1033 in the excited state. While a plasma may be generated in the processing region 1033 , a plasma may alternatively not be generated in the processing region.
- the only excitation of the processing gas or precursors may be from exciting the processing gases in chamber plasma region 1015 to react with one another in the processing region 1033 . As previously discussed, this may be to protect the structures patterned on the substrate 1055 .
- a treatment gas may be introduced to remove unwanted species from the chamber walls and/or the substrate.
- a treatment gas may be excited in a plasma and then used to reduce or remove residual content inside the chamber. In other embodiments the treatment gas may be used without a plasma.
- the delivery may be achieved using a mass flow meter (MFM), an injection valve, or by commercially available water vapor generators.
- MFM mass flow meter
- the treatment gas may be introduced to the processing region 1033 , either through the RPS unit or bypassing the RPS unit, and may further be excited in the first plasma region.
- FIG. 3B shows a detailed view of the features affecting the processing gas distribution through faceplate 1017 .
- faceplate 1017 , cooling plate 1003 , and gas inlet assembly 1105 intersect to define a gas supply region 1058 into which process gases may be delivered from gas inlet 1105 .
- the gases may fill the gas supply region 1058 and flow to chamber plasma region 1015 through apertures 1059 in faceplate 1017 .
- the apertures 1059 may be configured to direct flow in a substantially unidirectional manner such that process gases may flow into processing region 1033 , but may be partially or fully prevented from backflow into the gas supply region 1058 after traversing the faceplate 1017 .
- the gas distribution assemblies such as showerhead 1025 for use in the processing chamber section 1001 may be referred to as dual channel showerheads (DCSH) and are additionally detailed in the embodiments described in FIG. 3A as well as FIG. 3C herein.
- the dual channel showerhead may provide for etching processes that allow for separation of etchants outside of the processing region 1033 to provide limited interaction with chamber components and each other prior to being delivered into the processing region.
- the showerhead 1025 may comprise an upper plate 1014 and a lower plate 1016 .
- the plates may be coupled with one another to define a volume 1018 between the plates.
- the coupling of the plates may be so as to provide first fluid channels 1019 through the upper and lower plates, and second fluid channels 1021 through the lower plate 1016 .
- the formed channels may be configured to provide fluid access from the volume 1018 through the lower plate 1016 via second fluid channels 1021 alone, and the first fluid channels 1019 may be fluidly isolated from the volume 1018 between the plates and the second fluid channels 1021 .
- the volume 1018 may be fluidly accessible through a side of the gas distribution assembly 1025 .
- 3A includes a dual-channel showerhead, it is understood that alternative distribution assemblies may be utilized that maintain first and second precursors fluidly isolated prior to the processing region 1033 .
- a perforated plate and tubes underneath the plate may be utilized, although other configurations may operate with reduced efficiency or not provide as uniform processing as the dual-channel showerhead as described.
- showerhead 1025 may distribute via first fluid channels 1019 process gases which contain plasma effluents upon excitation by a plasma in chamber plasma region 1015 .
- the process gas is introduced into the RPS 1002 and/or chamber plasma region 1015 .
- the process gas may include a carrier gas such as helium, argon, nitrogen (N 2 ), etc.
- Plasma effluents may include ionized or neutral derivatives of the process gas.
- FIG. 3C is a bottom view of a showerhead 1025 for use with a processing chamber according to embodiments.
- showerhead 1025 corresponds with the showerhead shown in FIG. 3A .
- Through-holes 1031 which show a view of first fluid channels 1019 , may have a plurality of shapes and configurations to control and affect the flow of precursors through the showerhead 1025 .
- Small holes 1027 which show a view of second fluid channels 1021 , may be distributed substantially evenly over the surface of the showerhead, even amongst the through-holes 1031 , which may help to provide more even mixing of the precursors as they exit the showerhead than other configurations.
- Substrate processing region 1033 can be maintained at a variety of pressures during the flow of precursors, any carrier gases, and plasma effluents into substrate processing region 1033 .
- the pressure may be maintained between about 0.1 mTorr and about 20 Torr or between about 10 mTorr and about 10 Torr in different embodiments.
- FIG. 4 shows one such processing system 1101 of deposition, etching, baking, and curing chambers according to embodiments.
- a pair of front opening unified pods (load lock chambers 1102 ) supply substrates of a variety of sizes that are received by robotic arms 1104 and placed into a low pressure holding area 1106 before being placed into one of the substrate processing chambers 1108 a - f .
- a second robotic arm 1110 may be used to transport the substrate wafers from the holding area 1106 to the substrate processing chambers 1108 a - f and back.
- Each substrate processing chamber 1108 a - f can be outfitted to perform a number of substrate processing operations including the dry etch processes described herein in addition to cyclical layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, orientation, and other substrate processes.
- CLD cyclical layer deposition
- ALD atomic layer deposition
- CVD chemical vapor deposition
- PVD physical vapor deposition
- etch pre-clean, degas, orientation, and other substrate processes.
- the substrate processing chambers 1108 a - f may include one or more system components for depositing, annealing, curing and/or etching a dielectric film on the substrate wafer.
- two pairs of the processing chamber e.g., 1108 c - d and 1108 e - f
- the third pair of processing chambers e.g., 1108 a - b
- all three pairs of chambers e.g., 1108 a - f
- Any one or more of the processes described may be carried out in chamber(s) separated from the fabrication system shown in different embodiments.
- substrate may be a support substrate with or without layers formed thereon.
- the patterned substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits.
- silicon of the patterned substrate is predominantly Si but may include minority concentrations of other elemental constituents such as nitrogen, oxygen, hydrogen or carbon.
- cobalt of the patterned substrate is predominantly cobalt but may include minority concentrations of other elemental constituents such as oxygen, hydrogen and carbon. Of course, “exposed cobalt” may consist of only cobalt.
- Exposed “silicon nitride” of the patterned substrate is predominantly Si 3 N 4 but may include minority concentrations of other elemental constituents such as oxygen, hydrogen and carbon.
- “Exposed silicon nitride” may consist of silicon and nitrogen.
- Exposed “silicon oxide” of the patterned substrate is predominantly SiO 2 but may include minority concentrations of other elemental constituents such as nitrogen, hydrogen and carbon.
- silicon oxide films etched using the methods disclosed herein consist of silicon and oxygen.
- Cobalt oxide is predominantly cobalt and oxygen but may include minority concentrations of other elemental constituents such as nitrogen, hydrogen and carbon. Cobalt oxide may consist of cobalt and oxygen.
- plasma effluents describe gas exiting from the chamber plasma region and entering the substrate processing region. Plasma effluents are in an “excited state” wherein at least some of the gas molecules are in vibrationally-excited, dissociated and/or ionized states.
- a “radical precursor” is used to describe plasma effluents (a gas in an excited state which is exiting a plasma) which participate in a reaction to either remove material from or deposit material on a surface.
- Radar-chlorine are radical precursors which contain chlorine but may contain other elemental constituents.
- inert gas refers to any gas which does not form chemical bonds when etching or being incorporated into a film.
- exemplary inert gases include noble gases but may include other gases so long as no chemical bonds are formed when (typically) trace amounts are trapped in a film.
- trench and trench are used throughout with no implication that the etched geometry has a large horizontal aspect ratio. Viewed from above the surface, trenches may appear circular, oval, polygonal, rectangular, or a variety of other shapes. A trench may be in the shape of a moat around an island of material.
- via is used to refer to a low aspect ratio trench (as viewed from above) which may or may not be filled with metal to form a vertical electrical connection.
- a conformal etch process refers to a generally uniform removal of material on a surface in the same shape as the surface, i.e., the surface of the etched layer and the pre-etch surface are generally parallel. A person having ordinary skill in the art will recognize that the etched interface likely cannot be 100% conformal and thus the term “generally” allows for acceptable tolerances.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Methods are described herein for etching metal films, such as cobalt and nickel, which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials.
Description
- Embodiments of the invention relate to gas-phase etching metal.
- Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers or thinning lateral dimensions of features already present on the surface. Often it is desirable to have an etch process which etches one material faster than another helping e.g. a pattern transfer process proceed. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits and processes, etch processes have been developed with a selectivity towards a variety of materials.
- Dry etch processes are often desirable for selectively removing material from semiconductor substrates. The desirability stems from the ability to gently remove material from miniature structures with minimal physical disturbance. Dry etch processes also allow the etch rate to be abruptly stopped by removing the gas phase reagents. Some dry-etch processes involve the exposure of a substrate to remote plasma by-products formed from one or more precursors. For example, remote plasma excitation of ammonia and nitrogen trifluoride enables silicon oxide to be selectively removed from a patterned substrate when the plasma effluents are flowed into the substrate processing region. Remote plasma etch processes have recently been developed to selectively remove several dielectrics relative to one another. However, dry-etch processes are still needed, which delicately remove metals which have limited or no previously known chemically volatile pathways.
- Methods are described herein for etching metal films, such as cobalt and nickel, which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials.
- Embodiments of the invention include methods of etching metal from a substrate. The methods include transferring the substrate into the substrate processing region. The methods further include flowing a halogen-containing precursor into the substrate processing region. The substrate processing region is plasma-free during the flowing of the halogen-containing precursor. The methods further include purging the substrate processing region with a relatively inert gas to remove the halogen-containing precursor from the substrate processing region. The methods further include flowing a carbon-and-nitrogen-containing precursor in to the substrate processing region. The substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor. Flowing of the carbon-and-nitrogen-containing precursor occurs after purging the substrate processing region. The methods further include removing the substrate from the substrate processing region.
- Embodiments of the invention include methods of etching metal from a substrate. The methods include flowing a halogen-containing precursor into a substrate processing region housing the substrate. The substrate processing region is plasma-free during the flowing of the halogen-containing precursor. The methods further include removing unreacted halogen-containing precursor from the substrate processing region. The methods further include flowing a carbon-and-nitrogen-containing precursor into the substrate processing region. The substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor. Flowing of the carbon-and-nitrogen-containing precursor occurs after removing unreacted halogen-containing precursor.
- Additional embodiments and features are set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the specification or may be learned by the practice of the embodiments. The features and advantages of the embodiments may be realized and attained by means of the instrumentalities, combinations, and methods described in the specification.
- A further understanding of the nature and advantages of the embodiments may be realized by reference to the remaining portions of the specification and the drawings.
-
FIG. 1 is a flow chart of a cobalt etch process according to embodiments. -
FIG. 2 is a flow chart of a cobalt etch process according to embodiments. -
FIG. 3A shows a schematic cross-sectional view of a substrate processing chamber according to the disclosed technology. -
FIG. 3B shows a schematic cross-sectional view of a portion of a substrate processing chamber according to the disclosed technology. -
FIG. 3C shows a bottom plan view of a showerhead according to the disclosed technology. -
FIG. 4 shows a top plan view of an exemplary substrate processing system according to the disclosed technology. - In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
- Methods are described herein for etching metal films, such as cobalt and nickel, which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal from the substrate while very slowly removing the other exposed materials.
- In order to better understand and appreciate the invention, reference is now made to
FIG. 1 which is a flow chart of acobalt etch process 100 according to embodiments. The cobalt film of this example may be in the form of a blanket layer on a substrate or cobalt may reside in discrete regions of a patterned substrate surface. In either case, regions of exposed cobalt are present on the surface of the substrate. The substrate is delivered into a substrate processing region (operation 110). A flow of chlorine (Cl2) is introduced into a substrate processing region inoperation 120. Other sources of chlorine may be used to augment or replace the chlorine. More generally, a chlorine-containing precursor may be flowed into the substrate processing region, such as chlorine (Cl2), xenon dichloride or boron trichloride. A halogen-containing precursor may also be used instead or to augment the chlorine-containing precursor as described shortly. Exposing the cobalt to chlorine may occur with plasma or without any plasma in the substrate processing region in embodiments. In other words, the substrate processing region may be plasma-free duringoperation 120 ofcobalt etch process 100. The cobalt reacts with the chlorine to presumably form cobalt-chloride adsorbates on or near the surface of the substrate. The cobalt-chloride adsorbates facilitate the subsequent removal of cobalt from the substrate. Residual halogen-containing precursor (e.g. Cl2 in the example) is purged from the substrate processing region inoperation 130. Purgingoperation 130 may involve flowing a relatively inert gas into the substrate processing region to actively displace the halogen-containing precursor. Alternatively, the substrate processing region may be evacuated in another manner to remove residual halogen-containing precursor. - After purging
operation 130, a carbon-and-nitrogen-containing precursor is flowed into the substrate processing region inoperation 140 ofcobalt etch process 100. The carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments. The carbon-and-nitrogen-containing precursor may consist of carbon, nitrogen and hydrogen in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two, three or four methyl groups according to embodiments. An exemplary carbon-and-nitrogen-containing precursor is tetramethylethylenediamine (aka TMEDA or C6H16N2). The carbon-and-nitrogen-containing precursor is flowed into the plasma region after the operation of purging the substrate processing region to avoid having the carbon-and-nitrogen-containing precursor react with the halogen-containing precursor. The reaction between the carbon-and-nitrogen-containing precursor and the chlorine-containing precursor may produce undesirable deposition and accumulation on the substrate or processing system hardware in embodiments. The substrate is removed inoperation 150 ofcobalt etch process 100. - Reference is now made to
FIG. 2 which is a flow chart of acobalt etch process 200 according to embodiments. Exposed cobalt in a cobalt film may be in the form of a blanket layer in discrete regions of a patterned substrate surface. The substrate is delivered into a substrate processing region (operation 210). A flow of chlorine (Cl2) is introduced into a substrate processing region inoperation 220. A chlorine-containing precursor may generally be flowed into the substrate processing region, such as chlorine (Cl2), xenon dichloride or boron trichloride. A halogen-containing precursor may most generally be used. Exposing the cobalt to chlorine may occur with plasma or without any plasma in the substrate processing region in embodiments. In other words, the substrate processing region may be plasma-free duringoperation 220 ofcobalt etch process 200. The cobalt reacts with the chlorine to presumably form cobalt-chloride adsorbates which are desorbed in a subsequent operation to remove cobalt from the substrate. Residual halogen-containing precursor (e.g. Cl2 in the example) is purged from the substrate processing region inoperation 230. Purgingoperation 230 may involve flowing a relatively inert gas (e.g. helium or argon) into the substrate processing region to actively displace the halogen-containing precursor. Alternatively, the substrate processing region may be evacuated in another manner to remove residual halogen-containing precursor. - After purging
operation 230, a carbon-and-nitrogen-containing precursor is flowed into the substrate processing region inoperation 240 ofcobalt etch process 200. The carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments. The carbon-and-nitrogen-containing precursor may consist of carbon, nitrogen and hydrogen in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two, three or four methyl groups according to embodiments. An exemplary carbon-and-nitrogen-containing precursor is tetramethylethylenediamine (aka TMEDA or C6H16N2). The carbon-and-nitrogen-containing precursor is flowed into the plasma region after the operation of purging the substrate processing region to avoid having the carbon-and-nitrogen-containing precursor react with the halogen-containing precursor. The reaction between the carbon-and-nitrogen-containing precursor and the chlorine-containing precursor may produce undesirable deposition and accumulation on the substrate or processing system hardware in embodiments. - If a target amount of cobalt has been removed from the substrate (decision operation 250) then the substrate is removed in
operation 270 ofcobalt etch process 200. If additional cobalt needs to be removed, the substrate processing region is purged to remove residual carbon-and-nitrogen-containing precursor and operations 220-240 are repeated before making the decision to continue again or stop the etch process (decision operation 250). - In general, a halogen-containing precursor may be used in place of the chlorine-containing precursor (e.g. Cl2) of
cobalt etch process 200. The halogen-containing precursor may include at least one of chlorine or bromine in embodiments. The halogen-containing precursor may be a diatomic halogen, a homonuclear diatomic halogen or a heteronuclear diatomic halogen according to embodiments. - A reaction between the carbon-and-nitrogen-containing precursor and the halogen-containing precursor has been found to not only reduce the efficacy of the etch process, but also produces solid residue which can clog chamber features and impede flow rates. To avoid forming solid residue, the substrate processing region may be purged between the operations of flowing the halogen-containing precursor (
operations 120 or 220) and flowing the carbon-and-nitrogen-containing precursor (operations 140 or 240) into the substrate processing region. Flowing the carbon-and-nitrogen-containing precursor (140 or 240) occurs after flowing the halogen-containing precursor (120 or 220) in embodiments. The operations may be repeated (in an “etch cycle” as referred to herein) to remove additional cobalt when desired (depicted in cobalt etch process 200). The substrate processing region may be purged (in operation 260) with a relatively inertgas following operation 240, at whichpoint operation 220 may be repeated to rechlorinate the cobalt surface.Operation 240 may then be repeated after another optional purging operation (operation 230). A relatively inert gas may be, for example, helium and/or argon. - The term “etch cycle” will be used to describe operation 220 (involving the halogen-containing precursor) followed by operation 240 (involving the carbon-and-nitrogen-containing precursor). Each etch cycle may remove between about 2 Å and about 8 Å or between about 3 Å and about 6 Å according to embodiments.
- The carbon-and-nitrogen-containing precursor may be TMEDA (C6H16N2) as in the example. In general, the carbon-and-hydrogen-containing precursor may include carbon and nitrogen and may consist only of carbon, nitrogen and hydrogen. The carbon-and-nitrogen-containing precursor may possess at least one carbon-nitrogen bond and the bond may be a single bond in embodiments. The carbon-and-nitrogen-containing precursor comprises at least two nitrogen atoms according to embodiments. The carbon-and-nitrogen-containing precursor may include a phenyl group in embodiments. For example, the carbon-and-nitrogen-containing precursor may include o-phenylenediamine, p-phenylenediamine and/or m-phenylenediamine according to embodiments. Chemically linear options are also possible, the carbon-and-nitrogen-containing precursor may be of the form R2—N—[CH2]mN—R2, where m is 1, 2 or 3 and R is H, CH3, C2H5 or a higher order hydrocarbon in embodiments.
- Creating volatile reaction products from cobalt removes material during
cobalt etch process 100 orcobalt etch process 200. The volatile reaction products are thought to include methyl cobalt complexes such as Co(CH3)4. Exposing cobalt first to chlorine (operations 120 or 220) and then to the carbon-and-nitrogen-containing precursor (operations 140 or 240) has been found to produce the production worthy etch rate of cobalt and presumably makes volatile reaction products which leave the surface by desorption. Cobalt chloride complexes have been found to be nonvolatile with or without plasma treatment. However, the formation of cobalt chloride complexes have been found to be a conducive intermediate state toward volatization and desorption. - In embodiments, the chlorine-containing precursor (e.g. Cl2) may be flowed into the substrate processing region at a flow rate of between about 3 sccm (standard cubic centimeters per minute) and about 50 sccm or between about 3 sccm and about 20 sccm in embodiments. The carbon-and-nitrogen-containing precursor may be flowed at a flow rate of between about 10 sccm and about 300 sccm or between about 20 sccm and about 200 sccm according to embodiments. The carbon-and-nitrogen-containing precursor may be a liquid prior to entering the substrate processing region, in which case a bubbler and carrier gas may be used to flow the precursor into the substrate processing region. The bubbler may heat the precursor above room temperature, for example to between about 25° C. and about 60° C., to increase the vapor pressure while the carrier gas is flowed through the liquid. The carrier gas may be relatively inert in comparison to the carbon-and-nitrogen-containing precursor. Helium may be used as the carrier gas. The carrier gas may be flowed at between about 1 slm (standard liters per minute) and about 5 slm according to embodiments. One of ordinary skill in the art would recognize that other gases and/or flows may be used depending on a number of factors including processing chamber configuration, substrate size, geometry and layout of features being etched.
- The substrate processing region may be devoid of plasma or “plasma-free” during all etch operations depicted in
cobalt etch process 100 orcobalt etch process 200. The substrate processing region may be plasma-free during an etch cycle according to embodiments. In embodiments, a plasma-free substrate processing region means there is essentially no concentration of ionized species and free electrons within the substrate processing region. - During the operations of processing the cobalt layer (
e.g. operations operations - Generally speaking, the cobalt is a “metal” and may be one of cobalt or nickel. Both cobalt and nickel have been found to etch using the methods described herein. The metal layer may consist of or consist essentially of cobalt and may consist of or consist essentially of nickel according to embodiments. The metal layer may consist of or consist essentially of a single element according to embodiments.
- Additional process parameters are disclosed in the course of describing an exemplary processing chamber and system.
-
FIG. 3A shows a cross-sectional view of an exemplarysubstrate processing chamber 1001 with partitioned plasma generation regions within the processing chamber. During film etching, a process gas may be flowed intochamber plasma region 1015 through a gas inlet assembly 1105. A remote plasma system (RPS) 1002 may optionally be included in the system, and may process a first gas which then travels through gas inlet assembly 1105. The inlet assembly 1105 may include two or more distinct gas supply channels where the second channel (not shown) may bypass theRPS 1002, if included. Accordingly, in embodiments the precursor gases may be delivered to the processing chamber in an unexcited state. In another example, the first channel provided through the RPS may be used for the process gas and the second channel bypassing the RPS may be used for a treatment gas in embodiments. The process gas may be excited within theRPS 1002 prior to entering thechamber plasma region 1015. Accordingly, the chlorine-containing precursor as discussed above, for example, may pass throughRPS 1002 or bypass the RPS unit in embodiments. Various other examples encompassed by this arrangement will be similarly understood. - A
cooling plate 1003,faceplate 1017,ion suppressor 1023,showerhead 1025, and a substrate support 1065 (also known as a pedestal), having asubstrate 1055 disposed thereon, are shown and may each be included according to embodiments. Thepedestal 1065 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. This configuration may allow thesubstrate 1055 temperature to be cooled or heated to maintain relatively low temperatures, such as between about −20° C. to about 200° C., or therebetween. The heat exchange fluid may comprise ethylene glycol and/or water. The wafer support platter of thepedestal 1065, which may comprise aluminum, ceramic, or a combination thereof, may also be resistively heated to achieve relatively high temperatures, such as from up to or about 100° C. to above or about 1100° C., using an embedded resistive heater element. The heating element may be formed within the pedestal as one or more loops, and an outer portion of the heater element may run adjacent to a perimeter of the support platter, while an inner portion runs on the path of a concentric circle having a smaller radius. The wiring to the heater element may pass through the stem of thepedestal 1065, which may be further configured to rotate. - The
faceplate 1017 may be pyramidal, conical, or of another similar structure with a narrow top portion expanding to a wide bottom portion. Thefaceplate 1017 may additionally be flat as shown and include a plurality of through-channels used to distribute process gases. Plasma generating gases and/or plasma excited species, depending on use of theRPS 1002, may pass through a plurality of holes, shown inFIG. 3B , infaceplate 1017 for a more uniform delivery into thechamber plasma region 1015. - Exemplary configurations may include having the gas inlet assembly 1105 open into a
gas supply region 1058 partitioned from thechamber plasma region 1015 byfaceplate 1017 so that the gases/species flow through the holes in thefaceplate 1017 into thechamber plasma region 1015. Structural and operational features may be selected to prevent significant backflow of plasma from thechamber plasma region 1015 back into thesupply region 1058, gas inlet assembly 1105, andfluid supply system 1010. The structural features may include the selection of dimensions and cross-sectional geometries of the apertures infaceplate 1017 to deactivate back-streaming plasma. The operational features may include maintaining a pressure difference between thegas supply region 1058 andchamber plasma region 1015 that maintains a unidirectional flow of plasma through theshowerhead 1025. Thefaceplate 1017, or a conductive top portion of the chamber, andshowerhead 1025 are shown with an insulatingring 1020 located between the features, which allows an AC potential to be applied to thefaceplate 1017 relative toshowerhead 1025 and/orion suppressor 1023. The insulatingring 1020 may be positioned between thefaceplate 1017 and theshowerhead 1025 and/orion suppressor 1023 enabling a capacitively coupled plasma (CCP) to be formed in the first plasma region. A baffle (not shown) may additionally be located in thechamber plasma region 1015, or otherwise coupled with gas inlet assembly 1105, to affect the flow of fluid into the region through gas inlet assembly 1105. - The
ion suppressor 1023 may comprise a plate or other geometry that defines a plurality of apertures throughout the structure that are configured to suppress the migration of ionically-charged species out ofchamber plasma region 1015 while allowing uncharged neutral or radical species to pass through theion suppressor 1023 into an activated gas delivery region between the suppressor and the showerhead. In embodiments, theion suppressor 1023 may comprise a perforated plate with a variety of aperture configurations. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the apertures. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed. - The plurality of holes in the
ion suppressor 1023 may be configured to control the passage of the activated gas, i.e., the ionic, radical, and/or neutral species, through theion suppressor 1023. For example, the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through theion suppressor 1023 is reduced. The holes in theion suppressor 1023 may include a tapered portion that faceschamber plasma region 1015, and a cylindrical portion that faces theshowerhead 1025. The cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to theshowerhead 1025. An adjustable electrical bias may also be applied to theion suppressor 1023 as an additional means to control the flow of ionic species through the suppressor. - The
ion suppression element 1023 may function to reduce or eliminate the amount of ionically charged species traveling from the plasma generation region to the substrate.Showerhead 1025 in combination withion suppressor 1023 may allow a plasma present inchamber plasma region 1015 to avoid directly exciting gases insubstrate processing region 1033, while still allowing excited species to travel fromchamber plasma region 1015 intosubstrate processing region 1033. In this way, the chamber may be configured to prevent the plasma from contacting asubstrate 1055 being etched. This may advantageously protect a variety of intricate structures and films patterned on the substrate, which may be damaged, dislocated, or otherwise warped if directly contacted by a generated plasma. - The processing system may further include a
power supply 1040 electrically coupled with the processing chamber to provide electric power to thefaceplate 1017,ion suppressor 1023,showerhead 1025, and/orpedestal 1065 to generate a plasma in thechamber plasma region 1015 orprocessing region 1033. The power supply may be configured to deliver an adjustable amount of power to the chamber depending on the process performed. Such a configuration may allow for a tunable plasma to be used in the processes being performed. Unlike a remote plasma unit, which is often presented with on or off functionality, a tunable plasma may be configured to deliver a specific amount of power tochamber plasma region 1015. This in turn may allow development of particular plasma characteristics such that precursors may be dissociated in specific ways to enhance the etching profiles produced by these precursors. - A plasma may be ignited in
chamber plasma region 1015 aboveshowerhead 1025 and/orsubstrate processing region 1033 belowshowerhead 1025. The etch cycle may be performed in the substrate processing region and the substrate processing region may be plasma-free during each operation of the etch cycle (for example during flowing of the halogen-containing precursor and the subsequent flowing of the carbon-and-nitrogen-containing precursor). When any region is not plasma-free, an AC voltage typically in the radio frequency (RF) range may be applied between the conductive top portion of the processing chamber, such asfaceplate 1017, andshowerhead 1025 and/orion suppressor 1023 to ignite a plasma inchamber plasma region 1015 during processes. An RF power supply may generate a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency. - Plasma power can be of a variety of frequencies or a combination of multiple frequencies. In the exemplary processing system the plasma may be provided by RF power delivered to
faceplate 1017 relative toion suppressor 1023 and/orshowerhead 1025. The RF frequency applied in the exemplary processing system may be low RF frequencies less than about 200 kHz, high RF frequencies between about 10 MHz and about 15 MHz, or microwave frequencies greater than or about 1 GHz in different embodiments. The plasma power may be capacitively-coupled (CCP) or inductively-coupled (ICP) into the remote plasma region. - Plasma power may also be simultaneously applied to both
chamber plasma region 1015 andsubstrate processing region 1033 during etching processes described herein. The frequencies and powers above apply to both regions. Either region may be excited using either a capacitively-coupled plasma (CCP) or an inductively-coupled plasma (ICP). - Chamber plasma region 1015 (top plasma in figure) may be left at low or no power when a bottom plasma in the
substrate processing region 1033 is turned on to, for example, cure a film or clean the interior surfaces borderingsubstrate processing region 1033. A plasma insubstrate processing region 1033 may be ignited by applying an AC voltage betweenshowerhead 1055 and thepedestal 1065 or bottom of the chamber. A cleaning gas may be introduced intosubstrate processing region 1033 while the plasma is present. - A fluid, such as a precursor, for example a chlorine-containing precursor, may be flowed into the
processing region 1033 by embodiments of the showerhead described herein. Excited species derived from the process gas inchamber plasma region 1015 may travel through apertures in theion suppressor 1023, and/orshowerhead 1025 and react with an additional precursor flowing into theprocessing region 1033 from a separate portion of the showerhead. Alternatively, if all precursor species are being excited inchamber plasma region 1015, no additional precursors may be flowed through the separate portion of the showerhead. Little or no plasma may be present in theprocessing region 1033. Excited derivatives of the precursors may combine in the region above the substrate and, on occasion, on the substrate to etch structures or remove species on the substrate in disclosed applications. - Exciting the fluids in the
chamber plasma region 1015 directly, or exciting the fluids in theRPS units 1002, may provide several benefits. The concentration of the excited species derived from the fluids may be increased within theprocessing region 1033 due to the plasma in thechamber plasma region 1015. This increase may result from the location of the plasma in thechamber plasma region 1015. Theprocessing region 1033 may be located closer to thechamber plasma region 1015 than the remote plasma system (RPS) 1002, leaving less time for the excited species to leave excited states through collisions with other gas molecules, walls of the chamber, and surfaces of the showerhead. - The uniformity of the concentration of the excited species derived from the process gas may also be increased within the
processing region 1033. This may result from the shape of thechamber plasma region 1015, which may be more similar to the shape of theprocessing region 1033. Excited species created in theRPS 1002 may travel greater distances to pass through apertures near the edges of theshowerhead 1025 relative to species that pass through apertures near the center of theshowerhead 1025. The greater distance may result in a reduced excitation of the excited species and, for example, may result in a slower growth rate near the edge of a substrate. Exciting the fluids in thechamber plasma region 1015 may mitigate this variation for the fluid flowed throughRPS 1002, or alternatively bypassed around the RPS unit. - The processing gases may be excited in
chamber plasma region 1015 and may be passed through theshowerhead 1025 to theprocessing region 1033 in the excited state. While a plasma may be generated in theprocessing region 1033, a plasma may alternatively not be generated in the processing region. In one example, the only excitation of the processing gas or precursors may be from exciting the processing gases inchamber plasma region 1015 to react with one another in theprocessing region 1033. As previously discussed, this may be to protect the structures patterned on thesubstrate 1055. - In addition to the fluid precursors, there may be other gases introduced at varied times for varied purposes, including carrier gases to aid delivery. A treatment gas may be introduced to remove unwanted species from the chamber walls and/or the substrate. A treatment gas may be excited in a plasma and then used to reduce or remove residual content inside the chamber. In other embodiments the treatment gas may be used without a plasma. When the treatment gas includes water vapor, the delivery may be achieved using a mass flow meter (MFM), an injection valve, or by commercially available water vapor generators. The treatment gas may be introduced to the
processing region 1033, either through the RPS unit or bypassing the RPS unit, and may further be excited in the first plasma region. -
FIG. 3B shows a detailed view of the features affecting the processing gas distribution throughfaceplate 1017. As shown inFIG. 3A andFIG. 3B ,faceplate 1017, coolingplate 1003, and gas inlet assembly 1105 intersect to define agas supply region 1058 into which process gases may be delivered from gas inlet 1105. The gases may fill thegas supply region 1058 and flow tochamber plasma region 1015 throughapertures 1059 infaceplate 1017. Theapertures 1059 may be configured to direct flow in a substantially unidirectional manner such that process gases may flow intoprocessing region 1033, but may be partially or fully prevented from backflow into thegas supply region 1058 after traversing thefaceplate 1017. - The gas distribution assemblies such as
showerhead 1025 for use in theprocessing chamber section 1001 may be referred to as dual channel showerheads (DCSH) and are additionally detailed in the embodiments described inFIG. 3A as well asFIG. 3C herein. The dual channel showerhead may provide for etching processes that allow for separation of etchants outside of theprocessing region 1033 to provide limited interaction with chamber components and each other prior to being delivered into the processing region. - The
showerhead 1025 may comprise anupper plate 1014 and alower plate 1016. The plates may be coupled with one another to define avolume 1018 between the plates. The coupling of the plates may be so as to provide firstfluid channels 1019 through the upper and lower plates, and secondfluid channels 1021 through thelower plate 1016. The formed channels may be configured to provide fluid access from thevolume 1018 through thelower plate 1016 viasecond fluid channels 1021 alone, and the firstfluid channels 1019 may be fluidly isolated from thevolume 1018 between the plates and thesecond fluid channels 1021. Thevolume 1018 may be fluidly accessible through a side of thegas distribution assembly 1025. Although the exemplary chamber ofFIG. 3A includes a dual-channel showerhead, it is understood that alternative distribution assemblies may be utilized that maintain first and second precursors fluidly isolated prior to theprocessing region 1033. For example, a perforated plate and tubes underneath the plate may be utilized, although other configurations may operate with reduced efficiency or not provide as uniform processing as the dual-channel showerhead as described. - In the embodiment shown,
showerhead 1025 may distribute viafirst fluid channels 1019 process gases which contain plasma effluents upon excitation by a plasma inchamber plasma region 1015. In embodiments, the process gas is introduced into theRPS 1002 and/orchamber plasma region 1015. The process gas may include a carrier gas such as helium, argon, nitrogen (N2), etc. Plasma effluents may include ionized or neutral derivatives of the process gas. -
FIG. 3C is a bottom view of ashowerhead 1025 for use with a processing chamber according to embodiments.Showerhead 1025 corresponds with the showerhead shown inFIG. 3A . Through-holes 1031, which show a view of firstfluid channels 1019, may have a plurality of shapes and configurations to control and affect the flow of precursors through theshowerhead 1025.Small holes 1027, which show a view of secondfluid channels 1021, may be distributed substantially evenly over the surface of the showerhead, even amongst the through-holes 1031, which may help to provide more even mixing of the precursors as they exit the showerhead than other configurations. -
Substrate processing region 1033 can be maintained at a variety of pressures during the flow of precursors, any carrier gases, and plasma effluents intosubstrate processing region 1033. The pressure may be maintained between about 0.1 mTorr and about 20 Torr or between about 10 mTorr and about 10 Torr in different embodiments. - Embodiments of the processing chambers may be incorporated into larger fabrication systems for producing integrated circuit chips.
FIG. 4 shows one such processing system 1101 of deposition, etching, baking, and curing chambers according to embodiments. In the figure, a pair of front opening unified pods (load lock chambers 1102) supply substrates of a variety of sizes that are received byrobotic arms 1104 and placed into a lowpressure holding area 1106 before being placed into one of the substrate processing chambers 1108 a-f. A secondrobotic arm 1110 may be used to transport the substrate wafers from the holdingarea 1106 to the substrate processing chambers 1108 a-f and back. Each substrate processing chamber 1108 a-f, can be outfitted to perform a number of substrate processing operations including the dry etch processes described herein in addition to cyclical layer deposition (CLD), atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), etch, pre-clean, degas, orientation, and other substrate processes. - The substrate processing chambers 1108 a-f may include one or more system components for depositing, annealing, curing and/or etching a dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber, e.g., 1108 c-d and 1108 e-f, may be used to deposit dielectric material on the substrate, and the third pair of processing chambers, e.g., 1108 a-b, may be used to etch the deposited dielectric. In another configuration, all three pairs of chambers, e.g., 1108 a-f, may be configured to etch a dielectric film on the substrate. Any one or more of the processes described may be carried out in chamber(s) separated from the fabrication system shown in different embodiments.
- In the preceding description, for the purposes of explanation, numerous details have been set forth to provide an understanding of various embodiments of the present invention. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.
- As used herein “substrate” may be a support substrate with or without layers formed thereon. The patterned substrate may be an insulator or a semiconductor of a variety of doping concentrations and profiles and may, for example, be a semiconductor substrate of the type used in the manufacture of integrated circuits. Exposed “silicon” of the patterned substrate is predominantly Si but may include minority concentrations of other elemental constituents such as nitrogen, oxygen, hydrogen or carbon. Exposed “cobalt” of the patterned substrate is predominantly cobalt but may include minority concentrations of other elemental constituents such as oxygen, hydrogen and carbon. Of course, “exposed cobalt” may consist of only cobalt. Exposed “silicon nitride” of the patterned substrate is predominantly Si3N4 but may include minority concentrations of other elemental constituents such as oxygen, hydrogen and carbon. “Exposed silicon nitride” may consist of silicon and nitrogen. Exposed “silicon oxide” of the patterned substrate is predominantly SiO2 but may include minority concentrations of other elemental constituents such as nitrogen, hydrogen and carbon. In some embodiments, silicon oxide films etched using the methods disclosed herein consist of silicon and oxygen. “Cobalt oxide” is predominantly cobalt and oxygen but may include minority concentrations of other elemental constituents such as nitrogen, hydrogen and carbon. Cobalt oxide may consist of cobalt and oxygen.
- The term “precursor” is used to refer to any process gas which takes part in a reaction to either remove material from or deposit material onto a surface. “Plasma effluents” describe gas exiting from the chamber plasma region and entering the substrate processing region. Plasma effluents are in an “excited state” wherein at least some of the gas molecules are in vibrationally-excited, dissociated and/or ionized states. A “radical precursor” is used to describe plasma effluents (a gas in an excited state which is exiting a plasma) which participate in a reaction to either remove material from or deposit material on a surface. “Radical-chlorine” are radical precursors which contain chlorine but may contain other elemental constituents. The phrase “inert gas” refers to any gas which does not form chemical bonds when etching or being incorporated into a film. Exemplary inert gases include noble gases but may include other gases so long as no chemical bonds are formed when (typically) trace amounts are trapped in a film.
- The terms “gap” and “trench” are used throughout with no implication that the etched geometry has a large horizontal aspect ratio. Viewed from above the surface, trenches may appear circular, oval, polygonal, rectangular, or a variety of other shapes. A trench may be in the shape of a moat around an island of material. The term “via” is used to refer to a low aspect ratio trench (as viewed from above) which may or may not be filled with metal to form a vertical electrical connection. As used herein, a conformal etch process refers to a generally uniform removal of material on a surface in the same shape as the surface, i.e., the surface of the etched layer and the pre-etch surface are generally parallel. A person having ordinary skill in the art will recognize that the etched interface likely cannot be 100% conformal and thus the term “generally” allows for acceptable tolerances.
- Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the embodiments. Additionally, a number of well known processes and elements have not been described to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
- Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
- As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a process” includes a plurality of such processes and reference to “the dielectric material” includes reference to one or more dielectric materials and equivalents thereof known to those skilled in the art, and so forth.
- Also, the words “comprise,” “comprising,” “include,” “including,” and “includes” when used in this specification and in the following claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, acts, or groups.
Claims (16)
1. A method of etching metal from a substrate, the method comprising:
transferring the substrate into a substrate processing region;
flowing a halogen-containing precursor into the substrate processing region, wherein the substrate processing region is plasma-free during the flowing of the halogen-containing precursor;
purging the substrate processing region with a relatively inert gas to remove the halogen-containing precursor from the substrate processing region;
flowing a carbon-and-nitrogen-containing precursor in to the substrate processing region, wherein the substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor and flowing of the carbon-and-nitrogen-containing precursor occurs after purging the substrate processing region;
removing metal from the substrate; and
removing the substrate from the substrate processing region.
2. The method of claim 1 wherein the carbon-and-nitrogen-containing precursor comprises one of o-phenylenediamine, p-phenylenediamine, m-phenylenediamine or R2—N—[CH2]mN—R2, wherein m is 1, 2 or 3 and R is H, CH3 or C2H5.
3. The method of claim 1 further comprising purging the substrate processing region with a relatively inert gas to remove the carbon-and-nitrogen-containing precursor from the substrate processing region and then repeating the operations of flowing the halogen-containing precursor, purging to remove the halogen-containing precursor and flowing the carbon-and-nitrogen-containing precursor.
4. The method of claim 1 wherein the metal consists of either cobalt or nickel.
5. A method of etching metal from a substrate, the method comprising:
flowing a halogen-containing precursor into a substrate processing region housing the substrate, wherein the substrate processing region is plasma-free during the flowing of the halogen-containing precursor;
removing unreacted halogen-containing precursor from the substrate processing region;
flowing a carbon-and-nitrogen-containing precursor into the substrate processing region, wherein the substrate processing region is plasma-free during the flowing of the carbon-and-nitrogen-containing precursor and flowing of the carbon-and-nitrogen-containing precursor occurs after removing unreacted halogen-containing precursor; and
removing metal from the substrate.
6. The method of claim 5 wherein the metal comprises at least one of cobalt and nickel.
7. The method of claim 5 wherein the metal consists of a single element.
8. The method of claim 5 wherein the carbon-and-nitrogen-containing precursor comprises tetramethylethylenediamine.
9. The method of claim 5 wherein the carbon-and-nitrogen-containing precursor comprises a carbon-nitrogen single bond.
10. The method of claim 5 wherein the carbon-and-nitrogen-containing precursor comprises at least two methyl groups.
11. The method of claim 5 wherein the halogen-containing precursor comprises at least one of chlorine or bromine.
12. The method of claim 5 wherein the halogen-containing precursor is a homonuclear diatomic halogen.
13. The method of claim 5 wherein the carbon-and-nitrogen-containing precursor consists of carbon, nitrogen and hydrogen.
14. The method of claim 5 wherein a pressure within the substrate processing region is between about 0.01 Torr and about 10 Torr during one or more of flowing the halogen-containing precursor or flowing the carbon-and-nitrogen-containing precursor.
15. The method of claim 5 wherein a temperature of the substrate is greater than or about −30° C. and less than or about 400° C. during flowing the halogen-containing precursor.
16. The method of claim 5 wherein a temperature of the substrate is greater than or about −30° C. and less than or about 400° C. during flowing the carbon-and-nitrogen-containing precursor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/289,190 US20150345029A1 (en) | 2014-05-28 | 2014-05-28 | Metal removal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/289,190 US20150345029A1 (en) | 2014-05-28 | 2014-05-28 | Metal removal |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150345029A1 true US20150345029A1 (en) | 2015-12-03 |
Family
ID=54701074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/289,190 Abandoned US20150345029A1 (en) | 2014-05-28 | 2014-05-28 | Metal removal |
Country Status (1)
Country | Link |
---|---|
US (1) | US20150345029A1 (en) |
Cited By (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9472412B2 (en) | 2013-12-02 | 2016-10-18 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9564296B2 (en) | 2014-03-20 | 2017-02-07 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
WO2017099718A1 (en) * | 2015-12-08 | 2017-06-15 | Intel Corporation | Atomic layer etching of transition metals by halogen surface oxidation |
US9704723B2 (en) | 2013-03-15 | 2017-07-11 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9711366B2 (en) | 2013-11-12 | 2017-07-18 | Applied Materials, Inc. | Selective etch for metal-containing materials |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US9754800B2 (en) | 2010-05-27 | 2017-09-05 | Applied Materials, Inc. | Selective etch for silicon films |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US9773695B2 (en) | 2014-07-31 | 2017-09-26 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9837284B2 (en) | 2014-09-25 | 2017-12-05 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9842744B2 (en) | 2011-03-14 | 2017-12-12 | Applied Materials, Inc. | Methods for etch of SiN films |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
WO2018119446A1 (en) * | 2016-12-23 | 2018-06-28 | Lam Research Corporation | Atomic layer etching methods and apparatus |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
WO2018217753A1 (en) * | 2017-05-26 | 2018-11-29 | Applied Materials, Inc. | Selective dry etching of metal films comprising multiple metal oxides |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
WO2019190781A1 (en) * | 2018-03-30 | 2019-10-03 | Lam Research Corporation | Atomic layer etching and smoothing of refractory metals and other high surface binding energy materials |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US10465294B2 (en) | 2014-05-28 | 2019-11-05 | Applied Materials, Inc. | Oxide and metal removal |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10763083B2 (en) | 2017-10-06 | 2020-09-01 | Lam Research Corporation | High energy atomic layer etching |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
WO2021011101A1 (en) * | 2019-07-18 | 2021-01-21 | Tokyo Electron Limited | Gas phase etch with controllable etch selectivity of metals |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US11024486B2 (en) | 2013-02-08 | 2021-06-01 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11069535B2 (en) | 2015-08-07 | 2021-07-20 | Lam Research Corporation | Atomic layer etch of tungsten for enhanced tungsten deposition fill |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11239094B2 (en) | 2016-12-19 | 2022-02-01 | Lam Research Corporation | Designer atomic layer etching |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11476093B2 (en) | 2015-08-27 | 2022-10-18 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US12148597B2 (en) | 2023-02-13 | 2024-11-19 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045244A (en) * | 1988-05-26 | 1991-09-03 | Ethyl Corporation | Preparation of metal halide-amine complexes |
US5814238A (en) * | 1995-10-12 | 1998-09-29 | Sandia Corporation | Method for dry etching of transition metals |
US6284146B1 (en) * | 1996-06-13 | 2001-09-04 | Samsung Electronics Co., Ltd. | Etching gas mixture for transition metal thin film and method for etching transition metal thin film using the same |
US20040108067A1 (en) * | 2002-08-02 | 2004-06-10 | Fischione Paul E. | Method and apparatus for preparing specimens for microscopy |
US20060292846A1 (en) * | 2004-09-17 | 2006-12-28 | Pinto Gustavo A | Material management in substrate processing |
US7416989B1 (en) * | 2006-06-30 | 2008-08-26 | Novellus Systems, Inc. | Adsorption based material removal process |
US20150118858A1 (en) * | 2012-05-08 | 2015-04-30 | Tokyo Electron Limited | Etching method for substrate to be processed and plasma-etching device |
US20150152072A1 (en) * | 2012-06-05 | 2015-06-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method For Preparing Methylated Amines |
-
2014
- 2014-05-28 US US14/289,190 patent/US20150345029A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045244A (en) * | 1988-05-26 | 1991-09-03 | Ethyl Corporation | Preparation of metal halide-amine complexes |
US5814238A (en) * | 1995-10-12 | 1998-09-29 | Sandia Corporation | Method for dry etching of transition metals |
US6284146B1 (en) * | 1996-06-13 | 2001-09-04 | Samsung Electronics Co., Ltd. | Etching gas mixture for transition metal thin film and method for etching transition metal thin film using the same |
US20040108067A1 (en) * | 2002-08-02 | 2004-06-10 | Fischione Paul E. | Method and apparatus for preparing specimens for microscopy |
US20060292846A1 (en) * | 2004-09-17 | 2006-12-28 | Pinto Gustavo A | Material management in substrate processing |
US7416989B1 (en) * | 2006-06-30 | 2008-08-26 | Novellus Systems, Inc. | Adsorption based material removal process |
US20150118858A1 (en) * | 2012-05-08 | 2015-04-30 | Tokyo Electron Limited | Etching method for substrate to be processed and plasma-etching device |
US20150152072A1 (en) * | 2012-06-05 | 2015-06-04 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method For Preparing Methylated Amines |
Cited By (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9754800B2 (en) | 2010-05-27 | 2017-09-05 | Applied Materials, Inc. | Selective etch for silicon films |
US9842744B2 (en) | 2011-03-14 | 2017-12-12 | Applied Materials, Inc. | Methods for etch of SiN films |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US11264213B2 (en) | 2012-09-21 | 2022-03-01 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US11024486B2 (en) | 2013-02-08 | 2021-06-01 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9704723B2 (en) | 2013-03-15 | 2017-07-11 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9711366B2 (en) | 2013-11-12 | 2017-07-18 | Applied Materials, Inc. | Selective etch for metal-containing materials |
US9472412B2 (en) | 2013-12-02 | 2016-10-18 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9564296B2 (en) | 2014-03-20 | 2017-02-07 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9837249B2 (en) | 2014-03-20 | 2017-12-05 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US10465294B2 (en) | 2014-05-28 | 2019-11-05 | Applied Materials, Inc. | Oxide and metal removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9773695B2 (en) | 2014-07-31 | 2017-09-26 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9837284B2 (en) | 2014-09-25 | 2017-12-05 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10796922B2 (en) | 2014-10-14 | 2020-10-06 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10707061B2 (en) | 2014-10-14 | 2020-07-07 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10490418B2 (en) | 2014-10-14 | 2019-11-26 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US12009228B2 (en) | 2015-02-03 | 2024-06-11 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US11158527B2 (en) | 2015-08-06 | 2021-10-26 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US11069535B2 (en) | 2015-08-07 | 2021-07-20 | Lam Research Corporation | Atomic layer etch of tungsten for enhanced tungsten deposition fill |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US11476093B2 (en) | 2015-08-27 | 2022-10-18 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
WO2017099718A1 (en) * | 2015-12-08 | 2017-06-15 | Intel Corporation | Atomic layer etching of transition metals by halogen surface oxidation |
US11735441B2 (en) | 2016-05-19 | 2023-08-22 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US12057329B2 (en) | 2016-06-29 | 2024-08-06 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10541113B2 (en) | 2016-10-04 | 2020-01-21 | Applied Materials, Inc. | Chamber with flow-through source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US11049698B2 (en) | 2016-10-04 | 2021-06-29 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10224180B2 (en) | 2016-10-04 | 2019-03-05 | Applied Materials, Inc. | Chamber with flow-through source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10319603B2 (en) | 2016-10-07 | 2019-06-11 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10770346B2 (en) | 2016-11-11 | 2020-09-08 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10600639B2 (en) | 2016-11-14 | 2020-03-24 | Applied Materials, Inc. | SiN spacer profile patterning |
US11239094B2 (en) | 2016-12-19 | 2022-02-01 | Lam Research Corporation | Designer atomic layer etching |
US11721558B2 (en) | 2016-12-19 | 2023-08-08 | Lam Research Corporation | Designer atomic layer etching |
US10692724B2 (en) | 2016-12-23 | 2020-06-23 | Lam Research Corporation | Atomic layer etching methods and apparatus |
WO2018119446A1 (en) * | 2016-12-23 | 2018-06-28 | Lam Research Corporation | Atomic layer etching methods and apparatus |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10903052B2 (en) | 2017-02-03 | 2021-01-26 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10529737B2 (en) | 2017-02-08 | 2020-01-07 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10325923B2 (en) | 2017-02-08 | 2019-06-18 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11915950B2 (en) | 2017-05-17 | 2024-02-27 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11361939B2 (en) | 2017-05-17 | 2022-06-14 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
WO2018217753A1 (en) * | 2017-05-26 | 2018-11-29 | Applied Materials, Inc. | Selective dry etching of metal films comprising multiple metal oxides |
US10242885B2 (en) | 2017-05-26 | 2019-03-26 | Applied Materials, Inc. | Selective dry etching of metal films comprising multiple metal oxides |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10593553B2 (en) | 2017-08-04 | 2020-03-17 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US11101136B2 (en) | 2017-08-07 | 2021-08-24 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10763083B2 (en) | 2017-10-06 | 2020-09-01 | Lam Research Corporation | High energy atomic layer etching |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10861676B2 (en) | 2018-01-08 | 2020-12-08 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10699921B2 (en) | 2018-02-15 | 2020-06-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US11004689B2 (en) | 2018-03-12 | 2021-05-11 | Applied Materials, Inc. | Thermal silicon etch |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
WO2019190781A1 (en) * | 2018-03-30 | 2019-10-03 | Lam Research Corporation | Atomic layer etching and smoothing of refractory metals and other high surface binding energy materials |
US11450513B2 (en) | 2018-03-30 | 2022-09-20 | Lam Research Corporation | Atomic layer etching and smoothing of refractory metals and other high surface binding energy materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
WO2021011101A1 (en) * | 2019-07-18 | 2021-01-21 | Tokyo Electron Limited | Gas phase etch with controllable etch selectivity of metals |
US11715643B2 (en) | 2019-07-18 | 2023-08-01 | Tokyo Electron Limited | Gas phase etch with controllable etch selectivity of metals |
US12148597B2 (en) | 2023-02-13 | 2024-11-19 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10465294B2 (en) | Oxide and metal removal | |
US20150345029A1 (en) | Metal removal | |
US9659791B2 (en) | Metal removal with reduced surface roughness | |
US10529737B2 (en) | Accommodating imperfectly aligned memory holes | |
US9412608B2 (en) | Dry-etch for selective tungsten removal | |
US9607856B2 (en) | Selective titanium nitride removal | |
US9378969B2 (en) | Low temperature gas-phase carbon removal | |
US9406523B2 (en) | Highly selective doped oxide removal method | |
US9190290B2 (en) | Halogen-free gas-phase silicon etch | |
US9837284B2 (en) | Oxide etch selectivity enhancement | |
US9373522B1 (en) | Titanium nitride removal | |
US9449845B2 (en) | Selective titanium nitride etching | |
US9165786B1 (en) | Integrated oxide and nitride recess for better channel contact in 3D architectures | |
US9299582B2 (en) | Selective etch for metal-containing materials | |
US9478434B2 (en) | Chlorine-based hardmask removal | |
US20140273451A1 (en) | Tungsten deposition sequence | |
US20150371865A1 (en) | High selectivity gas phase silicon nitride removal | |
US20160043099A1 (en) | Wordline 3d flash memory air gap | |
US20160042968A1 (en) | Integrated oxide and si etch for 3d cell channel mobility improvements | |
US20150214066A1 (en) | Method for material removal in dry etch reactor | |
WO2014113177A1 (en) | Dry-etch for selective tungsten removal | |
US20160068969A1 (en) | Integrated processing for microcontamination prevention |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLIED MATERIALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INGLE, NITIN K.;WANG, XIKUN;SIGNING DATES FROM 20140602 TO 20140603;REEL/FRAME:033377/0519 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |