US20150270080A1 - Vacuum monitoring apparatus - Google Patents
Vacuum monitoring apparatus Download PDFInfo
- Publication number
- US20150270080A1 US20150270080A1 US14/434,296 US201314434296A US2015270080A1 US 20150270080 A1 US20150270080 A1 US 20150270080A1 US 201314434296 A US201314434296 A US 201314434296A US 2015270080 A1 US2015270080 A1 US 2015270080A1
- Authority
- US
- United States
- Prior art keywords
- vacuum
- antenna
- electromagnetic wave
- intensity
- detection portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012544 monitoring process Methods 0.000 title description 14
- 239000002184 metal Substances 0.000 claims abstract description 48
- 230000006866 deterioration Effects 0.000 claims abstract description 47
- 238000001514 detection method Methods 0.000 claims abstract description 43
- 238000012806 monitoring device Methods 0.000 claims abstract description 22
- 230000002238 attenuated effect Effects 0.000 claims abstract description 4
- 230000035945 sensitivity Effects 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 12
- 238000009413 insulation Methods 0.000 description 5
- 229910052573 porcelain Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 208000032368 Device malfunction Diseases 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/60—Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
- H01H33/66—Vacuum switches
- H01H33/668—Means for obtaining or monitoring the vacuum
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H33/00—High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
- H01H33/02—Details
- H01H33/26—Means for detecting the presence of an arc or other discharge
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B13/00—Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
- H02B13/02—Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
- H02B13/035—Gas-insulated switchgear
- H02B13/065—Means for detecting or reacting to mechanical or electrical defects
Definitions
- the present invention relates to a vacuum deterioration monitoring device of a vacuum circuit breaker.
- a gas circuit breaker enables a break by utilizing the superior insulation performance and break performance of an SF6 gas, but as the SF6 gas has a high global warming potential, a circuit breaker with a low environmental burden is demanded. Meanwhile, a vacuum circuit breaker enables a large current break owing to the superior insulation performance and break performance in a high vacuum. Also, as the vacuum circuit breaker does not use the SF6 gas and has a low environmental burden, the application of the vacuum circuit breaker to a high voltage is progressing.
- a gas pressure is monitored by a manometer, and when the gas pressure falls below a gas pressure necessary for the insulation and break due to a gas leak, an anomaly signal is emitted, and the operation of the gas circuit breaker is locked.
- the vacuum circuit breaker too, as the insulation and break performance cannot be maintained when a vacuum deterioration occurs due to a crack in a vacuum vessel, or the like, the method of monitoring the degree of vacuum is required.
- an electromagnetic wave of a partial discharge occurring in the vacuum vessel when a vacuum deterioration occurs is detected by an antenna.
- the technique itself of detecting the electromagnetic wave of the partial discharge with the antenna is also commonly used in a gas insulated switchgear using an SF6 gas, and in the gas insulated switchgear, a high frequency component of a discharge of on the order of 500 MHz to 1500 MHz is detected. Meanwhile, it is known that the frequency of a partial discharge in a low vacuum is low compared with the heretofore described.
- a vacuum deterioration is determined by detecting a signal component of 20 to 100 MHz of a discharge electromagnetic wave in a low vacuum when there is a vacuum deterioration.
- a signal component of 20 to 100 MHz of a discharge electromagnetic wave is detected in PTL 1, as heretofore described, but as this frequency band is the frequency band of a broadcast wave of an FM broadcast, a television, or the like, there is a possibility that a vacuum deterioration monitoring device malfunctions due to being affected by an exogenous noise resulting from a broadcast wave. Also, as the vacuum circuit breaker is connected to another instrument, such as a transformer, via a power line, there is also a case in which the vacuum circuit breaker is affected by a conduction noise from the other instrument.
- PTL 2 is an example of monitoring a partial discharge of a gas insulated switchgear, and an electromagnetic wave of an in-tank discharge leaking from an insulating spacer of the gas insulated switchgear is detected by an antenna 1 mounted out of a tank. An electromagnetic wave is also detected by an antenna 2 mounted in a position spaced from an insulating spacer out of the tank, and by taking the difference between signals detected by the antenna 1 and antenna 2 , the component of an exogenous noise from a broadcast wave or the like is removed, thus evaluating only a signal of an in-tank discharge.
- the detection of an in-tank discharge by the out-tank antenna leads to a deterioration in detection sensitivity.
- the invention aims to obtain a highly reliable vacuum deterioration monitoring device, of a metal tank type vacuum circuit breaker with a vacuum interrupter incorporated therein, which can detect a vacuum deterioration of the vacuum interrupter.
- a vacuum deterioration monitoring device is a vacuum deterioration monitoring device, which monitors a vacuum deterioration of a vacuum interrupter, of a metal tank type vacuum circuit breaker which includes the vacuum interrupter inside a metal tank and has a connecting line of the vacuum interrupter led out to the external of the metal tank through a bushing, the bushing having an internal shield having a low-pass function, the device including a first antenna installed inside the metal tank; a second antenna installed outside the metal tank; a first detection portion which measures the intensity of an electromagnetic wave, resulting from a partial discharge of the interrupter valve, which is detected by the first antenna; a second detection portion which measures the intensity of an electromagnetic wave, resulting from a noise out of the metal tank, which is detected by the second antenna; and a determination portion which determines a vacuum deterioration of the vacuum interrupter by comparing the intensity of the electromagnetic wave detected by the first detection portion and the intensity of the electromagnetic wave detected by the second detection portion, wherein the first and second detection portions include frequency filters which
- the detection of a partial discharge of the vacuum interrupter installed in the metal tank is impeded by a noise out of the metal tank, it is possible to enhance the reliability of monitoring a vacuum deterioration of the vacuum interrupter.
- FIG. 1 is a schematic sectional side view of a vacuum circuit breaker including a vacuum deterioration monitoring device according to a first embodiment of the invention.
- FIG. 2 is a schematic sectional side view of a bushing installed in the vacuum circuit breaker according to the first embodiment of the invention.
- FIG. 3 is a schematic top view of the vacuum circuit breaker including the vacuum deterioration monitoring device according to the first embodiment of the invention.
- FIG. 4 is a block diagram showing a vacuum deterioration detection section of the vacuum deterioration monitoring device according to the first embodiment of the invention.
- FIG. 5 is a block diagram showing a vacuum deterioration detection section of a vacuum deterioration monitoring device according to a second embodiment of the invention.
- FIG. 6 is a chart showing a measurement result in a band of 200 to 300 MHz of an electromagnetic wave resulting from a partial discharge in a vacuum interrupter.
- a vacuum circuit breaker 15 includes a metal tank 12 .
- the main circuit of the vacuum circuit breaker 15 is formed of a vacuum interrupter 9 installed in the metal tank 12 , a pair of bushings 4 led out from the metal tank 12 , a porcelain tube 3 , fixed to the metal tank 12 , which houses the bushing 4 , and an in-porcelain-tube conductor 2 which connects a connecting line of the vacuum interrupter 9 to a power line 1 via an in-bushing conductor 4 a connected to the power line 1 .
- the bushing 4 is formed of the in-bushing conductor 4 a , an insulator 4 c enclosing the in-bushing conductor 4 a , and an internal shield 4 b formed of a cylindrical metal conductor provided in the insulator 4 c , and the internal shield 4 b is connected to a ground 13 through, for example, the metal tank 12 .
- the bushing 4 owing to the presence of the internal shield 4 b , functions as a low-pass filter through which a high frequency component equal to or higher than a specific frequency is difficult to pass (for example, herein, 100 MHz or less is passed)
- the vacuum interrupter 9 includes a pair of contacts 9 a and 9 b connected to the in-bushing conductor 4 a .
- the vacuum circuit breaker 15 has an operation mechanism which operates the opening and closing of the contacts 9 a and 9 b , but herein, the illustration of the operation mechanism is omitted.
- a first antenna (hereafter referred to also as an in-tank antenna) 5 is further installed in the metal tank 12 , and an output 7 of the first antenna 5 is supplied to a vacuum deterioration monitoring section 8 to be described hereafter.
- a second antenna (hereafter referred to also as an out-tank antenna) 6 is installed out of the metal tank 12 and above the metal tank 12 , for example, between two porcelain tubes 3 , and the output of the second antenna is connected to the vacuum deterioration monitoring section 8 .
- the frequency of electromagnetic waves detected by the in-tank antenna 5 and out-tank antenna 6 is set to fall in a frequency band (herein, 200 to 300 MHz) which is difficult to pass through the low-pass filter of the bushing 4 , and the in-tank antenna 5 and the out-tank antenna 6 are shaped into a structure suitable for the frequency band (200 to 300 MHz). Also, the in-tank antenna 5 and the out-tank antenna 6 are set to the same receiving sensitivity.
- FIG. 1 shows one phase of the vacuum circuit breaker, but in the case of three phases, an A phase, a B phase, and a C phase, three vacuum circuit breakers 15 of the type shown in FIG. 1 are installed side by side, as shown in FIG. 3 .
- the three metal tanks are given signs 12 a , 12 b , and 12 c for each respective phase
- the in-tank antennas are given signs 5 a , 5 b , and 5 c for each respective phase
- the outputs of the individual antennas are given signs 7 a , 7 b , and 7 c for each respective phase.
- the metal tank, the in-tank antenna, and the antenna output are indicated by 12 , 5 , and 7 respectively.
- FIG. 3 is a top view schematically showing vacuum circuit breakers of three phases, and the metal tanks 12 a , 12 b , and 12 c , each of which includes a pair of porcelain tubes 3 , are installed side by side.
- the outputs 7 a , 7 b , and 7 c of the in-tank antennas installed in the respective metal tanks are input into the vacuum deterioration monitoring section 8 .
- the out-tank antenna 6 is installed above the metal tank and in substantially the center of the connections of the porcelain tubes 3 and power lines 1 , and the output of the out-tank antenna 6 is input into the vacuum deterioration monitoring section 8 .
- the illustration of the power lines 1 is omitted.
- the vacuum deterioration monitoring section 8 is configured of a first detection portion 8 A which detects received signals of the in-tank antennas 5 (the A-phase antenna, the B-phase antenna, and the C-phase antenna are denoted 5 a , 5 b , and 5 c respectively), a second detection portion 8 B which detects a received signal of the out-tank antenna 6 , and a determination portion 8 C which determines a vacuum deterioration from signals of the first and second detection portions 8 A and 8 B.
- the first detection portion 8 A the configurations of detection parts belonging one to each of the A phase, B phase, and C phase are the same.
- the first detection portion 8 A is configured of frequency filters 81 a , 81 b , and 81 c connected respectively to the A-phase in-tank antenna 5 a , B-phase in-tank antenna 5 b , and C-phase in-tank antenna 5 c , amplifiers 82 a , 82 b , and 82 c connected to the respective filters, and detector circuits 83 a , 83 b , and 83 c connected to the respective amplifiers.
- the second detection portion 8 B is configured of a frequency filter 81 d connected to the out-tank antenna 6 , an amplifier 82 d connected to the filter, and a detector circuit 83 d connected to the amplifier.
- the frequency filters 81 a to 81 d are band-pass filters whose passing frequency band is, for example, 200 to 300 MHz.
- the frequency band matches a frequency band, of an electromagnetic wave resulting from a partial discharge of the vacuum interrupter 9 , which is intended to be detected by the in-tank antenna 5 .
- the frequency band is not limited to 200 to 300 MHz, but may be set to, for example, 100 to 200 MHz.
- the determination portion 8 C is a portion which, upon receiving the signals from the first and second detection portions 8 A and 8 B, determines a vacuum deterioration of the vacuum interrupter, and the portion includes a comparator circuit 84 which compares signals obtained by the detector circuits 83 a to 83 d , a pulse output part 85 which, when it is determined by the comparator circuit 84 that an in-tank partial discharge is occurring, outputs this comparison result in the form of pulses, a pulse counter 86 which counts the pulses from the pulse output part 85 , and a determination circuit 87 which detects the duration of the partial discharge from the number of pulse counts, determines whether or not the partial discharge results from a vacuum deterioration of the vacuum interrupter, and emits a vacuum deterioration anomaly output 88 .
- FIG. 6 is a chart showing a result of the detection, by the in-tank antenna 5 , of an electromagnetic wave of the partial discharge 11 occurring in the vacuum interrupter 9 when the vacuum interrupter 9 deteriorates in vacuum.
- This measurement result shows that, the frequency band being narrowed down to a range of 200 to 300 MHz using the band-pass filter, the partial discharge 11 in the vacuum interrupter 9 has a signal component of the same band.
- the electromagnetic wave of the partial discharge 11 occurring in the vacuum interrupter 9 also conducts to the external of the metal tank through the in-bushing conductor 4 a and in-porcelain-tube conductor 2 .
- the bushing 4 functions as the low-pass filter owing to the internal shield 4 b , as heretofore described, a signal of 100 MHz or less of the partial discharge 11 also easily conducts to the external of the metal tank and is also detected by the out-tank antenna 6 .
- a signal of a frequency band (herein, 200 to 300 MHz) which is difficult to pass through the low-pass filter of the bushing 4 , as the signal attenuates in the bushing 4 portion, hardly reaches the out-tank antenna 6 , and an electromagnetic wave intensity detected by the out-tank antenna 6 is small compared with an electromagnetic wave intensity detected by the in-tank antenna 5 .
- an external radiation noise 14 resulting from a broadcast wave and an external conduction noise 10 such that a noise generated in another unshown instrument connected to the vacuum circuit breaker 15 via the power line 1 conducts via the power line 1 .
- the electromagnetic waves of the external conduction noise 10 and external radiation noise 14 are detected by the out-tank antenna 6 , and also conduct into the metal tank 12 via the in-porcelain-tube conductor 2 and in-bushing conductor 4 a .
- a signal of, for example, 100 MHz or less of the external noise also easily conducts into the metal tank and is also detected by the in-tank antenna 5 .
- a signal of a frequency band (herein, 200 to 300 MHz) which is difficult to pass through the low-pass filter of the bushing 4 , as the signal attenuates in the bushing 4 portion, hardly reaches the in-tank antenna 5 , and an electromagnetic wave intensity detected by the in-tank antenna 5 is small compared with an electromagnetic wave intensity detected by the out-tank antenna 6 .
- the in-tank antenna output 7 of a noise received by the in-tank antenna 5 is applied to the first detection portion 8 A of the vacuum deterioration monitoring section 8
- a noise received by the out-tank antenna 6 is applied directly to the second detection portion 8 B of the vacuum deterioration monitoring section 8 .
- the signals detected by the first and second detection portions 8 A and 8 B are processed by the determination portion 8 C.
- Signals, of the signals received by the A-phase, B-phase, and C-phase in-tank antennas 5 a , 5 b , and 5 c , which have only a specific frequency band (herein, 200 to 300 MHz) are extracted by the frequency filters 81 a , 81 b , and 81 c which are band-pass filters.
- signals, of the signals received by the out-tank antenna 6 which have only a specific frequency band (herein, 200 to 300 MHz) are extracted by the frequency filter 81 d which is similarly a band-pass filter.
- the extracted signals are amplified by the amplifiers 82 a , 82 b , 82 c , and 82 d , and crest values are extracted by the detector circuits 83 a , 83 b , 83 c , and 83 d .
- the crest values of noises extracted by the detector circuits 83 a , 83 b , 83 c , and 83 d are compared with each other in the comparator circuit 84 of the determination portion 8 c . It is possible to distinguish between the sources of generation of noise electromagnetic waves by the comparison by the comparator circuit 84 , for example, by comparing the sizes of the signals as in the following,
- the result of comparison of the electromagnetic wave intensities of partial discharges in the metal tanks is output as pulses from the output of the comparator circuit 84 by the pulse output part 85 , and by counting the number of pulses in the pulse counter 86 , the determination circuit 87 determines that there is a vacuum deterioration when the sustainability of discharge or the frequency of discharges exceeds a predetermined threshold value, and emits the vacuum deterioration anomaly output 88 .
- the vacuum interrupter by detecting a partial discharge when the vacuum interrupter deteriorates in vacuum, it is possible to detect a vacuum deterioration of the vacuum interrupter, that is, the vacuum circuit breaker, and by comparing the outputs received by the in- and out-tank antennas, it is possible to prevent the vacuum deterioration monitoring device from failing to detect and function properly due to an exogenous noise.
- a frequency band which is difficult to pass through the bushing portion, is used as a detection frequency band, thereby making it easy to compare the signal strengths in and out of the metal tank, and it is thus possible to obtain a vacuum deterioration monitoring device with great accuracy and high reliability.
- a vacuum deterioration monitoring device is different in the following points from that of the first embodiment.
- the in-tank antenna outputs 7 a , 7 b , and 7 c of the individual phases are separately compared by the comparator circuit, it is possible to determine in which phase a vacuum deterioration occurs, but the frequency filter, the amplifier, and the detector circuit are necessary for each phase, thus leading to an increase in cost.
- a configuration is such that the first detection portion 8 A is configured of one frequency filter 81 , one amplifier 82 , and one detector circuit 83 , as shown in FIG. 5 , and that the in-tank antenna outputs of the individual phases are thus collectively applied to the first detection portion 8 A.
- Other configurations are the same as in the first embodiment.
- the vacuum circuit breaker of FIG. 3 is of a configuration wherein the metal tanks are installed one for each phase, but the second embodiment is effective even when adopting a configuration wherein the main circuits of three phases are disposed in one metal tank, thus achieving a further simplification in configuration.
- the second embodiment it is possible to distinguish between an exogenous noise out of the metal tank and a discharge in the metal tank in the same way as in the first embodiment.
Landscapes
- Gas-Insulated Switchgears (AREA)
- Testing Relating To Insulation (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Abstract
Description
- The present invention relates to a vacuum deterioration monitoring device of a vacuum circuit breaker.
- A gas circuit breaker enables a break by utilizing the superior insulation performance and break performance of an SF6 gas, but as the SF6 gas has a high global warming potential, a circuit breaker with a low environmental burden is demanded. Meanwhile, a vacuum circuit breaker enables a large current break owing to the superior insulation performance and break performance in a high vacuum. Also, as the vacuum circuit breaker does not use the SF6 gas and has a low environmental burden, the application of the vacuum circuit breaker to a high voltage is progressing.
- Herein, in the case of the gas circuit breaker, a gas pressure is monitored by a manometer, and when the gas pressure falls below a gas pressure necessary for the insulation and break due to a gas leak, an anomaly signal is emitted, and the operation of the gas circuit breaker is locked. Meanwhile, in the case of the vacuum circuit breaker too, as the insulation and break performance cannot be maintained when a vacuum deterioration occurs due to a crack in a vacuum vessel, or the like, the method of monitoring the degree of vacuum is required.
- As one technique of monitoring the degree of vacuum of the vacuum circuit breaker in a non-contact way, there is a method whereby an electromagnetic wave of a partial discharge occurring in the vacuum vessel when a vacuum deterioration occurs is detected by an antenna. The technique itself of detecting the electromagnetic wave of the partial discharge with the antenna is also commonly used in a gas insulated switchgear using an SF6 gas, and in the gas insulated switchgear, a high frequency component of a discharge of on the order of 500 MHz to 1500 MHz is detected. Meanwhile, it is known that the frequency of a partial discharge in a low vacuum is low compared with the heretofore described. In
PTL 1, a vacuum deterioration is determined by detecting a signal component of 20 to 100 MHz of a discharge electromagnetic wave in a low vacuum when there is a vacuum deterioration. - PTL 1: JP-A-2002-184275
- PTL 2: JP-A-9-121409
- PTL 3: WO2001/065653
- PTL 4: JP-A-2002-71743
- A signal component of 20 to 100 MHz of a discharge electromagnetic wave is detected in
PTL 1, as heretofore described, but as this frequency band is the frequency band of a broadcast wave of an FM broadcast, a television, or the like, there is a possibility that a vacuum deterioration monitoring device malfunctions due to being affected by an exogenous noise resulting from a broadcast wave. Also, as the vacuum circuit breaker is connected to another instrument, such as a transformer, via a power line, there is also a case in which the vacuum circuit breaker is affected by a conduction noise from the other instrument. - Meanwhile,
PTL 2 is an example of monitoring a partial discharge of a gas insulated switchgear, and an electromagnetic wave of an in-tank discharge leaking from an insulating spacer of the gas insulated switchgear is detected by anantenna 1 mounted out of a tank. An electromagnetic wave is also detected by anantenna 2 mounted in a position spaced from an insulating spacer out of the tank, and by taking the difference between signals detected by theantenna 1 andantenna 2, the component of an exogenous noise from a broadcast wave or the like is removed, thus evaluating only a signal of an in-tank discharge. However, there is a disadvantage that the detection of an in-tank discharge by the out-tank antenna leads to a deterioration in detection sensitivity. - The invention aims to obtain a highly reliable vacuum deterioration monitoring device, of a metal tank type vacuum circuit breaker with a vacuum interrupter incorporated therein, which can detect a vacuum deterioration of the vacuum interrupter.
- A vacuum deterioration monitoring device according to the invention is a vacuum deterioration monitoring device, which monitors a vacuum deterioration of a vacuum interrupter, of a metal tank type vacuum circuit breaker which includes the vacuum interrupter inside a metal tank and has a connecting line of the vacuum interrupter led out to the external of the metal tank through a bushing, the bushing having an internal shield having a low-pass function, the device including a first antenna installed inside the metal tank; a second antenna installed outside the metal tank; a first detection portion which measures the intensity of an electromagnetic wave, resulting from a partial discharge of the interrupter valve, which is detected by the first antenna; a second detection portion which measures the intensity of an electromagnetic wave, resulting from a noise out of the metal tank, which is detected by the second antenna; and a determination portion which determines a vacuum deterioration of the vacuum interrupter by comparing the intensity of the electromagnetic wave detected by the first detection portion and the intensity of the electromagnetic wave detected by the second detection portion, wherein the first and second detection portions include frequency filters which pass a frequency band, of electromagnetic waves resulting from discharges occurring when the vacuum interrupter deteriorates in vacuum, which is attenuated by the internal shield.
- According to the invention, as it does not happen that the detection of a partial discharge of the vacuum interrupter installed in the metal tank is impeded by a noise out of the metal tank, it is possible to enhance the reliability of monitoring a vacuum deterioration of the vacuum interrupter.
-
FIG. 1 is a schematic sectional side view of a vacuum circuit breaker including a vacuum deterioration monitoring device according to a first embodiment of the invention. -
FIG. 2 is a schematic sectional side view of a bushing installed in the vacuum circuit breaker according to the first embodiment of the invention. -
FIG. 3 is a schematic top view of the vacuum circuit breaker including the vacuum deterioration monitoring device according to the first embodiment of the invention. -
FIG. 4 is a block diagram showing a vacuum deterioration detection section of the vacuum deterioration monitoring device according to the first embodiment of the invention. -
FIG. 5 is a block diagram showing a vacuum deterioration detection section of a vacuum deterioration monitoring device according to a second embodiment of the invention. -
FIG. 6 is a chart showing a measurement result in a band of 200 to 300 MHz of an electromagnetic wave resulting from a partial discharge in a vacuum interrupter. - Firstly, a description will be given, using
FIGS. 1 to 3 , of a configuration of a vacuum circuit breaker including a vacuum deterioration monitoring device according to a first embodiment of the invention. Avacuum circuit breaker 15 includes ametal tank 12. The main circuit of thevacuum circuit breaker 15 is formed of avacuum interrupter 9 installed in themetal tank 12, a pair of bushings 4 led out from themetal tank 12, aporcelain tube 3, fixed to themetal tank 12, which houses the bushing 4, and an in-porcelain-tube conductor 2 which connects a connecting line of thevacuum interrupter 9 to apower line 1 via an in-bushing conductor 4 a connected to thepower line 1. - The bushing 4 is formed of the in-
bushing conductor 4 a, aninsulator 4 c enclosing the in-bushing conductor 4 a, and aninternal shield 4 b formed of a cylindrical metal conductor provided in theinsulator 4 c, and theinternal shield 4 b is connected to aground 13 through, for example, themetal tank 12. The bushing 4, owing to the presence of theinternal shield 4 b, functions as a low-pass filter through which a high frequency component equal to or higher than a specific frequency is difficult to pass (for example, herein, 100 MHz or less is passed) - The
vacuum interrupter 9 includes a pair ofcontacts bushing conductor 4 a. Thevacuum circuit breaker 15 has an operation mechanism which operates the opening and closing of thecontacts - A first antenna (hereafter referred to also as an in-tank antenna) 5 is further installed in the
metal tank 12, and anoutput 7 of thefirst antenna 5 is supplied to a vacuumdeterioration monitoring section 8 to be described hereafter. Also, a second antenna (hereafter referred to also as an out-tank antenna) 6 is installed out of themetal tank 12 and above themetal tank 12, for example, between twoporcelain tubes 3, and the output of the second antenna is connected to the vacuumdeterioration monitoring section 8. The frequency of electromagnetic waves detected by the in-tank antenna 5 and out-tank antenna 6 is set to fall in a frequency band (herein, 200 to 300 MHz) which is difficult to pass through the low-pass filter of the bushing 4, and the in-tank antenna 5 and the out-tank antenna 6 are shaped into a structure suitable for the frequency band (200 to 300 MHz). Also, the in-tank antenna 5 and the out-tank antenna 6 are set to the same receiving sensitivity. -
FIG. 1 shows one phase of the vacuum circuit breaker, but in the case of three phases, an A phase, a B phase, and a C phase, threevacuum circuit breakers 15 of the type shown inFIG. 1 are installed side by side, as shown inFIG. 3 . In this case, the three metal tanks are givensigns signs signs -
FIG. 3 is a top view schematically showing vacuum circuit breakers of three phases, and themetal tanks porcelain tubes 3, are installed side by side. Theoutputs deterioration monitoring section 8. The out-tank antenna 6 is installed above the metal tank and in substantially the center of the connections of theporcelain tubes 3 andpower lines 1, and the output of the out-tank antenna 6 is input into the vacuumdeterioration monitoring section 8. InFIG. 3 , the illustration of thepower lines 1 is omitted. - Next, a description will be given, using
FIG. 4 , of a configuration of the vacuumdeterioration monitoring section 8. The vacuumdeterioration monitoring section 8 is configured of afirst detection portion 8A which detects received signals of the in-tank antennas 5 (the A-phase antenna, the B-phase antenna, and the C-phase antenna are denoted 5 a, 5 b, and 5 c respectively), asecond detection portion 8B which detects a received signal of the out-tank antenna 6, and adetermination portion 8C which determines a vacuum deterioration from signals of the first andsecond detection portions - In the
first detection portion 8A, the configurations of detection parts belonging one to each of the A phase, B phase, and C phase are the same. Thefirst detection portion 8A is configured offrequency filters tank antenna 5 a, B-phase in-tank antenna 5 b, and C-phase in-tank antenna 5 c,amplifiers detector circuits second detection portion 8B is configured of afrequency filter 81 d connected to the out-tank antenna 6, anamplifier 82 d connected to the filter, and adetector circuit 83 d connected to the amplifier. The frequency filters 81 a to 81 d are band-pass filters whose passing frequency band is, for example, 200 to 300 MHz. The frequency band matches a frequency band, of an electromagnetic wave resulting from a partial discharge of thevacuum interrupter 9, which is intended to be detected by the in-tank antenna 5. The frequency band is not limited to 200 to 300 MHz, but may be set to, for example, 100 to 200 MHz. - The
determination portion 8C is a portion which, upon receiving the signals from the first andsecond detection portions comparator circuit 84 which compares signals obtained by thedetector circuits 83 a to 83 d, apulse output part 85 which, when it is determined by thecomparator circuit 84 that an in-tank partial discharge is occurring, outputs this comparison result in the form of pulses, apulse counter 86 which counts the pulses from thepulse output part 85, and adetermination circuit 87 which detects the duration of the partial discharge from the number of pulse counts, determines whether or not the partial discharge results from a vacuum deterioration of the vacuum interrupter, and emits a vacuumdeterioration anomaly output 88. - As the insulation performance in the
vacuum interrupter 9 decreases when the degree of vacuum in thevacuum interrupter 9 deteriorates, apartial discharge 11 occurs mainly in the vicinity of thecontacts vacuum interrupter 9. An electromagnetic wave, resulting from thepartial discharge 11 passes through thevacuum interrupter 9 and is detected by the in-′tank antenna 5.FIG. 6 is a chart showing a result of the detection, by the in-tank antenna 5, of an electromagnetic wave of thepartial discharge 11 occurring in thevacuum interrupter 9 when thevacuum interrupter 9 deteriorates in vacuum. This measurement result shows that, the frequency band being narrowed down to a range of 200 to 300 MHz using the band-pass filter, thepartial discharge 11 in thevacuum interrupter 9 has a signal component of the same band. - Meanwhile, the electromagnetic wave of the
partial discharge 11 occurring in thevacuum interrupter 9 also conducts to the external of the metal tank through the in-bushing conductor 4 a and in-porcelain-tube conductor 2. As the bushing 4 functions as the low-pass filter owing to theinternal shield 4 b, as heretofore described, a signal of 100 MHz or less of thepartial discharge 11 also easily conducts to the external of the metal tank and is also detected by the out-tank antenna 6. However, a signal of a frequency band (herein, 200 to 300 MHz) which is difficult to pass through the low-pass filter of the bushing 4, as the signal attenuates in the bushing 4 portion, hardly reaches the out-tank antenna 6, and an electromagnetic wave intensity detected by the out-tank antenna 6 is small compared with an electromagnetic wave intensity detected by the in-tank antenna 5. - Also, as noises intruding from the external of the metal tank, there are an
external radiation noise 14 resulting from a broadcast wave and anexternal conduction noise 10 such that a noise generated in another unshown instrument connected to thevacuum circuit breaker 15 via thepower line 1 conducts via thepower line 1. The electromagnetic waves of theexternal conduction noise 10 andexternal radiation noise 14 are detected by the out-tank antenna 6, and also conduct into themetal tank 12 via the in-porcelain-tube conductor 2 and in-bushing conductor 4 a. A signal of, for example, 100 MHz or less of the external noise also easily conducts into the metal tank and is also detected by the in-tank antenna 5. Meanwhile, a signal of a frequency band (herein, 200 to 300 MHz) which is difficult to pass through the low-pass filter of the bushing 4, as the signal attenuates in the bushing 4 portion, hardly reaches the in-tank antenna 5, and an electromagnetic wave intensity detected by the in-tank antenna 5 is small compared with an electromagnetic wave intensity detected by the out-tank antenna 6. - In the way heretofore described, the in-
tank antenna output 7 of a noise received by the in-tank antenna 5 is applied to thefirst detection portion 8A of the vacuumdeterioration monitoring section 8, and a noise received by the out-tank antenna 6 is applied directly to thesecond detection portion 8B of the vacuumdeterioration monitoring section 8. Next, the signals detected by the first andsecond detection portions determination portion 8C. - Signals, of the signals received by the A-phase, B-phase, and C-phase in-
tank antennas tank antenna 6, which have only a specific frequency band (herein, 200 to 300 MHz) are extracted by thefrequency filter 81 d which is similarly a band-pass filter. The extracted signals are amplified by theamplifiers detector circuits detector circuits 83 a to 83 d by the low-pass filter function of the bushing 4 and the frequency filters 81 a to 81 d, it is possible to specify whether an electromagnetic wave is generated in the metal tank or out of the metal tank, and when the generation is in the metal tank, specify the vacuum interrupter of which phase is the source of the generation, by using thecomparator circuit 84 as in the following. - The crest values of noises extracted by the
detector circuits comparator circuit 84 of the determination portion 8 c. It is possible to distinguish between the sources of generation of noise electromagnetic waves by the comparison by thecomparator circuit 84, for example, by comparing the sizes of the signals as in the following, - When an external noise is of the A phase:
-
- the output of the
antenna 6>theantenna 5 a>theantenna 5 b, theantenna 5 c
- the output of the
- When external noises are of the three phases:
-
- the output of the
antenna 6>theantenna 5 a, theantenna 5 b, theantenna 5 c
- the output of the
- When a partial discharge occurs in the A phase:
-
- the output of the
antenna 5 a>theantenna 6>theantenna 5 b, theantenna 5 c
- the output of the
- When partial discharges occur in the A phase and B phase:
-
- the output of the
antenna 5 a, the output of theantenna 5 b>theantenna 6>theantenna 5 c
- the output of the
- As it is possible to distinguish between the sizes of the outputs of the
detector circuits 83 a to 83 d and thus specify the source of occurrence of a partial discharge in the metal tank, as above, the result of comparison of the electromagnetic wave intensities of partial discharges in the metal tanks is output as pulses from the output of thecomparator circuit 84 by thepulse output part 85, and by counting the number of pulses in thepulse counter 86, thedetermination circuit 87 determines that there is a vacuum deterioration when the sustainability of discharge or the frequency of discharges exceeds a predetermined threshold value, and emits the vacuumdeterioration anomaly output 88. - According to this embodiment, by detecting a partial discharge when the vacuum interrupter deteriorates in vacuum, it is possible to detect a vacuum deterioration of the vacuum interrupter, that is, the vacuum circuit breaker, and by comparing the outputs received by the in- and out-tank antennas, it is possible to prevent the vacuum deterioration monitoring device from failing to detect and function properly due to an exogenous noise. Furthermore, a frequency band, which is difficult to pass through the bushing portion, is used as a detection frequency band, thereby making it easy to compare the signal strengths in and out of the metal tank, and it is thus possible to obtain a vacuum deterioration monitoring device with great accuracy and high reliability.
- A vacuum deterioration monitoring device according to a second embodiment is different in the following points from that of the first embodiment. In the first embodiment, as the in-
tank antenna outputs first detection portion 8A is configured of onefrequency filter 81, oneamplifier 82, and onedetector circuit 83, as shown inFIG. 5 , and that the in-tank antenna outputs of the individual phases are thus collectively applied to thefirst detection portion 8A. Other configurations are the same as in the first embodiment. - According to the configuration of the second embodiment, it is not possible to specify a phase in which an anomaly occurs, but the circuit configuration is simple. Also, the vacuum circuit breaker of
FIG. 3 is of a configuration wherein the metal tanks are installed one for each phase, but the second embodiment is effective even when adopting a configuration wherein the main circuits of three phases are disposed in one metal tank, thus achieving a further simplification in configuration. In the case of the second embodiment too, it is possible to distinguish between an exogenous noise out of the metal tank and a discharge in the metal tank in the same way as in the first embodiment. - The invention has heretofore been described based on the embodiments, but the invention is such that it is possible to combine the embodiments and appropriately modify or omit each or either of the embodiments without departing from the scope of the invention.
-
-
- 1 Power line
- 2 In-porcelain-tube conductor
- 3 Porcelain tube
- 4 Bushing
- 4 a In-bushing conductor
- 4 b Internal shield
- 4 c Insulator
- 5 (5 a, 5 b, 5 c) First antenna (in-tank antenna)
- 6 Second antenna (out-tank antenna)
- 7 (7 a, 7 b, 7 c) First antenna output
- 8 Vacuum deterioration monitoring section
- 8A First detection portion
- 8B Second detection portion
- 8C Determination portion
- 9 Vacuum interrupter
- 9 a, 9 b Contact
- 10 External conduction noise
- 11 Partial discharge
- 12 (12 a, 12 b, 12 c) Metal tank
- 13 Ground
- 14 External radiation noise
- 15 Vacuum circuit breaker
- 81, 81 a to 81 d Frequency filter
- 82, 82 a to 82 d Amplifier
- 83, 83 a to 83 d Detector circuit
- 84 Comparator circuit
- 85 Pulse output part
- 86 Pulse counter
- 87 Determination circuit
- 88 Vacuum deterioration anomaly output
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-270924 | 2012-12-12 | ||
JP2012270924 | 2012-12-12 | ||
PCT/JP2013/081855 WO2014091926A1 (en) | 2012-12-12 | 2013-11-27 | Vacuum deterioration monitoring apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150270080A1 true US20150270080A1 (en) | 2015-09-24 |
US9646785B2 US9646785B2 (en) | 2017-05-09 |
Family
ID=50934220
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/434,296 Active 2034-05-20 US9646785B2 (en) | 2012-12-12 | 2013-11-27 | Vacuum monitoring device |
Country Status (4)
Country | Link |
---|---|
US (1) | US9646785B2 (en) |
JP (1) | JP5819012B2 (en) |
CN (1) | CN104854676B (en) |
WO (1) | WO2014091926A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512368A (en) * | 2022-03-30 | 2022-05-17 | 广东电网有限责任公司 | Vacuum degree on-line monitoring method and device for high-voltage vacuum circuit breaker |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105719900B (en) * | 2016-04-01 | 2017-12-22 | 三峡大学 | A kind of Vacuity of Vacuum Circuit Breakers prior-warning device of microwave |
JP2017208913A (en) * | 2016-05-18 | 2017-11-24 | 三菱電機株式会社 | Degradation monitoring device for gas-insulation switchgear |
CN107170641A (en) * | 2017-07-26 | 2017-09-15 | 湖北大禹汉光真空电器有限公司 | A kind of vacuum detecting method of vacuum interrupter |
EP3982389B1 (en) * | 2019-06-07 | 2023-03-22 | Mitsubishi Electric Corporation | Vacuum circuit breaker |
JP7463085B2 (en) * | 2019-12-04 | 2024-04-08 | 株式会社東芝 | Diagnostic device, diagnostic method, and program |
CN112017907A (en) * | 2020-08-13 | 2020-12-01 | 黄山学院 | Vacuum degree degradation non-contact detection method of vacuum circuit breaker and early warning device thereof |
KR102696122B1 (en) * | 2021-11-12 | 2024-08-19 | 주식회사 태희에볼루션 | Vacuum interrupter diagnostic device and method for rail vehicles |
WO2024047840A1 (en) * | 2022-09-01 | 2024-03-07 | 日新電機株式会社 | Determination device and determination method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7141990B2 (en) * | 2002-05-29 | 2006-11-28 | Siemens Aktiengesellschaft | Device for detecting degradation of a component |
US7170297B1 (en) * | 2006-03-20 | 2007-01-30 | Agilent Technologies, Inc. | Transmission response measurement system and method of using time gating |
US7459916B2 (en) * | 2006-08-30 | 2008-12-02 | L-3 Communications Corporation | Electromagnetic shielding defect monitoring system and method for using the same |
US7750643B2 (en) * | 2007-10-30 | 2010-07-06 | General Electric Company | Process and system for detecting surface anomalies |
WO2012157138A1 (en) * | 2011-05-16 | 2012-11-22 | 三菱電機株式会社 | Tank-type switching device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0169969B1 (en) * | 1989-08-30 | 1999-03-30 | 미다 가쓰시게 | Power apparatus, power transmission/distribution unit, and tripping method therefor |
JPH08152453A (en) * | 1994-11-28 | 1996-06-11 | Sumitomo Electric Ind Ltd | Measuring method for partial discharge |
JP3586322B2 (en) * | 1995-10-26 | 2004-11-10 | ティーエム・ティーアンドディー株式会社 | Partial discharge detector for gas insulated electrical equipment |
US6853528B2 (en) | 2002-03-14 | 2005-02-08 | Hitachi, Ltd. | Gas insulating apparatus and method for locating fault point thereof |
EP1261091A4 (en) | 2000-03-01 | 2005-03-09 | Hitachi Ltd | Gas insulated device and failure rating method |
JP3628244B2 (en) * | 2000-08-28 | 2005-03-09 | 株式会社日立製作所 | Partial discharge detection method |
JP2002184275A (en) * | 2000-12-12 | 2002-06-28 | Meidensha Corp | Degree of vacuum monitoring method and device for vacuum circuit-breaker |
JP4860795B2 (en) * | 2006-09-07 | 2012-01-25 | 三菱電機株式会社 | Power equipment |
JP5105841B2 (en) * | 2006-12-04 | 2012-12-26 | 株式会社東芝 | Partial discharge detector |
JP2010032450A (en) * | 2008-07-31 | 2010-02-12 | Meidensha Corp | Method of determining presence or absence of partial discharge electromagnetic wave from object electric apparatus |
JP2010210574A (en) * | 2009-03-12 | 2010-09-24 | Mitsubishi Electric Corp | Method for locating partial discharge position of gas-insulated switchgear and device for the same |
JP5482078B2 (en) * | 2009-10-13 | 2014-04-23 | 株式会社明電舎 | Partial discharge detector |
CN101833060B (en) * | 2010-05-26 | 2014-09-10 | 四川电力试验研究院 | Positioning device for monitoring partial discharge of gas-insulater switchgear on line |
-
2013
- 2013-11-27 CN CN201380064675.6A patent/CN104854676B/en active Active
- 2013-11-27 JP JP2014551965A patent/JP5819012B2/en active Active
- 2013-11-27 US US14/434,296 patent/US9646785B2/en active Active
- 2013-11-27 WO PCT/JP2013/081855 patent/WO2014091926A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7141990B2 (en) * | 2002-05-29 | 2006-11-28 | Siemens Aktiengesellschaft | Device for detecting degradation of a component |
US7170297B1 (en) * | 2006-03-20 | 2007-01-30 | Agilent Technologies, Inc. | Transmission response measurement system and method of using time gating |
US7459916B2 (en) * | 2006-08-30 | 2008-12-02 | L-3 Communications Corporation | Electromagnetic shielding defect monitoring system and method for using the same |
US7750643B2 (en) * | 2007-10-30 | 2010-07-06 | General Electric Company | Process and system for detecting surface anomalies |
WO2012157138A1 (en) * | 2011-05-16 | 2012-11-22 | 三菱電機株式会社 | Tank-type switching device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512368A (en) * | 2022-03-30 | 2022-05-17 | 广东电网有限责任公司 | Vacuum degree on-line monitoring method and device for high-voltage vacuum circuit breaker |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014091926A1 (en) | 2017-01-05 |
JP5819012B2 (en) | 2015-11-18 |
CN104854676B (en) | 2016-12-14 |
US9646785B2 (en) | 2017-05-09 |
CN104854676A (en) | 2015-08-19 |
WO2014091926A1 (en) | 2014-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9646785B2 (en) | Vacuum monitoring device | |
KR100883266B1 (en) | SWNT-UHF Combined Sensor and Gas Insulated Switchgear Using the same | |
JP2019135455A (en) | Partial discharge detector using multi-sensor | |
JP2017208913A (en) | Degradation monitoring device for gas-insulation switchgear | |
US9190232B2 (en) | Tank-type circuit breaker | |
KR101496588B1 (en) | Partial discharge detecting device for gas insulated switchgear | |
US11372040B2 (en) | Method and arrangement for detecting partial discharges in an electric operating means | |
JP6118627B2 (en) | Vacuum leak monitoring device for vacuum valve | |
KR101843792B1 (en) | Method for deciding partial discharge for power equipment | |
KR20110075674A (en) | Partial discharge monitoring system for gas insulated switchgear | |
CN102426076A (en) | Method for detecting vacuum degree and temperature on line by 12kV vacuum arc extinguishing chamber | |
KR102089180B1 (en) | Apparatus for diagnosing partial discharge of gas insulated switchgear | |
US9182447B2 (en) | Tank-type switching device | |
KR100518370B1 (en) | Discharge diagnostic system of Gas Insulation Switchgea | |
US11843236B2 (en) | Arc detection system and method for an aircraft high voltage and direct current electrical circuit | |
JP2017130353A (en) | Vacuum degree monitoring device and monitoring method for vacuum valve | |
KR20120059710A (en) | Partial discharge detecting method and system for gas insulated apparatus | |
KR101515232B1 (en) | A processing apparatus and method of partial discharge diagnosis for gas insulated switchgear | |
Prabakaran et al. | PD test in gas insulated substation using UHF method | |
CN107170641A (en) | A kind of vacuum detecting method of vacuum interrupter | |
Oh et al. | Discrimination of partial discharge signal in Gas insulated switchgear from external noise using internal signal processing method | |
Prabakaran et al. | Analysis of partial discharge signals in 420 kv gas insulated substation | |
JP2022090820A (en) | Vacuum deterioration estimation device and vacuum deterioration estimation method | |
JP2023032488A (en) | Partial discharge detection method and partial discharge detection device | |
CN116068347A (en) | Low-voltage line fault arc identification method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INOUE, NAOAKI;ABE, JUNICHI;TANABE, TOMOKO;AND OTHERS;SIGNING DATES FROM 20150312 TO 20150318;REEL/FRAME:035361/0442 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |