[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20150251338A1 - Designing and manufacturing vehicle floor trays - Google Patents

Designing and manufacturing vehicle floor trays Download PDF

Info

Publication number
US20150251338A1
US20150251338A1 US14/716,401 US201514716401A US2015251338A1 US 20150251338 A1 US20150251338 A1 US 20150251338A1 US 201514716401 A US201514716401 A US 201514716401A US 2015251338 A1 US2015251338 A1 US 2015251338A1
Authority
US
United States
Prior art keywords
vehicle
tray
foot well
electronic
vehicle floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/716,401
Other versions
US9138917B1 (en
Inventor
David F. MacNeil
Scott A. VARGO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacNeil IP LLC
Original Assignee
MacNeil IP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36242668&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150251338(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MacNeil IP LLC filed Critical MacNeil IP LLC
Priority to US14/716,401 priority Critical patent/US9138917B1/en
Assigned to MACNEIL IP LLC reassignment MACNEIL IP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MACNEIL, DAVID F.
Assigned to MACNEIL IP LLC reassignment MACNEIL IP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VARGO, SCOTT A.
Publication of US20150251338A1 publication Critical patent/US20150251338A1/en
Application granted granted Critical
Publication of US9138917B1 publication Critical patent/US9138917B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3835Designing moulds, e.g. using CAD-CAM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0057Producing floor coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/04Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets
    • B60N3/044Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets of removable mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N3/00Arrangements or adaptations of other passenger fittings, not otherwise provided for
    • B60N3/04Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets
    • B60N3/048Arrangements or adaptations of other passenger fittings, not otherwise provided for of floor mats or carpets characterised by their structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0675HMWPE, i.e. high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3005Body finishings
    • B29L2031/3017Floor coverings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49622Vehicular structural member making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • Y10T428/31917Next to polyene polymer

Definitions

  • the disclosures and drawings of the aforementioned applications are fully incorporated by reference herein.
  • a conventional vehicle floor tray is typically molded of a single-ply rubber or plastic material, exhibits enough stiffness to retain a three-dimensional shape, but is also at least somewhat flexible.
  • These reservoirs typically are recessed areas in the mats that provide the mats with an enhanced ability to retain snow-melt and the like, until the water evaporates or can be disposed of by the vehicle owner or user.
  • One advanced design places treads in the middle of the reservoir, such that the feet of the occupant are held above any fluid that the reservoir collects.
  • a vehicle floor cover, mat or tray which is removably installable by a consumer and which is formed of at least three layers that are bonded together, preferably by coextrusion.
  • the three layers include a central layer whose composition is distinct from a bottom layer and a top layer.
  • all three layers are formed of thermoplastic polymer materials.
  • the top layer exhibits a kinetic coefficient of friction with respect to a sample meant to emulate a typical shoe outsole (neoprene rubber, Shore A Durometer 60) of at least about 0.82.
  • a major portion of the central layer is a polyolefin. More preferably, the polyolefin is either a polypropylene or a polyethylene. Most preferably, the polyolefin is high molecular weight polyethylene (HMPE) as herein defined.
  • the central layer can be a styrene-acrylonitrile copolymer (SAN) or an acrylonitrile-butadiene-styrene (ABS) polymer blend.
  • SAN styrene-acrylonitrile copolymer
  • ABS acrylonitrile-butadiene-styrene
  • a major portion of the top layer is a thermoplastic elastomer, such as one of the proprietary compositions sold under the trademarks SANTOPRENE®, GEOLAST® and VYRAM®. VYRAM® is particularly preferred.
  • a major portion of the top layer can be an ABS polymer blend. Where ABS is used in both the top and central layers, it is preferred that the amount of the polybutadiene phase in the top layer be greater than the amount of this phase in the central layer.
  • a major portion of the bottom layer likewise be a thermoplastic elastomer, and conveniently it can be, but does not have to be, of the same composition as the major portion of the top layer.
  • one or more of the layers is actually a polymer blend, in which a minor portion is preselected for its coextrusion compatibility with the adjacent layer(s).
  • a minor portion of the top and bottom layers can consist of a polyolefin, while a minor portion of the central layer can consist of a thermoplastic elastomer.
  • the minor portion be no more than about one part in four by weight of each layer, or a weight ratio of 1:3.
  • the amount of polybutadiene preferably is decreased in the central layer relative to the top and bottom layers.
  • any one of the recited layers can in fact be made up of two or more sublayers, such that the total number of sublayers in the resultant mat or tray can exceed three.
  • thermoplastic elastomer constituent of the top, central and/or bottom layers described above can be replaced with a natural or synthetic rubber, including styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber (NBR) or ethylene propylene rubber (EPDM).
  • a natural or synthetic rubber including styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber (NBR) or ethylene propylene rubber (EPDM).
  • a vehicle floor cover that has three layers bonded together, preferably by coextrusion.
  • Major portions of the top and bottom layer consist of thermoplastic elastomer(s).
  • the top and bottom layers have compositions distinct from the central layer, which can be chosen for its relatively low expense. It is preferred that a major portion of the central layer be a polyolefin and that major portions of the top and bottom layers be one or more thermoplastic elastomers.
  • the polyolefin may be selected from the group consisting of polypropylene and polyethylene, and preferably is a high molecular weight polyethylene (HMPE).
  • thermoplastic elastomer can, for example, be SANTOPRENE®, GEOLAST® or VYRAM®, with VYRAM® being particularly preferred. It is also preferred that each of the layers be a polymer blend, with a minor portion of each layer being chosen for its coextrusion compatibility with adjacent layers.
  • the top and bottom layers can consist of a 3:1 weight ratio of VYRAM®/HMPE, and the central layer of a 3:1 weight ratio of HMPE/VYRAM®.
  • the top and bottom layers can consist of ABS polymer blends and the central layer can consist of SAN or an ABS in which the polybutadiene phase is present in a smaller concentration than in the top and bottom layers.
  • thermoplastic elastomer recited in this aspect of the invention may be replaced with a natural or synthetic rubber, such as styrene butadiene rubber (SBR), butadiene rubber, acrylonitrile butadiene rubber (NBR) or ethylene propylene rubber (EPDM).
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • EPDM ethylene propylene rubber
  • a vehicle floor tray or mat according to the invention is made of three layers, wherein a top layer and a bottom layer have composition(s) distinct from the central layer, and wherein at least one of the shear strength per cross-sectional area, tensile strength per cross-sectional area and stiffness per cross-sectional area is greater than any one of the layers from which the tray or mat is composed.
  • a triextruded vehicle mat or floor tray exhibits a tensile strength at yield, a tensile stress at break, a tensile modulus, a shear strength and a flexural modulus (stiffness) which are superior to either a polyolefin-dominated single extrusion or a thermoplastic elastomer-dominated single extrusion.
  • the triextrusion tray demonstrates these enhanced physical properties while at the same time affording an enhanced coefficient of friction to the feet of the occupant and improved tactile properties. By presenting such a surface to the shoe of the driver or passenger, the footing of the driver or passenger will be more sure and comfortable.
  • a vehicle foot well tray is provided as a part of a system that has the vehicle foot well as its other main component.
  • the tray has a greatly enhanced conformance to the surface of the vehicle foot well for which it is provided.
  • These upstanding tray surfaces may be opposed surfaces or adjacent surfaces, and preferably are both.
  • the tray departs from a door sill surface of the vehicle foot well, and/or a sill curve of the vehicle foot well, by about 0.025 inches.
  • the upstanding sidewalls of the floor tray conform to the foot well surfaces which they cover, even where such foot well surfaces present both concave and convex surface elements.
  • a top margin of a vehicle floor tray is substantially coplanar on at least two upstanding sidewalls thereof.
  • the top margin of the tray is substantially coplanar through three or even four continuous upstanding sidewalls. This eases the design of the floor tray, increases hoop strength and assures that all upstanding surfaces of the vehicle foot well will receive adequate protection from muddy footwear.
  • the plane of the top margin is forwardly and upwardly tilted relative to a horizontal floor. This provides enhanced protection to the vehicle foot well precisely in the place where muddy footwear are likely to be, near the accelerator, brake and clutch pedals or the firewall.
  • the tray is at least five inches deep at its deepest part.
  • the above mentioned tight tolerances are made possible by a novel vehicle floor tray manufacturing method.
  • a first step according to the invention points on a surface of the vehicle foot well are digitally measured with a coordinate measuring machine (CMM). These points are stored in a computer memory.
  • a foot well surface is generated which includes these points, preferably by connecting linear groups of the points together by using B-splines, and lofting between the B-splines to create areal portions of the foot well surface.
  • a corresponding substantially convex outer floor tray surface is built up such that in many regions, the distance between the outer surface of the tray and the surface of the foot well is no more than about one eighth of an inch, insuring a snug fit.
  • a process for manufacturing a vehicle floor tray includes a step of digitally measuring the three-dimensional position of a plurality of points on a substantially carpeted surface of a vehicle foot well for which the vehicle floor tray is to be provided.
  • the points are stored in a memory.
  • the stored points are used to construct an electronic model of the vehicle foot well surface.
  • the electronic model of the vehicle foot well surface in turn is used to construct an electronic three-dimensional image of the vehicle floor tray. From this image, a vehicle tray data file is created.
  • the vehicle tray data file is used to make a vehicle tray mold.
  • the vehicle floor tray is manufactured by molding polymer material in the mold.
  • a reservoir is incorporated into the tray floor as a collection and evaporation area for drip water from the feet and legs of the occupant.
  • Combination baffles/treads are provided in the reservoir to impede lateral movement of the collected fluid. Longitudinal and transverse portions of these baffles are joined together. Channels are cut into another portion of the central area of the tray to direct fluid to the reservoir, such that the bottom of the channels is beneath a general tray floor surface but above the bottom of the reservoir.
  • the channels are omitted from a portion of the floor tray upper surface to leave a blank space where the driver's heel will rest when operating the gas and brake pedals.
  • a vehicle floor tray has a central panel for placement on the floor of a vehicle foot well, and at least first and second upstanding panels, joined to respective longitudinal and transverse margins of the central panel, for substantial conformance to side walls of the vehicle foot well.
  • the tray is thermoformed from a sheet of polymer material having substantially uniform thickness, and this means that the components of the tray after thermoforming will have a substantially uniform thickness.
  • a reservoir is formed in the central panel for collection of snow melt and other fluid.
  • Multiple treads/baffles are disposed in the reservoir. The treads/baffles each have at least two opposed ends and are elongate.
  • Each tread/baffle is hollow and has a width, in any horizontal direction, which is more than twice its thickness as measured from the top surface thereof to the nearest point on the bottom surface thereof.
  • the treads/baffles are adapted to elevate the foot or shoe of the occupant out of the fluid collected by the reservoir. At the same time they are adapted to impede lateral movement of the collected fluid within the reservoir, as might occur when the vehicle turns, accelerates or brakes.
  • the fluid is forced around ends of the treads/baffles in order to reach any remote portion of the reservoir. Since any portion of the reservoir is connected to any other portion of it, a large surface area of the reservoir is available for the collected fluid to spread out and evaporate.
  • FIG. 1 is an isometric view of one embodiment of a vehicle floor tray according to the invention
  • FIG. 2 is a top view of the floor tray illustrated in FIG. 1 ;
  • FIG. 3 is an isometric and transverse sectional view of the floor tray seen in FIGS. 1 and 2 , the section taken substantially along line 3 - 3 of FIG. 2 ;
  • FIG. 4 is an isometric and longitudinal sectional view of the floor tray shown in FIGS. 1 and 2 , the section taken substantially along line 4 - 4 of FIG. 2 ;
  • FIG. 5 is a side view of the tray illustrated in FIG. 1 , taken from the outer side;
  • FIG. 6 is a highly magnified sectional view of a vehicle floor tray, showing triextruded layers
  • FIG. 7 is a schematic block diagram showing steps in a design and manufacturing process according to the invention.
  • FIG. 8 is an isometric and schematic view of a digitally acquired vehicle foot well floor surface from which the illustrated floor tray was made;
  • FIG. 9 is a partly transverse sectional, partly isometric view of both the floor tray illustrated in FIG. 2 and the vehicle foot well surface illustrated in FIG. 8 , taken substantially along line 9 - 9 of FIG. 2 and substantially along line 9 - 9 of FIG. 8 ;
  • FIG. 10 is a partly transverse sectional, partly isometric view of both the floor tray illustrated in FIG. 2 and the vehicle foot well surface illustrated in FIG. 8 , taken substantially along line 10 - 10 of FIG. 2 and substantially along line 10 - 10 of FIG. 8 ;
  • FIG. 11 is a detail of a firewall region of FIG. 10 ;
  • FIG. 12 is a detail of a seat pedestal region of FIG. 10 ;
  • FIG. 13 is a partly longitudinal sectional, partly isometric view of both the floor tray illustrated in FIG. 2 and the vehicle foot well surface illustrated in FIG. 8 , taken substantially along line 13 - 13 of FIG. 2 and substantially along line 13 - 13 of FIG. 8 ;
  • FIG. 14 is a detail of a kick plate region of FIG. 13 .
  • FIG. 1 An isometric view of one commercial embodiment is shown in FIG. 1 .
  • the illustrated vehicle floor tray indicated generally at 100 is preferably molded from a blank, in sheet form, of water-impervious thermoplastic polymer material having a uniform thickness, although the present invention could be fabricated from another process such as injection molding.
  • the floor tray 100 is preferably formed of a triextruded thermoplastic material such that the properties of a central or core layer can be different than the properties of the external or jacket layers, and such that the triextrusion is tougher and stiffer per unit thickness than any of the layers from which it is made, as will be described in more detail below.
  • the vehicle floor tray or cover 100 is meant to protect both the floor and at least the lower sides of a vehicle foot well, and thus takes on a much more three-dimensional shape than is typical of prior art floor mats.
  • the floor tray 100 includes a floor or central panel 102 , which in the illustrated embodiment includes a plurality of fore-to-aft or longitudinal parallel straight channels 104 that are disposed in a forward region 106 of the floor panel 102 .
  • these channels are about an eighth of an inch deep so that they will correctly channel runoff, and can be about one-quarter of an inch wide.
  • forward is a direction to the upper left, while rearward is the direction to the lower right, and the terms are used in conformance with the orientation of the vehicle in which the tray is designed to be placed.
  • longitudinal means for-and-aft or along the axis of vehicle travel, while “transverse” means at a ninety degree angle to such an axis, or side-to-side.
  • a rearward or back region 108 of the floor panel 102 is largely occupied by a reservoir 110 , whose bottom is made up by a substantially planar general surface 112 .
  • General surface 112 is situated to be below a general surface 114 of the forward region 106 .
  • the general bottom reservoir surface 112 is also below the bottommost points of the respective channels 104 , as by about one-eighth of an inch, so that fluid in the channels 104 will empty into the reservoir 110 .
  • the channels 104 are designed to channel liquid runoff from the user's feet or footwear to the reservoir 110 .
  • the portion of the vehicle floor (not shown in this Figure; see FIGS. 8-11 ) which underlies the forward region 106 slopes from front to rear, and thus the tray 100 , by simply conforming to the contour of the underlying vehicle floor portion, will channel fluid to the reservoir.
  • the tray 100 can advantageously be designed to create this fluid flow, as by making the material thicker in portion 106 than in portion 108 , or by giving the bottoms of channels 104 a front-to-rear slope.
  • the channels 104 occupy most of the forward region 106 , although in this and other commercial embodiments a space 116 on the forward right hand side has been left open to receive the foot of the driver that operates the accelerator and brake pedals.
  • this space or clear area 116 is a delimited by a 180 degree arc of a circle of about four inch radius (shown in dashed line).
  • the clear area 116 is provided so that the relatively deep channels 104 do not catch the heel of the driver's shoe.
  • the clear area 116 can take other shapes or positions, so long as the heels of almost all drivers, while operating the brake and accelerator pedals of the vehicle for which the particular tray is designed, will rest within its confines.
  • the reservoir 110 has interspersed within it a plurality of tread surfaces or baffles 118 , which have two purposes.
  • the first purpose is to elevate the shoe or foot of the occupant above any fluid which may have collected in the reservoir 110 .
  • the second purpose is to prevent this accumulated fluid from sloshing around.
  • most of the tread surfaces/baffles 118 have both fore-to-aft or longitudinal portions 120 and side-to-side or transverse portions 122 . This prevents large fluid movement in a forward or rearward direction, as would otherwise happen during acceleration or braking of the vehicle, and also large fluid movement side-to-side, as when the vehicle is turning.
  • each or at least most of the fore-to-aft portions 120 are joined to respective side-to-side portions. This further compartmentalizes and restricts the movement of collected fluid. Fluid in one portion of the reservoir 110 may make its way only slowly and through a complicated path to another distant portion of the reservoir 110 , through channels 124 around the ends of the treads or baffles 118 .
  • the reservoir design thus creates a large surface area which promotes evaporation of the fluid, while at the same time restricts fluid movement prior to such evaporation.
  • these upstanding panels include a back panel 130 that is disposed adjacent the bottom of a vehicle front seat, or a vehicle pedestal for receiving same; an inner side panel 132 that closely fits a transmission tunnel or “hump” in this vehicle; a forward panel 134 that closely conforms to a vehicle firewall; and an outer side panel 136 .
  • the outer side panel or kick plate panel 136 will only extend from its transition with panel 134 to a corner 138 , at which point there begins a door sill curve 208 which transitions into a door sill panel 140 .
  • the sill panel 140 is not generally upstanding but instead conforms to the sill of a vehicle door and lies in a substantially horizontal plane. In this way occupant ingress and egress is not occluded.
  • the sill panel 140 is at an elevation below that of the general surface 114 of the floor forward region 106 and even below the general surface (bottom) 112 of the reservoir 110 . Very large amounts of fluid (in excess of the reservoir capacity) may therefore flow right out of the vehicle without having the opportunity to damage the vehicle interior. It should be noted that in these FIGUREs, the lines dividing the panels are conceptual only and do not appear in the final part.
  • the tray 100 preferably is integrally molded as a one-piece construction.
  • the tray 100 is closely fitted to the vehicle foot well in which it is designed to be placed.
  • Panels 130 , 132 , 134 , 136 and 140 are all formed so as to as closely conform to the vehicle surfaces against which they are positioned, to an extent not found in prior art vehicle floor trays.
  • at least throughout the top one-third of the areas of these panels that is adjacent a vehicle tray top margin 150 at least ninety percent of the points on the outer surface of the peripheral or side panels 130 - 136 are no more than about one-eighth of an inch from the corresponding points on the surfaces that they are formed to mate with. This close conformance occurs even where the underlying vehicular surface is complexly curved or angled.
  • Certain portions of the vehicle foot well surface, such as kick plate transition plate 214 can have both convexly and concavely curved elements.
  • the preferred tolerance of door sill curve 208 and sill plate 140 is even tighter, about 0.025 in.
  • outer side panel or kick plate panel 136 which closely conforms to a vehicle side wall at that position, has as its counterpart a portion 142 of the inner side panel 132 . Any tendency of the tray 100 to shift leftward is stopped by panel 136 ; any tendency of the tray 100 to shift rightward is stopped by panel portion 142 .
  • the upstanding rearward and forward panels 130 and 134 cooperate to “cage” any forward or rearward motion of the tray 100 within the vehicle foot well.
  • the side panels 130 - 136 , 140 will not be formed to abruptly extend from the bottom panel 102 , but rather will be joined to the bottom or central panel 102 through transitions. These transitions may be sloped or curved and will have a varying degree of gradualness. According to the invention, the transitions between the outer and bottom surfaces of the tray 100 conform wherever possible to underlying surfaces of the vehicle foot adjacent these transitions.
  • FIG. 2 there is seen a large transition or subpanel 200 which extends from forward portion 106 .
  • a further subpanel 202 joins transitional subpanel 202 to the forward sidewall 134 .
  • Inner or transmission tunnel sidewall 132 is joined to the pan 102 through a curved transitional fillet 204 .
  • the rear upstanding panel 130 is joined to the rear portion of bottom panel 102 through a small transition 206 .
  • a transition or sill curve 208 between the outer sidewall 136 and the sill panel 140 takes the form of a gradual curved surface.
  • the present invention also employs (typically) curved transitions between adjacent side panels.
  • a curved transition 210 joins the back panel 130 to the inner side panel 132 .
  • a curved transition 212 joins the transmission tunnel or inner side panel 132 to the front or firewall panel 134 .
  • a transition 214 which in this embodiment takes the shape of an S-curve and conforms to a portion of vehicle wheel well, joins the front panel 134 to the outer side panel 136 .
  • the close conformance (preferably to a tolerance of about 1 ⁇ 8 in.) wherever possible to the transitions of the vehicle foot well surface by the outer surface of the tray 100 enhances a close fit.
  • the tray according to the invention has been made by placing a sheet of substantially uniformly thick triextruded thermoplastic material into a mold and heating the mold.
  • this process it is difficult to provide the channels and reservoir structure according to one aspect of the invention while closely conforming the bottom surface 300 ( FIGS. 3 and 4 ) to a mating surface of the vehicle foot well.
  • a departure away from 1 ⁇ 8 in. tolerance must be made in order to obtain the above-described benefits of fluid flow and retention. But because the side panels 130 - 136 , 140 and their associated transitions continue to closely conform to most of the remaining vehicle foot well surfaces, the tray 100 continues to be locked in one place.
  • FIGS. 10-14 superimpose a floor tray 100 on a surface 802 of a vehicle foot well for which the tray is designed according to the invention.
  • FIG. 10 In the part-isometric, part-longitudinal sectional view seen in FIG. 10 , it can be seen that on the section taken there is a quite tight conformance of the lower surface 300 of the tray 100 to the modeled surface 802 of the vehicle foot well.
  • the outer surface of the firewall sidewall 134 stays within one-eighth of an inch of the firewall surface 826 for at least three-quarters of the length of surface 826 as measured from the top margin 150 of the tray.
  • areas 1000 , 1002 and 1004 FIG.
  • the modeled surface 802 of the vehicle foot well is actually above or to the interior to the tray 100 .
  • This negative interference is tolerable and in some instances is even desirable because the surface 802 is that of a vehicle carpet, which can or even should be depressed upon the installation of the tray 100 into the vehicle foot well.
  • Such a tight fit is particularly desirable, for example, in the region of the tray around the accelerator pedal.
  • FIG. 12 is a detail of FIG. 10 in the area of the seat pedestal and a portion of the reservoir 110 .
  • FIG. 13 shows a side-to-side or transverse section taken in a relatively forward location, so as to cut through the kick plate tray and foot well surfaces 136 , 830 on one side and the tray and foot well transmission tunnel surfaces 132 , 810 on the other.
  • Areas 1000 , 1002 (partially represented in FIG. 13) and 1006 are areas of negative standoff or interference in which the modeled surface 802 of the vehicle foot well is positioned interiorly of the vehicle tray 100 .
  • this mismatch is permissible if held to 1 ⁇ 8 inch or less, and is even desirable in some points, because the surface 802 is an image of vehicle carpeting rather than a hard surface.
  • FIG. 14 there is seen at 1400 an intentional increase of radius of the transition between kick plate panel 136 and bottom wall 102 .
  • the increase of the radius 1400 accomplishes this. Nonetheless, even on this section the outer surface of the kick plate 136 stays within one-eighth of an inch of the kick plate surface 830 for at least one-third of the length, as measured from margin 150 .
  • At least ninety percent of that top one-third of the surface area of each sidewall 130 - 136 that is adjacent the top margin 150 stays within 1 ⁇ 8 in. of the vehicle foot well surfaces with which they are designed to mate.
  • ninety percent of the top one-half of the outer surface area of all upstanding sidewalls is within this 1 ⁇ 8 inch tolerance of respective foot well surfaces.
  • a top margin 150 of the tray 100 which terminates all of the upstanding sidewalls 130 , 132 , 134 , 136 and 138 , substantially lies in a single plane which is tilted forwardly upwardly relative to the horizontal plane.
  • the continuous nature of the top margin 150 means that the produced tray 100 has a higher hoop strength, and better protects the vehicle carpeting from dirt or mud on the sides of the occupant's feet. The occupant's feet tend to occupy positions on the forward region 106 , but the position of the top margin 150 around this region is high, being at least five inches removed from the floor of the tray at its greatest separation.
  • the tray or cover 100 not be of uniform composition throughout, but rather be a laminate having at least three layers which are bonded together.
  • a preferred composition of the tray 100 is shown in the highly magnified sectional detail shown in FIG. 6 .
  • the tray 100 consists of a top layer 600 , a central or core layer 602 , and a bottom layer 604 . All three layers 600 - 604 preferably consist of one or more water-impervious thermoplastic polymers, but layers 600 and 604 have properties which are at least different from core layer 602 and may even have properties which are different from each other.
  • Top layer 600 is made from a material selected for its tactile properties, its relatively high static and dynamic coefficients of friction with respect to typical footwear, and its resistance to chemical attack from road salt and other substances into which it may come into contact.
  • Top layer 600 preferably includes a major portion of a thermoplastic elastomer such as VYRAM®, SANTOPRENE® or GEOLAST®, which are proprietary compositions available from Advanced Elastomer Systems. VYRAM® is preferred, particularly Grade 101-75 (indicating a Shore A hardness of 75).
  • An upper surface 606 of the top layer 600 may be textured by a “haircell” pattern or the like so as to provide a pleasing tactile feel and visual appearance, as may a lower surface of the bottom layer 604 .
  • top layer 600 be a polymer blend, in which instance a minor portion of the composition of the top layer 600 is selected for its coextrusion compatibility with core layer 602 .
  • a polyolefin polymer is preferred, such as polypropylene or more preferably polyethylene, even more particularly a high molecular weight polyethylene (HMPE).
  • HMPE is a commodity product, available from many sources, and distinguished in the industry from low density polyethylene (LDPE) and high density polyethylene (HDPE) by its approximate properties:
  • thermoplastic elastomer and the polyolefin are respectively selected as VYRAM® and HMPE
  • the proportion by weight of the thermoplastic elastomer to polyolefin material in layer 600 is preferably selected to be about 3:1. It has been discovered that some polyolefin material needs to be present in layer 600 for coextrusion compatibility with central layer 602 , in the instance where a major portion of the layer 602 is also a polyolefin.
  • thermoplastic elastomer component of the top layer 600 may be replaced with an elastomer such as natural rubber, acryl-nitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), or ethylene propylene diene rubber (EPDM).
  • NBR acryl-nitrile butadiene rubber
  • SBR styrene butadiene rubber
  • EPDM ethylene propylene diene rubber
  • layer 600 can be an acrylonitrile butadiene styrene (ABS) blend.
  • ABS is a material in which submicroscopic particles of polybutadiene are dispersed in a phase of styrene acrylonitrile (SAN) copolymer.
  • SAN styrene acrylonitrile
  • the percentage by weight of polybutadiene, which lends elastomeric properties to the material, should be chosen as relatively high.
  • the core or central layer 602 preferably is composed of a thermoplastic polymer material that is selected for its toughness, stiffness and inexpensiveness rather than its tactile or frictional properties.
  • a major portion of it is a polyolefin such as polypropylene or polyethylene. More preferably, a major portion of the layer 602 is composed of HMPE as that material has been defined above.
  • the central layer 602 be a blend, and in that instance a minor portion of layer 602 is composed of a material selected for its coextrusion compatibility with top layer 600 (and bottom layer 604 described below).
  • this minor portion is a thermoplastic elastomer such as SANTOPRENE®, GEOLAST® or VYRAM®. VYRAM® Grade 101-75 is particularly preferred.
  • the proportion by weight of polyolefin to thermoplastic elastomer is preferred to be about 3:1. More generally, the percentages of the minor portions in layers 600 and 602 (and layer 604 ) are selected as being the minimum necessary for good coextrusion compatiblity.
  • layer 602 is chosen as a grade of ABS having less of a percentage by weight of polybutadiene in it, or none at all (effectively, styrene acrylonitrile copolymer or SAN).
  • Bottom layer 604 has a lower surface 300 which will be adjacent the vehicle foot well top surface. Typically, this surface is carpeted.
  • the bottom layer 604 is a thermoplastic polymer material selected for its wear characteristics, as well as its sound-deadening qualities and a yieldability that allows the layer 604 to better grip “hard points” in the vehicle foot well surface as well as conform to foot well surface irregularities.
  • a major portion of the layer 604 is composed of a thermoplastic elastomer, such as SANTOPRENE®, GEOLAST® or, preferably, VYRAM®. VYRAM® Grade 101-75 is particularly preferred.
  • the bottom layer 604 be a polymer blend.
  • a minor portion of the bottom layer 604 is selected for its coextrusion compatibility with the core layer 602 .
  • core layer 602 is mostly made of a polyolefin material
  • a polyolefin be used as the minor portion of the bottom layer 604 .
  • This polyolefin can be, for example, polypropylene or polyethylene, and preferably is HMPE.
  • the amount of the minor portion is selected to be that minimum amount that assures good coextrusion compatibility.
  • the polyolefin and the thermoplastic elastomer are respectively chosen to be HMPE and VYRAM®, it has been found that the thermoplastic elastomer:polyolefin ratio by weight in the layer 604 should be about 3:1.
  • thermoplastic elastomer component of layer 604 may be replaced with a rubber, such as natural rubber, NBR, SBR or EPDM.
  • layer 604 can be selected as a grade of ABS which has a higher percentage by weight of polybutadiene in it than in central layer 602 .
  • Bottom jacketing layer 604 conveniently can have the same composition as top jacketing layer 600 , but the two jacketing layers do not have to be similar. What is important that, where the tray 100 is to be formed as a triextrusion (as is preferred), layers 600 , 602 and 604 be sufficiently compatible that they can be triextruded as a single sheet.
  • the core layer 602 has at least minimally acceptable tensile strength, shear strength and high flexural modulus, while at the same time being significantly less expensive than the thermoplastic elastomer-dominated jacketing layers.
  • the jacketing layers 600 and 604 are selected to present good wear surfaces and to have a good resistance to chemical attack from substances such as road salt.
  • Top layer 600 is selected to exhibit a relatively high coefficient of friction with respect to typical occupant footwear.
  • the composition of bottom layer 604 is selected for its sound-deadening and yieldability qualities.
  • the total thickness of tray 100 is the sum of dimensions a, b and c.
  • jacketing layer thicknesses a and c are each about 12.5% of the total thickness, while core layer thickness b is about 75%.
  • the total thickness of the tray 100 (or, more precisely, of the blank sheet used to mold the tray 100 ) is approximately 0.120 inch.
  • core layer 602 is about 0.09 inch
  • jacketing layers 600 and 604 are each about 0.0150 inch.
  • the layer 600 can be made to be appreciably thicker than layer 604 , as top surface 606 is a wear surface for the shoes of the occupant and will see more abrasive dirt and more wear than surface 300 in typical applications.
  • the thickness of layer 604 may be increased, allowing it to even better conform to the vehicle foot well surface with which it is designed to mate and to increase sound-deadening.
  • a preferred embodiment of the present invention combines the high coefficient of friction, tactile qualities, sound-deadening and yieldability obtainable with a thermoplastic elastomer with the modest cost of a polyolefin.
  • the first two tests performed concern static and dynamic coefficients of friction.
  • the core layer was 75 wt. pct. HMPE/25 wt. pct. VYRAM® Grade 101-75.
  • the bottom layer was a blend of 25 wt. pct. HMPE/75 wt. pct. VYRAM® Grade 101-75.
  • the bottom and top layers each comprised about 12.5% of the sheet thickness while the middle core layer comprised about 75% of the sheet thickness. Results are tabulated as follows.
  • the triextrusion sheet, the single-extruded VYRAM®-dominated sheet and the single-extruded HMPE-dominated sheet were die-cut into samples having an average width of 0.250′′.
  • the test performed was according to the ASTM D 638-03 testing standard. A cross-head speed of 20 in./min. was used.
  • the extensiometer was set at 1000% based on 1.0′′ gauge length. Samples were conditioned at 40 hours at 23 Celsius and 50% relative humidity prior to testing at these conditions. Test results are tabulated below.
  • Tests were performed on the above three materials for shear strength according to Test Standard ASTM D732-02. In these tests, a 1.00 in. dia. punch was applied to a 2.0 inch square of material until shear was achieved. The crosshead moved at 0.05 in/min. The test samples were preconditioned for at least 40 hours at 23 Celsius and 50% relative humidity, which were the conditions under which the tests were performed. Test results are tabulated below.
  • Tests were performed to determine the flexural properties of samples of a tri-extrusion material of the above-described formulation, a 75 wt. pct. Vyram/25 wt. pct. HMPE material, and a 75 wt. pct. HMPE/25 wt. pct. VYRAM material (in all tests. the thermoplastic elastomer used was VYRAM® Grade 101-75). The tests were performed according to the ASTM D790-03 test method, Method I, Procedure A. For the tri-extrusion the dimensions of the samples averaged 0.490′′ ⁇ 0.0119′′ ⁇ 5.00′′, the span length was 1.904 in., and the cross-head speed was 0.051 in./min.
  • the dimensions of the samples averaged 0.484′′ ⁇ 0.072′′ ⁇ 5.00′′, the span length was 1.152 in., and the cross-head speed was 0.031 in./min.
  • the dimensions of the samples averaged 0.50′′ ⁇ 0.138′′ ⁇ 5.00′′, the span length was 2.208 in., and the cross-head speed was 0.059 in/min.
  • the span-to-depth ratio was 16+/ ⁇ 1:1
  • the radius of the supports was 0.197 in.
  • the radius of the loading nose was 0.197 in.
  • the tests were performed at 23 Celsius and 50% relative humidity and the samples conditioned for 40 hours at this temperature and humidity before the tests were performed. Results are tabulated below.
  • FIGS. 7 and 8 provide an overview of a process for making the vehicle floor trays or covers according to the invention.
  • the vehicle floor trays or covers are custom-fabricated for discrete vehicle models.
  • points on the vehicle foot well for which the floor tray is to be manufactured are digitally measured and captured.
  • this step uses a coordinate measuring machine (CMM) which records each of a large plurality of points on the surface of the vehicle foot well to which the floor tray is to be fitted.
  • CCMM coordinate measuring machine
  • the inventor has found that a FARO® Arm has been efficacious in obtaining these data using a contact method. It has been found that laying out points in linear groups, as by marking the locations to be measured on tape prior to measurement, is efficacious in capturing enough data points to later recreate the surface of which they are a part.
  • the data thus collected are stored in a file.
  • the points of surface data are spaced from each other as a function of the complexity of the surface on which they reside. Few points of data are needed to establish large surface planes. More points of data are used in defining curved surfaces, with the density of data points varying according to the sharpness of the curve. In FIG. 8 , representative ones of these points are shown by small “x”s at 800 , on a surface 802 that is reconstituted using the technique described immediately below.
  • a typical data file will contain about a thousand points, spread over an imaged foot well surface area of about ten square feet.
  • the CMM data file is imported into a CAD program, which is used by a designer to reconstitute a vehicle foot well surface from the captured points.
  • a CAD program which is used by a designer to reconstitute a vehicle foot well surface from the captured points.
  • different “lines” of these points are connected together by B-splines 804 .
  • the splines 804 which the CAD program can automatically generate, are used to estimate all of the points on the line other than the captured data points of that line.
  • the splines 804 are separated apart from each other as a function of the topographical complexity of the portion of the surface that they cover. For large flat areas, such as sill plate 806 , the splines 804 may be separated far apart, as a plane between the splines is a good estimate of the surface in that area.
  • complex or tightly curved areas such as sill curve 832 or kick plate transitional area 833 , the splines 804 are tightly packed together because the surface segments have to
  • a transmission tunnel sidewall surface 810 is recreated by lofting an area 812 between a spline 814 to an adjacent spline 816 along the same surface.
  • the designer then lofts the next area 818 from spline 816 to spline 820 .
  • an area 822 from spline 820 to spline 824 is added, and so forth down the rest of the transmission tunnel surface 810 until that entire component of the vehicle foot well surface has been created.
  • the other major surfaces are added: a combination firewall/floor area segment 826 , a pedestal sidewall 828 , a kick plate segment 830 , a sill plate curve 832 and the sill plate 806 .
  • the resultant reconstructed vehicle foot well surface 802 is used, at steps 703 - 707 , 709 , 711 , 720 - 726 to construct a vehicle floor tray that fits the surface 802 to an enhanced degree of precision.
  • the designer chooses top and bottom sketch planes, which intersect the surface 802 at the top and bottom elevations of the tray to be designed.
  • a top sketch plane intersects surface 802 at a locus (step 720 ) high up on the sidewalls 810 , 828 , 830 , 832 and 834 . This locus is seen in FIG. 1 as a top margin 150 of the upstanding sidewalls 130 , 132 , 134 , 136 and the transitions between them.
  • the top sketch plane is tilted and inclines upward in a forward direction. This produces a tray which is deeper near the firewall than it is near the seat, preferably producing a tray that is at least five inches deep at its deepest part. This protects the foot well carpet from the possibly muddy sides of an occupant's shoes or boots.
  • a bottom sketch plane is defined to be coplanar with the bottom surface tray sill plate 140 , spaced from the vehicle foot well sill plate 806 by a tight tolerance, such as 0.025′′. This bottom sketch plane does not intersect the remainder of the structure but is instead projected (step 722 ) upward onto the vehicle foot well surface to create a locus that approximates the marginal outline of the floor/firewall segment 826 .
  • sidewalls are drawn in to span the top and bottom sketch planes. These prototypical sidewalls are created by (step 724 ) first drawing a plurality of straight lines, each drawn from a point on the upper sketch plane locus to a point on the lower sketch plane locus. Since the upper sketch plane is more extensive and has a different shape from the lower sketch plane, the lateral margins of the upper and lower sketch planes are not congruent, and the straight lines drawn from the upper sketch plane may be canted at various angles to each other. In general, these lines will slope inwardly from the top sketch plane to the bottom sketch plane. The areas in between these lines can be lofted (step 726 ) to create polygonal surfaces of a completed tray solid.
  • the resultant solid has a planar top surface, nearly planar bottom surface and sidewalls which make abrupt corners with them.
  • the actual transitions between the vehicle foot well sidewall surfaces and the floor are almost always curved, to a greater or lesser extent depending on the area in question and on the vehicle model. Therefore, at step 705 , curves are fitted to the reconstructed vehicle foot well surface and these curves are substituted in for the previous abrupt angular shapes. The largest of these curves occurs across the firewall 834 , to conform to that sloping and typically curved surface rather than to a horizontal extension of the bottom sketch plane. Curves are also used to modify the transitions between the floor 102 and the transmission tunnel surface 132 , the kick plate 136 , and the seat pedestal sidewall 130 .
  • the above techniques aim to approximate, as closely as possible, the shape of the upstanding sidewalls 810 , 828 , 830 and 834 , to a zero standoff from the foot well surface.
  • the outer surface of the tray 100 may actually extend slightly beyond the imaged side walls of the vehicle foot well (see portions 1000 - 1006 in FIGS. 10-14 ), creating a negative standoff. This is permissible to some degree because the surface to which the tray is being shaped is carpeted and the pile may be intentionally depressed at certain points.
  • the door sill 806 and the sill curve 832 typically are hard surfaces that must comply to close manufacturer tolerances. A vehicle door is designed to mate with these surfaces. Because of this it is important to match these surfaces carefully, and preferably this is done in this process to a preselected standoff of 0.025 inch.
  • certain radii of the transitional surfaces are increased, in an intentional departure from the foot well surface. This is done, for example, where the curved transition is one from a deep vertical surface to the floor, as might occur between a vertical kick plate and firewall surface segments 836 , 838 . See transition 1400 in FIG. 14 . This is done to make sure that the preferred vacuum molding process, which uses a female tool, does not create a thin place in the molded part at the deep corners. Where the sidewall surfaces are sloped inward by more than five degrees, such radiusing is unnecessary.
  • the tray solid is additionally modified to take into account irregularities in the reconstructed foot well surface.
  • the vehicle carpeting might have had rolls or wrinkles in it that should not be reproduced in a tray meant to fit the vehicle.
  • This steps also smoothes out those surface irregularities which are artifacts of the surface acquisition and reconstruction steps 700 - 702 .
  • a basic shape for the vehicle floor tray is modified at 709 in order to create the reservoir 110 and channels 104 (See FIGS. 1-4 ).
  • This modification is necessary because, as has been explained, while there is a close conformance or mating between most of the exterior or lower surfaces of the floor tray on the one hand to the upper or interior surfaces of the vehicle foot well surfaces on the other, there must be a departure from this close conformance in order to create the profile needed by the reservoir and channels.
  • a predetermined file containing the outer surface of the reservoir and channel surface is integrated into the floor of the tray solid.
  • the tray solid developed at steps 703 - 707 , 709 is “shelled”. This means that the solid is carved out to leave a thin layer that is a uniform thickness (preferably about 0.120-0.125 in.) from the outer surface.
  • tray data file 708 that is a complete representation of both the upper and lower surfaces of the floor tray, to a precision sufficient to create only a 1 ⁇ 8 in. departure or less from a large portion of the respective surfaces of the vehicle foot well.
  • This data file typically as translated into a .stl format that approximates surfaces with a large plurality of small triangles, is used at 710 to command a stereolithographic apparatus (SLA).
  • SLA stereolithographic apparatus
  • the SLA creates a solid plastic image or model of the design by selectively curing liquid photopolymer using a laser.
  • the SLA is used to determine fit to an actual vehicle foot well and to make any necessary adjustments.
  • the vehicle tray data file is used to make a commercial mold for producing the vehicle floor trays or covers.
  • Triextruded sheets or blanks 714 are placed in the mold and heated to produce the vehicle floor trays at 716 .
  • Three-dimensional vehicle floor trays for many different vehicle models can be quickly and accurately manufactured using this method.
  • the method can also be modified to produce double trays, in which a single tray is provided which covers both driver and passenger vehicle foot wells as well as the intervening transmission tunnel.
  • the technique can be used to create other vehicle floor covers as well, such as the liners used in the cargo areas of minivans and SUVs.
  • the floor tray according to the invention includes a reservoir and channel system for retaining runoff in a way that will not slosh around in the foot well.
  • the tray combines the desirable coefficient of friction and yieldability characteristics of a thermoplastic elastomer, the lower cost of a polyolefin and a toughness that exceeds either material taken alone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Passenger Equipment (AREA)
  • Body Structure For Vehicles (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Vehicle Step Arrangements And Article Storage (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

The three-dimensional positions of points on a surface of a vehicle foot well are digitally measured and are stored in a memory. The stored points are used to construct an electronic model of the vehicle foot well surface. The electronic model of the vehicle foot well surface in turn is used to construct an electronic three-dimensional image of the vehicle floor tray. A vehicle tray data file is created from the electronic three-dimensional image. The data file is in turn used to make a mold for a vehicle floor tray, and vehicle floor trays are manufactured by molding polymer material in the mold.

Description

    RELATED APPLICATIONS
  • This application is a continuation of copending U.S. Nonprovisional application Ser. No. 14/565,040 filed on Dec. 9, 2014, which is in turn a continuation of U.S. Nonprovisional application Ser. No. 13/773,706 filed Feb. 22, 2013, now U.S. Pat. No. 8,910,995, which in turn is a continuation of U.S. Nonprovisional application Ser. No. 13/595,703 filed on Aug. 27, 2012, now U.S. Pat. No. 8,382,186, which is in turn a continuation of U.S. Nonprovisional application Ser. No. 12/879,899 filed on Sep. 10, 2010, now U.S. Pat. No. 8,267,459, which is in turn a continuation of U.S. Nonprovisional application Ser. No. 11/463,203 filed on Aug. 8, 2006, now abandoned, which is in turn a division of U.S. Nonprovisional application Ser. No. 10/976,441 filed on Oct. 29, 2004, now U.S. Pat. No. 7,316,847. The disclosures and drawings of the aforementioned applications are fully incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • Motor vehicles are almost always operated in the out of doors and are frequently parked there. It is therefore very common for their occupants to have wet or muddy feet—if the occupants have not just finished an outdoor activity, at least they have had to walk across a possibly wet, snowy or muddy surface to access their vehicles. For decades, therefore, vehicle owners have been attempting to protect the enclosed interiors of their vehicles (cars, trucks, SUVs) from what they themselves track into them. The conventional solution to this has been to provide a vehicle floor mat which may be periodically removed by the owner and cleaned.
  • Human beings have a tendency to move their feet around, and foot motion is an absolute requirement in operating most vehicles. This has caused a problem, in that the occupants of a vehicle have a tendency to push around the floor mats with their feet. The floor mats end up not being centered on the area protected, or pushed up so as to occlude the gas, brake or clutch pedals, or bunched up or folded over—all undesirable conditions. One objective of floor mat manufacturers has therefore been to provide a floor mat that will stay put and which will not adversely affect vehicle operation.
  • The foot wells of cars, trucks and SUVs vary in size in shape from one model of vehicle to the next. Floor mat manufacturers have noticed that floor mats which at least approximately conform to the shape of the bottom surface of the foot well stay in place better and offer more protection. It is also common for such floor mats, where provided for front seat foot wells, to have portions which are meant to lie against the firewalls or front surfaces of the foot wells. Even as so extended it is not too hard to provide a floor mat of flexible material that will approximately conform to these two surfaces, as the designer only has to mark a two-dimensional periphery of the mat in providing one which will fit reasonably well.
  • More recently, vehicle floor trays have come onto the market. Most front-seat vehicle foot wells are actually three-dimensional concave shapes, typically with complex curved surfaces. Floor trays have sidewalls that offer enhanced protection to the surfaces surrounding the vehicle floor, as might be needed against wearers with very muddy or snowy shoes. Conventional vehicle floor trays try to fit into these three-dimensional cavities, but so far their fit to the surfaces that they are supposed to protect has been less than optimum. A conventional vehicle floor tray is typically molded of a single-ply rubber or plastic material, exhibits enough stiffness to retain a three-dimensional shape, but is also at least somewhat flexible. Fitting such a tray to the complex three-dimensional surface of a vehicle foot well has proven to be difficult, and the products currently in the marketplace have limited consumer acceptance because of their loose fit inside the foot well. There is often, and in many places, a considerable space between the exterior wall of these conventional trays and the interior surface of the foot well. This causes the wall to noticeably deform when the occupant's foot contacts it. Vehicle owners have a tendency to dislike floor trays which rattle, deform, shift and flop about. A need therefore persists for a floor tray that will have a more exact fit to the vehicle foot well for which it is provided, that stays in place once it is installed, and that provides a more solid and certain feel to the occupants' feet.
  • Some vehicle floor mats that are now on the market have fluid reservoirs built into them. Particularly in cold or wet climates, dirty water has a tendency to be shed onto the floor mat, where it persists until it evaporates. If there is enough of it, it will leak off of the floor mat and stain the carpeting of the foot well that the mat was meant to protect. These reservoirs typically are recessed areas in the mats that provide the mats with an enhanced ability to retain snow-melt and the like, until the water evaporates or can be disposed of by the vehicle owner or user. One advanced design places treads in the middle of the reservoir, such that the feet of the occupant are held above any fluid that the reservoir collects. But including such a reservoir within a floor tray that otherwise has an acceptable fit to the surface of a vehicle foot well has not yet been done, since there are problems in incorporating a three-dimensional liquid-holding vessel into a product that ideally conforms, on its lower surface, to the surface of the foot well. Further, a reservoir which collects drip water from a large surface, such as a vehicle floor tray, will exhibit more problems in keeping the collected fluid from sloshing about in a moving vehicle.
  • Conventional vehicle floor mats and trays are molded from a single rubber or plastic material. The selection of this material is controlled by its cost, its resistance to shear forces, its tensile strength, its abrasion resistance, its ability to conform to the surface of the vehicle foot well, its sound-deadening properties and how slippery or nonslippery it is relative to the occupants' feet, with nonslipperiness (having a relatively high coefficient of friction) being advantageous. Often the designer must make tradeoffs among these different design constraints in specifying the material from which the tray or mat is to be made.
  • SUMMARY OF THE INVENTION
  • According to one aspect of the invention, there is provided a vehicle floor cover, mat or tray which is removably installable by a consumer and which is formed of at least three layers that are bonded together, preferably by coextrusion. The three layers include a central layer whose composition is distinct from a bottom layer and a top layer. Preferably, all three layers are formed of thermoplastic polymer materials. In another aspect of the invention, the top layer exhibits a kinetic coefficient of friction with respect to a sample meant to emulate a typical shoe outsole (neoprene rubber, Shore A Durometer 60) of at least about 0.82.
  • Preferably, a major portion of the central layer is a polyolefin. More preferably, the polyolefin is either a polypropylene or a polyethylene. Most preferably, the polyolefin is high molecular weight polyethylene (HMPE) as herein defined. In an alternative embodiment, the central layer can be a styrene-acrylonitrile copolymer (SAN) or an acrylonitrile-butadiene-styrene (ABS) polymer blend.
  • Preferably, a major portion of the top layer is a thermoplastic elastomer, such as one of the proprietary compositions sold under the trademarks SANTOPRENE®, GEOLAST® and VYRAM®. VYRAM® is particularly preferred. In another embodiment, a major portion of the top layer can be an ABS polymer blend. Where ABS is used in both the top and central layers, it is preferred that the amount of the polybutadiene phase in the top layer be greater than the amount of this phase in the central layer.
  • It is further preferred that a major portion of the bottom layer likewise be a thermoplastic elastomer, and conveniently it can be, but does not have to be, of the same composition as the major portion of the top layer.
  • Preferably one or more of the layers is actually a polymer blend, in which a minor portion is preselected for its coextrusion compatibility with the adjacent layer(s). Thus, a minor portion of the top and bottom layers can consist of a polyolefin, while a minor portion of the central layer can consist of a thermoplastic elastomer. In each case, it is preferred that the minor portion be no more than about one part in four by weight of each layer, or a weight ratio of 1:3. Where all three layers are preselected to be ABS blends, the amount of polybutadiene preferably is decreased in the central layer relative to the top and bottom layers.
  • While the preferred embodiment of the vehicle floor cover consists of three integral layers, any one of the recited layers can in fact be made up of two or more sublayers, such that the total number of sublayers in the resultant mat or tray can exceed three.
  • In another embodiment, the thermoplastic elastomer constituent of the top, central and/or bottom layers described above can be replaced with a natural or synthetic rubber, including styrene butadiene rubber, butadiene rubber, acrylonitrile butadiene rubber (NBR) or ethylene propylene rubber (EPDM).
  • According to a related aspect of the invention, a vehicle floor cover is provided that has three layers bonded together, preferably by coextrusion. Major portions of the top and bottom layer consist of thermoplastic elastomer(s). The top and bottom layers have compositions distinct from the central layer, which can be chosen for its relatively low expense. It is preferred that a major portion of the central layer be a polyolefin and that major portions of the top and bottom layers be one or more thermoplastic elastomers. The polyolefin may be selected from the group consisting of polypropylene and polyethylene, and preferably is a high molecular weight polyethylene (HMPE). The thermoplastic elastomer can, for example, be SANTOPRENE®, GEOLAST® or VYRAM®, with VYRAM® being particularly preferred. It is also preferred that each of the layers be a polymer blend, with a minor portion of each layer being chosen for its coextrusion compatibility with adjacent layers. For example, the top and bottom layers can consist of a 3:1 weight ratio of VYRAM®/HMPE, and the central layer of a 3:1 weight ratio of HMPE/VYRAM®.
  • In an embodiment alternative to the one above, the top and bottom layers can consist of ABS polymer blends and the central layer can consist of SAN or an ABS in which the polybutadiene phase is present in a smaller concentration than in the top and bottom layers.
  • In yet another embodiment, the thermoplastic elastomer recited in this aspect of the invention may be replaced with a natural or synthetic rubber, such as styrene butadiene rubber (SBR), butadiene rubber, acrylonitrile butadiene rubber (NBR) or ethylene propylene rubber (EPDM).
  • In a further aspect of the invention, a vehicle floor tray or mat according to the invention is made of three layers, wherein a top layer and a bottom layer have composition(s) distinct from the central layer, and wherein at least one of the shear strength per cross-sectional area, tensile strength per cross-sectional area and stiffness per cross-sectional area is greater than any one of the layers from which the tray or mat is composed. It has been found that a triextruded vehicle mat or floor tray according to the invention exhibits a tensile strength at yield, a tensile stress at break, a tensile modulus, a shear strength and a flexural modulus (stiffness) which are superior to either a polyolefin-dominated single extrusion or a thermoplastic elastomer-dominated single extrusion. The triextrusion tray demonstrates these enhanced physical properties while at the same time affording an enhanced coefficient of friction to the feet of the occupant and improved tactile properties. By presenting such a surface to the shoe of the driver or passenger, the footing of the driver or passenger will be more sure and comfortable.
  • In a further aspect of the invention, a vehicle foot well tray is provided as a part of a system that has the vehicle foot well as its other main component. The tray has a greatly enhanced conformance to the surface of the vehicle foot well for which it is provided. At least two upstanding walls of the tray, both extending from the tray floor to a top margin, conform to respective surfaces of the vehicle foot well such that at least within that one-third of the area of the outer surface of these upstanding walls of the tray which is adjacent the top margin, 90% of that top third area departs by no more than about one-eighth of an inch from the foot well surfaces to which they mate. These upstanding tray surfaces may be opposed surfaces or adjacent surfaces, and preferably are both. In a preferred embodiment, the tray departs from a door sill surface of the vehicle foot well, and/or a sill curve of the vehicle foot well, by about 0.025 inches. The upstanding sidewalls of the floor tray conform to the foot well surfaces which they cover, even where such foot well surfaces present both concave and convex surface elements.
  • In a still further aspect of the invention, a top margin of a vehicle floor tray is substantially coplanar on at least two upstanding sidewalls thereof. Preferably, the top margin of the tray is substantially coplanar through three or even four continuous upstanding sidewalls. This eases the design of the floor tray, increases hoop strength and assures that all upstanding surfaces of the vehicle foot well will receive adequate protection from muddy footwear. In a particularly preferred embodiment, the plane of the top margin is forwardly and upwardly tilted relative to a horizontal floor. This provides enhanced protection to the vehicle foot well precisely in the place where muddy footwear are likely to be, near the accelerator, brake and clutch pedals or the firewall. In a preferred embodiment, the tray is at least five inches deep at its deepest part.
  • In a further aspect of the invention, the above mentioned tight tolerances are made possible by a novel vehicle floor tray manufacturing method. In a first step according to the invention, points on a surface of the vehicle foot well are digitally measured with a coordinate measuring machine (CMM). These points are stored in a computer memory. A foot well surface is generated which includes these points, preferably by connecting linear groups of the points together by using B-splines, and lofting between the B-splines to create areal portions of the foot well surface. Using this typically complex three-dimensional, predominately concave surface, which may have several concavely and convexly curved portions, a corresponding substantially convex outer floor tray surface is built up such that in many regions, the distance between the outer surface of the tray and the surface of the foot well is no more than about one eighth of an inch, insuring a snug fit.
  • In an embodiment of the invention, a process for manufacturing a vehicle floor tray includes a step of digitally measuring the three-dimensional position of a plurality of points on a substantially carpeted surface of a vehicle foot well for which the vehicle floor tray is to be provided. The points are stored in a memory. The stored points are used to construct an electronic model of the vehicle foot well surface. The electronic model of the vehicle foot well surface in turn is used to construct an electronic three-dimensional image of the vehicle floor tray. From this image, a vehicle tray data file is created. The vehicle tray data file is used to make a vehicle tray mold. The vehicle floor tray is manufactured by molding polymer material in the mold.
  • In one embodiment of the invention, a reservoir is incorporated into the tray floor as a collection and evaporation area for drip water from the feet and legs of the occupant. Combination baffles/treads are provided in the reservoir to impede lateral movement of the collected fluid. Longitudinal and transverse portions of these baffles are joined together. Channels are cut into another portion of the central area of the tray to direct fluid to the reservoir, such that the bottom of the channels is beneath a general tray floor surface but above the bottom of the reservoir. In a preferred driver's side embodiment, the channels are omitted from a portion of the floor tray upper surface to leave a blank space where the driver's heel will rest when operating the gas and brake pedals.
  • In a further aspect, a vehicle floor tray has a central panel for placement on the floor of a vehicle foot well, and at least first and second upstanding panels, joined to respective longitudinal and transverse margins of the central panel, for substantial conformance to side walls of the vehicle foot well. The tray is thermoformed from a sheet of polymer material having substantially uniform thickness, and this means that the components of the tray after thermoforming will have a substantially uniform thickness. A reservoir is formed in the central panel for collection of snow melt and other fluid. Multiple treads/baffles are disposed in the reservoir. The treads/baffles each have at least two opposed ends and are elongate. Each tread/baffle is hollow and has a width, in any horizontal direction, which is more than twice its thickness as measured from the top surface thereof to the nearest point on the bottom surface thereof. The treads/baffles are adapted to elevate the foot or shoe of the occupant out of the fluid collected by the reservoir. At the same time they are adapted to impede lateral movement of the collected fluid within the reservoir, as might occur when the vehicle turns, accelerates or brakes. The fluid is forced around ends of the treads/baffles in order to reach any remote portion of the reservoir. Since any portion of the reservoir is connected to any other portion of it, a large surface area of the reservoir is available for the collected fluid to spread out and evaporate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further aspects of the invention and their advantages can be discerned in the following detailed description, in which like characters denote like parts and in which:
  • FIG. 1 is an isometric view of one embodiment of a vehicle floor tray according to the invention;
  • FIG. 2 is a top view of the floor tray illustrated in FIG. 1;
  • FIG. 3 is an isometric and transverse sectional view of the floor tray seen in FIGS. 1 and 2, the section taken substantially along line 3-3 of FIG. 2;
  • FIG. 4 is an isometric and longitudinal sectional view of the floor tray shown in FIGS. 1 and 2, the section taken substantially along line 4-4 of FIG. 2;
  • FIG. 5 is a side view of the tray illustrated in FIG. 1, taken from the outer side;
  • FIG. 6 is a highly magnified sectional view of a vehicle floor tray, showing triextruded layers;
  • FIG. 7 is a schematic block diagram showing steps in a design and manufacturing process according to the invention;
  • FIG. 8 is an isometric and schematic view of a digitally acquired vehicle foot well floor surface from which the illustrated floor tray was made;
  • FIG. 9 is a partly transverse sectional, partly isometric view of both the floor tray illustrated in FIG. 2 and the vehicle foot well surface illustrated in FIG. 8, taken substantially along line 9-9 of FIG. 2 and substantially along line 9-9 of FIG. 8;
  • FIG. 10 is a partly transverse sectional, partly isometric view of both the floor tray illustrated in FIG. 2 and the vehicle foot well surface illustrated in FIG. 8, taken substantially along line 10-10 of FIG. 2 and substantially along line 10-10 of FIG. 8;
  • FIG. 11 is a detail of a firewall region of FIG. 10;
  • FIG. 12 is a detail of a seat pedestal region of FIG. 10;
  • FIG. 13 is a partly longitudinal sectional, partly isometric view of both the floor tray illustrated in FIG. 2 and the vehicle foot well surface illustrated in FIG. 8, taken substantially along line 13-13 of FIG. 2 and substantially along line 13-13 of FIG. 8; and
  • FIG. 14 is a detail of a kick plate region of FIG. 13.
  • DETAILED DESCRIPTION
  • An isometric view of one commercial embodiment is shown in FIG. 1. The illustrated vehicle floor tray indicated generally at 100 is preferably molded from a blank, in sheet form, of water-impervious thermoplastic polymer material having a uniform thickness, although the present invention could be fabricated from another process such as injection molding. The floor tray 100 is preferably formed of a triextruded thermoplastic material such that the properties of a central or core layer can be different than the properties of the external or jacket layers, and such that the triextrusion is tougher and stiffer per unit thickness than any of the layers from which it is made, as will be described in more detail below.
  • The vehicle floor tray or cover 100 is meant to protect both the floor and at least the lower sides of a vehicle foot well, and thus takes on a much more three-dimensional shape than is typical of prior art floor mats. The floor tray 100 includes a floor or central panel 102, which in the illustrated embodiment includes a plurality of fore-to-aft or longitudinal parallel straight channels 104 that are disposed in a forward region 106 of the floor panel 102. Preferably these channels are about an eighth of an inch deep so that they will correctly channel runoff, and can be about one-quarter of an inch wide. In FIG. 1, forward is a direction to the upper left, while rearward is the direction to the lower right, and the terms are used in conformance with the orientation of the vehicle in which the tray is designed to be placed. As used herein, “longitudinal” means for-and-aft or along the axis of vehicle travel, while “transverse” means at a ninety degree angle to such an axis, or side-to-side.
  • A rearward or back region 108 of the floor panel 102 is largely occupied by a reservoir 110, whose bottom is made up by a substantially planar general surface 112. General surface 112 is situated to be below a general surface 114 of the forward region 106. Preferably, the general bottom reservoir surface 112 is also below the bottommost points of the respective channels 104, as by about one-eighth of an inch, so that fluid in the channels 104 will empty into the reservoir 110.
  • The channels 104 are designed to channel liquid runoff from the user's feet or footwear to the reservoir 110. In many vehicles, the portion of the vehicle floor (not shown in this Figure; see FIGS. 8-11) which underlies the forward region 106 slopes from front to rear, and thus the tray 100, by simply conforming to the contour of the underlying vehicle floor portion, will channel fluid to the reservoir. For those vehicle designs in which the underlying vehicle floor is not pitched in this manner, the tray 100 can advantageously be designed to create this fluid flow, as by making the material thicker in portion 106 than in portion 108, or by giving the bottoms of channels 104 a front-to-rear slope.
  • The channels 104 occupy most of the forward region 106, although in this and other commercial embodiments a space 116 on the forward right hand side has been left open to receive the foot of the driver that operates the accelerator and brake pedals. In the illustrated embodiment, this space or clear area 116 is a delimited by a 180 degree arc of a circle of about four inch radius (shown in dashed line). The clear area 116 is provided so that the relatively deep channels 104 do not catch the heel of the driver's shoe. In other embodiments, the clear area 116 can take other shapes or positions, so long as the heels of almost all drivers, while operating the brake and accelerator pedals of the vehicle for which the particular tray is designed, will rest within its confines.
  • The reservoir 110 has interspersed within it a plurality of tread surfaces or baffles 118, which have two purposes. The first purpose is to elevate the shoe or foot of the occupant above any fluid which may have collected in the reservoir 110. The second purpose is to prevent this accumulated fluid from sloshing around. To this end, most of the tread surfaces/baffles 118 have both fore-to-aft or longitudinal portions 120 and side-to-side or transverse portions 122. This prevents large fluid movement in a forward or rearward direction, as would otherwise happen during acceleration or braking of the vehicle, and also large fluid movement side-to-side, as when the vehicle is turning. Preferably, each or at least most of the fore-to-aft portions 120 are joined to respective side-to-side portions. This further compartmentalizes and restricts the movement of collected fluid. Fluid in one portion of the reservoir 110 may make its way only slowly and through a complicated path to another distant portion of the reservoir 110, through channels 124 around the ends of the treads or baffles 118. The reservoir design thus creates a large surface area which promotes evaporation of the fluid, while at the same time restricts fluid movement prior to such evaporation.
  • Disposed around the central or floor panel 102 are a series of upstanding side panels, which will vary in number and configuration from one vehicle model to the next. In the illustrated embodiment these upstanding panels include a back panel 130 that is disposed adjacent the bottom of a vehicle front seat, or a vehicle pedestal for receiving same; an inner side panel 132 that closely fits a transmission tunnel or “hump” in this vehicle; a forward panel 134 that closely conforms to a vehicle firewall; and an outer side panel 136. In most embodiments, the outer side panel or kick plate panel 136 will only extend from its transition with panel 134 to a corner 138, at which point there begins a door sill curve 208 which transitions into a door sill panel 140. Unlike the other panels, the sill panel 140 is not generally upstanding but instead conforms to the sill of a vehicle door and lies in a substantially horizontal plane. In this way occupant ingress and egress is not occluded. In many embodiments, including the illustrated embodiment, the sill panel 140 is at an elevation below that of the general surface 114 of the floor forward region 106 and even below the general surface (bottom) 112 of the reservoir 110. Very large amounts of fluid (in excess of the reservoir capacity) may therefore flow right out of the vehicle without having the opportunity to damage the vehicle interior. It should be noted that in these FIGUREs, the lines dividing the panels are conceptual only and do not appear in the final part. As will be described in further detail below, the tray 100 preferably is integrally molded as a one-piece construction.
  • In one important aspect of the invention, the tray 100 is closely fitted to the vehicle foot well in which it is designed to be placed. Panels 130, 132, 134, 136 and 140 are all formed so as to as closely conform to the vehicle surfaces against which they are positioned, to an extent not found in prior art vehicle floor trays. In a preferred embodiment, at least throughout the top one-third of the areas of these panels that is adjacent a vehicle tray top margin 150, at least ninety percent of the points on the outer surface of the peripheral or side panels 130-136 are no more than about one-eighth of an inch from the corresponding points on the surfaces that they are formed to mate with. This close conformance occurs even where the underlying vehicular surface is complexly curved or angled. Certain portions of the vehicle foot well surface, such as kick plate transition plate 214, can have both convexly and concavely curved elements. The preferred tolerance of door sill curve 208 and sill plate 140 is even tighter, about 0.025 in.
  • The close conformance of the tray side panels to respective surfaces of the vehicle foot well produces a protective tray which will not be horizontally displaced under lateral forces created by the occupant's feet, or by the motion of the vehicle. Opposing pairs of the peripheral panels “nest” or “cage” the tray 100, preventing its lateral movement. Thus, outer side panel or kick plate panel 136, which closely conforms to a vehicle side wall at that position, has as its counterpart a portion 142 of the inner side panel 132. Any tendency of the tray 100 to shift leftward is stopped by panel 136; any tendency of the tray 100 to shift rightward is stopped by panel portion 142. In a similar manner, the upstanding rearward and forward panels 130 and 134 cooperate to “cage” any forward or rearward motion of the tray 100 within the vehicle foot well.
  • The close conformance of the outer or lower surfaces of panels 130-136, 218, 140 to their respective mating surfaces of the vehicle foot well also increases the frictional force which will oppose any lateral movement. The result of this close conformance is to provide a floor tray which will not undesirably shift position, and which will provide a steady and sure rest to the feet of the occupants.
  • In most commercial embodiments of the vehicle floor tray 100, the side panels 130-136, 140 will not be formed to abruptly extend from the bottom panel 102, but rather will be joined to the bottom or central panel 102 through transitions. These transitions may be sloped or curved and will have a varying degree of gradualness. According to the invention, the transitions between the outer and bottom surfaces of the tray 100 conform wherever possible to underlying surfaces of the vehicle foot adjacent these transitions.
  • In FIG. 2, for example, there is seen a large transition or subpanel 200 which extends from forward portion 106. A further subpanel 202 joins transitional subpanel 202 to the forward sidewall 134. Inner or transmission tunnel sidewall 132 is joined to the pan 102 through a curved transitional fillet 204. The rear upstanding panel 130 is joined to the rear portion of bottom panel 102 through a small transition 206. A transition or sill curve 208 between the outer sidewall 136 and the sill panel 140 takes the form of a gradual curved surface.
  • The present invention also employs (typically) curved transitions between adjacent side panels. For example, a curved transition 210 joins the back panel 130 to the inner side panel 132. A curved transition 212 joins the transmission tunnel or inner side panel 132 to the front or firewall panel 134. A transition 214, which in this embodiment takes the shape of an S-curve and conforms to a portion of vehicle wheel well, joins the front panel 134 to the outer side panel 136. The close conformance (preferably to a tolerance of about ⅛ in.) wherever possible to the transitions of the vehicle foot well surface by the outer surface of the tray 100 enhances a close fit.
  • In the illustrated embodiment, the tray according to the invention has been made by placing a sheet of substantially uniformly thick triextruded thermoplastic material into a mold and heating the mold. When this process is used, discrete layers having different characteristics can persist into the final product, as will be described in more detail below. On the other hand, as using this manufacturing process it is difficult to provide the channels and reservoir structure according to one aspect of the invention while closely conforming the bottom surface 300 (FIGS. 3 and 4) to a mating surface of the vehicle foot well. In this central area, and according to the preferred manufacturing process, a departure away from ⅛ in. tolerance must be made in order to obtain the above-described benefits of fluid flow and retention. But because the side panels 130-136, 140 and their associated transitions continue to closely conform to most of the remaining vehicle foot well surfaces, the tray 100 continues to be locked in one place.
  • FIGS. 10-14 superimpose a floor tray 100 on a surface 802 of a vehicle foot well for which the tray is designed according to the invention. In the part-isometric, part-longitudinal sectional view seen in FIG. 10, it can be seen that on the section taken there is a quite tight conformance of the lower surface 300 of the tray 100 to the modeled surface 802 of the vehicle foot well. As best seen in FIG. 11, the outer surface of the firewall sidewall 134 stays within one-eighth of an inch of the firewall surface 826 for at least three-quarters of the length of surface 826 as measured from the top margin 150 of the tray. In areas 1000, 1002 and 1004 (FIG. 10), the modeled surface 802 of the vehicle foot well is actually above or to the interior to the tray 100. This negative interference is tolerable and in some instances is even desirable because the surface 802 is that of a vehicle carpet, which can or even should be depressed upon the installation of the tray 100 into the vehicle foot well. Such a tight fit is particularly desirable, for example, in the region of the tray around the accelerator pedal.
  • FIG. 12 is a detail of FIG. 10 in the area of the seat pedestal and a portion of the reservoir 110. Once again, there is a very tight conformance of the outer surface of the back panel 130 to the modeled seat pedestal surface 828 throughout most of its length on this section, well within ⅛ inch.
  • FIG. 13 shows a side-to-side or transverse section taken in a relatively forward location, so as to cut through the kick plate tray and foot well surfaces 136, 830 on one side and the tray and foot well transmission tunnel surfaces 132, 810 on the other. As can be seen, tolerance to within ⅛ of an inch is maintained at least for the upper one-third of the surface area of these mating surfaces. Areas 1000, 1002 (partially represented in FIG. 13) and 1006 are areas of negative standoff or interference in which the modeled surface 802 of the vehicle foot well is positioned interiorly of the vehicle tray 100. As above explained, this mismatch is permissible if held to ⅛ inch or less, and is even desirable in some points, because the surface 802 is an image of vehicle carpeting rather than a hard surface.
  • In FIG. 14, there is seen at 1400 an intentional increase of radius of the transition between kick plate panel 136 and bottom wall 102. This is done because, for the model shown, the foot well kick plate surface 830 is both vertical and is relatively deep. Therefore, sidewall 136 needs to have a draft of at least two degrees (and more preferably five degrees) relative to the surface 830 to insure that the wall of the tray 100 will remain acceptably thick enough at the junction of walls 136, 102. The increase of the radius 1400 accomplishes this. Nonetheless, even on this section the outer surface of the kick plate 136 stays within one-eighth of an inch of the kick plate surface 830 for at least one-third of the length, as measured from margin 150.
  • More generally, at least ninety percent of that top one-third of the surface area of each sidewall 130-136 that is adjacent the top margin 150 stays within ⅛ in. of the vehicle foot well surfaces with which they are designed to mate. Alternatively, ninety percent of the top one-half of the outer surface area of all upstanding sidewalls is within this ⅛ inch tolerance of respective foot well surfaces. In even a further alternative measurement of tolerance, it is preferred that at least fifty percent of the outer area of the upstanding sidewalls 130-136 be within ⅛ inch of the vehicle foot wells to which they correspond, regardless of position relative to the top margin 150.
  • As best seen in FIGS. 1, 5 and 10, a top margin 150 of the tray 100, which terminates all of the upstanding sidewalls 130, 132, 134, 136 and 138, substantially lies in a single plane which is tilted forwardly upwardly relative to the horizontal plane. The continuous nature of the top margin 150 means that the produced tray 100 has a higher hoop strength, and better protects the vehicle carpeting from dirt or mud on the sides of the occupant's feet. The occupant's feet tend to occupy positions on the forward region 106, but the position of the top margin 150 around this region is high, being at least five inches removed from the floor of the tray at its greatest separation.
  • Composition
  • According to one aspect of the invention, it is preferred that the tray or cover 100 not be of uniform composition throughout, but rather be a laminate having at least three layers which are bonded together. A preferred composition of the tray 100 is shown in the highly magnified sectional detail shown in FIG. 6. In this illustrated embodiment, the tray 100 consists of a top layer 600, a central or core layer 602, and a bottom layer 604. All three layers 600-604 preferably consist of one or more water-impervious thermoplastic polymers, but layers 600 and 604 have properties which are at least different from core layer 602 and may even have properties which are different from each other. The trilayer cover is shown to be a three-dimensional floor tray in the drawings, but can also be a more two-dimensional floor mat of more limited coverage. Top layer 600 is made from a material selected for its tactile properties, its relatively high static and dynamic coefficients of friction with respect to typical footwear, and its resistance to chemical attack from road salt and other substances into which it may come into contact. Top layer 600 preferably includes a major portion of a thermoplastic elastomer such as VYRAM®, SANTOPRENE® or GEOLAST®, which are proprietary compositions available from Advanced Elastomer Systems. VYRAM® is preferred, particularly Grade 101-75 (indicating a Shore A hardness of 75). An upper surface 606 of the top layer 600 may be textured by a “haircell” pattern or the like so as to provide a pleasing tactile feel and visual appearance, as may a lower surface of the bottom layer 604.
  • It is preferred that top layer 600 be a polymer blend, in which instance a minor portion of the composition of the top layer 600 is selected for its coextrusion compatibility with core layer 602. A polyolefin polymer is preferred, such as polypropylene or more preferably polyethylene, even more particularly a high molecular weight polyethylene (HMPE). As used herein, HMPE is a commodity product, available from many sources, and distinguished in the industry from low density polyethylene (LDPE) and high density polyethylene (HDPE) by its approximate properties:
  • Characteristic LDPE HDPE HMPE
    Specific Gravity, 0.918 0.96 0.95
    ASTM D-792
    Tensile Modulus, 22,500 95,000 125,000
    ASTM D-638, psi
    Tensile Strength @ 1,800 4,500 3,600-3,700
    Yield, ASTM D-638, psi
    Flexural Modulus, 225,000 165,000-175,000
    ASTM D-790, psi
    Hardness, ASTM 45 66 68
    D-2240, Shore D
  • In the above table, the testing methods by which the properties are determined are given for the purpose of reproducibility.
  • Particularly where the thermoplastic elastomer and the polyolefin are respectively selected as VYRAM® and HMPE, the proportion by weight of the thermoplastic elastomer to polyolefin material in layer 600 is preferably selected to be about 3:1. It has been discovered that some polyolefin material needs to be present in layer 600 for coextrusion compatibility with central layer 602, in the instance where a major portion of the layer 602 is also a polyolefin.
  • In an alternative embodiment, the thermoplastic elastomer component of the top layer 600 may be replaced with an elastomer such as natural rubber, acryl-nitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), or ethylene propylene diene rubber (EPDM).
  • In a further alternative embodiment, layer 600 can be an acrylonitrile butadiene styrene (ABS) blend. ABS is a material in which submicroscopic particles of polybutadiene are dispersed in a phase of styrene acrylonitrile (SAN) copolymer. For layer 600, the percentage by weight of polybutadiene, which lends elastomeric properties to the material, should be chosen as relatively high.
  • The core or central layer 602 preferably is composed of a thermoplastic polymer material that is selected for its toughness, stiffness and inexpensiveness rather than its tactile or frictional properties. Preferably a major portion of it is a polyolefin such as polypropylene or polyethylene. More preferably, a major portion of the layer 602 is composed of HMPE as that material has been defined above.
  • It is preferred that the central layer 602 be a blend, and in that instance a minor portion of layer 602 is composed of a material selected for its coextrusion compatibility with top layer 600 (and bottom layer 604 described below). In the illustrated embodiment, this minor portion is a thermoplastic elastomer such as SANTOPRENE®, GEOLAST® or VYRAM®. VYRAM® Grade 101-75 is particularly preferred. For layer 602, and particularly where the polyolefin and the thermoplastic elastomer are respectively selected as HMPE and VYRAM®, the proportion by weight of polyolefin to thermoplastic elastomer is preferred to be about 3:1. More generally, the percentages of the minor portions in layers 600 and 602 (and layer 604) are selected as being the minimum necessary for good coextrusion compatiblity.
  • In an alternative embodiment, where layer 600 has been chosen as a polybutadiene-rich layer of ABS, layer 602 is chosen as a grade of ABS having less of a percentage by weight of polybutadiene in it, or none at all (effectively, styrene acrylonitrile copolymer or SAN).
  • Bottom layer 604 has a lower surface 300 which will be adjacent the vehicle foot well top surface. Typically, this surface is carpeted. The bottom layer 604 is a thermoplastic polymer material selected for its wear characteristics, as well as its sound-deadening qualities and a yieldability that allows the layer 604 to better grip “hard points” in the vehicle foot well surface as well as conform to foot well surface irregularities. Preferably, a major portion of the layer 604 is composed of a thermoplastic elastomer, such as SANTOPRENE®, GEOLAST® or, preferably, VYRAM®. VYRAM® Grade 101-75 is particularly preferred.
  • It is preferred that the bottom layer 604 be a polymer blend. In this instance, a minor portion of the bottom layer 604 is selected for its coextrusion compatibility with the core layer 602. Where core layer 602 is mostly made of a polyolefin material, it is preferred that a polyolefin be used as the minor portion of the bottom layer 604. This polyolefin can be, for example, polypropylene or polyethylene, and preferably is HMPE. The amount of the minor portion is selected to be that minimum amount that assures good coextrusion compatibility. Where the polyolefin and the thermoplastic elastomer are respectively chosen to be HMPE and VYRAM®, it has been found that the thermoplastic elastomer:polyolefin ratio by weight in the layer 604 should be about 3:1.
  • In an alternative embodiment, the thermoplastic elastomer component of layer 604 may be replaced with a rubber, such as natural rubber, NBR, SBR or EPDM.
  • In another alternative embodiment, where the central layer 602 has been selected as ABS or SAN, layer 604 can be selected as a grade of ABS which has a higher percentage by weight of polybutadiene in it than in central layer 602.
  • Bottom jacketing layer 604 conveniently can have the same composition as top jacketing layer 600, but the two jacketing layers do not have to be similar. What is important that, where the tray 100 is to be formed as a triextrusion (as is preferred), layers 600, 602 and 604 be sufficiently compatible that they can be triextruded as a single sheet.
  • It is preferred that most of the thickness of the tray 100 be made up by the core layer 602, which is used as the principal structural component of the tray 100. The core layer 602 has at least minimally acceptable tensile strength, shear strength and high flexural modulus, while at the same time being significantly less expensive than the thermoplastic elastomer-dominated jacketing layers. The jacketing layers 600 and 604 are selected to present good wear surfaces and to have a good resistance to chemical attack from substances such as road salt. Top layer 600 is selected to exhibit a relatively high coefficient of friction with respect to typical occupant footwear. The composition of bottom layer 604 is selected for its sound-deadening and yieldability qualities.
  • The total thickness of tray 100 is the sum of dimensions a, b and c. In the illustrated embodiment, jacketing layer thicknesses a and c are each about 12.5% of the total thickness, while core layer thickness b is about 75%. In one embodiment, the total thickness of the tray 100 (or, more precisely, of the blank sheet used to mold the tray 100) is approximately 0.120 inch. Of this, core layer 602 is about 0.09 inch, while jacketing layers 600 and 604 are each about 0.0150 inch. In an alternative embodiment, the layer 600 can be made to be appreciably thicker than layer 604, as top surface 606 is a wear surface for the shoes of the occupant and will see more abrasive dirt and more wear than surface 300 in typical applications. In another alternative embodiment, the thickness of layer 604 may be increased, allowing it to even better conform to the vehicle foot well surface with which it is designed to mate and to increase sound-deadening.
  • A preferred embodiment of the present invention combines the high coefficient of friction, tactile qualities, sound-deadening and yieldability obtainable with a thermoplastic elastomer with the modest cost of a polyolefin. To demonstrate the technical advantages of a triextrusion tray over monoextruded prior art structures, tests measuring tensile strength, shear strength, flexural modulus and coefficient of friction were performed on (1) a triextrusion sheet material made and used according to the invention, (2) a monoextruded sheet of 75 wt. pct. VYRAM®/25 wt. pct. HMPE, and (3) a monoextruded sheet of wt. pct. VYRAM®/75 wt. pct. HMPE. The particular tests and their results are described below.
  • The first two tests performed concern static and dynamic coefficients of friction.
  • Example 1
  • These tests determined static and kinetic coefficients of friction of a sheet of triextrusion material with respect to an object meant to emulate a typical occupant shoe outsole. This “shoe” was composed of Shore A Durometer 60 neoprene rubber, formed as a “sled” measuring 2.5 in.×2.5 in.×0.238 in. The “shoes” were drawn across an upper, textured surface of a 0.120 in. triextrusion sheet formed according to a preferred embodiment of the invention measuring 4 in.×12 in. according to the procedure set forth in ASTM D 1894-01. The triextrusion sheet had, as its top layer, a blend of 75 wt. pct. VYRAM® Grade 101-75/25 wt. pct. HMPE. The core layer was 75 wt. pct. HMPE/25 wt. pct. VYRAM® Grade 101-75. The bottom layer was a blend of 25 wt. pct. HMPE/75 wt. pct. VYRAM® Grade 101-75. The bottom and top layers each comprised about 12.5% of the sheet thickness while the middle core layer comprised about 75% of the sheet thickness. Results are tabulated as follows.
  • Static Sled Static Kinetic Sled Kinetic
    Test Load Weight Coefficient Load Weight Coefficient
    Number (g) (g) of Friction (g) (g) of Friction
    1 166 199.9 0.830 189 199.9 0.945
    2 155 199.9 0.775 166 199.9 0.830
    3 171 200.0 0.855 179 200.0 0.895
    4 145 199.9 0.725 160 199.9 0.800
    5 150 199.9 0.750 163 199.9 0.815
    Average 0.787 0.857
    Std. 0.054 0.061
    Dev.
  • Example 2
  • Five neoprene rubber “sleds” fabricated as above were drawn across a 4 in.×12 in. sheet of a single-extrusion 75 wt. pct. HMPE/25 wt. pct. VYRAM® Grade 101-75, according to ASTM D 1894-01. Results are tabulated below.
  • Static Sled Static Kinetic Sled Kinetic
    Test Load Weight Coefficient Load Weight Coefficient
    Number (g) (g) of Friction (g) (g) of Friction
    1 157 200.1 0.785 162 200.1 0.810
    2 151 200.0 0.755 148 200.0 0.740
    3 163 200.1 0.815 170 200.0 0.850
    4 146 200.1 0.730 148 200.1 0.740
    5 154 200.1 0.770 155 200.1 0.775
    Average 0.771 0.783
    Std. 0.032 0.047
    Dev.
  • The above tests show that with respect to a typical shoe sole composition, a material consisting mostly of a thermoplastic elastomer like VYRAM® exhibits a higher coefficient of friction than a material consisting mostly of a high molecular weight polyolefin.
  • Example 3
  • These tests compared the tensile strength of a sheet of triextruded material as above described with a sheet of single-extruded blend of material consisting of 75 wt. pct. VYRAM®, Grade 101-75, and 25 wt. pct. HMPE, and further with a sheet of a single-extruded blend of material of 75 wt. pct. HMPE and 25 wt. pct. VYRAM® Grade 101-75. The tested single-extruded VYRAM®-dominated sheet was approximately 0.070 in. thick, while the HMPE-dominated sheet was approximately 0.137 in. thick. The triextrusion sheet was about 0.120 in. thick. The triextrusion sheet, the single-extruded VYRAM®-dominated sheet and the single-extruded HMPE-dominated sheet were die-cut into samples having an average width of 0.250″. The test performed was according to the ASTM D 638-03 testing standard. A cross-head speed of 20 in./min. was used. The extensiometer was set at 1000% based on 1.0″ gauge length. Samples were conditioned at 40 hours at 23 Celsius and 50% relative humidity prior to testing at these conditions. Test results are tabulated below.
  • Tensile Elonga- Tensile Elonga- Tensile
    Strength tion Stress tion Modulus
    Test at Yield at Yield at Break at Break (Youngs)
    Number (psi) (%) (psi) (%) (psi)
    Tri- 1 1680 24 1530 730 30800
    Extru- 2 1710 21 1610 710 30100
    sion 3 1700 21 1620 730 32200
    4 1740 19 1660 770 32700
    5 1690 17 1630 700 24400
    Average 1700 20 1610 730 30000
    Std. Dev. 23 3 48 27 3320
    75% 1 1040 53 1400 620 15900
    Vyram/ 2 1010 45 1430 630 17100
    25% 3 1050 98 1390 640 17100
    HMPE 4 1010 62 1430 620 16700
    5 1030 88 1420 610 17100
    Average 1030 69 1410 620 16800
    Std. Dev. 18 23 18 11 522
    75% 1 919 63 1130 630 30200
    HMPE/ 2 914 61 1110 630 34100
    25% 3 925 69 1120 650 29500
    Vyram 4 910 67 1110 650 21500
    5 912 68 1140 700 24000
    Average 916 66 1120 650 27900
    Std. Dev. 6 3 13 29 5060
  • The above data demonstrate that a triextrusion material according to the invention exhibits markedly greater tensile strength than a thermoplastic elastomer-dominated single-extrusion material. Also of interest is that the three-layer laminate exhibited a higher strength at yield and stress at break than the HMPE-dominated material, while showing a comparable tensile Young's modulus.
  • Example 4
  • Tests were performed on the above three materials for shear strength according to Test Standard ASTM D732-02. In these tests, a 1.00 in. dia. punch was applied to a 2.0 inch square of material until shear was achieved. The crosshead moved at 0.05 in/min. The test samples were preconditioned for at least 40 hours at 23 Celsius and 50% relative humidity, which were the conditions under which the tests were performed. Test results are tabulated below.
  • Test Thickness Shear Force Shear
    Sample Name Number (in.) (lbf) Strength (psi)
    Tri-Extrusion 1 0.119 747 2000
    2 0.122 783 2040
    3 0.119 747 2000
    4 0.121 757 1990
    5 0.117 734 2000
    Average 754 2010
    Std. Dev. 18 19
    75% 1 0.072 423 1870
    VYRAM/ 2 0.070 416 1890
    25% HMPE 3 0.073 489 2130
    4 0.072 481 2130
    5 0.073 455 1980
    Average 453 2000
    Std. Dev. 33 126
    75% HMPE/ 1 0.135 680 1600
    25% VYRAM 2 0.137 688 1600
    3 0.134 687 1630
    4 0.136 724 1690
    5 0.137 687 1600
    Average 693 1620
    Std. Dev. 18 39
  • The above test data show that, as normalized for the different thicknesses tested, the triextrusion material is similar in shear strength to the 75% VYRAM/25% HMPE single-extrusion blend, and superior in shear strength to the 75% HMPE/25% VYRAM® single-extrusion blend.
  • Example 5
  • Tests were performed to determine the flexural properties of samples of a tri-extrusion material of the above-described formulation, a 75 wt. pct. Vyram/25 wt. pct. HMPE material, and a 75 wt. pct. HMPE/25 wt. pct. VYRAM material (in all tests. the thermoplastic elastomer used was VYRAM® Grade 101-75). The tests were performed according to the ASTM D790-03 test method, Method I, Procedure A. For the tri-extrusion the dimensions of the samples averaged 0.490″×0.0119″×5.00″, the span length was 1.904 in., and the cross-head speed was 0.051 in./min. For the 75% Vyram/25% HMPE material, the dimensions of the samples averaged 0.484″×0.072″×5.00″, the span length was 1.152 in., and the cross-head speed was 0.031 in./min. For the 75% HMPE/25% Vyram material, the dimensions of the samples averaged 0.50″×0.138″×5.00″, the span length was 2.208 in., and the cross-head speed was 0.059 in/min. In all tests, the span-to-depth ratio was 16+/−1:1, the radius of the supports was 0.197 in., and the radius of the loading nose was 0.197 in. The tests were performed at 23 Celsius and 50% relative humidity and the samples conditioned for 40 hours at this temperature and humidity before the tests were performed. Results are tabulated below.
  • Flexural Stress At
    5% Deflection Flexural Modulus
    Sample Name Test Number (psi) (tangent*) (psi)
    Triextrusion 1 294 33400
    2 317 36000
    3 304 33500
    4 318 35700
    5 305 33200
    Average 308 34400
    Std. Dev.
    75% Vyram/ 1 234 15400
    25% HMPE 2 238 16400
    3 230 14500
    4 225 14300
    5 228 14300
    Average 231 15000
    Std. Dev. 5 915
    75% HMPE/ 1 508 13000
    25% Vyram 2 505 13800
    3 496 13100
    4 497 12900
    5 518 13800
    Average 505 13300
    Std. Dev. 9 444
  • The asterisk in the table indicates that the reported values were arrived at by computer generated curve fit. These data show that the triextrusion is significantly stiffer than either monoextruded sheet. Overall, the triextrusion demonstrates superior properties in terms of tensile strength, shear strength and stiffness per unit cross-sectional area in comparison with that of any of the layers of materials from which the laminate is made, demonstrating that a triextruded tray or mat will be tougher and stiffer than one made of either monoextruded blend by itself.
  • Process
  • FIGS. 7 and 8 provide an overview of a process for making the vehicle floor trays or covers according to the invention. The vehicle floor trays or covers are custom-fabricated for discrete vehicle models. At step 700, points on the vehicle foot well for which the floor tray is to be manufactured are digitally measured and captured. Preferably this step uses a coordinate measuring machine (CMM) which records each of a large plurality of points on the surface of the vehicle foot well to which the floor tray is to be fitted. The inventor has found that a FARO® Arm has been efficacious in obtaining these data using a contact method. It has been found that laying out points in linear groups, as by marking the locations to be measured on tape prior to measurement, is efficacious in capturing enough data points to later recreate the surface of which they are a part.
  • The data thus collected are stored in a file. The points of surface data are spaced from each other as a function of the complexity of the surface on which they reside. Few points of data are needed to establish large surface planes. More points of data are used in defining curved surfaces, with the density of data points varying according to the sharpness of the curve. In FIG. 8, representative ones of these points are shown by small “x”s at 800, on a surface 802 that is reconstituted using the technique described immediately below. A typical data file will contain about a thousand points, spread over an imaged foot well surface area of about ten square feet.
  • The CMM data file is imported into a CAD program, which is used by a designer to reconstitute a vehicle foot well surface from the captured points. First, at step 701 different “lines” of these points are connected together by B-splines 804. The splines 804, which the CAD program can automatically generate, are used to estimate all of the points on the line other than the captured data points of that line. The splines 804 are separated apart from each other as a function of the topographical complexity of the portion of the surface that they cover. For large flat areas, such as sill plate 806, the splines 804 may be separated far apart, as a plane between the splines is a good estimate of the surface in that area. For complex or tightly curved areas, such as sill curve 832 or kick plate transitional area 833, the splines 804 are tightly packed together because the surface segments have to be small in order to reproduce those curved surfaces of the foot well with acceptable accuracy.
  • Once the splines 804 have been assembled, the designer lofts an area between each pair of parallel splines 804 in order to create different areal segments 808. The “lofting” process proceeds along each of the major surfaces of the part, piecewise, until that surface is entirely recreated. For example, a transmission tunnel sidewall surface 810 is recreated by lofting an area 812 between a spline 814 to an adjacent spline 816 along the same surface. The designer then lofts the next area 818 from spline 816 to spline 820. Next, an area 822 from spline 820 to spline 824 is added, and so forth down the rest of the transmission tunnel surface 810 until that entire component of the vehicle foot well surface has been created. In similar fashion, the other major surfaces are added: a combination firewall/floor area segment 826, a pedestal sidewall 828, a kick plate segment 830, a sill plate curve 832 and the sill plate 806.
  • The resultant reconstructed vehicle foot well surface 802 is used, at steps 703-707, 709, 711, 720-726 to construct a vehicle floor tray that fits the surface 802 to an enhanced degree of precision. At step 703, the designer chooses top and bottom sketch planes, which intersect the surface 802 at the top and bottom elevations of the tray to be designed. A top sketch plane intersects surface 802 at a locus (step 720) high up on the sidewalls 810, 828, 830, 832 and 834. This locus is seen in FIG. 1 as a top margin 150 of the upstanding sidewalls 130, 132, 134, 136 and the transitions between them. In the preferred embodiment, the top sketch plane is tilted and inclines upward in a forward direction. This produces a tray which is deeper near the firewall than it is near the seat, preferably producing a tray that is at least five inches deep at its deepest part. This protects the foot well carpet from the possibly muddy sides of an occupant's shoes or boots. A bottom sketch plane is defined to be coplanar with the bottom surface tray sill plate 140, spaced from the vehicle foot well sill plate 806 by a tight tolerance, such as 0.025″. This bottom sketch plane does not intersect the remainder of the structure but is instead projected (step 722) upward onto the vehicle foot well surface to create a locus that approximates the marginal outline of the floor/firewall segment 826.
  • At step 704, sidewalls are drawn in to span the top and bottom sketch planes. These prototypical sidewalls are created by (step 724) first drawing a plurality of straight lines, each drawn from a point on the upper sketch plane locus to a point on the lower sketch plane locus. Since the upper sketch plane is more extensive and has a different shape from the lower sketch plane, the lateral margins of the upper and lower sketch planes are not congruent, and the straight lines drawn from the upper sketch plane may be canted at various angles to each other. In general, these lines will slope inwardly from the top sketch plane to the bottom sketch plane. The areas in between these lines can be lofted (step 726) to create polygonal surfaces of a completed tray solid.
  • The resultant solid has a planar top surface, nearly planar bottom surface and sidewalls which make abrupt corners with them. The actual transitions between the vehicle foot well sidewall surfaces and the floor are almost always curved, to a greater or lesser extent depending on the area in question and on the vehicle model. Therefore, at step 705, curves are fitted to the reconstructed vehicle foot well surface and these curves are substituted in for the previous abrupt angular shapes. The largest of these curves occurs across the firewall 834, to conform to that sloping and typically curved surface rather than to a horizontal extension of the bottom sketch plane. Curves are also used to modify the transitions between the floor 102 and the transmission tunnel surface 132, the kick plate 136, and the seat pedestal sidewall 130.
  • The above techniques aim to approximate, as closely as possible, the shape of the upstanding sidewalls 810, 828, 830 and 834, to a zero standoff from the foot well surface. In some instances, the outer surface of the tray 100 may actually extend slightly beyond the imaged side walls of the vehicle foot well (see portions 1000-1006 in FIGS. 10-14), creating a negative standoff. This is permissible to some degree because the surface to which the tray is being shaped is carpeted and the pile may be intentionally depressed at certain points.
  • The door sill 806 and the sill curve 832 typically are hard surfaces that must comply to close manufacturer tolerances. A vehicle door is designed to mate with these surfaces. Because of this it is important to match these surfaces carefully, and preferably this is done in this process to a preselected standoff of 0.025 inch.
  • At step 704, and for certain vehicle models, certain radii of the transitional surfaces are increased, in an intentional departure from the foot well surface. This is done, for example, where the curved transition is one from a deep vertical surface to the floor, as might occur between a vertical kick plate and firewall surface segments 836, 838. See transition 1400 in FIG. 14. This is done to make sure that the preferred vacuum molding process, which uses a female tool, does not create a thin place in the molded part at the deep corners. Where the sidewall surfaces are sloped inward by more than five degrees, such radiusing is unnecessary.
  • At step 707, which can be before, during or after steps 704 and 705, the tray solid is additionally modified to take into account irregularities in the reconstructed foot well surface. For example, the vehicle carpeting might have had rolls or wrinkles in it that should not be reproduced in a tray meant to fit the vehicle. This steps also smoothes out those surface irregularities which are artifacts of the surface acquisition and reconstruction steps 700-702.
  • Once a basic shape for the vehicle floor tray has been formed, it is modified at 709 in order to create the reservoir 110 and channels 104 (See FIGS. 1-4). This modification is necessary because, as has been explained, while there is a close conformance or mating between most of the exterior or lower surfaces of the floor tray on the one hand to the upper or interior surfaces of the vehicle foot well surfaces on the other, there must be a departure from this close conformance in order to create the profile needed by the reservoir and channels. In a preferred embodiment, a predetermined file containing the outer surface of the reservoir and channel surface is integrated into the floor of the tray solid. The importation of this design into the floor of the tray solid will cause a departure from the imaged vehicle surface floor of as much as ¼inch in the areas around the reservoir periphery. This departure decreases as a function of distance from the imported pattern. The produced vehicle floor tray will nonetheless fit tightly to the vehicle foot well, because (1) the floor carpeting will be depressed to a greater extent under the reservoir than in peripheral areas (see, e.g., region 1004 in FIG. 10), and (2) the upstanding sidewalls continue to closely conform to the corresponding surfaces of the vehicle foot well.
  • At step 711, the tray solid developed at steps 703-707, 709 is “shelled”. This means that the solid is carved out to leave a thin layer that is a uniform thickness (preferably about 0.120-0.125 in.) from the outer surface.
  • The result is a tray data file 708 that is a complete representation of both the upper and lower surfaces of the floor tray, to a precision sufficient to create only a ⅛ in. departure or less from a large portion of the respective surfaces of the vehicle foot well. This data file, typically as translated into a .stl format that approximates surfaces with a large plurality of small triangles, is used at 710 to command a stereolithographic apparatus (SLA). The SLA creates a solid plastic image or model of the design by selectively curing liquid photopolymer using a laser. The SLA is used to determine fit to an actual vehicle foot well and to make any necessary adjustments.
  • As modified with experience gained from fitting the SLA, at 712 the vehicle tray data file is used to make a commercial mold for producing the vehicle floor trays or covers. Triextruded sheets or blanks 714 are placed in the mold and heated to produce the vehicle floor trays at 716.
  • Three-dimensional vehicle floor trays for many different vehicle models can be quickly and accurately manufactured using this method. The method can also be modified to produce double trays, in which a single tray is provided which covers both driver and passenger vehicle foot wells as well as the intervening transmission tunnel. The technique can be used to create other vehicle floor covers as well, such as the liners used in the cargo areas of minivans and SUVs.
  • In summary, a novel vehicle floor tray has been shown and described which fits, within tight tolerances, to the vehicle foot well for which it is created. The floor tray according to the invention includes a reservoir and channel system for retaining runoff in a way that will not slosh around in the foot well. By using a triextruded sheet blank, the tray combines the desirable coefficient of friction and yieldability characteristics of a thermoplastic elastomer, the lower cost of a polyolefin and a toughness that exceeds either material taken alone.
  • While an illustrated embodiment of the present invention has been described and illustrated in the appended drawings, the present invention is not limited thereto but only by the scope and spirit of the appended claims.

Claims (6)

We claim:
1. A process for manufacturing a vehicle floor tray, comprising the steps of:
digitally measuring the three-dimensional position of a plurality of points on a surface of a vehicle foot well for which the vehicle floor tray is to be provided;
storing said points in a memory;
using the stored points to construct an electronic model of the vehicle foot well surface;
using the electronic model of the vehicle foot well surface to construct an electronic three-dimensional image of the vehicle floor tray;
creating a vehicle tray data file from the electronic three-dimensional image of the vehicle floor tray;
using the vehicle tray data file to make a vehicle tray mold; and
manufacturing the vehicle floor tray by molding polymer material in the mold.
2. The process of claim 1, wherein said step of digitally measuring the three-dimensional position of the points on the surface of the vehicle foot well comprises using a coordinate measurement machine (CMM).
3. The process of claim 1, wherein said step of using the stored points to construct an electronic model of the vehicle foot well surface includes the substeps of:
connecting together groups of the stored points with B-splines; and
lofting between the B-splines to create areal segments of the electronic model of the vehicle foot well surface.
4. The process of claim 1, wherein said vehicle tray data file is a final vehicle tray data file, the process further including the steps of:
using the electronic model of the vehicle foot well surface to construct an electronic three-dimensional vehicle tray solid;
shelling the electronic three-dimensional vehicle tray solid to create a preliminary vehicle tray data file representative of a vehicle floor tray that is uniformly thick;
using the preliminary vehicle tray data file to command a stereolithographic apparatus to create a solid model by selectively curing liquid photopolymer using a laser;
fitting the solid model to an actual vehicle foot well; and
making adjustments to the preliminary vehicle tray data file as a result of fitting the solid model to the actual vehicle foot well, to create the final vehicle tray data file.
5. The process of claim 1, wherein the process manufactures a vehicle floor tray from a sheet of heated polymeric material by using a vacuum mold, said step of using the electronic model of the vehicle foot well surface to construct the electronic three-dimensional image of the vehicle floor tray including the substeps of:
establishing curves in the electronic three-dimensional image of the vehicle floor tray to fit corresponding curves of the electronic model of the vehicle foot well surface; and
increasing radii of selected ones of the curves in the electronic three-dimensional image of the vehicle floor tray so as to minimize the creation of thin places in the molded vehicle floor tray when the sheet of polymeric material is heated in the vacuum mold to create the vehicle floor tray.
6. The process of claim 1, wherein said electronic three-dimensional image of the three-dimensional floor tray is a final three-dimensional image of the three-dimensional floor tray, the step of using the electronic model of the vehicle foot well surface to construct an electronic three-dimensional image of the vehicle floor tray including the substeps of
creating an initial electronic three-dimensional image of the vehicle floor tray such that an outer surface of the initial electronic three-dimensional image of the vehicle floor tray closely conforms to the electronic model of the vehicle foot well surface; and
modifying the initial three-dimensional image of the vehicle floor tray to create the final three-dimensional image of the vehicle floor tray as including a reservoir.
US14/716,401 2004-10-29 2015-05-19 Designing and manufacturing vehicle floor trays Expired - Lifetime US9138917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/716,401 US9138917B1 (en) 2004-10-29 2015-05-19 Designing and manufacturing vehicle floor trays

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US10/976,441 US7316847B2 (en) 2004-10-29 2004-10-29 Vehicle floor tray
US11/463,203 US20060288578A1 (en) 2004-10-29 2006-08-08 Designing and manufacturing vehicle floor trays
US12/879,899 US8267459B2 (en) 2004-10-29 2010-09-10 Designing and manufacturing vehicle floor trays
US13/595,703 US8382186B2 (en) 2004-10-29 2012-08-27 Vehicle floor tray
US13/773,706 US8910995B2 (en) 2004-10-29 2013-02-22 Designing and manufacturing vehicle floor trays
US14/565,040 US9067511B2 (en) 2004-10-29 2014-12-09 Thermoformed vehicle floor tray with treads
US14/716,401 US9138917B1 (en) 2004-10-29 2015-05-19 Designing and manufacturing vehicle floor trays

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/565,040 Continuation US9067511B2 (en) 2004-10-29 2014-12-09 Thermoformed vehicle floor tray with treads

Publications (2)

Publication Number Publication Date
US20150251338A1 true US20150251338A1 (en) 2015-09-10
US9138917B1 US9138917B1 (en) 2015-09-22

Family

ID=36242668

Family Applications (14)

Application Number Title Priority Date Filing Date
US10/976,441 Active 2024-12-05 US7316847B2 (en) 2004-10-29 2004-10-29 Vehicle floor tray
US11/463,203 Abandoned US20060288578A1 (en) 2004-10-29 2006-08-08 Designing and manufacturing vehicle floor trays
US11/463,215 Expired - Lifetime US7401837B2 (en) 2004-10-29 2006-08-08 Vehicle foot well and floor tray system
US11/934,320 Expired - Lifetime US7686370B2 (en) 2004-10-29 2007-11-02 Vehicle foot well and floor tray system
US12/879,899 Expired - Lifetime US8267459B2 (en) 2004-10-29 2010-09-10 Designing and manufacturing vehicle floor trays
US13/404,259 Expired - Lifetime US8336944B2 (en) 2004-10-29 2012-02-24 Designing and manufacturing vehicle floor trays
US13/404,936 Expired - Lifetime US8336945B2 (en) 2004-10-29 2012-02-24 Designing and manufacturing vehicle floor trays
US13/595,703 Expired - Lifetime US8382186B2 (en) 2004-10-29 2012-08-27 Vehicle floor tray
US13/773,706 Expired - Lifetime US8910995B2 (en) 2004-10-29 2013-02-22 Designing and manufacturing vehicle floor trays
US14/136,066 Expired - Lifetime US8840168B2 (en) 2004-10-29 2013-12-20 Molded vehicle floor tray product line
US14/139,432 Expired - Lifetime US8833834B2 (en) 2004-10-29 2013-12-23 Molded vehicle floor tray and system
US14/452,637 Expired - Lifetime US8899655B1 (en) 2004-10-29 2014-08-06 Manufacturing vehicle floor trays
US14/565,040 Expired - Lifetime US9067511B2 (en) 2004-10-29 2014-12-09 Thermoformed vehicle floor tray with treads
US14/716,401 Expired - Lifetime US9138917B1 (en) 2004-10-29 2015-05-19 Designing and manufacturing vehicle floor trays

Family Applications Before (13)

Application Number Title Priority Date Filing Date
US10/976,441 Active 2024-12-05 US7316847B2 (en) 2004-10-29 2004-10-29 Vehicle floor tray
US11/463,203 Abandoned US20060288578A1 (en) 2004-10-29 2006-08-08 Designing and manufacturing vehicle floor trays
US11/463,215 Expired - Lifetime US7401837B2 (en) 2004-10-29 2006-08-08 Vehicle foot well and floor tray system
US11/934,320 Expired - Lifetime US7686370B2 (en) 2004-10-29 2007-11-02 Vehicle foot well and floor tray system
US12/879,899 Expired - Lifetime US8267459B2 (en) 2004-10-29 2010-09-10 Designing and manufacturing vehicle floor trays
US13/404,259 Expired - Lifetime US8336944B2 (en) 2004-10-29 2012-02-24 Designing and manufacturing vehicle floor trays
US13/404,936 Expired - Lifetime US8336945B2 (en) 2004-10-29 2012-02-24 Designing and manufacturing vehicle floor trays
US13/595,703 Expired - Lifetime US8382186B2 (en) 2004-10-29 2012-08-27 Vehicle floor tray
US13/773,706 Expired - Lifetime US8910995B2 (en) 2004-10-29 2013-02-22 Designing and manufacturing vehicle floor trays
US14/136,066 Expired - Lifetime US8840168B2 (en) 2004-10-29 2013-12-20 Molded vehicle floor tray product line
US14/139,432 Expired - Lifetime US8833834B2 (en) 2004-10-29 2013-12-23 Molded vehicle floor tray and system
US14/452,637 Expired - Lifetime US8899655B1 (en) 2004-10-29 2014-08-06 Manufacturing vehicle floor trays
US14/565,040 Expired - Lifetime US9067511B2 (en) 2004-10-29 2014-12-09 Thermoformed vehicle floor tray with treads

Country Status (2)

Country Link
US (14) US7316847B2 (en)
CA (8) CA2504991A1 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444748B2 (en) * 2004-10-29 2008-11-04 Macneil David F Close-conforming vehicle floor tray with reservoir
US7316847B2 (en) 2004-10-29 2008-01-08 Macneil David F Vehicle floor tray
FR2885840B1 (en) * 2005-05-20 2007-08-10 Solvay METHOD AND MOLD FOR MOLDING STRUCTURED PLATES
US20070268457A1 (en) * 2006-05-19 2007-11-22 Volkswagen Aktiengesellschaft Motor vehicle having a display region or illuminated region
CA2592493A1 (en) * 2007-06-07 2008-12-07 Donald Bowman Snowmobile slide
US8343613B2 (en) * 2008-02-12 2013-01-01 Exxonmobil Chemical Patents Inc. Anti-skid sheet for thermoformed articles
US20090243322A1 (en) * 2008-04-01 2009-10-01 David F. MacNeil Vehicle cargo space liner with snap-connected extension
US8163369B2 (en) * 2008-09-02 2012-04-24 Omix-Ada, Inc. Vehicle floor tray
US20130171419A1 (en) * 2011-11-04 2013-07-04 Winfield Consumer Products, Inc. Flexible custom floor mats
US20130267141A1 (en) * 2012-04-10 2013-10-10 Ming-Shun Yang Foot mat of automobile
JP6102563B2 (en) * 2013-06-24 2017-03-29 スズキ株式会社 Vehicle lower structure
TWI527717B (en) * 2013-10-24 2016-04-01 聖州企業股份有限公司 Automotive floor mat structure
US10430776B2 (en) 2014-01-09 2019-10-01 Datalogic Usa, Inc. System and method for exception handling in self-checkout and automated data capture systems
US9239943B2 (en) 2014-05-29 2016-01-19 Datalogic ADC, Inc. Object recognition for exception handling in automatic machine-readable symbol reader systems
US9396404B2 (en) 2014-08-04 2016-07-19 Datalogic ADC, Inc. Robust industrial optical character recognition
USD779833S1 (en) 2014-11-04 2017-02-28 Polyone Designed Structures And Solutions Llc Plastic sheet with a surface pattern
USD802508S1 (en) * 2014-11-04 2017-11-14 Spartech Llc Vehicle floor mat with applied surface pattern
USD775472S1 (en) 2014-11-04 2017-01-03 Polyone Designed Structures And Solutions Llc Plastic sheet with a surface pattern
USD809445S1 (en) * 2014-11-04 2018-02-06 Spartech Llc Vehicle floor mat with applied surface pattern
FR3029138B1 (en) * 2014-12-02 2017-01-13 Michelin & Cie ELASTOMER LAMINATE COMPRISING 3 LAYERS
US9994140B2 (en) * 2015-04-03 2018-06-12 Ford Global Technologies, Llc Floor mat with integral heel blocker
US9798948B2 (en) 2015-07-31 2017-10-24 Datalogic IP Tech, S.r.l. Optical character recognition localization tool
US9718417B2 (en) 2015-08-28 2017-08-01 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle floor
US10807509B2 (en) * 2015-12-28 2020-10-20 Thermoflex Corporation Vehicle floor mat with supports for irregular vehicle floor
DE102016125936A1 (en) * 2016-01-05 2017-07-06 International Automotive Components Group Gmbh Extruded pin construction for floor mats for automobiles
USD804386S1 (en) * 2016-05-04 2017-12-05 Zhen TAN Floor mats for automobile
US10046686B1 (en) 2016-05-06 2018-08-14 Joseph Lazzara Automobile floor mat
USD799390S1 (en) 2016-05-06 2017-10-10 Joseph Lazzara Automobile floor mat
US20170361749A1 (en) 2016-06-16 2017-12-21 Martin J. Beckenbach Method for displaying scenery on a floor mat or floor liner
USD801248S1 (en) * 2016-06-17 2017-10-31 Hang Zhou Golden Sun Auto Parts Co., Ltd. Vehicle floor mat
CN107539186B (en) * 2016-06-23 2024-07-02 林超 Plastic uptake owner drives car callus on sole with damping retaining
US9945643B2 (en) * 2016-06-29 2018-04-17 Keith Brown Ballistic resistant vehicle tray
US20180065728A1 (en) * 2016-07-08 2018-03-08 Creative Solutions, Inc. Protective covers for use with aircraft cargo holds
USD804385S1 (en) 2016-10-03 2017-12-05 Macneil Ip Llc Set of vehicle floor mats
US10055626B2 (en) 2016-12-06 2018-08-21 Datalogic Usa, Inc. Data reading system and method with user feedback for improved exception handling and item modeling
USD849635S1 (en) * 2018-03-21 2019-05-28 Macneil Ip Llc Set of vehicle floor mats
USD873754S1 (en) 2018-09-11 2020-01-28 Husky Liners, Inc. Vehicle floor liner
US10583764B1 (en) * 2018-10-16 2020-03-10 Fca Us Llc Vehicle having floor mat assembly
USD877675S1 (en) 2019-01-14 2020-03-10 Higher Auto Accessories Co., Ltd. Automobile mat set
US11386636B2 (en) 2019-04-04 2022-07-12 Datalogic Usa, Inc. Image preprocessing for optical character recognition
USD922287S1 (en) * 2019-08-13 2021-06-15 Frogum Miroslaw Frontczak I Wspólnicy Spólka Jawna Car mat set
USD927382S1 (en) * 2020-02-12 2021-08-10 Formosa Saint Jose Corp. Vehicle mat
USD1014650S1 (en) 2020-04-02 2024-02-13 Traxxas, L.P. Model vehicle roof skid
USD926653S1 (en) * 2020-05-25 2021-08-03 Formosa Saint Jose Corp. Vehicle mat
USD943481S1 (en) * 2020-11-03 2022-02-15 Formosa Saint Jose Corp. Vehicle mat
USD943480S1 (en) * 2020-11-03 2022-02-15 Formosa Saint Jose Corp. Vehicle mat
USD1033104S1 (en) * 2021-05-06 2024-07-02 Aubrey Michael Gray Car seat tray
USD978044S1 (en) * 2021-06-18 2023-02-14 Formosa Saint Jose Corp. Vehicle mat
US11518313B1 (en) * 2021-06-28 2022-12-06 Aubrey Michael Gray Carseat tray devices and methods
USD983717S1 (en) 2021-07-02 2023-04-18 Macneil Ip Llc Scraper panels for golf cart mat
USD1031325S1 (en) 2021-07-22 2024-06-18 Macneil Ip Llc Child seat protector
USD983718S1 (en) * 2021-07-28 2023-04-18 American Honda Motor Co., Inc. Floor mat for automobile
US11642996B2 (en) 2021-10-07 2023-05-09 Tarboy LLC Vehicle floor covering system
USD1017722S1 (en) * 2021-11-16 2024-03-12 Traxxas, L.P. Model vehicle skid pad
USD1014652S1 (en) 2021-11-16 2024-02-13 Traxxas, L.P. Model vehicle skid pad
USD1020927S1 (en) 2022-03-04 2024-04-02 Traxxas, L.P. Model vehicle lighted roof skid assembly
USD1037978S1 (en) 2022-10-04 2024-08-06 Macneil Ip Llc Truck bed liner

Family Cites Families (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188342A (en) * 1936-07-29 1940-01-30 Ohio Rubber Co Manufacture of vehicle floor mats
US2709105A (en) 1952-08-23 1955-05-24 Ford Motor Co Motor vehicle floor mat
US3087752A (en) 1961-08-15 1963-04-30 Eagle Picher Co Mat and tray combination
DE1863477U (en) 1962-08-10 1962-12-06 Alfred Krapf FLOORING FOR MOTOR VEHICLES.
US3149875A (en) 1962-10-30 1964-09-22 Stanley S Stata Floor gratings for motor vehicles
US3288187A (en) * 1965-03-10 1966-11-29 Sherman M Wheaton Car floor tray
US3391959A (en) 1966-05-04 1968-07-09 Stanley S. Stata Floor mat and locating frame combination for motor vehicles
US3390912A (en) * 1966-05-06 1968-07-02 Stanley S. Stata Floor mat and locating frame combination for motor vehicles
US3401975A (en) * 1966-06-28 1968-09-17 Martin H. Oger Floor covering for automobiles
US3387315A (en) 1966-09-15 1968-06-11 Stanley S. Stata Shoe scraper floor gratings for automobile floors
US3424265A (en) 1967-04-21 1969-01-28 Stanley S Stata Removable and replaceable combination pan and floor grate for motor vehicles
US3488081A (en) 1967-05-18 1970-01-06 David L Nolen Floor mat
US3450429A (en) * 1967-06-02 1969-06-17 Stanley S Stata Recessed removable and replaceable combination pan and floor grate for motor vehicles
US3557654A (en) 1968-06-19 1971-01-26 Atlas Bolt And Screw Co The Plastic headed fastener
US3605166A (en) 1969-02-20 1971-09-20 John W Chen Floor mat construction
US4101702A (en) * 1977-10-18 1978-07-18 Monsanto Company Composite sheet member having a plurality of coextruded laminar layers
US4280729A (en) * 1978-05-11 1981-07-28 Janusz Morawski Floor mat
CA1101016A (en) 1978-05-11 1981-05-12 Janusz Morawski Floor mat
US4211447A (en) 1978-09-07 1980-07-08 Divincenzo Joseph Car floor tray
USD278525S (en) 1980-10-27 1985-04-23 Janusz Morawski Floor mat for a vehicle
US4406492A (en) * 1981-11-20 1983-09-27 Cackowski Joseph M Floor mat
US4382986A (en) 1982-02-09 1983-05-10 The Akro Corporation Automobile floor mat with two base portions of different elastomeric materials
US4420180A (en) 1982-02-11 1983-12-13 Creations 2000, Inc. Automobile floor mat with moisture collecting feature
JPS59101417A (en) 1982-12-02 1984-06-12 Lion Corp Composition for oral cavity
JPS6076855U (en) 1983-11-01 1985-05-29 大阪ヒユーズ株式会社 High voltage cut-out fuse
US4693507A (en) 1984-05-08 1987-09-15 Penda Corporation Truck cargo bed liner with anti-slip surface
US4579764A (en) 1984-06-27 1986-04-01 Collins & Aikman Corporation Molded carpet assembly with sound deadening foam backing
JPS6183381A (en) 1984-09-25 1986-04-26 Bando Chem Ind Ltd Flooring material
USD288799S (en) 1984-10-12 1987-03-17 Canper Industrial Products Ltd. Car mat
DE8434890U1 (en) 1984-11-28 1985-04-11 Curt Würstl Vermögensverwaltungs-Gesellschaft mbh & Co KG, 8670 Hof FLOOR MAT
CA1198466A (en) 1985-01-22 1985-12-24 Paul Laurent Car mat
US4721641A (en) * 1985-05-03 1988-01-26 Bob Bailey Auto accessory floor mat
US4828898A (en) * 1985-05-03 1989-05-09 Bob Bailey Auto accessory floor mat
EP0258162A3 (en) 1986-08-20 1989-07-12 Societe De Gestion Pamafret Ltee Car floor mat
CA1292028C (en) 1987-02-23 1991-11-12 Mark Altus Floor mat with integral retainer means
IT212380Z2 (en) * 1987-10-26 1989-07-04 Advanced Data Processing MACHINE FOR THE DETECTION AND MATHEMATIZATION OF THE SURFACE OF THREE-DIMENSIONAL MODELS I PARTICULARLY PART FOR THE CONSTRUCTION OF MOLDS WITH NUMERICALLY CONTROLLED TOOL MACHINES
JPH01172040A (en) 1987-12-26 1989-07-06 Kinugawa Rubber Ind Co Ltd Structure of floor mat
US4921742A (en) * 1988-05-27 1990-05-01 The 2500 Corporation Floor mat retention system for automotive vehicles
USD313789S (en) 1988-07-11 1991-01-15 Kraco Enterprises, Inc. Floor mat
IT1228504B (en) 1989-01-23 1991-06-19 Margherita Sagona CAR MAT FOR DRAINAGE VEHICLES AND WATER ABSORPTION.
JP2844472B2 (en) 1989-07-14 1999-01-06 株式会社日立メディコ Organ region extraction method
CA1332622C (en) * 1989-08-22 1994-10-18 Winston Livingston Gordon Heatable car foot mats
US5082742A (en) * 1990-09-24 1992-01-21 Monsanto Company Composite of a styrenic polymer adhered to a polyolefin
USD342932S (en) 1991-08-26 1994-01-04 Promotions Atlantiques Inc. Automobile floor mat
CA2054042C (en) * 1991-10-23 1999-01-26 Mario Primeau Reversible automobile floor mat
US5627949A (en) * 1991-12-19 1997-05-06 Letcher, Jr.; John S. System of relational entities for object-oriented computer-aided geometric design
US5208995A (en) * 1992-03-27 1993-05-11 Mckendrick Blair T Fixture gauge and method of manufacturing same
JP2682368B2 (en) * 1993-02-04 1997-11-26 池田物産株式会社 Vehicle floor carpet manufacturing method
US6007319A (en) * 1993-11-30 1999-12-28 Continuous Molding, Inc. Continuous forming of complex molded shapes
USD358571S (en) 1994-01-12 1995-05-23 Kraco Enterprises, Inc. Vehicle front floor mat
US5474829A (en) * 1994-01-24 1995-12-12 Jps Automotive Products Corp. Variable density motor vehicles carpet
USD372011S (en) 1994-06-01 1996-07-23 Tyler Robert D Vehicle floor mat
WO1995034443A1 (en) 1994-06-13 1995-12-21 Lucien Vidal Car mat
JPH0885377A (en) 1994-09-20 1996-04-02 Masaaki Muratsubaki Mat for automobile
USD377780S (en) 1995-04-27 1997-02-04 Macneil David F Vehicle cargo space liner
JP3227342B2 (en) 1995-06-09 2001-11-12 株式会社クボタ Cabin floor structure
US5988862A (en) * 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
US5848769A (en) * 1996-08-26 1998-12-15 Minnesota Mining & Manufacturing Company Drag reduction article
WO1998019880A1 (en) 1996-11-04 1998-05-14 Bob Bailey Motor vehicle floor mat with exchangeable textile faced insert
US5776583A (en) * 1996-11-18 1998-07-07 Peyton; Kirby K. Floor mat system
US5725926A (en) 1997-01-16 1998-03-10 Wang; Ming-Ling Car floor mat
US5830560A (en) 1997-02-19 1998-11-03 Koa; Jiann Y. Adjustable accessory floor mat system for vehicles
USD393238S (en) 1997-03-07 1998-04-07 Kraco Enterprises, Inc. Vehicle floor mat
US5891546A (en) 1997-03-14 1999-04-06 Sherman; Raymond O. Auxiliary molded floor mats
USD394037S (en) 1997-05-28 1998-05-05 Atlantech Inc. Car mat
US6022503A (en) 1997-09-08 2000-02-08 Lear Corporation Method of making floor mats
US6058618A (en) * 1997-09-09 2000-05-09 Giddings & Lewis, Inc. Coordinate measuring machine
JP3405920B2 (en) 1998-03-24 2003-05-12 株式会社タカハシワークス Vehicle floor mats
US6155629A (en) 1998-05-04 2000-12-05 Nifty Products, Inc. Molded mats with releasable floor attachment system
FR2780356B1 (en) 1998-06-30 2000-07-28 Textiles Plastiques Chomarat FLOOR COVERING FOR AUTOMOBILES IN PARTICULAR AND METHOD FOR OBTAINING IT
USD408342S (en) 1998-07-06 1999-04-20 Formosa Saint Jose Corp. Vehicle floor mat
TW363545U (en) * 1998-07-29 1999-07-01 Formosa Saint Jose Corp Floor mat for automobile
US6431629B1 (en) * 1998-09-01 2002-08-13 Penda Corporation Bedliner with anti-slip under layer
US6221298B1 (en) * 1998-11-17 2001-04-24 International Specialty Products, Llc Method and apparatus for manufacturing molded products
USD422256S (en) 1999-03-19 2000-04-04 Packy Poda Inc. Floor mat for vehicle
USD420965S (en) 1999-05-10 2000-02-22 Rally Manufacturing, Inc. Floor mat
DE19928720C2 (en) 1999-06-23 2001-07-12 Daimler Chrysler Ag Lining for a footwell in a motor vehicle
US20020045029A1 (en) 1999-07-15 2002-04-18 Ming-Shun Yung Mat used in cars
US6804568B1 (en) * 1999-07-15 2004-10-12 Kabushiki Kaisha Toshiba 3-D CAD/CAM data transfer method, 3-D CAD apparatus, 3-D CAM apparatus, 3-D CAD/CAM apparatus, NC process apparatus, and storage medium
US6953545B1 (en) 1999-09-30 2005-10-11 Winfield Consumer Products, Inc. Method for producing contoured vehicle floor mats having integrally formed nibs
USD425005S (en) 1999-10-08 2000-05-16 Saleem Rizvi Vehicle floor mat
USD429204S (en) 1999-10-21 2000-08-08 Michael Lu Floor mat for vehicles
USD432478S (en) 2000-05-10 2000-10-24 Michael Lu Floor mat for vehicles
US6793872B1 (en) * 2000-06-16 2004-09-21 Winfield Consumer Products, Inc. Method for making cargo liners and mats with channel edge
US6534146B1 (en) * 2000-08-04 2003-03-18 James W. Mentz, Jr. Dual purpose floor mat
US6794013B1 (en) 2000-10-30 2004-09-21 Rally Manufacturing, Inc. Heavy duty vehicle floor mat
USD442530S1 (en) 2000-11-30 2001-05-22 Packy Poda, Inc. Vehicle carpet pad
US20040048036A1 (en) * 2001-05-24 2004-03-11 Japan Vilene Company, Ltd. Floor mat for automobile
JP4704608B2 (en) 2001-05-31 2011-06-15 日本バイリーン株式会社 floor mat
USD457845S1 (en) 2001-08-08 2002-05-28 Kraco Enterprises, Inc. Vehicle floor mat
GB0120277D0 (en) * 2001-08-18 2001-10-17 Snap On Equipment Ltd Three-dimensional mapping systems for automotive vehicles and other articles
USD454323S1 (en) 2001-09-25 2002-03-12 Packy Poda, Inc. Floor mat for vehicles
USD454324S1 (en) 2001-09-25 2002-03-12 Packy Poda, Inc. Floor mat for vehicles
US6736442B2 (en) 2001-11-30 2004-05-18 Collins & Aikman Products & Co. Floor coverings for vehicles having integrated air and lighting distribution
US20030143358A1 (en) 2002-01-30 2003-07-31 Marc Needles Vehicle floor mats
US6677027B1 (en) 2002-07-09 2004-01-13 Packy Poda Inc. Vehicle mat
US6933036B2 (en) 2002-07-11 2005-08-23 Textron Inc. Non-skid floor mat design
US6578896B1 (en) 2002-09-05 2003-06-17 General Motors Corporation Mat for a motor vehicle cargo compartment
USD471850S1 (en) 2002-09-13 2003-03-18 Kraco Enterprises, Inc. Vehicle floor mat
JP3996485B2 (en) 2002-10-01 2007-10-24 日立建機株式会社 floor mat
USD499057S1 (en) 2002-10-03 2004-11-30 Les Promotions Atlantiques Inc. Floor mat
US6817649B1 (en) * 2003-03-19 2004-11-16 Lund International, Inc. One piece molded floor mat for front floor areas of vehicle
US20040224130A1 (en) 2003-04-09 2004-11-11 Melucci Thomas A. Customizable universal elastomeric mat
USD489306S1 (en) 2003-08-27 2004-05-04 Kraco Enterprises, Inc. Vehicle floor mat
USD491122S1 (en) 2003-12-02 2004-06-08 Kraco Enterprises, Inc. Vehicle floor mat
US20070018350A1 (en) * 2004-03-08 2007-01-25 Anthony Brant Method of producing a part
US7316847B2 (en) 2004-10-29 2008-01-08 Macneil David F Vehicle floor tray
US7444748B2 (en) 2004-10-29 2008-11-04 Macneil David F Close-conforming vehicle floor tray with reservoir
US20070110950A1 (en) 2005-11-14 2007-05-17 Formosa Saint Jose Corp. One piece floor mat for use as vehicle floor mat, doormat and sports mat
USD525576S1 (en) * 2006-01-17 2006-07-25 Packy Poda Inc. Car mat

Also Published As

Publication number Publication date
US8267459B2 (en) 2012-09-18
US20130161863A1 (en) 2013-06-27
CA2672095A1 (en) 2006-04-29
US8336945B2 (en) 2012-12-25
US20120319426A1 (en) 2012-12-20
US9138917B1 (en) 2015-09-22
US20140343710A1 (en) 2014-11-20
CA2504991A1 (en) 2006-04-29
CA2672116A1 (en) 2006-04-29
US20080061580A1 (en) 2008-03-13
CA2672118A1 (en) 2006-04-29
US8382186B2 (en) 2013-02-26
US20120153662A1 (en) 2012-06-21
CA2672097C (en) 2014-06-03
US8910995B2 (en) 2014-12-16
CA2672095C (en) 2012-08-21
CA2672118C (en) 2013-01-08
CA2672423C (en) 2012-06-19
US8899655B1 (en) 2014-12-02
CA2672423A1 (en) 2006-04-29
US9067511B2 (en) 2015-06-30
US20060091694A1 (en) 2006-05-04
US8833834B2 (en) 2014-09-16
CA2714812A1 (en) 2006-04-29
US20140167443A1 (en) 2014-06-19
US20120153663A1 (en) 2012-06-21
US20060273613A1 (en) 2006-12-07
CA2524795A1 (en) 2006-04-29
US8840168B2 (en) 2014-09-23
US7401837B2 (en) 2008-07-22
US8336944B2 (en) 2012-12-25
US20060288578A1 (en) 2006-12-28
US20150084365A1 (en) 2015-03-26
US7316847B2 (en) 2008-01-08
US7686370B2 (en) 2010-03-30
CA2672116C (en) 2011-01-04
CA2524795C (en) 2009-10-27
US20140103681A1 (en) 2014-04-17
CA2672097A1 (en) 2006-04-29
US20110009994A1 (en) 2011-01-13
CA2714812C (en) 2012-06-12

Similar Documents

Publication Publication Date Title
US9138917B1 (en) Designing and manufacturing vehicle floor trays
US7686371B2 (en) Thermoformed vehicle floor tray with tread-containing reservoir
AU2005229634B2 (en) Vehicle floor tray
GB2432552A (en) Vehicle floor tray
GB2432522A (en) Vehicle floor tray

Legal Events

Date Code Title Description
AS Assignment

Owner name: MACNEIL IP LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MACNEIL, DAVID F.;REEL/FRAME:035672/0634

Effective date: 20130215

Owner name: MACNEIL IP LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARGO, SCOTT A.;REEL/FRAME:035672/0756

Effective date: 20130219

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

IPR Aia trial proceeding filed before the patent and appeal board: inter partes review

Free format text: TRIAL NO: IPR2023-00173

Opponent name: YITA LLC

Effective date: 20221118

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8