[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20150250410A1 - Adjustable lancet device and method - Google Patents

Adjustable lancet device and method Download PDF

Info

Publication number
US20150250410A1
US20150250410A1 US14/720,228 US201514720228A US2015250410A1 US 20150250410 A1 US20150250410 A1 US 20150250410A1 US 201514720228 A US201514720228 A US 201514720228A US 2015250410 A1 US2015250410 A1 US 2015250410A1
Authority
US
United States
Prior art keywords
lancet
holding member
spring
lancet device
trigger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/720,228
Inventor
Steven Schraga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stat Medical Devices Inc
Original Assignee
Stat Medical Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37734798&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150250410(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Stat Medical Devices Inc filed Critical Stat Medical Devices Inc
Priority to US14/720,228 priority Critical patent/US20150250410A1/en
Publication of US20150250410A1 publication Critical patent/US20150250410A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • A61B17/32093Incision instruments for skin incisions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood
    • A61B5/1405Devices for taking blood samples
    • A61B5/1411Devices for taking blood samples by percutaneous method, e.g. by lancet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150175Adjustment of penetration depth
    • A61B5/150183Depth adjustment mechanism using end caps mounted at the distal end of the sampling device, i.e. the end-caps are adjustably positioned relative to the piercing device housing for example by rotating or screwing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150259Improved gripping, e.g. with high friction pattern or projections on the housing surface or an ergonometric shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/15029Manufacture or production processes or steps for blood sampling devices for driving devices, i.e. means for driving the piercing element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150801Means for facilitating use, e.g. by people with impaired vision; means for indicating when used correctly or incorrectly; means for alarming
    • A61B5/150824Means for facilitating use, e.g. by people with impaired vision; means for indicating when used correctly or incorrectly; means for alarming by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15115Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
    • A61B5/15117Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15126Means for controlling the lancing movement, e.g. 2D- or 3D-shaped elements, tooth-shaped elements or sliding guides
    • A61B5/1513Means for controlling the lancing movement, e.g. 2D- or 3D-shaped elements, tooth-shaped elements or sliding guides comprising linear sliding guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/1519Constructional features of reusable driving devices comprising driving means, e.g. a spring, for propelling the piercing unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15186Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
    • A61B5/15188Constructional features of reusable driving devices
    • A61B5/15192Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing
    • A61B5/15194Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing fully automatically retracted, i.e. the retraction does not require a deliberate action by the user, e.g. by terminating the contact with the patient's skin

Definitions

  • the invention relates to a lancet device which is easier, more economical and which is more efficient to make.
  • the invention also relates to a lancet device preferably having an adjusting capability, and a method of using a lancet device.
  • the invention relates to a lancet device which utilizes an adjustable depth penetration. Lancet devices are used to penetrate and puncture the skin in order to allow the taking of a blood sample for testing. The present device allows the user to control the depth of this penetration by a simple adjustment mechanism.
  • Lancet devices are commonly used to prick the skin of the user so that one or more drops of blood may be extracted for testing.
  • Some users such as diabetics, for example, may have to test their blood sugar levels several times a day. This may be accomplished by the user using a simple needle. However, this procedure is often problematic for the user since the needle may be difficult to handle. Moreover, controlling the depth of penetration cannot be reliably accomplished without the use of a mechanical device. Additionally, many users simply cannot perform the procedure owing to either a fear of needles or because they lack a steady hand. As a result, lancet devices have been developed which allow the user to more easily and reliably perform this procedure.
  • An improved device would allow the user to more easily adjust the depth of penetration and would overcome some of the disadvantages described above.
  • the skin thickness can vary slightly from user to user and finger to finger, a need exists for efficiently adapting the depth of penetration.
  • an index finger may be more calloused than a middle finger, and the more calloused finger will typically have thicker skin.
  • U.S. Pat. No. 4,469,110 to SLAMA discloses a mechanism which adjusts the penetration depth by rotating a threaded sleeve relative to a body.
  • the SLAMA device is characterized as a ⁇ single bottom ⁇ device which employs a threaded design which can be expensive to manufacture.
  • such a device may require the user to rotate the threaded sleeve up to 360 degrees and more in order to attain the proper depth setting.
  • such a threaded resign is prone to inadvertent setting changes since there is nothing but frictional engagement between the mating threads to maintain the adjustment setting.
  • the lancet device has a body portion which encloses a lancet and a lancet firing mechanism.
  • the lancet typically has a needle extending therefrom and is caused to move towards the tip of the device by a trigger or firing mechanism.
  • the lancet device forces the needle, by virtue of the needle being fixed thereto, out of the device by some distance or depth so that the needle can penetrate the skin of the user.
  • the function of this firing mechanism and the lancet body design is disclosed in each of U.S. Pat. Nos. 5,797,942 and 5,908,434. These patents are incorporated by reference herein in their entirety and are therefore only briefly discussed herein.
  • U.S. Pat. No. 6,156,051 discloses a lancet device which utilizes a lancet firing mechanism, a depth adjustment mechanism, and a trigger setting mechanism. This patent is incorporated by reference herein in its entirety.
  • a lancet device which can accurately and precisely control the depth of penetration of the needle relative to the surface of the user's skin while also being easy to use. It is also desirable for the user to be able to use and adjust the depth penetrating setting with just one hand and/or with less effort that currently required with existing lancet devices.
  • a lancet device that includes a body.
  • a trigger is mounted to the body.
  • a front cover includes a skin engaging end that includes a lancet opening through which a lancet needle extends.
  • a holding member is movably mounted within the body and comprises a front end and a rear end. The front end is configured to receive a lancet.
  • a movable stop surface moves with the holding member. The front cover can move axially to adjust the depth of penetration of the lancet needle.
  • a fixed stop surface is arranged within the body. The movable stop surface preferably contacts the fixed stop surface at every depth setting.
  • the lancet device may further comprise a back cap configured to move between a retracted position and an original position.
  • the back cap may be configured to move the holding member to a retracted position.
  • the back cap may be coupled to a surface that engages the rear end of the holding member.
  • the back cap may include a surface that engages the rear end of the holding member.
  • the back cap may comprise an opening that receives a rear end of the holding member.
  • the back cap may include a surface that engages projections disposed on the rear end of the holding member.
  • the lancet device may further comprise a spring for biasing the back cap towards an original position.
  • the lancet device may further comprise a first spring for biasing the holding member towards an extended position and a second spring for biasing the holding member in an opposite direction.
  • the first and second springs may be arranged within an axial opening of the body.
  • the first spring may contact one side of a projection extending inwardly from the body and the second spring may contact another side of the projection.
  • the projection may have portions that extend into a recess or indentation formed in the holding member.
  • the lancet device may further comprise an end plug mounted to the rear end of the holding member.
  • the first spring may be disposed between a projection wall and an inner wall surface arranged in the area of the front end of the holding member and the second spring may be disposed between a projection wall and the end plug.
  • the trigger may be movably mounted to the body.
  • the front cover may be removably mounted to the body.
  • the holding member may be integrally formed with the stop surface.
  • the front end of the holding member may comprise an opening that is configured to removably receive the lancet.
  • the lancet device may further comprise a deflecting member configured to be deflected by the trigger.
  • the deflecting member may be coupled to the holding member.
  • the deflecting member may comprise a first stop surface or end that contacts a first surface of a holding surface of the body.
  • the front cover may comprise indicia.
  • the front cover may include external protrusions and/or a textured gripping surface.
  • the front cover may include internal threads while an outer circumferential surface of the front cover includes the indicia.
  • An intermediate section may be disposed between the front cover and the body.
  • the intermediate section may have an opening which is large enough to allow the holding member to move within it.
  • the opening may comprise a center axis that is generally the same as the axis running through the holding member.
  • the front cover may rotate about an axis that is generally substantially the same as an axis running through at least one of the lancet opening and the holding member.
  • the fixed stop surface may be disposed between the trigger and a front cover.
  • the body may comprise a two piece body.
  • the lancet device may further include a mechanism for maintaining a depth set position of the front cover.
  • the fixed stop surface may be disposed between the movable stop surface and an inside annular surface of the front cover.
  • the front cover may be removably mounted to the two piece body.
  • the lancet device may further comprise a back cap movably mounted to the two piece body.
  • the body may comprise an ergonomic shape which is easy to grip.
  • the body may comprise indicia.
  • the invention also provides a method of puncturing a surface of skin using the lancet device described above, wherein the method comprises adjusting a set depth of penetration of the needle by moving the front cover to a desired set position, disposing the skin engaging end of the lancet device against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the puncture allows a blood sample to be taken.
  • the invention also provides a method of using the lancet device described above, wherein the method comprises at least partially rotating the front cover to a desired set position, moving the holding member to a retracted position, maintaining the holding member in the retracted position until the trigger is triggered, disposing the skin engaging end of the lancet device against a user's skin, and triggering the trigger to cause movement of the holding member.
  • the invention also provides a lancet device, that preferably includes a body, a trigger, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle extends.
  • a holding member may be movably mounted within the body and comprising a front end a rear end. The front end is configured to receive a lancet.
  • a stop surface may be coupled to the holding member.
  • the front cover comprises indicia.
  • a fixed stop surface is preferably arranged to contacted by the movable stop surface.
  • the front cover is preferably configured to rotate at least partially.
  • the invention also provides a lancet device preferably comprising a body, a trigger, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle extends.
  • a holding member may be movably mounted within the body and comprising a front end a rear end. The front end is configured to receive a lancet.
  • a back cap may be configured to move the holding member to a retracted position.
  • a stop surface may be coupled to the holding member.
  • the front cover preferably comprises indicia.
  • a fixed stop surface may be coupled to the body and can be contacted by the stop surface.
  • the front cover may be configured to rotate at least partially on an axis that is parallel to an axis of the holding member.
  • the invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a trigger, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a spring disposed between the front and rear ends of the holding member, the front end being configured to receive a lancet having the lancet needle, a first stop surface that moves with the holding member, and an intermediate member at least one of axially adjustably connected to the body and threadably connected to the body.
  • the front cover may be movably and removably connected to the intermediate member.
  • the intermediate member may be non-removably connected to the body. Movement of the intermediate member may adjust a depth of penetration of the lancet needle.
  • the front cover may be non-rotatably mounted to the intermediate member.
  • the front cover may be devoid of moving parts.
  • the front cover may comprise a one-piece plastic or synthetic resin member. Movement of the intermediate member may change an overall length of the lancet device. Movement of the intermediate member may change an overall length of the lancet device and the front cover may be at least one of devoid of moving parts and a one-piece plastic or synthetic resin member.
  • the lancet device may be structured and arranged to allow for replacement of the lancet and for multiple use. The lancet may be removably connected to the front end of the holding member.
  • the lancet device may further comprise an arrangement for moving the holding member to a retracted or trigger-set position.
  • the spring may bias the holding member towards the extended position, and the lancet may further comprise another spring for biasing the holding member in an opposite direction.
  • the spring and the other spring may be arranged to surround different portions of the holding member.
  • the spring may have one end that is coupled the holding member and another end coupled to a portion of the body.
  • the holding member may comprise a generally cylindrical cross-section.
  • the holding member may comprise a generally polygonal cross-section.
  • the lancet device may further comprise a locking member mounted to the holding member, wherein the locking member is engagable with the trigger.
  • the lancet may further comprise a deflecting member coupled to the holding member, wherein the deflecting member is engagable with the trigger.
  • the trigger may be movably mounted to the body and further comprising a second stop surface that is contacted by the first stop surface when the lancet moves to an extended position.
  • the front cover may be removably and non-threadably mounted to the intermediate member.
  • the lancet device may further comprise a mechanism for at least temporarily maintaining a depth setting position of the intermediate member.
  • the holding member may comprise an integrally formed deflecting member that engages a surface of the body.
  • the front end of the holding member may comprise an opening that is configured to removably receive the lancet.
  • the lancet device may further comprise a deflecting member configured to be deflected by the trigger.
  • the deflecting member may be coupled to the holding member.
  • the deflecting member may comprise an engaging surface that contacts a surface of the body.
  • the deflecting member may be integrally formed with the holding member.
  • the lancet device may further comprise indicia arranged on at least one of the intermediate member and the body.
  • the indicia may be arranged on an outer circumferential surface of the body.
  • the indicia may be arranged on an outer circumferential surface of the intermediate member.
  • the front cover may rotate about an axis that runs through the lancet opening and the holding member without changing an overall length of the lancet device.
  • the spring may be disposed between the trigger and a back cap.
  • the body may comprise a two-piece body.
  • the lancet device may further comprising another spring axially retained between walls of the two-piece body.
  • the lancet device may further comprise a back cap movably mounted to the body.
  • the body may comprise an ergonomic shape.
  • the body may comprise a plastic material.
  • the intermediate member may comprise at least one of an external high-friction gripping surface and gripping protrusions.
  • the lancet device may further comprise threads connecting the intermediate member to the body.
  • the invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a set depth of penetration by rotating the intermediate member to a desired set position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the puncture allows a blood sample to be taken.
  • the invention also provides a method of using the lancet device of the type described above, wherein the method comprises rotating or axially moving the intermediate member to a desired set position, maintaining the holding member in a retracted position until the trigger is triggered, disposing the skin engaging end against a user's skin, and triggering the trigger to cause movement of the holding member.
  • the invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a spring arranged to bias the holding member at least towards an extended position, a stop surface limiting movement of the holding member, and an intermediate member at least one of adjustably connected to the body and threadably connected to the body.
  • the lancet device comprises a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a spring arranged to bias the holding member at least towards an extended position, a stop surface limiting movement of the holding member, and an intermediate member at least one of adjustably connected to the body and threadably connected to the body.
  • the front cover may be removably connected to the intermediate member.
  • the front cover may be removably connected to a front portion of the body and the intermediate member may be non-removably connected to a rear portion of the body. Movement of the intermediate member changes an overall length of the lancet device.
  • the intermediate member and the front cover may comprise separate and distinct structures.
  • the intermediate member and the front cover may each comprise a one-piece member.
  • the intermediate member and the front cover may each comprise a one-piece plastic or synthetic resin member.
  • the invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a stop surface limiting movement of the holding member, and an intermediate member arranged between the body and the front cover.
  • the intermediate member is at least one of adjustably connected to the body, axially movably mounted to the body, and threadably connected to the body, wherein the front cover is removably connected to the intermediate member and wherein movement or adjustment of the intermediate member changes an overall length of the lancet device.
  • the intermediate member and the front cover may comprise separate and distinct structures.
  • the intermediate member and the front cover may each comprise a one-piece member.
  • the intermediate member may comprise at least one of an external high-friction gripping surface, external gripping protrusions, and a mechanism for indicating a depth setting position.
  • the invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a depth of penetration by rotating or axially moving the intermediate member to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • the invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a depth of penetration by rotating the intermediate member relative to the body to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • the invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a stop surface limiting movement of the holding member, and an adjustment mechanism arranged between the body and the front cover.
  • the adjustment mechanism is at least one of adjustably connected to the body, axially movably mounted to the body, and threadably connected to the body.
  • the front cover is removably connected to one of the adjustment mechanism and a front portion of the body and movement or adjustment of the adjustment mechanism changes an overall length of the lancet device.
  • the adjustment mechanism and the front cover may comprise separate and distinct structures.
  • the adjustment mechanism and the front cover may each comprise a one-piece member.
  • the adjustment mechanism may comprise at least one of an external high-friction gripping surface, external gripping protrusions, and a mechanism for indicating a depth setting position.
  • the invention also provides a method of puncturing a surface of skin using the lancet device described above, wherein the method comprises adjusting a depth of penetration by rotating the adjustment mechanism to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • the invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a depth of penetration by rotating the adjustment mechanism relative to the body to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • FIG. 1 shows a side view of one embodiment of the lancet device. The device is shown in an intermediate depth setting position;
  • FIG. 2 shows a side cross-section view of the embodiment of FIG. 1 .
  • the device is shown with the lancet needle in an intermediate position prior to being pulled back and released.
  • the lancet is not shown in cross-section;
  • FIG. 3 shows a side cross-section view of the embodiment shown in FIG. 1 .
  • the device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 4 shows a side cross-section view of the embodiment shown in FIG. 1 with the lancet needle in the fully extended puncturing position;
  • FIG. 5 shows a side cross-section view of the embodiment shown in FIG. 1 .
  • the device is shown in a partially disassembled state with the front cover and intermediate section being separated from the body;
  • FIG. 6 shows a side cross-section view of the internal parts of the embodiment shown in FIG. 1 .
  • the parts are shown in a disassembled state with the lancet, front lancet holder, spring and rear lancet holder being separated from each other;
  • FIG. 7 shows a side cross-section view of the body used in the embodiment shown in FIG. 1 ;
  • FIG. 8 shows a top view of another embodiment of the lancet device. This embodiment utilizes a trigger mechanism
  • FIG. 9 shows a side view of the embodiment shown in FIG. 8 ;
  • FIG. 10 shows a side cross-section view of the embodiment of FIGS. 8 and 9 .
  • the device is shown with the lancet needle in an intermediate position prior to being pulled back and released.
  • the lancet is not shown in cross-section;
  • FIG. 11 shows a side cross-section view of the embodiment shown in FIG. 10 .
  • the device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 12 shows an enlarged side cross-section view of the embodiment shown in FIG. 10 with the lancet needle in the fully extended puncturing position;
  • FIG. 13 shows a side cross-section view of the embodiment shown in FIG. 12 .
  • the device is shown in a partially disassembled state with the front cover and intermediate section being separated from the body;
  • FIG. 14 shows a side view of another embodiment of the lancet device. This embodiment utilizes a protective cover and lacks an intermediate section;
  • FIG. 15 shows a side view of the embodiment shown in FIG. 14 , but with the protective cover being removed;
  • FIG. 16 shows a side cross-section view of the embodiment of FIG. 14 .
  • the device is shown with the lancet needle in an intermediate position prior to being pulled back and released.
  • the lancet is not shown in cross-section;
  • FIG. 17 shows a side cross-section view of the embodiment shown in FIG. 14 .
  • the device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 18 shows an enlarged side cross-section view of the embodiment shown in FIG. 14 with the lancet needle in the fully extended puncturing position.
  • the protective cover is not shown;
  • FIG. 19 shows a side cross-section view of the embodiment shown in FIG. 18 .
  • the device is shown in a partially disassembled state with the front cover being separated from the body;
  • FIG. 20 shows a side cross-section view of the internal parts of the embodiment shown in FIG. 14 .
  • the parts are shown in a disassembled state with the lancet, snap ring, front lancet holder, spring and rear lancet holder being separated from each other;
  • FIG. 20A shows a front view of the snap ring used in the embodiment shown in FIG. 14 ;
  • FIG. 21 shows a side cross-section view of the body used in the embodiment shown in FIG. 14 ;
  • FIG. 22 shows a top view of another embodiment of the lancet device. This embodiment utilizes a push-button trigger
  • FIG. 23 shows a side view of the embodiment shown in FIG. 22 ;
  • FIG. 24 shows a side cross-section view of the embodiment of FIG. 22 .
  • the device is shown with the lancet needle in an intermediate position prior to being pulled back and released.
  • the lancet is not shown in cross-section;
  • FIG. 25 shows a side cross-section view of the embodiment shown in FIG. 22 .
  • the device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 26 shows an enlarged side cross-section view of the internal parts of the embodiment shown in FIG. 22 .
  • the parts are shown in a disassembled state with the lancet, front lancet holder, spring and rear lancet holder being separated from each other;
  • FIG. 27 shows a enlarged top view of the front lancet holder used in the embodiment shown in FIG. 22 ;
  • FIG. 28 shows an enlarged side cross-section view of the body used in the embodiment shown in FIG. 22 .
  • the trigger and trigger spring are shown disassembled from the body;
  • FIG. 29 shows a top view of another embodiment of the lancet device. This embodiment utilizes a push-button trigger and a trigger setting or arming mechanism;
  • FIG. 30 shows a side view of the embodiment shown in FIG. 29 ;
  • FIG. 31 shows a side cross-section view of the embodiment of FIG. 29 .
  • the device is shown with the lancet needle in an intermediate position prior to being pulled back and released.
  • the lancet is not shown in cross-section;
  • FIG. 32 shows a side cross-section view of the embodiment shown in FIG. 29 .
  • the device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 33 shows an enlarged side cross-section view of the embodiment shown in FIG. 29 .
  • the device is shown with the lancet needle being pulled back to a retracted position by the back cap or arming mechanism;
  • FIG. 34 shows an enlarged side cross-section view of certain parts of the embodiment shown in FIG. 29 .
  • the parts are shown in a disassembled state with the front cover, intermediate section, lancet, front lancet holder, rear lancet holder, spring retainer, and end plug being separated from each other.
  • the front and back springs and the body are not shown;
  • FIG. 35 shows an enlarged side cross-section view of the body used in the embodiment shown in FIG. 29 .
  • the trigger and trigger spring are shown disassembled from the body;
  • FIG. 36 shows a side cross-section view of still another embodiment of the lancet device. This embodiment is similar to the embodiment shown in FIG. 29 , except that the rear portion of the lancet holding member utilizes a cross-shaped cross-section and the body uses internal projecting walls with cross-shaped openings. The device is shown with the lancet needle pulled back to a retracted position and with the back cap held in the extended position;
  • FIG. 37 shows an enlarged partial section view of the trigger used in the embodiment shown in FIG. 36 ;
  • FIG. 38 shows a section view of the arrows A-A shown in FIG. 36 .
  • the cross-shaped opening and the cross-shaped cross-section of rear portion of the holding member is shown;
  • FIG. 39 shows an enlarged side cross-section view of an alternative two-piece body which used in the embodiment shown in FIG. 36 ;
  • FIG. 40 shows a rear view of the two-piece body shown in FIG. 39 .
  • the two body parts are shown disassembled;
  • FIG. 41 shows a partial enlarged side cross-section view of another embodiment. This embodiment is similar to that shown in FIG. 36 , except that the rear holding member uses rear projections to support the rear spring and which are engaged by the back cap when the back cap is pulled back to the extended or arming position;
  • FIG. 42 shows a section view of the arrows B-B shown in FIG. 41 .
  • the cross-shaped opening and the cross-shaped cross-section of rear portion of the holding member is shown, as are the two rear projections;
  • FIG. 43 shows a side cross-section view of still another embodiment of the lancet device.
  • This embodiment is similar to the embodiment shown in FIG. 36 , except that it uses the two-piece body shown in FIG. 39 , a middle spring and the lancet holding member utilizes a protruding wall.
  • the device is shown with the lancet needle pulled back to a retracted position and with the back cap held in the extended position;
  • FIG. 44 shows a section view of the arrows C-C shown in FIG. 43 .
  • the protruding wall of rear portion of the holding member is shown;
  • FIG. 45 shows a side cross-section view of still another embodiment of the lancet device. This embodiment is similar to the embodiment shown in FIG. 24 , except that the spring has one end that is secured to a flange of the front portion of the lancet holding member and another end secured to a flange of the body;
  • FIG. 46 shows a partial section view of the embodiment shown in FIG. 1 rotated 90 degrees. The attachment of the spring to the front portion and body is shown;
  • FIG. 47 shows a rear cross-section view of the front cap shown in FIG. 48 .
  • the section view illustrates one possible configuration of the internal ratchet surface
  • FIG. 48 shows a partial side cross-section view of one possible system for maintaining the depth setting of the front cap
  • FIG. 49 shows a partial side cross-section view of the intermediate section shown in FIG. 48 ;
  • FIG. 50 shows a rear cross-section view of the front end of the intermediate section shown in FIG. 48 ;
  • FIG. 51 shows a side cross-section view of another embodiment of the lancet device.
  • This embodiment utilizes a push-button trigger and a depth-set adjustment system provided by an adjustable intermediate member.
  • the lancet and a front portion of the holding member is not shown in cross-section;
  • FIG. 52 shows a side view of the embodiment shown in FIG. 51 .
  • the intermediate member is shown positioned in the deepest depth setting position;
  • FIG. 53 shows another side view of the embodiment of FIG. 51 .
  • the intermediate member is shown positioned in the shallowest depth setting position;
  • FIG. 54 shows a side view of the embodiment shown in FIG. 51 .
  • the device is shown with the front cover or cap removed to allow replacement of the lancet;
  • FIG. 55 shows an enlarged side cross-section view of the lancet device shown in FIG. 51 with the front cover removed.
  • the lancet holding member is shown in the retracted trigger-set position and the intermediate member is shown in the deepest depth setting position;
  • FIG. 56 shows an enlarged side cross-section view of the lancet device shown in FIG. 51 with the front cover removed.
  • the lancet holding member is shown in the retracted trigger-set position and the intermediate member is shown in the shallowest depth setting position;
  • FIG. 57 shows an enlarged side view of the lancet device shown in FIG. 51 with the front cover and the adjustable intermediate member removed;
  • FIG. 58 shows the lancet device shown in FIG. 57 rotated 180 degrees to expose the other side of the lancet device body;
  • FIG. 59 shows an end view of the front portion of the lancet device body shown in FIG. 60 ;
  • FIG. 60 shows a side cross-section of a front portion of the lancet device body used in the embodiment shown in FIG. 51 ;
  • FIG. 61 a shows a left end view of the intermediate member shown in FIG. 61 b and which is used in the embodiment shown in FIG. 51 ;
  • FIG. 61 b shows a side cross-section of the intermediate member used in the embodiment shown in FIG. 51 ;
  • FIG. 61 c shows a right end view of the intermediate member shown in FIG. 61 b and which is used in the embodiment shown in FIG. 51 ;
  • FIG. 62 a shows a side cross-section of the front cover or cap used in the embodiment shown in FIG. 51 ;
  • FIG. 62 b shows a left end view of the front cover shown in FIG. 62 a and which is used in the embodiment shown in FIG. 51 ;
  • FIG. 63 shows a partial side cross-section view of the lancet device shown in FIG. 51 after the trigger has been moved to the triggering position so as to cause movement of the lancet holding member towards the fully extended position;
  • FIG. 64 shows one non-limiting way in which holding member can be moved to the trigger-set of retracted position by a front cap.
  • the figure shows the holding member in the fully retracted trigger-set position after being moved by the front cap;
  • FIG. 65 shows a partial cross-section view of a possible modification of the embodiment shown in FIG. 51 wherein this embodiment utilizes a trigger setting mechanism similar to the embodiments shown in FIGS. 29-44 ;
  • FIG. 66 shows a side cross-section view of another embodiment of the lancet device.
  • This embodiment utilizes a push-button trigger and a depth-set adjustment system provided by an adjustable intermediate member.
  • the lancet and a front portion of the holding member is not shown in cross-section.
  • the depth adjustment is set at one of the deeper depth adjusting positions;
  • FIG. 67 shows a side cross-section view of the embodiment of the lancet device shown in FIG. 66 .
  • the depth adjustment is set at one of the shallower depth adjusting position.
  • FIGS. 1-7 show various views of one embodiment of lancet device.
  • Lancet device LD has three main external parts, i.e., a lancet body 1 , an intermediate section 2 , and a front cover or cap 3 . These parts 1 , 2 and 3 are connected to each other via threads and/or a threaded connection when the lancet device LD is initially assembled.
  • a holding member 4 / 5 is movably disposed within the body 1 .
  • the front cover or cap 3 is removably connected or attached to a front portion of the body 1 . By removing the front cover 3 , and optionally the intermediate section 2 , one can gain access to the lancet 10 .
  • the lancet 10 can thus be removed and replaced with a new lancet 10 , as needed, once the front cover 3 and intermediate section 2 are removed.
  • the lancet device defines a plane P which is configured to contact (i.e., be positioned against) a user's skin.
  • the instant embodiment may utilize, e.g., a planar, an inwardly curved surface plane, or an outwardly curved plane P beyond which the lancet need can extend.
  • the plane P is arranged on the front cap 3 .
  • the lancet holder 4 / 5 has a front portion 4 and a rear portion 5 which includes a gripping portion 5 b that can be gripped by a user.
  • the front portion 4 and the rear portion 5 are connected to each other and are able to slide within the body 1 .
  • the invention also contemplates that the front portion 4 and rear portion 5 can be formed as a one piece member.
  • movement of the gripping portion 5 b rearwardly causes the holding member 4 / 5 to retract until it reaches a spring loaded position shown in FIG. 3 .
  • the lancet 10 itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices.
  • the front portion 4 of the holding member 4 / 5 includes a lancet holding end 4 a which receives the lancet 10 therein.
  • the holding member 4 / 5 arrangement preferably has a main spring 6 mounted thereto.
  • the spring 6 which can be made of spring steel, is arranged to surround the holding member 4 / 5 in an area of the rear portion 5 .
  • the spring 6 has a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm.
  • Other materials e.g., metal, plastic or composite for the spring are also contemplated.
  • This spring 6 causes (and/or biases) the holding member 4 / 5 to move towards an extended position once the holding member 4 / 5 is pulled back (see FIG. 3 ).
  • a user When a user wishes to place the lancet device LD in the loaded position, a user need only move gripping portion 5 b rearwardly (see FIG. 3 ) until the holding member arrangement 4 / 5 reaches the position shown in FIG. 3 . This, in turn, compresses the spring 6 to a certain extent.
  • spring 6 automatically causes the holding member 4 / 5 to move to a fully extended position shown in FIG. 4 .
  • stop surface MSS and stop surface FSS see FIGS.
  • the spring 6 causes the holding member 4 / 5 to automatically retract axially back into the body 1 to a position similar to that of FIG. 2 .
  • FIG. 46 One way this can occur is shown in FIG. 46 , which will be more fully described later on.
  • the spring 6 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 6 can be connected to the front part and body in a manner similar to that of FIG.
  • the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 6 .
  • the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the gripping end 5 b is released) and is otherwise not exposed to a user while the front cover 3 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • the lancet device LD utilizes the front cap 3 to adjust the penetration depth of the lancet needle.
  • the front cap 3 is preferably mounted to the body 1 and/or to the intermediate section 2 of the body 1 so as to be at least partially rotate in each of two directions.
  • the front cap 3 can be mounted to the body 2 / 1 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards between discrete set-depth positions.
  • the front cap 3 has internal threads 3 c which engage external threads 2 a of the intermediate section 2 .
  • the front cap 3 also includes chamfered corners 3 b and raised projections 3 a which allow a user to more securely grip the front cap 3 .
  • the intermediate body section 2 has an internal projecting wall 2 b that includes a fixed stop surface FSS (see FIG. 3 ) which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 4 ) that is formed on or coupled to the front portion 4 of holding member 4 / 5 .
  • FIG. 3 shows the lancet device LD with the lancet member 4 / 5 in the loaded position, i.e., ready to move to an extended position when the gripping end 5 b is released.
  • the holding member 4 / 5 retains the loaded position of FIG. 3 as long as the user continues to grip the gripping end 5 b .
  • FIG. 4 shows what happens when the user releases end 5 b . That is, the holding member 4 / 5 is released from the loaded position of FIG. 3 , and is caused to move towards plane P. This occurs because the holding member 4 / 5 is free to slide within body 1 .
  • the holding member 4 / 5 can also have a polygonal cross-section shape which corresponds to the polygonal opening 1 d in the body 1 so as to ensure that the holding member 4 / 5 does not substantially rotate while it moves axially back and forth.
  • the holding member 4 / 5 has cylindrical outer surfaces (e.g., 4 g and 5 c ) which slide within (with a clearance) cylindrical surfaces (e.g., 2 d , 1 a and 1 d ) in the body 1 and intermediate section 2 .
  • the holding member 4 / 5 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 2 .
  • the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P.
  • the lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 3 .
  • FIG. 1 shows the lancet device LD in one of the pre-set extended positions, i.e., in one of the positions of the front cap 3 that will cause a desired puncture depth in the skin of a user (not shown).
  • the distance that the lancet needle projects past plane P is thus determined by rotating the front cap 3 until the desired setting is reached, e.g., arrow 8 lines up with one of the indicia 7 .
  • the invention contemplates that any type of indicia can be used such as, e.g., numbers, letters, symbols, etc.
  • the invention also contemplates that the body 1 / 2 can also contain the arrow while the indicia is placed on the front cap 3 .
  • the setting causes the plane P to move axially relative to fixed stop surface FSS. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 4 / 5 , since the lancet 10 is secured to the front part 4 , and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 3 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 3 thus determines how much of the end of the lancet needle extends past the plane P.
  • the depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS, and the rotational position of the front cap 3 .
  • FIG. 4 shows the needle tip projecting through the opening LO in the front cover 3 and past the plane P. Thereafter, the user can pull end 5 b back (from the position shown in FIG. 2 ) to compress spring 6 to again arm the lancet device LD.
  • FIG. 4 shows a cross-section view of the lancet device of FIGS. 1-3 wherein the holding member 4 / 5 is in the fully extended position.
  • the holding member 4 / 5 has reached its maximum extended position caused by axial expansion of the spring 6 .
  • the front cover 3 , intermediate body 2 , spring 6 , lancet 10 and holding member 4 / 5 can be seen in their installed and/or assembled position.
  • the spring 6 is arranged to surround the holding member 4 / 5 , just behind the lancet receiving front portion 4 .
  • the spring 6 is preferably sized to slide into internal opening 1 a of the body 1 .
  • the spring 6 is preferably disposed inside the body 1 and between an inner wall 1 b of the body 1 and surface 4 c of the front part 4 of the holding member 4 / 5 . That is, the spring 6 is axially retained between a left side surface 4 c of front part 4 of holding member 4 / 5 the inner wall 1 b of the body 1 . As a result, the spring 6 is caused to be compressed when the holding member 4 / 5 is moved back (i.e., to the right) to a retracted position relative to the body 1 and expanded when the holding member 4 / 5 is moved forward (i.e., to the left) to an extended position relative to the body 1 .
  • the spring 6 causes (and/or biases) the holding member 4 / 5 towards an extended position once a gripping end 5 b is released and then back towards a rest position similar to that shown in FIG. 2 .
  • the holding member 4 / 5 cannot be moved back to a retracted position without causing the spring 6 to be compressed thereby.
  • the front cap 3 has internal threads 3 c and a planar inner annular surface 3 d .
  • this surface 3 d can have any desired configuration since the lancet 10 does not contact the same.
  • the threads 3 c are configured to engage external threads 2 a of the intermediate section 2 .
  • the inter mediate section 2 also includes an external cylindrical surface 2 e and internal threads 2 c which are configured to engage external threads 1 c of the body 1 .
  • a cylindrical opening 2 d is sized to receive (with a clearance) the front portion 4 so that contact can occur between stop surface MSS and stop surface FSS.
  • the stop surface FSS is an annular surface that is formed on an internal cylindrical projecting wall 2 b which is integral with the section 2 .
  • this wall 2 b can instead be formed by spaced projections which extend inwardly from the section 2 .
  • this wall 2 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIG. 16 .
  • the intermediate section 2 would include a recess similar to recess 201 e in FIG. 21 .
  • the front part 4 includes a small cylindrical section 4 a which utilizes two oppositely arranged slots 4 d .
  • the section 4 a also has an internal opening 4 f which is sized to receive the rear portion of the lancet 10 .
  • the front part 4 includes projections 4 e which have sharp ends for gripping the lancet 10 . These projections can have any desired form provided they securely, yet removably, retain the lancet 10 .
  • the slots 4 d allow the opening 4 f to expand and contract with insertion and removal of the lancet 10 and allow the end 4 a to act as two spring fingers.
  • Front part 4 also includes larger cylindrical section 4 g which can slide within openings 2 d and 1 a .
  • the front part 4 In order to connect the front part 4 with the rear part 5 to form the holding member 4 / 5 , the front part 4 includes internal threads 4 b which are configured to engage external threads 5 a . Of course, these parts can be connected in any desired manner other than threads, e.g., snap connection, adhesives, etc.
  • the rear part 5 also has a cylindrical section 5 c which is sized and configured to slide within (with a clearance) cylindrical opening 1 d of body 1 and an enlarged cylindrical gripping end 5 b.
  • FIGS. 8-13 show another embodiment of lancet device.
  • Lancet device LD has a lancet body 101 which can be made as a one-piece member as with the embodiment shown in FIGS. 1-7 . Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • a holding member 104 / 105 is movably disposed within the body 101 .
  • a front cover 103 is removably connected or attached to an intermediate section 102 of the body.
  • the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin.
  • the instant embodiment may utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend.
  • the lancet holder 104 / 105 has a rear portion 105 , and specifically a gripping portion 105 b , that can be gripped by a user.
  • the front portion 104 and the rear portion 105 slide within the body 101 .
  • the front part 104 and rear part 105 can alternatively be formed as a one-piece member.
  • movement of the gripping portion 105 b rearwardly causes the holding member 104 / 105 to retract until it reaches a spring loaded position shown in FIG. 11 .
  • the lancet 10 itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices.
  • the front portion 104 of the holding member 104 / 105 includes a lancet holding end 104 a which receives the lancet 10 therein.
  • the holding member 104 / 105 arrangement preferably has a spring 106 mounted thereto.
  • the spring 106 which can be made of spring steel, is arranged to surround the holding member 104 / 105 , just behind the front portion 104 .
  • the spring 106 may have a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm.
  • the spring can be of any desired type, size or material. This spring 106 causes (and/or biases) the holding member 104 / 105 to move towards an extended position once a trigger 109 is activated (see FIG. 10 ).
  • the trigger 109 includes a portion 109 a that is arranged to extend within the body 1 , and is movably and/or pivotally mounted to the body 101 .
  • the trigger 109 can be mounted to the body in any desired manner.
  • the trigger 109 also has a finger engaging (e.g. push button) portion 109 b that can be pushed and/or deflected into the lancet device LD.
  • the trigger 109 also utilizes a trigger spring 111 which biases the trigger 109 towards the position shown in FIG. 11 .
  • the inner portion 109 a moves away from the front portion 104 and allows it to move towards plane P.
  • the push button 109 b is released, the trigger 109 is capable of returning to the position shown in FIG. 11 or 12 .
  • the spring 106 causes (and/or biases) the holding member 4 / 5 to move towards an extended position (see FIG. 12 ) once the holding member 104 / 105 is pulled back to a loaded or armed (see FIG. 11 ).
  • a user need only move gripping portion 105 b rearwardly until the holding member arrangement 104 / 105 reaches the position shown in FIG. 11 .
  • This compresses the spring 106 to a certain extent.
  • end 109 a becomes disengaged from front portion 4 and the spring 106 causes the holding member 104 / 105 to move to a fully extended position.
  • the spring 106 causes the holding member 104 / 105 to automatically retract axially back into the body 101 to a position similar to that of FIG. 10 .
  • FIG. 46 One way this can occur is shown in FIG. 46 , which will be more fully described later on.
  • the spring 106 can, of course, be connected to these parts in any desired manner.
  • the spring 106 can be connected to these parts 101 , 104 in a manner similar to that of FIG. 45 , i.e., via flanges formed on the parts 101 and 104 .
  • the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 106 .
  • the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 109 is released) and is otherwise not exposed to a user while the front cover 103 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • the lancet device LD utilizes the front cap 103 to adjust the penetration depth of the lancet needle.
  • the front cap 103 is preferably mounted to the body 101 and/or to the intermediate section 102 of the body 101 so as to be at least partially rotate in each of two directions.
  • the front cap 103 can be mounted to the body 101 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards.
  • the front cap 103 has internal threads 103 c which engage external threads 102 a of the intermediate section 102 .
  • the front cap 103 also includes chamfered corners 103 b and raised projections 103 a which allow a user to more securely grip the front cap 103 .
  • the intermediate body section 102 has an internal projecting wall 102 b that includes a fixed stop surface FSS (see FIG. 11 ) which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 104 ) that is formed on or coupled to the front portion 104 of holding member 104 / 105 .
  • FIG. 11 shows the lancet device LD with the lancet member 104 / 105 in the loaded position, i.e., ready to move to an extended position when the trigger 109 is depressed.
  • the holding member 104 / 105 retains the loaded position of FIG. 11 as long as the user does not press the trigger 109 .
  • FIGS. 10 and 12 show what happens when the user presses the trigger 109 . That is, the holding member 104 / 105 is released from the loaded position of FIG. 11 , and is caused to move towards plane P. This occurs because the holding member 104 / 105 is free to slide within body 101 .
  • the holding member 104 / 105 can also have a polygonal cross-section shape which corresponds to a polygonal opening in the body so as to ensure that the holding member 104 / 105 does not rotate while it moves axially back and forth.
  • the holding member 104 / 105 has cylindrical outer surfaces (e.g., 104 g and 105 c ) which slide within (with a clearance) cylindrical surfaces (e.g., 101 a , 102 d , and 101 d ) in the body 101 and intermediate section 102 .
  • the holding member 104 / 105 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 102 .
  • the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P.
  • the lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 11 .
  • FIG. 9 shows the lancet device LD in one of the pre-set extended positions, i.e., in one of the positions of the front cap 103 that will cause a desired puncture depth in the skin of a user (not shown).
  • the distance that the lancet needle projects past plane P is thus determined by rotating the front cap 103 until the desired setting is reached, e.g., arrow 108 lines up with one of the indicia 107 .
  • the indicia can be of any type and can be arranged in any desired location of the body 1 .
  • the arrow 108 can be arranged on the body 101 while the indicia is arranged on the front cap 103 .
  • the setting causes the plane P to move axially relative to fixed stop surface FSS, i.e., by rotating the front cap 103 in either of two opposite directions. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 104 / 105 , and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 103 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 103 thus determines how much of the end of the lancet needle extends past the plane P.
  • the depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the front cap 103 .
  • FIG. 12 shows the needle tip projecting through the opening LO in the front cover 103 and past the plane P. Thereafter, the user can pull end 105 b back to compress spring 106 to again arm the lancet device.
  • the engaging portion 109 a of trigger 109 utilizes an inclined surface which, when engaged by the front portion 104 as it is moved back, causes the trigger 109 to move (against the biasing force of the trigger spring) to the position shown in FIG. 10 .
  • further movement of the front portion 104 backwards will result in the engaging portion falling back (i.e., under the action of the trigger spring) into the setting position shown in FIG. 11 .
  • FIG. 12 shows a cross-section view of the lancet device of FIGS. 8-11 wherein the holding member 104 / 105 is in the fully extended position.
  • the holding member 104 / 105 has reached its maximum extended position caused by axial expansion of the spring 106 .
  • the front cover 103 , intermediate body 102 , spring 106 , lancet 10 and holding member 104 / 105 can be seen in their installed and/or assembled position.
  • the spring 106 is arranged to surround the holding member 104 / 105 , just behind the lancet receiving front portion 104 .
  • the spring 106 is preferably sized to slide into internal opening 101 a of the body 101 .
  • the spring 106 is preferably disposed inside the body 101 and between an inner wall 101 b of the body 101 and the front part 104 of the holding member 104 / 105 . That is, the spring 106 is axially retained between a left side surface 104 c of front part 104 of holding member 104 / 105 the inner wall 101 b of the body 101 . As a result, the spring 106 is caused to be compressed when the holding member 104 / 105 is moved back (i.e., to the right) to a retracted position relative to the body 101 . As discussed above, the spring 106 causes (and/or biases) the holding member 104 / 105 towards an extended position once the trigger 109 is pressed. As a result, the holding member 104 / 105 cannot be moved back to a retracted position without causing the spring 106 to be compressed thereby.
  • the front cap 103 has internal threads 103 c and a planar inner annular surface 103 d .
  • the threads 103 c are configured to engage external threads 102 a of the intermediate section 102 .
  • the intermediate section 102 also includes an external cylindrical surface 102 e and internal threads 102 c which are configured to engage external threads 101 c of the body 101 .
  • a cylindrical opening 102 d is sized to receive (with a clearance) the front portion 104 so that contact can occur between stop surface FSS and stop surface MSS.
  • the stop surface FSS is an annular surface that is formed on an internal cylindrical projecting wall 102 b which is integral with the section 102 .
  • this wall 102 b can instead be formed by spaced apart projections which extend inwardly from the section 102 .
  • this wall 102 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIGS. 14-21 .
  • the front part 104 includes a small cylindrical section 104 a which utilizes two oppositely arranged slots (similar to slots 4 d in FIG. 6 ).
  • the section 104 a also has an internal opening (e.g., see 4 f in FIG. 6 ) which is sized to receive the lancet 10 .
  • the front part 104 includes projections (e.g., see 4 e in FIG. 6 ) which have sharp ends for gripping the lancet 10 .
  • the slots allow the opening to expand and contract with insertion and removal of the lancet 10 and allow the end 104 to act as two spring fingers.
  • Front part 104 also includes larger cylindrical section 104 g which can slide within openings 102 d and 101 a .
  • the front part 104 includes internal threads which are configured to engage external threads of the rear part 1 - 5 .
  • the rear part 105 also has a cylindrical section 105 c which is sized and configured to slide within (with a clearance) cylindrical opening 101 d of body 101 and an enlarged cylindrical gripping end 105 b.
  • FIGS. 14-21 show various views of still another embodiment of the lancet device.
  • Lancet device LD has two main external parts, i.e., a lancet body 201 and a front cover or cap 203 . These parts 201 and 203 are connected to each other via threads and/or a threaded connection when the lancet device LD is initially assembled.
  • This embodiment also utilizes an optional dust or protective cap C.
  • the cap C slides over the front cap or nut 203 and is retained thereon by frictional engagement therewith.
  • the cap C is shown with a cylindrical shape, the invention contemplates that the cap C can have any desired shape or configuration provided that it protects the lancet opening LO and plane P.
  • a holding member 204 / 205 is movably disposed within the body 201 .
  • a front cover or cap 203 is removably connected or attached to a front portion of the body 201 . By removing the front cover 203 , one can gain access to the lancet 10 . The lancet 10 can thus be removed and replaced with a new lancet 10 , as needed, once the front cover 203 is removed.
  • the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin.
  • the instant embodiment may utilize, e.g., a planar, an inwardly curved surface plane and an outwardly curved plane P beyond which the lancet need can extend.
  • the lancet holder 204 / 205 has a rear portion 205 , and specifically a gripping portion 205 b , that can be gripped by a user.
  • the front portion 204 and the rear portion 205 slide within the body 201 .
  • movement of the gripping portion 205 b rearwardly causes the holding member 204 / 205 to retract until it reaches a spring loaded position shown in FIG. 17 .
  • the lancet 10 itself, is conventional and includes a needle.
  • the front portion 204 of the holding member 204 / 205 includes a lancet holding end 204 a which receives the lancet 10 therein.
  • the holding member 204 / 205 arrangement preferably has a spring 206 mounted thereto.
  • the spring 206 which can be made of spring steel, is arranged to surround the holding member 204 / 205 in an area of the rear portion 205 .
  • the spring 206 has a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 206 causes (and/or biases) the holding member 204 / 205 to move towards an extended position (see FIG. 18 ) once the holding member 204 / 205 is pulled back (see FIG. 17 ).
  • a user When a user wishes to place the lancet device LD in the loaded position, a user need only move gripping portion 205 b rearwardly until the holding member arrangement 204 / 205 reaches the position shown in FIG. 17 . This, in turn, compresses the spring 206 to a certain extent. However, when the user releases the gripping portion 205 b , spring 206 causes the holding member 204 / 205 to move to a fully extended position shown in FIG. 18 . However, once contact occurs between stop surface MSS and stop surface FSS (see FIG. 18 ), the spring 206 causes the holding member 204 / 205 to automatically retract axially back into the body 201 to a position similar to that of FIG. 16 .
  • the spring 206 has one end, i.e., the left end, coupled to the front portion 204 of the holding member 204 / 205 and another end, i.e., the right end, coupled to the annular surface 201 b of the body 201 .
  • One way this can occur is shown in FIG. 46 , which will be more fully described later on.
  • the spring 206 can, of course, be connected to these parts in any desired manner.
  • the spring 206 can be connected to these parts 204 , 201 in a manner similar to that of FIG. 45 , i.e., via flanges formed on the parts 201 and 204 .
  • the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 206 .
  • the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the gripping end 205 b is released) and is otherwise not exposed to a user while the front cover 203 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • the lancet device LD utilizes the front cap 203 to adjust the penetration depth of the lancet needle.
  • the front cap 203 is preferably mounted to the body 201 (and optionally to an intermediate section of the type shown in FIG. 2 if this embodiment is modified to include such an intermediate section) of the body 201 so as to be at least partially rotate in each of two directions.
  • the front cap 203 can be mounted to the body 201 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards.
  • the front cap 203 has internal threads 203 c which engage external threads 201 c of the body 201 .
  • the front cap 203 also includes chamfered corners 203 b and raised projections 203 a which allow a user to more securely grip the front cap 203 .
  • the body 201 has an internal recess 201 e which is sized and configured to receive a snap ring 202 that includes a fixed stop surface FSS (see FIG. 17 ) which is configured to be engaged by a movable stop surface MSS (in particular annular stop surface MSS of front portion 204 ) that is formed on or coupled to the front portion 204 of holding member 204 / 205 .
  • FIG. 17 shows the lancet device LD with the lancet member 204 / 205 in the loaded position, i.e., ready to move to an extended position (see FIG. 18 ) when the gripping end 205 b is released.
  • the holding member 204 / 205 retains the loaded position of FIG. 17 as long as the user continues to grip the gripping end 205 b .
  • FIG. 18 shows what happens when the user releases end 205 b . That is, the holding member 204 / 205 is released from the loaded position of FIG. 17 , and is caused to move towards plane P. This occurs because the holding member 204 / 205 is free to slide within body 201 .
  • the holding member 204 / 205 can also have a polygonal cross-section shape which corresponds to the polygonal opening 201 d in the body 201 so as to ensure that the holding member 204 / 205 does not rotate while it moves axially back and forth.
  • the holding member 204 / 205 has cylindrical outer surfaces (e.g., 204 g and 205 c ) which slide within (with a clearance) cylindrical surfaces (e.g., 201 a and 201 d ) in the body 201 .
  • the holding member 204 / 205 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the body 201 , i.e., via snap ring 202 .
  • the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P.
  • the lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 17 .
  • FIG. 18 shows the lancet device LD in one of the pre-set extended positions, i.e., in one of the positions of the front cap 203 that will cause a desired puncture depth in the skin of a user (not shown).
  • the distance that the lancet needle projects past plane P is thus determined by rotating the front cap 203 until the desired setting is reached, e.g., arrow 208 lines up with one of the indicia 207 .
  • This setting causes the plane P to move axially relative to fixed stop surface FSS.
  • FIG. 18 shows the needle tip projecting through the opening LO in the front cover 203 and past the plane P. Thereafter, the user can pull end 205 b back to compress spring 206 to again arm the lancet device LD.
  • FIG. 18 shows a cross-section view of the lancet device of FIGS. 14-17 wherein the holding member 204 / 205 is in the fully extended position.
  • the holding member 204 / 205 has reached its maximum extended position caused by axial expansion of the spring 206 .
  • the front cover 203 , spring 206 , snap ring 202 , lancet 10 and holding member 4 / 5 can be seen in their installed and/or assembled position.
  • the spring 206 is arranged to surround the holding member 204 / 205 , just behind the lancet receiving front portion 204 .
  • the spring 206 is preferably sized to slide into internal opening 201 a of the body 201 .
  • the spring 206 is preferably disposed inside the body 201 and between an inner wall 201 b of the body 201 and the front part 204 of the holding member 204 / 205 . That is, the spring 206 is axially retained between a left side surface 204 c of front part 204 of holding member 204 / 205 the inner wall 201 b of the body 201 . As a result, the spring 206 is caused to be compressed when the holding member 204 / 205 is moved back (i.e., to the right) to a retracted position relative to the body 201 .
  • the spring 206 causes (and/or biases) the holding member 204 / 205 towards an extended position once a gripping end 205 b is released. As a result, the holding member 204 / 205 cannot be moved back to a retracted position without causing the spring 206 to be compressed thereby.
  • the front cap 203 has internal threads 203 c and a planar inner annular surface 203 d .
  • the threads 203 c are configured to engage external threads 201 c of the body 201 .
  • this embodiment does not utilize an intermediate section.
  • the invention contemplates that such an intermediate section could be utilized in this embodiment, in which case the intermediate section of FIG. 5 would be modified to replace projection 2 b with a recess similar to 201 e of FIG. 21 .
  • the previous embodiments need not utilize an intermediate section, as in this embodiment, and instead utilize a snap ring and/or a two-piece body.
  • a cylindrical opening 201 a is sized to receive (with a clearance) the front portion 204 so that contact can occur between stop surface FSS and stop surface MSS.
  • the stop surface FSS is an annular surface that is formed on an internal cylindrical wall of the snap ring 202 which is axially retained in recess 201 e .
  • this wall can instead be formed by spaced projections which extend inwardly from the snap ring 202 .
  • the snap ring 202 can be replaced with a wall that is formed integrally with the body 201 , as in the embodiment shown in, e.g., FIG. 1 .
  • the front part 204 includes a small cylindrical section 204 a which utilizes two oppositely arranged slots 204 d .
  • the section 204 a also has an internal opening 204 f which is sized to receive the lancet 10 .
  • the front part 204 includes projections 204 e which have sharp ends for gripping the lancet 10 .
  • the slots 204 d allow the opening 204 f to expand and contract with insertion and removal of the lancet 10 and allow the end 204 to act as two spring fingers.
  • Front part 204 also includes larger cylindrical section 204 g which can slide within opening 201 a .
  • the front part 204 includes internal threads 204 b which are configured to engage external threads 205 a .
  • the rear part 205 also has a cylindrical section 205 c which is sized and configured to slide within (with a clearance) cylindrical opening 201 d of body 201 and an enlarged cylindrical gripping end 205 b .
  • the holding member 204 / 205 can alternatively be formed as a one-piece member. Moreover, these parts can be connected in any desired manner other than threads.
  • FIGS. 22-28 show another embodiment of lancet device.
  • Lancet device LD has a lancet body 301 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7 . Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • a holding member 304 / 305 is movably disposed within the body 301 .
  • a front cover 303 is removably connected or attached to an intermediate section 302 of the body. By removing the front cover 303 , one can gain access to the lancet 10 . The lancet 10 can thus be removed and replaced with a new lancet 10 , as needed, once the front cover 303 is removed.
  • the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin.
  • the instant embodiment may utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend.
  • the lancet holder 304 / 305 has a rear portion 305 , and specifically a gripping portion 305 b , that can be gripped by a user.
  • the front portion 304 and a front portion of rear portion 305 slide within the body 301 .
  • movement of the gripping portion 305 b rearwardly causes the holding member 304 / 305 to retract until it reaches a spring loaded position shown in FIG. 25 .
  • the lancet 10 itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices.
  • the front portion 304 of the holding member 304 / 305 includes a lancet holding end 304 a which receives the lancet 10 therein.
  • the holding member 304 / 305 arrangement preferably has a spring 306 mounted thereto.
  • the spring 306 which can be made of spring steel, is arranged to surround the holding member 304 / 305 , just behind the front portion 304 .
  • the spring 306 may have a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 306 causes (and/or biases) the holding member 304 / 305 to move towards an extended position once a trigger 309 is activated (not shown).
  • the trigger 309 includes a portion 309 a that extends into the body 301 , and is mounted to the body 301 .
  • the trigger 309 also has a finger engaging (e.g. push button) portion 309 b that can be pushed and/or deflected into the lancet device LD.
  • the trigger 309 also utilizes a spring 311 which biases the trigger 309 towards the position shown in, e.g., FIG. 24 .
  • the inner portion 309 a moves into contact with deflecting member 304 h of the front portion 304 .
  • the spring 306 causes (and/or biases) the holding member 304 / 305 to move towards an extended position (not shown) once the holding member 304 / 305 is pulled back (see FIG. 25 ).
  • a user When a user wishes to place the lancet device LD in the loaded or armed position, a user need only move gripping portion 305 b rearwardly until the holding member arrangement 304 / 305 reaches the position shown in FIG. 25 . This, in turn, compresses the spring 306 to a certain extent and allows deflecting member 304 h to catch or engage the opening 301 h . Such engagement ensures that the front portion 304 is prevented from moving axially towards the plane P until the trigger 309 is depressed.
  • the deflecting member 304 h is moved out of engagement with opening 301 h and the spring 306 causes the holding member 304 / 305 to move to a fully extended position.
  • the spring 306 causes the holding member 304 / 305 to automatically retract axially back into the body 301 to a position similar to that of FIG. 24 .
  • the spring 306 has one end, i.e., the left end, coupled to the front portion 304 of the holding member 304 / 305 and another end, i.e., the right end, coupled to the annular surface 301 b of the body 301 .
  • the spring 306 can, of course, be connected to these parts in any desired manner.
  • the spring 306 can be connected to these parts 301 , 304 in a manner similar to that of FIG. 45 , i.e., via flanges formed on the parts 301 and 304 . In this way, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 306 .
  • the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 309 is released) and is otherwise not exposed to a user while the front cover 303 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • the lancet device LD utilizes the front cap 303 to adjust the penetration depth of the lancet needle.
  • the front cap 303 is preferably mounted to the body 301 and/or to the intermediate section 302 of the body 301 so as to be at least partially rotate in each of two directions.
  • the front cap 303 can be mounted to the body 301 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards.
  • the front cap 303 has internal threads 303 c which engage external threads 302 a of the intermediate section 302 .
  • the front cap 303 also includes chamfered corners 303 b and raised projections 303 a which allow a user to more securely grip the front cap 303 .
  • the intermediate body section 302 has an internal projecting wall 302 b that includes a fixed stop surface FSS which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 304 ) that is formed on or coupled to the front portion 304 of holding member 304 / 305 .
  • FIG. 25 shows the lancet device LD with the lancet member 304 / 305 in the loaded position, i.e., ready to move to an extended position when the trigger 309 is depressed.
  • the holding member 304 / 305 retains the loaded position of FIG. 25 as long as the user does not press the trigger 309 .
  • the holding member 304 / 305 is released from the loaded position of FIG. 25 , and is caused to move towards plane P. This occurs because the holding member 304 / 305 is free to slide within body 301 .
  • the holding member 304 / 305 can also have a polygonal cross-section shape which corresponds to a polygonal opening 301 d in the body 301 so as to ensure that the holding member 304 / 305 does not rotate while it moves axially back and forth.
  • the holding member 304 / 305 has cylindrical outer surfaces (e.g., 304 g and 305 c ) which slide within (with a clearance) cylindrical surfaces (e.g., 301 a , 302 d , and 301 d ) in the body 301 and intermediate section 302 .
  • the holding member 304 / 305 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 302 .
  • the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P.
  • the lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 25 .
  • the lancet device LD can have any desired number of pre-set extended positions, i.e., in one of the positions of the front cap 303 that will cause a desired puncture depth in the skin of a user (not shown).
  • the distance that the lancet needle projects past plane P is thus determined by rotating the front cap 303 until the desired setting is reached, e.g., arrow 308 lines up with one of the indicia 307 .
  • This setting causes the plane P to move axially relative to fixed stop surface FSS.
  • the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 304 / 305 , and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 303 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 303 thus determines how much of the end of the lancet needle extends past the plane P.
  • the depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the front cap 303 .
  • the needle tip can project through the opening LO in the front cover 303 and past the plane P.
  • the engaging portion 309 a of trigger 309 utilizes an engaging surface which, when engaged with the deflecting member 304 h of the front portion 104 , causes the front portion 304 to move.
  • the trigger 309 can be moved against the biasing force of a trigger spring 311 .
  • the spring 311 has an upper end which is retained on a flange 309 c of the trigger 309 and a lower end that is retained to a flange 301 g of the body 301 .
  • An annular opening 301 e is formed in the body 301 and is sized and configured to receive an outer flange portion 309 d of the trigger 309 .
  • the invention contemplates other configurations of the trigger 309 and the invention is not limited to any particular type of trigger.
  • FIG. 24 shows a cross-section view of the lancet device of FIGS. 22 and 23 wherein the holding member 304 / 305 is in an intermediate position.
  • the holding member 304 / 305 has not yet reached its maximum extended position caused by axial expansion of the spring 306 .
  • the front cover 303 , intermediate body 302 , spring 306 , lancet 10 and holding member 304 / 305 can be seen in their installed and/or assembled position.
  • the spring 306 is arranged to surround the holding member 304 / 305 , just behind the lancet receiving front portion 304 .
  • the spring 306 is preferably sized to slide into internal opening 301 a of the body 301 .
  • the spring 306 is preferably disposed inside the body 301 and between an inner annular wall 301 b of the body 301 and the front part 304 of the holding member 304 / 305 . That is, the spring 306 is axially retained between a left side surface 304 c of front part 304 of holding member 304 / 305 the inner wall 301 b of the body 301 . As a result, the spring 306 is caused to be compressed when the holding member 304 / 305 is moved back (i.e., to the right) to a retracted position relative to the body 301 . As discussed above, the spring 306 causes (and/or biases) the holding member 304 / 305 towards an extended position once the trigger 309 is pressed. As a result, the holding member 304 / 305 cannot be moved back to a retracted position without causing the spring 306 to be compressed thereby.
  • the front cap 303 has internal threads 303 c and a planar inner annular surface 303 d .
  • the threads 303 c are configured to engage external threads 302 a of the intermediate section 302 .
  • the intermediate section 302 also includes an external cylindrical surface 302 e and internal threads 302 c which are configured to engage external threads 301 c of the body 301 .
  • a cylindrical opening 302 d is sized to receive (with a clearance) the front portion 304 so that contact can occur between stop surface FSS and stop surface MSS.
  • the stop surface FSS is an annular surface that is formed on an internal cylindrical projecting wall 302 b which is integral with the section 302 .
  • this wall 302 b can instead be formed by spaced apart projections which extend inwardly from the section 302 .
  • this wall 302 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIG. 16 .
  • the front part 304 includes a small cylindrical section 304 a which utilizes two oppositely arranged slots (see FIG. 26 ).
  • the section 304 a also has an internal opening (e.g., see 304 f in FIG. 26 ) which is sized to receive the lancet 10 .
  • the front part 304 includes projections (e.g., see 304 e in FIG.
  • Front part 304 also includes larger cylindrical section 304 g which can slide within openings 302 d and 301 a .
  • the front part 304 also includes the deflecting member 304 h which is formed integrally therewith.
  • deflecting member 304 h and the front part 304 are formed of a material which allows the deflecting member 304 h to act as a spring in that it can be deflected inwards (compare FIGS. 24 and 25 ) and thereafter return to an undeflected position (see FIG.
  • the front part 304 includes internal threads which are configured to engage external threads of the rear part 305 .
  • the rear part 305 also has a cylindrical section 305 c which is sized and configured to slide within (with a clearance) cylindrical opening 301 d of body 301 and an enlarged cylindrical gripping end 305 b .
  • the holding arrangement 304 / 305 can alternatively be formed as a one-piece member.
  • the intermediate section 302 and body 301 can also alternatively be formed as a one-piece member as in the embodiment shown in FIGS. 14-21 .
  • FIGS. 29-35 show another embodiment of lancet device.
  • Lancet device LD has a lancet body 401 which can be made as a one-piece member as with the embodiment shown in FIGS. 1-7 . Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • a holding member 404 / 405 is movably disposed within the body 401 .
  • a front cover 403 is removably connected or attached to an intermediate section 402 of the body.
  • the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin.
  • the instant embodiment may utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend.
  • the lancet holder 404 / 405 has a rear portion 405 , and specifically a locking portion 405 b , that can be engaged by a locking member 414 after a back cap retracting spring 415 is mounted to the member 405 .
  • the front portion 404 and the rear portion 405 slide within the body 401 .
  • movement of the locking portion 405 b rearwardly causes the holding member 404 / 405 to retract until it reaches a spring loaded position shown in FIGS. 32 and 33 .
  • the lancet 10 itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices.
  • the front portion 404 of the holding member 404 / 405 includes a lancet holding end 404 a which receives the lancet 10 therein.
  • the holding member 404 / 405 arrangement preferably has a first spring 406 mounted thereto.
  • the first spring 406 which can be made of spring steel, is arranged to surround the holding member 404 / 405 , just behind the front portion 404 .
  • the spring 406 may have a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 406 causes (and/or biases) the holding member 404 / 405 to move towards an extended position once a trigger 409 is activated (not shown).
  • the trigger 409 includes a portion 409 a that extends into the body 401 , and is mounted to the body 401 .
  • the trigger 409 also has a finger engaging (e.g. push button) portion 409 b that can be pushed and/or deflected into the lancet device LD.
  • the trigger 409 also utilizes a spring 411 which biases the trigger 409 towards the position shown in FIGS. 31-33 .
  • the inner portion 409 a moves into contact with deflecting member 404 h of the front portion 404 .
  • This causes the deflecting member 404 h to disengage with opening 401 h , which allows front part 404 to move towards plane P.
  • the push button 409 b is released, the trigger 409 is capable of returning to the position shown in FIGS. 31-33 .
  • the spring 406 causes (and/or biases) the holding member 404 / 405 to move towards an extended position (not shown) once the holding member 404 / 405 is pulled back (see FIG. 33 ) using the back cap 412 .
  • a user need only move the back cap 412 rearwardly until the holding member arrangement 404 / 405 reaches the position shown in FIG. 33 . This, in turn, compresses the first spring 406 to a certain extent and allows deflecting member 404 h to catch or engage opening 401 h .
  • Such engagement ensures that the front portion 404 is prevented from moving axially towards the plane P until the trigger 409 is depressed.
  • the deflecting member 404 h is moved out of engagement with opening 401 h and the spring 406 causes the holding member 404 / 405 to move to a fully extended position.
  • the spring 406 causes the holding member 404 / 405 to automatically retract axially back into the body 401 to a position similar to that of FIG. 31 .
  • the spring 406 has one end, i.e., the left end, coupled to the front portion 404 of the holding member 404 / 405 and another end, i.e., the right end, coupled to the annular surface 401 b of the body 401 .
  • One way this can occur is shown in FIG. 46 , which will be more fully described later on.
  • the spring 406 can, of course, be connected to these parts in any desired manner.
  • the spring 406 can be connected to these parts 401 , 404 in a manner similar to that of FIG. 45 , i.e., via flanges formed on the parts 401 and 404 .
  • the spring 406 it is not necessary that the spring 406 be connected to parts 404 and 401 .
  • this embodiment uses a second spring 415 to cause the holding member 404 / 405 to automatically retract after it reaches the fully extended position, i.e., a position in which stop surface MSS contacts stop surface FSS.
  • the second spring 415 is able to compress with a force that is far less that the force needed to compress spring 406 .
  • the spring 415 has a diameter of approximately 10.1 mm, a freelength of approximately 13.6 mm, and a wire size of 0.25 mm.
  • the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 415 .
  • the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 409 is released) and is otherwise not exposed to a user while the front cover 403 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • the lancet device LD utilizes the front cap 403 to adjust the penetration depth of the lancet needle.
  • the front cap 403 is preferably mounted to the body 401 and/or to the intermediate section 402 of the body 401 so as to be at least partially rotate in each of two directions.
  • the front cap 403 can be mounted to the body 401 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards.
  • the front cap 403 has internal threads 403 c which engage external threads 402 a of the intermediate section 402 .
  • the front cap 403 also includes chamfered corners 403 b and raised projections 403 a which allow a user to more securely grip the front cap 403 .
  • the intermediate body section 402 has an internal projecting wall 402 b that includes a fixed stop surface FSS (see FIG. 32 ) which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 404 ) that is formed on or coupled to the front portion 404 of holding member 404 / 405 .
  • FIG. 32 shows the lancet device LD with the lancet member 404 / 405 in the loaded position, i.e., ready to move to an extended position when the trigger 409 is depressed.
  • the holding member 404 / 405 retains the loaded position of FIG. 32 as long as the user does not press the trigger 409 .
  • the holding member 404 / 405 is released from the loaded position of FIG. 32 , and is caused to move towards plane P. This occurs because the holding member 404 / 405 is free to slide within body 401 .
  • the holding member 404 / 405 can also have a polygonal cross-section shape which corresponds to a polygonal opening 401 d in the body 401 so as to ensure that the holding member 404 / 405 does not rotate while it moves axially back and forth.
  • the holding member 404 / 405 has cylindrical outer surfaces (e.g., 404 g and 405 c ) which slide within (with a clearance) cylindrical surfaces (e.g., 401 a , 402 d , and 401 d ) in the body 401 and intermediate section 402 .
  • the holding member 404 / 405 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 402 .
  • the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P.
  • the lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 32 .
  • the lancet device LD can have any desired number of pre-set extended positions, i.e., in one of the positions of the front cap 403 that will cause a desired puncture depth in the skin of a user (not shown).
  • the distance that the lancet needle projects past plane P is thus determined by rotating the front cap 403 until the desired setting is reached, e.g., arrow 408 lines up with one of the indicia 407 .
  • This setting causes the plane P to move axially relative to fixed stop surface FSS.
  • the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 404 / 405 , and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 403 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 403 thus determines how much of the end of the lancet needle extends past the plane P.
  • the depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the front cap 403 .
  • the needle tip can project through the opening LO in the front cover 403 and past the plane P.
  • the user can pull end 405 b back, i.e., by pulling back cap 412 back, to compress spring 406 to again arm the lancet device LD.
  • this movement of the back cap 412 causes the second spring 415 to compress (see FIG. 33 ).
  • the second spring 415 causes the back cap 412 to retract back into the body 401 .
  • the engaging portion 409 a of trigger 309 utilizes an engaging surface which, when engaged with the deflecting member 404 h of the front portion 404 , causes the front portion 404 to move.
  • the trigger 409 also moves against the biasing force of a trigger spring 411 .
  • the spring 411 has an upper end which is retained on a flange 409 c of the trigger 409 and a lower end that is retained to a flange 401 g of the body 401 .
  • An annular opening 401 e is formed in the body 401 and is sized and configured to receive an outer flange portion 409 d of the trigger 409 .
  • the invention contemplates other configurations of the trigger 409 and the invention is not limited to any particular type of trigger.
  • FIG. 33 shows an enlarged cross-section view of the lancet device LD wherein the holding member 404 / 405 is in the loaded position.
  • the holding member 404 / 405 is ready for movement to its maximum extended position caused by axial expansion of the spring 406 .
  • the front cover 403 , intermediate body 402 , spring 406 , lancet 10 , spring 415 , locking member 414 , back cap 412 and holding member 404 / 405 can be seen in their installed and/or assembled position.
  • the springs 406 and 415 are arranged to surround the holding member 404 / 405 , behind the lancet receiving front portion 404 .
  • the spring 406 is preferably sized to slide into internal opening 401 a of the body 401
  • the spring 415 is sized to slide into internal opening 401 i of body 401 .
  • the spring 406 is preferably disposed inside the body 401 and between an inner wall 401 b of the body 401 and the front part 404 of the holding member 404 / 405 . That is, the spring 406 is axially retained between a left side surface 404 c of front part 404 of holding member 404 / 405 the inner wall 401 b of the body 401 . As a result, the spring 406 is caused to be compressed when the holding member 404 / 405 is moved back (i.e., to the right) to a retracted position relative to the body 401 . As discussed above, the spring 406 causes (and/or biases) the holding member 404 / 405 towards an extended position once the trigger 409 is pressed. As a result, the holding member 404 / 405 cannot be moved back to a retracted position without causing the spring 406 to be compressed thereby.
  • the spring 415 is preferably disposed inside the body 401 and between an inner wall 412 b of the back cap 412 and the end 405 b of the holding member 404 / 405 . That is, the spring 415 is axially retained between a left side surface 412 c of the back cap 412 and locking member 414 . As a result, the spring 415 is caused to be compressed when the holding member 404 / 405 is moved forward (i.e., to the left) to an extended position and when the back cap 412 is moved to an extended position (i.e., to the right) relative to the body 401 .
  • the spring 415 causes (and/or biases) the back cap 412 towards a retracted position once the back cap 412 is released. As a result, the back cap 412 cannot be moved away from the body 401 without causing the spring 415 to be compressed thereby.
  • an opening 412 d is provided in wall 412 b .
  • the back cap 412 also includes a recess 412 g which is sized and configured to receive an end plug 413 .
  • the back cap 412 includes a cylindrical outer surface 412 e which is sized and configured to slide (with a clearance) within cylindrical opening 401 i .
  • a shoulder 412 a is provided to allow the user to grip the back cap 412 .
  • the shoulder 412 a also acts to limit the retraction of the back cap 412 into the body 401 by engaging end 401 k in the fully retracted position.
  • the front cap 403 has internal threads 403 c and a planar inner annular surface 403 d .
  • the threads 403 c are configured to engage external threads 402 a of the intermediate section 402 .
  • the intermediate section 402 also includes an external cylindrical surface 402 e and internal threads 402 c which are configured to engage external threads 401 c of the body 401 .
  • a cylindrical opening 402 d is sized to receive (with a clearance) the front portion 404 so that contact can occur between stop surface FSS and stop surface MSS (not shown).
  • the stop surface FSS is an annular surface that is foamed on an internal cylindrical projecting wall 402 b which is integral with the section 402 .
  • this wall 402 b can instead be formed by spaced apart projections which extend inwardly from the section 402 .
  • this wall 402 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIGS. 14-21 .
  • the front part 404 includes a small cylindrical section 404 a which utilizes two oppositely arranged slots (see FIG. 34 ).
  • the section 404 a also has an internal opening 404 f which is sized to receive the lancet 10 .
  • the front part 404 includes projections 404 e which have sharp ends for gripping the lancet 10 .
  • the slots 404 d allow the opening 404 f to expand and contract with insertion and removal of the lancet 10 and allow the end 404 to act as two spring fingers.
  • Front part 404 also includes larger cylindrical section 404 g which can slide within openings 402 d and 401 a .
  • the front part 404 also includes the deflecting member 404 h which is formed integrally therewith.
  • deflecting member 404 h and the front part 404 is formed of a material which allows the deflecting member 404 h to act as a spring in that it can be deflected inwards (compare FIGS. 31 and 32 ) and thereafter return to an undeflected position (see FIG. 32 ).
  • the front part 404 includes internal threads 404 b which are configured to engage external threads 405 a of the rear part 405 .
  • the rear part 405 also has a cylindrical section 405 c which is sized and configured to slide within (with a clearance) cylindrical opening 401 d of body 401 and an enlarged locking end 405 b whose barbs engage an internal opening in locking member 414 .
  • FIGS. 36-38 show another embodiment of lancet device.
  • Lancet device LD has a lancet body 501 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7 . Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • the parts other than the body 501 can be the same as those used in the embodiment shown in FIGS. 29-35 . Accordingly, the details of these parts will not be described again.
  • the rear holding member 505 in this embodiment may also be different in that it may utilize a polygonal configuration which can be in the form of a cross (see FIG. 38 ).
  • a polygonal configuration which can be in the form of a cross (see FIG. 38 ).
  • two support walls 501 n and 501 o extend inwards into the body 501 .
  • An enlarged opening 501 m is provided between walls 501 n and 501 o .
  • the walls 501 n and 501 o also include openings 501 d which are sized and configured (with a clearance) to slidingly receive the rear portion 505 .
  • the lancet device LD will otherwise function in an manner similar to that of FIGS. 29-35 .
  • FIGS. 39-40 show an embodiment of a lancet device body 601 which can be used in the embodiment shown in FIGS. 36-38 .
  • the body 601 is the same as that shown in FIGS. 36-38 except that it is made as a two-piece structure.
  • the body 601 an upper part 601 A and a lower part 601 B which can be connected together in any desired manner.
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • the use of a two-piece body similar to that one shown herein, can be used in any of the disclosed embodiments.
  • FIGS. 41-42 show an embodiment of a lancet device which utilizes a rear portion 705 of the lancet holding arrangement that includes two oppositely arranged stop projections 705 A and 705 B. Such an arrangement may be used on the embodiments shown in FIGS. 29-38 .
  • the purpose of the stop projections 705 A and 705 B is to prevent the second spring 715 from compressing completely and to ensure that the back cap 712 is not pulled out from the body 701 beyond a desired amount.
  • the surface 712 c contacts the stop projections 705 A and 705 B and the spring 715 is prevented from further compression. Once such contact occurs, the holding member 705 begins to move backwards with the back cap 712 in the manner similar to that described with regard to FIGS. 29-38 .
  • FIGS. 43-44 show another embodiment of lancet device.
  • Lancet device LD has a lancet body 801 which can be made as a two-piece member as with the embodiment shown in FIGS. 39-40 . Alternatively, it can be made as a one-piece structure as in the embodiment shown in, e.g., FIGS. 36-38 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • the parts other than the body 801 and the rear holding member 805 can be the same as those used in the embodiment shown in FIGS. 36-38 .
  • the rear holding member 805 in this embodiment utilizes both a polygonal configuration which can be in the form of a cross (see FIG. 38 ) and a projecting portion 816 .
  • a third spring 817 is provided.
  • the third spring 817 is arranged an wall of the body 801 and the projecting part 816 .
  • the third spring 817 can be similar to that of the back cap spring.
  • the walls of the body 801 include openings which are sized and configured (with a clearance) to slidingly receive the rear portion 805 .
  • the lancet device LD will function in an manner similar to that of FIGS. 29-35 , except that the third spring 816 will also aid in retracting the lancet holding member after the stop surface MSS contacts the stop surface FSS.
  • FIG. 45 shows another embodiment of lancet device.
  • Lancet device LD has a lancet body 901 which can be made as a two-piece member as with the embodiment shown in FIGS. 39-40 . Alternatively, it can be made as a one-piece structure as in the embodiment shown in, e.g., FIGS. 22-28 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • the parts other than the body 901 and the front part 904 can be the same as those used in the embodiment shown in FIGS. 22-28 . Accordingly, the details of these parts will not be described again.
  • the front part 904 in this embodiment may utilize an integrally formed connecting flange 904 i for retaining one end of the spring 906 .
  • the body 901 may also utilize an integrally formed flange 901 i which is connected to another end of the spring 906 .
  • the lancet device LD will otherwise function in an manner similar to that of FIGS. 22-28 .
  • FIG. 46 shows one way that spring can be mounted to each of the front part, e.g., 4 and the body, e.g., 1. This arrangement can be used on any of the disclosed embodiments, and especially those of FIGS. 1-28 .
  • the ends 6 a and 6 b of the spring 6 are shaped with a bend which penetrates openings formed in each of the front part 4 and the body 1 .
  • Such frictional engagement can be aided by using, e.g., adhesives, in order to ensure that the spring 6 does not disconnect or disengage from the front part and body.
  • FIGS. 47-50 shows one possible system for maintaining the depth setting of the front cap.
  • This system can be used on any of the herein disclosed embodiments by modifying the intermediate section to include surface 1002 f and ratchet pawl RP.
  • the front cap can be modified to include the undulating ratchet surface RS and the groove 1003 e .
  • the invention contemplates other systems or mechanisms for maintaining the depth setting position of the front cap relative to the body.
  • the front cap 1003 can have the same outer configuration described with regard to any of the previous embodiments.
  • the front cap 1003 can also include axially oriented pointed undulations which form the ratchet surface RS.
  • these undulations are in the form of pointed axial projections arranged on an inner circumferential wall, they can also have the form of rounded undulations.
  • the purpose of these undulations or projections/grooves is of course to engage the ratchet pawl RP on the intermediate section 1002 .
  • the number of projections/grooves forming the undulations can, of course, be configured to match the desired number of depth settings and/or the desired axial movement of the each setting, i.e., more undulations translates to finer depth settings (with less force generally being required to rotate the front cover 1003 ) while less undulations translates to move axial distance of the front cover 1003 between discrete depth settings (with more force generally being required to rotate the front cover 1003 ).
  • the undulating surface will cause the ratchet pawl RP to deflect towards and away from surface 1002 f .
  • the front cap 1003 when the front cap 1003 is not rotated, it will automatically be maintained in a position wherein the ratchet pawl RP engages one of the grooves of the undulating surface. Using this system, the user will generally experience a clicking sound as the ratchet pawl RP engages each groove of the undulating surface RS upon rotation of the front cap 1003 . In this regard, it is important to ensure that the axial length of surface 1002 f is sufficiently long to encompass all of the axial movement of the front cap 1003 between the range of adjustment indicated by the indicia. As can be seen in FIGS. 47 and 48 , the surface RS extends from planar surface 1003 d to a circumferential groove 1003 e.
  • the front end of the intermediate section 1002 (or body if no intermediate section is utilized as in the embodiment shown in e.g., FIGS. 14-21 ) includes one ratchet pawl RP which is integrally formed there with.
  • the pawl RP can be replaced with any desired mechanism which deflects towards and away from the surface 1002 f such as, e.g., a spring mounted sphere which is embedded in surface 1002 f , i.e., between surface 1002 f and opening 1002 g .
  • the pawl RP includes an arm section that is coupled to the surface 1002 f and a rounded end which engages the undulating surface RS.
  • a circumferential space is provided between the aim and the surface 1002 f to ensure that the arm can deflect towards the surface 1002 f when the pointed portions of the surface RS force the pawl RP towards surface 1002 f .
  • the instant embodiment illustrates a pawl RP arranged in front of the fixed stop wall 1002 b
  • the pawl RP can be arranged in any desired location provided it functions to engage a ratchet surface RS.
  • the drawings illustrate one pawl RP, it should be noted that the invention contemplates using two (oppositely arranged) or more pawls, as desired.
  • the invention also contemplates that the pawl RP can be formed or coupled to the front cap 1003 while the ratchet surface RS is formed on the intermediate section 1002 or body.
  • FIGS. 51-64 show another embodiment of lancet device.
  • Lancet device LD has a lancet body 1101 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7 . Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • a holding member 1105 is movably disposed within the body 1101 .
  • a front cover 1103 is removably connected or attached to an intermediate and/or an adjustable section 1102 .
  • the adjustable section or member 1102 is threadably mounted to a front portion of the body 1101 .
  • the lancet 10 can thus be removed and replaced with a new lancet 10 , as needed, once the front cover 1103 is removed.
  • the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin.
  • the lancet holder 1105 has a rear portion and a front portion 1104 that can be accessed by a user upon removal of the front cover 1103 in order to all for replacement of the lancet 10 .
  • the holding member 1105 slides within the body 1101 .
  • movement of the holding member 1105 rearwardly causes the holding member 1105 to retract until it reaches a spring loaded position shown in FIG. 51 .
  • the lancet 10 itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices.
  • the front portion 1104 of the holding member 1105 includes a lancet holding opening which receives the lancet 10 therein.
  • the holding member 1105 preferably has a spring 1106 mounted thereto.
  • the spring 1106 which can be made of spring steel, is arranged to surround the holding member 1105 , just behind a deflecting member 1105 a .
  • the spring 1106 may have a diameter of approximately 6.2 mm at its front end and a diameter of approximately 13 mm at its rear end, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 1106 causes (and/or biases) the holding member 1105 to move towards an extended position once a trigger 1109 is activated (see FIG. 63 ).
  • the trigger 1109 includes a portion that extends into the body 1101 and that engages with the deflecting member 1105 a , and is movably mounted to a side wall of the body 1101 .
  • the trigger 1109 also has a finger engaging (e.g. push button) portion that can be pushed and/or deflected into the lancet device LD.
  • the trigger 1109 can utilize a spring (similar to previously described embodiments) which biases the trigger 1109 towards the position shown in, e.g., FIG. 51 .
  • the inner portion moves into contact with deflecting member 1105 a of the holding member 1105 .
  • the trigger 1109 is capable of returning to the position shown in FIG. 51 .
  • the spring 1106 causes (and/or biases) the holding member 1105 to move towards an extended position (see FIG. 61 ) after the holding member 1105 is pushed back (see FIG. 64 ) to the position shown in FIG. 51 .
  • a user wishes to place the lancet device LD in the loaded or armed position ( FIG. 51 )
  • a user need only move or push the portion 1104 or lancet 10 rearwardly (see FIG. 64 ) until the holding member 1105 reaches the position shown in FIG. 51 .
  • This compresses the spring 1106 to a certain extent and allows deflecting member 1105 a to catch or engage the shoulder 1101 a .
  • Such engagement ensures that the holding member 1105 is prevented from moving axially towards the plane P until the trigger 1109 is depressed.
  • the deflecting member 1105 a is moved out of engagement with the shoulder 1101 a and the spring 1106 causes the holding member 1105 to move to a fully extended position.
  • the spring 1106 causes the holding member 1105 to automatically retract axially back within the body 1101 to a position that is intermediate to the fully retracted position shown in FIG. 51 and a fully extended position set by contact between the movable stop surface MSS and fixed stop surface FSS.
  • the spring 1106 has one end, i.e., the right end, coupled to (i.e., via two generally circumferential shoulders) the holding member 1105 and another end, i.e., the left end, coupled to and/or fixed between two internal generally circumferential shoulders of the body 1101 .
  • the spring 1106 can, of course, be connected to these parts in any desired manner.
  • the spring 1106 can be connected to these parts in a manner similar to that of FIG. 45 , i.e., via annular flanges formed on the parts 1101 and 1105 .
  • the lancet needle only momentarily projects past the plane P in the extended position before it is caused to automatically retract back in the lancet device by the spring 1106 .
  • the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 1109 is released) and is otherwise not exposed to a user while the front cover 1103 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • the lancet device LD shown in FIGS. 51-64 does not utilize the front cap 1103 to adjust the penetration depth of the lancet needle.
  • an intermediate member 1102 provides for lancet needle depth adjustment.
  • the intermediate member 1102 is preferably mounted to the body 1101 so as to at least partially rotate in each of two directions.
  • the intermediate member 1102 can be mounted to the body 1101 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards to provide depth adjustment.
  • the intermediate member 1102 has internal threads 1102 a which engage external threads 1101 b of the intermediate section 1102 .
  • the threads of the body 1101 and the intermediate member 1102 can be of any conventionally known type.
  • the intermediate member 1102 also includes a chamfered section having raised projections or a knurl 1102 b which allow a user to more securely grip (i.e., by providing a high friction gripping surface) the intermediate member 1102 .
  • the intermediate member 1102 also has an external generally circumferential projection 1102 c that can releasably engage with an internal circumferential recess 1103 a of the front cap 1103 .
  • FIG. 51 shows the lancet device LD with the lancet holding member 1105 in the loaded position, i.e., ready to move to an extended position when the trigger 1109 is depressed.
  • the holding member 1105 retains the loaded position of FIG. 51 as long as the user does not press the trigger 1109 .
  • the holding member 1105 is released from the loaded or trigger-set position of FIG. 51 , and is caused to move towards plane P. This occurs because the holding member 1105 is free to move or slide within body 1101 .
  • the holding member 1105 can also have a polygonal cross-section shape which corresponds to a polygonal opening (defined by flanges 1101 c and 1101 d ) in the body 1101 so as to ensure that the holding member 1105 does not rotate while it moves axially back and forth.
  • the holding member 1105 has cylindrical outer surfaces which slide within (with a clearance) cylindrical surfaces or openings of the flanges 1101 c and 1101 d in the body 1101 .
  • the holding member 1105 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the body 1101 .
  • the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P.
  • the lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 51 .
  • the lancet device LD can have any desired number of pre-set extended positions determined by an axial position of the intermediate member 1102 that will cause a desired puncture depth in the skin of a user (not shown).
  • the distance that the lancet needle projects past plane P can be determined by rotating the intermediate member 1102 until the desired setting is reached, e.g., an arrow lines up with one of the indicia 1101 e (see FIGS. 52 and 53 ).
  • This setting causes the plane P to move axially relative to fixed stop surface FSS.
  • the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 1105 , and since the plane P moves parallel to an axis of the lancet device LD and relative to the fixed stop surface FSS, adjustment of the intermediate member 1102 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the intermediate member 1102 thus determines how much of the end of the lancet needle extends past the plane P.
  • the depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the intermediate member 1102 .
  • the needle tip can project through the opening LO in the front cover 1103 and past the plane P. Thereafter, the user can push the holding member 1105 back to compress spring 1106 to again arm the lancet device LD.
  • the instant embodiment operates such that an overall length of the lancet device changes when the intermediate member 1102 is moved to an adjustment position.
  • FIGS. 55 and 56 shows that the intermediate member 1102 can be adjusted without the front cap 1103 although it is desired, for safety reasons, that the front cap 1103 be installed onto the intermediate member 1102 when the intermediate member is moved to a different adjustment position.
  • the body 1101 has external threads 1101 b and a deflecting member 1101 f that includes a projection 1101 g .
  • the threads 1101 b are configured to engage internal threads 1102 a of the intermediate member 1102 .
  • the intermediate member 1102 also includes internal recesses 1102 d which receive therein the projection 1101 g depending on the particular rotational position of the intermediate member 1102 . In this way, as intermediate member 1102 rotates or threadably engages with the body 1101 a clicking sound will result as the projection 1101 g selectively sequentially engages with each of the recesses 1102 d .
  • engagement between the projection 1101 g and a particular recess 1102 d results in a different overall length for the lancet device LD and also a different depth setting position.
  • engagement between the projection 1101 g and a particular recess 1102 d results in a depth set position that is locked or temporarily set until the intermediate member 1102 is rotated to another position determined by engagement between the projection 1101 g and another recess 1102 d .
  • the member 1101 f is made deflectable by its integral connection (i.e., a living hinge connection provided for by the natural elasticity of the material of the body and two slots separating the sides of the member 11010 with the body 1101 .
  • the invention also contemplates using the projection on the intermediate member 1102 and the recesses on the body 1101 .
  • the lancet 10 can be securely and axially retained within opening of the holding member 1105 via, e.g., projections which have sharp ends for gripping the lancet 10 .
  • Slots formed in the front portion 1104 allow the opening to expand and contract with insertion and removal of the lancet 10 and allow the end 1104 to act as two spring fingers.
  • FIG. 65 shows a partial cross-section view of a possible modification of the embodiment shown in FIGS. 51-64 .
  • This embodiment utilizes a trigger setting mechanism similar to the embodiments shown in FIGS. 29-44 .
  • a movably mounted back cap 1112 is utilized to move the holding member 1105 ′ to a retracted trigger-set position.
  • a spring 1115 Is arranged to bias the back cap 1112 towards a retracted position shown in FIG. 65 after a user uses the back cap 1112 to move the holding member 1105 ′ to the retracted position.
  • the invention contemplates other arrangements for allowing the user to move the holding member 1105 ′ to the trigger-set position such as the ones utilized in the following US patents: U.S. Pat.
  • FIGS. 66 and 67 show another embodiment of lancet device.
  • Lancet device LD has a lancet body 1201 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7 . Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39 .
  • Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled.
  • a holding member 1205 is movably disposed within the body 1201 .
  • a front cover 1203 is removably connected or attached to a front portion of the body 1201 .
  • the adjustable member or mechanism 1102 in this embodiment is threadably mounted to a rear portion of the body 1201 .
  • the lancet 10 can thus be removed and replaced with a new lancet 10 , as needed, once the front cover 1203 is removed.
  • the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin.
  • the instant embodiment may also utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend.
  • the lancet holder 1205 has a rear portion and a front portion 1204 that can be accessed by a user upon removal of the front cover 1203 in order to all for replacement of the lancet 10 .
  • the holding member 1205 slides within the body 1201 . As will be described in more detail later on, movement of the holding member 1205 rearwardly, causes the holding member 1205 to retract until it reaches a spring loaded position shown in FIG. 66 .
  • the lancet 10 itself, is conventional and includes a needle.
  • the front portion 1204 of the holding member 1205 includes a lancet holding opening which receives the lancet 10 therein.
  • the holding member 1205 preferably has a spring 1206 mounted thereto.
  • the spring 1206 which can be made of spring steel, is arranged to surround the holding member 1205 , just behind a deflecting member 1205 a .
  • the spring 1206 may have a diameter of approximately 6.2 mm at its front end and a diameter of approximately 13 mm at its rear end, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 1206 causes (and/or biases) the holding member 1205 to move towards an extended position once a trigger 1209 is activated (not shown).
  • the trigger 1209 includes a portion that extends into the body 1201 and that engages with the deflecting member 1205 a , and is movably mounted to a side wall of the body 1201 .
  • the trigger 1209 also has a finger engaging (e.g. push button) portion that can be pushed and/or deflected into the lancet device LD.
  • the trigger 1209 can utilize a spring (similar to previously described embodiments) which biases the trigger 1209 towards the position shown in, e.g., FIG. 66 .
  • the inner portion moves into contact with deflecting member 1205 a of the holding member 1205 .
  • the trigger 1209 is capable of returning to the position shown in FIG. 66 .
  • the spring 1206 causes (and/or biases) the holding member 1205 to move towards an extended position (not shown) after the holding member 1205 is pushed back (e.g., in the same way as shown in FIG. 64 ) to the position shown in FIG. 66 .
  • a user wishes to place the lancet device LD in the loaded or armed position ( FIG. 66 )
  • a user need only move or push the portion 1204 or lancet 10 rearwardly (see e.g., FIG. 64 ) until the holding member 1205 reaches the position shown in FIG. 66 .
  • This compresses the spring 1206 to a certain extent and allows deflecting member 1205 a to catch or engage the shoulder.
  • Such engagement ensures that the holding member 1205 is prevented from moving axially towards the plane P until the trigger 1209 is depressed.
  • the deflecting member 1205 a is moved out of engagement with the shoulder and the spring 1206 causes the holding member 1205 to move to a fully extended position.
  • the spring 1206 causes the holding member 1205 to automatically retract axially back within the body 1201 to a position that is intermediate to the fully retracted position shown in FIG. 66 and a fully extended position set by contact between the movable stop surface MSS and adjustable stop surface ASS.
  • the movable stop surface MSS is formed by an annular surface of an outwardly projecting circumferential shoulder or flange arranged an a rear end of the holding member 1205 .
  • the adjustable stop surface ASS is formed by an annular surface of an inwardly projecting or extending circumferential shoulder or flange arranged on the adjusting mechanism or intermediate member 1202 .
  • the movement of the holding member 1205 occurs because the spring 1206 has one end, i.e., the right end, coupled to (i.e., via two generally circumferential shoulders) the holding member 1205 and another end, i.e., the left end, coupled to and/or fixed between two internal generally circumferential shoulders of the body 1201 .
  • the spring 1206 can, of course, be connected to these parts in any desired manner.
  • the spring 1206 can be connected to these parts in a manner similar to that of FIG. 45 , i.e., via annular flanges formed on the parts 1201 and 1205 .
  • the lancet needle only momentarily projects past the plane P in the extended position before it is caused to automatically retract back in the lancet device by the spring 1206 .
  • the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 1209 is released) and is otherwise not exposed to a user while the front cover 1203 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • the lancet device LD shown in FIGS. 66 and 67 does not utilize the front cap 1203 to adjust the penetration depth of the lancet needle.
  • an intermediate member 1202 having the form of an adjustment mechanism provides for lancet needle depth adjustment.
  • the intermediate member 1202 is preferably mounted to the body 1201 so as to at least partially rotate in each of two directions.
  • the intermediate member 1202 can be mounted to the body 1201 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards to provide depth adjustment.
  • the intermediate member 1202 has internal threads 1202 a which engage external threads 1201 b of the intermediate member 1202 .
  • the threads of the body 1201 and the intermediate member 1202 can be of any conventionally known type.
  • the intermediate member 1202 also includes a chamfered section having raised projections or a knurl (similar to knurl 1102 b of FIGS. 52-54 ) which allow a user to more securely grip (i.e., by providing a high friction gripping surface) the intermediate member 1202 .
  • the front portion of the body 1201 has an external generally circumferential projection (similar to 1102 c shown in FIG. 61 b ) that can releasably engage with an internal circumferential recess 1203 a of the front cap 1203 .
  • FIGS. 66 and 67 show the lancet device LD with the lancet holding member 1205 in the loaded position, i.e., ready to move to an extended position when the trigger 1209 is depressed.
  • the holding member 1205 retains the loaded position of FIGS. 66 and 67 as long as the user does not press the trigger 1209 .
  • the holding member 1205 is released from the loaded or trigger-set position of FIGS. 66 and 67 , and is caused to move towards plane P. This occurs because the holding member 1205 is free to move or slide within body 1201 .
  • the holding member 1205 can also have a polygonal cross-section shape which corresponds to a polygonal opening (defined by flanges 1202 c and 1201 d ) in the mechanism 1202 and the body 1201 so as to ensure that the holding member 1205 does not rotate while it moves axially back and forth.
  • the holding member 1205 it is sufficient if the holding member 1205 has cylindrical outer surfaces which slide within (with a clearance) cylindrical surfaces or openings of the flanges 1202 c and 1201 d .
  • the holding member 1205 can move towards the plane P until the movably stop surface MSS contacts or engages the adjustable stop surface ASS of the adjustment mechanism 1202 section of the body 1201 .
  • the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P.
  • the lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIGS. 66 and 67 .
  • the lancet device LD can have any desired number of pre-set extended positions determined by an axial position of the intermediate member or adjustment mechanism 1202 that will cause a desired puncture depth in the skin of a user (not shown).
  • the distance that the lancet needle projects past plane P can be determined by rotating the intermediate member 1202 until the desired setting is reached, e.g., an arrow lines up with one of an indicia (which can be similar to the embodiment shown in FIGS. 52 and 53 ).
  • This setting causes the plane P to move axially relative to adjustable stop surface ASS.
  • the movable stop surface MSS always contacts the adjustable stop surface ASS in the extended position of the holding member 1205 , and since the plane P moves parallel to an axis of the lancet device LD and relative to the adjustable stop surface ASS, adjustment of the intermediate member 1202 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the intermediate member 1202 thus determines how much of the end of the lancet needle extends past the plane P.
  • the depth setting is thus controlled by contact between the stop surface MSS, stop surface ASS and the rotational position of the intermediate member 1202 .
  • the needle tip can project through the opening LO in the front cover 1203 and past the plane P. Thereafter, the user can push the holding member 1205 back to compress spring 1206 to again arm the lancet device LD.
  • the instant embodiment operates such that an overall length of the lancet device changes when the intermediate member 1202 is moved to an adjustment position.
  • FIGS. 66 and 67 shows that the intermediate member 1202 can be adjusted without the front cap 1203 being installed on the body 1201 although it is desired, for safety reasons, that the front cap 1203 be installed onto the body 1201 when the intermediate member 1202 is moved to a different adjustment position.
  • the body 1201 has external threads 1201 b and a deflecting member (not shown but similar to deflecting 1101 f of FIG. 58 ) that includes a projection (similar to projection 1101 g of FIG. 58 ).
  • the threads 1201 b are configured to engage internal threads 1202 a of the intermediate member 1202 .
  • the intermediate member 1202 also includes internal recesses (not shown but similar to recesses 1102 d of FIG. 61 b ) which receive therein the projection depending on the particular rotational position of the intermediate member 1202 . In this way, as intermediate member 1202 rotates or threadably engages with the body 1201 a clicking sound will result as the projection selectively sequentially engages with each of the recesses.
  • engagement between the projection of the body 1201 and a particular recess of the intermediate member 1202 results in a different overall length for the lancet device LD and also a different depth setting position.
  • engagement between the projection and a particular recess results in a depth set position that is locked or temporarily set until the intermediate member 1202 is rotated to another position determined by engagement between the projection and another recess.
  • the deflecting member similar to member 1101 f of FIGS.
  • the lancet 10 can be securely and axially retained within opening of the holding member 1205 via, e.g., projections which have sharp ends for gripping the lancet 10 .
  • Slots formed in the front portion 1204 allow the opening to expand and contract with insertion and removal of the lancet 10 and allow the end 1204 to act as two spring fingers.
  • FIGS. 66 and 67 can also be modified to include a trigger setting mechanism similar to the one shown in e.g., FIG. 65 .
  • the adjustment mechanism or intermediate member is arranged at a front end of the lancet device.
  • the intermediate member is arranged at a read end of the lancet device.
  • the invention also contemplates arranging the intermediate member or adjustment mechanism in an area of the middle or center of the lancet device instead of on the ends of the lancet device, e.g., either between the trigger and front cap or between the trigger and the rear end of the lancet device.
  • the various parts can preferably be made as one-piece structures by e.g., injection molding.
  • they are preferably made of a plastic or synthetic resin such as, e.g., ABS plastic.
  • the body and intermediate section can also be made of ABS—Metallic Silver and have a finish designated as SPI-A2.
  • the front cover and back cap may also be made of ABS—Light Blue and have a finish designated as SPI-A2.
  • the end plug, e.g., 413 is preferably made of a plastic or synthetic resin such as, e.g., Delrin plastic.
  • the trigger may also have be made of ABS—Red and have a finish designated as SPI-A2.
  • the holding member may also have be made of Delrin—Natural and have a finish designated as SPI-C1. Of course, other materials and/or finishes may be utilized, without leaving the scope of the invention. Moreover, each part may even be made of a plurality of sections of parts which are joined together to form the complete parts, without leaving the scope of the invention. Thus, all the parts of the lancet device, with the exception of the springs (which can be made of spring steel) and with the exception of the lancet needle (which can be a conventional metal needle mounted to a conventional plastic lancet 10 ), may be made from plastic materials and can be formed using conventional injection molding techniques or other known manufacturing methods.
  • the front cap and/or body can be integrally formed with peripheral grooves and/or projections (similar to a coin), and with the indicating marks.
  • desirable plastics include polypropylene (PP), polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS), nylon, linear polyoxymethylene-type acetal resin, e.g., “DELRIN”, and polycarbonate (PC), e.g., “LEXAN”.
  • PP polypropylene
  • PVC polyvinyl chloride
  • ABS acrylonitrile butadiene styrene
  • nylon nylon
  • linear polyoxymethylene-type acetal resin e.g., “DELRIN”
  • PC polycarbonate
  • the invention also contemplates that any or all disclosed features of one embodiment may be used on other disclosed embodiments, to the extent such modifications function for their intended purpose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Lancet device having adjustable depth of penetration. The lancet device includes a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and including a front end and a rear end. A spring arranged to bias the holding member at least towards an extended position. A stop surface limiting movement of the holding member. An intermediate member at least one of adjustably connected to the body and threadably connected to the body. Movement of the intermediate member changes an overall length of the lancet device. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. non-provisional application Ser. No. 11/153,381 filed on Jun. 16, 2005, which application is a continuation-in-part of U.S. application Ser. No. 10/641,142 filed Aug. 15, 2003. The disclosure of each of these applications is expressly incorporated by reference herein in their entireties.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to a lancet device which is easier, more economical and which is more efficient to make. The invention also relates to a lancet device preferably having an adjusting capability, and a method of using a lancet device. In particular, the invention relates to a lancet device which utilizes an adjustable depth penetration. Lancet devices are used to penetrate and puncture the skin in order to allow the taking of a blood sample for testing. The present device allows the user to control the depth of this penetration by a simple adjustment mechanism.
  • 2. Discussion of Background Information
  • Lancet devices are commonly used to prick the skin of the user so that one or more drops of blood may be extracted for testing. Some users, such as diabetics, for example, may have to test their blood sugar levels several times a day. This may be accomplished by the user using a simple needle. However, this procedure is often problematic for the user since the needle may be difficult to handle. Moreover, controlling the depth of penetration cannot be reliably accomplished without the use of a mechanical device. Additionally, many users simply cannot perform the procedure owing to either a fear of needles or because they lack a steady hand. As a result, lancet devices have been developed which allow the user to more easily and reliably perform this procedure.
  • Most lancet devices lack convenient and flexible adjustability. Such devices are typically made adjustable by switching their tips. U.S. Pat. No. Re. 32,922 to LEVIN et al. is one such device. That is, the user must remove one tip having a set depth and replace it with another having a different set depth. This, of course, creates the problem of storing the replaceable tips, which if not properly done, may result in their misplacement, damage, contamination, or the like.
  • An improved device would allow the user to more easily adjust the depth of penetration and would overcome some of the disadvantages described above. Moreover, since the skin thickness can vary slightly from user to user and finger to finger, a need exists for efficiently adapting the depth of penetration. For example, an index finger may be more calloused than a middle finger, and the more calloused finger will typically have thicker skin. By adjusting the depth of puncture so that the depth is no greater than necessary for extracting a required amount of blood, any pain experienced by the user may be minimized.
  • Lancets having an adjustable tip are known per se. For example, U.S. Pat. No. 4,469,110 to SLAMA discloses a mechanism which adjusts the penetration depth by rotating a threaded sleeve relative to a body. The SLAMA device is characterized as a □single bottom□ device which employs a threaded design which can be expensive to manufacture. Moreover, such a device may require the user to rotate the threaded sleeve up to 360 degrees and more in order to attain the proper depth setting. Further, such a threaded resign is prone to inadvertent setting changes since there is nothing but frictional engagement between the mating threads to maintain the adjustment setting.
  • U.S. Pat. No. 4,895,147 to BODICKY et al. functions in a similar manner to the device in SLAMA and therefore suffers from similar disadvantages.
  • U.S. Pat. Nos. 5,464,418, 5,797,942, 5,908,434, 6,156,051 and 6,530,937 to SCHRAGA also disclose similar lancet devices and are hereby incorporated herein by reference as though set forth in full herein.
  • As disclosed in U.S. Pat. No. 5,908,434, the lancet device has a body portion which encloses a lancet and a lancet firing mechanism. The lancet typically has a needle extending therefrom and is caused to move towards the tip of the device by a trigger or firing mechanism. The lancet device forces the needle, by virtue of the needle being fixed thereto, out of the device by some distance or depth so that the needle can penetrate the skin of the user. The function of this firing mechanism and the lancet body design is disclosed in each of U.S. Pat. Nos. 5,797,942 and 5,908,434. These patents are incorporated by reference herein in their entirety and are therefore only briefly discussed herein. Similarly, U.S. Pat. No. 6,156,051 discloses a lancet device which utilizes a lancet firing mechanism, a depth adjustment mechanism, and a trigger setting mechanism. This patent is incorporated by reference herein in its entirety.
  • What is needed is a lancet device which can accurately and precisely control the depth of penetration of the needle relative to the surface of the user's skin while also being easy to use. It is also desirable for the user to be able to use and adjust the depth penetrating setting with just one hand and/or with less effort that currently required with existing lancet devices.
  • Thus, while advances have been made, there is a continuing need for a lancet device which provides for convenient, reliable and easy adjustment of penetration depth.
  • SUMMARY OF THE INVENTION
  • According to one aspect of the invention there is provided a lancet device that includes a body. A trigger is mounted to the body. A front cover includes a skin engaging end that includes a lancet opening through which a lancet needle extends. A holding member is movably mounted within the body and comprises a front end and a rear end. The front end is configured to receive a lancet. A movable stop surface moves with the holding member. The front cover can move axially to adjust the depth of penetration of the lancet needle. A fixed stop surface is arranged within the body. The movable stop surface preferably contacts the fixed stop surface at every depth setting.
  • The lancet device may further comprise a back cap configured to move between a retracted position and an original position. The back cap may be configured to move the holding member to a retracted position. The back cap may be coupled to a surface that engages the rear end of the holding member. The back cap may include a surface that engages the rear end of the holding member. The back cap may comprise an opening that receives a rear end of the holding member. The back cap may include a surface that engages projections disposed on the rear end of the holding member.
  • The lancet device may further comprise a spring for biasing the back cap towards an original position. The lancet device may further comprise a first spring for biasing the holding member towards an extended position and a second spring for biasing the holding member in an opposite direction. The first and second springs may be arranged within an axial opening of the body. The first spring may contact one side of a projection extending inwardly from the body and the second spring may contact another side of the projection. The projection may have portions that extend into a recess or indentation formed in the holding member.
  • The lancet device may further comprise an end plug mounted to the rear end of the holding member. The first spring may be disposed between a projection wall and an inner wall surface arranged in the area of the front end of the holding member and the second spring may be disposed between a projection wall and the end plug. The trigger may be movably mounted to the body. The front cover may be removably mounted to the body. The holding member may be integrally formed with the stop surface. The front end of the holding member may comprise an opening that is configured to removably receive the lancet.
  • The lancet device may further comprise a deflecting member configured to be deflected by the trigger. The deflecting member may be coupled to the holding member. The deflecting member may comprise a first stop surface or end that contacts a first surface of a holding surface of the body. The front cover may comprise indicia. The front cover may include external protrusions and/or a textured gripping surface. The front cover may include internal threads while an outer circumferential surface of the front cover includes the indicia. An intermediate section may be disposed between the front cover and the body. The intermediate section may have an opening which is large enough to allow the holding member to move within it. The opening may comprise a center axis that is generally the same as the axis running through the holding member. The front cover may rotate about an axis that is generally substantially the same as an axis running through at least one of the lancet opening and the holding member. The fixed stop surface may be disposed between the trigger and a front cover. The body may comprise a two piece body. The lancet device may further include a mechanism for maintaining a depth set position of the front cover. The fixed stop surface may be disposed between the movable stop surface and an inside annular surface of the front cover. The front cover may be removably mounted to the two piece body. The lancet device may further comprise a back cap movably mounted to the two piece body. The body may comprise an ergonomic shape which is easy to grip. The body may comprise indicia.
  • The invention also provides a method of puncturing a surface of skin using the lancet device described above, wherein the method comprises adjusting a set depth of penetration of the needle by moving the front cover to a desired set position, disposing the skin engaging end of the lancet device against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the puncture allows a blood sample to be taken.
  • The invention also provides a method of using the lancet device described above, wherein the method comprises at least partially rotating the front cover to a desired set position, moving the holding member to a retracted position, maintaining the holding member in the retracted position until the trigger is triggered, disposing the skin engaging end of the lancet device against a user's skin, and triggering the trigger to cause movement of the holding member.
  • The invention also provides a lancet device, that preferably includes a body, a trigger, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle extends. A holding member may be movably mounted within the body and comprising a front end a rear end. The front end is configured to receive a lancet. A stop surface may be coupled to the holding member. The front cover comprises indicia. A fixed stop surface is preferably arranged to contacted by the movable stop surface. The front cover is preferably configured to rotate at least partially.
  • The invention also provides a lancet device preferably comprising a body, a trigger, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle extends. A holding member may be movably mounted within the body and comprising a front end a rear end. The front end is configured to receive a lancet. A back cap may be configured to move the holding member to a retracted position. A stop surface may be coupled to the holding member. The front cover preferably comprises indicia. A fixed stop surface may be coupled to the body and can be contacted by the stop surface. The front cover may be configured to rotate at least partially on an axis that is parallel to an axis of the holding member.
  • The invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a trigger, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a spring disposed between the front and rear ends of the holding member, the front end being configured to receive a lancet having the lancet needle, a first stop surface that moves with the holding member, and an intermediate member at least one of axially adjustably connected to the body and threadably connected to the body.
  • The front cover may be movably and removably connected to the intermediate member. The intermediate member may be non-removably connected to the body. Movement of the intermediate member may adjust a depth of penetration of the lancet needle. The front cover may be non-rotatably mounted to the intermediate member. The front cover may be devoid of moving parts. The front cover may comprise a one-piece plastic or synthetic resin member. Movement of the intermediate member may change an overall length of the lancet device. Movement of the intermediate member may change an overall length of the lancet device and the front cover may be at least one of devoid of moving parts and a one-piece plastic or synthetic resin member. The lancet device may be structured and arranged to allow for replacement of the lancet and for multiple use. The lancet may be removably connected to the front end of the holding member.
  • The lancet device may further comprise an arrangement for moving the holding member to a retracted or trigger-set position. The spring may bias the holding member towards the extended position, and the lancet may further comprise another spring for biasing the holding member in an opposite direction. The spring and the other spring may be arranged to surround different portions of the holding member.
  • The spring may have one end that is coupled the holding member and another end coupled to a portion of the body. The holding member may comprise a generally cylindrical cross-section. The holding member may comprise a generally polygonal cross-section.
  • The lancet device may further comprise a locking member mounted to the holding member, wherein the locking member is engagable with the trigger. The lancet may further comprise a deflecting member coupled to the holding member, wherein the deflecting member is engagable with the trigger.
  • The trigger may be movably mounted to the body and further comprising a second stop surface that is contacted by the first stop surface when the lancet moves to an extended position. The front cover may be removably and non-threadably mounted to the intermediate member.
  • The lancet device may further comprise a mechanism for at least temporarily maintaining a depth setting position of the intermediate member. The holding member may comprise an integrally formed deflecting member that engages a surface of the body. The front end of the holding member may comprise an opening that is configured to removably receive the lancet. The lancet device may further comprise a deflecting member configured to be deflected by the trigger. The deflecting member may be coupled to the holding member. The deflecting member may comprise an engaging surface that contacts a surface of the body. The deflecting member may be integrally formed with the holding member.
  • The lancet device may further comprise indicia arranged on at least one of the intermediate member and the body. The indicia may be arranged on an outer circumferential surface of the body. The indicia may be arranged on an outer circumferential surface of the intermediate member. The front cover may rotate about an axis that runs through the lancet opening and the holding member without changing an overall length of the lancet device. The spring may be disposed between the trigger and a back cap. The body may comprise a two-piece body.
  • The lancet device may further comprising another spring axially retained between walls of the two-piece body. The lancet device may further comprise a back cap movably mounted to the body. The body may comprise an ergonomic shape. The body may comprise a plastic material. The intermediate member may comprise at least one of an external high-friction gripping surface and gripping protrusions.
  • The lancet device may further comprise threads connecting the intermediate member to the body.
  • The invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a set depth of penetration by rotating the intermediate member to a desired set position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the puncture allows a blood sample to be taken.
  • The invention also provides a method of using the lancet device of the type described above, wherein the method comprises rotating or axially moving the intermediate member to a desired set position, maintaining the holding member in a retracted position until the trigger is triggered, disposing the skin engaging end against a user's skin, and triggering the trigger to cause movement of the holding member.
  • The invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a spring arranged to bias the holding member at least towards an extended position, a stop surface limiting movement of the holding member, and an intermediate member at least one of adjustably connected to the body and threadably connected to the body.
  • The front cover may be removably connected to the intermediate member. The front cover may be removably connected to a front portion of the body and the intermediate member may be non-removably connected to a rear portion of the body. Movement of the intermediate member changes an overall length of the lancet device. The intermediate member and the front cover may comprise separate and distinct structures. The intermediate member and the front cover may each comprise a one-piece member. The intermediate member and the front cover may each comprise a one-piece plastic or synthetic resin member.
  • The invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a stop surface limiting movement of the holding member, and an intermediate member arranged between the body and the front cover. The intermediate member is at least one of adjustably connected to the body, axially movably mounted to the body, and threadably connected to the body, wherein the front cover is removably connected to the intermediate member and wherein movement or adjustment of the intermediate member changes an overall length of the lancet device.
  • The intermediate member and the front cover may comprise separate and distinct structures. The intermediate member and the front cover may each comprise a one-piece member. The intermediate member may comprise at least one of an external high-friction gripping surface, external gripping protrusions, and a mechanism for indicating a depth setting position.
  • The invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a depth of penetration by rotating or axially moving the intermediate member to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • The invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a depth of penetration by rotating the intermediate member relative to the body to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • The invention also provides a lancet device having adjustable depth of penetration, wherein the lancet device comprises a body, a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend, a holding member movably mounted within the body and comprising a front end and a rear end, a stop surface limiting movement of the holding member, and an adjustment mechanism arranged between the body and the front cover. The adjustment mechanism is at least one of adjustably connected to the body, axially movably mounted to the body, and threadably connected to the body. The front cover is removably connected to one of the adjustment mechanism and a front portion of the body and movement or adjustment of the adjustment mechanism changes an overall length of the lancet device.
  • The adjustment mechanism and the front cover may comprise separate and distinct structures. The adjustment mechanism and the front cover may each comprise a one-piece member. The adjustment mechanism may comprise at least one of an external high-friction gripping surface, external gripping protrusions, and a mechanism for indicating a depth setting position.
  • The invention also provides a method of puncturing a surface of skin using the lancet device described above, wherein the method comprises adjusting a depth of penetration by rotating the adjustment mechanism to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • The invention also provides a method of puncturing a surface of skin using the lancet device of the type described above, wherein the method comprises adjusting a depth of penetration by rotating the adjustment mechanism relative to the body to a desired set depth position, disposing the skin engaging end against a user's skin, and triggering the trigger to cause the lancet needle to penetrate the user's skin, wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
  • Other exemplary embodiments and advantages of the present invention may be ascertained by reviewing the present disclosure and the accompanying drawing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
  • FIG. 1 shows a side view of one embodiment of the lancet device. The device is shown in an intermediate depth setting position;
  • FIG. 2 shows a side cross-section view of the embodiment of FIG. 1. The device is shown with the lancet needle in an intermediate position prior to being pulled back and released. The lancet is not shown in cross-section;
  • FIG. 3 shows a side cross-section view of the embodiment shown in FIG. 1. The device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 4 shows a side cross-section view of the embodiment shown in FIG. 1 with the lancet needle in the fully extended puncturing position;
  • FIG. 5 shows a side cross-section view of the embodiment shown in FIG. 1. The device is shown in a partially disassembled state with the front cover and intermediate section being separated from the body;
  • FIG. 6 shows a side cross-section view of the internal parts of the embodiment shown in FIG. 1. The parts are shown in a disassembled state with the lancet, front lancet holder, spring and rear lancet holder being separated from each other;
  • FIG. 7 shows a side cross-section view of the body used in the embodiment shown in FIG. 1;
  • FIG. 8 shows a top view of another embodiment of the lancet device. This embodiment utilizes a trigger mechanism;
  • FIG. 9 shows a side view of the embodiment shown in FIG. 8;
  • FIG. 10 shows a side cross-section view of the embodiment of FIGS. 8 and 9. The device is shown with the lancet needle in an intermediate position prior to being pulled back and released. The lancet is not shown in cross-section;
  • FIG. 11 shows a side cross-section view of the embodiment shown in FIG. 10. The device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 12 shows an enlarged side cross-section view of the embodiment shown in FIG. 10 with the lancet needle in the fully extended puncturing position;
  • FIG. 13 shows a side cross-section view of the embodiment shown in FIG. 12. The device is shown in a partially disassembled state with the front cover and intermediate section being separated from the body;
  • FIG. 14 shows a side view of another embodiment of the lancet device. This embodiment utilizes a protective cover and lacks an intermediate section;
  • FIG. 15 shows a side view of the embodiment shown in FIG. 14, but with the protective cover being removed;
  • FIG. 16 shows a side cross-section view of the embodiment of FIG. 14. The device is shown with the lancet needle in an intermediate position prior to being pulled back and released. The lancet is not shown in cross-section;
  • FIG. 17 shows a side cross-section view of the embodiment shown in FIG. 14. The device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 18 shows an enlarged side cross-section view of the embodiment shown in FIG. 14 with the lancet needle in the fully extended puncturing position. The protective cover is not shown;
  • FIG. 19 shows a side cross-section view of the embodiment shown in FIG. 18. The device is shown in a partially disassembled state with the front cover being separated from the body;
  • FIG. 20 shows a side cross-section view of the internal parts of the embodiment shown in FIG. 14. The parts are shown in a disassembled state with the lancet, snap ring, front lancet holder, spring and rear lancet holder being separated from each other;
  • FIG. 20A shows a front view of the snap ring used in the embodiment shown in FIG. 14;
  • FIG. 21 shows a side cross-section view of the body used in the embodiment shown in FIG. 14;
  • FIG. 22 shows a top view of another embodiment of the lancet device. This embodiment utilizes a push-button trigger;
  • FIG. 23 shows a side view of the embodiment shown in FIG. 22;
  • FIG. 24 shows a side cross-section view of the embodiment of FIG. 22. The device is shown with the lancet needle in an intermediate position prior to being pulled back and released. The lancet is not shown in cross-section;
  • FIG. 25 shows a side cross-section view of the embodiment shown in FIG. 22. The device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 26 shows an enlarged side cross-section view of the internal parts of the embodiment shown in FIG. 22. The parts are shown in a disassembled state with the lancet, front lancet holder, spring and rear lancet holder being separated from each other;
  • FIG. 27 shows a enlarged top view of the front lancet holder used in the embodiment shown in FIG. 22;
  • FIG. 28 shows an enlarged side cross-section view of the body used in the embodiment shown in FIG. 22. The trigger and trigger spring are shown disassembled from the body;
  • FIG. 29 shows a top view of another embodiment of the lancet device. This embodiment utilizes a push-button trigger and a trigger setting or arming mechanism;
  • FIG. 30 shows a side view of the embodiment shown in FIG. 29;
  • FIG. 31 shows a side cross-section view of the embodiment of FIG. 29. The device is shown with the lancet needle in an intermediate position prior to being pulled back and released. The lancet is not shown in cross-section;
  • FIG. 32 shows a side cross-section view of the embodiment shown in FIG. 29. The device is shown with the lancet needle pulled back to a retracted position;
  • FIG. 33 shows an enlarged side cross-section view of the embodiment shown in FIG. 29. The device is shown with the lancet needle being pulled back to a retracted position by the back cap or arming mechanism;
  • FIG. 34 shows an enlarged side cross-section view of certain parts of the embodiment shown in FIG. 29. The parts are shown in a disassembled state with the front cover, intermediate section, lancet, front lancet holder, rear lancet holder, spring retainer, and end plug being separated from each other. The front and back springs and the body are not shown;
  • FIG. 35 shows an enlarged side cross-section view of the body used in the embodiment shown in FIG. 29. The trigger and trigger spring are shown disassembled from the body;
  • FIG. 36 shows a side cross-section view of still another embodiment of the lancet device. This embodiment is similar to the embodiment shown in FIG. 29, except that the rear portion of the lancet holding member utilizes a cross-shaped cross-section and the body uses internal projecting walls with cross-shaped openings. The device is shown with the lancet needle pulled back to a retracted position and with the back cap held in the extended position;
  • FIG. 37 shows an enlarged partial section view of the trigger used in the embodiment shown in FIG. 36;
  • FIG. 38 shows a section view of the arrows A-A shown in FIG. 36. The cross-shaped opening and the cross-shaped cross-section of rear portion of the holding member is shown;
  • FIG. 39 shows an enlarged side cross-section view of an alternative two-piece body which used in the embodiment shown in FIG. 36;
  • FIG. 40 shows a rear view of the two-piece body shown in FIG. 39. The two body parts are shown disassembled;
  • FIG. 41 shows a partial enlarged side cross-section view of another embodiment. This embodiment is similar to that shown in FIG. 36, except that the rear holding member uses rear projections to support the rear spring and which are engaged by the back cap when the back cap is pulled back to the extended or arming position;
  • FIG. 42 shows a section view of the arrows B-B shown in FIG. 41. The cross-shaped opening and the cross-shaped cross-section of rear portion of the holding member is shown, as are the two rear projections;
  • FIG. 43 shows a side cross-section view of still another embodiment of the lancet device. This embodiment is similar to the embodiment shown in FIG. 36, except that it uses the two-piece body shown in FIG. 39, a middle spring and the lancet holding member utilizes a protruding wall. The device is shown with the lancet needle pulled back to a retracted position and with the back cap held in the extended position;
  • FIG. 44 shows a section view of the arrows C-C shown in FIG. 43. The protruding wall of rear portion of the holding member is shown;
  • FIG. 45 shows a side cross-section view of still another embodiment of the lancet device. This embodiment is similar to the embodiment shown in FIG. 24, except that the spring has one end that is secured to a flange of the front portion of the lancet holding member and another end secured to a flange of the body;
  • FIG. 46 shows a partial section view of the embodiment shown in FIG. 1 rotated 90 degrees. The attachment of the spring to the front portion and body is shown;
  • FIG. 47 shows a rear cross-section view of the front cap shown in FIG. 48. The section view illustrates one possible configuration of the internal ratchet surface;
  • FIG. 48 shows a partial side cross-section view of one possible system for maintaining the depth setting of the front cap;
  • FIG. 49 shows a partial side cross-section view of the intermediate section shown in FIG. 48;
  • FIG. 50 shows a rear cross-section view of the front end of the intermediate section shown in FIG. 48;
  • FIG. 51 shows a side cross-section view of another embodiment of the lancet device. This embodiment utilizes a push-button trigger and a depth-set adjustment system provided by an adjustable intermediate member. The lancet and a front portion of the holding member is not shown in cross-section;
  • FIG. 52 shows a side view of the embodiment shown in FIG. 51. The intermediate member is shown positioned in the deepest depth setting position;
  • FIG. 53 shows another side view of the embodiment of FIG. 51. The intermediate member is shown positioned in the shallowest depth setting position;
  • FIG. 54 shows a side view of the embodiment shown in FIG. 51. The device is shown with the front cover or cap removed to allow replacement of the lancet;
  • FIG. 55 shows an enlarged side cross-section view of the lancet device shown in FIG. 51 with the front cover removed. The lancet holding member is shown in the retracted trigger-set position and the intermediate member is shown in the deepest depth setting position;
  • FIG. 56 shows an enlarged side cross-section view of the lancet device shown in FIG. 51 with the front cover removed. The lancet holding member is shown in the retracted trigger-set position and the intermediate member is shown in the shallowest depth setting position;
  • FIG. 57 shows an enlarged side view of the lancet device shown in FIG. 51 with the front cover and the adjustable intermediate member removed;
  • FIG. 58 shows the lancet device shown in FIG. 57 rotated 180 degrees to expose the other side of the lancet device body;
  • FIG. 59 shows an end view of the front portion of the lancet device body shown in FIG. 60;
  • FIG. 60 shows a side cross-section of a front portion of the lancet device body used in the embodiment shown in FIG. 51;
  • FIG. 61 a shows a left end view of the intermediate member shown in FIG. 61 b and which is used in the embodiment shown in FIG. 51;
  • FIG. 61 b shows a side cross-section of the intermediate member used in the embodiment shown in FIG. 51;
  • FIG. 61 c shows a right end view of the intermediate member shown in FIG. 61 b and which is used in the embodiment shown in FIG. 51;
  • FIG. 62 a shows a side cross-section of the front cover or cap used in the embodiment shown in FIG. 51;
  • FIG. 62 b shows a left end view of the front cover shown in FIG. 62 a and which is used in the embodiment shown in FIG. 51;
  • FIG. 63 shows a partial side cross-section view of the lancet device shown in FIG. 51 after the trigger has been moved to the triggering position so as to cause movement of the lancet holding member towards the fully extended position;
  • FIG. 64 shows one non-limiting way in which holding member can be moved to the trigger-set of retracted position by a front cap. The figure shows the holding member in the fully retracted trigger-set position after being moved by the front cap;
  • FIG. 65 shows a partial cross-section view of a possible modification of the embodiment shown in FIG. 51 wherein this embodiment utilizes a trigger setting mechanism similar to the embodiments shown in FIGS. 29-44;
  • FIG. 66 shows a side cross-section view of another embodiment of the lancet device. This embodiment utilizes a push-button trigger and a depth-set adjustment system provided by an adjustable intermediate member. The lancet and a front portion of the holding member is not shown in cross-section. In FIG. 66, the depth adjustment is set at one of the deeper depth adjusting positions; and
  • FIG. 67 shows a side cross-section view of the embodiment of the lancet device shown in FIG. 66. In FIG. 67, the depth adjustment is set at one of the shallower depth adjusting position.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
  • FIGS. 1-7 show various views of one embodiment of lancet device. Lancet device LD has three main external parts, i.e., a lancet body 1, an intermediate section 2, and a front cover or cap 3. These parts 1, 2 and 3 are connected to each other via threads and/or a threaded connection when the lancet device LD is initially assembled. A holding member 4/5 is movably disposed within the body 1. The front cover or cap 3 is removably connected or attached to a front portion of the body 1. By removing the front cover 3, and optionally the intermediate section 2, one can gain access to the lancet 10. The lancet 10 can thus be removed and replaced with a new lancet 10, as needed, once the front cover 3 and intermediate section 2 are removed. As in many lancet devices, the lancet device defines a plane P which is configured to contact (i.e., be positioned against) a user's skin. Although not shown, the instant embodiment may utilize, e.g., a planar, an inwardly curved surface plane, or an outwardly curved plane P beyond which the lancet need can extend. The plane P is arranged on the front cap 3. The lancet holder 4/5 has a front portion 4 and a rear portion 5 which includes a gripping portion 5 b that can be gripped by a user. The front portion 4 and the rear portion 5 are connected to each other and are able to slide within the body 1. Of course, the invention also contemplates that the front portion 4 and rear portion 5 can be formed as a one piece member. As will be described in more detail later on, movement of the gripping portion 5 b rearwardly (see FIG. 3), causes the holding member 4/5 to retract until it reaches a spring loaded position shown in FIG. 3. The lancet 10, itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices. To ensure that lancet 10 is securely (yet removably) retained within the lancet device LD, the front portion 4 of the holding member 4/5 includes a lancet holding end 4 a which receives the lancet 10 therein.
  • As can be seen in FIG. 2, the holding member 4/5 arrangement preferably has a main spring 6 mounted thereto. In this regard, the spring 6, which can be made of spring steel, is arranged to surround the holding member 4/5 in an area of the rear portion 5. Accordingly to one non-limiting example, the spring 6 has a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. Of course, other sizes and types of springs can be used provided they function for their intended purpose. Other materials (e.g., metal, plastic or composite) for the spring are also contemplated. This spring 6 causes (and/or biases) the holding member 4/5 to move towards an extended position once the holding member 4/5 is pulled back (see FIG. 3). When a user wishes to place the lancet device LD in the loaded position, a user need only move gripping portion 5 b rearwardly (see FIG. 3) until the holding member arrangement 4/5 reaches the position shown in FIG. 3. This, in turn, compresses the spring 6 to a certain extent. However, when the user releases the gripping portion 5 b, spring 6 automatically causes the holding member 4/5 to move to a fully extended position shown in FIG. 4. However, once contact occurs between stop surface MSS and stop surface FSS (compare FIGS. 3 and 4), the spring 6 causes the holding member 4/5 to automatically retract axially back into the body 1 to a position similar to that of FIG. 2. Although not shown, this occurs because the spring 6 has one end, i.e., the left end, coupled to the front portion 4 of the holding member 4/5 and another end, i.e., the right end, coupled to the annular surface 1 b of the body 1. One way this can occur is shown in FIG. 46, which will be more fully described later on. The spring 6 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 6 can be connected to the front part and body in a manner similar to that of FIG. 45, i.e., via flanges formed on the parts 1 and 4. Using such an arrangement, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 6. As a result, the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the gripping end 5 b is released) and is otherwise not exposed to a user while the front cover 3 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • The lancet device LD utilizes the front cap 3 to adjust the penetration depth of the lancet needle. The front cap 3 is preferably mounted to the body 1 and/or to the intermediate section 2 of the body 1 so as to be at least partially rotate in each of two directions. Of course, the front cap 3 can be mounted to the body 2/1 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards between discrete set-depth positions. To ensure that the front cap 3 is axially retained to body parts 2 and 1, yet allowed to rotate with respect to the lancet device body 2/1, the front cap 3 has internal threads 3 c which engage external threads 2 a of the intermediate section 2. The front cap 3 also includes chamfered corners 3 b and raised projections 3 a which allow a user to more securely grip the front cap 3. The intermediate body section 2 has an internal projecting wall 2 b that includes a fixed stop surface FSS (see FIG. 3) which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 4) that is formed on or coupled to the front portion 4 of holding member 4/5.
  • As described above, FIG. 3 shows the lancet device LD with the lancet member 4/5 in the loaded position, i.e., ready to move to an extended position when the gripping end 5 b is released. The holding member 4/5 retains the loaded position of FIG. 3 as long as the user continues to grip the gripping end 5 b. On the other hand, FIG. 4 shows what happens when the user releases end 5 b. That is, the holding member 4/5 is released from the loaded position of FIG. 3, and is caused to move towards plane P. This occurs because the holding member 4/5 is free to slide within body 1. As will be described later on with regard to other embodiments, the holding member 4/5 can also have a polygonal cross-section shape which corresponds to the polygonal opening 1 d in the body 1 so as to ensure that the holding member 4/5 does not substantially rotate while it moves axially back and forth. However, for this embodiment, it is sufficient if the holding member 4/5 has cylindrical outer surfaces (e.g., 4 g and 5 c) which slide within (with a clearance) cylindrical surfaces (e.g., 2 d, 1 a and 1 d) in the body 1 and intermediate section 2. Again, with regard to FIGS. 3 and 4, it can be seen that the holding member 4/5 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 2. In this position, the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P. The lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 3.
  • FIG. 1 shows the lancet device LD in one of the pre-set extended positions, i.e., in one of the positions of the front cap 3 that will cause a desired puncture depth in the skin of a user (not shown). The distance that the lancet needle projects past plane P is thus determined by rotating the front cap 3 until the desired setting is reached, e.g., arrow 8 lines up with one of the indicia 7. Of course, the invention contemplates that any type of indicia can be used such as, e.g., numbers, letters, symbols, etc. Moreover, the invention also contemplates that the body 1/2 can also contain the arrow while the indicia is placed on the front cap 3. The setting, in turn, causes the plane P to move axially relative to fixed stop surface FSS. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 4/5, since the lancet 10 is secured to the front part 4, and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 3 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 3 thus determines how much of the end of the lancet needle extends past the plane P. The depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS, and the rotational position of the front cap 3. FIG. 4 shows the needle tip projecting through the opening LO in the front cover 3 and past the plane P. Thereafter, the user can pull end 5 b back (from the position shown in FIG. 2) to compress spring 6 to again arm the lancet device LD.
  • FIG. 4 shows a cross-section view of the lancet device of FIGS. 1-3 wherein the holding member 4/5 is in the fully extended position. In this regard, the holding member 4/5 has reached its maximum extended position caused by axial expansion of the spring 6. As in FIGS. 1-3, the front cover 3, intermediate body 2, spring 6, lancet 10 and holding member 4/5 can be seen in their installed and/or assembled position. However, this figure allows one to more clearly see that the spring 6 is arranged to surround the holding member 4/5, just behind the lancet receiving front portion 4. The spring 6 is preferably sized to slide into internal opening 1 a of the body 1. More particularly, the spring 6 is preferably disposed inside the body 1 and between an inner wall 1 b of the body 1 and surface 4 c of the front part 4 of the holding member 4/5. That is, the spring 6 is axially retained between a left side surface 4 c of front part 4 of holding member 4/5 the inner wall 1 b of the body 1. As a result, the spring 6 is caused to be compressed when the holding member 4/5 is moved back (i.e., to the right) to a retracted position relative to the body 1 and expanded when the holding member 4/5 is moved forward (i.e., to the left) to an extended position relative to the body 1. As discussed above, the spring 6 causes (and/or biases) the holding member 4/5 towards an extended position once a gripping end 5 b is released and then back towards a rest position similar to that shown in FIG. 2. As a result, the holding member 4/5 cannot be moved back to a retracted position without causing the spring 6 to be compressed thereby.
  • As can be seen in FIGS. 5-7, the front cap 3 has internal threads 3 c and a planar inner annular surface 3 d. Of course, this surface 3 d can have any desired configuration since the lancet 10 does not contact the same. The threads 3 c are configured to engage external threads 2 a of the intermediate section 2. The inter mediate section 2 also includes an external cylindrical surface 2 e and internal threads 2 c which are configured to engage external threads 1 c of the body 1. A cylindrical opening 2 d is sized to receive (with a clearance) the front portion 4 so that contact can occur between stop surface MSS and stop surface FSS. In this regard, the stop surface FSS is an annular surface that is formed on an internal cylindrical projecting wall 2 b which is integral with the section 2. Of course, this wall 2 b can instead be formed by spaced projections which extend inwardly from the section 2. Alternatively, this wall 2 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIG. 16. In such case, the intermediate section 2 would include a recess similar to recess 201 e in FIG. 21. The front part 4 includes a small cylindrical section 4 a which utilizes two oppositely arranged slots 4 d. The section 4 a also has an internal opening 4 f which is sized to receive the rear portion of the lancet 10. In order to ensure that the lancet 10 is securely and axially retained within opening 4 f, the front part 4 includes projections 4 e which have sharp ends for gripping the lancet 10. These projections can have any desired form provided they securely, yet removably, retain the lancet 10. The slots 4 d allow the opening 4 f to expand and contract with insertion and removal of the lancet 10 and allow the end 4 a to act as two spring fingers. Front part 4 also includes larger cylindrical section 4 g which can slide within openings 2 d and 1 a. In order to connect the front part 4 with the rear part 5 to form the holding member 4/5, the front part 4 includes internal threads 4 b which are configured to engage external threads 5 a. Of course, these parts can be connected in any desired manner other than threads, e.g., snap connection, adhesives, etc. The rear part 5 also has a cylindrical section 5 c which is sized and configured to slide within (with a clearance) cylindrical opening 1 d of body 1 and an enlarged cylindrical gripping end 5 b.
  • FIGS. 8-13 show another embodiment of lancet device. Lancet device LD has a lancet body 101 which can be made as a one-piece member as with the embodiment shown in FIGS. 1-7. Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. A holding member 104/105 is movably disposed within the body 101. Also, a front cover 103 is removably connected or attached to an intermediate section 102 of the body. By removing the front cover 103, one can gain access to the lancet 10. The lancet 10 can thus be removed and replaced with a new lancet 10, as needed, once the front cover 103 is removed. As in the previous embodiment, the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin. Moreover, as with the previous embodiment, the instant embodiment may utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend. The lancet holder 104/105 has a rear portion 105, and specifically a gripping portion 105 b, that can be gripped by a user. The front portion 104 and the rear portion 105 slide within the body 101. As with the previous embodiment, the front part 104 and rear part 105 can alternatively be formed as a one-piece member. As will be described in more detail later on, movement of the gripping portion 105 b rearwardly, causes the holding member 104/105 to retract until it reaches a spring loaded position shown in FIG. 11. The lancet 10, itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices. To ensure that lancet 10 is securely (yet removably) retained within the lancet device LD, the front portion 104 of the holding member 104/105 includes a lancet holding end 104 a which receives the lancet 10 therein.
  • As can be seen in FIGS. 10 and 11, the holding member 104/105 arrangement preferably has a spring 106 mounted thereto. In this regard, the spring 106, which can be made of spring steel, is arranged to surround the holding member 104/105, just behind the front portion 104. By way of one non-limiting example, the spring 106 may have a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. Of course, the spring can be of any desired type, size or material. This spring 106 causes (and/or biases) the holding member 104/105 to move towards an extended position once a trigger 109 is activated (see FIG. 10). The trigger 109 includes a portion 109 a that is arranged to extend within the body 1, and is movably and/or pivotally mounted to the body 101. Of course, the trigger 109 can be mounted to the body in any desired manner. The trigger 109 also has a finger engaging (e.g. push button) portion 109 b that can be pushed and/or deflected into the lancet device LD. The trigger 109 also utilizes a trigger spring 111 which biases the trigger 109 towards the position shown in FIG. 11. Thus, when force is applied to the finger engaging portion 109 b, the inner portion 109 a moves away from the front portion 104 and allows it to move towards plane P. On the other hand, when the push button 109 b is released, the trigger 109 is capable of returning to the position shown in FIG. 11 or 12.
  • As discussed above, the spring 106 causes (and/or biases) the holding member 4/5 to move towards an extended position (see FIG. 12) once the holding member 104/105 is pulled back to a loaded or armed (see FIG. 11). When a user wishes to place the lancet device LD in the loaded position, a user need only move gripping portion 105 b rearwardly until the holding member arrangement 104/105 reaches the position shown in FIG. 11. This, in turn, compresses the spring 106 to a certain extent. However, when the user presses the trigger 109, end 109 a becomes disengaged from front portion 4 and the spring 106 causes the holding member 104/105 to move to a fully extended position. However, once contact occurs between stop surface MSS and stop surface FSS, the spring 106 causes the holding member 104/105 to automatically retract axially back into the body 101 to a position similar to that of FIG. 10. Although not shown, this occurs because the spring 106 has one end, i.e., the left end, coupled to the front portion 104 of the holding member 104/105 and another end, i.e., the right end, coupled to the annular surface 101 b of the body 101. One way this can occur is shown in FIG. 46, which will be more fully described later on. The spring 106 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 106 can be connected to these parts 101, 104 in a manner similar to that of FIG. 45, i.e., via flanges formed on the parts 101 and 104. In this way, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 106. As a result, the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 109 is released) and is otherwise not exposed to a user while the front cover 103 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • As is the case in the previous embodiment, the lancet device LD utilizes the front cap 103 to adjust the penetration depth of the lancet needle. The front cap 103 is preferably mounted to the body 101 and/or to the intermediate section 102 of the body 101 so as to be at least partially rotate in each of two directions. Of course, the front cap 103 can be mounted to the body 101 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards. To ensure that the front cap 103 is axially retained to body parts 102 and 103, yet allowed to rotate with respect to the lancet device body, the front cap 103 has internal threads 103 c which engage external threads 102 a of the intermediate section 102. The front cap 103 also includes chamfered corners 103 b and raised projections 103 a which allow a user to more securely grip the front cap 103. The intermediate body section 102 has an internal projecting wall 102 b that includes a fixed stop surface FSS (see FIG. 11) which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 104) that is formed on or coupled to the front portion 104 of holding member 104/105.
  • As described above, FIG. 11 shows the lancet device LD with the lancet member 104/105 in the loaded position, i.e., ready to move to an extended position when the trigger 109 is depressed. The holding member 104/105 retains the loaded position of FIG. 11 as long as the user does not press the trigger 109. On the other hand, FIGS. 10 and 12 show what happens when the user presses the trigger 109. That is, the holding member 104/105 is released from the loaded position of FIG. 11, and is caused to move towards plane P. This occurs because the holding member 104/105 is free to slide within body 101. As will be described later on with regard to other embodiments, the holding member 104/105 can also have a polygonal cross-section shape which corresponds to a polygonal opening in the body so as to ensure that the holding member 104/105 does not rotate while it moves axially back and forth. However, for this embodiment, it is sufficient if the holding member 104/105 has cylindrical outer surfaces (e.g., 104 g and 105 c) which slide within (with a clearance) cylindrical surfaces (e.g., 101 a, 102 d, and 101 d) in the body 101 and intermediate section 102. Again, with regard to FIGS. 10-12, it can be seen that the holding member 104/105 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 102. In this position, the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P. The lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 11.
  • FIG. 9 shows the lancet device LD in one of the pre-set extended positions, i.e., in one of the positions of the front cap 103 that will cause a desired puncture depth in the skin of a user (not shown). The distance that the lancet needle projects past plane P is thus determined by rotating the front cap 103 until the desired setting is reached, e.g., arrow 108 lines up with one of the indicia 107. Of course, the indicia can be of any type and can be arranged in any desired location of the body 1. Alternatively, the arrow 108 can be arranged on the body 101 while the indicia is arranged on the front cap 103. The setting, in turn, causes the plane P to move axially relative to fixed stop surface FSS, i.e., by rotating the front cap 103 in either of two opposite directions. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 104/105, and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 103 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 103 thus determines how much of the end of the lancet needle extends past the plane P. The depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the front cap 103. FIG. 12 shows the needle tip projecting through the opening LO in the front cover 103 and past the plane P. Thereafter, the user can pull end 105 b back to compress spring 106 to again arm the lancet device. In this regard, the engaging portion 109 a of trigger 109 utilizes an inclined surface which, when engaged by the front portion 104 as it is moved back, causes the trigger 109 to move (against the biasing force of the trigger spring) to the position shown in FIG. 10. Of course, further movement of the front portion 104 backwards will result in the engaging portion falling back (i.e., under the action of the trigger spring) into the setting position shown in FIG. 11.
  • FIG. 12 shows a cross-section view of the lancet device of FIGS. 8-11 wherein the holding member 104/105 is in the fully extended position. In this regard, the holding member 104/105 has reached its maximum extended position caused by axial expansion of the spring 106. As in FIGS. 8-11, the front cover 103, intermediate body 102, spring 106, lancet 10 and holding member 104/105 can be seen in their installed and/or assembled position. However, this figure allows one to more clearly see that the spring 106 is arranged to surround the holding member 104/105, just behind the lancet receiving front portion 104. The spring 106 is preferably sized to slide into internal opening 101 a of the body 101. More particularly, the spring 106 is preferably disposed inside the body 101 and between an inner wall 101 b of the body 101 and the front part 104 of the holding member 104/105. That is, the spring 106 is axially retained between a left side surface 104 c of front part 104 of holding member 104/105 the inner wall 101 b of the body 101. As a result, the spring 106 is caused to be compressed when the holding member 104/105 is moved back (i.e., to the right) to a retracted position relative to the body 101. As discussed above, the spring 106 causes (and/or biases) the holding member 104/105 towards an extended position once the trigger 109 is pressed. As a result, the holding member 104/105 cannot be moved back to a retracted position without causing the spring 106 to be compressed thereby.
  • As can be seen in FIG. 13, the front cap 103 has internal threads 103 c and a planar inner annular surface 103 d. The threads 103 c are configured to engage external threads 102 a of the intermediate section 102. The intermediate section 102 also includes an external cylindrical surface 102 e and internal threads 102 c which are configured to engage external threads 101 c of the body 101. A cylindrical opening 102 d is sized to receive (with a clearance) the front portion 104 so that contact can occur between stop surface FSS and stop surface MSS. In this regard, the stop surface FSS is an annular surface that is formed on an internal cylindrical projecting wall 102 b which is integral with the section 102. Of course, this wall 102 b can instead be formed by spaced apart projections which extend inwardly from the section 102. Alternatively, this wall 102 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIGS. 14-21. The front part 104 includes a small cylindrical section 104 a which utilizes two oppositely arranged slots (similar to slots 4 d in FIG. 6). The section 104 a also has an internal opening (e.g., see 4 f in FIG. 6) which is sized to receive the lancet 10. In order to ensure that the lancet 10 is securely and axially retained within opening, the front part 104 includes projections (e.g., see 4 e in FIG. 6) which have sharp ends for gripping the lancet 10. The slots allow the opening to expand and contract with insertion and removal of the lancet 10 and allow the end 104 to act as two spring fingers. Front part 104 also includes larger cylindrical section 104 g which can slide within openings 102 d and 101 a. In order to connect the front part 104 with the rear part 105 to form the holding member 104/105, the front part 104 includes internal threads which are configured to engage external threads of the rear part 1-5. The rear part 105 also has a cylindrical section 105 c which is sized and configured to slide within (with a clearance) cylindrical opening 101 d of body 101 and an enlarged cylindrical gripping end 105 b.
  • FIGS. 14-21 show various views of still another embodiment of the lancet device. Lancet device LD has two main external parts, i.e., a lancet body 201 and a front cover or cap 203. These parts 201 and 203 are connected to each other via threads and/or a threaded connection when the lancet device LD is initially assembled. This embodiment also utilizes an optional dust or protective cap C. The cap C slides over the front cap or nut 203 and is retained thereon by frictional engagement therewith. Although, the cap C is shown with a cylindrical shape, the invention contemplates that the cap C can have any desired shape or configuration provided that it protects the lancet opening LO and plane P. A holding member 204/205 is movably disposed within the body 201. Also, a front cover or cap 203 is removably connected or attached to a front portion of the body 201. By removing the front cover 203, one can gain access to the lancet 10. The lancet 10 can thus be removed and replaced with a new lancet 10, as needed, once the front cover 203 is removed. As in many lancet devices, the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin. Although not shown, the instant embodiment may utilize, e.g., a planar, an inwardly curved surface plane and an outwardly curved plane P beyond which the lancet need can extend. The lancet holder 204/205 has a rear portion 205, and specifically a gripping portion 205 b, that can be gripped by a user. The front portion 204 and the rear portion 205 slide within the body 201. As will be described in more detail later on, movement of the gripping portion 205 b rearwardly, causes the holding member 204/205 to retract until it reaches a spring loaded position shown in FIG. 17. The lancet 10, itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices. To ensure that lancet 10 is securely (yet removably) retained within the lancet device LD, the front portion 204 of the holding member 204/205 includes a lancet holding end 204 a which receives the lancet 10 therein.
  • As can be seen in FIGS. 16 and 17, the holding member 204/205 arrangement preferably has a spring 206 mounted thereto. In this regard, the spring 206, which can be made of spring steel, is arranged to surround the holding member 204/205 in an area of the rear portion 205. Accordingly to one non-limiting example, the spring 206 has a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 206 causes (and/or biases) the holding member 204/205 to move towards an extended position (see FIG. 18) once the holding member 204/205 is pulled back (see FIG. 17). When a user wishes to place the lancet device LD in the loaded position, a user need only move gripping portion 205 b rearwardly until the holding member arrangement 204/205 reaches the position shown in FIG. 17. This, in turn, compresses the spring 206 to a certain extent. However, when the user releases the gripping portion 205 b, spring 206 causes the holding member 204/205 to move to a fully extended position shown in FIG. 18. However, once contact occurs between stop surface MSS and stop surface FSS (see FIG. 18), the spring 206 causes the holding member 204/205 to automatically retract axially back into the body 201 to a position similar to that of FIG. 16. Although not shown, this occurs because the spring 206 has one end, i.e., the left end, coupled to the front portion 204 of the holding member 204/205 and another end, i.e., the right end, coupled to the annular surface 201 b of the body 201. One way this can occur is shown in FIG. 46, which will be more fully described later on. The spring 206 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 206 can be connected to these parts 204, 201 in a manner similar to that of FIG. 45, i.e., via flanges formed on the parts 201 and 204. In this way, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 206. As a result, the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the gripping end 205 b is released) and is otherwise not exposed to a user while the front cover 203 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • The lancet device LD utilizes the front cap 203 to adjust the penetration depth of the lancet needle. The front cap 203 is preferably mounted to the body 201 (and optionally to an intermediate section of the type shown in FIG. 2 if this embodiment is modified to include such an intermediate section) of the body 201 so as to be at least partially rotate in each of two directions. Of course, the front cap 203 can be mounted to the body 201 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards. To ensure that the front cap 203 is axially retained to body 201, yet allowed to rotate with respect to the lancet device body 201, the front cap 203 has internal threads 203 c which engage external threads 201 c of the body 201. The front cap 203 also includes chamfered corners 203 b and raised projections 203 a which allow a user to more securely grip the front cap 203. The body 201 has an internal recess 201 e which is sized and configured to receive a snap ring 202 that includes a fixed stop surface FSS (see FIG. 17) which is configured to be engaged by a movable stop surface MSS (in particular annular stop surface MSS of front portion 204) that is formed on or coupled to the front portion 204 of holding member 204/205.
  • As described above, FIG. 17 shows the lancet device LD with the lancet member 204/205 in the loaded position, i.e., ready to move to an extended position (see FIG. 18) when the gripping end 205 b is released. The holding member 204/205 retains the loaded position of FIG. 17 as long as the user continues to grip the gripping end 205 b. On the other hand, FIG. 18 shows what happens when the user releases end 205 b. That is, the holding member 204/205 is released from the loaded position of FIG. 17, and is caused to move towards plane P. This occurs because the holding member 204/205 is free to slide within body 201. As will be described later on with regard to other embodiments, the holding member 204/205 can also have a polygonal cross-section shape which corresponds to the polygonal opening 201 d in the body 201 so as to ensure that the holding member 204/205 does not rotate while it moves axially back and forth. However, for this embodiment, it is sufficient if the holding member 204/205 has cylindrical outer surfaces (e.g., 204 g and 205 c) which slide within (with a clearance) cylindrical surfaces (e.g., 201 a and 201 d) in the body 201. Again, with regard to FIGS. 17 and 18, it can be seen that the holding member 204/205 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the body 201, i.e., via snap ring 202. In this position, the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P. The lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 17.
  • FIG. 18 shows the lancet device LD in one of the pre-set extended positions, i.e., in one of the positions of the front cap 203 that will cause a desired puncture depth in the skin of a user (not shown). The distance that the lancet needle projects past plane P is thus determined by rotating the front cap 203 until the desired setting is reached, e.g., arrow 208 lines up with one of the indicia 207. This setting, in turn, causes the plane P to move axially relative to fixed stop surface FSS. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 204/205, and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 203 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 203 thus determines how much of the end of the lancet needle extends past the plane P. The depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the front cap 203. FIG. 18 shows the needle tip projecting through the opening LO in the front cover 203 and past the plane P. Thereafter, the user can pull end 205 b back to compress spring 206 to again arm the lancet device LD.
  • FIG. 18 shows a cross-section view of the lancet device of FIGS. 14-17 wherein the holding member 204/205 is in the fully extended position. In this regard, the holding member 204/205 has reached its maximum extended position caused by axial expansion of the spring 206. As in FIGS. 16 and 17, the front cover 203, spring 206, snap ring 202, lancet 10 and holding member 4/5 can be seen in their installed and/or assembled position. However, this figure allows one to more clearly see that the spring 206 is arranged to surround the holding member 204/205, just behind the lancet receiving front portion 204. The spring 206 is preferably sized to slide into internal opening 201 a of the body 201. More particularly, the spring 206 is preferably disposed inside the body 201 and between an inner wall 201 b of the body 201 and the front part 204 of the holding member 204/205. That is, the spring 206 is axially retained between a left side surface 204 c of front part 204 of holding member 204/205 the inner wall 201 b of the body 201. As a result, the spring 206 is caused to be compressed when the holding member 204/205 is moved back (i.e., to the right) to a retracted position relative to the body 201. As discussed above, the spring 206 causes (and/or biases) the holding member 204/205 towards an extended position once a gripping end 205 b is released. As a result, the holding member 204/205 cannot be moved back to a retracted position without causing the spring 206 to be compressed thereby.
  • As can be seen in FIGS. 19-21, the front cap 203 has internal threads 203 c and a planar inner annular surface 203 d. The threads 203 c are configured to engage external threads 201 c of the body 201. Unlike the previous embodiments, this embodiment does not utilize an intermediate section. However, the invention contemplates that such an intermediate section could be utilized in this embodiment, in which case the intermediate section of FIG. 5 would be modified to replace projection 2 b with a recess similar to 201 e of FIG. 21. Similarly, the previous embodiments need not utilize an intermediate section, as in this embodiment, and instead utilize a snap ring and/or a two-piece body. A cylindrical opening 201 a is sized to receive (with a clearance) the front portion 204 so that contact can occur between stop surface FSS and stop surface MSS. In this regard, the stop surface FSS is an annular surface that is formed on an internal cylindrical wall of the snap ring 202 which is axially retained in recess 201 e. Of course, this wall can instead be formed by spaced projections which extend inwardly from the snap ring 202. Alternatively, the snap ring 202 can be replaced with a wall that is formed integrally with the body 201, as in the embodiment shown in, e.g., FIG. 1. The front part 204 includes a small cylindrical section 204 a which utilizes two oppositely arranged slots 204 d. The section 204 a also has an internal opening 204 f which is sized to receive the lancet 10. In order to ensure that the lancet 10 is securely and axially retained within opening 204 f, the front part 204 includes projections 204 e which have sharp ends for gripping the lancet 10. The slots 204 d allow the opening 204 f to expand and contract with insertion and removal of the lancet 10 and allow the end 204 to act as two spring fingers. Front part 204 also includes larger cylindrical section 204 g which can slide within opening 201 a. In order to connect the front part 204 with the rear part 205 to form the holding member 204/205, the front part 204 includes internal threads 204 b which are configured to engage external threads 205 a. The rear part 205 also has a cylindrical section 205 c which is sized and configured to slide within (with a clearance) cylindrical opening 201 d of body 201 and an enlarged cylindrical gripping end 205 b. As with the previous embodiments, the holding member 204/205 can alternatively be formed as a one-piece member. Moreover, these parts can be connected in any desired manner other than threads.
  • FIGS. 22-28 show another embodiment of lancet device. Lancet device LD has a lancet body 301 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7. Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. A holding member 304/305 is movably disposed within the body 301. Also, a front cover 303 is removably connected or attached to an intermediate section 302 of the body. By removing the front cover 303, one can gain access to the lancet 10. The lancet 10 can thus be removed and replaced with a new lancet 10, as needed, once the front cover 303 is removed. As in many lancet devices, the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin. However, unlike known lancet devices, the instant embodiment may utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend. The lancet holder 304/305 has a rear portion 305, and specifically a gripping portion 305 b, that can be gripped by a user. The front portion 304 and a front portion of rear portion 305 slide within the body 301. As will be described in more detail later on, movement of the gripping portion 305 b rearwardly, causes the holding member 304/305 to retract until it reaches a spring loaded position shown in FIG. 25. The lancet 10, itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices. To ensure that lancet 10 is securely (yet removably) retained within the lancet device LD, the front portion 304 of the holding member 304/305 includes a lancet holding end 304 a which receives the lancet 10 therein.
  • As can be seen in FIGS. 24 and 25, the holding member 304/305 arrangement preferably has a spring 306 mounted thereto. In this regard, the spring 306, which can be made of spring steel, is arranged to surround the holding member 304/305, just behind the front portion 304. By way of one non-limiting example, the spring 306 may have a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 306 causes (and/or biases) the holding member 304/305 to move towards an extended position once a trigger 309 is activated (not shown). The trigger 309 includes a portion 309 a that extends into the body 301, and is mounted to the body 301. The trigger 309 also has a finger engaging (e.g. push button) portion 309 b that can be pushed and/or deflected into the lancet device LD. The trigger 309 also utilizes a spring 311 which biases the trigger 309 towards the position shown in, e.g., FIG. 24. Thus, when force is applied to the finger engaging portion 309 b, the inner portion 309 a moves into contact with deflecting member 304 h of the front portion 304. This causes the deflecting member 304 h to disengage from the opening 301 h of the body 301, which allows member 304 to move towards plane P under the action of the spring 306. On the other hand, when the push button 309 b is released, the trigger 309 is capable of returning to the position shown in FIG. 24.
  • As discussed above, the spring 306 causes (and/or biases) the holding member 304/305 to move towards an extended position (not shown) once the holding member 304/305 is pulled back (see FIG. 25). When a user wishes to place the lancet device LD in the loaded or armed position, a user need only move gripping portion 305 b rearwardly until the holding member arrangement 304/305 reaches the position shown in FIG. 25. This, in turn, compresses the spring 306 to a certain extent and allows deflecting member 304 h to catch or engage the opening 301 h. Such engagement ensures that the front portion 304 is prevented from moving axially towards the plane P until the trigger 309 is depressed. However, when the user presses the trigger 309, the deflecting member 304 h is moved out of engagement with opening 301 h and the spring 306 causes the holding member 304/305 to move to a fully extended position. However, once contact occurs between stop surface MSS and stop surface FSS, the spring 306 causes the holding member 304/305 to automatically retract axially back into the body 301 to a position similar to that of FIG. 24. Although not shown, this occurs because the spring 306 has one end, i.e., the left end, coupled to the front portion 304 of the holding member 304/305 and another end, i.e., the right end, coupled to the annular surface 301 b of the body 301. One way this can occur is shown in FIG. 46, which will be more fully described later on. The spring 306 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 306 can be connected to these parts 301, 304 in a manner similar to that of FIG. 45, i.e., via flanges formed on the parts 301 and 304. In this way, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 306. As a result, the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 309 is released) and is otherwise not exposed to a user while the front cover 303 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • As was the case in the previous embodiments, the lancet device LD utilizes the front cap 303 to adjust the penetration depth of the lancet needle. The front cap 303 is preferably mounted to the body 301 and/or to the intermediate section 302 of the body 301 so as to be at least partially rotate in each of two directions. Of course, the front cap 303 can be mounted to the body 301 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards. To ensure that the front cap 303 is axially retained to body parts 302 and 303, yet allowed to rotate with respect to the lancet device body, the front cap 303 has internal threads 303 c which engage external threads 302 a of the intermediate section 302. The front cap 303 also includes chamfered corners 303 b and raised projections 303 a which allow a user to more securely grip the front cap 303. The intermediate body section 302 has an internal projecting wall 302 b that includes a fixed stop surface FSS which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 304) that is formed on or coupled to the front portion 304 of holding member 304/305.
  • As described above, FIG. 25 shows the lancet device LD with the lancet member 304/305 in the loaded position, i.e., ready to move to an extended position when the trigger 309 is depressed. The holding member 304/305 retains the loaded position of FIG. 25 as long as the user does not press the trigger 309. As in one of the previous embodiments, when the user presses the trigger 309, the holding member 304/305 is released from the loaded position of FIG. 25, and is caused to move towards plane P. This occurs because the holding member 304/305 is free to slide within body 301. As will be described later on with regard to other embodiments, the holding member 304/305 can also have a polygonal cross-section shape which corresponds to a polygonal opening 301 d in the body 301 so as to ensure that the holding member 304/305 does not rotate while it moves axially back and forth. However, for this embodiment, it is sufficient if the holding member 304/305 has cylindrical outer surfaces (e.g., 304 g and 305 c) which slide within (with a clearance) cylindrical surfaces (e.g., 301 a, 302 d, and 301 d) in the body 301 and intermediate section 302. As with the previous embodiments, it can be recognized that the holding member 304/305 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 302. In this position, the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P. The lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 25.
  • As with the other embodiments, the lancet device LD can have any desired number of pre-set extended positions, i.e., in one of the positions of the front cap 303 that will cause a desired puncture depth in the skin of a user (not shown). The distance that the lancet needle projects past plane P is thus determined by rotating the front cap 303 until the desired setting is reached, e.g., arrow 308 lines up with one of the indicia 307. This setting, in turn, causes the plane P to move axially relative to fixed stop surface FSS. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 304/305, and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 303 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 303 thus determines how much of the end of the lancet needle extends past the plane P. The depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the front cap 303. As with the previous embodiments, the needle tip can project through the opening LO in the front cover 303 and past the plane P. Thereafter, the user can pull end 305 b back to compress spring 306 to again arm the lancet device LD. In this regard, the engaging portion 309 a of trigger 309 utilizes an engaging surface which, when engaged with the deflecting member 304 h of the front portion 104, causes the front portion 304 to move. The trigger 309 can be moved against the biasing force of a trigger spring 311. To ensure that the trigger 309 is retained on the body 301, the spring 311 has an upper end which is retained on a flange 309 c of the trigger 309 and a lower end that is retained to a flange 301 g of the body 301. An annular opening 301 e is formed in the body 301 and is sized and configured to receive an outer flange portion 309 d of the trigger 309. Of course, the invention contemplates other configurations of the trigger 309 and the invention is not limited to any particular type of trigger.
  • FIG. 24 shows a cross-section view of the lancet device of FIGS. 22 and 23 wherein the holding member 304/305 is in an intermediate position. In this regard, the holding member 304/305 has not yet reached its maximum extended position caused by axial expansion of the spring 306. The front cover 303, intermediate body 302, spring 306, lancet 10 and holding member 304/305 can be seen in their installed and/or assembled position. However, this figure allows one to more clearly see that the spring 306 is arranged to surround the holding member 304/305, just behind the lancet receiving front portion 304. The spring 306 is preferably sized to slide into internal opening 301 a of the body 301. More particularly, the spring 306 is preferably disposed inside the body 301 and between an inner annular wall 301 b of the body 301 and the front part 304 of the holding member 304/305. That is, the spring 306 is axially retained between a left side surface 304 c of front part 304 of holding member 304/305 the inner wall 301 b of the body 301. As a result, the spring 306 is caused to be compressed when the holding member 304/305 is moved back (i.e., to the right) to a retracted position relative to the body 301. As discussed above, the spring 306 causes (and/or biases) the holding member 304/305 towards an extended position once the trigger 309 is pressed. As a result, the holding member 304/305 cannot be moved back to a retracted position without causing the spring 306 to be compressed thereby.
  • As can be seen in FIGS. 24-28, the front cap 303 has internal threads 303 c and a planar inner annular surface 303 d. The threads 303 c are configured to engage external threads 302 a of the intermediate section 302. The intermediate section 302 also includes an external cylindrical surface 302 e and internal threads 302 c which are configured to engage external threads 301 c of the body 301. A cylindrical opening 302 d is sized to receive (with a clearance) the front portion 304 so that contact can occur between stop surface FSS and stop surface MSS. In this regard, the stop surface FSS is an annular surface that is formed on an internal cylindrical projecting wall 302 b which is integral with the section 302. Of course, this wall 302 b can instead be formed by spaced apart projections which extend inwardly from the section 302. Alternatively, this wall 302 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIG. 16. The front part 304 includes a small cylindrical section 304 a which utilizes two oppositely arranged slots (see FIG. 26). The section 304 a also has an internal opening (e.g., see 304 f in FIG. 26) which is sized to receive the lancet 10. In order to ensure that the lancet 10 is securely and axially retained within opening, the front part 304 includes projections (e.g., see 304 e in FIG. 26) which have sharp ends for gripping the lancet 10. The slots 304 d allow the opening 304 f to expand and contract with insertion and removal of the lancet 10 and allow the end 304 to act as two spring fingers. Front part 304 also includes larger cylindrical section 304 g which can slide within openings 302 d and 301 a. The front part 304 also includes the deflecting member 304 h which is formed integrally therewith. In this regard, deflecting member 304 h and the front part 304 are formed of a material which allows the deflecting member 304 h to act as a spring in that it can be deflected inwards (compare FIGS. 24 and 25) and thereafter return to an undeflected position (see FIG. 25). In order to connect the front part 304 with the rear part 305 to form the holding member 304/305, the front part 304 includes internal threads which are configured to engage external threads of the rear part 305. The rear part 305 also has a cylindrical section 305 c which is sized and configured to slide within (with a clearance) cylindrical opening 301 d of body 301 and an enlarged cylindrical gripping end 305 b. As with the previous embodiments, the holding arrangement 304/305 can alternatively be formed as a one-piece member. Moreover, the intermediate section 302 and body 301 can also alternatively be formed as a one-piece member as in the embodiment shown in FIGS. 14-21.
  • FIGS. 29-35 show another embodiment of lancet device. Lancet device LD has a lancet body 401 which can be made as a one-piece member as with the embodiment shown in FIGS. 1-7. Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. A holding member 404/405 is movably disposed within the body 401. Also, a front cover 403 is removably connected or attached to an intermediate section 402 of the body. By removing the front cover 403, and optionally the intermediate section 302, one can gain access to the lancet 10. The lancet 10 can thus be removed and replaced with a new lancet 10, as needed, once the front cover 403 is removed. As in many lancet devices, the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin. However, unlike known lancet devices, the instant embodiment may utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend. The lancet holder 404/405 has a rear portion 405, and specifically a locking portion 405 b, that can be engaged by a locking member 414 after a back cap retracting spring 415 is mounted to the member 405. The front portion 404 and the rear portion 405 slide within the body 401. As will be described in more detail later on, movement of the locking portion 405 b rearwardly (see FIG. 33), causes the holding member 404/405 to retract until it reaches a spring loaded position shown in FIGS. 32 and 33. The lancet 10, itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices. To ensure that lancet 10 is securely (yet removably) retained within the lancet device LD, the front portion 404 of the holding member 404/405 includes a lancet holding end 404 a which receives the lancet 10 therein.
  • As can be seen in FIGS. 31 and 32, the holding member 404/405 arrangement preferably has a first spring 406 mounted thereto. In this regard, the first spring 406, which can be made of spring steel, is arranged to surround the holding member 404/405, just behind the front portion 404. By way of one non-limiting example, the spring 406 may have a diameter of approximately 6.2 mm, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 406 causes (and/or biases) the holding member 404/405 to move towards an extended position once a trigger 409 is activated (not shown). The trigger 409 includes a portion 409 a that extends into the body 401, and is mounted to the body 401. The trigger 409 also has a finger engaging (e.g. push button) portion 409 b that can be pushed and/or deflected into the lancet device LD. The trigger 409 also utilizes a spring 411 which biases the trigger 409 towards the position shown in FIGS. 31-33. Thus, when force is applied to the finger engaging portion 409 b, the inner portion 409 a moves into contact with deflecting member 404 h of the front portion 404. This causes the deflecting member 404 h to disengage with opening 401 h, which allows front part 404 to move towards plane P. On the other hand, when the push button 409 b is released, the trigger 409 is capable of returning to the position shown in FIGS. 31-33.
  • As discussed above, the spring 406 causes (and/or biases) the holding member 404/405 to move towards an extended position (not shown) once the holding member 404/405 is pulled back (see FIG. 33) using the back cap 412. When a user wishes to place the lancet device LD in the loaded position (see FIG. 32), a user need only move the back cap 412 rearwardly until the holding member arrangement 404/405 reaches the position shown in FIG. 33. This, in turn, compresses the first spring 406 to a certain extent and allows deflecting member 404 h to catch or engage opening 401 h. Such engagement ensures that the front portion 404 is prevented from moving axially towards the plane P until the trigger 409 is depressed. However, when the user presses the trigger 409, the deflecting member 404 h is moved out of engagement with opening 401 h and the spring 406 causes the holding member 404/405 to move to a fully extended position. However, once contact occurs between stop surface MSS and stop surface FSS, the spring 406 causes the holding member 404/405 to automatically retract axially back into the body 401 to a position similar to that of FIG. 31. Although not shown, this occurs because the spring 406 has one end, i.e., the left end, coupled to the front portion 404 of the holding member 404/405 and another end, i.e., the right end, coupled to the annular surface 401 b of the body 401. One way this can occur is shown in FIG. 46, which will be more fully described later on. The spring 406 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 406 can be connected to these parts 401, 404 in a manner similar to that of FIG. 45, i.e., via flanges formed on the parts 401 and 404. Of course, in this embodiment it is not necessary that the spring 406 be connected to parts 404 and 401. This is because this embodiment uses a second spring 415 to cause the holding member 404/405 to automatically retract after it reaches the fully extended position, i.e., a position in which stop surface MSS contacts stop surface FSS. To ensure that this occurs, the second spring 415 is able to compress with a force that is far less that the force needed to compress spring 406. Preferably, the spring 415 has a diameter of approximately 10.1 mm, a freelength of approximately 13.6 mm, and a wire size of 0.25 mm. In this way, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to retract back in the lancet device by the spring 415. As a result, the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 409 is released) and is otherwise not exposed to a user while the front cover 403 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • As was the case in the previous embodiments, the lancet device LD utilizes the front cap 403 to adjust the penetration depth of the lancet needle. The front cap 403 is preferably mounted to the body 401 and/or to the intermediate section 402 of the body 401 so as to be at least partially rotate in each of two directions. Of course, the front cap 403 can be mounted to the body 401 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards. To ensure that the front cap 403 is axially retained to body parts 402 and 403, yet allowed to rotate with respect to the lancet device body, the front cap 403 has internal threads 403 c which engage external threads 402 a of the intermediate section 402. The front cap 403 also includes chamfered corners 403 b and raised projections 403 a which allow a user to more securely grip the front cap 403. The intermediate body section 402 has an internal projecting wall 402 b that includes a fixed stop surface FSS (see FIG. 32) which is configured to be engaged by a movable stop surface MSS (in particular stop surface MSS of front portion 404) that is formed on or coupled to the front portion 404 of holding member 404/405.
  • As described above, FIG. 32 shows the lancet device LD with the lancet member 404/405 in the loaded position, i.e., ready to move to an extended position when the trigger 409 is depressed. The holding member 404/405 retains the loaded position of FIG. 32 as long as the user does not press the trigger 409. As in some of the previous embodiments, when the user presses the trigger 409, the holding member 404/405 is released from the loaded position of FIG. 32, and is caused to move towards plane P. This occurs because the holding member 404/405 is free to slide within body 401. As will be described later on with regard to other embodiments, the holding member 404/405 can also have a polygonal cross-section shape which corresponds to a polygonal opening 401 d in the body 401 so as to ensure that the holding member 404/405 does not rotate while it moves axially back and forth. However, for this embodiment, it is sufficient if the holding member 404/405 has cylindrical outer surfaces (e.g., 404 g and 405 c) which slide within (with a clearance) cylindrical surfaces (e.g., 401 a, 402 d, and 401 d) in the body 401 and intermediate section 402. As with the previous embodiments, it can be recognized that the holding member 404/405 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the intermediate section 402. In this position, the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P. The lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 32.
  • As with the other embodiments, the lancet device LD can have any desired number of pre-set extended positions, i.e., in one of the positions of the front cap 403 that will cause a desired puncture depth in the skin of a user (not shown). The distance that the lancet needle projects past plane P is thus determined by rotating the front cap 403 until the desired setting is reached, e.g., arrow 408 lines up with one of the indicia 407. This setting, in turn, causes the plane P to move axially relative to fixed stop surface FSS. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 404/405, and since the plane P moves relative to the fixed stop surface FSS, adjustment of the front cap 403 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the front cap 403 thus determines how much of the end of the lancet needle extends past the plane P. The depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the front cap 403. As with the previous embodiments, the needle tip can project through the opening LO in the front cover 403 and past the plane P. Thereafter, the user can pull end 405 b back, i.e., by pulling back cap 412 back, to compress spring 406 to again arm the lancet device LD. Of course, this movement of the back cap 412 causes the second spring 415 to compress (see FIG. 33). Once the holding member 404/405 is in the loaded position (see FIG. 32) the second spring 415 causes the back cap 412 to retract back into the body 401. In this regard, the engaging portion 409 a of trigger 309 utilizes an engaging surface which, when engaged with the deflecting member 404 h of the front portion 404, causes the front portion 404 to move. The trigger 409 also moves against the biasing force of a trigger spring 411. The spring 411 has an upper end which is retained on a flange 409 c of the trigger 409 and a lower end that is retained to a flange 401 g of the body 401. An annular opening 401 e is formed in the body 401 and is sized and configured to receive an outer flange portion 409 d of the trigger 409. Of course, the invention contemplates other configurations of the trigger 409 and the invention is not limited to any particular type of trigger.
  • FIG. 33 shows an enlarged cross-section view of the lancet device LD wherein the holding member 404/405 is in the loaded position. In this regard, the holding member 404/405 is ready for movement to its maximum extended position caused by axial expansion of the spring 406. The front cover 403, intermediate body 402, spring 406, lancet 10, spring 415, locking member 414, back cap 412 and holding member 404/405 can be seen in their installed and/or assembled position. However, this figure allows one to more clearly see that the springs 406 and 415 are arranged to surround the holding member 404/405, behind the lancet receiving front portion 404. The spring 406 is preferably sized to slide into internal opening 401 a of the body 401, whereas the spring 415 is sized to slide into internal opening 401 i of body 401.
  • The spring 406 is preferably disposed inside the body 401 and between an inner wall 401 b of the body 401 and the front part 404 of the holding member 404/405. That is, the spring 406 is axially retained between a left side surface 404 c of front part 404 of holding member 404/405 the inner wall 401 b of the body 401. As a result, the spring 406 is caused to be compressed when the holding member 404/405 is moved back (i.e., to the right) to a retracted position relative to the body 401. As discussed above, the spring 406 causes (and/or biases) the holding member 404/405 towards an extended position once the trigger 409 is pressed. As a result, the holding member 404/405 cannot be moved back to a retracted position without causing the spring 406 to be compressed thereby.
  • The spring 415 is preferably disposed inside the body 401 and between an inner wall 412 b of the back cap 412 and the end 405 b of the holding member 404/405. That is, the spring 415 is axially retained between a left side surface 412 c of the back cap 412 and locking member 414. As a result, the spring 415 is caused to be compressed when the holding member 404/405 is moved forward (i.e., to the left) to an extended position and when the back cap 412 is moved to an extended position (i.e., to the right) relative to the body 401. As discussed above, the spring 415 causes (and/or biases) the back cap 412 towards a retracted position once the back cap 412 is released. As a result, the back cap 412 cannot be moved away from the body 401 without causing the spring 415 to be compressed thereby. In order to allow the end 405 b to extend into an internal opening 412 f of the back cap 412, an opening 412 d is provided in wall 412 b. The back cap 412 also includes a recess 412 g which is sized and configured to receive an end plug 413. To ensure that the back cap 412 can slide into opening 401 i of the body 401, the back cap 412 includes a cylindrical outer surface 412 e which is sized and configured to slide (with a clearance) within cylindrical opening 401 i. A shoulder 412 a is provided to allow the user to grip the back cap 412. The shoulder 412 a also acts to limit the retraction of the back cap 412 into the body 401 by engaging end 401 k in the fully retracted position.
  • As can be seen in FIG. 34 (note that the springs 406 and 415 have been removed for the sake of clarity), the front cap 403 has internal threads 403 c and a planar inner annular surface 403 d. The threads 403 c are configured to engage external threads 402 a of the intermediate section 402. The intermediate section 402 also includes an external cylindrical surface 402 e and internal threads 402 c which are configured to engage external threads 401 c of the body 401. A cylindrical opening 402 d is sized to receive (with a clearance) the front portion 404 so that contact can occur between stop surface FSS and stop surface MSS (not shown). In this regard, the stop surface FSS is an annular surface that is foamed on an internal cylindrical projecting wall 402 b which is integral with the section 402. Of course, this wall 402 b can instead be formed by spaced apart projections which extend inwardly from the section 402. Alternatively, this wall 402 b can be formed as a separate part and/or removable part (e.g., a snap ring), as in the embodiment shown in FIGS. 14-21.
  • The front part 404 includes a small cylindrical section 404 a which utilizes two oppositely arranged slots (see FIG. 34). The section 404 a also has an internal opening 404 f which is sized to receive the lancet 10. In order to ensure that the lancet 10 is securely and axially retained within opening, the front part 404 includes projections 404 e which have sharp ends for gripping the lancet 10. The slots 404 d allow the opening 404 f to expand and contract with insertion and removal of the lancet 10 and allow the end 404 to act as two spring fingers. Front part 404 also includes larger cylindrical section 404 g which can slide within openings 402 d and 401 a. The front part 404 also includes the deflecting member 404 h which is formed integrally therewith. In this regard, deflecting member 404 h and the front part 404 is formed of a material which allows the deflecting member 404 h to act as a spring in that it can be deflected inwards (compare FIGS. 31 and 32) and thereafter return to an undeflected position (see FIG. 32). In order to connect the front part 404 with the rear part 405 to form the holding member 404/405, the front part 404 includes internal threads 404 b which are configured to engage external threads 405 a of the rear part 405. The rear part 405 also has a cylindrical section 405 c which is sized and configured to slide within (with a clearance) cylindrical opening 401 d of body 401 and an enlarged locking end 405 b whose barbs engage an internal opening in locking member 414.
  • FIGS. 36-38 show another embodiment of lancet device. Lancet device LD has a lancet body 501 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7. Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. The parts other than the body 501 can be the same as those used in the embodiment shown in FIGS. 29-35. Accordingly, the details of these parts will not be described again. However, the rear holding member 505 in this embodiment may also be different in that it may utilize a polygonal configuration which can be in the form of a cross (see FIG. 38). To ensure that the rear portion 505 is supported in the body 501, two support walls 501 n and 501 o extend inwards into the body 501. An enlarged opening 501 m is provided between walls 501 n and 501 o. The walls 501 n and 501 o also include openings 501 d which are sized and configured (with a clearance) to slidingly receive the rear portion 505. The lancet device LD will otherwise function in an manner similar to that of FIGS. 29-35.
  • FIGS. 39-40 show an embodiment of a lancet device body 601 which can be used in the embodiment shown in FIGS. 36-38. The body 601 is the same as that shown in FIGS. 36-38 except that it is made as a two-piece structure. In this regard, the body 601 an upper part 601A and a lower part 601B which can be connected together in any desired manner. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. The use of a two-piece body, similar to that one shown herein, can be used in any of the disclosed embodiments.
  • FIGS. 41-42 show an embodiment of a lancet device which utilizes a rear portion 705 of the lancet holding arrangement that includes two oppositely arranged stop projections 705A and 705B. Such an arrangement may be used on the embodiments shown in FIGS. 29-38. The purpose of the stop projections 705A and 705B is to prevent the second spring 715 from compressing completely and to ensure that the back cap 712 is not pulled out from the body 701 beyond a desired amount. In this regard, when the back cap 712 is pulled back (i.e., to the right), the surface 712 c contacts the stop projections 705A and 705B and the spring 715 is prevented from further compression. Once such contact occurs, the holding member 705 begins to move backwards with the back cap 712 in the manner similar to that described with regard to FIGS. 29-38.
  • FIGS. 43-44 show another embodiment of lancet device. Lancet device LD has a lancet body 801 which can be made as a two-piece member as with the embodiment shown in FIGS. 39-40. Alternatively, it can be made as a one-piece structure as in the embodiment shown in, e.g., FIGS. 36-38. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. The parts other than the body 801 and the rear holding member 805 can be the same as those used in the embodiment shown in FIGS. 36-38. Accordingly, the details of these parts will not be described again. The rear holding member 805 in this embodiment utilizes both a polygonal configuration which can be in the form of a cross (see FIG. 38) and a projecting portion 816. To ensure that the holding arrangement is automatically retracted after the stop surface MSS contacts stop surface FSS, a third spring 817 is provided. The third spring 817 is arranged an wall of the body 801 and the projecting part 816. The third spring 817 can be similar to that of the back cap spring. As in the embodiment shown in FIGS. 36-40, the walls of the body 801 include openings which are sized and configured (with a clearance) to slidingly receive the rear portion 805. The lancet device LD will function in an manner similar to that of FIGS. 29-35, except that the third spring 816 will also aid in retracting the lancet holding member after the stop surface MSS contacts the stop surface FSS.
  • FIG. 45 shows another embodiment of lancet device. Lancet device LD has a lancet body 901 which can be made as a two-piece member as with the embodiment shown in FIGS. 39-40. Alternatively, it can be made as a one-piece structure as in the embodiment shown in, e.g., FIGS. 22-28. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. The parts other than the body 901 and the front part 904 can be the same as those used in the embodiment shown in FIGS. 22-28. Accordingly, the details of these parts will not be described again. However, the front part 904 in this embodiment may utilize an integrally formed connecting flange 904 i for retaining one end of the spring 906. The body 901 may also utilize an integrally formed flange 901 i which is connected to another end of the spring 906. The lancet device LD will otherwise function in an manner similar to that of FIGS. 22-28.
  • FIG. 46 shows one way that spring can be mounted to each of the front part, e.g., 4 and the body, e.g., 1. This arrangement can be used on any of the disclosed embodiments, and especially those of FIGS. 1-28. As can be seen from FIG. 46, the ends 6 a and 6 b of the spring 6 are shaped with a bend which penetrates openings formed in each of the front part 4 and the body 1. Such frictional engagement can be aided by using, e.g., adhesives, in order to ensure that the spring 6 does not disconnect or disengage from the front part and body.
  • FIGS. 47-50 shows one possible system for maintaining the depth setting of the front cap. This system can be used on any of the herein disclosed embodiments by modifying the intermediate section to include surface 1002 f and ratchet pawl RP. Moreover, the front cap can be modified to include the undulating ratchet surface RS and the groove 1003 e. Of course, the invention contemplates other systems or mechanisms for maintaining the depth setting position of the front cap relative to the body.
  • With reference to FIGS. 47 and 48, the front cap 1003 can have the same outer configuration described with regard to any of the previous embodiments. However, the front cap 1003 can also include axially oriented pointed undulations which form the ratchet surface RS. Although these undulations are in the form of pointed axial projections arranged on an inner circumferential wall, they can also have the form of rounded undulations. The purpose of these undulations or projections/grooves is of course to engage the ratchet pawl RP on the intermediate section 1002. The number of projections/grooves forming the undulations can, of course, be configured to match the desired number of depth settings and/or the desired axial movement of the each setting, i.e., more undulations translates to finer depth settings (with less force generally being required to rotate the front cover 1003) while less undulations translates to move axial distance of the front cover 1003 between discrete depth settings (with more force generally being required to rotate the front cover 1003). Thus, when the front cap 1003 is rotated in either of two opposite directions to change its axial distance relative to the body, the undulating surface will cause the ratchet pawl RP to deflect towards and away from surface 1002 f. However, when the front cap 1003 is not rotated, it will automatically be maintained in a position wherein the ratchet pawl RP engages one of the grooves of the undulating surface. Using this system, the user will generally experience a clicking sound as the ratchet pawl RP engages each groove of the undulating surface RS upon rotation of the front cap 1003. In this regard, it is important to ensure that the axial length of surface 1002 f is sufficiently long to encompass all of the axial movement of the front cap 1003 between the range of adjustment indicated by the indicia. As can be seen in FIGS. 47 and 48, the surface RS extends from planar surface 1003 d to a circumferential groove 1003 e.
  • With reference to FIGS. 49 and 50, the front end of the intermediate section 1002 (or body if no intermediate section is utilized as in the embodiment shown in e.g., FIGS. 14-21) includes one ratchet pawl RP which is integrally formed there with. Of course, the pawl RP can be replaced with any desired mechanism which deflects towards and away from the surface 1002 f such as, e.g., a spring mounted sphere which is embedded in surface 1002 f, i.e., between surface 1002 f and opening 1002 g. The pawl RP includes an arm section that is coupled to the surface 1002 f and a rounded end which engages the undulating surface RS. A circumferential space is provided between the aim and the surface 1002 f to ensure that the arm can deflect towards the surface 1002 f when the pointed portions of the surface RS force the pawl RP towards surface 1002 f. While the instant embodiment illustrates a pawl RP arranged in front of the fixed stop wall 1002 b, the pawl RP can be arranged in any desired location provided it functions to engage a ratchet surface RS. Additionally, while the drawings illustrate one pawl RP, it should be noted that the invention contemplates using two (oppositely arranged) or more pawls, as desired. Moreover, the invention also contemplates that the pawl RP can be formed or coupled to the front cap 1003 while the ratchet surface RS is formed on the intermediate section 1002 or body.
  • FIGS. 51-64 show another embodiment of lancet device. Lancet device LD has a lancet body 1101 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7. Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. A holding member 1105 is movably disposed within the body 1101. Also, a front cover 1103 is removably connected or attached to an intermediate and/or an adjustable section 1102. The adjustable section or member 1102 is threadably mounted to a front portion of the body 1101. By removing the front cover 1103, one can gain access to the lancet 10. The lancet 10 can thus be removed and replaced with a new lancet 10, as needed, once the front cover 1103 is removed. As in many lancet devices, the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin. However, unlike known lancet devices, the instant embodiment may also utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend. The lancet holder 1105 has a rear portion and a front portion 1104 that can be accessed by a user upon removal of the front cover 1103 in order to all for replacement of the lancet 10. The holding member 1105 slides within the body 1101. As will be described in more detail later on, movement of the holding member 1105 rearwardly, causes the holding member 1105 to retract until it reaches a spring loaded position shown in FIG. 51. The lancet 10, itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices. To ensure that lancet 10 is securely (yet removably) retained within the lancet device LD, the front portion 1104 of the holding member 1105 includes a lancet holding opening which receives the lancet 10 therein.
  • As can be seen in FIGS. 51, 55 and 56, the holding member 1105 preferably has a spring 1106 mounted thereto. In this regard, the spring 1106, which can be made of spring steel, is arranged to surround the holding member 1105, just behind a deflecting member 1105 a. By way of one non-limiting example, the spring 1106 may have a diameter of approximately 6.2 mm at its front end and a diameter of approximately 13 mm at its rear end, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 1106 causes (and/or biases) the holding member 1105 to move towards an extended position once a trigger 1109 is activated (see FIG. 63). The trigger 1109 includes a portion that extends into the body 1101 and that engages with the deflecting member 1105 a, and is movably mounted to a side wall of the body 1101. The trigger 1109 also has a finger engaging (e.g. push button) portion that can be pushed and/or deflected into the lancet device LD. Although not shown, instead of including a living hinge which provides natural elastic biasing properties, the trigger 1109 can utilize a spring (similar to previously described embodiments) which biases the trigger 1109 towards the position shown in, e.g., FIG. 51. In operation, when force is applied to the finger engaging portion of the trigger 1109, the inner portion moves into contact with deflecting member 1105 a of the holding member 1105. This causes the deflecting member 1105 a to disengage from an internal shoulder 1101 a (see FIG. 63) of the body 1101, which allows the holding member 1105 to move towards plane P under the action of the spring 1106. On the other hand, when the push button portion is released, the trigger 1109 is capable of returning to the position shown in FIG. 51.
  • As discussed above, the spring 1106 causes (and/or biases) the holding member 1105 to move towards an extended position (see FIG. 61) after the holding member 1105 is pushed back (see FIG. 64) to the position shown in FIG. 51. When a user wishes to place the lancet device LD in the loaded or armed position (FIG. 51), a user need only move or push the portion 1104 or lancet 10 rearwardly (see FIG. 64) until the holding member 1105 reaches the position shown in FIG. 51. This, in turn, compresses the spring 1106 to a certain extent and allows deflecting member 1105 a to catch or engage the shoulder 1101 a. Such engagement ensures that the holding member 1105 is prevented from moving axially towards the plane P until the trigger 1109 is depressed. However, when the user presses the trigger 1109, the deflecting member 1105 a is moved out of engagement with the shoulder 1101 a and the spring 1106 causes the holding member 1105 to move to a fully extended position. However, once contact occurs between the movable stop surface MSS and fixed stop surface FSS, the spring 1106 causes the holding member 1105 to automatically retract axially back within the body 1101 to a position that is intermediate to the fully retracted position shown in FIG. 51 and a fully extended position set by contact between the movable stop surface MSS and fixed stop surface FSS. Although not shown, this occurs because the spring 1106 has one end, i.e., the right end, coupled to (i.e., via two generally circumferential shoulders) the holding member 1105 and another end, i.e., the left end, coupled to and/or fixed between two internal generally circumferential shoulders of the body 1101. The spring 1106 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 1106 can be connected to these parts in a manner similar to that of FIG. 45, i.e., via annular flanges formed on the parts 1101 and 1105. In this way, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to automatically retract back in the lancet device by the spring 1106. As a result, the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 1109 is released) and is otherwise not exposed to a user while the front cover 1103 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • However, unlike the previous embodiments, the lancet device LD shown in FIGS. 51-64 does not utilize the front cap 1103 to adjust the penetration depth of the lancet needle. Instead, an intermediate member 1102 provides for lancet needle depth adjustment. In this regard, the intermediate member 1102 is preferably mounted to the body 1101 so as to at least partially rotate in each of two directions. Of course, the intermediate member 1102 can be mounted to the body 1101 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards to provide depth adjustment. To ensure that the intermediate member 1102 is axially retained to the body 1101, yet allowed to rotate with respect to the lancet device body, the intermediate member 1102 has internal threads 1102 a which engage external threads 1101 b of the intermediate section 1102. The threads of the body 1101 and the intermediate member 1102 can be of any conventionally known type. The intermediate member 1102 also includes a chamfered section having raised projections or a knurl 1102 b which allow a user to more securely grip (i.e., by providing a high friction gripping surface) the intermediate member 1102. The intermediate member 1102 also has an external generally circumferential projection 1102 c that can releasably engage with an internal circumferential recess 1103 a of the front cap 1103.
  • As described above, FIG. 51 shows the lancet device LD with the lancet holding member 1105 in the loaded position, i.e., ready to move to an extended position when the trigger 1109 is depressed. The holding member 1105 retains the loaded position of FIG. 51 as long as the user does not press the trigger 1109. As in many of the previous embodiments, when the user presses the trigger 1109, the holding member 1105 is released from the loaded or trigger-set position of FIG. 51, and is caused to move towards plane P. This occurs because the holding member 1105 is free to move or slide within body 1101. As was the case with regard to previously described embodiments, the holding member 1105 can also have a polygonal cross-section shape which corresponds to a polygonal opening (defined by flanges 1101 c and 1101 d) in the body 1101 so as to ensure that the holding member 1105 does not rotate while it moves axially back and forth. However, for this embodiment, it is sufficient if the holding member 1105 has cylindrical outer surfaces which slide within (with a clearance) cylindrical surfaces or openings of the flanges 1101 c and 1101 d in the body 1101. As with the previous embodiments, it can be recognized that the holding member 1105 can move towards the plane P until the stop surface MSS contacts or engages the stop surface FSS of the body 1101. In this position, the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P. The lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIG. 51.
  • As with the other embodiments, the lancet device LD can have any desired number of pre-set extended positions determined by an axial position of the intermediate member 1102 that will cause a desired puncture depth in the skin of a user (not shown). The distance that the lancet needle projects past plane P can be determined by rotating the intermediate member 1102 until the desired setting is reached, e.g., an arrow lines up with one of the indicia 1101 e (see FIGS. 52 and 53). This setting, in turn, causes the plane P to move axially relative to fixed stop surface FSS. Since the movable stop surface MSS always contacts the fixed stop surface FSS in the extended position of the holding member 1105, and since the plane P moves parallel to an axis of the lancet device LD and relative to the fixed stop surface FSS, adjustment of the intermediate member 1102 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the intermediate member 1102 thus determines how much of the end of the lancet needle extends past the plane P. The depth setting is thus controlled by contact between the stop surface MSS, stop surface FSS and the rotational position of the intermediate member 1102. As with the previous embodiments, the needle tip can project through the opening LO in the front cover 1103 and past the plane P. Thereafter, the user can push the holding member 1105 back to compress spring 1106 to again arm the lancet device LD. Thus, the instant embodiment operates such that an overall length of the lancet device changes when the intermediate member 1102 is moved to an adjustment position.
  • FIGS. 55 and 56 shows that the intermediate member 1102 can be adjusted without the front cap 1103 although it is desired, for safety reasons, that the front cap 1103 be installed onto the intermediate member 1102 when the intermediate member is moved to a different adjustment position.
  • As can be seen in FIGS. 58-61 c, the body 1101 has external threads 1101 b and a deflecting member 1101 f that includes a projection 1101 g. The threads 1101 b are configured to engage internal threads 1102 a of the intermediate member 1102. The intermediate member 1102 also includes internal recesses 1102 d which receive therein the projection 1101 g depending on the particular rotational position of the intermediate member 1102. In this way, as intermediate member 1102 rotates or threadably engages with the body 1101 a clicking sound will result as the projection 1101 g selectively sequentially engages with each of the recesses 1102 d. Furthermore, engagement between the projection 1101 g and a particular recess 1102 d results in a different overall length for the lancet device LD and also a different depth setting position. Moreover, engagement between the projection 1101 g and a particular recess 1102 d results in a depth set position that is locked or temporarily set until the intermediate member 1102 is rotated to another position determined by engagement between the projection 1101 g and another recess 1102 d. In order to ensure that the projection 1101 g can releasably engage with each of the recesses 1102 d, the member 1101 f is made deflectable by its integral connection (i.e., a living hinge connection provided for by the natural elasticity of the material of the body and two slots separating the sides of the member 11010 with the body 1101. Of course, the invention also contemplates using the projection on the intermediate member 1102 and the recesses on the body 1101. As with many of the previously described embodiments, the lancet 10 can be securely and axially retained within opening of the holding member 1105 via, e.g., projections which have sharp ends for gripping the lancet 10. Slots formed in the front portion 1104 allow the opening to expand and contract with insertion and removal of the lancet 10 and allow the end 1104 to act as two spring fingers.
  • FIG. 65 shows a partial cross-section view of a possible modification of the embodiment shown in FIGS. 51-64. This embodiment utilizes a trigger setting mechanism similar to the embodiments shown in FIGS. 29-44. As with those embodiments, a movably mounted back cap 1112 is utilized to move the holding member 1105′ to a retracted trigger-set position. A spring 1115 Is arranged to bias the back cap 1112 towards a retracted position shown in FIG. 65 after a user uses the back cap 1112 to move the holding member 1105′ to the retracted position. Of course, the invention contemplates other arrangements for allowing the user to move the holding member 1105′ to the trigger-set position such as the ones utilized in the following US patents: U.S. Pat. No. 6,190,398 to SCHRAGA, U.S. Pat. No. 6,156,015 to SCHRAGA, U.S. Pat. No. 6,022,366 to SCHRAGA, and U.S. Pat. No. 5,908,434 to SCHRAGA, the entire disclosures of which are hereby expressly incorporated by reference herein in their entireties. The body and front cover of the embodiments shown in FIGS. 51-65 can also have a non-circular shape similar to that of U.S. Pat. No. 5,464,418 to SCHRAGA, the disclosure of which is hereby expressly incorporated by reference herein it its entirety.
  • FIGS. 66 and 67 show another embodiment of lancet device. Lancet device LD has a lancet body 1201 which can be made as a one-piece member as with the embodiment shown in, e.g., FIGS. 1-7. Alternatively, it can be made as a two-piece structure as in the embodiment shown in, e.g., FIG. 39. Such body parts can, of course, be connected, e.g., using adhesives and/or fasteners and/or welding and/or snap-together holding mechanisms (not shown) to each other when the lancet device LD is initially assembled. A holding member 1205 is movably disposed within the body 1201. Also, a front cover 1203 is removably connected or attached to a front portion of the body 1201. The adjustable member or mechanism 1102 in this embodiment is threadably mounted to a rear portion of the body 1201. As with the previously described embodiment, one can remove the front cover 1203 to gain access to the lancet 10. The lancet 10 can thus be removed and replaced with a new lancet 10, as needed, once the front cover 1203 is removed. As in many lancet devices, the lancet device LD defines a plane P which is configured to contact (i.e., be positioned against) a user's skin. However, unlike known lancet devices, the instant embodiment may also utilize an inwardly curved and/or an outwardly curved surface plane P beyond which the lancet need can extend. The lancet holder 1205 has a rear portion and a front portion 1204 that can be accessed by a user upon removal of the front cover 1203 in order to all for replacement of the lancet 10. The holding member 1205 slides within the body 1201. As will be described in more detail later on, movement of the holding member 1205 rearwardly, causes the holding member 1205 to retract until it reaches a spring loaded position shown in FIG. 66. The lancet 10, itself, is conventional and includes a needle. It can be removed and replaced with a new one, as is the case in many lancet devices. To ensure that lancet 10 is securely (yet removably) retained within the lancet device LD, the front portion 1204 of the holding member 1205 includes a lancet holding opening which receives the lancet 10 therein.
  • As can be seen in FIGS. 66 and 67, the holding member 1205 preferably has a spring 1206 mounted thereto. In this regard, the spring 1206, which can be made of spring steel, is arranged to surround the holding member 1205, just behind a deflecting member 1205 a. By way of one non-limiting example, the spring 1206 may have a diameter of approximately 6.2 mm at its front end and a diameter of approximately 13 mm at its rear end, a freelength of approximately 36.7 mm, and a wire size of 0.5 mm. This spring 1206 causes (and/or biases) the holding member 1205 to move towards an extended position once a trigger 1209 is activated (not shown). The trigger 1209 includes a portion that extends into the body 1201 and that engages with the deflecting member 1205 a, and is movably mounted to a side wall of the body 1201. The trigger 1209 also has a finger engaging (e.g. push button) portion that can be pushed and/or deflected into the lancet device LD. Although not shown, instead of including a living hinge which provides natural elastic biasing properties, the trigger 1209 can utilize a spring (similar to previously described embodiments) which biases the trigger 1209 towards the position shown in, e.g., FIG. 66. In operation, when force is applied to the finger engaging portion of the trigger 1209, the inner portion moves into contact with deflecting member 1205 a of the holding member 1205. This causes the deflecting member 1205 a to disengage from an internal shoulder (similar to shoulder 1201 a in FIG. 63) of the body 1201, which allows the holding member 1205 to move towards plane P under the action of the spring 1206. On the other hand, when the push button portion is released, the trigger 1209 is capable of returning to the position shown in FIG. 66.
  • As discussed above, the spring 1206 causes (and/or biases) the holding member 1205 to move towards an extended position (not shown) after the holding member 1205 is pushed back (e.g., in the same way as shown in FIG. 64) to the position shown in FIG. 66. When a user wishes to place the lancet device LD in the loaded or armed position (FIG. 66), a user need only move or push the portion 1204 or lancet 10 rearwardly (see e.g., FIG. 64) until the holding member 1205 reaches the position shown in FIG. 66. This, in turn, compresses the spring 1206 to a certain extent and allows deflecting member 1205 a to catch or engage the shoulder. Such engagement ensures that the holding member 1205 is prevented from moving axially towards the plane P until the trigger 1209 is depressed. However, when the user presses the trigger 1209, the deflecting member 1205 a is moved out of engagement with the shoulder and the spring 1206 causes the holding member 1205 to move to a fully extended position. However, once contact occurs between the movable stop surface MSS and an adjustable stop surface ASS, the spring 1206 causes the holding member 1205 to automatically retract axially back within the body 1201 to a position that is intermediate to the fully retracted position shown in FIG. 66 and a fully extended position set by contact between the movable stop surface MSS and adjustable stop surface ASS. The movable stop surface MSS is formed by an annular surface of an outwardly projecting circumferential shoulder or flange arranged an a rear end of the holding member 1205. The adjustable stop surface ASS is formed by an annular surface of an inwardly projecting or extending circumferential shoulder or flange arranged on the adjusting mechanism or intermediate member 1202. Although not shown, the movement of the holding member 1205 occurs because the spring 1206 has one end, i.e., the right end, coupled to (i.e., via two generally circumferential shoulders) the holding member 1205 and another end, i.e., the left end, coupled to and/or fixed between two internal generally circumferential shoulders of the body 1201. The spring 1206 can, of course, be connected to these parts in any desired manner. Alternatively, the spring 1206 can be connected to these parts in a manner similar to that of FIG. 45, i.e., via annular flanges formed on the parts 1201 and 1205. In this way, the lancet needle only momentarily projects past the plane P in the extended position before it is caused to automatically retract back in the lancet device by the spring 1206. As a result, the lancet needle only projects past or beyond the plane P for a very brief time (i.e., a fraction of a second when the trigger 1209 is released) and is otherwise not exposed to a user while the front cover 1203 is installed thereon. Accordingly, a user or other innocent bystanders can be protected from being injured unintentionally by an exposed needle.
  • However, like the embodiment shown in FIGS. 51-65 and unlike some of the previous embodiments, the lancet device LD shown in FIGS. 66 and 67 does not utilize the front cap 1203 to adjust the penetration depth of the lancet needle. Instead, an intermediate member 1202 having the form of an adjustment mechanism provides for lancet needle depth adjustment. In this regard, the intermediate member 1202 is preferably mounted to the body 1201 so as to at least partially rotate in each of two directions. Of course, the intermediate member 1202 can be mounted to the body 1201 in any desired manner (i.e., with or without threads) provided it functions properly in the intended manner, i.e., provided it moves axially forwards and backwards to provide depth adjustment. To ensure that the intermediate member 1202 is axially retained to the body 1201, yet allowed to rotate with respect to the lancet device body, the intermediate member 1202 has internal threads 1202 a which engage external threads 1201 b of the intermediate member 1202. The threads of the body 1201 and the intermediate member 1202 can be of any conventionally known type. The intermediate member 1202 also includes a chamfered section having raised projections or a knurl (similar to knurl 1102 b of FIGS. 52-54) which allow a user to more securely grip (i.e., by providing a high friction gripping surface) the intermediate member 1202. In order to allow the front cover or cap 1203 to be removably connected to the front portion of the body 1201, the front portion of the body 1201 has an external generally circumferential projection (similar to 1102 c shown in FIG. 61 b) that can releasably engage with an internal circumferential recess 1203 a of the front cap 1203.
  • As described above, FIGS. 66 and 67 show the lancet device LD with the lancet holding member 1205 in the loaded position, i.e., ready to move to an extended position when the trigger 1209 is depressed. The holding member 1205 retains the loaded position of FIGS. 66 and 67 as long as the user does not press the trigger 1209. As in many of the previous embodiments, when the user presses the trigger 1209, the holding member 1205 is released from the loaded or trigger-set position of FIGS. 66 and 67, and is caused to move towards plane P. This occurs because the holding member 1205 is free to move or slide within body 1201. As was the case with regard to previously described embodiments, the holding member 1205 can also have a polygonal cross-section shape which corresponds to a polygonal opening (defined by flanges 1202 c and 1201 d) in the mechanism 1202 and the body 1201 so as to ensure that the holding member 1205 does not rotate while it moves axially back and forth. However, for this embodiment, it is sufficient if the holding member 1205 has cylindrical outer surfaces which slide within (with a clearance) cylindrical surfaces or openings of the flanges 1202 c and 1201 d. As with the previous embodiments, it can be recognized that the holding member 1205 can move towards the plane P until the movably stop surface MSS contacts or engages the adjustable stop surface ASS of the adjustment mechanism 1202 section of the body 1201. In this position (not shown), the needle of the lancet 10 projects past the plane P and through opening LO and thereby punctures the skin of a user which is resting against the plane P. The lancet device LD is then ready to be reloaded, i.e., it can then be placed back into the position shown in FIGS. 66 and 67.
  • As with the other embodiments, the lancet device LD can have any desired number of pre-set extended positions determined by an axial position of the intermediate member or adjustment mechanism 1202 that will cause a desired puncture depth in the skin of a user (not shown). The distance that the lancet needle projects past plane P can be determined by rotating the intermediate member 1202 until the desired setting is reached, e.g., an arrow lines up with one of an indicia (which can be similar to the embodiment shown in FIGS. 52 and 53). This setting, in turn, causes the plane P to move axially relative to adjustable stop surface ASS. Since the movable stop surface MSS always contacts the adjustable stop surface ASS in the extended position of the holding member 1205, and since the plane P moves parallel to an axis of the lancet device LD and relative to the adjustable stop surface ASS, adjustment of the intermediate member 1202 (by rotation) causes a corresponding change in distance between plane P and the end of the lancet needle, e.g., the rotational position of the intermediate member 1202 thus determines how much of the end of the lancet needle extends past the plane P. The depth setting is thus controlled by contact between the stop surface MSS, stop surface ASS and the rotational position of the intermediate member 1202. As with the previous embodiments, the needle tip can project through the opening LO in the front cover 1203 and past the plane P. Thereafter, the user can push the holding member 1205 back to compress spring 1206 to again arm the lancet device LD. Thus, the instant embodiment operates such that an overall length of the lancet device changes when the intermediate member 1202 is moved to an adjustment position.
  • FIGS. 66 and 67 shows that the intermediate member 1202 can be adjusted without the front cap 1203 being installed on the body 1201 although it is desired, for safety reasons, that the front cap 1203 be installed onto the body 1201 when the intermediate member 1202 is moved to a different adjustment position.
  • The body 1201 has external threads 1201 b and a deflecting member (not shown but similar to deflecting 1101 f of FIG. 58) that includes a projection (similar to projection 1101 g of FIG. 58). The threads 1201 b are configured to engage internal threads 1202 a of the intermediate member 1202. The intermediate member 1202 also includes internal recesses (not shown but similar to recesses 1102 d of FIG. 61 b) which receive therein the projection depending on the particular rotational position of the intermediate member 1202. In this way, as intermediate member 1202 rotates or threadably engages with the body 1201 a clicking sound will result as the projection selectively sequentially engages with each of the recesses. Furthermore, engagement between the projection of the body 1201 and a particular recess of the intermediate member 1202 results in a different overall length for the lancet device LD and also a different depth setting position. Moreover, engagement between the projection and a particular recess results in a depth set position that is locked or temporarily set until the intermediate member 1202 is rotated to another position determined by engagement between the projection and another recess. In order to ensure that the projection can releasably engage with each of the recesses, the deflecting member (similar to member 1101 f of FIGS. 59-60) is made deflectable by its integral connection (i.e., a living hinge connection provided for by the natural elasticity of the material of the body and two slots separating the sides of the member) with the body 1201. Of course, the invention also contemplates using the projection on the intermediate member 1202 and the recesses on the body 1201. As with many of the previously described embodiments, the lancet 10 can be securely and axially retained within opening of the holding member 1205 via, e.g., projections which have sharp ends for gripping the lancet 10. Slots formed in the front portion 1204 allow the opening to expand and contract with insertion and removal of the lancet 10 and allow the end 1204 to act as two spring fingers.
  • The embodiment shown in FIGS. 66 and 67 can also be modified to include a trigger setting mechanism similar to the one shown in e.g., FIG. 65. Additionally, it is noted that in the embodiment shown in FIGS. 51-65, the adjustment mechanism or intermediate member is arranged at a front end of the lancet device. On the other hand, in the embodiment shown in FIGS. 66 and 67, the intermediate member is arranged at a read end of the lancet device. However, the invention also contemplates arranging the intermediate member or adjustment mechanism in an area of the middle or center of the lancet device instead of on the ends of the lancet device, e.g., either between the trigger and front cap or between the trigger and the rear end of the lancet device.
  • The various parts, with the exception of the springs, can preferably be made as one-piece structures by e.g., injection molding. In this regard, they are preferably made of a plastic or synthetic resin such as, e.g., ABS plastic. The body and intermediate section can also be made of ABS—Metallic Silver and have a finish designated as SPI-A2. The front cover and back cap may also be made of ABS—Light Blue and have a finish designated as SPI-A2. The end plug, e.g., 413, is preferably made of a plastic or synthetic resin such as, e.g., Delrin plastic. The trigger may also have be made of ABS—Red and have a finish designated as SPI-A2. The holding member may also have be made of Delrin—Natural and have a finish designated as SPI-C1. Of course, other materials and/or finishes may be utilized, without leaving the scope of the invention. Moreover, each part may even be made of a plurality of sections of parts which are joined together to form the complete parts, without leaving the scope of the invention. Thus, all the parts of the lancet device, with the exception of the springs (which can be made of spring steel) and with the exception of the lancet needle (which can be a conventional metal needle mounted to a conventional plastic lancet 10), may be made from plastic materials and can be formed using conventional injection molding techniques or other known manufacturing methods. The front cap and/or body, for example, can be integrally formed with peripheral grooves and/or projections (similar to a coin), and with the indicating marks. However, when practical, other materials and manufacturing processes may also be utilized. Examples of desirable plastics include polypropylene (PP), polyvinyl chloride (PVC), acrylonitrile butadiene styrene (ABS), nylon, linear polyoxymethylene-type acetal resin, e.g., “DELRIN”, and polycarbonate (PC), e.g., “LEXAN”. The invention also contemplates that any or all disclosed features of one embodiment may be used on other disclosed embodiments, to the extent such modifications function for their intended purpose.
  • It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.

Claims (14)

What is claimed is:
1. A lancet device having adjustable depth of penetration, the lancet device comprising:
a body comprising a front end and a rear end and a side disposed between the front and the rear ends;
a trigger arranged on the side of the body;
a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend;
a holding member movably mounted within the body and comprising a front end and a rear end;
a spring disposed between the front and rear ends of the holding member;
the front end being configured to receive a replaceable lancet having the lancet needle;
a first stop surface located behind the front end and that moves with the holding member;
the first stop surface being closer to the front end of the body than to the rear end of the body;
a cocking member for moving the holding member to a trigger-set position;
another spring disposed inside the cocking member and being configured to move the cocking member to an original position; and
an intermediate member arranged between the front cover and the body and being at least one of:
axially adjustably connected to the body; and
threadably connected to the body,
wherein the intermediate member is visible and accessible to a user so as to allow the user to grip and rotate the intermediate member relative to the body.
2. The lancet device of claim 1, wherein the intermediate member is non-removably connected to the body and wherein the front cover is movably and removably connected to the intermediate member.
3. The lancet device of claim 1, wherein movement of the intermediate member adjusts a depth of penetration of the lancet needle.
4. The lancet device of claim 1, wherein the front cover is non-rotatably mounted to the intermediate member.
5. The lancet device of claim 1, wherein the front cover is devoid of moving parts.
6. The lancet device of claim 1, wherein the front cover comprises a one-piece plastic or synthetic resin member.
7. The lancet device of claim 1, wherein movement of the intermediate member changes an overall length of the lancet device and wherein the intermediate member is spaced from the front cover.
8. The lancet device of claim 1, wherein movement of the intermediate member changes an overall length of the lancet device and wherein the front cover is at least one of:
devoid of moving parts; and
a one-piece plastic or synthetic resin member.
9. The lancet device of claim 1, wherein the lancet device is structured and arranged to allow for replacement of the lancet and for multiple use.
10. The lancet device of claim 1, wherein the lancet is removably connected to the front end of the holding member.
11. A lancet device having adjustable depth of penetration, the lancet device comprising:
a body comprising a front end and a rear end and a side disposed between the front and the rear ends;
a trigger arranged on the side of the body;
a front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend;
a holding member movably mounted within the body and comprising a front end and a rear end;
a spring disposed between the front and rear ends of the holding member;
the front end being configured to receive a lancet having the lancet needle;
a first stop surface that moves with the holding member;
the first stop surface being closer to the front end of the body than to the rear end of the body;
a cocking member for moving the holding member to a retracted or trigger-set position;
another spring disposed inside the cocking member and being configured to move the cocking member to an original position; and
an intermediate member arranged between the front cover and the body and being at least one of:
axially adjustably connected to the body; and
threadably connected to the body,
wherein the intermediate member is visible and accessible to a user so as to allow the user to grip and rotate the intermediate member relative to the body, and
wherein the intermediate member is non-removably connected to the body and wherein the front cover is movably and removably connected to the intermediate member.
12. A method of puncturing a surface of skin using the lancet device of claim 11, the method comprising:
adjusting a depth of penetration by rotating the adjustment mechanism relative to the body to a desired set depth position;
disposing the skin engaging end against a user's skin; and
triggering the trigger to cause the lancet needle to penetrate the user's skin,
wherein the adjusting does not change a position of the stop surface relative to the body and changes an overall length of the lancet device.
13. A lancet device, comprising:
a body comprising a front end and a rear end;
a trigger arranged closer to the front end than to the rear end;
a removable front cover comprising a skin engaging end that includes a lancet opening through which a lancet needle may extend;
a holding member movably mounted within the body and comprising a rear end and a front end configured to receive a replaceable lancet having a needle;
the holding member comprising a deflecting portion;
the trigger being configured to cause the deflecting portion to disengage from a retaining surface during triggering of the lancet device;
a wall arranged within the housing;
the front end of the holding member being arranged on one side of the wall and the rear end of the holding member being arranged on another side of the wall;
a first spring structured and arranged to move the holding member to an extended position and comprising one end which contacts a portion of the holding member;
a second spring structured and arranged to move the holding member from the extended position to an intermediate position;
a first stop surface arranged on the holding member at a location behind the front end and that is closer to a front end of the body than to a rear end of the body when the holding member is in the intermediate position;
a second stop surface configured to be contacted by the first stop surface and being arranged closer to the front end of the body than to the rear end of the body;
a cocking mechanism structured and arranged to move the holding member to a retracted position when the cocking mechanism is moved toward the rear end of the body;
the cocking mechanism comprising a first portion arranged within the body and a second portion extending outside the body;
the second spring being arranged within the body and being structured and arranged to bias the cocking mechanism toward the front end of the body; and
a member comprising the second stop surface and being arranged between the trigger and a skin engaging surface of the lancet device,
wherein contact between the first and second stop surfaces defines the extended position.
14. The lancet device of claim 13, wherein the cocking mechanism is movable along a direction parallel to an axis of the body, wherein the second stop surface is arranged on an annular portion of the member, wherein the first spring comprises another end which contacts the wall, wherein an axis of the first second spring is axially aligned with an axis of the second spring, and wherein the first and second springs are axially spaced apart and are arranged between the trigger and the rear end of the body.
US14/720,228 2003-08-15 2015-05-22 Adjustable lancet device and method Abandoned US20150250410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/720,228 US20150250410A1 (en) 2003-08-15 2015-05-22 Adjustable lancet device and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/641,142 US7905898B2 (en) 2003-08-15 2003-08-15 Adjustable lancet device and method
US11/153,381 US20050234495A1 (en) 2003-08-15 2005-06-16 Adjustable lancet device and method
US14/720,228 US20150250410A1 (en) 2003-08-15 2015-05-22 Adjustable lancet device and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/153,381 Continuation US20050234495A1 (en) 2003-08-15 2005-06-16 Adjustable lancet device and method

Publications (1)

Publication Number Publication Date
US20150250410A1 true US20150250410A1 (en) 2015-09-10

Family

ID=37734798

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/641,142 Expired - Fee Related US7905898B2 (en) 2003-08-15 2003-08-15 Adjustable lancet device and method
US11/153,381 Abandoned US20050234495A1 (en) 2003-08-15 2005-06-16 Adjustable lancet device and method
US12/986,613 Expired - Fee Related US8888804B2 (en) 2003-08-15 2011-01-07 Adjustable lancet device and method
US14/492,901 Abandoned US20150012028A1 (en) 2003-08-15 2014-09-22 Adjustable lancet device and method
US14/720,228 Abandoned US20150250410A1 (en) 2003-08-15 2015-05-22 Adjustable lancet device and method

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/641,142 Expired - Fee Related US7905898B2 (en) 2003-08-15 2003-08-15 Adjustable lancet device and method
US11/153,381 Abandoned US20050234495A1 (en) 2003-08-15 2005-06-16 Adjustable lancet device and method
US12/986,613 Expired - Fee Related US8888804B2 (en) 2003-08-15 2011-01-07 Adjustable lancet device and method
US14/492,901 Abandoned US20150012028A1 (en) 2003-08-15 2014-09-22 Adjustable lancet device and method

Country Status (6)

Country Link
US (5) US7905898B2 (en)
EP (1) EP1663026A4 (en)
CN (1) CN100430028C (en)
AU (1) AU2004266639C1 (en)
CA (1) CA2535795A1 (en)
WO (2) WO2005018422A2 (en)

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US7175641B1 (en) 1998-06-11 2007-02-13 Stat Medical Devices, Inc. Lancet having adjustable penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
WO2002100252A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Blood sampling apparatus and method
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7033371B2 (en) 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
EP1404233B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
ATE497731T1 (en) 2001-06-12 2011-02-15 Pelikan Technologies Inc DEVICE FOR INCREASING THE SUCCESS RATE OF BLOOD YIELD OBTAINED BY A FINGER PICK
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
AU2002348683A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US20040098010A1 (en) * 2001-10-22 2004-05-20 Glenn Davison Confuser crown skin pricker
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7198606B2 (en) 2002-04-19 2007-04-03 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7371247B2 (en) * 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) * 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7976476B2 (en) * 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7141058B2 (en) * 2002-04-19 2006-11-28 Pelikan Technologies, Inc. Method and apparatus for a body fluid sampling device using illumination
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
WO2004060174A2 (en) * 2002-12-31 2004-07-22 Pelikan Technologies Inc. Method and apparatus for loading penetrating members
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7905898B2 (en) 2003-08-15 2011-03-15 Stat Medical Devices, Inc. Adjustable lancet device and method
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
US20050096686A1 (en) * 2003-10-31 2005-05-05 Allen John J. Lancing device with trigger mechanism for penetration depth control
US20050143771A1 (en) * 2003-12-02 2005-06-30 Stout Jeffrey T. Lancing device with combination depth and activation control
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
WO2006011062A2 (en) 2004-05-20 2006-02-02 Albatros Technologies Gmbh & Co. Kg Printable hydrogel for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
ATE383818T1 (en) * 2004-09-02 2008-02-15 Nipro Corp LANCET WITH NEEDLE PROTECTION
JP2008523961A (en) * 2004-12-20 2008-07-10 ファセット・テクノロジーズ・エルエルシー Puncture device with removable threaded closure
US10226207B2 (en) * 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US9289161B2 (en) 2005-01-28 2016-03-22 Stat Medical Divices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
EP1868502B1 (en) * 2005-04-04 2010-07-07 Facet Technologies, LLC Narrow-profile lancing device
US20070083222A1 (en) * 2005-06-16 2007-04-12 Stat Medical Devices, Inc. Lancet device, removal system for lancet device, and method
US8460329B2 (en) * 2005-06-30 2013-06-11 Bayer Healthcare Llc Single-puncture lancing system
US8617195B2 (en) * 2005-08-04 2013-12-31 Bayer Healthcare Llc Lancing device
US7785339B2 (en) * 2005-08-09 2010-08-31 Innovia, Llc Tool for coring portions of one or more hair follicles
RU2008116830A (en) * 2005-09-29 2009-11-10 Изуми-Космо Компани, Лимитед (Jp) LASET DEVICE AND PUNCHING DEVICE F61I
ATE513511T1 (en) * 2005-10-08 2011-07-15 Hoffmann La Roche STICKING SYSTEM
US7704265B2 (en) 2005-11-03 2010-04-27 Stat Medical Devices, Inc. Disposable/single-use blade lancet device and method
GB0524604D0 (en) * 2005-12-02 2006-01-11 Owen Mumford Ltd Injection method and apparatus
GB2434103B (en) * 2006-01-12 2009-11-25 Owen Mumford Ltd Lancet firing device
WO2007089930A2 (en) * 2006-01-31 2007-08-09 Facet Technologies, Llc Lancet with cap-removal guidance
CN101410058A (en) * 2006-04-03 2009-04-15 泉株式会社 Lancet assembly
RU2008143333A (en) * 2006-04-03 2010-05-10 Изуми-Космо Компани, Лимитед (Jp) LASET DEVICE
WO2007130830A2 (en) * 2006-04-25 2007-11-15 Facet Technologies, Llc Lancing device with independent drive core
EP1852069B1 (en) * 2006-05-04 2015-06-17 Roche Diagnostics GmbH System for sampling blood from a body part
WO2007129757A1 (en) * 2006-05-10 2007-11-15 Panasonic Corporation Piercing instrument and piercing needle cartridge
CA2654603A1 (en) * 2006-06-13 2007-12-21 Izumi-Cosmo Company, Limited Lancet assembly
US7867244B2 (en) * 2006-06-15 2011-01-11 Abbott Diabetes Care Inc. Lancing devices having lancet ejection assembly
US20070299459A1 (en) * 2006-06-26 2007-12-27 X-Sten Corp. Percutaneous Tissue Access Device
ATE487417T1 (en) * 2006-07-14 2010-11-15 Hoffmann La Roche INJECTION DEVICE WITH A SECOND DEVICE FUNCTION FOR OBTAINING A BODY FLUID SAMPLE
US8043318B2 (en) * 2007-02-08 2011-10-25 Stat Medical Devices, Inc. Push-button lance device and method
US8469986B2 (en) * 2007-03-30 2013-06-25 Stat Medical Devices, Inc. Lancet device with combined trigger and cocking mechanism and method
US9179867B2 (en) 2007-06-19 2015-11-10 Stat Medical Devices, Inc. Lancet device with depth adjustment and lancet removal system and method
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US10172626B2 (en) 2008-04-15 2019-01-08 The Lonnie and Shannon Paulos Trust Tissue microfracture apparatus and methods of use
US8398664B2 (en) 2008-12-18 2013-03-19 Facet Technologies, Llc Lancing device and lancet
US8029526B2 (en) * 2008-08-14 2011-10-04 Abbott Diabetes Care Inc. Cocking mechanism for lancing device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
EP2682055B1 (en) 2009-02-17 2016-10-05 Roche Diabetes Care GmbH Reuse protection for lancet system
DE102009025444A1 (en) * 2009-04-03 2010-10-07 Gerresheimer Wilden Gmbh Lancing device with lancet ejection means
US20110023281A1 (en) * 2009-04-30 2011-02-03 Stat Medical Devices, Inc. Pen injection device cap with integral pen needle quick release and/or removal system
EP2311373B1 (en) * 2009-10-15 2012-08-01 Roche Diagnostics GmbH Piercing system for removal of a body fluid
CA2786538A1 (en) * 2010-01-13 2011-07-21 Facet Technologies, Llc Lancing device with improved guidance mechanism
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
GB2489740A (en) 2011-04-08 2012-10-10 Owen Mumford Ltd Means for securely retaining a lancet in a lancing device
WO2013089917A1 (en) 2011-12-15 2013-06-20 Facet Technologies, Llc Latch mechanism for preventing lancet oscillation in a lancing device
PL2822483T3 (en) 2012-03-09 2016-05-31 George J Sikora Microfracture apparatuses
CA2869342A1 (en) 2012-04-11 2013-10-17 Facet Technologies, Llc Lancing device with moving pivot depth adjust
US10456069B2 (en) 2012-04-12 2019-10-29 Facet Technologies, Llc Lancing device with side activated charge and eject mechanisms
US20140214065A1 (en) * 2013-01-29 2014-07-31 Yong Pil Kim Blood lancet device
US10238401B2 (en) 2013-09-23 2019-03-26 Arthrosurface, Inc. Microfracture apparatuses and methods
CN103815954B (en) * 2014-03-24 2016-08-17 邹树 Gallbladder launches perforator
US10070811B2 (en) 2014-06-26 2018-09-11 Stat Medical Devices, Inc. Lancing device with depth adjustment and lancet removal system and method
CN104068866B (en) * 2014-07-03 2016-01-13 天津华鸿科技有限公司 A kind of blood collecting pen cap for brush preventing blood taking needle from shaking
FR3023171B1 (en) * 2014-07-04 2016-08-19 Aptar France Sas Autoinjector.
US9681889B1 (en) * 2015-06-09 2017-06-20 Surgentec, Llc Depth controlled needle assembly
TWM513008U (en) * 2015-07-02 2015-12-01 Joinsoon Medical Technology Co Ltd High-speed lancing device with lancet ejection means
CN105342673A (en) * 2015-09-30 2016-02-24 镇江市中西医结合医院 Ectopic pregnancy mass impact puncture device
USD806246S1 (en) 2016-02-25 2017-12-26 Steven Schraga Lancet cover
PL3509506T3 (en) 2016-09-07 2021-10-25 Vertos Medical, Inc. Percutaneous lateral recess resection instruments
US20180173692A1 (en) * 2016-12-19 2018-06-21 Google Inc. Iconographic symbol predictions for a conversation
US10610215B2 (en) * 2017-07-11 2020-04-07 Durastat Llc Devices and methods for suture placement
CN108567435B (en) * 2018-03-12 2020-12-18 青岛大学附属医院 Blood treatment device for hematology department
US11224447B2 (en) * 2019-02-13 2022-01-18 Spine Wave, Inc. Drill tap dilator
CN110236781B (en) * 2019-06-13 2021-06-29 南京医科大学眼科医院 Disposable sterile adjustable therapeutic needle
CN110693576B (en) * 2019-10-17 2024-01-05 徐州市中心医院 Electric planing device used under foramen mirror
CN110954279A (en) * 2019-12-02 2020-04-03 江门龙浩智能装备有限公司 Leak detection device
JP7419809B2 (en) * 2019-12-26 2024-01-23 ニプロ株式会社 Puncture device

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US428150A (en) * 1890-05-20 Chair
US376203A (en) * 1888-01-10 James a
CA523078A (en) 1956-03-27 L. Kelly Elizabeth Surgical instrument
US676678A (en) 1901-04-24 1901-06-18 George W Webb Nut-lock.
US1135465A (en) 1914-07-01 1915-04-13 William M Pollock Lancet.
US2699487A (en) * 1951-02-15 1955-01-11 Proctor Electric Co Temperature responsive control device
US2699784A (en) * 1953-02-16 1955-01-18 Krayl Gerhard Max Scarifier
US2823677A (en) * 1955-01-17 1958-02-18 Becton Dickinson Co Lancet
FR1126718A (en) 1955-06-25 1956-11-29 Maintained Orientation Syringe
US2848809A (en) * 1956-02-24 1958-08-26 John S Crowder Retractable scratch awl
US3030959A (en) * 1959-09-04 1962-04-24 Praemeta Surgical lancet for blood sampling
US3589213A (en) * 1968-08-16 1971-06-29 Mccrosky Tool Corp Turret tool post and handle assembly
US3760809A (en) * 1971-10-22 1973-09-25 Damon Corp Surgical lancet having casing
US4157086A (en) * 1975-10-13 1979-06-05 Farmitalia Carlo Erba S.P.A. Apparatus for providing skin cuts to a predetermined measure
DE2657053C3 (en) * 1975-12-19 1980-01-31 Societe D'etudes Et D'applications Techniques S.E.D.A.T., Irigny, Rhone (Frankreich) Device comprising an acupuncture needle and a device for piercing the same
US4064871A (en) 1976-05-11 1977-12-27 Becton, Dickinson And Company Device for making precise incisions for bleeding time testing and the like
DE2642896C3 (en) * 1976-09-24 1980-08-21 7800 Freiburg Precision snapper for setting standard stab wounds in the skin for diagnostic purposes
SE424140B (en) * 1979-03-23 1982-07-05 Eric Westberg DEVICE FOR ASTAD COMMANDING OF A MAIN SECTION
US4257561A (en) * 1979-06-05 1981-03-24 Ethyl Products Company Child-resistant dispensing nozzle assembly
FR2487037B1 (en) * 1980-07-17 1986-02-21 Vallourec JOINT FOR TUBES INTENDED IN PARTICULAR FOR THE OIL INDUSTRY
US4388925A (en) 1981-03-23 1983-06-21 Becton Dickinson And Company Automatic retractable lancet assembly
US4535769A (en) * 1981-03-23 1985-08-20 Becton, Dickinson And Company Automatic retractable lancet assembly
FR2508305B1 (en) * 1981-06-25 1986-04-11 Slama Gerard DEVICE FOR CAUSING A LITTLE BITE TO COLLECT A BLOOD DROP
US4449529A (en) * 1981-11-18 1984-05-22 Becton Dickinson And Company Automatic retractable lancet assembly
USRE32922E (en) * 1983-01-13 1989-05-16 Paul D. Levin Blood sampling instrument
US4517978A (en) * 1983-01-13 1985-05-21 Levin Paul D Blood sampling instrument
US4539988A (en) * 1983-07-05 1985-09-10 Packaging Corporation International Disposable automatic lancet
NZ208203A (en) 1983-09-15 1988-03-30 Becton Dickinson Co Blood lancet and shield: lancet has three cutting edges terminating in a point
US6395495B1 (en) * 1983-09-15 2002-05-28 Institut Pasteur Methods and kits for detecting antibodies against an HIV variant
US4624253A (en) 1985-01-18 1986-11-25 Becton, Dickinson And Company Lancet
US4643189A (en) 1985-02-19 1987-02-17 W. T. Associates Apparatus for implementing a standardized skin incision
US4628929A (en) 1985-08-16 1986-12-16 American Hospital Supply Corporation Retractable blade bleeding time device
US4834667A (en) * 1986-02-24 1989-05-30 Engineered Transitions Co., Inc. Vibration resistant electrical coupling
IT207944Z2 (en) 1986-07-25 1988-03-14 Erba Farmitalia LOCKING DEVICE OF A SYRINGE ON A BODY TO WHICH THE SYRINGE MUST BE COUPLED.
GB8710470D0 (en) * 1987-05-01 1987-06-03 Mumford Ltd Owen Blood sampling devices
US4850973A (en) * 1987-10-16 1989-07-25 Pavel Jordon & Associates Plastic device for injection and obtaining blood samples
US4924879A (en) * 1988-10-07 1990-05-15 Brien Walter J O Blood lancet device
US4895147A (en) * 1988-10-28 1990-01-23 Sherwood Medical Company Lancet injector
US5035704A (en) * 1989-03-07 1991-07-30 Lambert Robert D Blood sampling mechanism
US4990154A (en) * 1989-06-19 1991-02-05 Miles Inc. Lancet assembly
US4976724A (en) 1989-08-25 1990-12-11 Lifescan, Inc. Lancet ejector mechanism
US5133730A (en) * 1991-05-15 1992-07-28 International Technidyne Corporation Disposable-retractable finger stick device
US5147375A (en) * 1991-05-31 1992-09-15 Ann Sullivan Safety finger prick instrument
US5284156A (en) 1991-08-30 1994-02-08 M3 Systems, Inc. Automatic tissue sampling apparatus
JPH07500995A (en) 1991-11-12 1995-02-02 アクティムド・ラボラトリーズ・インコーポレイテッド lancet device
GB9207120D0 (en) * 1992-04-01 1992-05-13 Owen Mumford Ltd Improvements relating to blood sampling devices
DE4212315A1 (en) 1992-04-13 1993-10-14 Boehringer Mannheim Gmbh Blood lancet device for drawing blood for diagnostic purposes
PL169210B1 (en) * 1992-08-03 1996-06-28 Przed Zagraniczne Htl Puncturing device
US5267963A (en) 1992-08-21 1993-12-07 Nicholas Bachynsky Medication injection device
CA2079192C (en) * 1992-09-25 1995-12-26 Bernard Strong Combined lancet and multi-function cap and lancet injector for use therewith
US5314441A (en) * 1992-10-16 1994-05-24 International Technidyne Corporation Disposable slicing lancet assembly
US5269799A (en) 1992-11-05 1993-12-14 Daniel Richard F Finger pricker
US5282822A (en) * 1993-01-19 1994-02-01 Sherwood Medical Company Lancet ejector for lancet injector
JP2630197B2 (en) 1993-04-28 1997-07-16 株式会社ニッショー Blood suction device
DE4320463A1 (en) * 1993-06-21 1994-12-22 Boehringer Mannheim Gmbh Blood lancet device for drawing blood for diagnostic purposes
US5304193A (en) * 1993-08-12 1994-04-19 Sam Zhadanov Blood lancing device
US5395388A (en) * 1993-11-15 1995-03-07 Schraga; Steven Single unit lancet device
JP3393920B2 (en) 1993-12-09 2003-04-07 富士写真フイルム株式会社 Wearing equipment for small-volume fixed-volume blood sampling points
US5464418A (en) 1993-12-09 1995-11-07 Schraga; Steven Reusable lancet device
US5439473A (en) * 1993-12-13 1995-08-08 Modulohm A/S Safety lancet
US5397334A (en) * 1994-01-11 1995-03-14 Sherwood Medical Company Distal movement limiting assembly for finger stick device
US5509345A (en) * 1994-01-26 1996-04-23 Cyktich; James M. Muzzle attachment for improving firearm accuracy
US5350392A (en) * 1994-02-03 1994-09-27 Miles Inc. Lancing device with automatic cocking
US5454828A (en) * 1994-03-16 1995-10-03 Schraga; Steven Lancet unit with safety sleeve
US5529581A (en) * 1994-05-17 1996-06-25 International Technidyne Corporation Lancet device for creating a skin incision
US5527334A (en) * 1994-05-25 1996-06-18 Ryder International Corporation Disposable, retractable lancet
JP2723048B2 (en) 1994-06-24 1998-03-09 株式会社ニッショー Blood suction device
US5527333A (en) * 1994-09-09 1996-06-18 Graphic Controls Corporation Slicing disposable blood sampling device
USD376203S (en) 1994-10-31 1996-12-03 Steven Schraga Single use lancet
US5628765A (en) * 1994-11-29 1997-05-13 Apls Co., Ltd. Lancet assembly
US5643189A (en) * 1994-12-07 1997-07-01 Masini; Michael A. Composite wound dressing including inversion means
US5518004A (en) * 1994-12-12 1996-05-21 Schraga; Steven Specimen drawing device
US5628764A (en) * 1995-03-21 1997-05-13 Schraga; Steven Collar lancet device
US5569286A (en) 1995-03-29 1996-10-29 Becton Dickinson And Company Lancet assembly
US5571132A (en) 1995-06-06 1996-11-05 International Technidyne Corporation Self activated finger lancet
US5730753A (en) * 1995-07-28 1998-03-24 Apls Co., Ltd. Assembly for adjusting pricking depth of lancet
US5879367A (en) * 1995-09-08 1999-03-09 Integ, Inc. Enhanced interstitial fluid collection
US5643306A (en) * 1996-03-22 1997-07-01 Stat Medical Devices Inc. Disposable lancet
US5857983A (en) * 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US5951493A (en) 1997-05-16 1999-09-14 Mercury Diagnostics, Inc. Methods and apparatus for expressing body fluid from an incision
DE19781098B4 (en) * 1996-05-17 2005-05-19 Amira Medical, Scotts Valley Blood and interstitial fluid sampling device for analysis=processing - includes disposable lancet mounted in housing also carrying capillary tube which can be slid in longitudinal direction relative to lancet
US6332871B1 (en) 1996-05-17 2001-12-25 Amira Medical Blood and interstitial fluid sampling device
US5662672A (en) * 1996-05-23 1997-09-02 Array Medical, Inc. Single use, bi-directional linear motion lancet
US5613978A (en) * 1996-06-04 1997-03-25 Palco Laboratories Adjustable tip for lancet device
US5741288A (en) * 1996-06-27 1998-04-21 Chemtrak, Inc. Re-armable single-user safety finger stick device having reset for multiple use by a single patient
GB9616953D0 (en) 1996-08-13 1996-09-25 Owen Mumford Ltd Improvements relating to skin prickers
GB9619462D0 (en) 1996-09-18 1996-10-30 Owen Mumford Ltd Improvements relating to lancet devices
US5797942A (en) * 1996-09-23 1998-08-25 Schraga; Steven Re-usable end cap for re-usable lancet devices for removing and disposing of a contaminated lancet
US5772677A (en) * 1996-09-24 1998-06-30 International Technidyne Corporation Incision device capable of automatic assembly and a method of assembly
US5873887A (en) * 1996-10-25 1999-02-23 Bayer Corporation Blood sampling device
US5984940A (en) 1997-05-29 1999-11-16 Atrion Medical Products, Inc. Lancet device
US5797940A (en) * 1997-05-30 1998-08-25 International Technidyne Corporation Adjustable skin incision device
US5916230A (en) * 1997-06-16 1999-06-29 Bayer Corporation Blood sampling device with adjustable end cap
US6056765A (en) * 1997-06-24 2000-05-02 Bajaj; Ratan Lancet device
US5746761A (en) * 1997-07-03 1998-05-05 Arkadiy Turchin Disposable lancet for finger/heel stick
US6221089B1 (en) * 1997-07-07 2001-04-24 International Technidyne Corporation Skin incision device with compression spring assembly
US5954738A (en) 1997-07-31 1999-09-21 Bayer Corporation Blood sampling device with lancet damping system
CA2245056A1 (en) 1997-09-25 1999-03-25 Becton, Dickinson And Company 30 gauge lancet
US5964718A (en) 1997-11-21 1999-10-12 Mercury Diagnostics, Inc. Body fluid sampling device
DE19824036A1 (en) * 1997-11-28 1999-06-02 Roche Diagnostics Gmbh Analytical measuring device with lancing device
US6071294A (en) * 1997-12-04 2000-06-06 Agilent Technologies, Inc. Lancet cartridge for sampling blood
US6949111B2 (en) 1998-02-13 2005-09-27 Steven Schraga Lancet device
US5908434A (en) * 1998-02-13 1999-06-01 Schraga; Steven Lancet device
US6086545A (en) * 1998-04-28 2000-07-11 Amira Medical Methods and apparatus for suctioning and pumping body fluid from an incision
US5951582A (en) 1998-05-22 1999-09-14 Specialized Health Products, Inc. Lancet apparatus and methods
US6022366A (en) 1998-06-11 2000-02-08 Stat Medical Devices Inc. Lancet having adjustable penetration depth
US6346114B1 (en) 1998-06-11 2002-02-12 Stat Medical Devices, Inc. Adjustable length member such as a cap of a lancet device for adjusting penetration depth
US7175641B1 (en) 1998-06-11 2007-02-13 Stat Medical Devices, Inc. Lancet having adjustable penetration depth
DE19830604C2 (en) * 1998-07-09 2000-06-21 November Ag Molekulare Medizin Device for perforating skin
US6210420B1 (en) * 1999-01-19 2001-04-03 Agilent Technologies, Inc. Apparatus and method for efficient blood sampling with lancet
US6045567A (en) 1999-02-23 2000-04-04 Lifescan Inc. Lancing device causing reduced pain
US6197040B1 (en) * 1999-02-23 2001-03-06 Lifescan, Inc. Lancing device having a releasable connector
USD428150S (en) 1999-02-23 2000-07-11 Lifescan, Inc. Lancing device
JP3361470B2 (en) * 1999-03-02 2003-01-07 アプルス株式会社 Lancet device for forming precisely controlled incidents
DE19909602A1 (en) * 1999-03-05 2000-09-07 Roche Diagnostics Gmbh Device for drawing blood for diagnostic purposes
US6306152B1 (en) 1999-03-08 2001-10-23 Agilent Technologies, Inc. Lancet device with skin movement control and ballistic preload
US6192891B1 (en) * 1999-04-26 2001-02-27 Becton Dickinson And Company Integrated system including medication delivery pen, blood monitoring device, and lancer
US6161976A (en) 1999-06-02 2000-12-19 Pioneer Industrial Corporation Automatic writing apparatus for segmental writing elements with caps
US6152942A (en) 1999-06-14 2000-11-28 Bayer Corporation Vacuum assisted lancing device
US6168606B1 (en) * 1999-11-10 2001-01-02 Palco Labs, Inc. Single-use lancet device
US6558402B1 (en) * 1999-08-03 2003-05-06 Becton, Dickinson And Company Lancer
FR2797579A1 (en) 1999-08-16 2001-02-23 Jean Yves Rouviere Lancing pen for use by diabetics has hollow body containing disposable lancets
GB9919681D0 (en) * 1999-08-19 1999-10-20 Owen Mumsford Limited Improvements relating to medical injectors and skin prickers
DE19948759A1 (en) * 1999-10-09 2001-04-12 Roche Diagnostics Gmbh Blood lancet device for drawing blood for diagnostic purposes
US6283982B1 (en) * 1999-10-19 2001-09-04 Facet Technologies, Inc. Lancing device and method of sample collection
US6228100B1 (en) * 1999-10-25 2001-05-08 Steven Schraga Multi-use lancet device
CA2287757A1 (en) 1999-10-29 2001-04-29 Medical Plastic Devices M.P.D. Inc. Disposable lancet
US6258112B1 (en) * 1999-11-02 2001-07-10 Steven Schraga Single use lancet assembly
US6364889B1 (en) * 1999-11-17 2002-04-02 Bayer Corporation Electronic lancing device
US6322575B1 (en) 2000-01-05 2001-11-27 Steven Schraga Lancet depth adjustment assembly
US7082605B2 (en) * 2000-03-31 2006-07-25 Vidus Limited Contingency planning in a scheduling process
PL191428B1 (en) 2000-04-06 2006-05-31 Htl Strefa Sp Z Oo Puncturing depth adjusting assembly for puncturing devices
US6506168B1 (en) * 2000-05-26 2003-01-14 Abbott Laboratories Apparatus and method for obtaining blood for diagnostic tests
US6358265B1 (en) * 2000-07-18 2002-03-19 Specialized Health Products, Inc. Single-step disposable safety lancet apparatus and methods
TW495353B (en) * 2000-09-01 2002-07-21 Bayer Ag Adjustable endcap for lancing device
US6514270B1 (en) * 2000-11-10 2003-02-04 Steven Schraga Single use lancet device
CN1313052C (en) * 2001-01-12 2007-05-02 爱科来株式会社 Puncturing device
CA2450711C (en) * 2001-06-13 2010-11-02 Steven Schraga Single use lancet device
US6918918B1 (en) * 2001-08-14 2005-07-19 Steven Schraga Single use lancet assembly
US6645219B2 (en) * 2001-09-07 2003-11-11 Amira Medical Rotatable penetration depth adjusting arrangement
US6929649B2 (en) 2002-04-23 2005-08-16 Lifescan, Inc. Lancing device with automatic stick and return
US20040127818A1 (en) 2002-12-27 2004-07-01 Roe Steven N. Precision depth control lancing tip
US7494498B2 (en) 2003-03-24 2009-02-24 Facet Technologies, Llc Lancing device with floating lancet
US7621931B2 (en) 2003-05-20 2009-11-24 Stat Medical Devices, Inc. Adjustable lancet device and method
US7510564B2 (en) 2003-06-27 2009-03-31 Abbott Diabetes Care Inc. Lancing device
US7160313B2 (en) * 2003-07-28 2007-01-09 Helena Laboratories Load-controlled device for a patterned skin incision
US8029525B2 (en) 2003-07-31 2011-10-04 Panasonic Corporation Puncture instrument, puncture needle cartridge, puncture instrument set, and puncture needle disposal instrument
US7105006B2 (en) 2003-08-15 2006-09-12 Stat Medical Devices, Inc. Adjustable lancet device and method
US7905898B2 (en) * 2003-08-15 2011-03-15 Stat Medical Devices, Inc. Adjustable lancet device and method
US6930005B2 (en) * 2003-12-02 2005-08-16 Texas Instruments Incorporated Low cost fabrication method for high voltage, high drain current MOS transistor
KR20060134055A (en) * 2004-02-06 2006-12-27 바이엘 헬쓰케어, 엘엘씨 Dampening and retraction mechanism for a lancing device
US20050240119A1 (en) 2004-04-16 2005-10-27 Becton, Dickinson And Company Blood glucose meter having integral lancet device and test strip storage vial for single handed use and methods for using same
US8221441B2 (en) 2004-05-07 2012-07-17 Becton, Dickinson And Company Rotary-actuated medical puncturing device
US7299081B2 (en) 2004-06-15 2007-11-20 Abbott Laboratories Analyte test device
US8105347B2 (en) * 2004-11-16 2012-01-31 Stat Medical Devices, Inc. Adjustable disposable/single-use blade lancet device and method
US8066728B2 (en) * 2004-11-30 2011-11-29 Stat Medical Devices, Inc. Disposable or single-use lancet device and method
US9289161B2 (en) 2005-01-28 2016-03-22 Stat Medical Divices, Inc. Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit
US20060178686A1 (en) 2005-02-07 2006-08-10 Steven Schraga Single use lancet device
US20070083222A1 (en) * 2005-06-16 2007-04-12 Stat Medical Devices, Inc. Lancet device, removal system for lancet device, and method
US7867244B2 (en) * 2006-06-15 2011-01-11 Abbott Diabetes Care Inc. Lancing devices having lancet ejection assembly

Also Published As

Publication number Publication date
US20150012028A1 (en) 2015-01-08
AU2004266639A1 (en) 2005-03-03
WO2006138634A3 (en) 2007-03-15
CN1867297A (en) 2006-11-22
WO2006138634A2 (en) 2006-12-28
US20050038465A1 (en) 2005-02-17
US8888804B2 (en) 2014-11-18
US7905898B2 (en) 2011-03-15
US20050234495A1 (en) 2005-10-20
CN100430028C (en) 2008-11-05
AU2004266639C1 (en) 2010-09-16
AU2004266639B2 (en) 2010-05-13
EP1663026A2 (en) 2006-06-07
WO2005018422A2 (en) 2005-03-03
EP1663026A4 (en) 2009-04-08
WO2005018422A3 (en) 2005-06-16
US20110098736A1 (en) 2011-04-28
CA2535795A1 (en) 2005-03-03

Similar Documents

Publication Publication Date Title
US20150250410A1 (en) Adjustable lancet device and method
US20070083222A1 (en) Lancet device, removal system for lancet device, and method
US8043318B2 (en) Push-button lance device and method
US7105006B2 (en) Adjustable lancet device and method
US10307095B2 (en) Lancet device with depth adjustment and lancet removal system and method
US7621931B2 (en) Adjustable lancet device and method
US9307939B2 (en) Lancet device with combined trigger and cocking mechanism
US8257380B2 (en) Adjustabable disposable/single-use lancet device and method
EP1261287B1 (en) Adjustable tip for a lancet device
US7909842B2 (en) Lancing devices having depth adjustment assembly
US11071482B2 (en) Lancet device with depth adjustment and lancet removal system and method
SG177566A1 (en) Lancet device with lance retraction
US8323303B2 (en) Lancing device
US20140088632A1 (en) Lancet device utilizing a magnet and method of making and using the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION