US20150232691A1 - Blocked bio-based carboxylic acids and their use in thermosetting materials - Google Patents
Blocked bio-based carboxylic acids and their use in thermosetting materials Download PDFInfo
- Publication number
- US20150232691A1 US20150232691A1 US14/428,047 US201314428047A US2015232691A1 US 20150232691 A1 US20150232691 A1 US 20150232691A1 US 201314428047 A US201314428047 A US 201314428047A US 2015232691 A1 US2015232691 A1 US 2015232691A1
- Authority
- US
- United States
- Prior art keywords
- acid
- bio
- vinyl
- polyfunctional carboxylic
- carboxylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *C1OC1C Chemical compound *C1OC1C 0.000 description 4
- OERALFSLYRWMKA-UHFFFAOYSA-N CCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC Chemical compound CCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC OERALFSLYRWMKA-UHFFFAOYSA-N 0.000 description 3
- JHBVVKDAXUKJCS-UHFFFAOYSA-N CC(C)COC(C)OC(=O)C1=CC=C(C(=O)OC(C)OCC(C)C)O1 Chemical compound CC(C)COC(C)OC(=O)C1=CC=C(C(=O)OC(C)OCC(C)C)O1 JHBVVKDAXUKJCS-UHFFFAOYSA-N 0.000 description 2
- UFNBGCABCWPIGL-UHFFFAOYSA-N CCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCC)C(=O)OC(C)OCCC Chemical compound CCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCC)C(=O)OC(C)OCCC UFNBGCABCWPIGL-UHFFFAOYSA-N 0.000 description 2
- GBQQYDDGFPFORQ-UHFFFAOYSA-N CCOC(C)OC(=O)CCC(=O)OC(C)OCC Chemical compound CCOC(C)OC(=O)CCC(=O)OC(C)OCC GBQQYDDGFPFORQ-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N O=C(O)CC(O)(CC(=O)O)C(=O)O Chemical compound O=C(O)CC(O)(CC(=O)O)C(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N O=C(O)CCCCCCCC(=O)O Chemical compound O=C(O)CCCCCCCC(=O)O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- FSPIOKDWUJDBBQ-UHFFFAOYSA-N C.O=C(O)C1=CC=C(C(=O)O)O1 Chemical compound C.O=C(O)C1=CC=C(C(=O)O)O1 FSPIOKDWUJDBBQ-UHFFFAOYSA-N 0.000 description 1
- YYBFUGSMRANVTF-UHFFFAOYSA-N C.O=C(O)CCC(=O)O Chemical compound C.O=C(O)CCC(=O)O YYBFUGSMRANVTF-UHFFFAOYSA-N 0.000 description 1
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N C=COCC Chemical compound C=COCC FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N C=COCC(C)C Chemical compound C=COCC(C)C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- OVGRCEFMXPHEBL-UHFFFAOYSA-N C=COCCC Chemical compound C=COCCC OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N C=COCCCC Chemical compound C=COCCCC UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- ZCIKIHHNVHPVFK-UHFFFAOYSA-N CC(C)CCOC(C)OC(=O)CCC(=O)OC(C)OCC(C)C Chemical compound CC(C)CCOC(C)OC(=O)CCC(=O)OC(C)OCC(C)C ZCIKIHHNVHPVFK-UHFFFAOYSA-N 0.000 description 1
- UQQALZBKICLEAI-UHFFFAOYSA-N CC(C)CCOC(C)OC(=O)CCC(=O)OC(C)OCC(C)C.CC(C)COC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC(C)C.CCCCCOC(C)OC(=O)CCC(=O)OC(C)OCCCC.CCCCOC(C)OC(=O)CCC(=O)OC(C)OCCC.CCCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCCC.CCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCC.CCOC(C)OC(=O)CCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC Chemical compound CC(C)CCOC(C)OC(=O)CCC(=O)OC(C)OCC(C)C.CC(C)COC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC(C)C.CCCCCOC(C)OC(=O)CCC(=O)OC(C)OCCCC.CCCCOC(C)OC(=O)CCC(=O)OC(C)OCCC.CCCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCCC.CCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCC.CCOC(C)OC(=O)CCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCCC(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC UQQALZBKICLEAI-UHFFFAOYSA-N 0.000 description 1
- GFJXWPACDLKKPY-UHFFFAOYSA-N CC(C)COC(C)OC(=O)C1=CC=C(C(=O)OC(C)OCC(C)C)O1.CC(C)COC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC(C)C)C(=O)OC(C)OCC(C)C.CCCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCCC)C(=O)OC(C)OCCCC.CCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCC)C(=O)OC(C)OCCC.CCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC)C(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCCCCC(=O)OC(C)OCC Chemical compound CC(C)COC(C)OC(=O)C1=CC=C(C(=O)OC(C)OCC(C)C)O1.CC(C)COC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC(C)C)C(=O)OC(C)OCC(C)C.CCCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCCC)C(=O)OC(C)OCCCC.CCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCC)C(=O)OC(C)OCCC.CCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC)C(=O)OC(C)OCC.CCOC(C)OC(=O)CCCCCCCCC(=O)OC(C)OCC GFJXWPACDLKKPY-UHFFFAOYSA-N 0.000 description 1
- QTOFATUPZBDYSL-UHFFFAOYSA-N CC(C)COC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC(C)C)C(=O)OC(C)OCC(C)C Chemical compound CC(C)COC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC(C)C)C(=O)OC(C)OCC(C)C QTOFATUPZBDYSL-UHFFFAOYSA-N 0.000 description 1
- XTRQPCYQOXBBIW-UHFFFAOYSA-N CC(C)COC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC(C)C Chemical compound CC(C)COC(C)OC(=O)CCCCCCCC(=O)OC(C)OCC(C)C XTRQPCYQOXBBIW-UHFFFAOYSA-N 0.000 description 1
- INIAIGBVRMQOCP-UHFFFAOYSA-N CC(CO)(CO)CO.CCC(CO)(CO)CO.CCC(CO)(CO)COCC(CC)(CO)CO.OCC(CO)(CO)CO.OCC(CO)(CO)COCC(CO)(CO)CO.OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO.OCC(O)CO Chemical compound CC(CO)(CO)CO.CCC(CO)(CO)CO.CCC(CO)(CO)COCC(CC)(CO)CO.OCC(CO)(CO)CO.OCC(CO)(CO)COCC(CO)(CO)CO.OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO.OCC(O)CO INIAIGBVRMQOCP-UHFFFAOYSA-N 0.000 description 1
- OTUIORVXGJUHBH-QSVDUOTDSA-N CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC(COC(=O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCCCC Chemical compound CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC(COC(=O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCCCC OTUIORVXGJUHBH-QSVDUOTDSA-N 0.000 description 1
- HSHNWXURLQROPG-OZZMNOKTSA-N CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC(COC(=O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCCCC.CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O[C@@H]1[C@@H](OC(=O)CCCCCCC/C=C\CCCCCCCC)[C@@H](O[C@]2(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)O[C@H](COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)[C@@H](OC(=O)CCCCCCC/C=C\CCCCCCCC)[C@@H]2OC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC)C[C@H](COC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC(=O)CCCCCCC/C=C\C/C=C\CCCCC.OC[C@H]1OC(O[C@]2(CO)O[C@H](CO)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O Chemical compound CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC(COC(=O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCCCC.CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O[C@@H]1[C@@H](OC(=O)CCCCCCC/C=C\CCCCCCCC)[C@@H](O[C@]2(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)O[C@H](COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)[C@@H](OC(=O)CCCCCCC/C=C\CCCCCCCC)[C@@H]2OC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC)C[C@H](COC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC(=O)CCCCCCC/C=C\C/C=C\CCCCC.OC[C@H]1OC(O[C@]2(CO)O[C@H](CO)[C@@H](O)[C@@H]2O)[C@H](O)[C@@H](O)[C@@H]1O HSHNWXURLQROPG-OZZMNOKTSA-N 0.000 description 1
- GVWIWMBCUNORHJ-LVKHWUFLSA-N CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC(COC(=O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCCCC.CCCCCCCCC1OC1CCCCCCCC(=O)OCC(COC(=O)CCCCCCCC1OC1CC1OC1CC1OC1CC)OC(=O)CCCCCCCC1OC1CC1OC1CCCCC Chemical compound CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC(COC(=O)CCCCCCC/C=C\CCCCCCCC)OC(=O)CCCCCCC/C=C\C/C=C\CCCCC.CCCCCCCCC1OC1CCCCCCCC(=O)OCC(COC(=O)CCCCCCCC1OC1CC1OC1CC1OC1CC)OC(=O)CCCCCCCC1OC1CC1OC1CCCCC GVWIWMBCUNORHJ-LVKHWUFLSA-N 0.000 description 1
- BHLNMZQXSHGACS-DKLRLJJJSA-N CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC1OC(OC2(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)OC(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C(OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C2OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C(OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C(OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C1CC(=O)CCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCC(=O)CC1C(COC(=O)CCCCCCCC2OC2CC2OC2CC2OC2CC)OC(OC2(COC(=O)CCCCCCCC3OC3CC3OC3CCCCC)OC(COC(=O)CCCCCCCCCCCCCCCCC)C(OC(=O)CCCCCCCC3OC3CC3OC3CCCCC)C2OC(=O)CCCCCCCC2OC2CC2OC2CCCCC)C(OC(=O)CCCCCCCC2OC2CC2OC2CCCCC)C1OC(=O)CCCCCCCC1OC1CC1OC1CCCCC Chemical compound CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)OCC1OC(OC2(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)OC(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C(OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C2OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C(OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C(OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)C1CC(=O)CCCCCCCCCCCCCCCCC.CCCCCCCCCCCCCCCCCC(=O)CC1C(COC(=O)CCCCCCCC2OC2CC2OC2CC2OC2CC)OC(OC2(COC(=O)CCCCCCCC3OC3CC3OC3CCCCC)OC(COC(=O)CCCCCCCCCCCCCCCCC)C(OC(=O)CCCCCCCC3OC3CC3OC3CCCCC)C2OC(=O)CCCCCCCC2OC2CC2OC2CCCCC)C(OC(=O)CCCCCCCC2OC2CC2OC2CCCCC)C1OC(=O)CCCCCCCC1OC1CC1OC1CCCCC BHLNMZQXSHGACS-DKLRLJJJSA-N 0.000 description 1
- SFWYBAMQBUPIOK-AAXYURETSA-N CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O[C@H]1[C@H](OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)[C@@H](COC(=O)CCCCCCCCCCCCCCCCC)O[C@H](O[C@]2(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)O[C@H](COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)[C@@H](OC(=O)CCCCCCC/C=C\CCCCCCCC)[C@@H]2OC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC)[C@@H]1OC(=O)CCCCCCC/C=C\CCCCCCCC Chemical compound CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O)O[C@H]1[C@H](OC(=O)CCCCCCC/C=C\C/C=C\CCCCC)[C@@H](COC(=O)CCCCCCCCCCCCCCCCC)O[C@H](O[C@]2(COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)O[C@H](COC(=O)CCCCCCC/C=C\C/C=C\CCCCC)[C@@H](OC(=O)CCCCCCC/C=C\CCCCCCCC)[C@@H]2OC(=O)CCCCCCC/C=C\C/C=C\C/C=C\CC)[C@@H]1OC(=O)CCCCCCC/C=C\CCCCCCCC SFWYBAMQBUPIOK-AAXYURETSA-N 0.000 description 1
- JPZBZPFQHOMILX-UHFFFAOYSA-N CCCCCOC(C)OC(=O)CCC(=O)OC(C)OCCCC Chemical compound CCCCCOC(C)OC(=O)CCC(=O)OC(C)OCCCC JPZBZPFQHOMILX-UHFFFAOYSA-N 0.000 description 1
- ONUCAOVUAQRDHU-UHFFFAOYSA-N CCCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCCC)C(=O)OC(C)OCCCC Chemical compound CCCCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCCCC)C(=O)OC(C)OCCCC ONUCAOVUAQRDHU-UHFFFAOYSA-N 0.000 description 1
- GPJAQGVBYCPSFV-UHFFFAOYSA-N CCCCOC(C)OC(=O)CCC(=O)OC(C)OCCC Chemical compound CCCCOC(C)OC(=O)CCC(=O)OC(C)OCCC GPJAQGVBYCPSFV-UHFFFAOYSA-N 0.000 description 1
- AXFDVMPSDAVROU-UHFFFAOYSA-N CCCCOC(C)OC(=O)CCC(=O)OC(C)OCCCC Chemical compound CCCCOC(C)OC(=O)CCC(=O)OC(C)OCCCC AXFDVMPSDAVROU-UHFFFAOYSA-N 0.000 description 1
- HKOYAIKDRMVVLC-UHFFFAOYSA-N CCCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCCC Chemical compound CCCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCCC HKOYAIKDRMVVLC-UHFFFAOYSA-N 0.000 description 1
- MQYRSJKPSAFQBU-UHFFFAOYSA-N CCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCC Chemical compound CCCOC(C)OC(=O)CCCCCCCC(=O)OC(C)OCCC MQYRSJKPSAFQBU-UHFFFAOYSA-N 0.000 description 1
- MMMNNPWKYOQLAQ-UHFFFAOYSA-N CCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC)C(=O)OC(C)OCC Chemical compound CCOC(C)OC(=O)CC(O)(CC(=O)OC(C)OCC)C(=O)OC(C)OCC MMMNNPWKYOQLAQ-UHFFFAOYSA-N 0.000 description 1
- XGEQDIGMUBXKOD-UHFFFAOYSA-N CCOC(C)OC(=O)CCCC(=O)OC(C)OC(C)OCC Chemical compound CCOC(C)OC(=O)CCCC(=O)OC(C)OC(C)OCC XGEQDIGMUBXKOD-UHFFFAOYSA-N 0.000 description 1
- YWCWEYJMGLFCQS-UHFFFAOYSA-N CCOC(C)OC(=O)CCCCC(=O)OC(C)OCC Chemical compound CCOC(C)OC(=O)CCCCC(=O)OC(C)OCC YWCWEYJMGLFCQS-UHFFFAOYSA-N 0.000 description 1
- UPRQYVCQTSAMPQ-UHFFFAOYSA-N CCOC(C)OC(=O)CCCCCC(=O)OC(C)OCC Chemical compound CCOC(C)OC(=O)CCCCCC(=O)OC(C)OCC UPRQYVCQTSAMPQ-UHFFFAOYSA-N 0.000 description 1
- DGPTZABDVAMWGA-UHFFFAOYSA-N CCOC(C)OC(=O)CCCCCCC(=O)OC(C)OCC Chemical compound CCOC(C)OC(=O)CCCCCCC(=O)OC(C)OCC DGPTZABDVAMWGA-UHFFFAOYSA-N 0.000 description 1
- RXZJMAWZVFGEPM-UHFFFAOYSA-N CCOC(C)OC(=O)CCCCCCCCC(=O)OC(C)OCC Chemical compound CCOC(C)OC(=O)CCCCCCCCC(=O)OC(C)OCC RXZJMAWZVFGEPM-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N O=C(O)C(=O)O Chemical compound O=C(O)C(=O)O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N O=C(O)C(O)C(O)C(=O)O Chemical compound O=C(O)C(O)C(O)C(=O)O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- CHTHALBTIRVDBM-UHFFFAOYSA-N O=C(O)C1=CC=C(C(=O)O)O1 Chemical compound O=C(O)C1=CC=C(C(=O)O)O1 CHTHALBTIRVDBM-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N O=C(O)CCC(=O)O Chemical compound O=C(O)CCC(=O)O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- WLJVNTCWHIRURA-UHFFFAOYSA-N O=C(O)CCCCCC(=O)O Chemical compound O=C(O)CCCCCC(=O)O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-N O=C(O)CCCCCCC(=O)O Chemical compound O=C(O)CCCCCCC(=O)O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N O=C(O)CCCCCCCCC(=O)O Chemical compound O=C(O)CCCCCCCCC(=O)O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- DXNCZXXFRKPEPY-UHFFFAOYSA-N O=C(O)CCCCCCCCCCCC(=O)O Chemical compound O=C(O)CCCCCCCCCCCC(=O)O DXNCZXXFRKPEPY-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UHFFFAOYSA-N OCC1OC(OC2(CO)OC(CO)C(O)C2O)C(O)C(O)C1O Chemical compound OCC1OC(OC2(CO)OC(CO)C(O)C2O)C(O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
- C09D163/08—Epoxidised polymerised polyenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/24—Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/40—Succinic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/42—Glutaric acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/44—Adipic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/46—Pimelic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/48—Azelaic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/50—Sebacic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/67—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
- C07C69/675—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
- C07C69/704—Citric acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/56—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/68—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/02—Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
Definitions
- This invention relates to bio-based polyfunctional carboxylic acids reacted with vinyl ether compounds to form liquid vinyl-blocked bio-based polyfunctional carboxylic acids.
- These liquid vinyl-blocked bio-based polyfunctional carboxylic acids can be mixed with polyfunctional vegetable oil-based epoxy resins to form a homogeneous mixture. Upon curing the homogeneous mixtures at elevated temperature, thermoset coatings are formed which have excellent hardness, solvent resistance, adhesion, and flexibility.
- the invention also relates to the use of a curable coating composition comprising polyfunctional vegetable oil-based epoxy resins and vinyl-blocked bio-based polyfunctional carboxylic acids, which may be coated onto a substrate and cured.
- the substrate can be any common substrate such as paper, polyester films such as polyethylene and polypropylene, metals such as aluminum and steel, glass, urethane elastomers, primed (painted) substrates, and the like.
- Vegetable oil based materials have been used a long time in paints and varnishes and in alkyd resins.
- Vegetable oils are derived from the seeds of various plants and are chemically triglycerides of fatty acids. That is, vegetable oils consist of three moles of fatty acids esterified with one mole of glycerol. As shown below in Formula I, fatty acids are linear carboxylic acids having 4 to 28 carbons and may be saturated or ethylenically unsaturated.
- Naturally-occurring vegetable oils are by definition mixtures of compounds, as are the fatty acids comprising them. They are usually either defined by their source (soybean, linseed, etc.) or by their fatty acid composition.
- a primary variable that differentiates one vegetable oil from another is the number of double bonds in the fatty acid; however, additional functional groups can be present such as hydroxyl groups in castor oil and epoxide groups in vernonia oil. Table 1 below identifies the typical fatty acid composition for some commonly occurring vegetable oils.
- Sucrose ⁇ -D-fructofuranosyl- ⁇ -D-glucopyranoside
- SEFA sucrose esters of fatty acids
- SEFOSE sucrose esters can be used as binders and reactive diluents for air-drying high solids coatings.
- Formula II displays the possible molecular structure of a sucrose ester with full substitution.
- Procter and Gamble has reported a process to prepare highly substituted vegetable oil esters of sucrose using transesterification of sucrose with the methyl esters of sucrose (U.S. Pat. No. 6,995,232).
- An epoxide group is a three-membered, cyclic ether containing two carbon atoms and one oxygen atom.
- An epoxide can also be called an oxirane.
- an epoxy group has the structure shown in formula III in which R and R′ are organic moieties representing the remainder of the compound.
- Epoxy resins are materials consisting of one or more epoxide groups. Due to the strained nature of the oxirane ring, epoxide groups are highly reactive and can be reacted with nucleophiles such as amines, alcohols, carboxylic acids. Thus, epoxy resins having two or more epoxy groups can be reacted with compounds having multiple nucleophilic groups to form highly crosslinked thermoset polymers. Oxiranes can also be homopolymerized. Epoxy resins having two or more epoxy groups can be homopolymerized to form highly crosslinked networks. Crosslinked epoxy resins are used in a large number of applications including coatings, adhesives, and composites, among others. The most commonly used epoxy resins are those made from reacting bisphenol-A with epichlorohydrin to yield difunctional epoxy resins.
- Epoxidation of the double bonds in unsaturated vegetable oils results in compounds which incorporate the more reactive epoxy group.
- Epoxide groups, or oxirane groups, as discussed, can be synthesized by the oxidation of vinyl groups.
- a number of other processes and catalysts have been developed to also achieve epoxidized oils in good yields.
- Epoxides generated from the epoxidation of double bonds of ethylenically unsaturated fatty acids are known as internal epoxides—both carbons of the heterocyclic ring are substituted with another carbon.
- the most commonly used epoxy resins are the bisphenol-A diglycidyl ether resins.
- the epoxy groups on these resins are of the type known as external epoxides—three of the four substituent groups on the heterocyclic ring are hydrogen atoms.
- epoxidized oils are as stabilizers and plasticizers for halogen-containing polymers (i.e., poly(vinyl chloride)) (Karmalm et al., Polym. Degrad. Stab. 94:2275 (2009); Fenollar et al., Eur. Polym. J. 45:2674 (2009); and Bueno-Ferrer et al., Polym. Degrad. Stab. 95:2207 (2010)), and reactive toughening agents for rigid thermosetting plastics (e.g., phenolic resins).
- halogen-containing polymers i.e., poly(vinyl chloride)
- Epoxidized vegetable oils have found use as plasticizers for polyvinyl chloride (PVC). When crosslinked directly using the epoxy groups, the resulting products are relatively soft due to the aliphatic nature of the vegetable oil backbone. Epoxidized vegetable oils have been further functionalized using acrylation, methacrylation, and hydroxylation.
- Epoxy resins based on polyfunctional vegetable oil esters of sucrose can be crosslinked into high performance thermosets using cyclic anhydrides. See WO 2011/097484, the disclosure of which is incorporated herein by reference.
- thermosets While the epoxy resin is 100% bio-based, the system uses petrochemical derived cyclic anhydride crosslinkers, which reduces the overall bio-based content of the thermosets. It is therefore of interest to use crosslinkers which are also bio-based to form thermosets that are 100% bio-based.
- polyfunctional acids there are a large number of polyfunctional acids available, which are either currently available from bio-derived processes or for which bio-based processes are being derived. Some of these acids are shown in Table 2 below. These polyfunctional acids may be used as crosslinkers for vegetable oil-based epoxy resins, such as, for example, the epoxidized vegetable oil sucrose esters, since the acid groups are reactive with the epoxy groups and the functionality is two or greater.
- the reversible reaction of carboxylic acids with vinyl ether compounds leads to liquid, low viscosity materials, i.e., the carboxylic acids can be “blocked” via reactions with vinyl ether compounds.
- the vinyl group can “deblock” from the carboxylic acid group and allow the acid to react with an epoxy group. See Nakane et al., Prog. Org. Coat. 31:113-120 (1997); Yamamoto et al., Prog. Org. Coat. 40:267-273 (2000), the disclosures of which are incorporated herein by reference.
- the blocking vinyl ether group can also be removed thermally.
- the invention relates to liquid vinyl-blocked bio-based polyfunctional carboxylic acids formed by the reaction of at least one bio-based polyfunctional carboxylic acid with at least one vinyl ether compound.
- the invention in another embodiment, relates to a homogeneous mixture of the liquid vinyl-blocked bio-based polyfunctional carboxylic acids of the invention mixed with at least one polyfunctional vegetable oil-based epoxy resin, such as, for example, epoxidized vegetable oil sucrose ester resin.
- a homogeneous mixture of the liquid vinyl-blocked bio-based polyfunctional carboxylic acids of the invention mixed with at least one polyfunctional vegetable oil-based epoxy resin, such as, for example, epoxidized vegetable oil sucrose ester resin.
- the invention relates to a curable coating composition
- a curable coating composition comprising at least one vinyl-blocked bio-based polyfunctional carboxylic acid and at least one polyfunctional vegetable oil-based epoxy resin.
- the curable coating composition of the invention may be coated onto a substrate and cured using techniques known in the art.
- the substrate can be any common substrate such as paper, polyester films such as polyethylene and polypropylene, metals such as aluminum and steel, glass, urethane elastomers, primed (painted) substrates, and the like.
- the curable coating composition of the invention may be cured thermally.
- the invention in another embodiment, relates to a method of making a curable coating composition of the invention comprising the step of mixing at least one vinyl-blocked bio-based polyfunctional carboxylic acid with at least one polyfunctional vegetable oil-based epoxy resin.
- the invention relates to thermoset coatings formed from the curable coating compositions of the invention.
- the invention in another embodiment, relates to an article of manufacture comprising a thermoset coating of the invention and a method of making such article.
- FIG. 1 depicts an exemplary epoxidation of a sucrose fatty acid ester.
- FIG. 2 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and azeleic acid (AzA) blocked by different vinyl ether compounds.
- FIG. 3 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and succinic acid (SuA) blocked by different vinyl ether compounds.
- FIG. 4 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and citric acid (CiA) blocked by different vinyl ether compounds and furan dicarboxylic acid (FDCA) blocked by isobutyl vinyl ether (IBVE).
- CiA epoxidized sucrose soyate and citric acid
- FDCA furan dicarboxylic acid
- IBVE isobutyl vinyl ether
- FIG. 5 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and ethyl vinyl ether (EVE) blocked acids (succinic (SuA), adipic (AdA), glutaric (GlA), pimelic (PiA), subaric (SbA), azeleic (AzA), and sebacic (SeA)).
- EVE ethyl vinyl ether
- a vinyl ether compound includes a single vinyl ether compound as well as a combination or mixture of two or more vinyl ether compounds
- a carboxylic acid encompasses a single carboxylic acid as well as two or more carboxylic acids, and the like.
- the invention relates to vinyl-blocked bio-based polyfunctional carboxylic acids comprising the reaction product of at least one bio-based polyfunctional carboxylic acid and at least one vinyl ether compound.
- the vinyl-blocked bio-based polyfunctional carboxylic acids are liquid at room temperature.
- a “bio-based polyfunctional carboxylic acid” means a bio-based acid comprising at least two carboxylic acid groups.
- the bio-based polyfunctional carboxylic acid may be selected from dicarboxylic acids, tricarboxylic acids, or mixtures thereof.
- the dicarboxylic acids and tricarboxylic acids may be saturated or ethylenically unsaturated, optionally substituted by one or more substituents, and aromatic or non-aromatic. Unsaturation and/or substitution may occur in one or more positions anywhere on the alkyl chains of the dicarboxylic acids and tricarboxylic acids.
- the bio-based polyfunctional carboxylic acid may be a saturated dicarboxylic acid having the following general structure: HOOC—(CH 2 ) n —COOH.
- n may be an integer ranging from 0 to 22, preferably 2 to 16, more preferably 6 to 10.
- the saturated dicarboxylic acid may be substituted by, for example, hydroxyl groups, as in tartaric acid, for example.
- the bio-based polyfunctional carboxylic acid may be an ethylenically unsaturated dicarboxylic acid selected from, for example, maleic acid, fumaric acid, glutanoic acid, traumatic acid, and muconic acid.
- the bio-based polyfunctional carboxylic acid may be selected from saturated and ethylenically unsaturated tricarboxylic acids, including, not limited to, citric acid, isocitric acid, homoisocitric acid, aconitic acid, propane-1,2,3-tricarboxylic acid, 3-carboxy-cis,cis-muconic acid, and homoaconitic acid.
- the bio-based polyfunctional carboxylic acid may be selected from aromatic and non-aromatic dicarboxylic acids and tricarboxylic acids, including, but not limited to, (ortho-)phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, and 2,5-furandicarboxylic acid (FDCA).
- aromatic and non-aromatic dicarboxylic acids and tricarboxylic acids including, but not limited to, (ortho-)phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, and 2,5-furandicarboxylic acid (FDCA).
- the vinyl ether compounds may be linear, branched, or cyclic, and optionally substituted.
- the vinyl ether compounds may have the following general structure:
- linear vinyl ether compounds include, but are not limited to, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, pentyl vinyl ether, hexyl vinyl ether, heptyl vinyl ether, octyl vinyl ether, nonyl vinyl ether, decyl vinyl ether, undecyl vinyl ether, dodecyl vinyl ether, tridecyl vinyl ether, tetradecyl vinyl ether, pentadecyl vinyl ether, hexadecyl vinyl ether, heptyl vinyl ether, and octadecyl vinyl ether.
- Branched vinyl ether compounds include, but are not limited to, isopropyl vinyl ether, isobutyl vinyl ether, sec-butyl vinyl ether, tert-butyl vinyl ether, and 2-ethyl hexyl vinyl ether.
- Cyclic vinyl ether compounds include, but are not limited to, cyclohexyl vinyl ether.
- Substituted vinyl ether compounds include, but are not limited to, hydroxybutyl vinyl ether.
- the vinyl-blocked bio-based polyfunctional carboxylic acids may be synthesized by a variety of methods.
- the vinyl-blocked bio-based polyfunctional carboxylic acids are synthesized by reacting the at least one bio-based polyfunctional carboxylic acid with the at least one vinyl ether compound, at least one optional catalyst, and at least one optional solvent.
- the molar ratio of vinyl groups in the at least one vinyl ether compound and carboxylic groups in the at least one bio-based polyfunctional carboxylic acid used for the synthesis of the vinyl-blocked bio-based polyfunctional carboxylic acids may range from 1.0:1.0 to 10:1, more preferably 4.0:1 to 6.0:1.0.
- a stoichiometric excess of moles of vinyl ether groups relative to the carboxylic acid groups is used.
- the optional catalyst may be selected from phosphoric acid, hydrochloric acid, sulfuric acid, and the like. In a further embodiment, the optional catalyst may be present in an amount ranging from about 0.01% to about 5.0% by wt., preferably about 0.5% to about 2.0% by wt., even more preferably about 0.1% to about 1.0% by wt., of the total reaction mixture.
- the optional solvent may be selected from benzene, toluene, xylene, heptane, hexane, and the like. In a further embodiment, the optional solvent may be present in an amount ranging from about 0.1% to about 50.0% by wt., preferably about 0.5% to about 15.0% by wt., even more preferably about 1.0% to about 2.0% by wt., of the total reaction mixture. Solvents may be used during the synthesis to reduce viscosity and facilitate the synthesis reaction.
- the optional catalyst may be removed using a base, such as, for example, potassium hydroxide, in water via liquid-liquid extraction. Excess vinyl ether may be removed using known methods in the art, for example, rotary evaporation.
- the reaction to make the vinyl-blocked bio-based polyfunctional carboxylic acids of the invention may be carried out at temperatures dependent on the vinyl ether compound used.
- a reaction temperature of about 30° C. may be used for ethyl vinyl ether
- about 70° C. may be used for propyl vinyl ether
- about 80° C. may be used for butyl or isobutyl vinyl ether.
- the reaction temperature may range from about 25° C. to about 100° C., more preferably, from about 30° C. to about 90° C., even more preferably, from about 50° C. to about 70° C.
- Curable Coating Compositions Comprising Vinyl-Blocked Bio-Based Polyfunctional Acids and Polyfunctional Vegetable Oil-Based Epoxidized Resins
- the invention also relates to curable coating compositions comprising the vinyl-blocked bio-based polyfunctional carboxylic acids described above and polyfunctional vegetable oil-based epoxidized resins.
- the polyfunctional vegetable oil-based epoxy resins include, but are not limited to, epoxidized vegetable oils, vegetable oil-based epoxy resins, and mixtures thereof. “Polyfunctional” as used herein in the phrase “polyfunctional vegetable oil-based epoxy resin” means the presence of two or more epoxide groups. Polyfunctional vegetable oil-based epoxy resins that may be used in the invention may be prepared in the manner disclosed in WO 2011/097484, the disclosure of which is incorporated by reference. For example, polyfunctional vegetable oil-based epoxy resins are prepared from the epoxidation of vegetable oil fatty acid esters of polyols having >4 hydroxyl groups/molecule.
- Polyol esters of fatty acids containing four or more vegetable oil fatty acid moieties per molecule can be synthesized by the reaction of polyols with 4 or more hydroxyl groups per molecule with either a mixture of fatty acids or esters of fatty acids with a low molecular weight alcohol, as is known in the art.
- the former method is direct esterification while the latter method is transesterification.
- a catalyst may be used in the synthesis of these compounds. As shown in FIG.
- sucrose as an exemplary polyol to be used in the invention, esterified with a vegetable oil fatty acid, epoxide groups may then be introduced by oxidation of the vinyl groups in the vegetable oil fatty acid to form epoxidized polyol esters of fatty acids (EPEFA's).
- EPEFA's epoxidized polyol esters of fatty acids
- the epoxidation may be carried out using reactions known in the art for the oxidation of vinyl groups with in situ epoxidation with peroxyacid being a preferred method.
- Polyols having at least 4 hydroxyl groups per molecule suitable for the process include, but are not limited to, pentaerythritol, di-trimethylolpropane, di-pentaerythritol, tri-pentaerythritol, sucrose, glucose, mannose, fructose, galactose, raffinose, and the like.
- Polymeric polyols can also be used including, for example, copolymers of styrene and allyl alcohol, hyperbranched polyols such as polyglycidol and poly(dimethylpropionic acid), and the like. Exemplary polyols are shown below in Scheme 3 with the number of hydroxyl groups indicated by (f).
- sucrose to glycerol there are a number of advantages for the use of a polyol having more than 4 hydroxyl groups/molecule including, but not limited to, a higher number of fatty acids/molecule; a higher number of unsaturations/molecule; when epoxidized, a higher number of oxiranes/molecule; and when crosslinked in a coating, higher crosslink density.
- the degree of esterification may be varied.
- the polyol may be fully esterified, where substantially all of the hydroxyl groups have been esterified with the fatty acid, or it may be partially esterified, where only a fraction of the available hydroxyl groups have been esterified. It is understood in the art that some residual hydroxyl groups may remain even when full esterification is desired. In some applications, residual hydroxyl groups may provide benefits to the resin.
- the degree of epoxidation may be varied from substantially all to a fraction of the available double bonds. The variation in the degree of esterification and/or epoxidation permits one of ordinary skill to select the amount of reactivity in the resin, both for the epoxidized resins and their derivatives.
- the hydroxyl groups on the polyols can be either completely reacted or only partially reacted with fatty acid moieties.
- Any ethylenically unsaturated fatty acid may be used to prepare a polyol ester of fatty acids to be used in the invention, with polyethylenically unsaturated fatty acids, those with more than one double bond in the fatty acid chain, being preferred.
- the Omega 3, Omega 6, and Omega 9 fatty acids, where the double bonds are interrupted by methylene groups, and the seed and vegetable oils containing them may be used to prepare polyol ester of fatty acids to be used in the invention. Mixtures of fatty acids and of vegetable or seed oils, plant oils, may be used in the invention.
- the plant oils contain mixtures of fatty acids with ethylenically unsaturated and saturated fatty acids possibly present depending on the type of oil.
- oils which may be used in the invention include, but are not limited to, corn oil, castor oil, soybean oil, safflower oil, sunflower oil, linseed oil, tall oil fatty acid, tung oil, vernonia oil, and mixtures thereof.
- the polyol fatty acid ester may be prepared by direct esterification of the polyol or by transesterification as is known in the art.
- the double bonds on the fatty acid moieties may be converted into epoxy groups using known oxidation chemistry yielding polyfunctional epoxy resins (EPEFA's)—epoxidized polyol esters of fatty acids.
- EPEFA's polyfunctional epoxy resins
- sucrose esters of ethylenically unsaturated vegetable oil fatty acids results in unique bio-based resins having a high concentration of epoxy groups.
- functionalities of 8 to 15 epoxide groups per molecule may be achieved, depending on the composition of the fatty acid used and the degree of substitution of the fatty acids on the sucrose moiety. This is substantially higher than what can be achieved through epoxidation of triglycerides which range from about 4 for epoxidized soybean oil up to 6 for epoxidized linseed oil.
- the polyfunctional vegetable oil-based epoxidized resin is selected from epoxidized sucrose soyate (ESS).
- ESS epoxidized sucrose soyate
- fatty acids from soybean oil can be used to form esters with sucrose.
- Sucrose soyate (SS) has many positive properties that make it an ideal starting point for bio-based coatings, including that it is polyfunctional, has low viscosity (300-400 cP) with 100% solids, is 100% bio-based, and is commercially available.
- Sucrose, soybean oil, and sucrose soyate have the following structures:
- epoxidized sucrose soyate In contrast to SS, epoxidized sucrose soyate (ESS) is more versatile. Many types of coatings can be formed from ESS. Also, ESS has many beneficial properties, including 12 epoxy groups per molecule (epoxy equivalent weight of 270 g eq ⁇ 1 ), low viscosity (5,000 cP), 100% bio-based, easily synthesized, and is a clear and colorless resin. ESS can be synthesized in the manner disclosed in Pan et al., Green Chemistry 13:965-975 (2011), the disclosure of which is incorporated herein by reference. See also Scheme 4 below.
- the curable coating compositions comprising the vinyl-blocked bio-based polyfunctional carboxylic acids and the polyfunctional vegetable oil-based epoxidized resins can be prepared by a variety of methods. In one embodiment, this method comprises combining the vinyl-blocked bio-based polyfunctional carboxylic acids described above with the polyfunctional vegetable oil-based epoxidized resins to make curable coating compositions of the invention.
- the curable coating compositions can be prepared by combining the vinyl-blocked bio-based polyfunctional carboxylic acids, described above, and the polyfunctional vegetable oil-based epoxidized resins in the presence of at least one optional solvent, such as t-butyl acetate (TBA), methyl n-amyl ketone (MAK), ethyl 3-ethoxyproprionate (EEP), and at least one optional catalyst, such as dibutyltindilaurate (DBTDL).
- TSA t-butyl acetate
- MAK methyl n-amyl ketone
- EEP ethyl 3-ethoxyproprionate
- DBTDL dibutyltindilaurate
- a stoichiometric equivalent amount of epoxide and blocked acid groups may be used for the synthesis of the curable coating compositions of the invention.
- the ratio of epoxy equivalents in the polyfunctional vegetable oil-based epoxidized resin to carboxylic equivalents in the vinyl-blocked bio-based polyfunctional carboxylic acids can be varied in order to vary the crosslink density and the properties of the curable coating composition.
- the invention also relates to the use of a curable coating composition which may be coated onto a substrate and cured.
- the substrate can be any common substrate such as paper, polyester films such as polyethylene and polypropylene, metals such as aluminum and steel, glass, urethane elastomers, primed (painted) substrates, and the like.
- the invention also provides methods for coating such substrates by applying the curable coating composition to the substrate.
- the coating may be applied by methods know in the art such as drawdown, conventional air-atomized spray, airless spray, roller, brush.
- the curable coating composition of the invention may be cured thermally. Upon curing at elevated temperature, thermoset coating compositions of the invention have excellent hardness, solvent resistance, adhesion, and flexibility.
- the invention relates to an article of manufacture comprising a thermoset coating composition of the invention.
- a curable coating composition according to the invention may comprise a pigment (organic or inorganic) and/or other additives and fillers known in the art.
- a curable coating composition of the invention may further contain coating additives.
- coating additives include, but are not limited to, one or more leveling, rheology, and flow control agents such as silicones, fluorocarbons or cellulosics; extenders; reactive coalescing aids such as those described in U.S. Pat. No.
- plasticizers plasticizers; flatting agents; pigment wetting and dispersing agents and surfactants; ultraviolet (UV) absorbers; UV light stabilizers; tinting pigments; colorants; defoaming and antifoaming agents; anti-settling, anti-sag and bodying agents; anti-skinning agents; anti-flooding and anti-floating agents; biocides, fungicides and mildewcides; corrosion inhibitors; thickening agents; or coalescing agents.
- UV absorbers ultraviolet (UV) absorbers
- UV light stabilizers tinting pigments
- colorants defoaming and antifoaming agents
- defoaming and antifoaming agents anti-settling, anti-sag and bodying agents
- anti-skinning agents anti-flooding and anti-floating agents
- biocides, fungicides and mildewcides corrosion inhibitors
- thickening agents or coalescing agents.
- flatting agents include, but are not limited to, synthetic silica, available from the Davison Chemical Division of W. R. Grace & Company as SYLOID®; polypropylene, available from Hercules Inc., as HERCOFLAT®; synthetic silicate, available from J. M. Huber Corporation, as ZEOLEX®.
- viscosity, suspension, and flow control agents examples include, but are not limited to, polyaminoamide phosphate, high molecular weight carboxylic acid salts of polyamine amides, and alkylene amine salts of an unsaturated fatty acid, all available from BYK Chemie U.S.A. as ANTI TERRA®. Further examples include, but are not limited to, polysiloxane copolymers, polyacrylate solution, cellulose esters, hydroxyethyl cellulose, hydroxypropyl cellulose, polyamide wax, polyolefin wax, hydroxypropyl methyl cellulose, polyethylene oxide, and the like.
- Solvents may also be added to the curable coating compositions in order to reduce the viscosity.
- Hydrocarbon, ester, ketone, ether, ether-ester, alcohol, or ether-alcohol type solvents may be used individually or in mixtures.
- solvents can include, but are not limited to benzene, toluene, xylene, aromatic 100, aromatic 150, acetone, methylethyl ketone, methyl amyl ketone, butyl acetate, t-butyl acetate, tetrahydrofuran, diethyl ether, ethylethoxy propionate, isopropanol, butanol, butoxyethanol, and so on.
- Example 1 H NMR data for propyl vinyl ether blocked azelaic acid (CDCl 3 , ⁇ , ppm): 0.81 (triplet, 6H, CH 3 ), 1.234 (singlet, 6H, O2C—CH2-CH2-CH 2 -CH 2 —CH 2 —CH2-CH2-CO2), 1.274 and 1.287 (singlet, 6H, O—CH(CH 3 )—O), 1.49 (multiplet, 8H, O2C—CH2-CH 2 and O—CH2-CH 2 —CH3), 2.21 (triplet, 4H, O2C—CH 2 ), 3.49 (quartet, 4H, O—CH 2 —CH2-CH3), 5.82 and 5.83 (quartet, 2H, O—CH(CH3)-O).
- a small amount of single blocked molecules is present, as evident by some peak splitting and a small carboxylic acid peak present in the NMR.
- Coating formulation method Coating formulations were made using a 1:1 mole ratio of epoxide to acid and 5% 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) by total weight.
- DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
- EVE-AzA ethyl vinyl ether blocked azelaic acid
- DBU (0.41 g, 0.0027 equivalents
- a Gardco wet film applicator was used to apply a 4 mil thick layer of each formulation onto Bonderite 1000 treated steel and glass substrates. The substrates were then placed in an oven preheated to 170° C., where they were allowed to cure for 4 hours.
- EVE-succinic acid EVE-SuA
- EVE-glutaric acid EVE-GlA
- EVE-adipic acid EVE-AdA
- EVE-PiA EVE-pimelic acid
- EVE-suberic acid EVE-SbA
- EVE-azelaic acid EVE-AzA
- EVE-sebacic acid EVE-SeA
- Azelaic acid, succinic acid, and FDCA have superior solvent resistance, adhesion, and flexibility. Higher hardness of azelaic acid compared to the others suggests a higher crosslinked system is produced. The poor properties of citric acid based coatings suggest a lower inter-ESS crosslinked network is formed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Epoxy Resins (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application No. 61/702,082, filed Sep. 17, 2012, which is incorporated herein by reference.
- This invention was made with government support under Grant Number EPS0814442 awarded by the National Science Foundation. The government has certain rights in the invention.
- This invention relates to bio-based polyfunctional carboxylic acids reacted with vinyl ether compounds to form liquid vinyl-blocked bio-based polyfunctional carboxylic acids. These liquid vinyl-blocked bio-based polyfunctional carboxylic acids can be mixed with polyfunctional vegetable oil-based epoxy resins to form a homogeneous mixture. Upon curing the homogeneous mixtures at elevated temperature, thermoset coatings are formed which have excellent hardness, solvent resistance, adhesion, and flexibility.
- The invention also relates to the use of a curable coating composition comprising polyfunctional vegetable oil-based epoxy resins and vinyl-blocked bio-based polyfunctional carboxylic acids, which may be coated onto a substrate and cured. The substrate can be any common substrate such as paper, polyester films such as polyethylene and polypropylene, metals such as aluminum and steel, glass, urethane elastomers, primed (painted) substrates, and the like.
- Due to the rising costs and depleting reserves of fossil based oil, it is desired to replace petrochemicals with chemicals based on renewable resources. Most polymers in use today are based on petrochemical derived monomers. While there has been some activity to synthesize polymer materials using bio-based raw materials, in many cases the performance properties are inferior to that of the current petrochemical based technology. Thus, there is a need for new polymers based on renewable resources that have excellent performance properties.
- Vegetable oil based materials have been used a long time in paints and varnishes and in alkyd resins. Vegetable oils are derived from the seeds of various plants and are chemically triglycerides of fatty acids. That is, vegetable oils consist of three moles of fatty acids esterified with one mole of glycerol. As shown below in Formula I, fatty acids are linear carboxylic acids having 4 to 28 carbons and may be saturated or ethylenically unsaturated.
- Different plants produce oils having differing compositions in the fatty acid portion of the oil. Naturally-occurring vegetable oils are by definition mixtures of compounds, as are the fatty acids comprising them. They are usually either defined by their source (soybean, linseed, etc.) or by their fatty acid composition. A primary variable that differentiates one vegetable oil from another is the number of double bonds in the fatty acid; however, additional functional groups can be present such as hydroxyl groups in castor oil and epoxide groups in vernonia oil. Table 1 below identifies the typical fatty acid composition for some commonly occurring vegetable oils.
-
TABLE 1 Fatty Acid Unsaturation Coconut Corn Soybean Safflower Sunflower Linseed Castor Tall Oil FA Tung C12 Lauric 0 44 C14 Myristic 0 18 C16 Palmitic 0 11 13 11 8 11 6 2 5 4 C18 Stearic 0 6 4 4 3 6 4 1 3 1 Oleic 1 7 29 25 13 29 22 7 46 8 Ricinoleic 1 87 Linoleic 2 2 54 51 75 52 16 3 41 4 Linolenic 3 9 1 2 52 3 3 Eleaosteric 3 80 Iodine 7.5-10.5 103-128 120-141 140-150 125-136 155-205 81-91 165-170 160-175 Value - Sucrose, β-D-fructofuranosyl-α-D-glucopyranoside, is a disaccharide having eight hydroxyl groups. The combination of sucrose and vegetable oil fatty acids to yield sucrose esters of fatty acids (SEFA) as coating vehicles was first explored in the 1960s. Bobalek et al., Official Digest 453 (1961); Walsh et al., Div. Org. Coatings Plastic Chem. 21:125 (1961). However, in these early studies, the maximum degree of substitution (DS) was limited to about 7 of the available 8 hydroxyl groups. The resins do not appear to have been commercialized at that time. In the early 2000s, Proctor & Gamble (P&G) Chemicals developed an efficient process for industrially manufacturing SEFAs commercially under the brand name SEFOSE with a high DS of at least 7.7 (representing a mixture of sucrose hexa, hepta, and octaesters, with a minimum of 70% by weight octaester) (U.S. Pat. Nos. 6,995,232; 6,620,952; and 6,887,947), and introduced them with a focus on marketing to the lubricant and paint industries. Due to their low viscosities (300-400 mPa·s), SEFOSE sucrose esters can be used as binders and reactive diluents for air-drying high solids coatings. Formula II displays the possible molecular structure of a sucrose ester with full substitution. Procter and Gamble has reported a process to prepare highly substituted vegetable oil esters of sucrose using transesterification of sucrose with the methyl esters of sucrose (U.S. Pat. No. 6,995,232).
- An epoxide group is a three-membered, cyclic ether containing two carbon atoms and one oxygen atom. An epoxide can also be called an oxirane. As in known in the art, an epoxy group has the structure shown in formula III in which R and R′ are organic moieties representing the remainder of the compound.
- Epoxy resins are materials consisting of one or more epoxide groups. Due to the strained nature of the oxirane ring, epoxide groups are highly reactive and can be reacted with nucleophiles such as amines, alcohols, carboxylic acids. Thus, epoxy resins having two or more epoxy groups can be reacted with compounds having multiple nucleophilic groups to form highly crosslinked thermoset polymers. Oxiranes can also be homopolymerized. Epoxy resins having two or more epoxy groups can be homopolymerized to form highly crosslinked networks. Crosslinked epoxy resins are used in a large number of applications including coatings, adhesives, and composites, among others. The most commonly used epoxy resins are those made from reacting bisphenol-A with epichlorohydrin to yield difunctional epoxy resins.
- Epoxidation of the double bonds in unsaturated vegetable oils results in compounds which incorporate the more reactive epoxy group. Epoxide groups, or oxirane groups, as discussed, can be synthesized by the oxidation of vinyl groups. Findley et al., J Am. Chem. Soc. 67:412-414 (1945), reported a method to convert the ethylenically unsaturated groups of triglyceride vegetable oils to epoxy groups, as shown in Scheme 1 below. A number of other processes and catalysts have been developed to also achieve epoxidized oils in good yields.
- Generally, while there are four techniques that can be employed to produce epoxides from olefinic molecules (Mungroo et al., J. Am. Oil Chem. Soc. 85:887 (2008)), the in situ performic/peracetic acid (HCOOH or CH3COOH) process appears to be the most widely applied method to epoxidize fatty compounds. Scheme 2 displays the reaction mechanism, which consists of a first step of peroxyacid formation and a second step of double bond epoxidation. Recently, the kinetics of epoxidation of vegetable oils and the extent of side reactions was studied using an acidic ion exchange resin as catalyst and revealed that the reactions were first order with respect to the amount of double bonds and that side reactions were highly suppressed; the conversion of double bonds to epoxides was also high. Petrović et al., Eur. J. Lipid Sci. Technol. 104:293 (2002); and Goud et al., Chem. Eng. Sci. 62:4065 (2007). The catalyst, Amberlite
IR 120, is an acidic ion exchange resin, a copolymer based on styrene (98 wt %) crosslinked by divinylbenzene (2 wt %). Its acidity is generated by sulfonic acid groups attached to the polymer skeleton. - Epoxides generated from the epoxidation of double bonds of ethylenically unsaturated fatty acids are known as internal epoxides—both carbons of the heterocyclic ring are substituted with another carbon. The most commonly used epoxy resins are the bisphenol-A diglycidyl ether resins. The epoxy groups on these resins are of the type known as external epoxides—three of the four substituent groups on the heterocyclic ring are hydrogen atoms. Since internal epoxides are much less reactive than external epoxides in most epoxy curing reactions, the roles traditionally assigned to epoxidized oils are as stabilizers and plasticizers for halogen-containing polymers (i.e., poly(vinyl chloride)) (Karmalm et al., Polym. Degrad. Stab. 94:2275 (2009); Fenollar et al., Eur. Polym. J. 45:2674 (2009); and Bueno-Ferrer et al., Polym. Degrad. Stab. 95:2207 (2010)), and reactive toughening agents for rigid thermosetting plastics (e.g., phenolic resins). See Miyagawa et al., Polym. Eng. Sci. 45:487 (2005). It has also been shown that epoxidized vegetable oils can be cured using cationic photopolymerization of epoxides to form coatings. See Crivello et al., Chem. Mater. 4:692 (1992); Thames et al., Surf. Coat. Technol. 115:208 (1999); Ortiz et al., Polymer 46:1535 (2005).
- As noted, epoxidized vegetable oils have found use as plasticizers for polyvinyl chloride (PVC). When crosslinked directly using the epoxy groups, the resulting products are relatively soft due to the aliphatic nature of the vegetable oil backbone. Epoxidized vegetable oils have been further functionalized using acrylation, methacrylation, and hydroxylation.
- Epoxy resins based on polyfunctional vegetable oil esters of sucrose can be crosslinked into high performance thermosets using cyclic anhydrides. See WO 2011/097484, the disclosure of which is incorporated herein by reference.
- While the epoxy resin is 100% bio-based, the system uses petrochemical derived cyclic anhydride crosslinkers, which reduces the overall bio-based content of the thermosets. It is therefore of interest to use crosslinkers which are also bio-based to form thermosets that are 100% bio-based.
- There are a large number of polyfunctional acids available, which are either currently available from bio-derived processes or for which bio-based processes are being derived. Some of these acids are shown in Table 2 below. These polyfunctional acids may be used as crosslinkers for vegetable oil-based epoxy resins, such as, for example, the epoxidized vegetable oil sucrose esters, since the acid groups are reactive with the epoxy groups and the functionality is two or greater.
- However, these acids are crystalline solids with high melting points, and it can be challenging to mix them with the epoxy resin and form a homogeneous mixture. Attempts at forming crosslinked materials by dispersing the diacids in the epoxy have resulted in materials with poor properties.
- The reversible reaction of carboxylic acids with vinyl ether compounds leads to liquid, low viscosity materials, i.e., the carboxylic acids can be “blocked” via reactions with vinyl ether compounds. In the presence of the proper catalyst, the vinyl group can “deblock” from the carboxylic acid group and allow the acid to react with an epoxy group. See Nakane et al., Prog. Org. Coat. 31:113-120 (1997); Yamamoto et al., Prog. Org. Coat. 40:267-273 (2000), the disclosures of which are incorporated herein by reference. The blocking vinyl ether group can also be removed thermally.
- In one embodiment, the invention relates to liquid vinyl-blocked bio-based polyfunctional carboxylic acids formed by the reaction of at least one bio-based polyfunctional carboxylic acid with at least one vinyl ether compound.
- In another embodiment, the invention relates to a homogeneous mixture of the liquid vinyl-blocked bio-based polyfunctional carboxylic acids of the invention mixed with at least one polyfunctional vegetable oil-based epoxy resin, such as, for example, epoxidized vegetable oil sucrose ester resin. Upon curing the homogeneous mixture at elevated temperature, thermoset coatings are formed which have excellent hardness, solvent resistance, adhesion, and flexibility.
- In another embodiment, the invention relates to a curable coating composition comprising at least one vinyl-blocked bio-based polyfunctional carboxylic acid and at least one polyfunctional vegetable oil-based epoxy resin. In another embodiment, the curable coating composition of the invention may be coated onto a substrate and cured using techniques known in the art. The substrate can be any common substrate such as paper, polyester films such as polyethylene and polypropylene, metals such as aluminum and steel, glass, urethane elastomers, primed (painted) substrates, and the like. The curable coating composition of the invention may be cured thermally.
- In another embodiment, the invention relates to a method of making a curable coating composition of the invention comprising the step of mixing at least one vinyl-blocked bio-based polyfunctional carboxylic acid with at least one polyfunctional vegetable oil-based epoxy resin.
- In another embodiment, the invention relates to thermoset coatings formed from the curable coating compositions of the invention.
- In another embodiment, the invention relates to an article of manufacture comprising a thermoset coating of the invention and a method of making such article.
- Other features, objects, and advantages of the invention are apparent in the detailed description that follows. It should be understood, however, that the detailed description, while indicating preferred embodiments of the invention, are given by way of illustration only, not limitation. Various changes and modifications within the scope of the invention will become apparent to those skilled in the art.
-
FIG. 1 depicts an exemplary epoxidation of a sucrose fatty acid ester. -
FIG. 2 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and azeleic acid (AzA) blocked by different vinyl ether compounds. -
FIG. 3 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and succinic acid (SuA) blocked by different vinyl ether compounds. -
FIG. 4 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and citric acid (CiA) blocked by different vinyl ether compounds and furan dicarboxylic acid (FDCA) blocked by isobutyl vinyl ether (IBVE). -
FIG. 5 depicts the thermogravimetric analysis of cured coatings made using epoxidized sucrose soyate and ethyl vinyl ether (EVE) blocked acids (succinic (SuA), adipic (AdA), glutaric (GlA), pimelic (PiA), subaric (SbA), azeleic (AzA), and sebacic (SeA)). - Unless otherwise indicated, the invention is not limited to specific reactants, substituents, catalysts, catalyst compositions, resin compositions, reaction conditions, or the like, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not to be interpreted as being limiting.
- As used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a vinyl ether compound” includes a single vinyl ether compound as well as a combination or mixture of two or more vinyl ether compounds, reference to “a carboxylic acid” encompasses a single carboxylic acid as well as two or more carboxylic acids, and the like.
- As used in the specification and the appended claims, the terms “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise specified, these examples are provided only as an aid for understanding the invention, and are not meant to be limiting in any fashion.
- In this specification and the claims that follow, “optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, the phrase “optionally substituted” means that a non-hydrogen substituent may or may not be present on a given atom, and, thus, the description includes structures wherein a non-hydrogen substituent is present and structures wherein a non-hydrogen substituent is not present.
- The invention relates to vinyl-blocked bio-based polyfunctional carboxylic acids comprising the reaction product of at least one bio-based polyfunctional carboxylic acid and at least one vinyl ether compound. The vinyl-blocked bio-based polyfunctional carboxylic acids are liquid at room temperature.
- As used herein, a “bio-based polyfunctional carboxylic acid” means a bio-based acid comprising at least two carboxylic acid groups. For example, the bio-based polyfunctional carboxylic acid may be selected from dicarboxylic acids, tricarboxylic acids, or mixtures thereof. The dicarboxylic acids and tricarboxylic acids may be saturated or ethylenically unsaturated, optionally substituted by one or more substituents, and aromatic or non-aromatic. Unsaturation and/or substitution may occur in one or more positions anywhere on the alkyl chains of the dicarboxylic acids and tricarboxylic acids.
- For example, the bio-based polyfunctional carboxylic acid may be a saturated dicarboxylic acid having the following general structure: HOOC—(CH2)n—COOH. In one embodiment, “n” may be an integer ranging from 0 to 22, preferably 2 to 16, more preferably 6 to 10. For example, the saturated dicarboxylic acid includes, but is not limited to, oxalic acid (n=0), malonic acid (n=1), succinic acid (n=2), glutaric acid (n=3), adipic acid (n=4), pimelic acid (n=5), suberic acid (n=6), azelaic acid (n=7), sebacic acid (n=8), undecanedioic acid (n=9), dodecanedioic acid (n=10), tridecanedioic acid (n=11), tetradecanedioic acid (n=12), pentadecanedioic acid (n=13), hexadecanedioic acid (n=14), heptadecanedioic acid (n=15), octadecanedioic acid (n=16), nonadecanedioic acid (n=17), icosanedioic acid (n=18), henicosanedioic acid (n=19), docosanedioic acid (n=20), tricosanedioic acid (n=21), and tetracosanedioic acid (n=22).
- In another embodiment, the saturated dicarboxylic acid may be substituted by, for example, hydroxyl groups, as in tartaric acid, for example.
- In another embodiment, the bio-based polyfunctional carboxylic acid may be an ethylenically unsaturated dicarboxylic acid selected from, for example, maleic acid, fumaric acid, glutanoic acid, traumatic acid, and muconic acid.
- In one embodiment, the bio-based polyfunctional carboxylic acid may be selected from saturated and ethylenically unsaturated tricarboxylic acids, including, not limited to, citric acid, isocitric acid, homoisocitric acid, aconitic acid, propane-1,2,3-tricarboxylic acid, 3-carboxy-cis,cis-muconic acid, and homoaconitic acid.
- In a further embodiment, the bio-based polyfunctional carboxylic acid may be selected from aromatic and non-aromatic dicarboxylic acids and tricarboxylic acids, including, but not limited to, (ortho-)phthalic acid, isophthalic acid, terephthalic acid, hemimellitic acid, trimellitic acid, trimesic acid, and 2,5-furandicarboxylic acid (FDCA).
- The vinyl ether compounds may be linear, branched, or cyclic, and optionally substituted. For example, the vinyl ether compounds may have the following general structure:
- wherein R may be a liner, branched, or cyclic C1-C18-alkyl group. For example, linear vinyl ether compounds include, but are not limited to, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, pentyl vinyl ether, hexyl vinyl ether, heptyl vinyl ether, octyl vinyl ether, nonyl vinyl ether, decyl vinyl ether, undecyl vinyl ether, dodecyl vinyl ether, tridecyl vinyl ether, tetradecyl vinyl ether, pentadecyl vinyl ether, hexadecyl vinyl ether, heptyl vinyl ether, and octadecyl vinyl ether. Branched vinyl ether compounds include, but are not limited to, isopropyl vinyl ether, isobutyl vinyl ether, sec-butyl vinyl ether, tert-butyl vinyl ether, and 2-ethyl hexyl vinyl ether. Cyclic vinyl ether compounds include, but are not limited to, cyclohexyl vinyl ether. Substituted vinyl ether compounds include, but are not limited to, hydroxybutyl vinyl ether.
- Structures of exemplary vinyl-blocked bio-based polyfunctional carboxylic acids of the invention and their corresponding starting bio-based polyfunctional carboxylic acids and vinyl ether compounds are shown below in Table 3.
- The vinyl-blocked bio-based polyfunctional carboxylic acids may be synthesized by a variety of methods. In one embodiment, the vinyl-blocked bio-based polyfunctional carboxylic acids are synthesized by reacting the at least one bio-based polyfunctional carboxylic acid with the at least one vinyl ether compound, at least one optional catalyst, and at least one optional solvent. In one embodiment, the molar ratio of vinyl groups in the at least one vinyl ether compound and carboxylic groups in the at least one bio-based polyfunctional carboxylic acid used for the synthesis of the vinyl-blocked bio-based polyfunctional carboxylic acids may range from 1.0:1.0 to 10:1, more preferably 4.0:1 to 6.0:1.0. Preferably, a stoichiometric excess of moles of vinyl ether groups relative to the carboxylic acid groups is used.
- In one embodiment, the optional catalyst may be selected from phosphoric acid, hydrochloric acid, sulfuric acid, and the like. In a further embodiment, the optional catalyst may be present in an amount ranging from about 0.01% to about 5.0% by wt., preferably about 0.5% to about 2.0% by wt., even more preferably about 0.1% to about 1.0% by wt., of the total reaction mixture.
- In one embodiment, the optional solvent may be selected from benzene, toluene, xylene, heptane, hexane, and the like. In a further embodiment, the optional solvent may be present in an amount ranging from about 0.1% to about 50.0% by wt., preferably about 0.5% to about 15.0% by wt., even more preferably about 1.0% to about 2.0% by wt., of the total reaction mixture. Solvents may be used during the synthesis to reduce viscosity and facilitate the synthesis reaction.
- After reacting, the optional catalyst may be removed using a base, such as, for example, potassium hydroxide, in water via liquid-liquid extraction. Excess vinyl ether may be removed using known methods in the art, for example, rotary evaporation.
- In one embodiment, the reaction to make the vinyl-blocked bio-based polyfunctional carboxylic acids of the invention may be carried out at temperatures dependent on the vinyl ether compound used. For example, a reaction temperature of about 30° C. may be used for ethyl vinyl ether, about 70° C. may be used for propyl vinyl ether, and about 80° C. may be used for butyl or isobutyl vinyl ether. In one embodiment, the reaction temperature may range from about 25° C. to about 100° C., more preferably, from about 30° C. to about 90° C., even more preferably, from about 50° C. to about 70° C.
- The invention also relates to curable coating compositions comprising the vinyl-blocked bio-based polyfunctional carboxylic acids described above and polyfunctional vegetable oil-based epoxidized resins.
- The polyfunctional vegetable oil-based epoxy resins include, but are not limited to, epoxidized vegetable oils, vegetable oil-based epoxy resins, and mixtures thereof. “Polyfunctional” as used herein in the phrase “polyfunctional vegetable oil-based epoxy resin” means the presence of two or more epoxide groups. Polyfunctional vegetable oil-based epoxy resins that may be used in the invention may be prepared in the manner disclosed in WO 2011/097484, the disclosure of which is incorporated by reference. For example, polyfunctional vegetable oil-based epoxy resins are prepared from the epoxidation of vegetable oil fatty acid esters of polyols having >4 hydroxyl groups/molecule. Polyol esters of fatty acids (PEFA's) containing four or more vegetable oil fatty acid moieties per molecule can be synthesized by the reaction of polyols with 4 or more hydroxyl groups per molecule with either a mixture of fatty acids or esters of fatty acids with a low molecular weight alcohol, as is known in the art. The former method is direct esterification while the latter method is transesterification. A catalyst may be used in the synthesis of these compounds. As shown in
FIG. 1 with sucrose, as an exemplary polyol to be used in the invention, esterified with a vegetable oil fatty acid, epoxide groups may then be introduced by oxidation of the vinyl groups in the vegetable oil fatty acid to form epoxidized polyol esters of fatty acids (EPEFA's). The epoxidation may be carried out using reactions known in the art for the oxidation of vinyl groups with in situ epoxidation with peroxyacid being a preferred method. - Polyols having at least 4 hydroxyl groups per molecule suitable for the process include, but are not limited to, pentaerythritol, di-trimethylolpropane, di-pentaerythritol, tri-pentaerythritol, sucrose, glucose, mannose, fructose, galactose, raffinose, and the like. Polymeric polyols can also be used including, for example, copolymers of styrene and allyl alcohol, hyperbranched polyols such as polyglycidol and poly(dimethylpropionic acid), and the like. Exemplary polyols are shown below in
Scheme 3 with the number of hydroxyl groups indicated by (f). Comparing sucrose to glycerol, there are a number of advantages for the use of a polyol having more than 4 hydroxyl groups/molecule including, but not limited to, a higher number of fatty acids/molecule; a higher number of unsaturations/molecule; when epoxidized, a higher number of oxiranes/molecule; and when crosslinked in a coating, higher crosslink density. - The degree of esterification may be varied. The polyol may be fully esterified, where substantially all of the hydroxyl groups have been esterified with the fatty acid, or it may be partially esterified, where only a fraction of the available hydroxyl groups have been esterified. It is understood in the art that some residual hydroxyl groups may remain even when full esterification is desired. In some applications, residual hydroxyl groups may provide benefits to the resin. Similarly, the degree of epoxidation may be varied from substantially all to a fraction of the available double bonds. The variation in the degree of esterification and/or epoxidation permits one of ordinary skill to select the amount of reactivity in the resin, both for the epoxidized resins and their derivatives.
- The hydroxyl groups on the polyols can be either completely reacted or only partially reacted with fatty acid moieties. Any ethylenically unsaturated fatty acid may be used to prepare a polyol ester of fatty acids to be used in the invention, with polyethylenically unsaturated fatty acids, those with more than one double bond in the fatty acid chain, being preferred. The
Omega 3, Omega 6, and Omega 9 fatty acids, where the double bonds are interrupted by methylene groups, and the seed and vegetable oils containing them may be used to prepare polyol ester of fatty acids to be used in the invention. Mixtures of fatty acids and of vegetable or seed oils, plant oils, may be used in the invention. The plant oils, as indicated above, contain mixtures of fatty acids with ethylenically unsaturated and saturated fatty acids possibly present depending on the type of oil. Examples of oils which may be used in the invention include, but are not limited to, corn oil, castor oil, soybean oil, safflower oil, sunflower oil, linseed oil, tall oil fatty acid, tung oil, vernonia oil, and mixtures thereof. As discussed above, the polyol fatty acid ester may be prepared by direct esterification of the polyol or by transesterification as is known in the art. The double bonds on the fatty acid moieties may be converted into epoxy groups using known oxidation chemistry yielding polyfunctional epoxy resins (EPEFA's)—epoxidized polyol esters of fatty acids. Table 4 lists the double bond functionality of some representative fatty acid esters (=/FA) based upon the number of esterified hydroxyl groups (f). -
TABLE 4 Double Bond Functionality of Fatty Acids in Selected Oils Functionality of = for FA esters having the indicated FA functionality Oil Avg. = /FA f = 3 f = 4 f = 6 f = 8 Soybean 1.54 4.62 6.16 9.24 12.32 Safflower 1.66 4.98 6.64 9.96 13.28 Sunflower 1.39 4.17 5.56 8.34 11.12 Linseed 2.10 6.30 8.40 12.60 16.80 Tall Oil 1.37 4.11 5.48 8.22 10.96 Fatty Acid - The epoxidation of sucrose esters of ethylenically unsaturated vegetable oil fatty acids results in unique bio-based resins having a high concentration of epoxy groups. As has been seen, functionalities of 8 to 15 epoxide groups per molecule may be achieved, depending on the composition of the fatty acid used and the degree of substitution of the fatty acids on the sucrose moiety. This is substantially higher than what can be achieved through epoxidation of triglycerides which range from about 4 for epoxidized soybean oil up to 6 for epoxidized linseed oil.
- The high epoxide functionality of these resins coupled with the rigidity of a polyol having at least 4 hydroxyl groups per molecule, such as sucrose, has significant implications for the use of these polyols and their derivatives in curable coating compositions of the invention. With the epoxidized polyol esters of fatty acids (EPEFA's), crosslinked materials having an outstanding combination of properties can be achieved.
- Preferably, the polyfunctional vegetable oil-based epoxidized resin is selected from epoxidized sucrose soyate (ESS). As discussed above, fatty acids from soybean oil can be used to form esters with sucrose. Sucrose soyate (SS) has many positive properties that make it an ideal starting point for bio-based coatings, including that it is polyfunctional, has low viscosity (300-400 cP) with 100% solids, is 100% bio-based, and is commercially available. Sucrose, soybean oil, and sucrose soyate have the following structures:
- In contrast to SS, epoxidized sucrose soyate (ESS) is more versatile. Many types of coatings can be formed from ESS. Also, ESS has many beneficial properties, including 12 epoxy groups per molecule (epoxy equivalent weight of 270 g eq−1), low viscosity (5,000 cP), 100% bio-based, easily synthesized, and is a clear and colorless resin. ESS can be synthesized in the manner disclosed in Pan et al., Green Chemistry 13:965-975 (2011), the disclosure of which is incorporated herein by reference. See also Scheme 4 below.
- The curable coating compositions comprising the vinyl-blocked bio-based polyfunctional carboxylic acids and the polyfunctional vegetable oil-based epoxidized resins can be prepared by a variety of methods. In one embodiment, this method comprises combining the vinyl-blocked bio-based polyfunctional carboxylic acids described above with the polyfunctional vegetable oil-based epoxidized resins to make curable coating compositions of the invention. As a non-limiting example, the curable coating compositions can be prepared by combining the vinyl-blocked bio-based polyfunctional carboxylic acids, described above, and the polyfunctional vegetable oil-based epoxidized resins in the presence of at least one optional solvent, such as t-butyl acetate (TBA), methyl n-amyl ketone (MAK), ethyl 3-ethoxyproprionate (EEP), and at least one optional catalyst, such as dibutyltindilaurate (DBTDL).
- In one embodiment, for the synthesis of the curable coating compositions of the invention, a stoichiometric equivalent amount of epoxide and blocked acid groups may be used. In another embodiment, the ratio of epoxy equivalents in the polyfunctional vegetable oil-based epoxidized resin to carboxylic equivalents in the vinyl-blocked bio-based polyfunctional carboxylic acids can be varied in order to vary the crosslink density and the properties of the curable coating composition.
- The invention also relates to the use of a curable coating composition which may be coated onto a substrate and cured. The substrate can be any common substrate such as paper, polyester films such as polyethylene and polypropylene, metals such as aluminum and steel, glass, urethane elastomers, primed (painted) substrates, and the like. The invention also provides methods for coating such substrates by applying the curable coating composition to the substrate. The coating may be applied by methods know in the art such as drawdown, conventional air-atomized spray, airless spray, roller, brush. The curable coating composition of the invention may be cured thermally. Upon curing at elevated temperature, thermoset coating compositions of the invention have excellent hardness, solvent resistance, adhesion, and flexibility. In another embodiment of the invention, the invention relates to an article of manufacture comprising a thermoset coating composition of the invention.
- A curable coating composition according to the invention may comprise a pigment (organic or inorganic) and/or other additives and fillers known in the art. For example a curable coating composition of the invention may further contain coating additives. Such coating additives include, but are not limited to, one or more leveling, rheology, and flow control agents such as silicones, fluorocarbons or cellulosics; extenders; reactive coalescing aids such as those described in U.S. Pat. No. 5,349,026, the disclosure of which is incorporated herein by reference; plasticizers; flatting agents; pigment wetting and dispersing agents and surfactants; ultraviolet (UV) absorbers; UV light stabilizers; tinting pigments; colorants; defoaming and antifoaming agents; anti-settling, anti-sag and bodying agents; anti-skinning agents; anti-flooding and anti-floating agents; biocides, fungicides and mildewcides; corrosion inhibitors; thickening agents; or coalescing agents. Specific examples of such additives can be found in Raw Materials Index, published by the National Paint & Coatings Association, 1500 Rhode Island Avenue, N.W., Washington, D.C. 20005. Further examples of such additives may be found in U.S. Pat. No. 5,371,148, incorporated herein by reference.
- Examples of flatting agents include, but are not limited to, synthetic silica, available from the Davison Chemical Division of W. R. Grace & Company as SYLOID®; polypropylene, available from Hercules Inc., as HERCOFLAT®; synthetic silicate, available from J. M. Huber Corporation, as ZEOLEX®.
- Examples of viscosity, suspension, and flow control agents include, but are not limited to, polyaminoamide phosphate, high molecular weight carboxylic acid salts of polyamine amides, and alkylene amine salts of an unsaturated fatty acid, all available from BYK Chemie U.S.A. as ANTI TERRA®. Further examples include, but are not limited to, polysiloxane copolymers, polyacrylate solution, cellulose esters, hydroxyethyl cellulose, hydroxypropyl cellulose, polyamide wax, polyolefin wax, hydroxypropyl methyl cellulose, polyethylene oxide, and the like.
- Solvents may also be added to the curable coating compositions in order to reduce the viscosity. Hydrocarbon, ester, ketone, ether, ether-ester, alcohol, or ether-alcohol type solvents may be used individually or in mixtures. Examples of solvents can include, but are not limited to benzene, toluene, xylene, aromatic 100, aromatic 150, acetone, methylethyl ketone, methyl amyl ketone, butyl acetate, t-butyl acetate, tetrahydrofuran, diethyl ether, ethylethoxy propionate, isopropanol, butanol, butoxyethanol, and so on.
- Synthesis of blocked-azelaic acid compounds (Table 5). In a 50-mL single neck round bottom flask, azelaic acid (5.00 g, 0.0266 mol) was combined with 4 molar equivalents (0.106 mol) of the appropriate vinyl ether compound (7.66 g of ethyl vinyl ether, 9.15 g of propyl vinyl ether, or 10.64 g of butyl or isobutyl vinyl ether). To this mixture, solid phosphoric acid (0.017 g, 0.177 mmol) was added. The mixture was stirred for 5 hours at a temperature dependent on the vinyl ether compound used (30° C. for ethyl vinyl ether, 70° C. for propyl vinyl ether, or 80° C. for butyl or isobutyl vinyl ether). After the reaction mixture cooled to room temperature, it was transferred to a 125-mL separatory funnel, where 40 mL of 0.05 M KOH was added. The funnel was capped and shaken to extract the phosphoric acid. The organic layer was isolated, and rotary evaporation was used to remove the excess vinyl ether. Blocked-azelaic acid compounds were recovered in 84-94% yield. Example 1H NMR data for propyl vinyl ether blocked azelaic acid (CDCl3, δ, ppm): 0.81 (triplet, 6H, CH3), 1.234 (singlet, 6H, O2C—CH2-CH2-CH2-CH2—CH2—CH2-CH2-CO2), 1.274 and 1.287 (singlet, 6H, O—CH(CH3)—O), 1.49 (multiplet, 8H, O2C—CH2-CH2 and O—CH2-CH2—CH3), 2.21 (triplet, 4H, O2C—CH2), 3.49 (quartet, 4H, O—CH2—CH2-CH3), 5.82 and 5.83 (quartet, 2H, O—CH(CH3)-O). A small amount of single blocked molecules is present, as evident by some peak splitting and a small carboxylic acid peak present in the NMR.
- Synthesis of blocked-succinic acid compounds (Table 5). The procedure used for blocking azelaic acid compounds was used for their succinic acid equivalents, using 5.00 g succinic acid and the properly adjusted amounts of vinyl ether and phosphoric acid. Example 1H NMR data for propyl vinyl ether blocked succinic acid (CDCl3, δ, ppm): 0.83 (triplet, 6H, —CH3), 1.30 (multiplet, 4H, O—CH(CH2)—O), 1.50 (quartet, 4H, O—CH2-CH2—CH3), 2.56 (triplet, 4H, O2C—CH2—CH2—CO2), 3.33 (quartet, 4H, O—CH2—CH2-CH3), 5.86 and 5.87 (s, 2H, O—CH(CH2)-O). The presence of other peaks suggests that the product is 3:1 mixture of two blocked carboxylic acids per molecule to one blocked carboxylic acid per molecule.
- Synthesis of blocked-citric acid compounds (Table 5). In a 50-mL single neck round bottom flask, citric acid (5.00 g, 0.0260 mol) was combined with 6 molar equivalents (0.156 mol) of the appropriate vinyl ether compound (13.45 g of propyl vinyl ether or 15.64 g of butyl or isobutyl vinyl ether). To this mixture, solid phosphoric acid (0.026 g, 0.260 mmol) was added. The mixture was stirred for 18 hours using the same temperatures used for the block-azelaic acid synthesis. The phosphoric acid was extracted using 40 mL of 0.05 M KOH, and the excess vinyl ether was removed via rotary evaporation. Blocked-citric acid compounds were recovered in 84-94% yield.
- Synthesis of isobutyl vinyl ether blocked 2,5-furandicarboxylic acid (Table 5). In a 50-mL single neck round bottom flask, 2,5-furandicarboxylic acid (FDCA; 5.00 g, 0.0320 mol) was combined with isobutyl vinyl ether (IBVE; 12.83 g, 0.128 mol) and solid phosphoric acid (0.021 g, 0.214 mmol). The mixture was stirred for 18 hours at 80° C. The phosphoric acid was extracted using 40 mL of 0.05 M KOH. The organic layer was filtered using a Buchner funnel, and the excess isobutyl vinyl ether was removed from the filtered liquid via rotary evaporation. This resulted in 6.40 g of IBVE-FDCA (56% yield) being recovered, along with the recovery of 1.76 g of unreacted FDCA (80% of the unreacted starting material).
-
TABLE 5 Structure of vinyl ether blocked acids produced Blocked Acid Name Abbreviation Structure Ethyl vinyl ether blocked succinic acid EVE-SuA Propyl vinyl ether blocked succinic acid PVE-SuA Butyl vinyl ether blocked succinic acid BVE-SuA Isobutyl vinyl ether blocked succinic acid IBVE-SuA Ethyl vinyl ether blocked azelaic acid EVE-AzA Propyl vinyl ether blocked azelaic acid PVE-AzA Butyl vinyl ether blocked azelaic acid BVE-AzA Isobutyl vinyl ether blocked azelaic acid IBVE-AzA Ethyl vinyl ether blocked citric acid EVE-CiA Propyl vinyl ether blocked citric acid PVE-CiA Butyl vinyl ether blocked citric acid BVE-CiA Isobutyl vinyl ether blocked citric acid IBVE-CiA Isobutyl vinyl ether blocked 2,5- furandicarboxylic acid IBVE-FDCA - Coating formulation method. Coating formulations were made using a 1:1 mole ratio of epoxide to acid and 5% 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) by total weight. For example, epoxidized sucrose soyate (ESS, 5.00 g, 0.0188 equivalents), ethyl vinyl ether blocked azelaic acid (EVE-AzA, 3.12 g, 0.0188 equivalents), and DBU (0.41 g, 0.0027 equivalents) were combined in a formulation cup. The mixture was hand stirred to obtain a consistent solution.
- Coating application and curing. A Gardco wet film applicator was used to apply a 4 mil thick layer of each formulation onto Bonderite 1000 treated steel and glass substrates. The substrates were then placed in an oven preheated to 170° C., where they were allowed to cure for 4 hours.
- Measurement of coating properties. Dried film thickness was measured on the steel panels using a Byko-test 8500 (Table 6). Konig hardness of the films was measured using a Byk Gardner pendulum hardness tester on the steel panels (Table 6). Pencil hardness, crosshatch adhesion, MEK double rubs, and reverse impact were measured for dried films on steel panels (Table 6). Thermogravimetric analysis was performed by removing a sample of each coating from the glass substrate and was analyzed using a TA Instruments Q-
Series 500 Thermogravimetric analyzer (Table 7). T10% is the temperature at 10 percent weight loss.FIGS. 2-4 depict the thermogravimetric analysis of the cured coatings. -
TABLE 6 Dry film properties of ESS and blocked acid thermosets prepared MEK Konig Pencil Crosshatch Double Reverse Blocked Acid Film Thickness Hardness Hardness Adhesion Rubs Impact EVE-Azelaic Acid 20.1 ± 8.0 μm 96.3 ± 7.6 3H 5B 400+ >168 in · lb PVE-Azelaic Acid 23.1 ± 5.2 μm 49.7 ± 1.5 3H 5B 400+ >168 in · lb BVE-Azelaic Acid 13.2 ± 5.4 μm 82.0 ± 4.4 3H 5B 400+ >168 in · lb IBVE-Azelaic Acid 11.2 ± 3.4 μm 93.7 ± 4.2 2H 5B 400+ >168 in · lb EVE-Succinic Acid 24.6 ± 11.8 μm 24.7 ± 7.5 3B 5B 400+ 160 in · lb PVE-Succinic Acid 28.4 ± 3.6 μm 20.3 ± 0.6 2B 5B 400+ >168 in · lb BVE-Succinic Acid 33.7 ± 8.7 μm 18.7 ± 2.9 2B 5B 400+ >168 in · lb IBVE-Succinic Acid 25.8 ± 5.1 μm 25.0 ± 1.0 2B 5B 400+ >168 in · lb EVE-Citric Acid 104 ± 25 μm 56.3 ± 1.5 3H 0B 70 8 in · lb PVE-Citric Acid 74.1 ± 50.9 μm 18.7 ± 0.6 3B 2B 50 20 in · lb BVE-Citric Acid 49.3 ± 28.4 μm 24.0 ± 1.0 < EE 3B 100 40 in · lb IBVE-Citric Acid 38.8 ± 20.5 μm 67.7 ± 3.2 HB 0B 100 40 in · lb IBVE-FDCA 52.9 ± 5.3 μm 55.7 ± 3.2 H 5B 380 140 in · lb -
TABLE 7 Thermal stability of cured coating formulations, as determined by TGA Blocked Acid T10%, ° C. EVE-Azelaic Acid 329 PVE-Azelaic Acid 297 BVE-Azelaic Acid 319 IBVE-Azelaic Acid 311 EVE-Succinic Acid 313 PVE-Succinic Acid 311 BVE-Succinic Acid 301 IBVE-Succinic Acid 311 EVE-Citric Acid 312 PVE-Citric Acid 317 BVE-Citric Acid 328 IBVE-Citric Acid 312 IBVE-FDCA 304 - Synthesis of additional ethyl vinyl ether-blocked bio-based polyfunctional carboxylic acids, curable coatings containing the same and epoxide sucrose soyate, and properties thereof. The procedures used to synthesize the vinyl-blocked bio-based polyfunctional carboxylic acid compounds above were used to make the following ethyl vinyl ether (EVE)-blocked bio-based polyfunctional carboxylic acids: EVE-succinic acid (EVE-SuA), EVE-glutaric acid (EVE-GlA), EVE-adipic acid (EVE-AdA), EVE-pimelic acid (EVE-PiA), EVE-suberic acid (EVE-SbA), EVE-azelaic acid (EVE-AzA), and EVE-sebacic acid (EVE-SeA). See Table 8. Coating compositions containing these vinyl-blocked bio-based polyfunctional carboxylic acid compounds and epoxide sucrose soyate (ESS) were made, applied, cured, and properties measured (Table 9) in the same manner as the coating compositions above.
FIG. 5 depicts the thermogravimetric analysis of these cured coatings. -
TABLE 8 Structure of ethyl vinyl ether blocked acids produced Blocked Acid Name Abbreviation Structure Ethyl vinyl ether blocked succinic acid EVE-SuA Ethyl vinyl ether blocked glutaric acid EVE-GIA Ethyl vinyl ether blocked adipic acid EVE-AdA Ethyl vinyl ether blocked pimelic acid EVE-PiA Ethyl vinyl ether blocked suberic acid EVE-SbA Ethyl vinyl ether blocked azelaic acid EVE-AzA Ethyl vinyl ether blocked sebacic acid EVE-SeA -
TABLE 9 Dry film properties of ESS and ethyl vinyl ether blocked acid thermosets prepared MEK Konig Pencil Crosshatch Double Reverse Blocked Acid Film Thickness Hardness Hardness Adhesion Rubs Impact EVE-Succinic Acid 24.6 ± 11.8 μm 25 3B 5B 400+ >168 in · lb EVE-Glutaric Acid 20.2 ± 10.9 μm 27 2B 5B 400+ >168 in · lb EVE-Adipic Acid 21.9 ± 5.5 μm 157 B 5B 400+ >168 in · lb EVE-Pimelic Acid 16.6 ± 1.7 μm 160 HB 5B 400+ >168 in · lb EVE-Suberic Acid 29.5 ± 3.1 μm 135 H 5B 400+ >168 in · lb EVE-Azelaic Acid 15.3 ± 7.1 μm 170 3H 5B 400+ >168 in · lb EVE-Sebacic Acid 25.8 ± 5.7 μm 115 HB 5B 400+ >168 in · lb - Conclusions
- Azelaic acid, succinic acid, and FDCA have superior solvent resistance, adhesion, and flexibility. Higher hardness of azelaic acid compared to the others suggests a higher crosslinked system is produced. The poor properties of citric acid based coatings suggest a lower inter-ESS crosslinked network is formed.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/428,047 US20150232691A1 (en) | 2012-09-17 | 2013-09-17 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261702082P | 2012-09-17 | 2012-09-17 | |
PCT/US2013/060219 WO2014043720A1 (en) | 2012-09-17 | 2013-09-17 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
US14/428,047 US20150232691A1 (en) | 2012-09-17 | 2013-09-17 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/060219 A-371-Of-International WO2014043720A1 (en) | 2010-02-06 | 2013-09-17 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
US14/801,306 Continuation-In-Part US10329377B2 (en) | 2010-02-06 | 2015-07-16 | Highly functional epoxidized resins and coatings |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/160,544 Continuation US9718987B2 (en) | 2010-02-06 | 2016-05-20 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150232691A1 true US20150232691A1 (en) | 2015-08-20 |
Family
ID=50278773
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/428,047 Abandoned US20150232691A1 (en) | 2012-09-17 | 2013-09-17 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
US15/160,544 Active US9718987B2 (en) | 2010-02-06 | 2016-05-20 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/160,544 Active US9718987B2 (en) | 2010-02-06 | 2016-05-20 | Blocked bio-based carboxylic acids and their use in thermosetting materials |
Country Status (3)
Country | Link |
---|---|
US (2) | US20150232691A1 (en) |
EP (1) | EP2898018A4 (en) |
WO (1) | WO2014043720A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170339986A1 (en) * | 2014-12-24 | 2017-11-30 | Firmenich Sa | Hemiacetyl proflavors |
US20170369461A1 (en) * | 2014-12-24 | 2017-12-28 | Firmenich Sa | Proflavor delivery powders |
US20180103667A1 (en) * | 2014-12-24 | 2018-04-19 | Firmenich Sa | Proflavor delivery article |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015070018A1 (en) * | 2013-11-07 | 2015-05-14 | Ndsu Research Foundation | Bio-based resins with high content of ethylenically unsaturated functional groups and thermosets thereof |
WO2015168582A1 (en) | 2014-05-01 | 2015-11-05 | Henkel IP & Holding GmbH | Anaerobic curable compositions containing blocked carboxylic acid compounds |
EP3137569B1 (en) | 2014-05-01 | 2020-04-15 | Henkel IP & Holding GmbH | Anaerobic curable compositions containing blocked (meth)acrylic acid compounds |
CN105602268B (en) * | 2016-01-21 | 2018-01-12 | 福建农林大学 | A kind of string strengthens bio-based thermoset ting resin composite |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352740A (en) * | 1990-04-10 | 1994-10-04 | Nippon Oil And Fats Company, Limited | Thermosetting compositions, thermal latent carboxyl compounds and methods of preparation thereof |
WO2011097484A1 (en) * | 2010-02-06 | 2011-08-11 | Ndsu Research Foundation | Highly functional epoxidized resins and coatings |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3209015A (en) | 1958-04-07 | 1965-09-28 | Celanese Corp | Halogenated polyvinyl resin composition plasticized with a mixed ester of a polyhydric alcohol |
US3236795A (en) | 1961-03-02 | 1966-02-22 | Archer Daniels Midland Co | Coating compositions comprising carboxyl interpolymers and epoxidized fatty acid esters |
US3223657A (en) | 1961-07-27 | 1965-12-14 | Tenneco Chem | Resinous composition comprising an epoxidized ester of a neopentyl polyhydric alcohol |
NL296485A (en) | 1962-08-11 | |||
BE757846A (en) | 1969-10-23 | 1971-04-01 | Dai Ichi Kogyo Seiyaku Cy Ltd | PROCESS FOR SYNTHESIS OF SACCHAROSE ESTERS OF FATTY ACIDS |
GB1424862A (en) | 1973-01-19 | 1976-02-11 | Research Corp | Resin compositions |
US4117029A (en) | 1973-10-11 | 1978-09-26 | Nitto Kasei Co. Ltd. | Halogen-containing resin composition containing organic substance as stabilizer |
US4517360A (en) | 1983-06-23 | 1985-05-14 | The Procter & Gamble Company | Synthesis of higher polyol fatty acid polyesters using carbonate catalysts |
US4663072A (en) | 1984-12-24 | 1987-05-05 | Ford Motor Company | Acid anhydride mixtures in paste form useful for curing epoxy resins and a dual catalyst system therefor |
ES2067251T3 (en) | 1990-09-11 | 1995-03-16 | Procter & Gamble | IMPROVED PROCEDURE FOR OBTAINING HIGHLY ESTERIFIED POLYESTERS FROM FATTY ACIDS AND POLYOLES THAT HAVE REDUCED LEVELS OF DIGRATIVE KETONES AND BETA-KETOSTERS. |
US5571907A (en) | 1990-12-07 | 1996-11-05 | Hawaiian Sugar Planters' Association | Epoxy monomers from sucrose |
US5318808A (en) | 1992-09-25 | 1994-06-07 | Polyset Company, Inc. | UV-curable coatings |
JPH11140020A (en) * | 1997-11-05 | 1999-05-25 | Nof Corp | Aliphatic dicarboxylic acid derivative |
KR100342950B1 (en) | 1997-11-11 | 2002-10-19 | 가부시키가이샤 닛폰 쇼쿠바이 | Curable Resin and Resin Composition |
US6797753B2 (en) | 2000-06-20 | 2004-09-28 | Battelle Memorial Institute | Plasticizers derived from vegetable oils |
US6900310B2 (en) | 2002-05-28 | 2005-05-31 | The Procter & Gamble Company | Staged synthesis of purified, partially esterified polyol polyester fatty acid compositions |
DE112005001607T5 (en) | 2004-07-08 | 2007-05-24 | Archer-Daniels-Midland Co., Decatur | Epoxidized esters of vegetable oil fatty acids as reactive diluents |
JP4927568B2 (en) * | 2007-01-10 | 2012-05-09 | ユニマテック株式会社 | Method for producing carboxylic acid derivative composition |
CA2727231A1 (en) | 2008-06-08 | 2010-01-21 | Robert N. Clausi | Process for producing resilient wood particleboard, mdf and hdf |
CN107267562A (en) * | 2008-07-08 | 2017-10-20 | 帝斯曼知识产权资产管理有限公司 | Pass through fermenting and producing dicarboxylic acids at a low ph |
US20100009104A1 (en) | 2008-07-11 | 2010-01-14 | Composite America, LLC | Laminate with Natural Fiber Composite |
JP2011190440A (en) * | 2010-02-18 | 2011-09-29 | Hitachi Chem Co Ltd | Liquid resin composition for electronic part, and electronic part device |
ITMI20101380A1 (en) | 2010-07-27 | 2012-01-28 | Dow Global Technologies Inc | COMPOSITE POLYURETHANE PANEL WITH LOW ENVIRONMENTAL IMPACT |
DE102011002809A1 (en) | 2011-01-18 | 2012-07-19 | Henkel Ag & Co. Kgaa | 2K PU composition with delayed crosslinking |
-
2013
- 2013-09-17 US US14/428,047 patent/US20150232691A1/en not_active Abandoned
- 2013-09-17 WO PCT/US2013/060219 patent/WO2014043720A1/en active Application Filing
- 2013-09-17 EP EP13836517.6A patent/EP2898018A4/en not_active Withdrawn
-
2016
- 2016-05-20 US US15/160,544 patent/US9718987B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352740A (en) * | 1990-04-10 | 1994-10-04 | Nippon Oil And Fats Company, Limited | Thermosetting compositions, thermal latent carboxyl compounds and methods of preparation thereof |
WO2011097484A1 (en) * | 2010-02-06 | 2011-08-11 | Ndsu Research Foundation | Highly functional epoxidized resins and coatings |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170339986A1 (en) * | 2014-12-24 | 2017-11-30 | Firmenich Sa | Hemiacetyl proflavors |
US20170369461A1 (en) * | 2014-12-24 | 2017-12-28 | Firmenich Sa | Proflavor delivery powders |
US20180103667A1 (en) * | 2014-12-24 | 2018-04-19 | Firmenich Sa | Proflavor delivery article |
US10640479B2 (en) * | 2014-12-24 | 2020-05-05 | Firmenich Sa | Proflavor delivery powders |
US10638779B2 (en) * | 2014-12-24 | 2020-05-05 | Firmenich Sa | Hemiacetyl proflavors |
US10638782B2 (en) * | 2014-12-24 | 2020-05-05 | Firmenich Sa | Proflavor delivery particles |
Also Published As
Publication number | Publication date |
---|---|
EP2898018A1 (en) | 2015-07-29 |
WO2014043720A1 (en) | 2014-03-20 |
US20170022386A1 (en) | 2017-01-26 |
EP2898018A4 (en) | 2016-07-20 |
US9718987B2 (en) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9718987B2 (en) | Blocked bio-based carboxylic acids and their use in thermosetting materials | |
US10907008B2 (en) | Highly functional epoxidized resins and coatings | |
WO2016164196A1 (en) | Curable benzoxazine-based phenolic resins and coating compositions thereof | |
JP7289539B2 (en) | Method for making functionalized fluorinated monomers, fluorinated monomers, and compositions for making same | |
SE503342C2 (en) | Polyester-type hyperbranched macromolecule and process for its preparation | |
JP4215507B2 (en) | Low temperature curing coating composition and method thereof | |
US6346582B1 (en) | Glycidation of carboxy polyester and tertiary C monocarboxyic acid (glycidyl ester) | |
JP2019515074A (en) | Amine functional polymer and method of making such polymer | |
US3870664A (en) | Resinous reaction product of a sucrose partial ester, a cyclic dicarboxylic acid anhydride and a diepoxide | |
TWI802679B (en) | Compound containing unsaturated double bond, oxygen absorber using same, and resin composition | |
US10072178B2 (en) | Biobased cyclic carbonate functional resins and polyurethane thermosets therefrom | |
JP6748112B2 (en) | Cyclic carbonate | |
EP2920224A1 (en) | Epoxy resin compositions | |
US3247137A (en) | Polymer of a monoepoxy alcohol and reaction products thereof | |
US3341484A (en) | Varnishes prepared from novel copolymers of monoepoxy alcohols and monoepoxides | |
JP2022552919A (en) | Glycidyl esters of alpha, alpha branched acids and blends thereof from renewable sources | |
JP2022553583A (en) | Renewable source-derived alpha, alpha-branched acid glycidyl esters and blends thereof | |
US10000660B2 (en) | Thiol-functional compound | |
HUT63140A (en) | Substituted 1,5-pentanediols, process for producing and re-forming them | |
US11691956B2 (en) | Bio-based diols from sustainable raw materials, uses thereof to make diglycidyl ethers, and their coatings | |
TW202132403A (en) | Glycidyl esters of alpha, alpha branched acids from renewable sources and formulations thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NDSU RESEARCH FOUNDATION, NORTH DAKOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTH DAKOTA STATE UNIVERSITY;REEL/FRAME:031409/0144 Effective date: 20131010 Owner name: NORTH DAKOTA STATE UNIVERSITY, NORTH DAKOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEBSTER, DEAN C.;PAVLACKY, ERIN C.;KOVASH, CURTISS, JR;SIGNING DATES FROM 20131002 TO 20131007;REEL/FRAME:031409/0114 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NORTH DAKOTA STATE UNIVERSITY;REEL/FRAME:035241/0981 Effective date: 20150316 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:NORTH DAKOTA STATE UNIVERSITY;REEL/FRAME:035506/0617 Effective date: 20130918 |
|
AS | Assignment |
Owner name: NORTH DAKOTA STATE UNIVERSITY, NORTH DAKOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEBSTER, DEAN C.;PAVLACKY, ERIN;KOVASH, JR., CURTISS;SIGNING DATES FROM 20131002 TO 20131007;REEL/FRAME:036105/0214 Owner name: NDSU RESEARCH FOUNDATION, NORTH DAKOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTH DAKOTA STATE UNIVERSITY;REEL/FRAME:036104/0640 Effective date: 20131010 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |