[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20150223443A1 - Integration of surface heating to control pests - Google Patents

Integration of surface heating to control pests Download PDF

Info

Publication number
US20150223443A1
US20150223443A1 US14/179,719 US201414179719A US2015223443A1 US 20150223443 A1 US20150223443 A1 US 20150223443A1 US 201414179719 A US201414179719 A US 201414179719A US 2015223443 A1 US2015223443 A1 US 2015223443A1
Authority
US
United States
Prior art keywords
thermal barrier
enclosure
bus bar
barrier tape
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/179,719
Inventor
Michael David Lindsey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/179,719 priority Critical patent/US20150223443A1/en
Publication of US20150223443A1 publication Critical patent/US20150223443A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • A01M1/2094Poisoning, narcotising, or burning insects killing insects by using temperature, e.g. flames, steam or freezing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M19/00Apparatus for the destruction of noxious animals, other than insects, by hot water, steam, hot air, or electricity
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/10Catching insects by using Traps
    • A01M1/103Catching insects by using Traps for crawling insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M3/00Manual implements, other than sprayers or powder distributors, for catching or killing insects, e.g. butterfly nets
    • A01M3/007Manual heating or burning apparatus, e.g. using steam, heated elements or waves

Definitions

  • the present invention relates to killing bed bugs or other pests which may be located within a suitcase.
  • This disclosure includes details which aid in the integration of heating elements into a piece of luggage to improve upon the functionality and manufacturability; and methods to manufacture heating film to suit various applications.
  • a system which may be used to establish an electrically heated, low-profile barrier to either contain or prevent infestation of an area.
  • Lethal conditions for bed bugs are a combination of time and temperature. While it is generally agreed that temperatures over 120 F will kill bed bugs and eggs instantly, lower temperatures require an increased exposure time. For example, in a 2011 paper by Dr. Stephan Kells, entitled “ Temperature and Time Requirements for Controlling Bed Bugs under Commercial Heat Treatment Conditions”, cites that exposure to temperatures of 113 F may take an hour and a half to kill and adult and up to seven hours to destroy eggs.
  • the embodiment of the present invention comprises methods for integrating heating elements into luggage system for killing pests within which may reside in the interior or exterior of the luggage; the creation and manufacturing process to create these heating elements; and additional mechanical features which may aid in reducing the risk of pest contamination.
  • a significant challenge of heating an enclosure lies in the fact that bed bugs, as well as other pests, are sensitive to heat and will move away from a heat source as the temperatures becomes lethal. Cool spots may be prevalent throughout the enclosure and provide a harborage for the pest during the heat treatment. For travel applications, such as suitcases, however, the uses of bulky insulation or convective passages are undesirable.
  • Heating elements must be strategically positioned to overcome the heat loss throughout the application. Heating elements should not impede the basic functionality of the luggage, ergo, they must be lightweight, consume a minimum volume within the enclosure, and resilient to the mechanical wear seen by luggage during transport. For safety and commercialization purposes, the overall system while the heating elements are active must be not exceed surface temperature standards enforced by UL, CSa, and CE.
  • Heating films Ideal candidates for this application are IR heating films which have been commonly used as under floor heating systems. Heating films consume a minimal amount of volume as the film thickness is roughly 0.25 mm. Heating films are moderately pliable and may be applied to any rigid surface, including surfaces which extend in multiple planes, to create a continuous heating surface. Heating films are mass produced via a screen printing process which deposits carbon-graphite elements between bus bars. This process allows for unique shapes and designs to be manufactured meeting the need of the application. Heating films are distributed world-wide and are recognized by various certification agencies. Advances in the heat film technology over the last two years include the use of positive temperature co-efficient materials in the carbon-graphite that can be employed to help to regulate temperatures.
  • heating elements may also be created using resistive heating elements such as ribbon wire or metal alloys such as NiChrome. These have been more traditionally accepted for use as heating pads, electric blankets, etc. These may have some advantages such as the ability to create unique designs, but the process to manufacturer is more costly.
  • FIG. 1 is an illustration of heating film as it is currently produced.
  • FIG. 2 is a view of standard film when placed within an open suitcase.
  • FIG. 3 is a view of a film where the booth bar has been separated to enable differential voltage across.
  • FIG. 4 is a top view of heating film which may be die cut to form an application specific shape.
  • FIG. 5 is a view of a heating film created with a single booth bar.
  • FIG. 6 is a view of luggage with external features and corresponding heating film.
  • FIG. 7 is a view of a heating film which can form a three dimensional enclosure.
  • FIG. 8 is a view of luggage configured as a heating system.
  • FIG. 9 is a view of an alternate configuration of luggage as a heating system
  • FIG. 10 is a view of the heating film and zipper interface.
  • FIG. 11 is a view of mechanical barriers to protect wheels.
  • FIG. 12 is a view of mechanical barrier to protect handles.
  • FIG. 13 is a view of an enclosure with heat conductive elements.
  • FIG. 14 is a view of an unheated pocket for heat sensitive items.
  • FIG. 15 is a view of an electrical thermal barrier using resistive wiring.
  • FIG. 16 is a view of an electrical thermal barrier using heating film.
  • FIG. 17 is a view of an electrical thermal barrier around a bed.
  • FIG. 1 is a view of heating film 100 as it is commonly produced.
  • the heating film 100 is comprised of a base film 106 which carbon ink channels 102 are deposited between two bus bars, specifically bus bar neutral 104 and bus bar hot 108 .
  • bus bar neutral 104 specifically bus bar neutral 104 and bus bar hot 108 .
  • bus bar hot 108 When a voltage differential is applied across the bus bar, the carbon ink produces heat via resistive heating and infrared radiation.
  • FIG. 2 is a view of the heating film 100 as commonly produced applied to an enclosure, in this case a suitcase lid 112 .
  • the heating film 100 could also be applied to the suitcase base 110 and walls to create a heated enclosure that is capable killing pests within the enclosure.
  • a deficiency in this design is the non-heated areas 116 which are outside of the heating area 114 and may not reach temperature sufficient to kill pests if the suitcase is loaded with materials.
  • FIG. 3 is a view of an improved heating film design for eliminating non-heated area 116 for the enclosure application.
  • the improved design incorporates side heat channels 130 which extend the heat area 114 outside of the bus bar. To create a differential across the side heat channel 130 , the bus bar is severed at the bus bar cut line 128 . This heating element becomes active when bus bar B 126 and bus bar C 122 are connected to neutral and bus bar A 120 and bus bar D 124 are connected to hot. Additionally, the perimeter of the heating film is cut to mechanically fit along the shape cut outline 118 .
  • FIG. 4 illustrates how a mechanical punch could be employed to produce the improved element in a manufacturing environment.
  • Registration marks 134 printed during the creation of the film could be used to accurately align a die cutting tool. In a single operation the die cutter would cut out the shape cut outline 118 and bus bar cut line(s) 128 .
  • FIG. 5 is another view of an improved heating film which uses a single bus bar.
  • the bus bar cut line 128 separates the single bar into bus bar A 120 and bus bar B 126 .
  • the side heat channel 132 would be designed as shown to have lower carbon deposits on the inner side heat channel 132 and greater carbon deposits on the outer side heat channel 132 to create a uniform heating element.
  • FIG. 6 is a view of an improved heating film design to accommodate features such as external pockets 136 which may exist in the application. To be effective, the heating elements must cover the entire design while accommodating an opening. Parallel resistive channels 138 may be designed into the film or u-shaped feature avoidance channels 140 are examples of solutions which address this challenge.
  • FIG. 7 is a view of a heating film design which may be used to create a three-dimensional object.
  • the design includes side wall channels 144 which are printed on side all flaps.
  • the side wall flaps 142 are installed into the application perpendicular to the base of the film.
  • FIG. 8 is view of a suitcase application where a single heating element is used. This approach is sufficient to eliminate pests within the suitcase when the suitcase is empty.
  • a tilt sensor may be employed in the case where the optimum performance is dependent on the orientation of the enclosure.
  • the heater element 210 is placed on base of the suitcase and on a wall opposite temperature monitors 204 .
  • the heater element 210 temperature may be regulated by using a sensor element 212 feeding back to a controller 206 .
  • the heater element 210 temperature may also be regulated by use of normally closed bi-metallic thermal switches.
  • the heater element 210 may also be self-regulated using positive temperature coefficient materials within the element.
  • Temperature monitors 204 may be monitored and report the lowest temperature to determine the end of a heating cycle or wired in series in the case of thermal switches.
  • FIG. 9 is a view of the heating element 210 when it is designed into the suitcase divider 204 .
  • This design is an improvement to placing the element in the walls of the suitcase base 200 or suitcase lid 202 as it radiates equally to both sides of the container.
  • the suitcase divider is common in the art of suitcase design to allow a user to close the suitcase lid 202 .
  • the suitcase divider is commonly held in place by mating interface 216 such as zippers or latches.
  • This design also illustrates using the wheels as standoffs to allows the majority of the enclosure to be surrounded by an ambient environment. Temperatures monitors are placed in the lower corners of the enclosure.
  • FIG. 10 is a close up view of a zipper and grommet which may be used to hold a suitcase in the closed position.
  • This design allows the heating film 306 to be placed as close as possible to the zipper teeth 310 and zipper fabric 312 . Heat in these locations will cause most pests to move deeper into the enclosure rather than to attempt escape.
  • the zipper grommet 308 is commonly used to secure the zipper fabric 312 to either the suitcase base shell 300 or the suitcase lid shell 302 .
  • FIG. 11 is a view of a mechanical barrier which may be used to prevent pests from climbing up the wheel and taking harborage or from egressing from a heated suitcase to a cooler point.
  • the suitcase base shell 300 is designed to reach a temperature that would cause the bug to egress from the outer surfaces.
  • the escape instinct threshold for pests such as bed bugs is reported as 108 F. If the wheel barrier 318 is designed to be sufficiently smooth, the pest would unable to escape by crawling down the wheel pivot rod 320 and taking harborage on the wheel assembly 316 .
  • the wheel pivot rod may also be made from a material which would conduct heat further making harborage on the wheel assembly 316 undesirable.
  • the convex shape of the wheel barrier 318 would prevent pests from crawling up the wheel assembly to take harborage on the suitcase when the elements are inactive.
  • FIG. 12 is a view of a mechanical barrier which may be used to prevent pests from aking harborage on the handle 322 .
  • the handle barrier may take a convex shape as shown or simply be made of materials that are sufficiently non-porous to prevent traction by the pests.
  • FIG. 13 is a view of an enclosure which comprises an enclosure base 326 and an enclosure lid 328 . While the enclosure is shown as a suitcase, it is used here to demonstrate a method to employ heat conductive elements 330 to locally raise the temperature of cool spots previously identified as non-heated area 116 .
  • the heat conductive elements 330 are arranged such that they transfer heat from the heating area 334 which is created by active elements of the heating film 332 .
  • the heat conductive elements 330 can be coupled proximate or adjacent to the heating area 334 .
  • the heat conductive element 330 can comprise a number of materials with a high thermal conductivity such as any of a heavy aluminum, copper, or alloy metal foil, biaxially-oriented polyethylene terephthalate, or the like.
  • the heat conductive elements 330 can have several functions including: increased uniform distribution of heat generated by the heating film 332 within the heating area 334 , heat transfer from the heating area 334 to other areas within the inside space of the enclosure body, additional structural support for the heating film 332 , electrical isolation of the heating film 332 and associated circuitry, and contact protection of the heating film 332 .
  • FIG. 14 is a view of a non-heated pocket 400 which may be used to hold such materials during the heat treatment.
  • the pocket may be on the enclosure wall 406 as shown or embedded in such that the outer flap is flush with the enclosure wall 406 .
  • An insulation layer 404 may be used to prevent heat from the heating layer 402 to permeate the contents of the non-heated pocket.
  • Mechanical barriers may be used to prevent pests from easily accessing the pocket.
  • FIG. 15 and FIG. 16 are the detailed design of a heating tape 520 which may provide an electrical heat based barrier which may prevent pests from traversing across the barrier.
  • the barrier is designed to have an extremely low profile thus avoiding a trip hazard and allowing easy access for devices such as hospital gurneys or wheeled medical equipment.
  • the surface temperature should be sufficiently high to deter pests from going across, but low enough not to cause burns or be a health risk to humans. Because the width of the barrier is significantly small, the voltage across bus bar A 504 and bus bar B 506 may be low voltage thus reducing electrical hazard.
  • the barrier layer 502 is a heat conductive material that is held at temperatures of 120 to 178 degrees Fahrenheit.
  • the barrier layer is designed to incorporate several functions including: thermal transfer from the resistive elements 508 or IR carbon elements 510 , electrical isolation, and physical protection of the active elements.
  • the width of the barrier layer 502 may vary depending on the environment and type of pest, but is designed such that a pest crawling across the surface would instantly be exterminated.
  • the base layer 500 should have sufficient insulation such that it may be applied to cement or tile floors.
  • the heating elements may comprise resistive elements 508 such as NiChrome wire or similar alloy, carbon based.
  • the heating elements may comprise of IR carbon elements 510 such as those used in IR film. The IR carbon elements may be printed directly on the base layer 500 or barrier layer 502 .
  • An adhesive may be applied to the base layer for ease of installation.
  • the adhesive may be applied to the top of the barrier layer to heat items.
  • the resistive elements 508 or IR Carbon Elements 510 may be regulated through the use of positive temperature coefficient materials.
  • the power sent through the resistive elements 508 may be adjusted in manufacturing by increasing or decreasing the gap between the teeth of bus bar A and bus bar B. Because the elements in this design are parallel circuits, the overall length of the tape may be sufficiently long without affecting performance.
  • FIG. 17 is an example of how the heating tape 520 may be applied to the floor to create a protected area 522 .
  • a splice connector 512 may be used at the corners to form angles or from the incoming power supply.
  • the installation in FIG. 17 shows a power cord 516 and step down transformer 518 to reduce the voltage.
  • the low voltage line 514 which provides power to the heat tape 520 may be either AC or DC. While this figure illustrates the use of the heat barrier on the floor, it can equally be employed around doorways, on walls, or any surface to create a thermal barrier.
  • a temperature monitor 522 such as a thermistor, may be used to locally read the temperature of the thermal barrier. Said temperature monitor may be coupled to a microprocessor 524 to provide a closed loop control of the heat tape 520 .
  • the microprocessor 524 would limit power to the heat tape through a TRIAC or other common electrical power control circuit. Alternatively, a mechanical rheostat or other power limiting device may be used to set temperatures during installation or ongoing by the user.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catching Or Destruction (AREA)
  • Central Heating Systems (AREA)

Abstract

Disclosed are designs and methods for integrating heating film onto surfaces and enclosures that are useful for preventing the infestation of pests. Specifically, designs to increase the effective heating area and location of said heating film within enclosures such as suitcases. Also, the use of heating films to create a thermal barrier to prevent pests from crawling across a surface. Heating films can be utilized that are inexpensive, low-profile, and lightweight.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application makes reference to, and claims priority to U.S. Non-Provisional Patent Application No. 13/323,521 filed on Dec. 12, 2011, titled “Integration of Surface Heating To An Enclosure.” U.S. Non-Provisional Patent Application No. 13/323,521 is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • The present invention relates to killing bed bugs or other pests which may be located within a suitcase. This disclosure includes details which aid in the integration of heating elements into a piece of luggage to improve upon the functionality and manufacturability; and methods to manufacture heating film to suit various applications. Also disclosed is a system which may be used to establish an electrically heated, low-profile barrier to either contain or prevent infestation of an area.
  • The disclosure improves upon U.S. patent application Ser. No. 13/232,156, filed on Sep. 14, 2011, by Michael D. Lindsey, entitled “Heat Treatable Enclosure” and U.S. patent application Ser. No. 12/907,326, by David Levy, entitled “Inhibiting Pest Infestation,” which are hereby incorporated by reference in their entireties.
  • As people travel there is a growing incidence of pest or insect infestation of garments transported in luggage and materials shipped in containers. For example, bed bugs may be found in many hotels, motels, homes, or other accommodations, even in highly sanitary conditions. During the day, nocturnal insects, such as bedbugs, disappear in crevices associated with suitcases, garments, clothes, pillows, towels, or the like. Even when these materials are examined, it is common for these insects, or the eggs of these insects, to go undetected and packed with garments and transported in luggage.
  • Lethal conditions for bed bugs are a combination of time and temperature. While it is generally agreed that temperatures over 120 F will kill bed bugs and eggs instantly, lower temperatures require an increased exposure time. For example, in a 2011 paper by Dr. Stephan Kells, entitled “Temperature and Time Requirements for Controlling Bed Bugs under Commercial Heat Treatment Conditions”, cites that exposure to temperatures of 113 F may take an hour and a half to kill and adult and up to seven hours to destroy eggs.
  • The integration of surface heaters into a suitcase is discussed in prior art applications. This patent outlines manufacturing improvements and best practices for further integration.
  • SUMMARY OF THE INVENTION
  • The embodiment of the present invention comprises methods for integrating heating elements into luggage system for killing pests within which may reside in the interior or exterior of the luggage; the creation and manufacturing process to create these heating elements; and additional mechanical features which may aid in reducing the risk of pest contamination.
  • A significant challenge of heating an enclosure, such as a suitcase, lies in the fact that bed bugs, as well as other pests, are sensitive to heat and will move away from a heat source as the temperatures becomes lethal. Cool spots may be prevalent throughout the enclosure and provide a harborage for the pest during the heat treatment. For travel applications, such as suitcases, however, the uses of bulky insulation or convective passages are undesirable.
  • There are multiple requirements on the heating elements employed for this application. Heating elements must be strategically positioned to overcome the heat loss throughout the application. Heating elements should not impede the basic functionality of the luggage, ergo, they must be lightweight, consume a minimum volume within the enclosure, and resilient to the mechanical wear seen by luggage during transport. For safety and commercialization purposes, the overall system while the heating elements are active must be not exceed surface temperature standards enforced by UL, CSa, and CE.
  • Ideal candidates for this application are IR heating films which have been commonly used as under floor heating systems. Heating films consume a minimal amount of volume as the film thickness is roughly 0.25 mm. Heating films are moderately pliable and may be applied to any rigid surface, including surfaces which extend in multiple planes, to create a continuous heating surface. Heating films are mass produced via a screen printing process which deposits carbon-graphite elements between bus bars. This process allows for unique shapes and designs to be manufactured meeting the need of the application. Heating films are distributed world-wide and are recognized by various certification agencies. Advances in the heat film technology over the last two years include the use of positive temperature co-efficient materials in the carbon-graphite that can be employed to help to regulate temperatures.
  • Alternatively, heating elements may also be created using resistive heating elements such as ribbon wire or metal alloys such as NiChrome. These have been more traditionally accepted for use as heating pads, electric blankets, etc. These may have some advantages such as the ability to create unique designs, but the process to manufacturer is more costly.
  • A BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of heating film as it is currently produced.
  • FIG. 2 is a view of standard film when placed within an open suitcase.
  • FIG. 3 is a view of a film where the booth bar has been separated to enable differential voltage across.
  • FIG. 4 is a top view of heating film which may be die cut to form an application specific shape.
  • FIG. 5 is a view of a heating film created with a single booth bar.
  • FIG. 6 is a view of luggage with external features and corresponding heating film.
  • FIG. 7 is a view of a heating film which can form a three dimensional enclosure.
  • FIG. 8 is a view of luggage configured as a heating system.
  • FIG. 9 is a view of an alternate configuration of luggage as a heating system
  • FIG. 10 is a view of the heating film and zipper interface.
  • FIG. 11 is a view of mechanical barriers to protect wheels.
  • FIG. 12 is a view of mechanical barrier to protect handles.
  • FIG. 13 is a view of an enclosure with heat conductive elements.
  • FIG. 14 is a view of an unheated pocket for heat sensitive items.
  • FIG. 15 is a view of an electrical thermal barrier using resistive wiring.
  • FIG. 16 is a view of an electrical thermal barrier using heating film.
  • FIG. 17 is a view of an electrical thermal barrier around a bed.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 is a view of heating film 100 as it is commonly produced. The heating film 100 is comprised of a base film 106 which carbon ink channels 102 are deposited between two bus bars, specifically bus bar neutral 104 and bus bar hot 108. When a voltage differential is applied across the bus bar, the carbon ink produces heat via resistive heating and infrared radiation.
  • FIG. 2 is a view of the heating film 100 as commonly produced applied to an enclosure, in this case a suitcase lid 112. The heating film 100 could also be applied to the suitcase base 110 and walls to create a heated enclosure that is capable killing pests within the enclosure. A deficiency in this design is the non-heated areas 116 which are outside of the heating area 114 and may not reach temperature sufficient to kill pests if the suitcase is loaded with materials.
  • FIG. 3 is a view of an improved heating film design for eliminating non-heated area 116 for the enclosure application. The improved design incorporates side heat channels 130 which extend the heat area 114 outside of the bus bar. To create a differential across the side heat channel 130, the bus bar is severed at the bus bar cut line 128. This heating element becomes active when bus bar B 126 and bus bar C 122 are connected to neutral and bus bar A 120 and bus bar D 124 are connected to hot. Additionally, the perimeter of the heating film is cut to mechanically fit along the shape cut outline 118.
  • FIG. 4 illustrates how a mechanical punch could be employed to produce the improved element in a manufacturing environment. Registration marks 134 printed during the creation of the film could be used to accurately align a die cutting tool. In a single operation the die cutter would cut out the shape cut outline 118 and bus bar cut line(s) 128.
  • FIG. 5 is another view of an improved heating film which uses a single bus bar. The bus bar cut line 128 separates the single bar into bus bar A 120 and bus bar B 126. The side heat channel 132 would be designed as shown to have lower carbon deposits on the inner side heat channel 132 and greater carbon deposits on the outer side heat channel 132 to create a uniform heating element.
  • FIG. 6 is a view of an improved heating film design to accommodate features such as external pockets 136 which may exist in the application. To be effective, the heating elements must cover the entire design while accommodating an opening. Parallel resistive channels 138 may be designed into the film or u-shaped feature avoidance channels 140 are examples of solutions which address this challenge.
  • FIG. 7 is a view of a heating film design which may be used to create a three-dimensional object. The design includes side wall channels 144 which are printed on side all flaps. The side wall flaps 142 are installed into the application perpendicular to the base of the film.
  • FIG. 8 is view of a suitcase application where a single heating element is used. This approach is sufficient to eliminate pests within the suitcase when the suitcase is empty. A tilt sensor may be employed in the case where the optimum performance is dependent on the orientation of the enclosure. For this design, the heater element 210 is placed on base of the suitcase and on a wall opposite temperature monitors 204. The heater element 210 temperature may be regulated by using a sensor element 212 feeding back to a controller 206. The heater element 210 temperature may also be regulated by use of normally closed bi-metallic thermal switches. The heater element 210 may also be self-regulated using positive temperature coefficient materials within the element. Temperature monitors 204 may be monitored and report the lowest temperature to determine the end of a heating cycle or wired in series in the case of thermal switches.
  • FIG. 9 is a view of the heating element 210 when it is designed into the suitcase divider 204. This design is an improvement to placing the element in the walls of the suitcase base 200 or suitcase lid 202 as it radiates equally to both sides of the container. The suitcase divider is common in the art of suitcase design to allow a user to close the suitcase lid 202. The suitcase divider is commonly held in place by mating interface 216 such as zippers or latches. This design also illustrates using the wheels as standoffs to allows the majority of the enclosure to be surrounded by an ambient environment. Temperatures monitors are placed in the lower corners of the enclosure.
  • FIG. 10 is a close up view of a zipper and grommet which may be used to hold a suitcase in the closed position. This design allows the heating film 306 to be placed as close as possible to the zipper teeth 310 and zipper fabric 312. Heat in these locations will cause most pests to move deeper into the enclosure rather than to attempt escape. The zipper grommet 308 is commonly used to secure the zipper fabric 312 to either the suitcase base shell 300 or the suitcase lid shell 302.
  • FIG. 11 is a view of a mechanical barrier which may be used to prevent pests from climbing up the wheel and taking harborage or from egressing from a heated suitcase to a cooler point. During heated operation, the suitcase base shell 300 is designed to reach a temperature that would cause the bug to egress from the outer surfaces. The escape instinct threshold for pests such as bed bugs is reported as 108 F. If the wheel barrier 318 is designed to be sufficiently smooth, the pest would unable to escape by crawling down the wheel pivot rod 320 and taking harborage on the wheel assembly 316. The wheel pivot rod may also be made from a material which would conduct heat further making harborage on the wheel assembly 316 undesirable. The convex shape of the wheel barrier 318 would prevent pests from crawling up the wheel assembly to take harborage on the suitcase when the elements are inactive.
  • FIG. 12 is a view of a mechanical barrier which may be used to prevent pests from aking harborage on the handle 322. The handle barrier may take a convex shape as shown or simply be made of materials that are sufficiently non-porous to prevent traction by the pests.
  • FIG. 13 is a view of an enclosure which comprises an enclosure base 326 and an enclosure lid 328. While the enclosure is shown as a suitcase, it is used here to demonstrate a method to employ heat conductive elements 330 to locally raise the temperature of cool spots previously identified as non-heated area 116. The heat conductive elements 330 are arranged such that they transfer heat from the heating area 334 which is created by active elements of the heating film 332. The heat conductive elements 330 can be coupled proximate or adjacent to the heating area 334. The heat conductive element 330 can comprise a number of materials with a high thermal conductivity such as any of a heavy aluminum, copper, or alloy metal foil, biaxially-oriented polyethylene terephthalate, or the like. The heat conductive elements 330 can have several functions including: increased uniform distribution of heat generated by the heating film 332 within the heating area 334, heat transfer from the heating area 334 to other areas within the inside space of the enclosure body, additional structural support for the heating film 332, electrical isolation of the heating film 332 and associated circuitry, and contact protection of the heating film 332.
  • There are numerous items used during travel which may be sensitive to heat which may include medicines, deodorants, and such. FIG. 14 is a view of a non-heated pocket 400 which may be used to hold such materials during the heat treatment. The pocket may be on the enclosure wall 406 as shown or embedded in such that the outer flap is flush with the enclosure wall 406. An insulation layer 404 may be used to prevent heat from the heating layer 402 to permeate the contents of the non-heated pocket. Mechanical barriers may be used to prevent pests from easily accessing the pocket.
  • FIG. 15 and FIG. 16 are the detailed design of a heating tape 520 which may provide an electrical heat based barrier which may prevent pests from traversing across the barrier. The barrier is designed to have an extremely low profile thus avoiding a trip hazard and allowing easy access for devices such as hospital gurneys or wheeled medical equipment. The surface temperature should be sufficiently high to deter pests from going across, but low enough not to cause burns or be a health risk to humans. Because the width of the barrier is significantly small, the voltage across bus bar A 504 and bus bar B 506 may be low voltage thus reducing electrical hazard. The barrier layer 502 is a heat conductive material that is held at temperatures of 120 to 178 degrees Fahrenheit. The barrier layer is designed to incorporate several functions including: thermal transfer from the resistive elements 508 or IR carbon elements 510, electrical isolation, and physical protection of the active elements. The width of the barrier layer 502 may vary depending on the environment and type of pest, but is designed such that a pest crawling across the surface would instantly be exterminated. The base layer 500 should have sufficient insulation such that it may be applied to cement or tile floors. As shown in FIG. 15, the heating elements may comprise resistive elements 508 such as NiChrome wire or similar alloy, carbon based. As shown in FIG. 16, the heating elements may comprise of IR carbon elements 510 such as those used in IR film. The IR carbon elements may be printed directly on the base layer 500 or barrier layer 502. An adhesive may be applied to the base layer for ease of installation. For an alternative embodiment, the adhesive may be applied to the top of the barrier layer to heat items. The resistive elements 508 or IR Carbon Elements 510 may be regulated through the use of positive temperature coefficient materials. The power sent through the resistive elements 508 may be adjusted in manufacturing by increasing or decreasing the gap between the teeth of bus bar A and bus bar B. Because the elements in this design are parallel circuits, the overall length of the tape may be sufficiently long without affecting performance.
  • FIG. 17 is an example of how the heating tape 520 may be applied to the floor to create a protected area 522. A splice connector 512 may be used at the corners to form angles or from the incoming power supply. The installation in FIG. 17 shows a power cord 516 and step down transformer 518 to reduce the voltage. The low voltage line 514 which provides power to the heat tape 520 may be either AC or DC. While this figure illustrates the use of the heat barrier on the floor, it can equally be employed around doorways, on walls, or any surface to create a thermal barrier.
  • A temperature monitor 522, such as a thermistor, may be used to locally read the temperature of the thermal barrier. Said temperature monitor may be coupled to a microprocessor 524 to provide a closed loop control of the heat tape 520. The microprocessor 524 would limit power to the heat tape through a TRIAC or other common electrical power control circuit. Alternatively, a mechanical rheostat or other power limiting device may be used to set temperatures during installation or ongoing by the user.
  • The present technology has now been described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains, to practice the same. It is to be understood that the foregoing describes preferred embodiments and examples of the present technology and that modifications may be made therein without departing from the spirit or scope of the invention as set forth in the claims. Moreover, while particular elements, embodiments and applications of the present technology have been shown and described, it will be understood, of course, that the present technology is not limited thereto since modifications can be made by those skilled in the art without departing from the scope of the present disclosure, particularly in light of the foregoing teachings and appended claims. Moreover, it is also understood that the embodiments shown in the drawings, if any, and as described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents. Further, all references cited herein are incorporated in their entirety.

Claims (15)

1. A system for eliminating pests in connection with heatable materials, the system comprising:
 an enclosure adapted to receive heatable materials, the enclosure having an exterior portion and an interior portion, the interior portion forming an interior compartment, the interior portion including walls having an interior surface defining the interior compartment; and
 an infrared heating film integrated into the enclosure, the infrared heating film comprising a first bus bar, a second bus bar, and a plurality of side heat channels configured to provide a heating area that extends beyond the bus bars;
wherein the first bus bar and the second bus bar are define, a first exterior film space adjacent to the first bus bar, and a second exterior film space adjacent the second bus bar, and an interior film space between the first bus bar and the second bus bar,
wherein the first bus bar is split by a cut line to form a first bus component and a second bus component, and wherein the second bus bar is split by a cut line to form a third bus component and a fourth bus component, and
wherein at least one side heat channel connects the first bus component and the second bus component along a path in the first exterior film space, at least one side heat channel connects the first bus component and the third bus component along a path in the interior film space, at least one side heat channel connects the second bus component and the fourth bus component along a path in the interior film space, and at least one side heat channel connects the third bus component and the fourth bus component along a path in the second exterior film space, and
wherein the infrared heating film is operable to kill pests at all locations within interior compartment.
2. The system of claim 1, wherein the infrared heating film is integrated into at least one wall of the interior portion of the enclosure.
3. The system of claim 2, wherein the side heat channels are arranged to minimize the non-heated area in the at least one wall of the interior compartment.
4. The system of claim 1, wherein the interior portion of the enclosure comprises six walls and the heating element is integrated into all six walls of the interior portion.
5. The system of claim 1, wherein the enclosure comprises a first exterior pocket on the exterior portion of the enclosure, and wherein the infrared heating film is adapted to kill pests within the first exterior pocket.
6. The system of claim 5, wherein the enclosure comprises further comprises a second exterior pocket on the exterior portion of the enclosure, and wherein the second exterior pocket is not heated by the infrared heating film.
7. The system of claim 6, wherein the second exterior pocket comprises an insulation layer used to reduce heat from an infrared heating film from penetrating the second exterior pocket.
8. The system of claim 1, wherein the enclosure is a suitcase.
9. The system of claim 8, wherein the suitcase comprises at least one suitcase divider, and wherein the infrared heating element is located within the suitcase divider.
10. The system of claim 9, further comprising a tilt sensor to determine orientation of the enclosure.
11. A thermal barrier tape for inhibiting the self-mobility of a pest, the thermal barrier tape comprising:
 a base having an insulation layer, an upper side and a lower side, the base further comprising a heating element on the upper side of the base and an adhesive surface on the lower side of the base; and
 a barrier layer comprising a heat conductive material, the barrier layer being adapted to transfer heat from the heating element while providing electrical isolation of the heating element from an upper surface of the thermal barrier tape;
wherein the thermal barrier tape can be applied to the surface of a floor via the adhesive surface on the lower side of the base, and wherein the thermal barrier tape is operable to control the surface temperature of the barrier layer when power is applied to the thermal barrier tape.
12. The thermal barrier tape of claim 11, wherein the heating element comprises an infrared heating film, the infrared heating film comprising at least one bus bar and at least one heat channel, wherein the at least one heat channel comprises a carbon-graphite deposit.
13. The thermal barrier tape of claim 12, wherein power is delivered to the thermal barrier tape by at least one of a rheostat, a TRIAC, or a transformer, and wherein the thermal barrier tape is operable to control the surface temperature of the barrier layer between 120 and 178 degrees Fahrenheit when power is applied to the thermal barrier tape.
14. The thermal barrier tape of claim 13, wherein the thermal barrier tape has a thickness sufficiently low enough to allow wheeled hospital equipment to traverse across the barrier.
15. A method of using a thermal barrier to inhibit pest mobility within an area, the thermal barrier comprising a base having an insulation layer, a heating element on an upper side of the base and an adhesive surface on a lower side of the base, the thermal barrier also comprising a heat conductive barrier layer, the method comprising the steps of:
surrounding the area with said thermal barrier tape by securing the adhesive surface of the thermal barrier tape to a surface of the area;
applying electrical power to the barrier tape; and
controlling the surface temperature of the barrier layer of the barrier tape be between 120 and 178 degrees Fahrenheit.
US14/179,719 2011-12-12 2014-02-13 Integration of surface heating to control pests Abandoned US20150223443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/179,719 US20150223443A1 (en) 2011-12-12 2014-02-13 Integration of surface heating to control pests

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/323,521 US8689481B2 (en) 2011-12-12 2011-12-12 Integration of surface heating to an enclosure
US14/179,719 US20150223443A1 (en) 2011-12-12 2014-02-13 Integration of surface heating to control pests

Publications (1)

Publication Number Publication Date
US20150223443A1 true US20150223443A1 (en) 2015-08-13

Family

ID=48570735

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/323,521 Expired - Fee Related US8689481B2 (en) 2011-12-12 2011-12-12 Integration of surface heating to an enclosure
US14/179,719 Abandoned US20150223443A1 (en) 2011-12-12 2014-02-13 Integration of surface heating to control pests

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/323,521 Expired - Fee Related US8689481B2 (en) 2011-12-12 2011-12-12 Integration of surface heating to an enclosure

Country Status (2)

Country Link
US (2) US8689481B2 (en)
WO (1) WO2013090381A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060407A1 (en) * 2010-09-14 2012-03-15 Michael David Lindsey Heatable enclosure for pest eradication
US20150181856A1 (en) * 2013-12-31 2015-07-02 Harold Richard Mladek Device for killing insects with heat

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470178A (en) * 2009-04-20 2010-11-17 Bradenburg Method for decontaminating a mattress
US20140290124A1 (en) * 2013-03-27 2014-10-02 Christopher M. Aidan Bed Bug Elimination Systems and Methods
CN105244117B (en) * 2015-09-29 2017-05-24 无锡同创石墨烯应用科技有限公司 Preparation method of graphene-modified reinforced far infrared conductive paste
WO2017070002A1 (en) * 2015-10-19 2017-04-27 Warm Waves, Llc Method and device for treating arthropod infestations in furnishings
USD811669S1 (en) * 2016-03-11 2018-02-27 Little Big Cat, Inc. Pet toy marinator
CN107484740A (en) * 2017-09-26 2017-12-19 张东海 A kind of electric heating except mite device and its application method
CN112572956A (en) * 2020-12-21 2021-03-30 海安中纺院纤维新材料科技有限公司 Bedding storage appliance with heating, dehumidifying and mite-killing functions
USD1021032S1 (en) * 2021-12-28 2024-04-02 Shin-Etsu Polymer Co., Ltd. Heat conducting unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225608B1 (en) * 1999-11-30 2001-05-01 White Consolidated Industries, Inc. Circular film heater
US20110012726A1 (en) * 2007-11-09 2011-01-20 Gordon Jessiman Alarm device for the protection of property
US20110289825A1 (en) * 2009-02-23 2011-12-01 Nuvenco, Llc Pest eradication device
US20110315672A1 (en) * 2010-02-02 2011-12-29 Saunatec Inc. Infrared Heating Panels, Systems and Methods

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063068A (en) 1976-08-12 1977-12-13 Minnesota Mining And Manufacturing Company Food heating and cooking receptacle
GB2077958B (en) * 1980-06-07 1984-03-28 Scortech Mech Ltd Temperature control apparatus for animal houses
US4916290A (en) 1987-07-27 1990-04-10 Hawkins Junior F Portable oven and an improved method for heating food
US5961869A (en) 1995-11-13 1999-10-05 Irgens; O. Stephan Electrically insulated adhesive-coated heating element
US6108489A (en) 1997-10-17 2000-08-22 Phase Change Laboratories, Inc. Food warning device containing a rechargeable phase change material
US6142974A (en) 1998-09-18 2000-11-07 Estill Medical Technologies, Incorporated Portable I.V. fluid warming system
WO2000057709A1 (en) 1999-03-31 2000-10-05 Duke Manufacturing Company Holding or cooking oven
US6337080B1 (en) * 1999-12-21 2002-01-08 S. C. Johnson & Son, Inc. Insect control mat
DE10001035A1 (en) * 2000-01-13 2001-07-26 Bayer Ag Active ingredient chip with integrated heating element
US7880121B2 (en) 2005-02-17 2011-02-01 David Naylor Modular radiant heating apparatus
US20080115406A1 (en) * 2006-11-16 2008-05-22 Duston Tyler D Insect control tape
US8966812B2 (en) * 2007-12-06 2015-03-03 Susan Mcknight, Inc. Trap for bed bugs and the like
US9686973B2 (en) * 2007-12-11 2017-06-27 Biosensory, Inc. Methods, apparatus and compositions for abatement of bedbugs
GB2493474B (en) * 2008-05-06 2013-04-03 Susan Mcknight Inc Crawling anthropod intercepting device and method
US20110308139A1 (en) 2009-02-23 2011-12-22 Nuvenco Ip, Llc Pest eradication system
US8693855B2 (en) 2009-05-07 2014-04-08 Cambridge Engineering, Inc Infra-red heater assembly
US20110113674A1 (en) 2009-10-28 2011-05-19 Th, Inc. Inhibiting Pest Infestation
WO2011100297A2 (en) 2010-02-09 2011-08-18 Cambridge Engineering, Inc. Device for indicating eradication of a pest infestation
US9326498B2 (en) 2010-09-14 2016-05-03 JAB Distributors, LLC Heatable enclosure for pest eradication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225608B1 (en) * 1999-11-30 2001-05-01 White Consolidated Industries, Inc. Circular film heater
US20110012726A1 (en) * 2007-11-09 2011-01-20 Gordon Jessiman Alarm device for the protection of property
US20110289825A1 (en) * 2009-02-23 2011-12-01 Nuvenco, Llc Pest eradication device
US20110315672A1 (en) * 2010-02-02 2011-12-29 Saunatec Inc. Infrared Heating Panels, Systems and Methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060407A1 (en) * 2010-09-14 2012-03-15 Michael David Lindsey Heatable enclosure for pest eradication
US20150237843A1 (en) * 2010-09-14 2015-08-27 Buzzkill, Llc Heatable enclosure for pest eradication
US9326498B2 (en) * 2010-09-14 2016-05-03 JAB Distributors, LLC Heatable enclosure for pest eradication
US20150181856A1 (en) * 2013-12-31 2015-07-02 Harold Richard Mladek Device for killing insects with heat
US20150181857A1 (en) * 2013-12-31 2015-07-02 Harold Richard Mladek Heating system for a device for killing insects
US9532561B2 (en) * 2013-12-31 2017-01-03 Harold Richard Mladek Device for killing insects with heat

Also Published As

Publication number Publication date
WO2013090381A3 (en) 2015-06-11
US8689481B2 (en) 2014-04-08
WO2013090381A2 (en) 2013-06-20
US20130145681A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
US8689481B2 (en) Integration of surface heating to an enclosure
US9326498B2 (en) Heatable enclosure for pest eradication
US11122781B2 (en) Heater-equipped man-made beehive, and method for controlling invasive pests in a man-made beehive
US10358276B2 (en) Warming box
US9609857B2 (en) Device and method for pest control
US9596944B2 (en) Integration of distributed thermoelectric heating and cooling
US6331695B1 (en) Thermal warming blanket for patient temperature management
US9648861B2 (en) Device for killing bed bugs
US9532561B2 (en) Device for killing insects with heat
US20150052800A1 (en) Parasite elimination system and method
DE112011100220T5 (en) Method and device for active patient warming
CA2811200A1 (en) Insect extermination system
US20110186558A1 (en) Heating device having hanging portion
US20100212088A1 (en) Method and apparatus for alleviating insect infestation in bedding
WO2020111609A1 (en) Pet house
GB2591082A (en) Heated stretcher
KR200324734Y1 (en) electrically heating mat for pet
CN211410105U (en) Portable tablet fumigation device
US20240366441A1 (en) Heated stretcher
JP2011212079A (en) Heating implement for merchandise mounted on display shelf
US20210120777A1 (en) Electric heating mat system
AU2004100116A4 (en) Portable heating article
JPS63291527A (en) Device for killing vermin such as mite
JP2001231691A (en) Thermally insulating panel and insulated container
GB2290232A (en) Heated body and back support

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION