[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20150216277A1 - Collapsible Hard Case for Surfboards and Other Large Objects - Google Patents

Collapsible Hard Case for Surfboards and Other Large Objects Download PDF

Info

Publication number
US20150216277A1
US20150216277A1 US14/684,734 US201514684734A US2015216277A1 US 20150216277 A1 US20150216277 A1 US 20150216277A1 US 201514684734 A US201514684734 A US 201514684734A US 2015216277 A1 US2015216277 A1 US 2015216277A1
Authority
US
United States
Prior art keywords
lock
subsection
case
latch
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/684,734
Inventor
David A. Boyles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/462,216 external-priority patent/US8066138B2/en
Priority claimed from US13/224,904 external-priority patent/US8381930B2/en
Priority claimed from US14/195,501 external-priority patent/US9010559B2/en
Application filed by Individual filed Critical Individual
Priority to US14/684,734 priority Critical patent/US20150216277A1/en
Publication of US20150216277A1 publication Critical patent/US20150216277A1/en
Priority to US15/865,910 priority patent/US11154124B2/en
Priority to US17/507,273 priority patent/US11617426B2/en
Priority to US18/119,038 priority patent/US20230218054A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C7/00Collapsible or extensible purses, luggage, bags or the like
    • A45C7/0018Rigid or semi-rigid luggage
    • A45C7/0022Rigid or semi-rigid luggage comprising an integrated expansion device
    • A45C7/0031Rigid or semi-rigid luggage comprising an integrated expansion device telescopic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K97/00Accessories for angling
    • A01K97/08Containers for rods
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C13/00Details; Accessories
    • A45C13/002Protective covers
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C13/00Details; Accessories
    • A45C13/10Arrangement of fasteners
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C11/00Accessories for skiing or snowboarding
    • A63C11/02Devices for stretching, clamping or pressing skis or snowboards for transportation or storage
    • A63C11/023Carrying-devices
    • A63C11/025Carrying-devices for skis or ski-sticks
    • A63C11/026Carrying-devices for skis or ski-sticks on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B32/00Water sports boards; Accessories therefor
    • B63B32/80Arrangements specially adapted for stowing or transporting water sports boards
    • B63B32/87Arrangements specially adapted for stowing or transporting water sports boards for carrying, e.g. board bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D21/00Nestable, stackable or joinable containers; Containers of variable capacity
    • B65D21/08Containers of variable capacity
    • B65D21/086Collapsible or telescopic containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41CSMALLARMS, e.g. PISTOLS, RIFLES; ACCESSORIES THEREFOR
    • F41C33/00Means for wearing or carrying smallarms
    • F41C33/06Containers for carrying smallarms, e.g. safety boxes, gun cases
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10GREPRESENTATION OF MUSIC; RECORDING MUSIC IN NOTATION FORM; ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR, e.g. SUPPORTS
    • G10G7/00Other auxiliary devices or accessories, e.g. conductors' batons or separate holders for resin or strings
    • G10G7/005Carrying cases for musical instruments
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C7/00Collapsible or extensible purses, luggage, bags or the like
    • A45C7/0018Rigid or semi-rigid luggage
    • A45C7/0036Rigid or semi-rigid luggage collapsible to a minimal configuration, e.g. for storage purposes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2210/00Space saving
    • A63B2210/50Size reducing arrangements for stowing or transport
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B55/00Bags for golf clubs; Stands for golf clubs for use on the course; Wheeled carriers specially adapted for golf bags
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0093Training appliances or apparatus for special sports for surfing, i.e. without a sail; for skate or snow boarding
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/0036Accessories for stowing, putting away or transporting exercise apparatus or sports equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32254Lockable at fixed position
    • Y10T403/32467Telescoping members

Definitions

  • the present invention relates generally to travel cases or containers, and more particularly to a collapsible hard case for protectively transporting a large object.
  • containers for shipment of large objects are large and bulky. Upon safe transport of the surfboard then, the container must be stored in a correspondingly large space.
  • Surfboards often range in length from 6-10 feet, in width between about 2-3 feet, and in depth about 3 inches.
  • One commercially available surfboard case offered at the time of the present invention is by Santa Monica Hard Case in California, USA. While this product provides a protective case for surfboards, it is formed of a flexible plastic that leaves the boards vulnerable to damage during transport or shipment. Also, it has limited size options and features. Furthermore, this case does not collapse into itself.
  • a first aspect of the present invention is to provide a collapsible protective case for large objects.
  • the protective case includes at least one extension lock configured for locking the case in a fully expanded position for completely protectively and removably containing the large object, and to be alternatively collapsed to a collapsed position when not in use
  • a second aspect of the present invention is to provide an extension lock with a lock housing and a compression latch.
  • the compression latch has a compressive component configured to descend out of the lock housing and compressingly lock the case in an extended position and to ascend into the housing when unlocked, allowing the case to telescope into a compacted configuration.
  • FIG. 1 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention.
  • FIG. 2 illustrates an end view of the case shown in FIG. 1 in a collapsed position according to one embodiment of the present invention.
  • FIG. 3 illustrates a side view of another embodiment of the present invention.
  • FIG. 4 illustrates an end view of another embodiment of the present invention.
  • FIG. 5 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention.
  • FIG. 6 illustrates a subsection having a case handle according to one embodiment of the invention.
  • FIG. 7 illustrates a subsection having a boss according to one embodiment of the invention.
  • FIG. 8 illustrates a front view of a protective case in an intermediate position and having an insert according to one embodiment of the invention.
  • FIG. 9 illustrates a perspective view of a protective case according to one embodiment of the invention with two lock housings for two extension locks visible.
  • FIG. 10 illustrates a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 11A illustrates a top view of a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 11B illustrates a cross-sectional side of the lock housing and the lock handle of FIG. 11A along plane A-A.
  • FIG. 12 illustrates a perspective view of a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 13 illustrates a perspective line drawing of a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 14 illustrates a bottom view of a cam latch according to one embodiment of the invention.
  • FIG. 15A illustrates a side view of an extension lock according to one embodiment of the invention in the unlocked position.
  • FIG. 15B illustrates a side view of an extension lock according to one embodiment of the invention in the locked position.
  • FIG. 16A illustrates a joint according to one embodiment of the invention.
  • FIG. 16B is a magnification of area B of FIG. 16A showing a joint according to one embodiment of the invention.
  • FIG. 17 illustrates the internal ribbing according to one embodiment of the invention.
  • FIG. 18 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention.
  • FIG. 19 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention.
  • FIG. 20 is an illustration of an embodiment with the wheels positioned to stabilize the case when extended.
  • FIG. 21 is an illustration of an embodiment with the wheels positioned to mobilize the case when compacted.
  • the present invention provides a protective case for large objects constructed and configured to be used in expanded, intermediate and collapsed positions for completely protectively containing the object when housed, and to be alternatively configured in a collapsed position for storage of the case when not in use, i.e., when the object is not stored therewithin. More particularly, the present invention includes a collapsible protective case for large objects with a housing having a rigid, impact-resistant outer surface, the housing being formed from a multiplicity of adjoining sections that are selectively configurable between expanded, intermediate and collapsed positions.
  • the rigid, impact-resistance outer surface is formed from a hard plastic or composite material that is sufficiently thick to prevent puncture or tearing and resist pressure, flexing or deformation, such that the object contained completely within the housing is protected from external forces. Varying dimensions of the outer surface depend on the object or objects being stored, the transportation conditions, and the amount of protection desired.
  • the hard plastic shell is between 1/32 and 1 ⁇ 4 inches thick, preferably about 3/32 inches thick.
  • the housing is preferably formed from two mating sections A and B for completely encasing the object or objects from either end. Sections A and B are releasably connectable and lockable at the adjoining edges that form the middle of the housing. In one embodiment, the two separated sections A and B are approximately equal in size and dimensions. As shown in FIG. 1 , with the exception of the wheels 10 and end case handle 7 , the housing is preferably symmetrical about the long axis Y and about the short axis X, in order to improve the balance of the housing in each position.
  • FIGS. 1 and 3 illustrate each of the two sections A and B being further comprised of subsections or cells ( 1 A- 5 A, 1 B- 5 B, 31 A- 33 A and 31 B- 33 B) that are constructed and configured to be juxtapositioned in the extended position.
  • innermost subsections 1 A/B and 31 A/B have larger dimensions that outermost end subsections 5 A/B and 33 A/B.
  • these subsections collapse into each other substantially concentrically as illustrated in FIG. 2 .
  • the housing of the present invention can conveniently be stored in a compact position, as illustrated by FIG. 3 .
  • each of the subsections is arranged so that the end-most subsections 5 A/B and 33 A/B collapse into the larger middle subsections 1 A/B and 31 A/B.
  • the intermediate subsections 2 - 4 A/B and 32 A/B collapse between end-most subsections 5 A/B and 33 A/B and middle subsections 1 A/B and 31 A/B as shown in FIGS. 2 and 3 .
  • sections A and B align longitudinally along the board length along track 12 , which provides a notch and lock system providing a releasable securement of the subsections with respect to each other to form the rigid housing.
  • Section A is releasably fastenable to the section B by a plurality of latches 6 .
  • latches 6 are provided, as depicted in FIG. 1 .
  • two latches 6 one mirrored on each of two sides of the housing suffice.
  • any number of latches 6 are positioned on subsection 1 A or 31 A with corresponding latch receptors 13 on subsection 1 B or 31 B.
  • the latches 6 can be positioned on the exterior or interior of the housing or both, and optionally include a key or code locking mechanism.
  • a carrying case handle 11 is attached to a side of the case for easier carrying, but is strategically placed to function as a releasable attaching latch for connecting the sections A and B.
  • wheels 10 are positioned on one section and a roller case handle 10 on the other section for easier transport of the case and object assembly.
  • a roof rack system 9 attached to one of the intermediate subsections 2 A- 4 A and mirrored on one of the juxtaposed subsections 2 B- 4 B is provided.
  • a lining 403 configured and positioned within the interior of the housing may be provided for additional protection and impact resistance for the large object(s).
  • the lining may include an impact-absorbing or cushioning lining, such as foam, rubber or a coating, and may be affixed to the inner surface of at least one or all of the housing subsections or may be removably affixed to the one or more subsections.
  • a protective flexible inner sleeve 404 may be used within the protective case; by way of example and not limitation, it may be independent of the housing and applied around the surfboard before the sleeve-wrapped board is inserted into the case.
  • the lining 403 and/or sleeve 404 dimensions are configured to provide flexibility in accommodating large object(s) of varying sizes and dimensions.
  • the sleeve may be at least substantially waterproof, thereby providing protection to the lining, which may be susceptible to mold or rot, or, alternatively the lining may be at least substantially resistance to wear and tear, thereby minimizing damage to the lining.
  • the lining and/or sleeve itself may provide similar functionality, thereby minimizing similar damage to the housing.
  • the surfboard would first be inserted into the sleeve and then the nose of the surfboard is slidingly placed into the block J at the end of subsection 5 A while section A of the case is in a collapsed or intermediate position. Then the surfboard is pushed into the case, and the subsections 2 A- 5 A are extended towards an expanded or intermediate position. Then the tail end of the surfboard is slidingly placed into the block K at the end of subsection 5 B while section B of the case is in a collapsed or intermediate position.
  • Sections 2 B- 5 B are then extended towards an expanded or intermediate position, thereby covering the remaining portion of the board not covered by section A.
  • Sections A and B are attached by placing the latches 6 into a closed position (or releasably locked position).
  • the carrying case handle is additionally closed or releasably locked using latch 11 .
  • FIG. 3 illustrates side and end views of another embodiment according to the present invention; more specifically, it shows the collapsible case in both extended and collapsed positions from a side view (extended position) and end view (collapsed position).
  • two equal sections A and B are shown, these sections being further divided into subsections 1 - 3 A/B.
  • Subsection 3 A/B collapses into subsection 2 A/B and both subsections 2 A/B and 3 A/B collapse into subsection 1 A/B.
  • These subsections collapse along a track 12 to ensure the subsections collapse and extend with ease, while the track 12 also provides rigidity.
  • the segments fit snugly inside each other to provide rigidity and therefore do not require a track.
  • Latches 6 secure sections A and B to each other.
  • a wheel mechanism 10 is used to roll the case and case handle 7 is used for pulling or carrying the case.
  • some of the sections or subsections are removable or insertable, allowing the case to be lengthened and shortened, thereby providing maximum size flexibility.
  • FIG. 4 illustrates another embodiment of the present invention, wherein at least one strap 401 is attached to bosses 402 located on the exterior of the housing sections A and B.
  • Each strap is attached to the case with a securement mechanism, the securement mechanism preferably being a strap attachment boss 402 , as depicted in FIG. 4 .
  • the strap attachment boss may be a separate piece connected to the case or integral to the outer housing manufacture.
  • the boss 402 may be an integral feature of an injection molded section 401 - 402 A/B, as depicted in FIG. 6 .
  • the strap and boss design is capable of being mirrored or duplicated on one or more other sides or sections.
  • One embodiment of mirrored bosses is depicted in FIG. 4 .
  • the strap is comprised of any suitable material or fabric, such that the weight of the case and enclosed object(s) are capable of being lifted from a resting position without risk of tear or breakage.
  • four bosses 402 and two straps 401 are included in the case design, as depicted in FIG. 4 .
  • a strap is positioned and secured between two bosses, the two bosses equally positioned from the apex 406 of the case.
  • the strap is adjustable in length through the boss, such that the slack of the strap may be configured to the particular user and situation.
  • a hook-and-loop-type fastener is provided as a means of releasably attaching one end of a strap to a portion of the strap body for securing the strap in a fixed position.
  • a first boss may house a retractable cord mechanism and the other boss, being mirrored in a position across the apex on the same housing side, may house a releasable attachment mechanism.
  • the retractable cord mechanism may be similar to the mechanisms described in U.S. Pat. No. 8,096,740 by inventors Parker, et al., U.S. Pat. No. 6,053,381 by inventors Fahl, et al. or U.S. Publication 2011/126778 by inventor Lucy Mitchell, each of which is incorporated by reference herein in its entirety, such that the excess strap remains housed within the boss and is lockable in a multiplicity of lengths.
  • the releasable attachment mechanism may be a selectably releasable clasp.
  • the strap can be adjusted to give greater slack, so that the user-transporter can place the strap over the shoulder.
  • the strap can be tightened to remove any excess slack, allowing the user-transporter to carry the case by placing the strap within the grip of a hand instead of over the shoulder.
  • the strap is adjustable to any length in any of the expanded, intermediate or collapsed positions, such that the case may be carried over the shoulder, with the hand, or attachable to another system, such as to a rack or over a hook.
  • the strap can be configured to act as a restraining strap around the case, thereby preventing the case from accidentally expanding.
  • the method of attaching the case to the rack includes steps of: disengaging one side of the strap from one boss, placing the case on the rack with the disengaged strap side of the housing facing down, looping the strap from the remaining attached boss around the rack, reengaging the strap to the disengaged boss, and firmly tightening the strap.
  • FIG. 5 illustrates another embodiment of the present invention, wherein a case handle 501 is affixed to at least one section of the case to aid in transportation.
  • the case handle is centered on the case, section and/or subsection.
  • the case handle is riveted to the case, as depicted in FIG. 5 .
  • the case handle 501 is comprised of a metal, a metal encased in rubber, or any other suitable material.
  • the strap attachment boss 402 serves at least two purposes: (1) a securement mechanism for the strap, and (2) an anti-rocking mechanism for the case when in a resting position.
  • the collapsible and adjoining sections create a substantially diamond-shaped silhouette when the case is viewed from the side. Because the center of the case has the greatest height at the apex, when the case is in a resting position it may have a tendency to tilt to one end or the other.
  • a pair of strap attachment bosses 402 individually depicted in FIG. 6 , when positioned on the bottom of the case, prevents the case from tilting or rocking in either direction. This advantageous feature provides stability and reduces the risk of injury or damage.
  • each section is about half the length of a surfboard but slightly larger to properly and protectively secure the surfboard therein when combined together.
  • the sections and subsections may remain symmetrical and either (1) inserts are provided and/or (2) the housing is configured in one of the intermediate positions to compensate for the asymmetry of the object(s) and provide protection to the object(s).
  • inserts are provided, at least one insert is placed in a subsection of section A or B or both.
  • the large object(s) are less likely to move within the housing during transport, thereby minimizing damage or disorganization of the object(s).
  • FIG. 7 illustrates an embodiment having an insert and configuring a subsection into an intermediate position to provide a better fit for the object(s), in this case golf clubs.
  • Subsection 41 A is configured into intermediate position 701 so as to remove any excess volume from the interior of the housing when the golf clubs are housed therewithin.
  • golf club insert 702 is placed within subsection 41 B to provide a tighter fit within this subsection, thereby minimizing the movement of the clubs during transport.
  • any number of designs and configurations could be included as an insert in order to contain portions of a housed large object(s).
  • the case includes a housing having a rigid, impact-resistant outer surface, the housing being formed from two equal halves, each half having a multiplicity of adjoining sections that are selectively configurable between an expanded transport position and a collapsed storage position; the housing being symmetrical about the long axis and about the short axis.
  • the housing halves have equal number of adjoining sections and the housing halves are symmetrical when in an expanded or collapsed position.
  • FIG. 9 shows a perspective view of a protective case with two extension locks 800 .
  • FIGS. 10 , 11 A and 11 B and 12 show a preferred embodiment of a lock housing 810 and lock handle 815 for an extension lock 800 .
  • FIG. 13 shows a cut-away view of the extension lock 800 .
  • the extension lock is located on the distal end of a first subsection (away from the X axis, see FIG. 8 ) and is configured for locking the first subsection to a second subsection internal to the first subsection in an extended position.
  • the extension lock, generally described as 800 includes a lock housing 810 and a compression latch 820 .
  • the lock housing includes a screw-threaded channel 812 .
  • the compression latch 820 includes a screw-threaded shaft 822 with a compressive component 824 on the internal end and a lock handle 815 on the external end.
  • the screw-threaded shaft is configured to matingly engage with the screw-threaded channel of the lock housing.
  • the compressive component is a cam and the compression latch is a cam latch.
  • FIG. 14 shows a bottom view of a cam latch 820 with the cam 824 and part of the lock handle 815 visible.
  • the eccentric portion 825 of the cam is in the locked position against the internal subsection lip 830 .
  • FIG. 14 also shows the locking and unlocking direction of rotation for a right-handed lock.
  • the eccentric surface profile becomes flat in the last 10-15 degrees of handle rotation, allowing it to engage the internal subsection lip across a wider area and increasing the force necessary to rotate the lock handle away from engagement.
  • the cam includes an apex 823 , which is the termination of the flat section 827 . The dimensions of the cam are such that the cam can rise into the channel upon unlocking rotation.
  • FIGS. 15A and 15B are cut-away side views of the extension lock installed.
  • FIG. 15A shows the extension lock in an unlocked configuration.
  • FIG. 15B shows the extension lock in a locked configuration.
  • This embodiment shows a screw-threaded shaft 822 with lock handle 815 on the exterior end and cam 824 on the interior end with eccentric section 825 and depth 826 .
  • the cam and eccentric section rotates about the axis of the lock handle and screw-threaded shaft.
  • the eccentric section progressively engages the proximal end of the internal subsection, progressively forcing the internal subsection distally into the extended position until the internal and external subsection lips engage.
  • the lock handle is preferably rotated about 180 degrees to fully engage the eccentric portion with the internal subsection lip.
  • the cam latch is configured to descend in the lock housing (towards the Y-axis, see FIG. 8 ) and lock the internal subsection in an extended position upon rotation between about 180 degrees and about 270 degrees.
  • the cam moves between locked and unlocked positions with about 180 degree rotation.
  • the depth of the cam 826 is designed, constructed and configured such that it will move between locked and unlocked positions with the appropriate amount of rotation.
  • the depth of the cam is approximately equal to about 1 ⁇ 2 the lead of the shaft screw-thread, such that the cam will completely move into and out of the lock housing upon about 180 degree rotation.
  • the depth of the cam is about 3 ⁇ 4 the lead of the shaft screw-thread, such that it will move between locked and unlocked positions upon about 270 degree rotation.
  • the locking occurs through the engagement of the internal subsection lip 830 with external subsection lip 832 at the point of engagement 833 .
  • the engagement prevents inward travel of the internal section.
  • the cam latch is also configured to ascend in the lock housing upon 180 degree unlocking rotation of the cam latch.
  • the cam 825 is configured to move completely into the lock housing with unlocking rotation between about 180 degrees and about 270 degrees, such that the internal subsections can telescope into the external subsection and are not obstructed by the cam when the extension lock is in the unlocked position.
  • the cam and/or cam latch are preferably made of an impact and abrasion resistant material, preferably a metal or toughened plastic; and the surfaces of the internal subsection that contact the cam are preferably lined with an impact and abrasion-resistant material, preferably a metal or a filled/toughened plastic.
  • FIG. 16A and 16B also show the engagement of two subsection.
  • FIG. 16B is a detailed view of area “B” of FIG. 16A , showing the engaged internal 830 and external 832 subsection lips.
  • the present invention preferably includes rib reinforcements. These are transverse ribs 840 (parallel to the X-axis) and longitudinal ribs 841 (parallel to the Y-axis), as shown in FIG. 17 .
  • the rib reinforcements preferably increase the bending moment of the flat panel sections of the case, thereby increasing their bending stiffness. These ribs also assist in distributing forces acting at the extension lock into the skin of the subsection.
  • FIGS. 18 and 19 are color-coded images showing the stress distribution as a result of an applied load at the case segment lock.
  • the force applied on an extended case subsection is transmitted into the inboard case subsection by bearing on the cam mechanism. This load is in turn transmitted into the lock housing of the cam mechanism.
  • the tapered shape of the lock housing slowly distributes load into the skin and ribs of the case subsection. A measured distribution of load into the relatively thin skin of the case is desired so as not to overstress the material locally.
  • the wheels are optionally strategically placed so that they stabilize the case.
  • the bottom of the wheels are level with the side of the case its apex 406 when fully extended so that there are 3 points of rest, thus stabilizing the case when lying extended on the side.
  • the wheels can additionally be spaced widely to advantageously act as stabilizers when the case is lying flat and extended.
  • the wheels limit the compaction of the case, such that the end segment still telescopes in but does not go all the way inside.
  • the compacted case can be moved around on the wheels, facilitating moving the case when compacted.
  • the wheels act as a hard stop to compressing the case and in a preferred embodiment a strap is used to tie the case closed for storage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Purses, Travelling Bags, Baskets, Or Suitcases (AREA)

Abstract

A protective case for large objects including a lock housing formed from a first section and a second section, both of the sections including at least one external subsection and at least one internal subsection configured to telescope inside the external subsection; and an extension lock comprising a lock housing and a compression lock, the lock housing including a screw-threaded channel, and the compression comprising at least one screw-threaded shaft with a compressive component on the interior end and a lock handle on the exterior end, the screw-threaded shaft configured to matingly engage with the screw-threaded channel of the lock housing; the compression lock configured to descend in the lock housing and compressingly lock the internal subsection in an extended position upon locking rotation of the compression lock; and the compression lock configure to ascend in the lock housing upon unlocking rotation of the cam latch.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of application Ser. No. 14/195,501, filed Mar. 3, 2014, which is a continuation-in-part of application Ser. No. 13/748,356, filed Jan. 23, 2013, which is a continuation of application Ser. No. 13/224,904, filed Sep. 2, 2011, which is a continuation-in-part of application Ser. No. 12/462,216, filed Jul. 31, 2009, which claims the benefit of U.S. Provisional Application No. 61/137,560, filed Jul. 31, 2008, each of which is in incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to travel cases or containers, and more particularly to a collapsible hard case for protectively transporting a large object.
  • 2. Description of the Prior Art
  • Protective travel cases are generally known. By way of example, U.S. Publication 2004/0232016 provides a telescoping hard case for carrying a golf bag and U.S. Pat. No. 3,628,655 discloses a sectional, convertible wig case.
  • In particular, regarding surfboards, typically surfers travel to remote destinations for participating in the sport, especially for competitions, vacations, etc. Additionally, boards are shipped from manufacturers to distributors, retailers and customers using an archaic, damage prone method of cardboard, bubble wrap and duct tape packaging. There are currently no convenient methods for shipping such boards. Problematically, shipment of surfboards or transport in air cargo damages the board surface and introduces structural stresses that the boards were not designed to be exposed to. In many cases, incidental damage to boards during travel and/or transportation can functionally ruin a surfboard. In a specific circumstance, applicant's surfboard was destroyed by a baggage handler in airline transport to Hawaii from the continental US. Since boards are expensive and surfers typically prefer to use their own board rather than generic boards, especially for more advanced surfers and professionals in competition, there has been a need to provide a protective shipping case or container for surfboards.
  • Typically, however, containers for shipment of large objects, such as the size of a surfboard, are large and bulky. Upon safe transport of the surfboard then, the container must be stored in a correspondingly large space. Surfboards often range in length from 6-10 feet, in width between about 2-3 feet, and in depth about 3 inches.
  • One commercially available surfboard case offered at the time of the present invention is by Santa Monica Hard Case in California, USA. While this product provides a protective case for surfboards, it is formed of a flexible plastic that leaves the boards vulnerable to damage during transport or shipment. Also, it has limited size options and features. Furthermore, this case does not collapse into itself.
  • Thus there remains a need for a protective case for surfboards that also provides for convenient storage when not in use and for ease of transport when carried.
  • SUMMARY OF THE INVENTION
  • A first aspect of the present invention is to provide a collapsible protective case for large objects. The protective case includes at least one extension lock configured for locking the case in a fully expanded position for completely protectively and removably containing the large object, and to be alternatively collapsed to a collapsed position when not in use
  • A second aspect of the present invention is to provide an extension lock with a lock housing and a compression latch. The compression latch has a compressive component configured to descend out of the lock housing and compressingly lock the case in an extended position and to ascend into the housing when unlocked, allowing the case to telescope into a compacted configuration.
  • These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment when considered with the drawings, as they support the claimed invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention.
  • FIG. 2 illustrates an end view of the case shown in FIG. 1 in a collapsed position according to one embodiment of the present invention.
  • FIG. 3 illustrates a side view of another embodiment of the present invention.
  • FIG. 4 illustrates an end view of another embodiment of the present invention.
  • FIG. 5 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention.
  • FIG. 6 illustrates a subsection having a case handle according to one embodiment of the invention.
  • FIG. 7 illustrates a subsection having a boss according to one embodiment of the invention.
  • FIG. 8 illustrates a front view of a protective case in an intermediate position and having an insert according to one embodiment of the invention.
  • FIG. 9 illustrates a perspective view of a protective case according to one embodiment of the invention with two lock housings for two extension locks visible.
  • FIG. 10 illustrates a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 11A illustrates a top view of a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 11B illustrates a cross-sectional side of the lock housing and the lock handle of FIG. 11A along plane A-A.
  • FIG. 12 illustrates a perspective view of a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 13 illustrates a perspective line drawing of a lock housing and a lock handle according to one embodiment of the invention.
  • FIG. 14 illustrates a bottom view of a cam latch according to one embodiment of the invention.
  • FIG. 15A illustrates a side view of an extension lock according to one embodiment of the invention in the unlocked position.
  • FIG. 15B illustrates a side view of an extension lock according to one embodiment of the invention in the locked position.
  • FIG. 16A illustrates a joint according to one embodiment of the invention.
  • FIG. 16B is a magnification of area B of FIG. 16A showing a joint according to one embodiment of the invention.
  • FIG. 17 illustrates the internal ribbing according to one embodiment of the invention.
  • FIG. 18 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention.
  • FIG. 19 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention.
  • FIG. 20 is an illustration of an embodiment with the wheels positioned to stabilize the case when extended.
  • FIG. 21 is an illustration of an embodiment with the wheels positioned to mobilize the case when compacted.
  • DETAILED DESCRIPTION
  • Referring now to the drawings in general, the illustrations are for the purpose of describing preferred embodiments of the invention and are not intended to limit the invention thereto.
  • The present invention provides a protective case for large objects constructed and configured to be used in expanded, intermediate and collapsed positions for completely protectively containing the object when housed, and to be alternatively configured in a collapsed position for storage of the case when not in use, i.e., when the object is not stored therewithin. More particularly, the present invention includes a collapsible protective case for large objects with a housing having a rigid, impact-resistant outer surface, the housing being formed from a multiplicity of adjoining sections that are selectively configurable between expanded, intermediate and collapsed positions.
  • Preferably, the rigid, impact-resistance outer surface is formed from a hard plastic or composite material that is sufficiently thick to prevent puncture or tearing and resist pressure, flexing or deformation, such that the object contained completely within the housing is protected from external forces. Varying dimensions of the outer surface depend on the object or objects being stored, the transportation conditions, and the amount of protection desired. In one embodiment, the hard plastic shell is between 1/32 and ¼ inches thick, preferably about 3/32 inches thick.
  • In one embodiment, illustrated by FIGS. 1-3, the housing is preferably formed from two mating sections A and B for completely encasing the object or objects from either end. Sections A and B are releasably connectable and lockable at the adjoining edges that form the middle of the housing. In one embodiment, the two separated sections A and B are approximately equal in size and dimensions. As shown in FIG. 1, with the exception of the wheels 10 and end case handle 7, the housing is preferably symmetrical about the long axis Y and about the short axis X, in order to improve the balance of the housing in each position.
  • FIGS. 1 and 3 illustrate each of the two sections A and B being further comprised of subsections or cells (1A-5A, 1B-5B, 31A-33A and 31B-33B) that are constructed and configured to be juxtapositioned in the extended position. As illustrated in the FIGS. 1 and 3, innermost subsections 1A/B and 31A/B have larger dimensions that outermost end subsections 5A/B and 33A/B. When not being used for protectively encasing an object, these subsections collapse into each other substantially concentrically as illustrated in FIG. 2. In the collapsed position of FIG. 2, the housing of the present invention can conveniently be stored in a compact position, as illustrated by FIG. 3. In a preferred embodiment, each of the subsections is arranged so that the end-most subsections 5A/B and 33A/B collapse into the larger middle subsections 1A/B and 31A/B. Correspondingly, the intermediate subsections 2-4A/B and 32A/B collapse between end-most subsections 5A/B and 33A/B and middle subsections 1A/B and 31A/B as shown in FIGS. 2 and 3.
  • Referring to FIG. 1, sections A and B align longitudinally along the board length along track 12, which provides a notch and lock system providing a releasable securement of the subsections with respect to each other to form the rigid housing. Section A is releasably fastenable to the section B by a plurality of latches 6. In one embodiment, four latches are provided, as depicted in FIG. 1. Alternatively, two latches 6, one mirrored on each of two sides of the housing suffice. Alternatively, any number of latches 6 are positioned on subsection 1A or 31A with corresponding latch receptors 13 on subsection 1B or 31B. In any embodiment the latches 6 can be positioned on the exterior or interior of the housing or both, and optionally include a key or code locking mechanism.
  • In one embodiment, a carrying case handle 11 is attached to a side of the case for easier carrying, but is strategically placed to function as a releasable attaching latch for connecting the sections A and B. Optionally and additionally, wheels 10 are positioned on one section and a roller case handle 10 on the other section for easier transport of the case and object assembly. Also, optionally, a roof rack system 9 attached to one of the intermediate subsections 2A-4A and mirrored on one of the juxtaposed subsections 2B-4B is provided.
  • In one embodiment a lining 403 configured and positioned within the interior of the housing may be provided for additional protection and impact resistance for the large object(s). The lining may include an impact-absorbing or cushioning lining, such as foam, rubber or a coating, and may be affixed to the inner surface of at least one or all of the housing subsections or may be removably affixed to the one or more subsections. Optionally and alternatively, a protective flexible inner sleeve 404 may be used within the protective case; by way of example and not limitation, it may be independent of the housing and applied around the surfboard before the sleeve-wrapped board is inserted into the case. Preferably, the lining 403 and/or sleeve 404 dimensions are configured to provide flexibility in accommodating large object(s) of varying sizes and dimensions. Additionally, in an embodiment wherein both a lining 403 and sleeve 404 are provided, the sleeve may be at least substantially waterproof, thereby providing protection to the lining, which may be susceptible to mold or rot, or, alternatively the lining may be at least substantially resistance to wear and tear, thereby minimizing damage to the lining. Alternatively, the lining and/or sleeve itself may provide similar functionality, thereby minimizing similar damage to the housing.
  • In one embodiment, wherein a rubber sleeve 404 and foam lining or insert blocks J and K are provided, and wherein the large object is a surfboard, the surfboard would first be inserted into the sleeve and then the nose of the surfboard is slidingly placed into the block J at the end of subsection 5A while section A of the case is in a collapsed or intermediate position. Then the surfboard is pushed into the case, and the subsections 2A-5A are extended towards an expanded or intermediate position. Then the tail end of the surfboard is slidingly placed into the block K at the end of subsection 5B while section B of the case is in a collapsed or intermediate position. The subsections 2B-5B are then extended towards an expanded or intermediate position, thereby covering the remaining portion of the board not covered by section A. Sections A and B are attached by placing the latches 6 into a closed position (or releasably locked position). Optionally, the carrying case handle is additionally closed or releasably locked using latch 11.
  • FIG. 3 illustrates side and end views of another embodiment according to the present invention; more specifically, it shows the collapsible case in both extended and collapsed positions from a side view (extended position) and end view (collapsed position). In this embodiment, two equal sections A and B are shown, these sections being further divided into subsections 1-3A/B. Subsection 3A/B collapses into subsection 2A/B and both subsections 2A/B and 3A/B collapse into subsection 1A/B. These subsections collapse along a track 12 to ensure the subsections collapse and extend with ease, while the track 12 also provides rigidity. In an alternative embodiment, the segments fit snugly inside each other to provide rigidity and therefore do not require a track.
  • Latches 6 secure sections A and B to each other. A wheel mechanism 10 is used to roll the case and case handle 7 is used for pulling or carrying the case. In embodiments of the present invention, some of the sections or subsections are removable or insertable, allowing the case to be lengthened and shortened, thereby providing maximum size flexibility.
  • FIG. 4 illustrates another embodiment of the present invention, wherein at least one strap 401 is attached to bosses 402 located on the exterior of the housing sections A and B. Each strap is attached to the case with a securement mechanism, the securement mechanism preferably being a strap attachment boss 402, as depicted in FIG. 4. The strap attachment boss may be a separate piece connected to the case or integral to the outer housing manufacture. For example, and not by limitation, the boss 402 may be an integral feature of an injection molded section 401-402A/B, as depicted in FIG. 6. Further, the strap and boss design is capable of being mirrored or duplicated on one or more other sides or sections. One embodiment of mirrored bosses is depicted in FIG. 4. Furthermore, the strap is comprised of any suitable material or fabric, such that the weight of the case and enclosed object(s) are capable of being lifted from a resting position without risk of tear or breakage. In a preferred embodiment, four bosses 402 and two straps 401 are included in the case design, as depicted in FIG. 4.
  • In one embodiment, a strap is positioned and secured between two bosses, the two bosses equally positioned from the apex 406 of the case. In such an embodiment, the strap is adjustable in length through the boss, such that the slack of the strap may be configured to the particular user and situation. In one embodiment, a hook-and-loop-type fastener is provided as a means of releasably attaching one end of a strap to a portion of the strap body for securing the strap in a fixed position. In another embodiment, a first boss may house a retractable cord mechanism and the other boss, being mirrored in a position across the apex on the same housing side, may house a releasable attachment mechanism. By way of example and not a limitation, the retractable cord mechanism may be similar to the mechanisms described in U.S. Pat. No. 8,096,740 by inventors Parker, et al., U.S. Pat. No. 6,053,381 by inventors Fahl, et al. or U.S. Publication 2011/126778 by inventor Lucy Mitchell, each of which is incorporated by reference herein in its entirety, such that the excess strap remains housed within the boss and is lockable in a multiplicity of lengths. Also, by way of example and not a limitation, the releasable attachment mechanism may be a selectably releasable clasp.
  • In one embodiment, the strap can be adjusted to give greater slack, so that the user-transporter can place the strap over the shoulder. Alternatively, the strap can be tightened to remove any excess slack, allowing the user-transporter to carry the case by placing the strap within the grip of a hand instead of over the shoulder. As one skilled in the art would appreciate, the strap is adjustable to any length in any of the expanded, intermediate or collapsed positions, such that the case may be carried over the shoulder, with the hand, or attachable to another system, such as to a rack or over a hook. Also, according to embodiments of the present invention, wherein the case is in an intermediate or collapsed position, the strap can be configured to act as a restraining strap around the case, thereby preventing the case from accidentally expanding.
  • In another embodiment, wherein the case is attachable to an automobile luggage rack, the method of attaching the case to the rack includes steps of: disengaging one side of the strap from one boss, placing the case on the rack with the disengaged strap side of the housing facing down, looping the strap from the remaining attached boss around the rack, reengaging the strap to the disengaged boss, and firmly tightening the strap.
  • FIG. 5 illustrates another embodiment of the present invention, wherein a case handle 501 is affixed to at least one section of the case to aid in transportation. Preferably the case handle is centered on the case, section and/or subsection. Optionally, the case handle is riveted to the case, as depicted in FIG. 5. The case handle 501 is comprised of a metal, a metal encased in rubber, or any other suitable material.
  • Notably, the strap attachment boss 402 serves at least two purposes: (1) a securement mechanism for the strap, and (2) an anti-rocking mechanism for the case when in a resting position. As depicted in FIG. 4, the collapsible and adjoining sections create a substantially diamond-shaped silhouette when the case is viewed from the side. Because the center of the case has the greatest height at the apex, when the case is in a resting position it may have a tendency to tilt to one end or the other. A pair of strap attachment bosses 402, individually depicted in FIG. 6, when positioned on the bottom of the case, prevents the case from tilting or rocking in either direction. This advantageous feature provides stability and reduces the risk of injury or damage.
  • In the case of use for a surfboard, each section is about half the length of a surfboard but slightly larger to properly and protectively secure the surfboard therein when combined together. In the case of use for an asymmetrical object or objects, such as golf clubs, musical instrument, etc., the sections and subsections may remain symmetrical and either (1) inserts are provided and/or (2) the housing is configured in one of the intermediate positions to compensate for the asymmetry of the object(s) and provide protection to the object(s). In the embodiment wherein inserts are provided, at least one insert is placed in a subsection of section A or B or both. By conforming the interior of the housing to provide an improved fit to the large object or objects, whether through the use of inserts or intermediate positions or both, the large object(s) are less likely to move within the housing during transport, thereby minimizing damage or disorganization of the object(s).
  • FIG. 7 illustrates an embodiment having an insert and configuring a subsection into an intermediate position to provide a better fit for the object(s), in this case golf clubs. Subsection 41A is configured into intermediate position 701 so as to remove any excess volume from the interior of the housing when the golf clubs are housed therewithin. Additionally, golf club insert 702 is placed within subsection 41B to provide a tighter fit within this subsection, thereby minimizing the movement of the clubs during transport. As one skilled in the art would appreciate, any number of designs and configurations could be included as an insert in order to contain portions of a housed large object(s).
  • In another embodiment, the case includes a housing having a rigid, impact-resistant outer surface, the housing being formed from two equal halves, each half having a multiplicity of adjoining sections that are selectively configurable between an expanded transport position and a collapsed storage position; the housing being symmetrical about the long axis and about the short axis. Furthermore, in another embodiment, the housing halves have equal number of adjoining sections and the housing halves are symmetrical when in an expanded or collapsed position.
  • The present invention includes an extension lock to hold the subsections in an extended position. FIG. 9 shows a perspective view of a protective case with two extension locks 800. FIGS. 10, 11A and 11B and 12 show a preferred embodiment of a lock housing 810 and lock handle 815 for an extension lock 800. FIG. 13 shows a cut-away view of the extension lock 800. The extension lock is located on the distal end of a first subsection (away from the X axis, see FIG. 8) and is configured for locking the first subsection to a second subsection internal to the first subsection in an extended position. The extension lock, generally described as 800, includes a lock housing 810 and a compression latch 820. The lock housing includes a screw-threaded channel 812. The compression latch 820 includes a screw-threaded shaft 822 with a compressive component 824 on the internal end and a lock handle 815 on the external end. The screw-threaded shaft is configured to matingly engage with the screw-threaded channel of the lock housing. In a preferred embodiment, the compressive component is a cam and the compression latch is a cam latch.
  • FIG. 14 shows a bottom view of a cam latch 820 with the cam 824 and part of the lock handle 815 visible. The eccentric portion 825 of the cam is in the locked position against the internal subsection lip 830. FIG. 14 also shows the locking and unlocking direction of rotation for a right-handed lock. In an alternative embodiment the eccentric surface profile becomes flat in the last 10-15 degrees of handle rotation, allowing it to engage the internal subsection lip across a wider area and increasing the force necessary to rotate the lock handle away from engagement. In this configuration the cam includes an apex 823, which is the termination of the flat section 827. The dimensions of the cam are such that the cam can rise into the channel upon unlocking rotation.
  • FIGS. 15A and 15B are cut-away side views of the extension lock installed. FIG. 15A shows the extension lock in an unlocked configuration. FIG. 15B shows the extension lock in a locked configuration.
  • This embodiment shows a screw-threaded shaft 822 with lock handle 815 on the exterior end and cam 824 on the interior end with eccentric section 825 and depth 826. The cam and eccentric section rotates about the axis of the lock handle and screw-threaded shaft. As the shaft is rotated down in the lock housing, the eccentric section progressively engages the proximal end of the internal subsection, progressively forcing the internal subsection distally into the extended position until the internal and external subsection lips engage. The lock handle is preferably rotated about 180 degrees to fully engage the eccentric portion with the internal subsection lip.
  • The cam latch is configured to descend in the lock housing (towards the Y-axis, see FIG. 8) and lock the internal subsection in an extended position upon rotation between about 180 degrees and about 270 degrees. Preferably the cam moves between locked and unlocked positions with about 180 degree rotation. The depth of the cam 826 is designed, constructed and configured such that it will move between locked and unlocked positions with the appropriate amount of rotation. In a preferred embodiment, the depth of the cam is approximately equal to about ½ the lead of the shaft screw-thread, such that the cam will completely move into and out of the lock housing upon about 180 degree rotation. In an alternate embodiment, the depth of the cam is about ¾ the lead of the shaft screw-thread, such that it will move between locked and unlocked positions upon about 270 degree rotation.
  • The locking occurs through the engagement of the internal subsection lip 830 with external subsection lip 832 at the point of engagement 833. The engagement prevents inward travel of the internal section. The cam latch is also configured to ascend in the lock housing upon 180 degree unlocking rotation of the cam latch. In a preferred embodiment, the cam 825 is configured to move completely into the lock housing with unlocking rotation between about 180 degrees and about 270 degrees, such that the internal subsections can telescope into the external subsection and are not obstructed by the cam when the extension lock is in the unlocked position.
  • The cam and/or cam latch are preferably made of an impact and abrasion resistant material, preferably a metal or toughened plastic; and the surfaces of the internal subsection that contact the cam are preferably lined with an impact and abrasion-resistant material, preferably a metal or a filled/toughened plastic.
  • FIG. 16A and 16B also show the engagement of two subsection. FIG. 16B is a detailed view of area “B” of FIG. 16A, showing the engaged internal 830 and external 832 subsection lips.
  • The present invention preferably includes rib reinforcements. These are transverse ribs 840 (parallel to the X-axis) and longitudinal ribs 841 (parallel to the Y-axis), as shown in FIG. 17. The rib reinforcements preferably increase the bending moment of the flat panel sections of the case, thereby increasing their bending stiffness. These ribs also assist in distributing forces acting at the extension lock into the skin of the subsection. FIGS. 18 and 19 are color-coded images showing the stress distribution as a result of an applied load at the case segment lock. The force applied on an extended case subsection is transmitted into the inboard case subsection by bearing on the cam mechanism. This load is in turn transmitted into the lock housing of the cam mechanism. The tapered shape of the lock housing slowly distributes load into the skin and ribs of the case subsection. A measured distribution of load into the relatively thin skin of the case is desired so as not to overstress the material locally.
  • Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. For example, as shown in FIGS. 20 and 21, the wheels are optionally strategically placed so that they stabilize the case. In one embodiment, as shown in FIG. 20, the bottom of the wheels are level with the side of the case its apex 406 when fully extended so that there are 3 points of rest, thus stabilizing the case when lying extended on the side. The wheels can additionally be spaced widely to advantageously act as stabilizers when the case is lying flat and extended.
  • In another example embodiment shown in FIG. 21, there are at least 2 wheels that protrude wider than the case body to prevent it from rocking Preferably, there are 4 wheels. The wheels limit the compaction of the case, such that the end segment still telescopes in but does not go all the way inside. The compacted case can be moved around on the wheels, facilitating moving the case when compacted. Also, the wheels act as a hard stop to compressing the case and in a preferred embodiment a strap is used to tie the case closed for storage.
  • The above mentioned examples are provided to serve the purpose of clarifying the aspects of the invention and it will be apparent to one skilled in the art that they do not serve to limit the scope of the invention. All modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the present invention.

Claims (10)

The invention claimed is:
1. A protective case for large objects, comprising:
a housing including a rigid, impact-resistant outer surface, wherein the housing is formed from a first section and a second section, at least one of the first second and the second section including at least one external subsection and at least one internal subsection; the external subsection having a distal end; and wherein the internal subsection is configured to telescope inside the external subsection; and
at least one extension lock on the distal end of the at least one external subsection configured for locking the internal subsection in an extended position relative to the external subsection;
the at least one extension lock comprising a lock housing and a compression latch, the lock housing including a screw-threaded channel, and the compression latch comprising at least one screw-threaded shaft with a compressive component on an interior end and a lock handle on an exterior end, the at least one screw-threaded shaft configured to matingly engage with the screw-threaded channel of the lock housing;
the compressive component configured to descend out of the lock housing and compressingly lock the internal subsection in an extended position upon locking rotation of the compression latch; and the compressive component configure to ascend into the lock housing upon unlocking rotation of the compression latch;
thereby providing a protective case that is easily collapsible and secure when extended.
2. The case of claim 1, wherein the compressive component is a cam and the compression latch is a cam latch; the cam configured to move into and out of the lock housing with rotation of the cam latch, thereby allowing the internal subsections to telescope into the external subsection when the extension lock is in the unlocked position.
3. The case of claim 2, wherein the rotation of the cam latch is between about 180 and 270 degrees.
4. The case of claim 2, wherein the rotation of the cam latch is about 180 degrees.
5. The case of claim 1, wherein the compressive component comprises metal and/or toughened plastic.
6. The case of claim 1, wherein the internal subsection includes contact surfaces, wherein the contact surfaces comprise metal and/or toughened plastic.
7. An extension lock for telescoping subsections comprising:
a lock housing and a compression latch; the lock housing positioned on a first subsection that telescopes over a second subsection;
the lock housing including a screw-threaded channel; and
the compression latch comprising at least one screw-threaded shaft with a compressive component on the interior end and a lock handle on the exterior end, the screw-threaded shaft configured to matingly engage with the screw-threaded channel of the lock housing;
the compressive component configured to descend in the lock housing and compressingly lock the first and the second subsections in an extended position upon locking rotation of the compression latch; and the compressive component configured to ascend in the lock housing upon unlocking rotation of the compression latch.
8. The extension lock of claim 7, wherein the compressive component is a cam and the compression latch is a cam latch; the cam configured to move into the lock housing with unlocking rotation of the cam latch, thereby allowing the second subsections to telescope into the first subsection when the extension lock is in the unlocked position.
9. The extension lock of claim 8, wherein the rotation of the cam latch is between about 180 and 270 degrees.
10. The extension lock of claim 8, wherein the rotation of the cam latch is about 180 degrees.
US14/684,734 2008-07-31 2015-04-13 Collapsible Hard Case for Surfboards and Other Large Objects Abandoned US20150216277A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/684,734 US20150216277A1 (en) 2008-07-31 2015-04-13 Collapsible Hard Case for Surfboards and Other Large Objects
US15/865,910 US11154124B2 (en) 2008-07-31 2018-01-09 Collapsible hard case for surfboards and other large objects
US17/507,273 US11617426B2 (en) 2008-07-31 2021-10-21 Collapsible hard case for surfboards and other large objects
US18/119,038 US20230218054A1 (en) 2008-07-31 2023-03-08 Collapsible hard case for surfboards and other large objects

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13756008P 2008-07-31 2008-07-31
US12/462,216 US8066138B2 (en) 2008-07-31 2009-07-31 Collapsible hard case for surfboards and other large objects
US13/224,904 US8381930B2 (en) 2008-07-31 2011-09-02 Collapsible hard case for surfboards and other large objects
US13/748,356 US8668104B2 (en) 2008-07-31 2013-01-23 Collapsible hard case for surfboards and other large objects
US14/195,501 US9010559B2 (en) 2008-07-31 2014-03-03 Collapsible hard case for surfboards and other large objects
US14/684,734 US20150216277A1 (en) 2008-07-31 2015-04-13 Collapsible Hard Case for Surfboards and Other Large Objects

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/195,501 Continuation-In-Part US9010559B2 (en) 2008-07-31 2014-03-03 Collapsible hard case for surfboards and other large objects

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/865,910 Continuation-In-Part US11154124B2 (en) 2008-07-31 2018-01-09 Collapsible hard case for surfboards and other large objects

Publications (1)

Publication Number Publication Date
US20150216277A1 true US20150216277A1 (en) 2015-08-06

Family

ID=53753741

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/684,734 Abandoned US20150216277A1 (en) 2008-07-31 2015-04-13 Collapsible Hard Case for Surfboards and Other Large Objects

Country Status (1)

Country Link
US (1) US20150216277A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035352A1 (en) * 2016-08-18 2018-02-22 Stephen Kenneth Warll Protective watercraft board container
US20210016144A1 (en) * 2019-07-16 2021-01-21 Sun Mountain Sports, Inc. Collapsible rolling travel cover for a golf bag
US11154124B2 (en) 2008-07-31 2021-10-26 David A. Boyles Collapsible hard case for surfboards and other large objects
WO2022173311A1 (en) 2021-02-12 2022-08-18 Db Equipment As Sports bag with protective ribs
US12145036B2 (en) 2023-08-21 2024-11-19 Sun Mountain Sports, Llc Collapsible rolling travel cover for a golf bag

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US748078A (en) * 1903-08-03 1903-12-29 Stromberg Carlson Telephone Fastening device.
US872712A (en) * 1905-03-01 1907-12-03 Waltham Watch Co Watch.
US944725A (en) * 1909-06-03 1909-12-28 Walton Ferguson Jr Spike for railway and like uses.
US978585A (en) * 1909-09-10 1910-12-13 Clemence Huber Can-top fastener and opener.
US999891A (en) * 1910-11-21 1911-08-08 Melzar Shepard Box-lid fastener.
US1187479A (en) * 1916-04-01 1916-06-20 Louis Bettigole Sash-stop.
US1213599A (en) * 1915-10-15 1917-01-23 Charles E W Dow Fastener.
US2045083A (en) * 1934-12-17 1936-06-23 Banner Iron Works Cover for manhole frames or the like
US2480434A (en) * 1946-02-16 1949-08-30 Martin Askin Locking device for metal casting molds
US2839322A (en) * 1955-08-30 1958-06-17 Gen Dynamics Corp Securing device
US3006443A (en) * 1954-12-20 1961-10-31 Joseph T Siler Method and apparatus for attaching juxtaposed members
US3479076A (en) * 1967-06-10 1969-11-18 Rheinstahl Henschel Ag Lock for gas and watertight closing of flaps,gates,doors and the like
US3480311A (en) * 1968-06-05 1969-11-25 Entron Inc Quick-release fastener means
US4494783A (en) * 1977-12-01 1985-01-22 Hartwell Corporation Flush type rotary drive for latches
GB2154654A (en) * 1984-02-23 1985-09-11 Chubb & Sons Lock & Safe Co Security fittings
US4844518A (en) * 1987-08-27 1989-07-04 Environmental Container Systems, Inc. Roto cam latch
US5230542A (en) * 1992-03-11 1993-07-27 Custom Metalcraft Inc. Latch dog assembly
US6502871B1 (en) * 2000-11-28 2003-01-07 Tempress Products, Lp Rotary latch system and method
US6626017B2 (en) * 2001-07-13 2003-09-30 Carrier Corporation Locking mechanism for air handler (AHU) cabinet
US20050161955A1 (en) * 2004-01-23 2005-07-28 Hicok Michael W. Systems and methods for holding together first and second objects and fasteners for use with the systems and methods
US7619878B1 (en) * 2007-07-16 2009-11-17 Nicor, Inc. Meter cover for automated meter reading
US9663973B2 (en) * 2010-06-10 2017-05-30 Rehrig Pacific Company Water meter pit cover latch

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US748078A (en) * 1903-08-03 1903-12-29 Stromberg Carlson Telephone Fastening device.
US872712A (en) * 1905-03-01 1907-12-03 Waltham Watch Co Watch.
US944725A (en) * 1909-06-03 1909-12-28 Walton Ferguson Jr Spike for railway and like uses.
US978585A (en) * 1909-09-10 1910-12-13 Clemence Huber Can-top fastener and opener.
US999891A (en) * 1910-11-21 1911-08-08 Melzar Shepard Box-lid fastener.
US1213599A (en) * 1915-10-15 1917-01-23 Charles E W Dow Fastener.
US1187479A (en) * 1916-04-01 1916-06-20 Louis Bettigole Sash-stop.
US2045083A (en) * 1934-12-17 1936-06-23 Banner Iron Works Cover for manhole frames or the like
US2480434A (en) * 1946-02-16 1949-08-30 Martin Askin Locking device for metal casting molds
US3006443A (en) * 1954-12-20 1961-10-31 Joseph T Siler Method and apparatus for attaching juxtaposed members
US2839322A (en) * 1955-08-30 1958-06-17 Gen Dynamics Corp Securing device
US3479076A (en) * 1967-06-10 1969-11-18 Rheinstahl Henschel Ag Lock for gas and watertight closing of flaps,gates,doors and the like
US3480311A (en) * 1968-06-05 1969-11-25 Entron Inc Quick-release fastener means
US4494783A (en) * 1977-12-01 1985-01-22 Hartwell Corporation Flush type rotary drive for latches
GB2154654A (en) * 1984-02-23 1985-09-11 Chubb & Sons Lock & Safe Co Security fittings
US4844518A (en) * 1987-08-27 1989-07-04 Environmental Container Systems, Inc. Roto cam latch
US5230542A (en) * 1992-03-11 1993-07-27 Custom Metalcraft Inc. Latch dog assembly
US6502871B1 (en) * 2000-11-28 2003-01-07 Tempress Products, Lp Rotary latch system and method
US6626017B2 (en) * 2001-07-13 2003-09-30 Carrier Corporation Locking mechanism for air handler (AHU) cabinet
US20050161955A1 (en) * 2004-01-23 2005-07-28 Hicok Michael W. Systems and methods for holding together first and second objects and fasteners for use with the systems and methods
US7619878B1 (en) * 2007-07-16 2009-11-17 Nicor, Inc. Meter cover for automated meter reading
US9663973B2 (en) * 2010-06-10 2017-05-30 Rehrig Pacific Company Water meter pit cover latch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11154124B2 (en) 2008-07-31 2021-10-26 David A. Boyles Collapsible hard case for surfboards and other large objects
US11617426B2 (en) 2008-07-31 2023-04-04 David A. Boyles Collapsible hard case for surfboards and other large objects
WO2018035352A1 (en) * 2016-08-18 2018-02-22 Stephen Kenneth Warll Protective watercraft board container
US10661864B2 (en) 2016-08-18 2020-05-26 Stephen Kenneth Warll Protective watercraft board container
US20210016144A1 (en) * 2019-07-16 2021-01-21 Sun Mountain Sports, Inc. Collapsible rolling travel cover for a golf bag
US11731016B2 (en) * 2019-07-16 2023-08-22 Sun Mountain Sports, Llc Collapsible rolling travel cover for a golf bag
WO2022173311A1 (en) 2021-02-12 2022-08-18 Db Equipment As Sports bag with protective ribs
US12145036B2 (en) 2023-08-21 2024-11-19 Sun Mountain Sports, Llc Collapsible rolling travel cover for a golf bag

Similar Documents

Publication Publication Date Title
US11617426B2 (en) Collapsible hard case for surfboards and other large objects
US8668104B2 (en) Collapsible hard case for surfboards and other large objects
US20150216277A1 (en) Collapsible Hard Case for Surfboards and Other Large Objects
US6186522B1 (en) Travelling golf cart
US4643302A (en) Container for sports equipment
EP2747855B1 (en) Accessory bag having reinforced sidewalls and variable length
US20090166141A1 (en) Flat packing suitcase system
US8066138B2 (en) Collapsible hard case for surfboards and other large objects
EP0413243B1 (en) Ski carrier
US9010559B2 (en) Collapsible hard case for surfboards and other large objects
US9981722B2 (en) Hinged inflatable surfboard cover
US6315115B1 (en) Golf bag carrying case
US9084920B2 (en) Golf club carrying case
US7017747B2 (en) Protective inflatable surfboard covering device
US20030173384A1 (en) BTS: Board transportation system
US20170245607A1 (en) Adjustable carry bag
US20230218054A1 (en) Collapsible hard case for surfboards and other large objects
US8967375B1 (en) Fold up luggage for elongate items
US7850007B2 (en) Apparatus for storing and transporting watercraft propellers
US20060185998A1 (en) Inflatable shipping device and method of forming and using same
US20240065395A1 (en) Multiple purpose travel bags, travel bag systems, and related methods
US20090188820A1 (en) Shipping container and method of forming and using same
US11731016B2 (en) Collapsible rolling travel cover for a golf bag
US20090014349A1 (en) Storage Device Provided with an Inflatable Chamber
EP4459079A1 (en) Inflatable air soft shell base for tent and tent

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION