US20150216277A1 - Collapsible Hard Case for Surfboards and Other Large Objects - Google Patents
Collapsible Hard Case for Surfboards and Other Large Objects Download PDFInfo
- Publication number
- US20150216277A1 US20150216277A1 US14/684,734 US201514684734A US2015216277A1 US 20150216277 A1 US20150216277 A1 US 20150216277A1 US 201514684734 A US201514684734 A US 201514684734A US 2015216277 A1 US2015216277 A1 US 2015216277A1
- Authority
- US
- United States
- Prior art keywords
- lock
- subsection
- case
- latch
- cam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000006835 compression Effects 0.000 claims abstract description 20
- 238000007906 compression Methods 0.000 claims abstract description 20
- 230000001681 protective effect Effects 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 230000007246 mechanism Effects 0.000 description 13
- 230000006378 damage Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C11/00—Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C7/00—Collapsible or extensible purses, luggage, bags or the like
- A45C7/0018—Rigid or semi-rigid luggage
- A45C7/0022—Rigid or semi-rigid luggage comprising an integrated expansion device
- A45C7/0031—Rigid or semi-rigid luggage comprising an integrated expansion device telescopic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K97/00—Accessories for angling
- A01K97/08—Containers for rods
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C13/00—Details; Accessories
- A45C13/002—Protective covers
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C13/00—Details; Accessories
- A45C13/10—Arrangement of fasteners
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C11/00—Accessories for skiing or snowboarding
- A63C11/02—Devices for stretching, clamping or pressing skis or snowboards for transportation or storage
- A63C11/023—Carrying-devices
- A63C11/025—Carrying-devices for skis or ski-sticks
- A63C11/026—Carrying-devices for skis or ski-sticks on wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B32/00—Water sports boards; Accessories therefor
- B63B32/80—Arrangements specially adapted for stowing or transporting water sports boards
- B63B32/87—Arrangements specially adapted for stowing or transporting water sports boards for carrying, e.g. board bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D21/00—Nestable, stackable or joinable containers; Containers of variable capacity
- B65D21/08—Containers of variable capacity
- B65D21/086—Collapsible or telescopic containers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41C—SMALLARMS, e.g. PISTOLS, RIFLES; ACCESSORIES THEREFOR
- F41C33/00—Means for wearing or carrying smallarms
- F41C33/06—Containers for carrying smallarms, e.g. safety boxes, gun cases
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10G—REPRESENTATION OF MUSIC; RECORDING MUSIC IN NOTATION FORM; ACCESSORIES FOR MUSIC OR MUSICAL INSTRUMENTS NOT OTHERWISE PROVIDED FOR, e.g. SUPPORTS
- G10G7/00—Other auxiliary devices or accessories, e.g. conductors' batons or separate holders for resin or strings
- G10G7/005—Carrying cases for musical instruments
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45C—PURSES; LUGGAGE; HAND CARRIED BAGS
- A45C7/00—Collapsible or extensible purses, luggage, bags or the like
- A45C7/0018—Rigid or semi-rigid luggage
- A45C7/0036—Rigid or semi-rigid luggage collapsible to a minimal configuration, e.g. for storage purposes
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2210/00—Space saving
- A63B2210/50—Size reducing arrangements for stowing or transport
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B55/00—Bags for golf clubs; Stands for golf clubs for use on the course; Wheeled carriers specially adapted for golf bags
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/0093—Training appliances or apparatus for special sports for surfing, i.e. without a sail; for skate or snow boarding
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/0036—Accessories for stowing, putting away or transporting exercise apparatus or sports equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/32—Articulated members
- Y10T403/32254—Lockable at fixed position
- Y10T403/32467—Telescoping members
Definitions
- the present invention relates generally to travel cases or containers, and more particularly to a collapsible hard case for protectively transporting a large object.
- containers for shipment of large objects are large and bulky. Upon safe transport of the surfboard then, the container must be stored in a correspondingly large space.
- Surfboards often range in length from 6-10 feet, in width between about 2-3 feet, and in depth about 3 inches.
- One commercially available surfboard case offered at the time of the present invention is by Santa Monica Hard Case in California, USA. While this product provides a protective case for surfboards, it is formed of a flexible plastic that leaves the boards vulnerable to damage during transport or shipment. Also, it has limited size options and features. Furthermore, this case does not collapse into itself.
- a first aspect of the present invention is to provide a collapsible protective case for large objects.
- the protective case includes at least one extension lock configured for locking the case in a fully expanded position for completely protectively and removably containing the large object, and to be alternatively collapsed to a collapsed position when not in use
- a second aspect of the present invention is to provide an extension lock with a lock housing and a compression latch.
- the compression latch has a compressive component configured to descend out of the lock housing and compressingly lock the case in an extended position and to ascend into the housing when unlocked, allowing the case to telescope into a compacted configuration.
- FIG. 1 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention.
- FIG. 2 illustrates an end view of the case shown in FIG. 1 in a collapsed position according to one embodiment of the present invention.
- FIG. 3 illustrates a side view of another embodiment of the present invention.
- FIG. 4 illustrates an end view of another embodiment of the present invention.
- FIG. 5 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention.
- FIG. 6 illustrates a subsection having a case handle according to one embodiment of the invention.
- FIG. 7 illustrates a subsection having a boss according to one embodiment of the invention.
- FIG. 8 illustrates a front view of a protective case in an intermediate position and having an insert according to one embodiment of the invention.
- FIG. 9 illustrates a perspective view of a protective case according to one embodiment of the invention with two lock housings for two extension locks visible.
- FIG. 10 illustrates a lock housing and a lock handle according to one embodiment of the invention.
- FIG. 11A illustrates a top view of a lock housing and a lock handle according to one embodiment of the invention.
- FIG. 11B illustrates a cross-sectional side of the lock housing and the lock handle of FIG. 11A along plane A-A.
- FIG. 12 illustrates a perspective view of a lock housing and a lock handle according to one embodiment of the invention.
- FIG. 13 illustrates a perspective line drawing of a lock housing and a lock handle according to one embodiment of the invention.
- FIG. 14 illustrates a bottom view of a cam latch according to one embodiment of the invention.
- FIG. 15A illustrates a side view of an extension lock according to one embodiment of the invention in the unlocked position.
- FIG. 15B illustrates a side view of an extension lock according to one embodiment of the invention in the locked position.
- FIG. 16A illustrates a joint according to one embodiment of the invention.
- FIG. 16B is a magnification of area B of FIG. 16A showing a joint according to one embodiment of the invention.
- FIG. 17 illustrates the internal ribbing according to one embodiment of the invention.
- FIG. 18 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention.
- FIG. 19 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention.
- FIG. 20 is an illustration of an embodiment with the wheels positioned to stabilize the case when extended.
- FIG. 21 is an illustration of an embodiment with the wheels positioned to mobilize the case when compacted.
- the present invention provides a protective case for large objects constructed and configured to be used in expanded, intermediate and collapsed positions for completely protectively containing the object when housed, and to be alternatively configured in a collapsed position for storage of the case when not in use, i.e., when the object is not stored therewithin. More particularly, the present invention includes a collapsible protective case for large objects with a housing having a rigid, impact-resistant outer surface, the housing being formed from a multiplicity of adjoining sections that are selectively configurable between expanded, intermediate and collapsed positions.
- the rigid, impact-resistance outer surface is formed from a hard plastic or composite material that is sufficiently thick to prevent puncture or tearing and resist pressure, flexing or deformation, such that the object contained completely within the housing is protected from external forces. Varying dimensions of the outer surface depend on the object or objects being stored, the transportation conditions, and the amount of protection desired.
- the hard plastic shell is between 1/32 and 1 ⁇ 4 inches thick, preferably about 3/32 inches thick.
- the housing is preferably formed from two mating sections A and B for completely encasing the object or objects from either end. Sections A and B are releasably connectable and lockable at the adjoining edges that form the middle of the housing. In one embodiment, the two separated sections A and B are approximately equal in size and dimensions. As shown in FIG. 1 , with the exception of the wheels 10 and end case handle 7 , the housing is preferably symmetrical about the long axis Y and about the short axis X, in order to improve the balance of the housing in each position.
- FIGS. 1 and 3 illustrate each of the two sections A and B being further comprised of subsections or cells ( 1 A- 5 A, 1 B- 5 B, 31 A- 33 A and 31 B- 33 B) that are constructed and configured to be juxtapositioned in the extended position.
- innermost subsections 1 A/B and 31 A/B have larger dimensions that outermost end subsections 5 A/B and 33 A/B.
- these subsections collapse into each other substantially concentrically as illustrated in FIG. 2 .
- the housing of the present invention can conveniently be stored in a compact position, as illustrated by FIG. 3 .
- each of the subsections is arranged so that the end-most subsections 5 A/B and 33 A/B collapse into the larger middle subsections 1 A/B and 31 A/B.
- the intermediate subsections 2 - 4 A/B and 32 A/B collapse between end-most subsections 5 A/B and 33 A/B and middle subsections 1 A/B and 31 A/B as shown in FIGS. 2 and 3 .
- sections A and B align longitudinally along the board length along track 12 , which provides a notch and lock system providing a releasable securement of the subsections with respect to each other to form the rigid housing.
- Section A is releasably fastenable to the section B by a plurality of latches 6 .
- latches 6 are provided, as depicted in FIG. 1 .
- two latches 6 one mirrored on each of two sides of the housing suffice.
- any number of latches 6 are positioned on subsection 1 A or 31 A with corresponding latch receptors 13 on subsection 1 B or 31 B.
- the latches 6 can be positioned on the exterior or interior of the housing or both, and optionally include a key or code locking mechanism.
- a carrying case handle 11 is attached to a side of the case for easier carrying, but is strategically placed to function as a releasable attaching latch for connecting the sections A and B.
- wheels 10 are positioned on one section and a roller case handle 10 on the other section for easier transport of the case and object assembly.
- a roof rack system 9 attached to one of the intermediate subsections 2 A- 4 A and mirrored on one of the juxtaposed subsections 2 B- 4 B is provided.
- a lining 403 configured and positioned within the interior of the housing may be provided for additional protection and impact resistance for the large object(s).
- the lining may include an impact-absorbing or cushioning lining, such as foam, rubber or a coating, and may be affixed to the inner surface of at least one or all of the housing subsections or may be removably affixed to the one or more subsections.
- a protective flexible inner sleeve 404 may be used within the protective case; by way of example and not limitation, it may be independent of the housing and applied around the surfboard before the sleeve-wrapped board is inserted into the case.
- the lining 403 and/or sleeve 404 dimensions are configured to provide flexibility in accommodating large object(s) of varying sizes and dimensions.
- the sleeve may be at least substantially waterproof, thereby providing protection to the lining, which may be susceptible to mold or rot, or, alternatively the lining may be at least substantially resistance to wear and tear, thereby minimizing damage to the lining.
- the lining and/or sleeve itself may provide similar functionality, thereby minimizing similar damage to the housing.
- the surfboard would first be inserted into the sleeve and then the nose of the surfboard is slidingly placed into the block J at the end of subsection 5 A while section A of the case is in a collapsed or intermediate position. Then the surfboard is pushed into the case, and the subsections 2 A- 5 A are extended towards an expanded or intermediate position. Then the tail end of the surfboard is slidingly placed into the block K at the end of subsection 5 B while section B of the case is in a collapsed or intermediate position.
- Sections 2 B- 5 B are then extended towards an expanded or intermediate position, thereby covering the remaining portion of the board not covered by section A.
- Sections A and B are attached by placing the latches 6 into a closed position (or releasably locked position).
- the carrying case handle is additionally closed or releasably locked using latch 11 .
- FIG. 3 illustrates side and end views of another embodiment according to the present invention; more specifically, it shows the collapsible case in both extended and collapsed positions from a side view (extended position) and end view (collapsed position).
- two equal sections A and B are shown, these sections being further divided into subsections 1 - 3 A/B.
- Subsection 3 A/B collapses into subsection 2 A/B and both subsections 2 A/B and 3 A/B collapse into subsection 1 A/B.
- These subsections collapse along a track 12 to ensure the subsections collapse and extend with ease, while the track 12 also provides rigidity.
- the segments fit snugly inside each other to provide rigidity and therefore do not require a track.
- Latches 6 secure sections A and B to each other.
- a wheel mechanism 10 is used to roll the case and case handle 7 is used for pulling or carrying the case.
- some of the sections or subsections are removable or insertable, allowing the case to be lengthened and shortened, thereby providing maximum size flexibility.
- FIG. 4 illustrates another embodiment of the present invention, wherein at least one strap 401 is attached to bosses 402 located on the exterior of the housing sections A and B.
- Each strap is attached to the case with a securement mechanism, the securement mechanism preferably being a strap attachment boss 402 , as depicted in FIG. 4 .
- the strap attachment boss may be a separate piece connected to the case or integral to the outer housing manufacture.
- the boss 402 may be an integral feature of an injection molded section 401 - 402 A/B, as depicted in FIG. 6 .
- the strap and boss design is capable of being mirrored or duplicated on one or more other sides or sections.
- One embodiment of mirrored bosses is depicted in FIG. 4 .
- the strap is comprised of any suitable material or fabric, such that the weight of the case and enclosed object(s) are capable of being lifted from a resting position without risk of tear or breakage.
- four bosses 402 and two straps 401 are included in the case design, as depicted in FIG. 4 .
- a strap is positioned and secured between two bosses, the two bosses equally positioned from the apex 406 of the case.
- the strap is adjustable in length through the boss, such that the slack of the strap may be configured to the particular user and situation.
- a hook-and-loop-type fastener is provided as a means of releasably attaching one end of a strap to a portion of the strap body for securing the strap in a fixed position.
- a first boss may house a retractable cord mechanism and the other boss, being mirrored in a position across the apex on the same housing side, may house a releasable attachment mechanism.
- the retractable cord mechanism may be similar to the mechanisms described in U.S. Pat. No. 8,096,740 by inventors Parker, et al., U.S. Pat. No. 6,053,381 by inventors Fahl, et al. or U.S. Publication 2011/126778 by inventor Lucy Mitchell, each of which is incorporated by reference herein in its entirety, such that the excess strap remains housed within the boss and is lockable in a multiplicity of lengths.
- the releasable attachment mechanism may be a selectably releasable clasp.
- the strap can be adjusted to give greater slack, so that the user-transporter can place the strap over the shoulder.
- the strap can be tightened to remove any excess slack, allowing the user-transporter to carry the case by placing the strap within the grip of a hand instead of over the shoulder.
- the strap is adjustable to any length in any of the expanded, intermediate or collapsed positions, such that the case may be carried over the shoulder, with the hand, or attachable to another system, such as to a rack or over a hook.
- the strap can be configured to act as a restraining strap around the case, thereby preventing the case from accidentally expanding.
- the method of attaching the case to the rack includes steps of: disengaging one side of the strap from one boss, placing the case on the rack with the disengaged strap side of the housing facing down, looping the strap from the remaining attached boss around the rack, reengaging the strap to the disengaged boss, and firmly tightening the strap.
- FIG. 5 illustrates another embodiment of the present invention, wherein a case handle 501 is affixed to at least one section of the case to aid in transportation.
- the case handle is centered on the case, section and/or subsection.
- the case handle is riveted to the case, as depicted in FIG. 5 .
- the case handle 501 is comprised of a metal, a metal encased in rubber, or any other suitable material.
- the strap attachment boss 402 serves at least two purposes: (1) a securement mechanism for the strap, and (2) an anti-rocking mechanism for the case when in a resting position.
- the collapsible and adjoining sections create a substantially diamond-shaped silhouette when the case is viewed from the side. Because the center of the case has the greatest height at the apex, when the case is in a resting position it may have a tendency to tilt to one end or the other.
- a pair of strap attachment bosses 402 individually depicted in FIG. 6 , when positioned on the bottom of the case, prevents the case from tilting or rocking in either direction. This advantageous feature provides stability and reduces the risk of injury or damage.
- each section is about half the length of a surfboard but slightly larger to properly and protectively secure the surfboard therein when combined together.
- the sections and subsections may remain symmetrical and either (1) inserts are provided and/or (2) the housing is configured in one of the intermediate positions to compensate for the asymmetry of the object(s) and provide protection to the object(s).
- inserts are provided, at least one insert is placed in a subsection of section A or B or both.
- the large object(s) are less likely to move within the housing during transport, thereby minimizing damage or disorganization of the object(s).
- FIG. 7 illustrates an embodiment having an insert and configuring a subsection into an intermediate position to provide a better fit for the object(s), in this case golf clubs.
- Subsection 41 A is configured into intermediate position 701 so as to remove any excess volume from the interior of the housing when the golf clubs are housed therewithin.
- golf club insert 702 is placed within subsection 41 B to provide a tighter fit within this subsection, thereby minimizing the movement of the clubs during transport.
- any number of designs and configurations could be included as an insert in order to contain portions of a housed large object(s).
- the case includes a housing having a rigid, impact-resistant outer surface, the housing being formed from two equal halves, each half having a multiplicity of adjoining sections that are selectively configurable between an expanded transport position and a collapsed storage position; the housing being symmetrical about the long axis and about the short axis.
- the housing halves have equal number of adjoining sections and the housing halves are symmetrical when in an expanded or collapsed position.
- FIG. 9 shows a perspective view of a protective case with two extension locks 800 .
- FIGS. 10 , 11 A and 11 B and 12 show a preferred embodiment of a lock housing 810 and lock handle 815 for an extension lock 800 .
- FIG. 13 shows a cut-away view of the extension lock 800 .
- the extension lock is located on the distal end of a first subsection (away from the X axis, see FIG. 8 ) and is configured for locking the first subsection to a second subsection internal to the first subsection in an extended position.
- the extension lock, generally described as 800 includes a lock housing 810 and a compression latch 820 .
- the lock housing includes a screw-threaded channel 812 .
- the compression latch 820 includes a screw-threaded shaft 822 with a compressive component 824 on the internal end and a lock handle 815 on the external end.
- the screw-threaded shaft is configured to matingly engage with the screw-threaded channel of the lock housing.
- the compressive component is a cam and the compression latch is a cam latch.
- FIG. 14 shows a bottom view of a cam latch 820 with the cam 824 and part of the lock handle 815 visible.
- the eccentric portion 825 of the cam is in the locked position against the internal subsection lip 830 .
- FIG. 14 also shows the locking and unlocking direction of rotation for a right-handed lock.
- the eccentric surface profile becomes flat in the last 10-15 degrees of handle rotation, allowing it to engage the internal subsection lip across a wider area and increasing the force necessary to rotate the lock handle away from engagement.
- the cam includes an apex 823 , which is the termination of the flat section 827 . The dimensions of the cam are such that the cam can rise into the channel upon unlocking rotation.
- FIGS. 15A and 15B are cut-away side views of the extension lock installed.
- FIG. 15A shows the extension lock in an unlocked configuration.
- FIG. 15B shows the extension lock in a locked configuration.
- This embodiment shows a screw-threaded shaft 822 with lock handle 815 on the exterior end and cam 824 on the interior end with eccentric section 825 and depth 826 .
- the cam and eccentric section rotates about the axis of the lock handle and screw-threaded shaft.
- the eccentric section progressively engages the proximal end of the internal subsection, progressively forcing the internal subsection distally into the extended position until the internal and external subsection lips engage.
- the lock handle is preferably rotated about 180 degrees to fully engage the eccentric portion with the internal subsection lip.
- the cam latch is configured to descend in the lock housing (towards the Y-axis, see FIG. 8 ) and lock the internal subsection in an extended position upon rotation between about 180 degrees and about 270 degrees.
- the cam moves between locked and unlocked positions with about 180 degree rotation.
- the depth of the cam 826 is designed, constructed and configured such that it will move between locked and unlocked positions with the appropriate amount of rotation.
- the depth of the cam is approximately equal to about 1 ⁇ 2 the lead of the shaft screw-thread, such that the cam will completely move into and out of the lock housing upon about 180 degree rotation.
- the depth of the cam is about 3 ⁇ 4 the lead of the shaft screw-thread, such that it will move between locked and unlocked positions upon about 270 degree rotation.
- the locking occurs through the engagement of the internal subsection lip 830 with external subsection lip 832 at the point of engagement 833 .
- the engagement prevents inward travel of the internal section.
- the cam latch is also configured to ascend in the lock housing upon 180 degree unlocking rotation of the cam latch.
- the cam 825 is configured to move completely into the lock housing with unlocking rotation between about 180 degrees and about 270 degrees, such that the internal subsections can telescope into the external subsection and are not obstructed by the cam when the extension lock is in the unlocked position.
- the cam and/or cam latch are preferably made of an impact and abrasion resistant material, preferably a metal or toughened plastic; and the surfaces of the internal subsection that contact the cam are preferably lined with an impact and abrasion-resistant material, preferably a metal or a filled/toughened plastic.
- FIG. 16A and 16B also show the engagement of two subsection.
- FIG. 16B is a detailed view of area “B” of FIG. 16A , showing the engaged internal 830 and external 832 subsection lips.
- the present invention preferably includes rib reinforcements. These are transverse ribs 840 (parallel to the X-axis) and longitudinal ribs 841 (parallel to the Y-axis), as shown in FIG. 17 .
- the rib reinforcements preferably increase the bending moment of the flat panel sections of the case, thereby increasing their bending stiffness. These ribs also assist in distributing forces acting at the extension lock into the skin of the subsection.
- FIGS. 18 and 19 are color-coded images showing the stress distribution as a result of an applied load at the case segment lock.
- the force applied on an extended case subsection is transmitted into the inboard case subsection by bearing on the cam mechanism. This load is in turn transmitted into the lock housing of the cam mechanism.
- the tapered shape of the lock housing slowly distributes load into the skin and ribs of the case subsection. A measured distribution of load into the relatively thin skin of the case is desired so as not to overstress the material locally.
- the wheels are optionally strategically placed so that they stabilize the case.
- the bottom of the wheels are level with the side of the case its apex 406 when fully extended so that there are 3 points of rest, thus stabilizing the case when lying extended on the side.
- the wheels can additionally be spaced widely to advantageously act as stabilizers when the case is lying flat and extended.
- the wheels limit the compaction of the case, such that the end segment still telescopes in but does not go all the way inside.
- the compacted case can be moved around on the wheels, facilitating moving the case when compacted.
- the wheels act as a hard stop to compressing the case and in a preferred embodiment a strap is used to tie the case closed for storage.
Landscapes
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- General Engineering & Computer Science (AREA)
- Animal Husbandry (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Purses, Travelling Bags, Baskets, Or Suitcases (AREA)
Abstract
A protective case for large objects including a lock housing formed from a first section and a second section, both of the sections including at least one external subsection and at least one internal subsection configured to telescope inside the external subsection; and an extension lock comprising a lock housing and a compression lock, the lock housing including a screw-threaded channel, and the compression comprising at least one screw-threaded shaft with a compressive component on the interior end and a lock handle on the exterior end, the screw-threaded shaft configured to matingly engage with the screw-threaded channel of the lock housing; the compression lock configured to descend in the lock housing and compressingly lock the internal subsection in an extended position upon locking rotation of the compression lock; and the compression lock configure to ascend in the lock housing upon unlocking rotation of the cam latch.
Description
- This application is a continuation-in-part of application Ser. No. 14/195,501, filed Mar. 3, 2014, which is a continuation-in-part of application Ser. No. 13/748,356, filed Jan. 23, 2013, which is a continuation of application Ser. No. 13/224,904, filed Sep. 2, 2011, which is a continuation-in-part of application Ser. No. 12/462,216, filed Jul. 31, 2009, which claims the benefit of U.S. Provisional Application No. 61/137,560, filed Jul. 31, 2008, each of which is in incorporated herein by reference in their entirety.
- 1. Field of the Invention
- The present invention relates generally to travel cases or containers, and more particularly to a collapsible hard case for protectively transporting a large object.
- 2. Description of the Prior Art
- Protective travel cases are generally known. By way of example, U.S. Publication 2004/0232016 provides a telescoping hard case for carrying a golf bag and U.S. Pat. No. 3,628,655 discloses a sectional, convertible wig case.
- In particular, regarding surfboards, typically surfers travel to remote destinations for participating in the sport, especially for competitions, vacations, etc. Additionally, boards are shipped from manufacturers to distributors, retailers and customers using an archaic, damage prone method of cardboard, bubble wrap and duct tape packaging. There are currently no convenient methods for shipping such boards. Problematically, shipment of surfboards or transport in air cargo damages the board surface and introduces structural stresses that the boards were not designed to be exposed to. In many cases, incidental damage to boards during travel and/or transportation can functionally ruin a surfboard. In a specific circumstance, applicant's surfboard was destroyed by a baggage handler in airline transport to Hawaii from the continental US. Since boards are expensive and surfers typically prefer to use their own board rather than generic boards, especially for more advanced surfers and professionals in competition, there has been a need to provide a protective shipping case or container for surfboards.
- Typically, however, containers for shipment of large objects, such as the size of a surfboard, are large and bulky. Upon safe transport of the surfboard then, the container must be stored in a correspondingly large space. Surfboards often range in length from 6-10 feet, in width between about 2-3 feet, and in depth about 3 inches.
- One commercially available surfboard case offered at the time of the present invention is by Santa Monica Hard Case in California, USA. While this product provides a protective case for surfboards, it is formed of a flexible plastic that leaves the boards vulnerable to damage during transport or shipment. Also, it has limited size options and features. Furthermore, this case does not collapse into itself.
- Thus there remains a need for a protective case for surfboards that also provides for convenient storage when not in use and for ease of transport when carried.
- A first aspect of the present invention is to provide a collapsible protective case for large objects. The protective case includes at least one extension lock configured for locking the case in a fully expanded position for completely protectively and removably containing the large object, and to be alternatively collapsed to a collapsed position when not in use
- A second aspect of the present invention is to provide an extension lock with a lock housing and a compression latch. The compression latch has a compressive component configured to descend out of the lock housing and compressingly lock the case in an extended position and to ascend into the housing when unlocked, allowing the case to telescope into a compacted configuration.
- These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment when considered with the drawings, as they support the claimed invention.
-
FIG. 1 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention. -
FIG. 2 illustrates an end view of the case shown inFIG. 1 in a collapsed position according to one embodiment of the present invention. -
FIG. 3 illustrates a side view of another embodiment of the present invention. -
FIG. 4 illustrates an end view of another embodiment of the present invention. -
FIG. 5 illustrates a front view of a protective case in an extended position according to one embodiment of the present invention. -
FIG. 6 illustrates a subsection having a case handle according to one embodiment of the invention. -
FIG. 7 illustrates a subsection having a boss according to one embodiment of the invention. -
FIG. 8 illustrates a front view of a protective case in an intermediate position and having an insert according to one embodiment of the invention. -
FIG. 9 illustrates a perspective view of a protective case according to one embodiment of the invention with two lock housings for two extension locks visible. -
FIG. 10 illustrates a lock housing and a lock handle according to one embodiment of the invention. -
FIG. 11A illustrates a top view of a lock housing and a lock handle according to one embodiment of the invention. -
FIG. 11B illustrates a cross-sectional side of the lock housing and the lock handle ofFIG. 11A along plane A-A. -
FIG. 12 illustrates a perspective view of a lock housing and a lock handle according to one embodiment of the invention. -
FIG. 13 illustrates a perspective line drawing of a lock housing and a lock handle according to one embodiment of the invention. -
FIG. 14 illustrates a bottom view of a cam latch according to one embodiment of the invention. -
FIG. 15A illustrates a side view of an extension lock according to one embodiment of the invention in the unlocked position. -
FIG. 15B illustrates a side view of an extension lock according to one embodiment of the invention in the locked position. -
FIG. 16A illustrates a joint according to one embodiment of the invention. -
FIG. 16B is a magnification of area B ofFIG. 16A showing a joint according to one embodiment of the invention. -
FIG. 17 illustrates the internal ribbing according to one embodiment of the invention. -
FIG. 18 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention. -
FIG. 19 is a color illustration of the stress distribution as a result of an applied load at the case segment lock according to one embodiment of the invention. -
FIG. 20 is an illustration of an embodiment with the wheels positioned to stabilize the case when extended. -
FIG. 21 is an illustration of an embodiment with the wheels positioned to mobilize the case when compacted. - Referring now to the drawings in general, the illustrations are for the purpose of describing preferred embodiments of the invention and are not intended to limit the invention thereto.
- The present invention provides a protective case for large objects constructed and configured to be used in expanded, intermediate and collapsed positions for completely protectively containing the object when housed, and to be alternatively configured in a collapsed position for storage of the case when not in use, i.e., when the object is not stored therewithin. More particularly, the present invention includes a collapsible protective case for large objects with a housing having a rigid, impact-resistant outer surface, the housing being formed from a multiplicity of adjoining sections that are selectively configurable between expanded, intermediate and collapsed positions.
- Preferably, the rigid, impact-resistance outer surface is formed from a hard plastic or composite material that is sufficiently thick to prevent puncture or tearing and resist pressure, flexing or deformation, such that the object contained completely within the housing is protected from external forces. Varying dimensions of the outer surface depend on the object or objects being stored, the transportation conditions, and the amount of protection desired. In one embodiment, the hard plastic shell is between 1/32 and ¼ inches thick, preferably about 3/32 inches thick.
- In one embodiment, illustrated by
FIGS. 1-3 , the housing is preferably formed from two mating sections A and B for completely encasing the object or objects from either end. Sections A and B are releasably connectable and lockable at the adjoining edges that form the middle of the housing. In one embodiment, the two separated sections A and B are approximately equal in size and dimensions. As shown inFIG. 1 , with the exception of thewheels 10 and end case handle 7, the housing is preferably symmetrical about the long axis Y and about the short axis X, in order to improve the balance of the housing in each position. -
FIGS. 1 and 3 illustrate each of the two sections A and B being further comprised of subsections or cells (1A-5A, 1B-5B, 31A-33A and 31B-33B) that are constructed and configured to be juxtapositioned in the extended position. As illustrated in theFIGS. 1 and 3 ,innermost subsections 1A/B and 31A/B have larger dimensions thatoutermost end subsections 5A/B and 33A/B. When not being used for protectively encasing an object, these subsections collapse into each other substantially concentrically as illustrated inFIG. 2 . In the collapsed position ofFIG. 2 , the housing of the present invention can conveniently be stored in a compact position, as illustrated byFIG. 3 . In a preferred embodiment, each of the subsections is arranged so that theend-most subsections 5A/B and 33A/B collapse into the largermiddle subsections 1A/B and 31A/B. Correspondingly, the intermediate subsections 2-4A/B and 32A/B collapse betweenend-most subsections 5A/B and 33A/B andmiddle subsections 1A/B and 31A/B as shown inFIGS. 2 and 3 . - Referring to
FIG. 1 , sections A and B align longitudinally along the board length alongtrack 12, which provides a notch and lock system providing a releasable securement of the subsections with respect to each other to form the rigid housing. Section A is releasably fastenable to the section B by a plurality oflatches 6. In one embodiment, four latches are provided, as depicted inFIG. 1 . Alternatively, twolatches 6, one mirrored on each of two sides of the housing suffice. Alternatively, any number oflatches 6 are positioned onsubsection corresponding latch receptors 13 onsubsection latches 6 can be positioned on the exterior or interior of the housing or both, and optionally include a key or code locking mechanism. - In one embodiment, a carrying case handle 11 is attached to a side of the case for easier carrying, but is strategically placed to function as a releasable attaching latch for connecting the sections A and B. Optionally and additionally,
wheels 10 are positioned on one section and a roller case handle 10 on the other section for easier transport of the case and object assembly. Also, optionally, a roof rack system 9 attached to one of theintermediate subsections 2A-4A and mirrored on one of the juxtaposed subsections 2B-4B is provided. - In one embodiment a lining 403 configured and positioned within the interior of the housing may be provided for additional protection and impact resistance for the large object(s). The lining may include an impact-absorbing or cushioning lining, such as foam, rubber or a coating, and may be affixed to the inner surface of at least one or all of the housing subsections or may be removably affixed to the one or more subsections. Optionally and alternatively, a protective flexible
inner sleeve 404 may be used within the protective case; by way of example and not limitation, it may be independent of the housing and applied around the surfboard before the sleeve-wrapped board is inserted into the case. Preferably, the lining 403 and/orsleeve 404 dimensions are configured to provide flexibility in accommodating large object(s) of varying sizes and dimensions. Additionally, in an embodiment wherein both alining 403 andsleeve 404 are provided, the sleeve may be at least substantially waterproof, thereby providing protection to the lining, which may be susceptible to mold or rot, or, alternatively the lining may be at least substantially resistance to wear and tear, thereby minimizing damage to the lining. Alternatively, the lining and/or sleeve itself may provide similar functionality, thereby minimizing similar damage to the housing. - In one embodiment, wherein a
rubber sleeve 404 and foam lining or insert blocks J and K are provided, and wherein the large object is a surfboard, the surfboard would first be inserted into the sleeve and then the nose of the surfboard is slidingly placed into the block J at the end ofsubsection 5A while section A of the case is in a collapsed or intermediate position. Then the surfboard is pushed into the case, and thesubsections 2A-5A are extended towards an expanded or intermediate position. Then the tail end of the surfboard is slidingly placed into the block K at the end ofsubsection 5B while section B of the case is in a collapsed or intermediate position. Thesubsections 2B-5B are then extended towards an expanded or intermediate position, thereby covering the remaining portion of the board not covered by section A. Sections A and B are attached by placing thelatches 6 into a closed position (or releasably locked position). Optionally, the carrying case handle is additionally closed or releasably locked usinglatch 11. -
FIG. 3 illustrates side and end views of another embodiment according to the present invention; more specifically, it shows the collapsible case in both extended and collapsed positions from a side view (extended position) and end view (collapsed position). In this embodiment, two equal sections A and B are shown, these sections being further divided into subsections 1-3A/B. Subsection 3A/B collapses intosubsection 2A/B and bothsubsections 2A/B and 3A/B collapse intosubsection 1A/B. These subsections collapse along atrack 12 to ensure the subsections collapse and extend with ease, while thetrack 12 also provides rigidity. In an alternative embodiment, the segments fit snugly inside each other to provide rigidity and therefore do not require a track. -
Latches 6 secure sections A and B to each other. Awheel mechanism 10 is used to roll the case and case handle 7 is used for pulling or carrying the case. In embodiments of the present invention, some of the sections or subsections are removable or insertable, allowing the case to be lengthened and shortened, thereby providing maximum size flexibility. -
FIG. 4 illustrates another embodiment of the present invention, wherein at least onestrap 401 is attached tobosses 402 located on the exterior of the housing sections A and B. Each strap is attached to the case with a securement mechanism, the securement mechanism preferably being astrap attachment boss 402, as depicted inFIG. 4 . The strap attachment boss may be a separate piece connected to the case or integral to the outer housing manufacture. For example, and not by limitation, theboss 402 may be an integral feature of an injection molded section 401-402A/B, as depicted inFIG. 6 . Further, the strap and boss design is capable of being mirrored or duplicated on one or more other sides or sections. One embodiment of mirrored bosses is depicted inFIG. 4 . Furthermore, the strap is comprised of any suitable material or fabric, such that the weight of the case and enclosed object(s) are capable of being lifted from a resting position without risk of tear or breakage. In a preferred embodiment, fourbosses 402 and twostraps 401 are included in the case design, as depicted inFIG. 4 . - In one embodiment, a strap is positioned and secured between two bosses, the two bosses equally positioned from the apex 406 of the case. In such an embodiment, the strap is adjustable in length through the boss, such that the slack of the strap may be configured to the particular user and situation. In one embodiment, a hook-and-loop-type fastener is provided as a means of releasably attaching one end of a strap to a portion of the strap body for securing the strap in a fixed position. In another embodiment, a first boss may house a retractable cord mechanism and the other boss, being mirrored in a position across the apex on the same housing side, may house a releasable attachment mechanism. By way of example and not a limitation, the retractable cord mechanism may be similar to the mechanisms described in U.S. Pat. No. 8,096,740 by inventors Parker, et al., U.S. Pat. No. 6,053,381 by inventors Fahl, et al. or U.S. Publication 2011/126778 by inventor Lucy Mitchell, each of which is incorporated by reference herein in its entirety, such that the excess strap remains housed within the boss and is lockable in a multiplicity of lengths. Also, by way of example and not a limitation, the releasable attachment mechanism may be a selectably releasable clasp.
- In one embodiment, the strap can be adjusted to give greater slack, so that the user-transporter can place the strap over the shoulder. Alternatively, the strap can be tightened to remove any excess slack, allowing the user-transporter to carry the case by placing the strap within the grip of a hand instead of over the shoulder. As one skilled in the art would appreciate, the strap is adjustable to any length in any of the expanded, intermediate or collapsed positions, such that the case may be carried over the shoulder, with the hand, or attachable to another system, such as to a rack or over a hook. Also, according to embodiments of the present invention, wherein the case is in an intermediate or collapsed position, the strap can be configured to act as a restraining strap around the case, thereby preventing the case from accidentally expanding.
- In another embodiment, wherein the case is attachable to an automobile luggage rack, the method of attaching the case to the rack includes steps of: disengaging one side of the strap from one boss, placing the case on the rack with the disengaged strap side of the housing facing down, looping the strap from the remaining attached boss around the rack, reengaging the strap to the disengaged boss, and firmly tightening the strap.
-
FIG. 5 illustrates another embodiment of the present invention, wherein acase handle 501 is affixed to at least one section of the case to aid in transportation. Preferably the case handle is centered on the case, section and/or subsection. Optionally, the case handle is riveted to the case, as depicted inFIG. 5 . The case handle 501 is comprised of a metal, a metal encased in rubber, or any other suitable material. - Notably, the
strap attachment boss 402 serves at least two purposes: (1) a securement mechanism for the strap, and (2) an anti-rocking mechanism for the case when in a resting position. As depicted inFIG. 4 , the collapsible and adjoining sections create a substantially diamond-shaped silhouette when the case is viewed from the side. Because the center of the case has the greatest height at the apex, when the case is in a resting position it may have a tendency to tilt to one end or the other. A pair ofstrap attachment bosses 402, individually depicted inFIG. 6 , when positioned on the bottom of the case, prevents the case from tilting or rocking in either direction. This advantageous feature provides stability and reduces the risk of injury or damage. - In the case of use for a surfboard, each section is about half the length of a surfboard but slightly larger to properly and protectively secure the surfboard therein when combined together. In the case of use for an asymmetrical object or objects, such as golf clubs, musical instrument, etc., the sections and subsections may remain symmetrical and either (1) inserts are provided and/or (2) the housing is configured in one of the intermediate positions to compensate for the asymmetry of the object(s) and provide protection to the object(s). In the embodiment wherein inserts are provided, at least one insert is placed in a subsection of section A or B or both. By conforming the interior of the housing to provide an improved fit to the large object or objects, whether through the use of inserts or intermediate positions or both, the large object(s) are less likely to move within the housing during transport, thereby minimizing damage or disorganization of the object(s).
-
FIG. 7 illustrates an embodiment having an insert and configuring a subsection into an intermediate position to provide a better fit for the object(s), in this case golf clubs.Subsection 41A is configured intointermediate position 701 so as to remove any excess volume from the interior of the housing when the golf clubs are housed therewithin. Additionally,golf club insert 702 is placed withinsubsection 41B to provide a tighter fit within this subsection, thereby minimizing the movement of the clubs during transport. As one skilled in the art would appreciate, any number of designs and configurations could be included as an insert in order to contain portions of a housed large object(s). - In another embodiment, the case includes a housing having a rigid, impact-resistant outer surface, the housing being formed from two equal halves, each half having a multiplicity of adjoining sections that are selectively configurable between an expanded transport position and a collapsed storage position; the housing being symmetrical about the long axis and about the short axis. Furthermore, in another embodiment, the housing halves have equal number of adjoining sections and the housing halves are symmetrical when in an expanded or collapsed position.
- The present invention includes an extension lock to hold the subsections in an extended position.
FIG. 9 shows a perspective view of a protective case with two extension locks 800.FIGS. 10 , 11A and 11B and 12 show a preferred embodiment of alock housing 810 and lock handle 815 for anextension lock 800.FIG. 13 shows a cut-away view of theextension lock 800. The extension lock is located on the distal end of a first subsection (away from the X axis, seeFIG. 8 ) and is configured for locking the first subsection to a second subsection internal to the first subsection in an extended position. The extension lock, generally described as 800, includes alock housing 810 and acompression latch 820. The lock housing includes a screw-threadedchannel 812. Thecompression latch 820 includes a screw-threadedshaft 822 with acompressive component 824 on the internal end and alock handle 815 on the external end. The screw-threaded shaft is configured to matingly engage with the screw-threaded channel of the lock housing. In a preferred embodiment, the compressive component is a cam and the compression latch is a cam latch. -
FIG. 14 shows a bottom view of acam latch 820 with thecam 824 and part of the lock handle 815 visible. Theeccentric portion 825 of the cam is in the locked position against theinternal subsection lip 830.FIG. 14 also shows the locking and unlocking direction of rotation for a right-handed lock. In an alternative embodiment the eccentric surface profile becomes flat in the last 10-15 degrees of handle rotation, allowing it to engage the internal subsection lip across a wider area and increasing the force necessary to rotate the lock handle away from engagement. In this configuration the cam includes an apex 823, which is the termination of theflat section 827. The dimensions of the cam are such that the cam can rise into the channel upon unlocking rotation. -
FIGS. 15A and 15B are cut-away side views of the extension lock installed.FIG. 15A shows the extension lock in an unlocked configuration.FIG. 15B shows the extension lock in a locked configuration. - This embodiment shows a screw-threaded
shaft 822 with lock handle 815 on the exterior end andcam 824 on the interior end witheccentric section 825 anddepth 826. The cam and eccentric section rotates about the axis of the lock handle and screw-threaded shaft. As the shaft is rotated down in the lock housing, the eccentric section progressively engages the proximal end of the internal subsection, progressively forcing the internal subsection distally into the extended position until the internal and external subsection lips engage. The lock handle is preferably rotated about 180 degrees to fully engage the eccentric portion with the internal subsection lip. - The cam latch is configured to descend in the lock housing (towards the Y-axis, see
FIG. 8 ) and lock the internal subsection in an extended position upon rotation between about 180 degrees and about 270 degrees. Preferably the cam moves between locked and unlocked positions with about 180 degree rotation. The depth of thecam 826 is designed, constructed and configured such that it will move between locked and unlocked positions with the appropriate amount of rotation. In a preferred embodiment, the depth of the cam is approximately equal to about ½ the lead of the shaft screw-thread, such that the cam will completely move into and out of the lock housing upon about 180 degree rotation. In an alternate embodiment, the depth of the cam is about ¾ the lead of the shaft screw-thread, such that it will move between locked and unlocked positions upon about 270 degree rotation. - The locking occurs through the engagement of the
internal subsection lip 830 withexternal subsection lip 832 at the point ofengagement 833. The engagement prevents inward travel of the internal section. The cam latch is also configured to ascend in the lock housing upon 180 degree unlocking rotation of the cam latch. In a preferred embodiment, thecam 825 is configured to move completely into the lock housing with unlocking rotation between about 180 degrees and about 270 degrees, such that the internal subsections can telescope into the external subsection and are not obstructed by the cam when the extension lock is in the unlocked position. - The cam and/or cam latch are preferably made of an impact and abrasion resistant material, preferably a metal or toughened plastic; and the surfaces of the internal subsection that contact the cam are preferably lined with an impact and abrasion-resistant material, preferably a metal or a filled/toughened plastic.
-
FIG. 16A and 16B also show the engagement of two subsection.FIG. 16B is a detailed view of area “B” ofFIG. 16A , showing the engaged internal 830 and external 832 subsection lips. - The present invention preferably includes rib reinforcements. These are transverse ribs 840 (parallel to the X-axis) and longitudinal ribs 841 (parallel to the Y-axis), as shown in
FIG. 17 . The rib reinforcements preferably increase the bending moment of the flat panel sections of the case, thereby increasing their bending stiffness. These ribs also assist in distributing forces acting at the extension lock into the skin of the subsection.FIGS. 18 and 19 are color-coded images showing the stress distribution as a result of an applied load at the case segment lock. The force applied on an extended case subsection is transmitted into the inboard case subsection by bearing on the cam mechanism. This load is in turn transmitted into the lock housing of the cam mechanism. The tapered shape of the lock housing slowly distributes load into the skin and ribs of the case subsection. A measured distribution of load into the relatively thin skin of the case is desired so as not to overstress the material locally. - Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. For example, as shown in
FIGS. 20 and 21 , the wheels are optionally strategically placed so that they stabilize the case. In one embodiment, as shown inFIG. 20 , the bottom of the wheels are level with the side of the case itsapex 406 when fully extended so that there are 3 points of rest, thus stabilizing the case when lying extended on the side. The wheels can additionally be spaced widely to advantageously act as stabilizers when the case is lying flat and extended. - In another example embodiment shown in
FIG. 21 , there are at least 2 wheels that protrude wider than the case body to prevent it from rocking Preferably, there are 4 wheels. The wheels limit the compaction of the case, such that the end segment still telescopes in but does not go all the way inside. The compacted case can be moved around on the wheels, facilitating moving the case when compacted. Also, the wheels act as a hard stop to compressing the case and in a preferred embodiment a strap is used to tie the case closed for storage. - The above mentioned examples are provided to serve the purpose of clarifying the aspects of the invention and it will be apparent to one skilled in the art that they do not serve to limit the scope of the invention. All modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the present invention.
Claims (10)
1. A protective case for large objects, comprising:
a housing including a rigid, impact-resistant outer surface, wherein the housing is formed from a first section and a second section, at least one of the first second and the second section including at least one external subsection and at least one internal subsection; the external subsection having a distal end; and wherein the internal subsection is configured to telescope inside the external subsection; and
at least one extension lock on the distal end of the at least one external subsection configured for locking the internal subsection in an extended position relative to the external subsection;
the at least one extension lock comprising a lock housing and a compression latch, the lock housing including a screw-threaded channel, and the compression latch comprising at least one screw-threaded shaft with a compressive component on an interior end and a lock handle on an exterior end, the at least one screw-threaded shaft configured to matingly engage with the screw-threaded channel of the lock housing;
the compressive component configured to descend out of the lock housing and compressingly lock the internal subsection in an extended position upon locking rotation of the compression latch; and the compressive component configure to ascend into the lock housing upon unlocking rotation of the compression latch;
thereby providing a protective case that is easily collapsible and secure when extended.
2. The case of claim 1 , wherein the compressive component is a cam and the compression latch is a cam latch; the cam configured to move into and out of the lock housing with rotation of the cam latch, thereby allowing the internal subsections to telescope into the external subsection when the extension lock is in the unlocked position.
3. The case of claim 2 , wherein the rotation of the cam latch is between about 180 and 270 degrees.
4. The case of claim 2 , wherein the rotation of the cam latch is about 180 degrees.
5. The case of claim 1 , wherein the compressive component comprises metal and/or toughened plastic.
6. The case of claim 1 , wherein the internal subsection includes contact surfaces, wherein the contact surfaces comprise metal and/or toughened plastic.
7. An extension lock for telescoping subsections comprising:
a lock housing and a compression latch; the lock housing positioned on a first subsection that telescopes over a second subsection;
the lock housing including a screw-threaded channel; and
the compression latch comprising at least one screw-threaded shaft with a compressive component on the interior end and a lock handle on the exterior end, the screw-threaded shaft configured to matingly engage with the screw-threaded channel of the lock housing;
the compressive component configured to descend in the lock housing and compressingly lock the first and the second subsections in an extended position upon locking rotation of the compression latch; and the compressive component configured to ascend in the lock housing upon unlocking rotation of the compression latch.
8. The extension lock of claim 7 , wherein the compressive component is a cam and the compression latch is a cam latch; the cam configured to move into the lock housing with unlocking rotation of the cam latch, thereby allowing the second subsections to telescope into the first subsection when the extension lock is in the unlocked position.
9. The extension lock of claim 8 , wherein the rotation of the cam latch is between about 180 and 270 degrees.
10. The extension lock of claim 8 , wherein the rotation of the cam latch is about 180 degrees.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/684,734 US20150216277A1 (en) | 2008-07-31 | 2015-04-13 | Collapsible Hard Case for Surfboards and Other Large Objects |
US15/865,910 US11154124B2 (en) | 2008-07-31 | 2018-01-09 | Collapsible hard case for surfboards and other large objects |
US17/507,273 US11617426B2 (en) | 2008-07-31 | 2021-10-21 | Collapsible hard case for surfboards and other large objects |
US18/119,038 US20230218054A1 (en) | 2008-07-31 | 2023-03-08 | Collapsible hard case for surfboards and other large objects |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13756008P | 2008-07-31 | 2008-07-31 | |
US12/462,216 US8066138B2 (en) | 2008-07-31 | 2009-07-31 | Collapsible hard case for surfboards and other large objects |
US13/224,904 US8381930B2 (en) | 2008-07-31 | 2011-09-02 | Collapsible hard case for surfboards and other large objects |
US13/748,356 US8668104B2 (en) | 2008-07-31 | 2013-01-23 | Collapsible hard case for surfboards and other large objects |
US14/195,501 US9010559B2 (en) | 2008-07-31 | 2014-03-03 | Collapsible hard case for surfboards and other large objects |
US14/684,734 US20150216277A1 (en) | 2008-07-31 | 2015-04-13 | Collapsible Hard Case for Surfboards and Other Large Objects |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/195,501 Continuation-In-Part US9010559B2 (en) | 2008-07-31 | 2014-03-03 | Collapsible hard case for surfboards and other large objects |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/865,910 Continuation-In-Part US11154124B2 (en) | 2008-07-31 | 2018-01-09 | Collapsible hard case for surfboards and other large objects |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150216277A1 true US20150216277A1 (en) | 2015-08-06 |
Family
ID=53753741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/684,734 Abandoned US20150216277A1 (en) | 2008-07-31 | 2015-04-13 | Collapsible Hard Case for Surfboards and Other Large Objects |
Country Status (1)
Country | Link |
---|---|
US (1) | US20150216277A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018035352A1 (en) * | 2016-08-18 | 2018-02-22 | Stephen Kenneth Warll | Protective watercraft board container |
US20210016144A1 (en) * | 2019-07-16 | 2021-01-21 | Sun Mountain Sports, Inc. | Collapsible rolling travel cover for a golf bag |
US11154124B2 (en) | 2008-07-31 | 2021-10-26 | David A. Boyles | Collapsible hard case for surfboards and other large objects |
WO2022173311A1 (en) | 2021-02-12 | 2022-08-18 | Db Equipment As | Sports bag with protective ribs |
US12145036B2 (en) | 2023-08-21 | 2024-11-19 | Sun Mountain Sports, Llc | Collapsible rolling travel cover for a golf bag |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US748078A (en) * | 1903-08-03 | 1903-12-29 | Stromberg Carlson Telephone | Fastening device. |
US872712A (en) * | 1905-03-01 | 1907-12-03 | Waltham Watch Co | Watch. |
US944725A (en) * | 1909-06-03 | 1909-12-28 | Walton Ferguson Jr | Spike for railway and like uses. |
US978585A (en) * | 1909-09-10 | 1910-12-13 | Clemence Huber | Can-top fastener and opener. |
US999891A (en) * | 1910-11-21 | 1911-08-08 | Melzar Shepard | Box-lid fastener. |
US1187479A (en) * | 1916-04-01 | 1916-06-20 | Louis Bettigole | Sash-stop. |
US1213599A (en) * | 1915-10-15 | 1917-01-23 | Charles E W Dow | Fastener. |
US2045083A (en) * | 1934-12-17 | 1936-06-23 | Banner Iron Works | Cover for manhole frames or the like |
US2480434A (en) * | 1946-02-16 | 1949-08-30 | Martin Askin | Locking device for metal casting molds |
US2839322A (en) * | 1955-08-30 | 1958-06-17 | Gen Dynamics Corp | Securing device |
US3006443A (en) * | 1954-12-20 | 1961-10-31 | Joseph T Siler | Method and apparatus for attaching juxtaposed members |
US3479076A (en) * | 1967-06-10 | 1969-11-18 | Rheinstahl Henschel Ag | Lock for gas and watertight closing of flaps,gates,doors and the like |
US3480311A (en) * | 1968-06-05 | 1969-11-25 | Entron Inc | Quick-release fastener means |
US4494783A (en) * | 1977-12-01 | 1985-01-22 | Hartwell Corporation | Flush type rotary drive for latches |
GB2154654A (en) * | 1984-02-23 | 1985-09-11 | Chubb & Sons Lock & Safe Co | Security fittings |
US4844518A (en) * | 1987-08-27 | 1989-07-04 | Environmental Container Systems, Inc. | Roto cam latch |
US5230542A (en) * | 1992-03-11 | 1993-07-27 | Custom Metalcraft Inc. | Latch dog assembly |
US6502871B1 (en) * | 2000-11-28 | 2003-01-07 | Tempress Products, Lp | Rotary latch system and method |
US6626017B2 (en) * | 2001-07-13 | 2003-09-30 | Carrier Corporation | Locking mechanism for air handler (AHU) cabinet |
US20050161955A1 (en) * | 2004-01-23 | 2005-07-28 | Hicok Michael W. | Systems and methods for holding together first and second objects and fasteners for use with the systems and methods |
US7619878B1 (en) * | 2007-07-16 | 2009-11-17 | Nicor, Inc. | Meter cover for automated meter reading |
US9663973B2 (en) * | 2010-06-10 | 2017-05-30 | Rehrig Pacific Company | Water meter pit cover latch |
-
2015
- 2015-04-13 US US14/684,734 patent/US20150216277A1/en not_active Abandoned
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US748078A (en) * | 1903-08-03 | 1903-12-29 | Stromberg Carlson Telephone | Fastening device. |
US872712A (en) * | 1905-03-01 | 1907-12-03 | Waltham Watch Co | Watch. |
US944725A (en) * | 1909-06-03 | 1909-12-28 | Walton Ferguson Jr | Spike for railway and like uses. |
US978585A (en) * | 1909-09-10 | 1910-12-13 | Clemence Huber | Can-top fastener and opener. |
US999891A (en) * | 1910-11-21 | 1911-08-08 | Melzar Shepard | Box-lid fastener. |
US1213599A (en) * | 1915-10-15 | 1917-01-23 | Charles E W Dow | Fastener. |
US1187479A (en) * | 1916-04-01 | 1916-06-20 | Louis Bettigole | Sash-stop. |
US2045083A (en) * | 1934-12-17 | 1936-06-23 | Banner Iron Works | Cover for manhole frames or the like |
US2480434A (en) * | 1946-02-16 | 1949-08-30 | Martin Askin | Locking device for metal casting molds |
US3006443A (en) * | 1954-12-20 | 1961-10-31 | Joseph T Siler | Method and apparatus for attaching juxtaposed members |
US2839322A (en) * | 1955-08-30 | 1958-06-17 | Gen Dynamics Corp | Securing device |
US3479076A (en) * | 1967-06-10 | 1969-11-18 | Rheinstahl Henschel Ag | Lock for gas and watertight closing of flaps,gates,doors and the like |
US3480311A (en) * | 1968-06-05 | 1969-11-25 | Entron Inc | Quick-release fastener means |
US4494783A (en) * | 1977-12-01 | 1985-01-22 | Hartwell Corporation | Flush type rotary drive for latches |
GB2154654A (en) * | 1984-02-23 | 1985-09-11 | Chubb & Sons Lock & Safe Co | Security fittings |
US4844518A (en) * | 1987-08-27 | 1989-07-04 | Environmental Container Systems, Inc. | Roto cam latch |
US5230542A (en) * | 1992-03-11 | 1993-07-27 | Custom Metalcraft Inc. | Latch dog assembly |
US6502871B1 (en) * | 2000-11-28 | 2003-01-07 | Tempress Products, Lp | Rotary latch system and method |
US6626017B2 (en) * | 2001-07-13 | 2003-09-30 | Carrier Corporation | Locking mechanism for air handler (AHU) cabinet |
US20050161955A1 (en) * | 2004-01-23 | 2005-07-28 | Hicok Michael W. | Systems and methods for holding together first and second objects and fasteners for use with the systems and methods |
US7619878B1 (en) * | 2007-07-16 | 2009-11-17 | Nicor, Inc. | Meter cover for automated meter reading |
US9663973B2 (en) * | 2010-06-10 | 2017-05-30 | Rehrig Pacific Company | Water meter pit cover latch |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11154124B2 (en) | 2008-07-31 | 2021-10-26 | David A. Boyles | Collapsible hard case for surfboards and other large objects |
US11617426B2 (en) | 2008-07-31 | 2023-04-04 | David A. Boyles | Collapsible hard case for surfboards and other large objects |
WO2018035352A1 (en) * | 2016-08-18 | 2018-02-22 | Stephen Kenneth Warll | Protective watercraft board container |
US10661864B2 (en) | 2016-08-18 | 2020-05-26 | Stephen Kenneth Warll | Protective watercraft board container |
US20210016144A1 (en) * | 2019-07-16 | 2021-01-21 | Sun Mountain Sports, Inc. | Collapsible rolling travel cover for a golf bag |
US11731016B2 (en) * | 2019-07-16 | 2023-08-22 | Sun Mountain Sports, Llc | Collapsible rolling travel cover for a golf bag |
WO2022173311A1 (en) | 2021-02-12 | 2022-08-18 | Db Equipment As | Sports bag with protective ribs |
US12145036B2 (en) | 2023-08-21 | 2024-11-19 | Sun Mountain Sports, Llc | Collapsible rolling travel cover for a golf bag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11617426B2 (en) | Collapsible hard case for surfboards and other large objects | |
US8668104B2 (en) | Collapsible hard case for surfboards and other large objects | |
US20150216277A1 (en) | Collapsible Hard Case for Surfboards and Other Large Objects | |
US6186522B1 (en) | Travelling golf cart | |
US4643302A (en) | Container for sports equipment | |
EP2747855B1 (en) | Accessory bag having reinforced sidewalls and variable length | |
US20090166141A1 (en) | Flat packing suitcase system | |
US8066138B2 (en) | Collapsible hard case for surfboards and other large objects | |
EP0413243B1 (en) | Ski carrier | |
US9010559B2 (en) | Collapsible hard case for surfboards and other large objects | |
US9981722B2 (en) | Hinged inflatable surfboard cover | |
US6315115B1 (en) | Golf bag carrying case | |
US9084920B2 (en) | Golf club carrying case | |
US7017747B2 (en) | Protective inflatable surfboard covering device | |
US20030173384A1 (en) | BTS: Board transportation system | |
US20170245607A1 (en) | Adjustable carry bag | |
US20230218054A1 (en) | Collapsible hard case for surfboards and other large objects | |
US8967375B1 (en) | Fold up luggage for elongate items | |
US7850007B2 (en) | Apparatus for storing and transporting watercraft propellers | |
US20060185998A1 (en) | Inflatable shipping device and method of forming and using same | |
US20240065395A1 (en) | Multiple purpose travel bags, travel bag systems, and related methods | |
US20090188820A1 (en) | Shipping container and method of forming and using same | |
US11731016B2 (en) | Collapsible rolling travel cover for a golf bag | |
US20090014349A1 (en) | Storage Device Provided with an Inflatable Chamber | |
EP4459079A1 (en) | Inflatable air soft shell base for tent and tent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |