US20150208969A1 - Method of Making an Electrochemical Sensor - Google Patents
Method of Making an Electrochemical Sensor Download PDFInfo
- Publication number
- US20150208969A1 US20150208969A1 US14/683,129 US201514683129A US2015208969A1 US 20150208969 A1 US20150208969 A1 US 20150208969A1 US 201514683129 A US201514683129 A US 201514683129A US 2015208969 A1 US2015208969 A1 US 2015208969A1
- Authority
- US
- United States
- Prior art keywords
- sensor
- analyte
- substrate
- web
- conductive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1468—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
- A61B5/1473—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
- A61B5/14735—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter comprising an immobilised reagent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1486—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
- A61B5/14865—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3272—Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
- G01N33/5438—Electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54393—Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/66—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0271—Thermal or temperature sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/12—Manufacturing methods specially adapted for producing sensors for in-vivo measurements
- A61B2562/125—Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1052—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
- Y10T156/1062—Prior to assembly
- Y10T156/1064—Partial cutting [e.g., grooving or incising]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1052—Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
- Y10T156/1082—Partial cutting bonded sandwich [e.g., grooving or incising]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49004—Electrical device making including measuring or testing of device or component part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49007—Indicating transducer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49128—Assembling formed circuit to base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49204—Contact or terminal manufacturing
- Y10T29/49208—Contact or terminal manufacturing by assembling plural parts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49789—Obtaining plural product pieces from unitary workpiece
- Y10T29/49798—Dividing sequentially from leading end, e.g., by cutting or breaking
Definitions
- the present invention relates to a process for the manufacture of small sensors, including small electrochemical sensors. More particularly, the process of the invention includes disposing a conductive material on a substrate, preferably in channels formed on the surface of the substrate, thereby forming conductive traces and electrodes in a rapid, efficient manner, with reproducible surface areas and conductivities, and particularly forming very small conductive traces.
- the monitoring of the level of glucose or other biochemicals, such as lactate, in individuals is often important. High or low levels of glucose or other biochemicals may be detrimental to an individual's health.
- the monitoring of glucose is particularly important to individuals with diabetes as they must determine when insulin is needed to reduce glucose levels in their bloodstream or when additional glucose is needed to raise the level of glucose in the bloodstream.
- a variety of other devices have also been developed for continuous monitoring of analytes in the blood stream or subcutaneous tissue. Many of these devices use electrochemical sensors which are directly implanted in a blood vessel or in the subcutaneous tissue of a user. However, these devices are often large, bulky, and/or inflexible and many cannot be used effectively outside of a controlled medical facility, such as a hospital or a doctor's office, unless the user is restricted in his activities.
- the user's comfort and the range of activities that can be performed while the sensor is implanted are important considerations in designing extended-use sensors for continuous in vivo monitoring of the level of an analyte, such as glucose.
- an analyte such as glucose
- methods that allow such small, comfortable devices to be relatively inexpensively, efficiently, reproducibly and precisely manufactured.
- Small sized non-electrochemical sensors including, for example, temperature probes, would also be useful if they could be reliably and reproducibly manufactured. A process for the manufacture of small sensors with reproducible surfaces is needed.
- the present invention provides a process for the manufacture of small sensors which is efficient, reliable, and provides reproducible surfaces.
- the process of the invention includes forming one or more channels on a surface of a substrate and disposing a conductive material within the formed channels to form an electrode.
- Various embodiments of the process include the manufacture of electrochemical sensors by disposing a sensing layer on the conductive material within the formed channels; the manufacture of a sensor having one or more working electrodes; counter/reference electrodes, temperature sensors and the like formed in a plurality of channels on one or more surfaces of the substrate; and sensors having a plurality of electrode traces separated by very small distances to form a small electrochemical sensor.
- One aspect of the present invention relates to a process for the manufacture of an electrochemical sensor using a web process, which may be continuous or non-continuous.
- the process includes the steps of providing a substrate web, and disposing a pattern of a conductive material on the continuous substrate web to form an electrode, including one or more working electrodes and counter electrodes.
- the method also includes the step of disposing a sensing layer on the working electrode disposed on the web.
- Such a continuous web process is adapted for relatively inexpensively, efficiently, reproducibly and precisely manufacturing electrochemical sensors.
- Another aspect of the present invention includes a process for the manufacture of an electrochemical sensor having one or more working and/or counter electrodes disposed on a sensor substrate.
- the method includes the steps of providing a substrate and disposing a conductive material on the substrate to form one or more working electrodes and/or counter electrodes, and optionally disposing a sensing layer on the working electrode.
- a further aspect of the present invention relates to process for the manufacture of an electrochemical sensor having electrodes and conductive traces disposed within channels defined by a sensor substrate.
- the process includes the steps of providing a substrate, and forming first and second channels in the substrate.
- the process also includes the step of disposing a conductive material within the channels to form a working electrode located at the first channel, and a counter electrode located at the second channel.
- the process further includes the optional step of disposing a sensing layer on the working electrode.
- the invention includes a continuous process for multi-step preparation of sensors including the efficient and precise deposition of small electrode tracings; sensing layers; counter electrodes, temperature sensors, and like constituents to efficiently produce electrochemical and non-electrochemical biosensors.
- FIG. 1 is a block diagram of one embodiment of an analyte monitor using an analyte sensor, according to the invention
- FIG. 2 is a top view of one embodiment of an analyte sensor, according to the invention.
- FIG. 3A is a cross-sectional view of the analyte sensor of FIG. 2 ;
- FIG. 3B is a cross-sectional view of another embodiment of an analyte sensor, according to the invention.
- FIG. 4A is a cross-sectional view of yet another embodiment of an analyte sensor, according to the invention.
- FIG. 4B is a cross-sectional view of a fourth embodiment of an analyte sensor, according to the invention.
- FIG. 5 is an expanded top view of a tip portion of the analyte sensor of FIG. 2 ;
- FIG. 6 is a cross-sectional view of a fifth embodiment of an analyte sensor, according to the invention.
- FIG. 7 is an expanded top view of a tip-portion of the analyte sensor of FIG. 6 ;
- FIG. 8 is an expanded bottom view of a tip-portion of the analyte sensor of FIG. 6 ;
- FIG. 9 is a side view of the analyte sensor of FIG. 2 ;
- FIG. 10 is a top view of the analyte sensor of FIG. 6 ;
- FIG. 11 is a bottom view of the analyte sensor of FIG. 6 .
- FIG. 12 is a schematic illustration of an exemplary method or system for manufacturing the sensor of FIG. 2 ;
- FIG. 13 is a perspective view of an exemplary embossing roller suitable for use in the system of FIG. 12 ;
- FIG. 14 is a perspective of an alternative embossing roller
- FIG. 15A is cross sectional view taken along section line 15 a - 15 a of FIG. 12 ;
- FIG. 15B is a cross sectional view taken along section line 15 b - 15 b of FIG. 12 ;
- FIG. 15C is a cross sectional view taken along section line 15 c - 15 c of FIG. 12 ;
- FIG. 15D is a cross sectional view taken along section line 15 d - 15 d of FIG. 12 ;
- FIG. 16 illustrates a system in accordance with the principles of the present invention for making the sensor of FIGS. 10 and 11 ;
- FIG. 17 is a top view of another embodiment of an analyte sensor, according to the invention.
- the process of the present invention is applicable to the manufacture of an analyte sensor for the in vivo and/or in vitro determination of an analyte, such as glucose or lactate, in a fluid.
- the process is also applicable to the production of other sensors, including, for example biosensors relaying a chemical signal through a conductive tracing.
- the analyte sensors of the present invention can be utilized in a variety of contexts.
- one embodiment of the analyte sensor is subcutaneously implanted in the interstitial tissue of a patient for the continuous or periodic monitoring of a level of an analyte in a patient's interstitial fluid. This can then be used to infer the analyte level in the patient's bloodstream.
- Other in vivo analyte sensors can be made, according to the invention, for insertion into a vein, artery, or other portion of the body containing fluid in order to measure a bioanalyte.
- the in vivo analyte sensors may be configured for obtaining a single measurement and/or for monitoring the level of the analyte over a time period which may range from hours to days or longer.
- analyte sensor is used for the in vitro determination of the presence and/or level of an analyte in a sample, and, particularly, in a small volume sample (e.g., 1 to 10 microliters or less). While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
- a “counter electrode” refers to an electrode paired with the working electrode, through which passes a current equal in magnitude and opposite in sign to the current passing through the working electrode.
- the term “counter electrode” is meant to include counter electrodes which also function as reference electrodes (i.e., a counter/reference electrode).
- An “electrochemical sensor” is a device configured to detect the presence and/or measure the level of an analyte in a sample via electrochemical oxidation and reduction reactions on the sensor. These reactions are transduced to an electrical signal that can be correlated to an amount, concentration, or level of an analyte in the sample.
- Electrolysis is the electrooxidation or electroreduction of a compound either directly at an electrode or via one or more electron transfer agents.
- a compound is “immobilized” on a surface when it is entrapped on or chemically bound to the surface.
- non-leachable or “non-releasable” compound or a compound that is “non-leachably disposed” is meant to define a compound that is affixed on the sensor such that it does not substantially diffuse away from the working surface of the working electrode for the period in which the sensor is used (e.g., the period in which the sensor is implanted in a patient or measuring a sample).
- Components are “immobilized” within a sensor, for example, when the components are covalently, ionically, or coordinatively bound to constituents of the sensor and/or are entrapped in a polymeric or sol-gel matrix or membrane which precludes mobility.
- an “electron transfer agent” is a compound that carries electrons between the analyte and the working electrode, either directly, or in cooperation with other electron transfer agents.
- an electron transfer agent is a redox mediator.
- a “working electrode” is an electrode at which the analyte (or a second compound whose level depends on the level of the analyte) is electrooxidized or electroreduced with or without the agency of an electron transfer agent.
- a “working surface” is that portion of the working electrode which is coated with or is accessible to the electron transfer agent and configured for exposure to an analyte-containing fluid.
- sensing layer is a component of the sensor which includes constituents that facilitate the electrolysis of the analyte.
- the sensing layer may include constituents such as an electron transfer agent, a catalyst which catalyzes a reaction of the analyte to produce a response at the electrode, or both.
- the sensing layer is non-leachably disposed in proximity to or on the working electrode.
- a “non-corroding” conductive material includes non-metallic materials, such as carbon and conductive polymers.
- the sensors of the present invention can be utilized in a variety of devices and under a variety of conditions.
- the particular configuration of a sensor may depend on the use for which the sensor is intended and the conditions under which the sensor will operate (e.g., in vivo or in vitro).
- One embodiment of the analyte sensor is configured for implantation into a patient or user for in vivo operation.
- implantation of the sensor may be made in the arterial or venous systems for direct testing of analyte levels in blood.
- a sensor may be implanted in the interstitial tissue for determining the analyte level in interstitial fluid. This level may be correlated and/or converted to analyte levels in blood or other fluids.
- the site and depth of implantation may affect the particular shape, components, and configuration of the sensor.
- Subcutaneous implantation may be preferred, in some cases, to limit the depth of implantation of the sensor.
- Sensors may also be implanted in other regions of the body to determine analyte levels in other fluids. Particularly useful sensors are described in U.S. Pat. No. 6,134,461, incorporated herein by reference.
- An implantable analyte sensor may be used as part of an analyte monitoring system to continuously and/or periodically monitor the level of an analyte in a body fluid of a patient.
- the analyte monitoring system 40 also typically includes a control unit 44 for operating the sensor 42 (e.g., providing a potential to the electrodes and obtaining measurements from the electrodes) and a processing unit 45 for analyzing the measurements from the sensor 42 .
- the control unit 44 and processing unit 45 may be combined in a single unit or may be separate.
- the in vitro sensor is coupled to a control unit and/or a processing unit to form an analyte monitoring system.
- an in vitro analyte monitoring system is also configured to provide a sample to the sensor.
- the analyte monitoring system may be configured to draw a sample from, for example, a lanced wound using a wicking and/or capillary action. The sample may then be drawn into contact with the sensor. Examples of such sensors may be found in U.S. patent application Ser. No. 08/795,767 and PCT Patent Application Publication No. WO 98/35225, incorporated herein by reference.
- Other methods for providing a sample to the sensor include using a pump, syringe, or other mechanism to draw a sample from a patient through tubing or the like either directly to the sensor or into a storage unit from which a sample is obtained for the sensor.
- the pump, syringe, or other mechanism may operate continuously, periodically, or when desired to obtain a sample for testing.
- Other useful devices for providing an analyte-containing fluid to the sensor include microfiltration and/or microdialysis devices.
- the analyte may be drawn from the body fluid through a microporous membrane, for example, by osmotic pressure, into a carrier fluid which is then conveyed to the sensor for analysis.
- Other useful devices for acquiring a sample are those that collect body fluids transported across the skin using techniques, such as reverse iontophoresis, to enhance the transport of fluid containing analyte across the skin.
- a sensor 42 includes at least one working electrode 58 formed on a substrate 50 , as shown in FIG. 2 .
- the sensor 42 may also include at least one counter electrode 60 (or counter/reference electrode) and/or at least one reference electrode 62 (see FIG. 8 ).
- the counter electrode 60 and/or reference electrode 62 may be formed on the substrate 50 or may be separate units.
- the counter electrode and/or reference electrode may be formed on a second substrate which is also implanted in the patient or, for some embodiments of the implantable sensors, the counter electrode and/or reference electrode may be placed on the skin of the patient with the working electrode or electrodes being implanted into the patient.
- the use of an on-the-skin counter and/or reference electrode with an implantable working electrode is described in U.S. Pat. No. 5,593,852, incorporated herein by reference.
- the working electrode or electrodes 58 are formed using conductive traces 52 disposed on the substrate 50 .
- These conductive traces 52 may be formed over a smooth surface of the substrate 50 or within channels 54 formed by, for example, embossing, indenting or otherwise creating a depression in the substrate 50 .
- a sensing layer 64 (see FIGS. 3A and 3B ) is often formed proximate to or on at least one of the working electrodes 58 to facilitate the electrochemical detection of the analyte and the determination of its level in the sample fluid, particularly if the analyte cannot be electrolyzed at a desired rate and/or with a desired specificity on a bare electrode.
- the sensing layer 64 may include an electron transfer agent to transfer electrons directly or indirectly between the analyte and the working electrode 58 .
- the sensing layer 64 may also contain a catalyst to catalyze a reaction of the analyte.
- the components of the sensing layer may be in a fluid or gel that is proximate to or in contact with the working electrode 58 .
- the substrate 50 may be formed using a variety of non-conducting materials, including, for example, polymeric or plastic materials and ceramic materials. Suitable materials for a particular sensor 42 may be determined, at least in part, based on the desired use of the sensor 42 and properties of the materials.
- the substrate is flexible.
- the sensor 42 may be made flexible (although rigid sensors may also be used for implantable sensors) to reduce pain to the patient and damage to the tissue caused by the implantation of and/or the wearing of the sensor 42 .
- a flexible substrate 50 often increases the patient's comfort and allows a wider range of activities.
- a flexible substrate 50 is also useful for an in vitro sensor 42 , particularly for ease of manufacturing. Suitable materials for a flexible substrate 50 include, for example, non-conducting plastic or polymeric materials and other non-conducting, flexible, deformable materials.
- thermoplastics such as polycarbonates, polyesters (e.g., MylarTM and polyethylene terephthalate (PET)), polyvinyl chloride (PVC), polyurethanes, polyethers, polyamides, polyimides, or copolymers of these thermoplastics, such as PETG (glycol-modified polyethylene terephthalate).
- PET polyethylene terephthalate
- PVC polyvinyl chloride
- PETG glycol-modified polyethylene terephthalate
- the sensors 42 are made using a relatively rigid substrate 50 to, for example, provide structural support against bending or breaking
- rigid materials that may be used as the substrate 50 include poorly conducting ceramics, such as aluminum oxide and silicon dioxide.
- One advantage of an implantable sensor 42 having a rigid substrate is that the sensor 42 may have a sharp point and/or a sharp edge to aid in implantation of a sensor 42 without an additional insertion device.
- rigid substrates 50 may also be used in sensors for in vitro analyte monitors.
- implantable sensors 42 should have a substrate 50 which is non-toxic.
- the substrate 50 is approved by one or more appropriate governmental agencies or private groups for in vivo use.
- the substrate 50 in at least some embodiments has uniform dimensions along the entire length of the sensor 42 , in other embodiments, the substrate 50 has a distal end 67 at a first portion 67 a of sensor 42 and a proximal end 65 at a second portion 65 a of sensor 42 .
- First portion 67 a and second portion 65 a have different widths 53 , 55 , respectively, as illustrated in FIG. 2 .
- Width 53 is measured between edge 67 ′ and edge 67 ′′ of first portion 67 a
- width 55 is measured between edge 65 ′ and edge 65 ′′ of second portion 65 a.
- the first portion 67 a having distal end 67 of the substrate 50 may have a relatively narrow width 53 .
- the narrow width 53 of the first portion 67 a having distal end 67 of the substrate 50 may facilitate the implantation of the sensor 42 .
- the narrower the width of the sensor 42 the less pain the patient will feel during implantation of the sensor and afterwards.
- the first portion 67 a having distal end 67 of the sensor 42 which is to be implanted into the patient has a width 53 of 2 mm or less, preferably 1 mm or less, and more preferably 0.5 mm or less. If the sensor 42 does not have regions of different widths, then the sensor 42 will typically have an overall width of, for example, 2 mm, 1.5 mm, 1 mm, 0.5 mm, 0.25 mm, or less.
- wider or narrower sensors may be used. In particular, wider implantable sensors may be used for insertion into veins or arteries or when the movement of the patient is limited, for example, when the patient is confined in bed or in a hospital.
- the narrow width 53 may reduce the volume of sample needed for an accurate reading.
- the narrow width 53 of the sensor 42 results in all of the electrodes of the sensor 42 being closely congregated, thereby requiring less sample volume to cover all of the electrodes.
- the width of an in vitro sensor 42 may vary depending, at least in part, on the volume of sample available to the sensor 42 and the dimensions of the sample chamber in which the sensor 42 is disposed.
- the proximal end 65 of the sensor 42 may have a width 55 larger than the distal end 67 to facilitate the connection between contact pads 49 of the electrodes and contacts on a control unit.
- the maximum width of the sensor 42 may be constrained so that the sensor 42 remains small for the convenience and comfort of the patient and/or to fit the desired size of the analyte monitor.
- the proximal end 65 of a subcutaneously implantable sensor 42 such as the sensor 42 illustrated in FIG.
- 1 may have a width 55 ranging from 0.5 mm to 15 mm, preferably from 1 mm to 10 mm, and more preferably from 3 mm to 7 mm.
- wider or narrower sensors may be used in this and other in vivo and in vitro applications.
- the thickness of the substrate 50 may be determined by the mechanical properties of the substrate material (e.g., the strength, modulus, and/or flexibility of the material), the desired use of the sensor 42 including stresses on the substrate 50 arising from that use, as well as the depth of any channels or indentations formed in the substrate 50 , as discussed below.
- the substrate 50 of a subcutaneously implantable sensor 42 for continuous or periodic monitoring of the level of an analyte while the patient engages in normal activities has a thickness of 50 to 500 ⁇ m and preferably 100 to 300 ⁇ m.
- thicker and thinner substrates 50 may be used, particularly in other types of in vivo and in vitro sensors 42 .
- the length of the sensor 42 may have a wide range of values depending on a variety of factors. Factors which influence the length of an implantable sensor 42 may include the depth of implantation into the patient and the ability of the patient to manipulate a small flexible sensor 42 and make connections between the sensor 42 and the sensor control unit 44 .
- a subcutaneously implantable sensor 42 for the analyte monitor illustrated in FIG. 1 may have a length ranging from 0.3 to 5 cm, however, longer or shorter sensors may be used.
- the length of the narrow portion of the sensor 42 e.g., the portion which is subcutaneously inserted into the patient, if the sensor 42 has narrow and wide portions, is typically about 0.25 to 2 cm in length. However, longer and shorter portions may be used. All or only a part of this narrow portion may be subcutaneously implanted into the patient.
- the lengths of other implantable sensors 42 will vary depending, at least in part, on the portion of the patient into which the sensor 42 is to be implanted or inserted.
- the length of in vitro sensors may vary over a wide range depending on the particular configuration of the analyte monitoring system and, in particular, the distance between the contacts of the control unit and the sample.
- At least one conductive trace 52 is formed on the substrate for use in constructing a working electrode 58 .
- other conductive traces 52 may be formed on the substrate 50 for use as electrodes (e.g., additional working electrodes, as well as counter, counter/reference, and/or reference electrodes) and other components, such as a temperature probe.
- the conductive traces 52 may extend most of the distance along a length 57 of the sensor 42 , as illustrated in FIG. 2 , although this is not necessary.
- the placement of the conductive traces 52 may depend on the particular configuration of the analyte monitoring system (e.g., the placement of control unit contacts and/or the sample chamber in relation to the sensor 42 ).
- the conductive traces typically extend close to the tip of the sensor 42 to minimize the amount of the sensor that must be implanted.
- the conductive traces 52 may be formed on the substrate 50 by a variety of techniques, including, for example, photolithography, screen printing, or other impact or non-impact printing techniques.
- the conductive traces 52 may also be formed by carbonizing conductive traces 52 in an organic (e.g., polymeric or plastic) substrate 50 using a laser.
- Another method for disposing the conductive traces 52 on the substrate 50 includes the formation of recessed channels 54 in one or more surfaces of the substrate 50 and the subsequent filling of these recessed channels 54 with a conductive material 56 , as shown in FIG. 3A .
- the recessed channels 54 may be formed by indenting, embossing, or otherwise creating a depression in the surface of the substrate 50 .
- the depth of the channels is typically related to the thickness of the substrate 50 . In one embodiment, the channels have depths in the range of about 12.5 to 75 ⁇ m (0.5 to 3 mils), and preferably about 25 to 50 ⁇ m (1 to 2 mils).
- the conductive traces are typically formed using a conductive material 56 such as carbon (e.g., graphite), a conductive polymer, a metal or alloy (e.g., gold or gold alloy), or a metallic compound (e.g., ruthenium dioxide or titanium dioxide).
- a conductive material 56 such as carbon (e.g., graphite), a conductive polymer, a metal or alloy (e.g., gold or gold alloy), or a metallic compound (e.g., ruthenium dioxide or titanium dioxide).
- a conductive material 56 such as carbon (e.g., graphite), a conductive polymer, a metal or alloy (e.g., gold or gold alloy), or a metallic compound (e.g., ruthenium dioxide or titanium dioxide).
- CVD chemical vapor deposition
- the conductive material 56 which fills the channels 54 is often formed using a precursor material, such as a conductive ink or paste.
- the conductive material 56 is deposited on the substrate 50 using methods such as coating, painting, or applying the material using a spreading instrument, such as a coating blade. Excess conductive material between the channels 54 is then removed by, for example, running a blade along the substrate surface.
- the conductive material 56 is a part of a precursor material, such as a conductive ink, obtainable, for example, from Ercon, Inc. (Wareham, Mass.), Metech, Inc. (Elverson, Pa.), E. I. du Pont de Nemours and Co. (Wilmington, Del.), Emca-Remex Products (Montgomeryville, Pa.), or MCA Services (Melbourn, Great Britain).
- the conductive ink is typically applied as a semiliquid or paste which contains particles of the carbon, metal, alloy, or metallic compound and a solvent or dispersant. After application of the conductive ink on the substrate 50 (e.g., in the channels 54 ), the solvent or dispersant evaporates to leave behind a solid mass of conductive material 56 .
- elastomers examples include silicones, polymeric dienes, and acrylonitrile-butadiene-styrene (ABS) resins.
- ABS acrylonitrile-butadiene-styrene
- a fluorinated polymer binder is Teflon® (DuPont, Wilmington, Del.). These binders are cured using, for example, heat or light, including ultraviolet (UV) light. The appropriate curing method typically depends on the particular binder which is used.
- a liquid or semiliquid precursor of the conductive material 56 e.g., a conductive ink
- the precursor fills the channel 54 .
- the conductive material 56 which remains may lose volume such that the conductive material 56 may or may not continue to fill the channel 54 .
- Preferred conductive materials 56 do not pull away from the substrate 50 as they lose volume, but rather decrease in height within the channel 54 . These conductive materials 56 typically adhere well to the substrate 50 and therefore do not pull away from the substrate 50 during evaporation of the solvent or dispersant.
- Suitable conductive materials 56 either adhere to at least a portion of the substrate 50 and/or contain another additive, such as a binder, which adheres the conductive material 56 to the substrate 50 .
- the conductive material 56 in the channels 54 is non-leachable, and more preferably immobilized on the substrate 50 .
- the conductive material 56 may be formed by multiple applications of a liquid or semiliquid precursor interspersed with removal of the solvent or dispersant.
- the channels 54 are formed using a laser.
- the laser carbonizes the polymer or plastic material.
- the carbon formed in this process is used as the conductive material 56 .
- Additional conductive material 56 such as a conductive carbon ink, may be used to supplement the carbon formed by the laser.
- Another non-impact printing technique includes ejecting droplets of conductive material onto the substrate in a desired pattern. Examples of this technique include ink jet printing and piezo jet printing. An image is sent to the printer which then ejects the conductive material (e.g., a conductive ink) according to the pattern. The printer may provide a continuous stream of conductive material or the printer may eject the conductive material in discrete amounts at the desired points.
- conductive material e.g., a conductive ink
- Yet another non-impact printing embodiment of forming the conductive traces includes an ionographic process.
- a curable, liquid precursor such as a photopolymerizable acrylic resin (e.g., Solimer 7501 from Cubital, Bad Kreuznach, Germany) is deposited over a surface of a substrate 50 .
- a photomask having a positive or negative image of the conductive traces 52 is then used to cure the liquid precursor.
- Light e.g., visible or ultraviolet light
- Uncured liquid precursor is removed leaving behind channels 54 in the solid layer. These channels 54 can then be filled with conductive material 56 to form conductive traces 52 .
- Conductive traces 52 can be formed with relatively narrow widths, for example, in the range of 25 to 250 ⁇ m, and including widths of, for example, 250 ⁇ m, 150 ⁇ m, 100 ⁇ m, 75 ⁇ m, 50 ⁇ m, 25 ⁇ m or less by the methods described above.
- the conductive traces 52 are separated by distances sufficient to prevent conduction between the conductive traces 52 .
- the edge-to-edge distance between the conductive traces is preferably in the range of 25 to 250 ⁇ m and may be, for example, 150 ⁇ m, 100 ⁇ m, 75 ⁇ m, 50 ⁇ m, or less.
- the density of the conductive traces 52 on the substrate 50 is preferably in the range of about 150 to 700 ⁇ m/trace and may be as small as 667 ⁇ m/trace or less, 333 ⁇ m/trace or less, or even 167 ⁇ m/trace or less.
- the working surface 51 of the working electrode 58 is at least a portion of the conductive trace 52 that is in contact with the analyte-containing fluid (e.g., implanted in the patient or in the sample chamber of an in vitro analyte monitor).
- the analyte-containing fluid e.g., implanted in the patient or in the sample chamber of an in vitro analyte monitor.
- Suitable redox couples for binding to the conductive material of the reference electrode include, for example, redox polymers (e.g., polymers having multiple redox centers.) It is preferred that the reference electrode surface be non-corroding so that an erroneous potential is not measured.
- Preferred conductive materials include less corrosive metals, such as gold and palladium. Most preferred are non-corrosive materials including non-metallic conductors, such as carbon and conducting polymers.
- a redox polymer can be adsorbed on or covalently bound to the conductive material of the reference electrode, such as a carbon surface of a conductive trace 52 .
- Non-polymeric redox couples can be similarly bound to carbon or gold surfaces.
- a variety of methods may be used to immobilize a redox polymer on an electrode surface.
- One method is adsorptive immobilization. This method is particularly useful for redox polymers with relatively high molecular weights.
- the molecular weight of a polymer may be increased, for example, by cross-linking
- Another method for immobilizing the redox polymer includes the functionalization of the electrode surface and then the chemical bonding, often covalently, of the redox polymer to the functional groups on the electrode surface.
- This type of immobilization begins with a poly(4-vinylpyridine).
- the polymer's pyridine rings are, in part, complexed with a reducible/oxidizable species, such as [Os(bpy) 2 Cl] +/2+ where bpy is 2,2′-bipyridine.
- Part of the pyridine rings are quaternized by reaction with 2-bromoethylamine.
- the polymer is then crosslinked, for example, using a diepoxide, such as polyethylene glycol diglycidyl ether.
- Carbon surfaces can be modified for attachment of a redox species or polymer, for example, by electroreduction of a diazonium salt.
- reduction of a diazonium salt formed upon diazotization of p-aminobenzoic acid modifies a carbon surface with phenylcarboxylic acid functional groups.
- These functional groups can then be activated by a carbodiimide, such as 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride.
- the activated functional groups are then bound with an amine-functionalized redox couple, such as the quaternized osmium-containing redox polymer described above or 2-aminoethylferrocene, to form the redox couple.
- gold can be functionalized by an amine, such as cystamine,.
- a redox couple such as [Os(bpy) 2 (pyridine-4-carboxylate)Cl] 0/+ is activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride to form a reactive O-acylisourea which reacts with the gold-bound amine to form an amide.
- the mild electrical shock is produced by applying a potential between any two conductive traces 52 that are not otherwise connected by a conductive path.
- two of the electrodes 58 , 60 , 62 or one electrode 58 , 60 , 62 and the temperature probe 66 may be used to provide the mild shock.
- the working electrode 58 and the reference electrode 62 are not used for this purpose as this may cause some damage to the chemical components on or proximate to the particular electrode (e.g., the sensing layer on the working electrode or the redox couple on the reference electrode).
- the current used to produce the mild shock is typically 0.1 to 1 mA. Higher or lower currents may be used, although care should be taken to avoid harm to the patient.
- the potential between the conductive traces is typically 1 to 10 volts. However, higher or lower voltages may be used depending, for example, on the resistance of the conductive traces 52 , the distance between the conductive traces 52 and the desired amount of current.
- potentials at the working electrode 58 and across the temperature probe 66 may be removed to prevent harm to those components caused by unwanted conduction between the working electrode 58 (and/or temperature probe 66 , if used) and the conductive traces 52 which provide the mild shock.
- each of the conductive traces 52 includes a contact pad 49 .
- the contact pad 49 may simply be a portion of the conductive trace 52 that is indistinguishable from the rest of the trace 52 except that the contact pad 49 is brought into contact with the conductive contacts of a control unit (e.g., the sensor control unit 44 of FIG. 1 ). More commonly, however, the contact pad 49 is a region of the conductive trace 52 that has a larger width than other regions of the trace 52 to facilitate a connection with the contacts on the control unit.
- the contact pads 49 are typically made using the same material as the conductive material 56 of the conductive traces 52 . However, this is not necessary. Although metal, alloys, and metallic compounds may be used to form the contact pads 49 , in some embodiments, it is desirable to make the contact pads 49 from a carbon or other non-metallic material, such as a conducting polymer. In contrast to metal or alloy contact pads, carbon and other non-metallic contact pads are not easily corroded if the contact pads 49 are in a wet, moist, or humid environment. Metals and alloys may corrode under these conditions, particularly if the contact pads 49 and contacts of the control unit are made using different metals or alloys. However, carbon and non-metallic contact pads 49 do not significantly corrode, even if the contacts of the control device are metal or alloy.
- One embodiment of the invention includes a sensor 42 having contact pads 49 and a control unit 44 having conductive contacts (not shown). During operation of the sensor 42 , the contact pads 49 and conductive contacts are in contact with each other. In this embodiment, either the contact pads 49 or the conductive contacts are made using a non-corroding, conductive material. Such materials include, for example, carbon and conducting polymers. Preferred non-corroding materials include graphite and vitreous carbon. The opposing contact pad or conductive contact is made using carbon, a conducting polymer, a metal, such as gold, palladium, or platinum group metal, or a metallic compound, such as ruthenium dioxide. This configuration of contact pads and conductive contacts typically reduces corrosion.
- the signal arising due to the corrosion of the contact pads and/or conductive contacts is less than 3% of the signal generated by the sensor when exposed to concentration of analyte in the normal physiological range.
- the current generated by analyte in a normal physiological range ranges from 3 to 500 nA.
- Each of the electrodes 58 , 60 , 62 , as well as the two probe leads 68 , 70 of the temperature probe 66 (described below), are connected to contact pads 49 as shown in FIGS. 10 and 11 .
- the contact pads 49 are on the same side of the substrate 50 as the respective electrodes or temperature probe leads to which the contact pads 49 are attached.
- the conductive traces 52 on at least one side are connected through vias in the substrate to contact pads 49 a on the opposite surface of the substrate 50 , as shown in FIGS. 10 and 11 .
- An advantage of this configuration is that contact between the contacts on the control unit and each of the electrodes 58 , 60 , 62 and the probe leads 68 , 70 of the temperature probe 66 can be made from a single side of the substrate 50 .
- vias through the substrate are used to provide contact pads on both sides of the substrate 50 for each conductive trace 52 .
- the vias connecting the conductive traces 52 with the contact pads 49 a can be formed by making holes through the substrate 50 at the appropriate points and then filling the holes with conductive material 56 .
- the senor 42 includes two working electrodes 58 a, 58 b and one counter electrode 60 , which also functions as a reference electrode.
- the sensor includes one working electrode 58 a, one counter electrode 60 , and one reference electrode 62 , as shown in FIG. 3B .
- Each of these embodiments is illustrated with all of the electrodes formed on the same side of the substrate 50 .
- one or more of the electrodes may be formed on an opposing side of the substrate 50 .
- the electrodes may be formed using two different types of conductive material 56 (e.g., carbon and silver/silver chloride). Then, at least in some embodiments, only one type of conductive material 56 needs to be applied to each side of the substrate 50 , thereby reducing the number of steps in the manufacturing process and/or easing the registration constraints in the process.
- the working electrode 58 is formed using a carbon-based conductive material 56 and the reference or counter/reference electrode is formed using a silver/silver chloride conductive material 56 , then the working electrode and reference or counter/reference electrode may be formed on opposing sides of the substrate 50 for ease of manufacture.
- two working electrodes 58 and one counter electrode 60 are formed on one side of the substrate 50 and one reference electrode 62 and two temperature probes 66 are formed on an opposing side of the substrate 50 , as illustrated in FIG. 6 .
- the opposing sides of the tip of this embodiment of the sensor 42 are illustrated in FIGS. 7 and 8 .
- analytes such as oxygen
- Other analytes such as glucose and lactate
- Catalysts may also be used for those analytes, such as oxygen, that can be directly electrooxidized or electroreduced on the working electrode 58 .
- each working electrode 58 has a sensing layer 64 formed proximate to or on a working surface of the working electrode 58 .
- the sensing layer 64 is formed near or on only a small portion of the working electrode 58 , often near a tip of the sensor 42 . This limits the amount of material needed to form the sensor 42 and places the sensing layer 64 in the best position for contact with the analyte-containing fluid (e.g., a body fluid, sample fluid, or carrier fluid).
- the analyte-containing fluid e.g., a body fluid, sample fluid, or carrier fluid.
- the sensing layer 64 includes one or more components designed to facilitate the electrolysis of the analyte.
- the sensing layer 64 may include, for example, a catalyst to catalyze a reaction of the analyte and produce a response at the working electrode 58 , an electron transfer agent to indirectly or directly transfer electrons between the analyte and the working electrode 58 , or both.
- the sensing layer 64 may be formed as a solid composition of the desired components (e.g., an electron transfer agent and/or a catalyst). These components are preferably non-leachable from the sensor 42 and more preferably are immobilized on the sensor 42 .
- the components may be immobilized on a working electrode 58 .
- the components of the sensing layer 64 may be immobilized within or between one or more membranes or films disposed over the working electrode 58 or the components may be immobilized in a polymeric or sol-gel matrix. Examples of immobilized sensing layers are described in U.S. Pat. Nos. 5,262,035, 5,264,104, 5,264,105, 5,320,725, 5,593,852, and 5,665,222, and PCT Patent Application No. US1998/002403 entitled “Electrochemical Analyte Sensors Using Thermostable Soybean Peroxidase”, filed on Feb. 11, 1998, published as WO-1998/035053, incorporated herein by reference.
- one or more of the components of the sensing layer 64 may be solvated, dispersed, or suspended in a fluid within the sensing layer 64 , instead of forming a solid composition.
- the fluid may be provided with the sensor 42 or may be absorbed by the sensor 42 from the analyte-containing fluid.
- the components which are solvated, dispersed, or suspended in this type of sensing layer 64 are non-leachable from the sensing layer. Non-leachability may be accomplished, for example, by providing barriers (e.g., the electrode, substrate, membranes, and/or films) around the sensing layer which prevent the leaching of the components of the sensing layer 64 .
- a barrier is a microporous membrane or film which allows diffusion of the analyte into the sensing layer 64 to make contact with the components of the sensing layer 64 , but reduces or eliminates the diffusion of the sensing layer components (e.g., an electron transfer agent and/or a catalyst) out of the sensing layer 64 .
- the sensing layer components e.g., an electron transfer agent and/or a catalyst
- the sensing layer 64 is deposited on the conductive material 56 of a working electrode 58 a, as illustrated in FIGS. 3A and 3B .
- the sensing layer 64 may extend beyond the conductive material 56 of the working electrode 58 a.
- the sensing layer 64 may also extend over the counter electrode 60 or reference electrode 62 without degrading the performance of the glucose sensor. For those sensors 42 which utilize channels 54 within which the conductive material 56 is deposited, a portion of the sensing layer 64 may be formed within the channel 54 if the conductive material 56 does not fill the channel 54 .
- a sensing layer 64 in direct contact with the working electrode 58 a may contain an electron transfer agent to transfer electrons directly or indirectly between the analyte and the working electrode, as well as a catalyst to facilitate a reaction of the analyte.
- a glucose, lactate, or oxygen electrode may be formed having a sensing layer which contains a catalyst, such as glucose oxidase, lactate oxidase, or laccase, respectively, and an electron transfer agent that facilitates the electrooxidation of the glucose, lactate, or oxygen, respectively.
- the sensing layer 64 is not deposited directly on the working electrode 58 a. Instead, the sensing layer 64 is spaced apart from the working electrode 58 a, as illustrated in FIG. 4A , and separated from the working electrode 58 a by a separation layer 61 .
- the separation layer 61 typically includes one or more membranes or films. In addition to separating the working electrode 58 a from the sensing layer 64 , the separation layer 61 may also act as a mass transport limiting layer or an interferent eliminating layer, as described below.
- a sensing layer 64 which is not in direct contact with the working electrode 58 a, includes a catalyst that facilitates a reaction of the analyte.
- this sensing layer 64 typically does not include an electron transfer agent that transfers electrons directly from the working electrode 58 a to the analyte, as the sensing layer 64 is spaced apart from the working electrode 58 a.
- a glucose or lactate sensor which includes an enzyme (e.g., glucose oxidase or lactate oxidase, respectively) in the sensing layer 64 .
- the glucose or lactate reacts with a second compound (e.g., oxygen) in the presence of the enzyme.
- the second compound is then electrooxidized or electroreduced at the electrode. Changes in the signal at the electrode indicate changes in the level of the second compound in the fluid and are proportional to changes in glucose or lactate level and, thus, correlate to the analyte level.
- two sensing layers 63 , 64 are used, as shown in FIG. 4B .
- Each of the two sensing layers 63 , 64 may be independently formed on the working electrode 58 a or in proximity to the working electrode 58 a.
- One sensing layer 64 is typically, although not necessarily, spaced apart from the working electrode 58 a.
- this sensing layer 64 may include a catalyst which catalyzes a reaction of the analyte to form a product compound.
- the product compound is then electrolyzed in the second sensing layer 63 which may include an electron transfer agent to transfer electrons between the working electrode 58 a and the product compound and/or a second catalyst to catalyze a reaction of the product compound to generate a signal at the working electrode 58 a.
- the second sensing layer 63 may include an electron transfer agent to transfer electrons between the working electrode 58 a and the product compound and/or a second catalyst to catalyze a reaction of the product compound to generate a signal at the working electrode 58 a.
- a glucose or lactate sensor may include a first sensing layer 64 which is spaced apart from the working electrode and contains an enzyme, for example, glucose oxidase or lactate oxidase. The reaction of glucose or lactate in the presence of the appropriate enzyme forms hydrogen peroxide.
- a second sensing layer 63 is provided directly on the working electrode 58 a and contains a peroxidase enzyme and an electron transfer agent to generate a signal at the electrode in response to the hydrogen peroxide. The level of hydrogen peroxide indicated by the sensor then correlates to the level of glucose or lactate.
- Another sensor which operates similarly can be made using a single sensing layer with both the glucose or lactate oxidase and the peroxidase being deposited in the single sensing layer.
- one or more of the working electrodes 58 b do not have a corresponding sensing layer 64 , as shown in FIGS. 3A and 4A , or have a sensing layer (not shown) which does not contain one or more components (e.g., an electron transfer agent or catalyst) needed to electrolyze the analyte.
- the signal generated at this working electrode 58 b typically arises from interferents and other sources, such as ions, in the fluid, and not in response to the analyte (because the analyte is not electrooxidized or electroreduced).
- the signal at this working electrode 58 b corresponds to a background signal.
- the background signal can be removed from the analyte signal obtained from other working electrodes 58 a that are associated with fully-functional sensing layers 64 by, for example, subtracting the signal at working electrode 58 b from the signal at working electrode 58 a.
- Sensors having multiple working electrodes 58 a may also be used to obtain more precise results by averaging the signals or measurements generated at these working electrodes 58 a.
- multiple readings at a single working electrode 58 a or at multiple working electrodes may be averaged to obtain more precise data.
- the sensing layer 64 contains one or more electron transfer agents in contact with the conductive material 56 of the working electrode 58 , as shown in FIGS. 3A and 3B .
- Other in vitro sensors may utilize a carrier fluid which contains the electron transfer agent. The analyte is transferred to the carrier fluid from the original sample fluid by, for example, osmotic flow through a microporous membrane or the like.
- the electron transfer agent there is little or no leaching of the electron transfer agent away from the working electrode 58 during the period in which the sensor 42 is implanted in the patient or measuring an in vitro analyte-containing sample.
- a diffusing or leachable (i.e., releasable) electron transfer agent often diffuses into the analyte-containing fluid, thereby reducing the effectiveness of the electrode by reducing the sensitivity of the sensor over time.
- a diffusing or leaching electron transfer agent in an implantable sensor 42 may also cause damage to the patient.
- At least 90%, more preferably, at least 95%, and, most preferably, at least 99%, of the electron transfer agent remains disposed on the sensor after immersion in the analyte-containing fluid for 24 hours, and, more preferably, for 72 hours.
- at least 90%, more preferably, at least 95%, and most preferably, at least 99%, of the electron transfer agent remains disposed on the sensor after immersion in the body fluid at 37° C. for 24 hours, and, more preferably, for 72 hours.
- the electron transfer agents are bound or otherwise immobilized on the working electrode 58 or between or within one or more membranes or films disposed over the working electrode 58 .
- the electron transfer agent may be immobilized on the working electrode 58 using, for example, a polymeric or sol-gel immobilization technique.
- the electron transfer agent may be chemically (e.g., ionically, covalently, or coordinatively) bound to the working electrode 58 , either directly or indirectly through another molecule, such as a polymer, that is in turn bound to the working electrode 58 .
- the sensing layer 64 on a working electrode 58 a is one method for creating a working surface for the working electrode 58 a, as shown in FIGS. 3A and 3B .
- the electron transfer agent mediates the transfer of electrons to electrooxidize or electroreduce an analyte and thereby permits a current flow between the working electrode 58 and the counter electrode 60 via the analyte.
- the mediation of the electron transfer agent facilitates the electrochemical analysis of analytes which are not suited for direct electrochemical reaction on an electrode.
- the preferred electron transfer agents are electroreducible and electrooxidizable ions or molecules having redox potentials that are a few hundred millivolts above or below the redox potential of the standard calomel electrode (SCE).
- the electron transfer agents are not more reducing than about ⁇ 150 mV and not more oxidizing than about +400 mV versus SCE.
- the electron transfer agent may be organic, organometallic, or inorganic.
- organic redox species are quinones and species that in their oxidized state have quinoid structures, such as Nile blue and indophenol.
- Some quinones and partially oxidized quinhydrones react with functional groups of proteins such as the thiol groups of cysteine, the amine groups of lysine and arginine, and the phenolic groups of tyrosine which may render those redox species unsuitable for some of the sensors of the present invention because of the presence of the interfering proteins in an analyte-containing fluid.
- substituted quinones and molecules with quinoid structure are less reactive with proteins and are preferred.
- a preferred tetrasubstituted quinone usually has carbon atoms in positions 1 , 2 , 3 , and 4 .
- electron transfer agents suitable for use in the invention have structures or charges which prevent or substantially reduce the diffusional loss of the electron transfer agent during the period of time that the sample is being analyzed.
- the preferred electron transfer agents include a redox species bound to a polymer which can in turn be immobilized on the working electrode.
- the bond between the redox species and the polymer may be covalent, coordinative, or ionic.
- Useful electron transfer agents and methods for producing them are described in U.S. Pat. Nos. 5,264,104; 5,356,786; 5,262,035; and 5,320,725, incorporated herein by reference.
- the preferred redox species is a transition metal compound or complex.
- the preferred transition metal compounds or complexes include osmium, ruthenium, iron, and cobalt compounds or complexes. The most preferred are osmium compounds and complexes. It will be recognized that many of the redox species described below may also be used, typically without a polymeric component, as electron transfer agents in a carrier fluid or in a sensing layer of a sensor where leaching of the electron transfer agent is acceptable.
- Non-releasable polymeric electron transfer agent contains a redox species covalently bound in a polymeric composition.
- An example of this type of mediator is poly(vinylferrocene).
- Non-releasable electron transfer agent contains an ionically-bound redox species.
- this type of mediator includes a charged polymer coupled to an oppositely charged redox species.
- examples of this type of mediator include a negatively charged polymer such as Nafion® (DuPont) coupled to a positively charged redox species such as an osmium or ruthenium polypyridyl cation.
- a positively charged polymer such as quaternized poly(4-vinyl pyridine) or poly(1-vinyl imidazole) coupled to a negatively charged redox species such as ferricyanide or ferrocyanide.
- the preferred ionically-bound redox species is a highly charged redox species bound within an oppositely charged redox polymer.
- suitable non-releasable electron transfer agents include a redox species coordinatively bound to a polymer.
- the mediator may be formed by coordination of an osmium or cobalt 2,2′-bipyridyl complex to poly(1-vinyl imidazole) or poly(4-vinyl pyridine).
- the preferred electron transfer agents are osmium transition metal complexes with one or more ligands, each ligand having a nitrogen-containing heterocycle such as 2,2′-bipyridine, 1,10-phenanthroline, or derivatives thereof. Furthermore, the preferred electron transfer agents also have one or more ligands covalently bound in a polymer, each ligand having at least one nitrogen-containing heterocycle, such as pyridine, imidazole, or derivatives thereof. These preferred electron transfer agents exchange electrons rapidly between each other and the working electrodes 58 so that the complex can be rapidly oxidized and reduced.
- One example of a particularly useful electron transfer agent includes (a) a polymer or copolymer having pyridine or imidazole functional groups and (b) osmium cations complexed with two ligands, each ligand containing 2,2′-bipyridine, 1,10-phenanthroline, or derivatives thereof, the two ligands not necessarily being the same.
- Preferred derivatives of 2,2′-bipyridine for complexation with the osmium cation are 4,4′-dimethyl-2,2′-bipyridine and mono-, di-, and polyalkoxy-2,2′-bipyridines, such as 4,4′-dimethoxy-2,2′-bipyridine.
- Preferred derivatives of 1,10-phenanthroline for complexation with the osmium cation are 4,7-dimethyl-1,10-phenanthroline and mono, di-, and polyalkoxy-1,10-phenanthrolines, such as 4,7-dimethoxy-1,10-phenanthroline.
- Preferred polymers for complexation with the osmium cation include polymers and copolymers of poly(1-vinyl imidazole) (referred to as “PVI”) and poly(4-vinyl pyridine) (referred to as “PVP”).
- Suitable copolymer substituents of poly(1-vinyl imidazole) include acrylonitrile, acrylamide, and substituted or quaternized N-vinyl imidazole. Most preferred are electron transfer agents with osmium complexed to a polymer or copolymer of poly(1-vinyl imidazole).
- the preferred electron transfer agents have a redox potential ranging from ⁇ 100 mV to about +150 mV versus the standard calomel electrode (SCE).
- the potential of the electron transfer agent ranges from ⁇ 100 mV to +150 mV and more preferably, the potential ranges from ⁇ 50 mV to +50 mV.
- the most preferred electron transfer agents have osmium redox centers and a redox potential ranging from +50 mV to ⁇ 150 mV versus SCE.
- the sensing layer 64 may also include a catalyst which is capable of catalyzing a reaction of the analyte.
- the catalyst may also, in some embodiments, act as an electron transfer agent.
- a suitable catalyst is an enzyme which catalyzes a reaction of the analyte.
- a catalyst such as a glucose oxidase, glucose dehydrogenase (e.g., pyrroloquinoline quinone glucose dehydrogenase (PQQ)), or oligosaccharide dehydrogenase, may be used when the analyte is glucose.
- a lactate oxidase or lactate dehydrogenase may be used when the analyte is lactate. Laccase may be used when the analyte is oxygen or when oxygen is generated or consumed in response to a reaction of the analyte.
- the catalyst is non-leachably disposed on the sensor, whether the catalyst is part of a solid sensing layer in the sensor or solvated in a fluid within the sensing layer. More preferably, the catalyst is immobilized within the sensor (e.g., on the electrode and/or within or between a membrane or film) to prevent unwanted leaching of the catalyst away from the working electrode 58 and into the patient. This may be accomplished, for example, by attaching the catalyst to a polymer, cross linking the catalyst with another electron transfer agent (which, as described above, can be polymeric), and/or providing one or more barrier membranes or films with pore sizes smaller than the catalyst.
- another electron transfer agent which, as described above, can be polymeric
- a second catalyst may also be used.
- This second catalyst is often used to catalyze a reaction of a product compound resulting from the catalyzed reaction of the analyte.
- the second catalyst typically operates with an electron transfer agent to electrolyze the product compound to generate a signal at the working electrode.
- the second catalyst may be provided in an interferent-eliminating layer to catalyze reactions that remove interferents, as described below.
- One embodiment of the invention is an electrochemical sensor in which the catalyst is mixed or dispersed in the conductive material 56 which forms the conductive trace 52 of a working electrode 58 .
- This may be accomplished, for example, by mixing a catalyst, such as an enzyme, in a carbon ink and applying the mixture into a channel 54 on the surface of the substrate 50 .
- the catalyst is immobilized in the channel 54 so that it cannot leach away from the working electrode 58 .
- This may be accomplished, for example, by curing a binder in the carbon ink using a curing technique appropriate to the binder. Curing techniques include, for example, evaporation of a solvent or dispersant, exposure to ultraviolet light, or exposure to heat.
- the mixture is applied under conditions that do not substantially degrade the catalyst.
- the catalyst may be an enzyme that is heat-sensitive.
- the enzyme and conductive material mixture should be applied and cured, preferably, without sustained periods of heating.
- the mixture may be cured using evaporation or UV curing techniques or by the exposure to heat that is sufficiently short that the catalyst is not substantially degraded.
- thermostability of the catalyst Another consideration for in vivo analyte sensors is the thermostability of the catalyst. Many enzymes have only limited stability at biological temperatures. Thus, it may be necessary to use large amounts of the catalyst and/or use a catalyst that is thermostable at the necessary temperature (e.g., 37° C. or higher for normal body temperature).
- a thermostable catalyst may be defined as a catalyst which loses less than 5% of its activity when held at 37° C. for at least one hour, preferably, at least one day, and more preferably at least three days.
- a thermostable catalyst is soybean peroxidase.
- thermostable catalyst may be used in a glucose or lactate sensor when combined either in the same or separate sensing layers with glucose or lactate oxidase or dehydrogenase.
- thermostable catalysts and their use in electrochemical inventions is found in U.S. Pat. No. 5,665,222 and in PCT Patent Application No. US1998/002403 entitled “Electrochemical Analyte Sensors Using Thermostable Soybean Peroxidase”, filed on Feb. 11, 1998, published as WO-1998/035053.
- a potential (versus a reference potential) is applied across the working and counter electrodes 58 , 60 .
- the minimum magnitude of the applied potential is often dependent on the particular electron transfer agent, analyte (if the analyte is directly electrolyzed at the electrode), or second compound (if a second compound, such as oxygen or hydrogen peroxide, whose level is dependent on the analyte level, is directly electrolyzed at the electrode).
- the applied potential usually equals or is more oxidizing or reducing, depending on the desired electrochemical reaction, than the redox potential of the electron transfer agent, analyte, or second compound, whichever is directly electrolyzed at the electrode.
- the potential at the working electrode is typically large enough to drive the electrochemical reaction to or near completion.
- the magnitude of the potential may optionally be limited to prevent significant (as determined by the current generated in response to the analyte) electrochemical reaction of interferents, such as urate, ascorbate, and acetaminophen.
- interferents such as urate, ascorbate, and acetaminophen.
- the limitation of the potential may be obviated if these interferents have been removed in another way, such as by providing an interferent-limiting barrier, as described below, or by including a working electrode 58 b (see FIG. 3A ) from which a background signal may be obtained.
- an electrical current will flow.
- the current is a result of the electrolysis of the analyte or a second compound whose level is affected by the analyte.
- the electrochemical reaction occurs via an electron transfer agent and the optional catalyst.
- Many analytes B are oxidized (or reduced) to products C by an electron transfer agent species A in the presence of an appropriate catalyst (e.g., an enzyme).
- the electron transfer agent A is then oxidized (or reduced) at the electrode. Electrons are collected by (or removed from) the electrode and the resulting current is measured. This process is illustrated by reaction equations (1) and (2) (similar equations may be written for the reduction of the analyte B by a redox mediator A in the presence of a catalyst):
- an electrochemical sensor may be based on the reaction of a glucose molecule with two non-leachable ferricyanide anions in the presence of glucose oxidase to produce two non-leachable ferrocyanide anions, two hydrogen ions, and gluconolactone.
- the amount of glucose present is assayed by electrooxidizing the non-leachable ferrocyanide anions to non-leachable ferricyanide anions and measuring the current.
- a second compound whose level is affected by the analyte is electrolyzed at the working electrode.
- the analyte D and the second compound in this case, a reactant compound E, such as oxygen, react in the presence of the catalyst, as shown in reaction equation (3).
- reaction equation (4) The reactant compound E is then directly oxidized (or reduced) at the working electrode, as shown in reaction equation (4)
- the reactant compound E is indirectly oxidized (or reduced) using an electron transfer agent H (optionally in the presence of a catalyst), that is subsequently reduced or oxidized at the electrode, as shown in reaction equations (5) and (6).
- changes in the concentration of the reactant compound, as indicated by the signal at the working electrode correspond inversely to changes in the analyte (i.e., as the level of analyte increases, the level of reactant compound and the signal at the electrode decrease).
- the relevant second compound is a product compound F, as shown in reaction equation (3).
- the product compound F is formed by the catalyzed reaction of analyte D, which is directly electrolyzed at the electrode or indirectly electrolyzed using an electron transfer agent and, optionally, a catalyst.
- the signal arising from the direct or indirect electrolysis of the product compound F at the working electrode corresponds directly to the level of the analyte (unless there are other sources of the product compound). As the level of analyte increases, the level of the product compound and signal at the working electrode increases.
- reaction equations (1) through (6) illustrate non-limiting examples of such reactions.
- a variety of optional items may be included in the sensor.
- One optional item is a temperature probe 66 ( FIGS. 8 and 11 ).
- the temperature probe 66 may be made using a variety of known designs and materials.
- One exemplary temperature probe 66 is formed using two probe leads 68 , 70 connected to each other through a temperature-dependent element 72 that is formed using a material with a temperature-dependent characteristic.
- An example of a suitable temperature-dependent characteristic is the resistance of the temperature-dependent element 72 .
- the two probe leads 68 , 70 are typically formed using a metal, an alloy, a semimetal, such as graphite, a degenerate or highly doped semiconductor, or a small-band gap semiconductor.
- suitable materials include gold, silver, ruthenium oxide, titanium nitride, titanium dioxide, indium doped tin oxide, tin doped indium oxide, or graphite.
- the temperature-dependent element 72 is typically made using a fine trace (e.g., a conductive trace that has a smaller cross-section than that of the probe leads 68 , 70 ) of the same conductive material as the probe leads, or another material such as a carbon ink, a carbon fiber, or platinum, which has a temperature-dependent characteristic, such as resistance, that provides a temperature-dependent signal when a voltage source is attached to the two probe leads 68 , 70 of the temperature probe 66 .
- the temperature-dependent characteristic of the temperature-dependent element 72 may either increase or decrease with temperature.
- the temperature dependence of the characteristic of the temperature-dependent element 72 is approximately linear with temperature over the expected range of biological temperatures (about 25 to 45° C.), although this is not required.
- a signal (e.g., a current) having an amplitude or other property that is a function of the temperature can be obtained by providing a potential across the two probe leads 68 , 70 of the temperature probe 66 .
- the signal from the temperature probe 66 (e.g., the amount of current flowing through the probe) may be combined with the signal obtained from the working electrode 58 by, for example, scaling the temperature probe signal and then adding or subtracting the scaled temperature probe signal from the signal at the working electrode 58 . In this manner, the temperature probe 66 can provide a temperature adjustment for the output from the working electrode 58 to offset the temperature dependence of the working electrode 58 .
- the temperature probe includes probe leads 68 , 70 formed as two spaced-apart channels with a temperature-dependent element 72 formed as a cross-channel connecting the two spaced-apart channels, as illustrated in FIG. 8 .
- the two spaced-apart channels contain a conductive material, such as a metal, alloy, semimetal, degenerate semiconductor, or metallic compound.
- the cross-channel may contain the same material (provided the cross-channel has a smaller cross-section than the two spaced-apart channels) as the probe leads 68 , 70 . In other embodiments, the material in the cross-channel is different than the material of the probe leads 68 , 70 .
- One exemplary method for forming this particular temperature probe includes forming the two spaced-apart channels and then filling them with the metallic or alloyed conductive material. Next, the cross-channel is formed and then filled with the desired material. The material in the cross-channel overlaps with the conductive material in each of the two spaced-apart channels to form an electrical connection.
- the temperature-dependent element 72 of the temperature probe 66 cannot be shorted by conductive material formed between the two probe leads 68 , 70 .
- a covering may be provided over the temperature-dependent element 72 , and preferably over the portion of the probe leads 68 , 70 that is implanted in the patient.
- the covering may be, for example, a non-conducting film disposed over the temperature-dependent element 72 and probe leads 68 , 70 to prevent the ionic conduction. Suitable non-conducting films include, for example, KaptonTM polyimide films (DuPont, Wilmington, Del.).
- Another method for eliminating or reducing conduction by ionic species in the body or sample fluid is to use an AC voltage source connected to the probe leads 68 , 70 . In this way, the positive and negative ionic species are alternately attracted and repelled during each half cycle of the AC voltage. This results in no net attraction of the ions in the body or sample fluid to the temperature probe 66 .
- the maximum amplitude of the ac current through the temperature-dependent element 72 may then be used to correct the measurements from the working electrodes 58 .
- the temperature probe can be placed on the same substrate as the electrodes. Alternatively, a temperature probe may be placed on a separate substrate. In addition, the temperature probe may be used by itself or in conjunction with other devices.
- An optional biocompatible film layer 75 is formed over at least that portion of the sensor 42 which is subcutaneously inserted into the patient, as shown in FIG. 9 .
- This optional biocompatible film layer 75 may serve one or more functions.
- the biocompatible film layer 75 prevents the penetration of large biomolecules into the electrodes. This is accomplished by using a film layer 75 having a pore size that is smaller than the biomolecules that are to be excluded. Such biomolecules may foul the electrodes and/or the sensing layer 64 thereby reducing the effectiveness of the sensor 42 and altering the expected signal amplitude for a given analyte concentration. The fouling of the working electrodes 58 may also decrease the effective life of the sensor 42 .
- the biocompatible layer 75 may also prevent protein adhesion to the sensor 42 , formation of blood clots, and other undesirable interactions between the sensor 42 and body.
- the senor may be completely or partially coated on its exterior with a biocompatible coating.
- a preferred biocompatible coating is a hydrogel which contains at least 20 wt. % fluid when in equilibrium with the analyte-containing fluid. Examples of suitable hydrogels are described in U.S. Pat. No. 5,593,852, incorporated herein by reference, and include crosslinked polyethylene oxides, such as polyethylene oxide tetraacrylate.
- An interferent-eliminating layer may be included in the sensor 42 .
- the interferent-eliminating layer may be incorporated in the biocompatible layer 75 or in the mass transport limiting layer 74 (described below) or may be a separate layer.
- Interferents are molecules or other species that are electroreduced or electrooxidized at the electrode, either directly or via an electron transfer agent, to produce a false signal.
- a film or membrane prevents the penetration of one or more interferents into the region around the working electrodes 58 .
- this type of interferent-eliminating layer is much less permeable to one or more of the interferents than to the analyte.
- the interferent-eliminating layer may include ionic components, such as Nafion®, incorporated into a polymeric matrix to reduce the permeability of the interferent-eliminating layer to ionic interferents having the same charge as the ionic components.
- ionic components such as Nafion®
- negatively charged compounds or compounds that form negative ions may be incorporated in the interferent-eliminating layer to reduce the permeation of negative species in the body or sample fluid.
- an interferent-eliminating layer includes a catalyst for catalyzing a reaction which removes interferents.
- a catalyst for catalyzing a reaction which removes interferents.
- One example of such a catalyst is a peroxidase. Hydrogen peroxide reacts with interferents, such as acetaminophen, urate, and ascorbate. The hydrogen peroxide may be added to the analyte-containing fluid or may be generated in situ, by, for example, the reaction of glucose or lactate in the presence of glucose oxidase or lactate oxidase, respectively.
- interferent eliminating layers include a peroxidase enzyme crosslinked (a) using gluteraldehyde as a crosslinking agent or (b) oxidation of oligosaccharide groups in the peroxidase glycoenzyme with NaIO 4 , followed by coupling of the aldehydes formed to hydrazide groups in a polyacrylamide matrix to form hydrazones are described in U.S. Pat. Nos. 5,262,305 and 5,356,786, incorporated herein by reference.
- a mass transport limiting layer 74 may be included with the sensor to act as a diffusion-limiting barrier to reduce the rate of mass transport of the analyte, for example, glucose or lactate, into the region around the working electrodes 58 .
- the steady state concentration of the analyte in the proximity of the working electrode 58 (which is proportional to the concentration of the analyte in the body or sample fluid) can be reduced. This extends the upper range of analyte concentrations that can still be accurately measured and may also expand the range in which the current increases approximately linearly with the level of the analyte.
- the permeability of the analyte through the film layer 74 vary little or not at all with temperature, so as to reduce or eliminate the variation of current with temperature. For this reason, it is preferred that in the biologically relevant temperature range from about 25° C. to about 45° C., and most importantly from 30° C. to 40° C., neither the size of the pores in the film nor its hydration or swelling change excessively.
- the mass transport limiting layer is made using a film that absorbs less than 5 wt. % of fluid over 24 hours. This may reduce or obviate any need for a temperature probe. For implantable sensors, it is preferable that the mass transport limiting layer is made using a film that absorbs less than 5 wt. % of fluid over 24 hours at 37° C.
- Particularly useful materials for the film layer 74 are membranes that do not swell in the analyte-containing fluid that the sensor tests.
- Suitable membranes include 3 to 20,000 nm diameter pores.
- Membranes having 5 to 500 nm diameter pores with well-defined, uniform pore sizes and high aspect ratios are preferred.
- the aspect ratio of the pores is preferably two or greater and more preferably five or greater.
- Well-defined and uniform pores can be made by track etching a polymeric membrane using accelerated electrons, ions, or particles emitted by radioactive nuclei.
- Most preferred are anisotropic, polymeric, track etched membranes that expand less in the direction perpendicular to the pores than in the direction of the pores when heated.
- Suitable polymeric membranes included polycarbonate membranes from Poretics (Livermore, Calif., catalog number 19401, 0.01 ⁇ m pore size polycarbonate membrane) and Corning Costar Corp. (Cambridge, Mass., NucleoporeTM brand membranes with 0.015 ⁇ m pore size).
- Other polyolefin and polyester films may be used.
- the permeability of the mass transport limiting membrane changes no more than 4%, preferably, no more than 3%, and, more preferably, no more than 2%, per ° C. in the range from 30° C. to 40° C. when the membranes resides in the subcutaneous interstitial fluid.
- the mass transport limiting layer 74 may also limit the flow of oxygen into the sensor 42 . This can improve the stability of sensors 42 that are used in situations where variation in the partial pressure of oxygen causes non-linearity in sensor response.
- the mass transport limiting layer 74 restricts oxygen transport by at least 40%, preferably at least 60%, and more preferably at least 80%, of the amount the membrane restricts transport of the analyte.
- films having a greater density e.g., a density closer to that of the crystalline polymer
- Polyesters such as polyethylene terephthalate, are typically less permeable to oxygen and are, therefore, preferred over polycarbonate membranes.
- An implantable sensor may also, optionally, have an anticlotting agent disposed on a portion the substrate which is implanted into a patient.
- This anticlotting agent may reduce or eliminate the clotting of blood or other body fluid around the sensor, particularly after insertion of the sensor. Blood clots may foul the sensor or irreproducibly reduce the amount of analyte which diffuses into the sensor.
- useful anticlotting agents include heparin and tissue plasminogen activator (TPA), as well as other known anticlotting agents.
- the anticlotting agent may be applied to at least a portion of that part of the sensor 42 that is to be implanted.
- the anticlotting agent may be applied, for example, by bath, spraying, brushing, or dipping.
- the anticlotting agent is allowed to dry on the sensor 42 .
- the anticlotting agent may be immobilized on the surface of the sensor or it may be allowed to diffuse away from the sensor surface.
- the quantities of anticlotting agent disposed on the sensor are far below the amounts typically used for treatment of medical conditions involving blood clots and, therefore, have only a limited, localized effect.
- the sensor 42 may be designed to be a replaceable component in an in vivo or in vitro analyte monitor, and particularly in an implantable analyte monitor.
- the sensor 42 is capable of operation over a period of days.
- the period of operation is at least one day, more preferably at least three days, and most preferably at least one week.
- the sensor 42 can then be removed and replaced with a new sensor.
- the lifetime of the sensor 42 may be reduced by the fouling of the electrodes or by the leaching of the electron transfer agent or catalyst.
- the temperature stability of the catalyst is Another primary limitation on the lifetime of the sensor 42 .
- Many catalysts are enzymes, which are very sensitive to the ambient temperature and may degrade at temperatures of the patient's body (e.g., approximately 37° C. for the human body). Thus, robust enzymes should be used where available.
- the sensor 42 should be replaced when a sufficient amount of the enzyme has been deactivated to introduce an unacceptable amount of error in the measurements.
- FIG. 12 is a schematic illustration of an exemplary system 200 , in accordance with the principles of the present invention, for manufacturing the sensor 42 .
- the system 200 utilizes a continuous film or substrate web 202 that is guided along a serpentine pathway by a series of rollers 206 .
- the web 202 is processed at the various processing stations or zones. For example, at one station channels can be formed in the web 202 .
- conductive material can be placed in the channels, sensor chemistry can be deposited over portions of the conductive material corresponding with working electrodes, and a protective film or micro-porous membrane can be affixed to the web 202 .
- the sensor 42 can be cut, stamped or otherwise removed from the continuous web 202 .
- a more detailed description of the various steps is provided in the following paragraphs.
- the continuous substrate web 202 ultimately forms the substrate 50 of the sensor 42 . Consequently, for certain applications, the web 202 is made of nonconducting plastic or polymeric materials such as those previously identified in the specification with respect to the substrate 50 .
- the web 202 comprises a continuous plastic or polymeric film having a thickness in the range of 50 to 500 ⁇ m (2-20 mil), and preferably in the range of 100 to 300 ⁇ m (4-12 mil).
- the web 202 is pulled from a source reel 203 and passed through a heater 204 .
- the heater 204 includes two heated platens arranged and configured to allow the web 202 to pass between parallel heated surfaces at a predetermined feed rate and distance.
- the web 202 is heated to a sufficient temperature, for example, to a glass transition temperature of the substrate web 202 to soften the web 202 in preparation for subsequent embossing or stamping steps.
- the heating step it will be appreciated that certain web materials may have sufficient deformability to allow channels to be pressed therein without requiring a heating step. Similarly, if no channels are desired to be formed in the web 202 , or channels are to be formed through non-mechanical techniques such as laser or chemical etching, the initial heating step can also be eliminated from the process. Furthermore, if it is desired to soften the web 202 via heat, it will be appreciated that any number of known heating sources/configurations, such as radiant or convection heaters, can be utilized. Alternatively, the forming tool may be heated and not the web.
- the web 202 is preferably conveyed to a channel formation station/zone 205 where the channels 54 are preferably mechanically pressed into the web 202 by a continuous embossing process.
- the channels 54 of the sensor 42 are formed in the web 202 by pressing the web 202 between a flat roller 207 and an embossing roller 208 having a desired embossing pattern formed on its outer surface.
- a desired channel pattern is stamped, embossed, formed or otherwise pressed into one side of the web 202 .
- an outline or planform of the sensor 42 can optionally be pressed into the web 202 to generate perforations that extend partially through the web 202 .
- the web 202 is perforated to a depth of about 70% of the thickness of the web 202 .
- about 70% of the perimeter of the planform is completely perforated. Perforating the web 202 facilitates subsequently removing the sensor 42 and provides the advantage of lessening registration constraints at later stages of the manufacturing process.
- FIG. 15A is a cross-sectional view taken through the web 202 immediately after the sensor channels 54 have been formed within the web 202 .
- the channels 54 are generally uniformly spaced across the width of the web 202 and have generally rectangular cross-sectional profiles.
- the width of the channels may be in the range of about 25 to about 250 ⁇ m.
- the channels have individual widths of 250 ⁇ m (about 8 mils), 150 ⁇ m, 100 ⁇ m, 75 ⁇ m, 50 ⁇ m, 25 ⁇ m or less.
- the depth of the channels is typically related to the thickness of the web 202 .
- the channels have depths in the range of about 12.5 to 75 ⁇ m (0.5 to 3 mils), and preferably about 25 to 50 ⁇ m (1 to 2 mils).
- the distance between the conductive traces may be in the range of about 25 to 150 ⁇ m, and may be, for example, 150 ⁇ m, 100 ⁇ m, 75 ⁇ m, 50 ⁇ m, or less.
- the density of the conductive traces 52 on the substrate 50 may be in the range of about 150 to 700 ⁇ m and may be as small as 667 ⁇ m/trace or less, 333 ⁇ m/trace or less, or even 167 ⁇ m/trace or less.
- FIG. 13 provides a perspective view of one embossing roller 208 that is adapted for forming the channel configuration of the sensor 42 .
- the embossing stamp or roller 208 includes a pattern of raised members or portions 210 that project radially outward from the outer surface of the roller 208 .
- the raised portions 210 extend about the circumference of the roller 208 and are arranged in a configuration that corresponds to the desired channel configuration shown in FIG. 2 .
- the raised portions 210 include generally parallel, relatively closely spaced raised lines 211 corresponding to the channel pattern desired to be formed along the narrow portion 67 a of the sensor 42 .
- the raised portions 210 also include angled or diverging/converging raised lines 213 corresponding to the channel pattern desired to be formed along the wider portion 65 a of the sensor 42 .
- the raised lines 211 and 213 have widths less than about 150 microns, preferably less than about 100 microns, and most preferably less than about 50 microns.
- the raised portions 210 further include tabs or punch members 215 adapted for forming contact pad depressions in which conductive material can be disposed to form the contact pads 49 of the sensor 42 .
- the raised portions 210 project or extend into the web 202 causing the web 202 to deform or indent such that the channels 54 and contact pad depressions are formed within the web 202 .
- the raised portions 210 of the roller 208 form a pattern of depressions in the web 202 that includes such features as the channels 54 and the contact pad depressions.
- a single embossing pattern is disposed on the outer surface of the roller 208 .
- multiple identical patterns can be arranged about the circumference of the roller.
- multiple different patterns can be arranged about the circumference of the roller to allow different sensor configurations to be manufactured with a single embossing roller.
- the alternative roller 208 ′ includes a plurality of raised annular rings 210 ′ that extend about the circumference of the roller 208 ′.
- Each ring 210 ′ can extend continuously about the entire circumference of the roller 208 ′, or can be separated into discrete segments by gaps located at predetermined intervals about the roller 208 ′.
- the roller 208 ′ is adapted to form a plurality of substantially parallel, straight channels in the web 202 .
- One use of such a roller 208 ′ relates to the manufacture of sensors having substantially constant widths.
- embossing tools suitable for use with the present invention can be manufactured using a variety of techniques.
- such tools can be molded, formed or cast using conventional techniques.
- Exemplary materials for making such embossing tools include steel and other metals, minerals such as sapphire and silicon, epoxides, ceramics, and appropriate polymers.
- silicon is used to make an embossing tool such as an embossing roller or stamp.
- an embossing tool such as an embossing roller or stamp.
- a desired pattern of raised portions is formed on the embossing surface of the tool using photolithographic and etching techniques to remove selected portions of the tool. It has been determined that such a process can yield an embossing tool having a desirable surface finish, precisely shaped features at small sizes, no burrs, and sharp features (e.g., small radii between intersecting features).
- Silicon is preferred for a flat (non-cylindrical) tool, and may be etched using techniques common to the integrated circuit industry to create profiles in the wafer surface. Such profiles may be either positive in relief above the surface or negative below the wafer surface. Positive profiles may be used directly as tools to create indentations in a softer substrate. Negative profiles may be used as a master to create a series of second generation positives that are used as the final tool.
- the second generation positives may be made from any castable material with the appropriate mechanical properties.
- the web 202 is conveyed to a channel filling station/zone 210 where conductive material is placed, flowed, applied, filled, flooded or otherwise disposed within the channels 54 .
- the conductive material can be applied as a precursor conductive material having a liquid form.
- An exemplary precursor conductive material includes conductive material dissolved or suspended in a solvent or dispersant.
- a preferred precursor conductive material is a carbon based ink that can be flooded in liquid form into the channels 54 .
- Other conductive inks or pastes that include carbon or metal, such as, for example, gold, copper, or silver, may be used.
- Other techniques for applying the conductive material or precursor conductive material include spraying, coating, flooding, applying with a saturated roller, pumping, as well as electrostatic, ionographic, magnetographic, and other impact and non-impact printing methods.
- the web 202 is preferably passed through an arrangement/device for scraping or wiping excess conductive material/precursor conductive material from the surface of the web 202 .
- a coating blade 212 and roller 214 are used to remove excess material from the web 202 .
- the conductive material/precursor conductive material substantially fills the channels 54 such that the web and conductive material/precursor conductive material together form a substantially flat or planar surface.
- FIG. 15B shows a cross section through the web 202 after the excess conductive material/precursor conductive material has been wiped from the web 202 . While it is preferred for the channels 54 to be substantially filled with the conductive material/precursor conductive material, it will be appreciated that in certain embodiments it may be desirable to only partially fill the channels 54 , or to slightly overfill the channels 54 with conductive material/precursor conductive material.
- a single series of channel forming, filling and wiping steps are used to fill the channels 54 .
- multiple channel formation, filling and wiping steps can be utilized to fill channels formed in the substrate 50 .
- the reference electrode channel could initially be formed in the substrate, and then filled with a suitable conductive material such as silver/silver chloride. Subsequently, the working electrode channels of the sensor 42 could be formed in the substrate and filled with a conductive material such as carbon.
- the channels can be formed by removing or carbonizing a portion of the substrate 50 or web 202 using a laser, or photolithographic patterning and etching of the substrate 50 or web 202 .
- channels may not be formed in the substrate 50 or web 202 at all.
- the conductive traces 52 can be formed on the substrate 50 by a variety of techniques, including photolithography, screen printing, other printing techniques, stamping traces into the substrate or web 202 , or using a laser to micro-machine traces into the substrate 50 or web 202 . Each of these techniques has corresponding limits on the reproducibility, precision, and cost of producing the conductive traces.
- Another method for forming the conductive traces uses techniques common to pad printing or hot stamping methods, whereby a film of conductive material is formed, for example, as a continuous sheet or as a coating layer deposited on a carrier film.
- the film of conductive material is brought between a print head and the substrate 500 .
- a pattern of conductive traces 52 is formed on the substrate 50 using the print head.
- the conductive material is transferred by pressure and/or heat from the conductive film to the substrate 50 .
- This technique may produce channels (e.g., depressions caused by impact of the print head on the substrate 50 ).
- the conductive material is deposited directly without forming substantial depressions in the surface of the substrate 50 .
- the conductive traces 52 are formed by non-impact printing techniques. These methods do not require the formation of channels in the substrate. Instead, conductive traces may be formed directly on a planer substrate. Such techniques include electrophotography and magnetography. In these processes, an image of the conductive traces 52 is electrically or magnetically formed on a drum. A laser or LED may be used to electrically form the image or a magnetic recording head may be used to magnetically form the image. A toner material (e.g., a conductive material, such as a conductive ink) is then attracted to portions of the drum according to the image. The toner material is then applied to the substrate by contact between the drum and the substrate. For example, the substrate may be rolled over the drum. The toner material may then be dried and/or a binder in the toner material may be cured to adhere the toner material to the substrate.
- non-impact printing techniques do not require the formation of channels in the substrate. Instead, conductive traces may be formed directly on a planer substrate. Such techniques include electrophoto
- Another non-impact printing technique includes ejecting droplets of conductive material onto the substrate in a desired pattern. Examples of this technique include ink jet printing and piezo jet printing. An image is sent to the printer which then ejects the conductive material (e.g., a conductive ink) according to the pattern. The printer may provide a continuous stream of conductive material or the printer may eject the conductive material in discrete amounts at the desired points.
- conductive material e.g., a conductive ink
- a curable, liquid precursor such as a photopolymerizable acrylic resin (e.g., Solimer 7501 from Cubital, Bad Kreuznach, Germany)
- a photomask having a positive or negative image of the conductive traces 52 is then used to cure the liquid precursor.
- Light e.g., visible or ultraviolet light
- Uncured liquid precursor is removed leaving behind channels 54 in the solid layer. These channels 54 can then be filled with conductive material 56 to form conductive traces 52 .
- the web 202 is moved through a drying chamber 216 .
- the drying chamber 216 preferably provides sufficient heat to drive off or evaporate solvents or dispersants that may be contained in precursor conductive material within the channels 54 . After heating, conductive material is preferably left as a residue in the channels 54 . In certain cases, the drying chamber 216 exposes the web 202 to sufficient temperatures to cure optional binders that may be present with the conductive material. It will be appreciated that ultraviolet light could also be used to cure optional binders interspersed with the conductive material.
- FIG. 15C is a cross-sectional view cut through the web 202 after the sensor chemistry has been deposited on the web 202 .
- sensor chemistry is only deposited over the conductive material corresponding to the working electrodes 58 , which in one embodiment, as illustrated in FIG. 4A , are formed at the two outer channels 54 . Consequently, a relatively precise application technique is preferably used to inhibit sensor chemistry from being applied to both the working electrodes 58 and electrodes that should not be coated. It is acceptable, in some situations, for the sensing layer to also coat the counter electrode 60 .
- piezo jet technology or the like is used to deposit the chemistry upon the web 202 to form the sensing layers 64 .
- a solenoid valve can be rapidly shuttered and when supplied with liquid under a precisely controlled over-pressure condition, a droplet of controlled size will be ejected from the valve. Resolutions to 500 picoliters can be achieved. Conventional ink jet printers can also be used.
- the surface of the web 202 can optionally be roughened by techniques such as abrasion or plasma treatment prior to applying the sensor chemistry. For example, by pre-treating the surface of the web 202 , for example, by a corona discharge, free radicals are generated on the web surface to enhance adhesion of the sensor chemistry to the web 202 and working electrodes 58 .
- the web 202 is preferably conveyed through another heating chamber 220 .
- the heating chamber 220 preferably provides sufficient temperature/heating to release solvents from the deposited sensor chemistry.
- the heating chamber 220 can also heat the web 202 to sufficient temperatures to cause potential polymerization reactions such as cross link reactions between polymers and the redox mediator and/or redox enzyme.
- the substrate web 202 Upon exiting the heating chamber 220 , the substrate web 202 is brought into alignment with a membrane web 222 adapted for forming a membrane layer, that may include one or more individual membranes, such as a mass transport limiting layer 74 or a biocompatible layer 75 , over at least some portions of the electrodes.
- the membrane layer may be applied to only one or two or more surfaces of the substrate.
- solvents such as methyl ethyl ketone and acetone can be applied, for example, sprayed, on the web 202 to soften the web 202 and solvent bond it to the membrane web 222 .
- the two webs 202 and 222 can be bonded together such that the web 222 covers and protects portions of the sensor adapted to be implanted.
- the two webs 202 and 222 can be bonded or fused together at a welding station 224 such as a sonic or laser welding station.
- the resultant combination of the substrate web 202 and the membrane web 222 results in a laminated structure in which the protective membrane 74 is selectively fused to the polymer substrate 50 .
- individual membrane webs 222 are bonded to two or more surfaces of the web 202 .
- the membrane layer may include one or membranes that individually or in combination serve a number of functions. These include protection of the electrode surface, prevention of leaching of components in the sensing layer, mass transport limitation of the analyte, exclusion of interfering substances, reduction or enhancement of oxygen mass transport, and/or biocompatibility.
- a membrane is selected which has mass transport limiting pores that do not change appreciably in size over a physiologically relevant temperature range (e.g., 30° C. to 40° C.). This may reduce the temperature dependence of the sensor output.
- the laminated webs 202 and 222 enter a cutting station/zone 226 in which the sensor 42 planform, as shown in FIG. 2 , is cut from the continuous webs 202 and 222 .
- the cutting station 226 can include a die stamper, embosser, embossing roller, laser cutter or any other mechanism for cutting, pressing or otherwise removing the sensors 42 from the webs 202 and 222 .
- This cutting step may result in discrete sensor components or the sensors may be partially cut out and retained on the webs for secondary operations such as surface mounting of electronic components or packaging.
- a take-up reel 230 accumulates the web material remaining after the sensors 42 have been cut from the web.
- FIG. 16 is a schematic illustration of an exemplary system 300 , in accordance with the principles of the present invention, for manufacturing the sensor 42 of FIGS. 6-8 and 10 - 11 .
- the system 300 utilizes a continuous film or web 302 that is guided along a serpentine pathway by a series of rollers 305 . To provide channels on opposite sides of the web 302 , the system utilizes a series of embossing steps.
- the system 300 includes a first embossing roller 308 configured for forming the channels for the working and counter electrode 58 , 60 , respectively, in a first side of the web 302 , a second embossing roller 310 configured for forming the channel for the temperature probe/sensor 66 and the reference electrode 62 in a second opposite side of the web 302 , and a third embossing roller 312 configured for forming the channel for the temperature-dependent element 72 extending between the channels for the two temperature probe leads 68 , 70 .
- opposing embossing rollers are used to emboss both sides simultaneously in a single step.
- the web 302 is first pulled from a spool or reel 301 and preferably heated.
- the channels for the working electrode and counter electrodes 58 , 60 are formed in the first side of the web 302 by the first embossing roller 308 .
- the first embossing roller 308 preferably includes a pattern of raised portions having a configuration that corresponds to the channel configuration depicted in FIG. 7 .
- the channels of the working and counter electrodes 58 , 60 are filled with conductive material/precursor conductive material, such as a flowable conductive carbon ink, at a first channel filling station 314 .
- excess conductive material/precursor conductive material is wiped from the web 302 by a first web wiping arrangement 316 .
- the opposite second side of the web 302 is embossed by the second embossing roller 310 such that the channels for the temperature probe leads 68 , 70 and the reference electrode 62 are formed in the opposite side of the web 302 .
- the second embossing roller 310 preferably includes a pattern of raised portions having a configuration that corresponds to the channel configuration depicted in FIG. 8 (except for channel for the temperature-dependent element 72 ).
- the embossing roller 310 can be equipped with projections or punch members for forming vias through the web 302 at desired pad 49 locations of the sensor 42 .
- channels for the temperature probe leads 68 , 70 and reference electrode 72 have been formed in the web 302 , such channels are filled with suitable conductive material/precursor conductive material at a second channel filling station 318 and excess conductive material/precursor conductive material is wiped from the web 302 at wiping mechanism 320 . While one filling station 318 is shown for filling both channels for the temperature probe leads 68 , 70 and the reference electrode 62 , it will be appreciated that the filling station 318 may include multiple separate filling steps for individually or separately filling each channel.
- the channel for the temperature-dependent element 72 of the temperature probe 66 is formed between the channels for the temperature probe leads 68 , 70 by the third embossing roller 312 . Subsequently, the channel for the temperature-dependent element 72 is filled with appropriate material at channel filling station 322 , and excess material is wiped from the web 302 by wiping mechanism 324 .
- sensor chemistry is applied to the working electrodes 58 at a sensor chemical application station 326 .
- the sensor chemistry can be applied at the sensor chemical application station 326 by a variety of techniques. Exemplary techniques include piezo jet printing, ink jet printing, spraying, flowing the sensor chemistry onto the electrodes, coating chemistry on the electrodes, or any other technique suitable for applying chemistry to a relatively precise location.
- the working electrodes 58 optionally have ends that are staggered with respect to the end of the counter electrode 60 . Such a configuration assists in inhibiting the sensor chemistry from unintentionally being applied to the counter electrode 60 .
- FIG. 16 is strictly exemplary and that variations can be made in the number of steps and the sequence of steps without departing from the principles of the present invention.
- various heating or energy dispersive stations can be placed at locations along the web pathway to heat the web 302 for such purposes as plasticizing the substrate web 302 prior to embossing, curing binders contained within conductive material deposited within the channels of the sensors, and evaporating solvents or dispersants.
- FIGS. 12 and 16 each relate to continuous web processes, it will be appreciated that the present invention is not limited to continuous web processes.
- the various process steps disclosed herein can be performed with respect to discrete or individual sensors completely separate from a web.
- Sheet fed processing may also be employed as an alternative to a continuous web.
- the web can be moved continuously through various processing steps at a substantially constant speed, in other embodiments the web can be intermittently stopped and started, or the speed of the web can be varied.
- the sensor may be provided with a code, for example a batch code, during processing.
- the code may be applied to the sensor, for example by printing the code on the substrate.
- the sensor code may include information such as the batch number, the type and quantity of chemistry applied to the sensor, and/or calibration data.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Emergency Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Diabetes (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
Abstract
A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.
Description
- This application is a continuation of U.S. patent application Ser. No. 11/930,011 filed Oct. 30, 2007, which is a continuation of U.S. patent application Ser. No. 11/204,551 filed Aug. 16, 2005, now U.S. Pat. No. 7,721,412, which is a continuation of U.S. patent application Ser. No. 10/405,765 filed Mar. 31, 2003, now U.S. Pat. No. 6,973,706, which is a continuation of U.S. patent application Ser. No. 09/598,776, filed Jun. 16, 2000, abandoned, which is a continuation of U.S. patent application Ser. No. 09/034,422, filed Mar. 4, 1998, now U.S. Pat. No. 6,103,033, all of which are incorporated herein by reference.
- The present invention relates to a process for the manufacture of small sensors, including small electrochemical sensors. More particularly, the process of the invention includes disposing a conductive material on a substrate, preferably in channels formed on the surface of the substrate, thereby forming conductive traces and electrodes in a rapid, efficient manner, with reproducible surface areas and conductivities, and particularly forming very small conductive traces.
- The monitoring of the level of glucose or other biochemicals, such as lactate, in individuals is often important. High or low levels of glucose or other biochemicals may be detrimental to an individual's health. The monitoring of glucose is particularly important to individuals with diabetes as they must determine when insulin is needed to reduce glucose levels in their bloodstream or when additional glucose is needed to raise the level of glucose in the bloodstream.
- Conventional techniques for monitoring blood glucose levels currently include the periodic drawing of blood, the application of that blood to a test strip, and the determination of the blood glucose concentration using electrochemical, colorimetric, or photometric methods. This technique does not allow for continuous monitoring of blood glucose levels, but must be performed on a periodic basis.
- A variety of other devices have also been developed for continuous monitoring of analytes in the blood stream or subcutaneous tissue. Many of these devices use electrochemical sensors which are directly implanted in a blood vessel or in the subcutaneous tissue of a user. However, these devices are often large, bulky, and/or inflexible and many cannot be used effectively outside of a controlled medical facility, such as a hospital or a doctor's office, unless the user is restricted in his activities.
- The user's comfort and the range of activities that can be performed while the sensor is implanted are important considerations in designing extended-use sensors for continuous in vivo monitoring of the level of an analyte, such as glucose. There is a need for a small, comfortable device which can continuously monitor the level of an analyte, such as glucose, while still permitting the user to engage in normal activities outside the boundaries of a controlled medical facility. There is also a need for methods that allow such small, comfortable devices to be relatively inexpensively, efficiently, reproducibly and precisely manufactured.
- A significant problem in the manufacture of in vitro electrochemical sensors has been the inability to manufacture small electrodes with reproducible surfaces. Present techniques for printing or silk screening carbon electrodes onto substrates yield electrodes with poorly defined or irreproducible surface areas and conductivities, particularly at trace widths below 250 μm (10 mils).
- Small sized non-electrochemical sensors including, for example, temperature probes, would also be useful if they could be reliably and reproducibly manufactured. A process for the manufacture of small sensors with reproducible surfaces is needed.
- The present invention provides a process for the manufacture of small sensors which is efficient, reliable, and provides reproducible surfaces. The process of the invention includes forming one or more channels on a surface of a substrate and disposing a conductive material within the formed channels to form an electrode. Various embodiments of the process include the manufacture of electrochemical sensors by disposing a sensing layer on the conductive material within the formed channels; the manufacture of a sensor having one or more working electrodes; counter/reference electrodes, temperature sensors and the like formed in a plurality of channels on one or more surfaces of the substrate; and sensors having a plurality of electrode traces separated by very small distances to form a small electrochemical sensor.
- One aspect of the present invention relates to a process for the manufacture of an electrochemical sensor using a web process, which may be continuous or non-continuous. The process includes the steps of providing a substrate web, and disposing a pattern of a conductive material on the continuous substrate web to form an electrode, including one or more working electrodes and counter electrodes. The method also includes the step of disposing a sensing layer on the working electrode disposed on the web. Such a continuous web process is adapted for relatively inexpensively, efficiently, reproducibly and precisely manufacturing electrochemical sensors.
- Another aspect of the present invention includes a process for the manufacture of an electrochemical sensor having one or more working and/or counter electrodes disposed on a sensor substrate. The method includes the steps of providing a substrate and disposing a conductive material on the substrate to form one or more working electrodes and/or counter electrodes, and optionally disposing a sensing layer on the working electrode.
- A further aspect of the present invention relates to process for the manufacture of an electrochemical sensor having electrodes and conductive traces disposed within channels defined by a sensor substrate. The process includes the steps of providing a substrate, and forming first and second channels in the substrate. The process also includes the step of disposing a conductive material within the channels to form a working electrode located at the first channel, and a counter electrode located at the second channel. The process further includes the optional step of disposing a sensing layer on the working electrode.
- The invention includes a continuous process for multi-step preparation of sensors including the efficient and precise deposition of small electrode tracings; sensing layers; counter electrodes, temperature sensors, and like constituents to efficiently produce electrochemical and non-electrochemical biosensors.
- The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and the detailed description which follow more particularly exemplify these embodiments.
- The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
-
FIG. 1 is a block diagram of one embodiment of an analyte monitor using an analyte sensor, according to the invention; -
FIG. 2 is a top view of one embodiment of an analyte sensor, according to the invention; -
FIG. 3A is a cross-sectional view of the analyte sensor ofFIG. 2 ; -
FIG. 3B is a cross-sectional view of another embodiment of an analyte sensor, according to the invention; -
FIG. 4A is a cross-sectional view of yet another embodiment of an analyte sensor, according to the invention; -
FIG. 4B is a cross-sectional view of a fourth embodiment of an analyte sensor, according to the invention; -
FIG. 5 is an expanded top view of a tip portion of the analyte sensor ofFIG. 2 ; -
FIG. 6 is a cross-sectional view of a fifth embodiment of an analyte sensor, according to the invention; -
FIG. 7 is an expanded top view of a tip-portion of the analyte sensor ofFIG. 6 ; -
FIG. 8 is an expanded bottom view of a tip-portion of the analyte sensor ofFIG. 6 ; -
FIG. 9 is a side view of the analyte sensor ofFIG. 2 ; -
FIG. 10 is a top view of the analyte sensor ofFIG. 6 ; and -
FIG. 11 is a bottom view of the analyte sensor ofFIG. 6 . -
FIG. 12 is a schematic illustration of an exemplary method or system for manufacturing the sensor ofFIG. 2 ; -
FIG. 13 is a perspective view of an exemplary embossing roller suitable for use in the system ofFIG. 12 ; -
FIG. 14 is a perspective of an alternative embossing roller; -
FIG. 15A is cross sectional view taken alongsection line 15 a-15 a ofFIG. 12 ; -
FIG. 15B is a cross sectional view taken along section line 15 b-15 b ofFIG. 12 ; -
FIG. 15C is a cross sectional view taken along section line 15 c-15 c ofFIG. 12 ; -
FIG. 15D is a cross sectional view taken along section line 15 d-15 d ofFIG. 12 ; -
FIG. 16 illustrates a system in accordance with the principles of the present invention for making the sensor ofFIGS. 10 and 11 ; and -
FIG. 17 is a top view of another embodiment of an analyte sensor, according to the invention. - While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
- The process of the present invention is applicable to the manufacture of an analyte sensor for the in vivo and/or in vitro determination of an analyte, such as glucose or lactate, in a fluid. The process is also applicable to the production of other sensors, including, for example biosensors relaying a chemical signal through a conductive tracing.
- The analyte sensors of the present invention can be utilized in a variety of contexts. For example, one embodiment of the analyte sensor is subcutaneously implanted in the interstitial tissue of a patient for the continuous or periodic monitoring of a level of an analyte in a patient's interstitial fluid. This can then be used to infer the analyte level in the patient's bloodstream. Other in vivo analyte sensors can be made, according to the invention, for insertion into a vein, artery, or other portion of the body containing fluid in order to measure a bioanalyte. The in vivo analyte sensors may be configured for obtaining a single measurement and/or for monitoring the level of the analyte over a time period which may range from hours to days or longer.
- Another embodiment of the analyte sensor is used for the in vitro determination of the presence and/or level of an analyte in a sample, and, particularly, in a small volume sample (e.g., 1 to 10 microliters or less). While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
- The following definitions are provided for terms used herein. A “counter electrode” refers to an electrode paired with the working electrode, through which passes a current equal in magnitude and opposite in sign to the current passing through the working electrode. In the context of the invention, the term “counter electrode” is meant to include counter electrodes which also function as reference electrodes (i.e., a counter/reference electrode).
- An “electrochemical sensor” is a device configured to detect the presence and/or measure the level of an analyte in a sample via electrochemical oxidation and reduction reactions on the sensor. These reactions are transduced to an electrical signal that can be correlated to an amount, concentration, or level of an analyte in the sample.
- “Electrolysis” is the electrooxidation or electroreduction of a compound either directly at an electrode or via one or more electron transfer agents.
- A compound is “immobilized” on a surface when it is entrapped on or chemically bound to the surface.
- A “non-leachable” or “non-releasable” compound or a compound that is “non-leachably disposed” is meant to define a compound that is affixed on the sensor such that it does not substantially diffuse away from the working surface of the working electrode for the period in which the sensor is used (e.g., the period in which the sensor is implanted in a patient or measuring a sample).
- Components are “immobilized” within a sensor, for example, when the components are covalently, ionically, or coordinatively bound to constituents of the sensor and/or are entrapped in a polymeric or sol-gel matrix or membrane which precludes mobility.
- An “electron transfer agent” is a compound that carries electrons between the analyte and the working electrode, either directly, or in cooperation with other electron transfer agents. One example of an electron transfer agent is a redox mediator.
- A “working electrode” is an electrode at which the analyte (or a second compound whose level depends on the level of the analyte) is electrooxidized or electroreduced with or without the agency of an electron transfer agent.
- A “working surface” is that portion of the working electrode which is coated with or is accessible to the electron transfer agent and configured for exposure to an analyte-containing fluid.
- A “sensing layer” is a component of the sensor which includes constituents that facilitate the electrolysis of the analyte. The sensing layer may include constituents such as an electron transfer agent, a catalyst which catalyzes a reaction of the analyte to produce a response at the electrode, or both. In some embodiments of the sensor, the sensing layer is non-leachably disposed in proximity to or on the working electrode.
- A “non-corroding” conductive material includes non-metallic materials, such as carbon and conductive polymers.
- The sensors of the present invention can be utilized in a variety of devices and under a variety of conditions. The particular configuration of a sensor may depend on the use for which the sensor is intended and the conditions under which the sensor will operate (e.g., in vivo or in vitro). One embodiment of the analyte sensor is configured for implantation into a patient or user for in vivo operation. For example, implantation of the sensor may be made in the arterial or venous systems for direct testing of analyte levels in blood. Alternatively, a sensor may be implanted in the interstitial tissue for determining the analyte level in interstitial fluid. This level may be correlated and/or converted to analyte levels in blood or other fluids. The site and depth of implantation may affect the particular shape, components, and configuration of the sensor. Subcutaneous implantation may be preferred, in some cases, to limit the depth of implantation of the sensor. Sensors may also be implanted in other regions of the body to determine analyte levels in other fluids. Particularly useful sensors are described in U.S. Pat. No. 6,134,461, incorporated herein by reference.
- An implantable analyte sensor may be used as part of an analyte monitoring system to continuously and/or periodically monitor the level of an analyte in a body fluid of a patient. In addition to the
sensor 42, theanalyte monitoring system 40 also typically includes a control unit 44 for operating the sensor 42 (e.g., providing a potential to the electrodes and obtaining measurements from the electrodes) and aprocessing unit 45 for analyzing the measurements from thesensor 42. The control unit 44 andprocessing unit 45 may be combined in a single unit or may be separate. - Another embodiment of the sensor may be used for in vitro measurement of a level of an analyte. The in vitro sensor is coupled to a control unit and/or a processing unit to form an analyte monitoring system. In some embodiments, an in vitro analyte monitoring system is also configured to provide a sample to the sensor. For example, the analyte monitoring system may be configured to draw a sample from, for example, a lanced wound using a wicking and/or capillary action. The sample may then be drawn into contact with the sensor. Examples of such sensors may be found in U.S. patent application Ser. No. 08/795,767 and PCT Patent Application Publication No. WO 98/35225, incorporated herein by reference.
- Other methods for providing a sample to the sensor include using a pump, syringe, or other mechanism to draw a sample from a patient through tubing or the like either directly to the sensor or into a storage unit from which a sample is obtained for the sensor. The pump, syringe, or other mechanism may operate continuously, periodically, or when desired to obtain a sample for testing. Other useful devices for providing an analyte-containing fluid to the sensor include microfiltration and/or microdialysis devices. In some embodiments, particularly those using a microdialysis device, the analyte may be drawn from the body fluid through a microporous membrane, for example, by osmotic pressure, into a carrier fluid which is then conveyed to the sensor for analysis. Other useful devices for acquiring a sample are those that collect body fluids transported across the skin using techniques, such as reverse iontophoresis, to enhance the transport of fluid containing analyte across the skin.
- A
sensor 42, according to the invention, includes at least one workingelectrode 58 formed on asubstrate 50, as shown inFIG. 2 . Thesensor 42 may also include at least one counter electrode 60 (or counter/reference electrode) and/or at least one reference electrode 62 (seeFIG. 8 ). Thecounter electrode 60 and/orreference electrode 62 may be formed on thesubstrate 50 or may be separate units. For example, the counter electrode and/or reference electrode may be formed on a second substrate which is also implanted in the patient or, for some embodiments of the implantable sensors, the counter electrode and/or reference electrode may be placed on the skin of the patient with the working electrode or electrodes being implanted into the patient. The use of an on-the-skin counter and/or reference electrode with an implantable working electrode is described in U.S. Pat. No. 5,593,852, incorporated herein by reference. - The working electrode or
electrodes 58 are formed usingconductive traces 52 disposed on thesubstrate 50. Thecounter electrode 60 and/orreference electrode 62, as well as other optional portions of thesensor 42, such as a temperature probe 66 (seeFIG. 8 ), may also be formed usingconductive traces 52 disposed on thesubstrate 50. These conductive traces 52 may be formed over a smooth surface of thesubstrate 50 or withinchannels 54 formed by, for example, embossing, indenting or otherwise creating a depression in thesubstrate 50. - A sensing layer 64 (see
FIGS. 3A and 3B ) is often formed proximate to or on at least one of the workingelectrodes 58 to facilitate the electrochemical detection of the analyte and the determination of its level in the sample fluid, particularly if the analyte cannot be electrolyzed at a desired rate and/or with a desired specificity on a bare electrode. Thesensing layer 64 may include an electron transfer agent to transfer electrons directly or indirectly between the analyte and the workingelectrode 58. Thesensing layer 64 may also contain a catalyst to catalyze a reaction of the analyte. The components of the sensing layer may be in a fluid or gel that is proximate to or in contact with the workingelectrode 58. Alternatively, the components of thesensing layer 64 may be disposed in a polymeric or sol-gel matrix that is proximate to or on the workingelectrode 58. Preferably, the components of thesensing layer 64 are non-leachably disposed within thesensor 42. More preferably, the components of thesensor 42 are immobilized within thesensor 42. - In addition to the
electrodes sensing layer 64, thesensor 42 may also include a temperature probe 66 (seeFIGS. 6 and 8 ), a mass transport limiting layer 74 (seeFIG. 9 ), a biocompatible layer 75 (seeFIG. 9 ), and/or other optional components, as described below. Each of these items enhances the functioning of and/or results from thesensor 42, as discussed below. - The
substrate 50 may be formed using a variety of non-conducting materials, including, for example, polymeric or plastic materials and ceramic materials. Suitable materials for aparticular sensor 42 may be determined, at least in part, based on the desired use of thesensor 42 and properties of the materials. - In some embodiments, the substrate is flexible. For example, if the
sensor 42 is configured for implantation into a patient, then thesensor 42 may be made flexible (although rigid sensors may also be used for implantable sensors) to reduce pain to the patient and damage to the tissue caused by the implantation of and/or the wearing of thesensor 42. Aflexible substrate 50 often increases the patient's comfort and allows a wider range of activities. Aflexible substrate 50 is also useful for an invitro sensor 42, particularly for ease of manufacturing. Suitable materials for aflexible substrate 50 include, for example, non-conducting plastic or polymeric materials and other non-conducting, flexible, deformable materials. Examples of useful plastic or polymeric materials include thermoplastics such as polycarbonates, polyesters (e.g., Mylar™ and polyethylene terephthalate (PET)), polyvinyl chloride (PVC), polyurethanes, polyethers, polyamides, polyimides, or copolymers of these thermoplastics, such as PETG (glycol-modified polyethylene terephthalate). - In other embodiments, the
sensors 42 are made using a relativelyrigid substrate 50 to, for example, provide structural support against bending or breaking Examples of rigid materials that may be used as thesubstrate 50 include poorly conducting ceramics, such as aluminum oxide and silicon dioxide. One advantage of animplantable sensor 42 having a rigid substrate is that thesensor 42 may have a sharp point and/or a sharp edge to aid in implantation of asensor 42 without an additional insertion device. In addition,rigid substrates 50 may also be used in sensors for in vitro analyte monitors. - It will be appreciated that for
many sensors 42 and sensor applications, both rigid and flexible sensors will operate adequately. The flexibility of thesensor 42 may also be controlled and varied along a continuum by changing, for example, the composition and/or thickness of thesubstrate 50. - In addition to considerations regarding flexibility, it is often desirable that
implantable sensors 42, as well as in vitro sensors which contact a fluid that is returned to a patient's body, should have asubstrate 50 which is non-toxic. Preferably, thesubstrate 50 is approved by one or more appropriate governmental agencies or private groups for in vivo use. - The
sensor 42 may include optional features to facilitate insertion of animplantable sensor 42, as shown inFIG. 17 . For example, thesensor 42 may be pointed at thetip 123 to ease insertion. In addition, thesensor 42 may include abarb 125 which assists in anchoring thesensor 42 within the tissue of the patient during operation of thesensor 42. However, thebarb 125 is typically small enough that little damage is caused to the subcutaneous tissue when thesensor 42 is removed for replacement. - Although the
substrate 50 in at least some embodiments has uniform dimensions along the entire length of thesensor 42, in other embodiments, thesubstrate 50 has adistal end 67 at a first portion 67 a ofsensor 42 and aproximal end 65 at a second portion 65 a ofsensor 42. First portion 67 a and second portion 65 a have different widths 53, 55, respectively, as illustrated inFIG. 2 . Width 53 is measured betweenedge 67′ and edge 67″ of first portion 67 a, and width 55 is measured betweenedge 65′ and edge 65″ of second portion 65 a. In these embodiments, the first portion 67 a havingdistal end 67 of thesubstrate 50 may have a relatively narrow width 53. Forsensors 42 which are implantable into the subcutaneous tissue or another portion of a patient's body, the narrow width 53 of the first portion 67 a havingdistal end 67 of thesubstrate 50 may facilitate the implantation of thesensor 42. Often, the narrower the width of thesensor 42, the less pain the patient will feel during implantation of the sensor and afterwards. - For subcutaneously
implantable sensors 42 which are designed for continuous or periodic monitoring of the analyte during normal activities of the patient, the first portion 67 a havingdistal end 67 of thesensor 42 which is to be implanted into the patient has a width 53 of 2 mm or less, preferably 1 mm or less, and more preferably 0.5 mm or less. If thesensor 42 does not have regions of different widths, then thesensor 42 will typically have an overall width of, for example, 2 mm, 1.5 mm, 1 mm, 0.5 mm, 0.25 mm, or less. However, wider or narrower sensors may be used. In particular, wider implantable sensors may be used for insertion into veins or arteries or when the movement of the patient is limited, for example, when the patient is confined in bed or in a hospital. - For
sensors 42 which are designed for measuring small volume in vitro samples, the narrow width 53 may reduce the volume of sample needed for an accurate reading. The narrow width 53 of thesensor 42 results in all of the electrodes of thesensor 42 being closely congregated, thereby requiring less sample volume to cover all of the electrodes. The width of an invitro sensor 42 may vary depending, at least in part, on the volume of sample available to thesensor 42 and the dimensions of the sample chamber in which thesensor 42 is disposed. - Returning to
FIG. 2 , theproximal end 65 of thesensor 42 may have a width 55 larger than thedistal end 67 to facilitate the connection betweencontact pads 49 of the electrodes and contacts on a control unit. The wider thesensor 42 at this point, the larger thecontact pads 49 can be made. This may reduce the precision needed to properly connect thesensor 42 to contacts on the control unit (e.g., sensor control unit 44 ofFIG. 1 ). However, the maximum width of thesensor 42 may be constrained so that thesensor 42 remains small for the convenience and comfort of the patient and/or to fit the desired size of the analyte monitor. For example, theproximal end 65 of a subcutaneouslyimplantable sensor 42, such as thesensor 42 illustrated inFIG. 1 , may have a width 55 ranging from 0.5 mm to 15 mm, preferably from 1 mm to 10 mm, and more preferably from 3 mm to 7 mm. However, wider or narrower sensors may be used in this and other in vivo and in vitro applications. - The thickness of the
substrate 50 may be determined by the mechanical properties of the substrate material (e.g., the strength, modulus, and/or flexibility of the material), the desired use of thesensor 42 including stresses on thesubstrate 50 arising from that use, as well as the depth of any channels or indentations formed in thesubstrate 50, as discussed below. Typically, thesubstrate 50 of a subcutaneouslyimplantable sensor 42 for continuous or periodic monitoring of the level of an analyte while the patient engages in normal activities has a thickness of 50 to 500 μm and preferably 100 to 300 μm. However, thicker andthinner substrates 50 may be used, particularly in other types of in vivo and in vitrosensors 42. - The length of the
sensor 42 may have a wide range of values depending on a variety of factors. Factors which influence the length of animplantable sensor 42 may include the depth of implantation into the patient and the ability of the patient to manipulate a smallflexible sensor 42 and make connections between thesensor 42 and the sensor control unit 44. A subcutaneouslyimplantable sensor 42 for the analyte monitor illustrated inFIG. 1 may have a length ranging from 0.3 to 5 cm, however, longer or shorter sensors may be used. The length of the narrow portion of the sensor 42 (e.g., the portion which is subcutaneously inserted into the patient), if thesensor 42 has narrow and wide portions, is typically about 0.25 to 2 cm in length. However, longer and shorter portions may be used. All or only a part of this narrow portion may be subcutaneously implanted into the patient. - The lengths of other
implantable sensors 42 will vary depending, at least in part, on the portion of the patient into which thesensor 42 is to be implanted or inserted. The length of in vitro sensors may vary over a wide range depending on the particular configuration of the analyte monitoring system and, in particular, the distance between the contacts of the control unit and the sample. - At least one
conductive trace 52 is formed on the substrate for use in constructing a workingelectrode 58. In addition, otherconductive traces 52 may be formed on thesubstrate 50 for use as electrodes (e.g., additional working electrodes, as well as counter, counter/reference, and/or reference electrodes) and other components, such as a temperature probe. The conductive traces 52 may extend most of the distance along alength 57 of thesensor 42, as illustrated inFIG. 2 , although this is not necessary. The placement of the conductive traces 52 may depend on the particular configuration of the analyte monitoring system (e.g., the placement of control unit contacts and/or the sample chamber in relation to the sensor 42). For implantable sensors, particularly subcutaneously implantable sensors, the conductive traces typically extend close to the tip of thesensor 42 to minimize the amount of the sensor that must be implanted. - The conductive traces 52 may be formed on the
substrate 50 by a variety of techniques, including, for example, photolithography, screen printing, or other impact or non-impact printing techniques. The conductive traces 52 may also be formed by carbonizing conductive traces 52 in an organic (e.g., polymeric or plastic)substrate 50 using a laser. - Another method for disposing the conductive traces 52 on the
substrate 50 includes the formation of recessedchannels 54 in one or more surfaces of thesubstrate 50 and the subsequent filling of these recessedchannels 54 with aconductive material 56, as shown inFIG. 3A . The recessedchannels 54 may be formed by indenting, embossing, or otherwise creating a depression in the surface of thesubstrate 50. The depth of the channels is typically related to the thickness of thesubstrate 50. In one embodiment, the channels have depths in the range of about 12.5 to 75 μm (0.5 to 3 mils), and preferably about 25 to 50 μm (1 to 2 mils). - The conductive traces are typically formed using a
conductive material 56 such as carbon (e.g., graphite), a conductive polymer, a metal or alloy (e.g., gold or gold alloy), or a metallic compound (e.g., ruthenium dioxide or titanium dioxide). The formation of films of carbon, conductive polymer, metal, alloy, or metallic compound are well-known and include, for example, chemical vapor deposition (CVD), physical vapor deposition, sputtering, reactive sputtering, printing, coating, and painting. Theconductive material 56 which fills thechannels 54 is often formed using a precursor material, such as a conductive ink or paste. In these embodiments, theconductive material 56 is deposited on thesubstrate 50 using methods such as coating, painting, or applying the material using a spreading instrument, such as a coating blade. Excess conductive material between thechannels 54 is then removed by, for example, running a blade along the substrate surface. - In one embodiment, the
conductive material 56 is a part of a precursor material, such as a conductive ink, obtainable, for example, from Ercon, Inc. (Wareham, Mass.), Metech, Inc. (Elverson, Pa.), E. I. du Pont de Nemours and Co. (Wilmington, Del.), Emca-Remex Products (Montgomeryville, Pa.), or MCA Services (Melbourn, Great Britain). The conductive ink is typically applied as a semiliquid or paste which contains particles of the carbon, metal, alloy, or metallic compound and a solvent or dispersant. After application of the conductive ink on the substrate 50 (e.g., in the channels 54), the solvent or dispersant evaporates to leave behind a solid mass ofconductive material 56. - In addition to the particles of carbon, metal, alloy, or metallic compound, the conductive ink may also contain a binder. The binder may optionally be cured to further bind the
conductive material 56 within thechannel 54 and/or on thesubstrate 50. Curing the binder increases the conductivity of theconductive material 56. However, this is typically not necessary as the currents carried by theconductive material 56 within the conductive traces 52 are often relatively low (usually less than 1 μA and often less than 100 nA). Typical binders include, for example, polyurethane resins, cellulose derivatives, elastomers, and highly fluorinated polymers. Examples of elastomers include silicones, polymeric dienes, and acrylonitrile-butadiene-styrene (ABS) resins. One example of a fluorinated polymer binder is Teflon® (DuPont, Wilmington, Del.). These binders are cured using, for example, heat or light, including ultraviolet (UV) light. The appropriate curing method typically depends on the particular binder which is used. - Often, when a liquid or semiliquid precursor of the conductive material 56 (e.g., a conductive ink) is deposited in the
channel 54, the precursor fills thechannel 54. However, when the solvent or dispersant evaporates, theconductive material 56 which remains may lose volume such that theconductive material 56 may or may not continue to fill thechannel 54. Preferredconductive materials 56 do not pull away from thesubstrate 50 as they lose volume, but rather decrease in height within thechannel 54. Theseconductive materials 56 typically adhere well to thesubstrate 50 and therefore do not pull away from thesubstrate 50 during evaporation of the solvent or dispersant. Other suitableconductive materials 56 either adhere to at least a portion of thesubstrate 50 and/or contain another additive, such as a binder, which adheres theconductive material 56 to thesubstrate 50. Preferably, theconductive material 56 in thechannels 54 is non-leachable, and more preferably immobilized on thesubstrate 50. In some embodiments, theconductive material 56 may be formed by multiple applications of a liquid or semiliquid precursor interspersed with removal of the solvent or dispersant. - In another embodiment, the
channels 54 are formed using a laser. The laser carbonizes the polymer or plastic material. The carbon formed in this process is used as theconductive material 56. Additionalconductive material 56, such as a conductive carbon ink, may be used to supplement the carbon formed by the laser. - In a further embodiment, the conductive traces 52 are formed by pad printing techniques. For example, a film of conductive material is formed either as a continuous film or as a coating layer deposited on a carrier film. This film of conductive material is brought between a print head and the
substrate 50. A pattern on the surface of thesubstrate 50 is made using the print head according to a desired pattern of conductive traces 52. The conductive material is transferred by pressure and/or heat from the film of conductive material to thesubstrate 50. This technique often produces channels (e.g., depressions caused by the print head) in thesubstrate 50. Alternatively, the conductive material is deposited on the surface of thesubstrate 50 without forming substantial depressions. - In other embodiments, the conductive traces 52 are formed by non-impact printing techniques. Such techniques include electrophotography and magnetography. In these processes, an image of the conductive traces 52 is electrically or magnetically formed on a drum. A laser or LED may be used to electrically form an image. A magnetic recording head may be used to magnetically form an image. A toner material (e.g., a conductive material, such as a conductive ink) is then attracted to portions of the drum according to the image. The toner material is then applied to the substrate by contact between the drum and the substrate. For example, the substrate may be rolled over the drum. The toner material may then be dried and/or a binder in the toner material may be cured to adhere the toner material to the substrate.
- Another non-impact printing technique includes ejecting droplets of conductive material onto the substrate in a desired pattern. Examples of this technique include ink jet printing and piezo jet printing. An image is sent to the printer which then ejects the conductive material (e.g., a conductive ink) according to the pattern. The printer may provide a continuous stream of conductive material or the printer may eject the conductive material in discrete amounts at the desired points.
- Yet another non-impact printing embodiment of forming the conductive traces includes an ionographic process. In this process, a curable, liquid precursor, such as a photopolymerizable acrylic resin (e.g., Solimer 7501 from Cubital, Bad Kreuznach, Germany) is deposited over a surface of a
substrate 50. A photomask having a positive or negative image of the conductive traces 52 is then used to cure the liquid precursor. Light (e.g., visible or ultraviolet light) is directed through the photomask to cure the liquid precursor and form a solid layer over the substrate according to the image on the photomask. Uncured liquid precursor is removed leaving behindchannels 54 in the solid layer. Thesechannels 54 can then be filled withconductive material 56 to form conductive traces 52. - Conductive traces 52 (and
channels 54, if used) can be formed with relatively narrow widths, for example, in the range of 25 to 250 μm, and including widths of, for example, 250 μm, 150 μm, 100 μm, 75 μm, 50 μm, 25 μm or less by the methods described above. In embodiments with two or moreconductive traces 52 on the same side of thesubstrate 50, the conductive traces 52 are separated by distances sufficient to prevent conduction between the conductive traces 52. The edge-to-edge distance between the conductive traces is preferably in the range of 25 to 250 μm and may be, for example, 150 μm, 100 μm, 75 μm, 50 μm, or less. The density of the conductive traces 52 on thesubstrate 50 is preferably in the range of about 150 to 700 μm/trace and may be as small as 667 μm/trace or less, 333 μm/trace or less, or even 167 μm/trace or less. - The working
electrode 58 and the counter electrode 60 (if a separate reference electrode is used) are often made using aconductive material 56, such as carbon. Suitable carbon conductive inks are available from Ercon, Inc. (Wareham, Mass.), Metech, Inc. (Elverson, Pa.), E. I. du Pont de Nemours and Co. (Wilmington, Del.), Emca-Remex Products (Montgomeryville, Pa.), or MCA Services (Melbourn, Great Britain). Typically, the workingsurface 51 of the workingelectrode 58 is at least a portion of theconductive trace 52 that is in contact with the analyte-containing fluid (e.g., implanted in the patient or in the sample chamber of an in vitro analyte monitor). - The
reference electrode 62 and/or counter/reference electrode are typically formed usingconductive material 56 that is a suitable reference material, for example silver/silver chloride or a non-leachable redox couple bound to a conductive material, for example, a carbon-bound redox couple. Suitable silver/silver chloride conductive inks are available from Ercon, Inc. (Wareham, Mass.), Metech, Inc. (Elverson, Pa.), E. I. du Pont de Nemours and Co. (Wilmington, Del.), Emca-Remex Products (Montgomeryville, Pa.), or MCA Services (Melbourn, Great Britain). Silver/silver chloride electrodes illustrate a type of reference electrode that involves the reaction of a metal electrode with a constituent of the sample or body fluid, in this case, Cl−. - Suitable redox couples for binding to the conductive material of the reference electrode include, for example, redox polymers (e.g., polymers having multiple redox centers.) It is preferred that the reference electrode surface be non-corroding so that an erroneous potential is not measured. Preferred conductive materials include less corrosive metals, such as gold and palladium. Most preferred are non-corrosive materials including non-metallic conductors, such as carbon and conducting polymers. A redox polymer can be adsorbed on or covalently bound to the conductive material of the reference electrode, such as a carbon surface of a
conductive trace 52. Non-polymeric redox couples can be similarly bound to carbon or gold surfaces. - A variety of methods may be used to immobilize a redox polymer on an electrode surface. One method is adsorptive immobilization. This method is particularly useful for redox polymers with relatively high molecular weights. The molecular weight of a polymer may be increased, for example, by cross-linking
- Another method for immobilizing the redox polymer includes the functionalization of the electrode surface and then the chemical bonding, often covalently, of the redox polymer to the functional groups on the electrode surface. One example of this type of immobilization begins with a poly(4-vinylpyridine). The polymer's pyridine rings are, in part, complexed with a reducible/oxidizable species, such as [Os(bpy)2Cl]+/2+ where bpy is 2,2′-bipyridine. Part of the pyridine rings are quaternized by reaction with 2-bromoethylamine. The polymer is then crosslinked, for example, using a diepoxide, such as polyethylene glycol diglycidyl ether.
- Carbon surfaces can be modified for attachment of a redox species or polymer, for example, by electroreduction of a diazonium salt. As an illustration, reduction of a diazonium salt formed upon diazotization of p-aminobenzoic acid modifies a carbon surface with phenylcarboxylic acid functional groups. These functional groups can then be activated by a carbodiimide, such as 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. The activated functional groups are then bound with an amine-functionalized redox couple, such as the quaternized osmium-containing redox polymer described above or 2-aminoethylferrocene, to form the redox couple.
- Similarly, gold can be functionalized by an amine, such as cystamine,. A redox couple such as [Os(bpy)2 (pyridine-4-carboxylate)Cl]0/+ is activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride to form a reactive O-acylisourea which reacts with the gold-bound amine to form an amide.
- In one embodiment, in addition to using the conductive traces 52 as electrodes or probe leads, two or more of the conductive traces 52 on the
substrate 50 are used to give the patient a mild electrical shock when, for example, the analyte level exceeds a threshold level. This shock may act as a warning or alarm to the patient to initiate some action to restore the appropriate level of the analyte. - The mild electrical shock is produced by applying a potential between any two
conductive traces 52 that are not otherwise connected by a conductive path. For example, two of theelectrodes electrode temperature probe 66 may be used to provide the mild shock. Preferably, the workingelectrode 58 and thereference electrode 62 are not used for this purpose as this may cause some damage to the chemical components on or proximate to the particular electrode (e.g., the sensing layer on the working electrode or the redox couple on the reference electrode). - The current used to produce the mild shock is typically 0.1 to 1 mA. Higher or lower currents may be used, although care should be taken to avoid harm to the patient. The potential between the conductive traces is typically 1 to 10 volts. However, higher or lower voltages may be used depending, for example, on the resistance of the conductive traces 52, the distance between the
conductive traces 52 and the desired amount of current. When the mild shock is delivered, potentials at the workingelectrode 58 and across thetemperature probe 66 may be removed to prevent harm to those components caused by unwanted conduction between the working electrode 58 (and/ortemperature probe 66, if used) and the conductive traces 52 which provide the mild shock. - Typically, each of the conductive traces 52 includes a
contact pad 49. Thecontact pad 49 may simply be a portion of theconductive trace 52 that is indistinguishable from the rest of thetrace 52 except that thecontact pad 49 is brought into contact with the conductive contacts of a control unit (e.g., the sensor control unit 44 ofFIG. 1 ). More commonly, however, thecontact pad 49 is a region of theconductive trace 52 that has a larger width than other regions of thetrace 52 to facilitate a connection with the contacts on the control unit. By making thecontact pads 49 relatively large as compared with the width of the conductive traces 52, the need for precise registration between thecontact pads 49 and the contacts on the control unit is less critical than with small contact pads. - The
contact pads 49 are typically made using the same material as theconductive material 56 of the conductive traces 52. However, this is not necessary. Although metal, alloys, and metallic compounds may be used to form thecontact pads 49, in some embodiments, it is desirable to make thecontact pads 49 from a carbon or other non-metallic material, such as a conducting polymer. In contrast to metal or alloy contact pads, carbon and other non-metallic contact pads are not easily corroded if thecontact pads 49 are in a wet, moist, or humid environment. Metals and alloys may corrode under these conditions, particularly if thecontact pads 49 and contacts of the control unit are made using different metals or alloys. However, carbon andnon-metallic contact pads 49 do not significantly corrode, even if the contacts of the control device are metal or alloy. - One embodiment of the invention includes a
sensor 42 havingcontact pads 49 and a control unit 44 having conductive contacts (not shown). During operation of thesensor 42, thecontact pads 49 and conductive contacts are in contact with each other. In this embodiment, either thecontact pads 49 or the conductive contacts are made using a non-corroding, conductive material. Such materials include, for example, carbon and conducting polymers. Preferred non-corroding materials include graphite and vitreous carbon. The opposing contact pad or conductive contact is made using carbon, a conducting polymer, a metal, such as gold, palladium, or platinum group metal, or a metallic compound, such as ruthenium dioxide. This configuration of contact pads and conductive contacts typically reduces corrosion. Preferably, when the sensor is placed in a 3 mM, and more preferably, in a 100 mM, NaCl solution, the signal arising due to the corrosion of the contact pads and/or conductive contacts is less than 3% of the signal generated by the sensor when exposed to concentration of analyte in the normal physiological range. For at least some subcutaneous glucose sensors, the current generated by analyte in a normal physiological range ranges from 3 to 500 nA. - Each of the
electrodes pads 49 as shown inFIGS. 10 and 11 . In one embodiment (not shown), thecontact pads 49 are on the same side of thesubstrate 50 as the respective electrodes or temperature probe leads to which thecontact pads 49 are attached. - In other embodiments, the conductive traces 52 on at least one side are connected through vias in the substrate to contact pads 49 a on the opposite surface of the
substrate 50, as shown inFIGS. 10 and 11 . An advantage of this configuration is that contact between the contacts on the control unit and each of theelectrodes temperature probe 66 can be made from a single side of thesubstrate 50. - In yet other embodiments (not shown), vias through the substrate are used to provide contact pads on both sides of the
substrate 50 for eachconductive trace 52. The vias connecting the conductive traces 52 with the contact pads 49 a can be formed by making holes through thesubstrate 50 at the appropriate points and then filling the holes withconductive material 56. - A number of exemplary electrode configurations are described below, however, it will be understood that other configurations may also be used. In one embodiment, illustrated in
FIG. 3A , thesensor 42 includes two workingelectrodes 58 a, 58 b and onecounter electrode 60, which also functions as a reference electrode. In another embodiment, the sensor includes one workingelectrode 58 a, onecounter electrode 60, and onereference electrode 62, as shown inFIG. 3B . Each of these embodiments is illustrated with all of the electrodes formed on the same side of thesubstrate 50. - Alternatively, one or more of the electrodes may be formed on an opposing side of the
substrate 50. This may be convenient if the electrodes are formed using two different types of conductive material 56 (e.g., carbon and silver/silver chloride). Then, at least in some embodiments, only one type ofconductive material 56 needs to be applied to each side of thesubstrate 50, thereby reducing the number of steps in the manufacturing process and/or easing the registration constraints in the process. For example, if the workingelectrode 58 is formed using a carbon-basedconductive material 56 and the reference or counter/reference electrode is formed using a silver/silver chlorideconductive material 56, then the working electrode and reference or counter/reference electrode may be formed on opposing sides of thesubstrate 50 for ease of manufacture. - In another embodiment, two working
electrodes 58 and onecounter electrode 60 are formed on one side of thesubstrate 50 and onereference electrode 62 and twotemperature probes 66 are formed on an opposing side of thesubstrate 50, as illustrated inFIG. 6 . The opposing sides of the tip of this embodiment of thesensor 42 are illustrated inFIGS. 7 and 8 . - Some analytes, such as oxygen, can be directly electrooxidized or electroreduced on the working
electrode 58. Other analytes, such as glucose and lactate, require the presence of at least one electron transfer agent and/or at least one catalyst to facilitate the electrooxidation or electroreduction of the analyte. Catalysts may also be used for those analytes, such as oxygen, that can be directly electrooxidized or electroreduced on the workingelectrode 58. For these analytes, each workingelectrode 58 has asensing layer 64 formed proximate to or on a working surface of the workingelectrode 58. Typically, thesensing layer 64 is formed near or on only a small portion of the workingelectrode 58, often near a tip of thesensor 42. This limits the amount of material needed to form thesensor 42 and places thesensing layer 64 in the best position for contact with the analyte-containing fluid (e.g., a body fluid, sample fluid, or carrier fluid). - The
sensing layer 64 includes one or more components designed to facilitate the electrolysis of the analyte. Thesensing layer 64 may include, for example, a catalyst to catalyze a reaction of the analyte and produce a response at the workingelectrode 58, an electron transfer agent to indirectly or directly transfer electrons between the analyte and the workingelectrode 58, or both. - The
sensing layer 64 may be formed as a solid composition of the desired components (e.g., an electron transfer agent and/or a catalyst). These components are preferably non-leachable from thesensor 42 and more preferably are immobilized on thesensor 42. For example, the components may be immobilized on a workingelectrode 58. Alternatively, the components of thesensing layer 64 may be immobilized within or between one or more membranes or films disposed over the workingelectrode 58 or the components may be immobilized in a polymeric or sol-gel matrix. Examples of immobilized sensing layers are described in U.S. Pat. Nos. 5,262,035, 5,264,104, 5,264,105, 5,320,725, 5,593,852, and 5,665,222, and PCT Patent Application No. US1998/002403 entitled “Electrochemical Analyte Sensors Using Thermostable Soybean Peroxidase”, filed on Feb. 11, 1998, published as WO-1998/035053, incorporated herein by reference. - In some embodiments, one or more of the components of the
sensing layer 64 may be solvated, dispersed, or suspended in a fluid within thesensing layer 64, instead of forming a solid composition. The fluid may be provided with thesensor 42 or may be absorbed by thesensor 42 from the analyte-containing fluid. Preferably, the components which are solvated, dispersed, or suspended in this type ofsensing layer 64 are non-leachable from the sensing layer. Non-leachability may be accomplished, for example, by providing barriers (e.g., the electrode, substrate, membranes, and/or films) around the sensing layer which prevent the leaching of the components of thesensing layer 64. One example of such a barrier is a microporous membrane or film which allows diffusion of the analyte into thesensing layer 64 to make contact with the components of thesensing layer 64, but reduces or eliminates the diffusion of the sensing layer components (e.g., an electron transfer agent and/or a catalyst) out of thesensing layer 64. - A variety of different sensing layer configurations can be used. In one embodiment, the
sensing layer 64 is deposited on theconductive material 56 of a workingelectrode 58 a, as illustrated inFIGS. 3A and 3B . Thesensing layer 64 may extend beyond theconductive material 56 of the workingelectrode 58 a. In some cases, thesensing layer 64 may also extend over thecounter electrode 60 orreference electrode 62 without degrading the performance of the glucose sensor. For thosesensors 42 which utilizechannels 54 within which theconductive material 56 is deposited, a portion of thesensing layer 64 may be formed within thechannel 54 if theconductive material 56 does not fill thechannel 54. - A
sensing layer 64 in direct contact with the workingelectrode 58 a may contain an electron transfer agent to transfer electrons directly or indirectly between the analyte and the working electrode, as well as a catalyst to facilitate a reaction of the analyte. For example, a glucose, lactate, or oxygen electrode may be formed having a sensing layer which contains a catalyst, such as glucose oxidase, lactate oxidase, or laccase, respectively, and an electron transfer agent that facilitates the electrooxidation of the glucose, lactate, or oxygen, respectively. - In another embodiment, the
sensing layer 64 is not deposited directly on the workingelectrode 58 a. Instead, thesensing layer 64 is spaced apart from the workingelectrode 58 a, as illustrated inFIG. 4A , and separated from the workingelectrode 58 a by aseparation layer 61. Theseparation layer 61 typically includes one or more membranes or films. In addition to separating the workingelectrode 58 a from thesensing layer 64, theseparation layer 61 may also act as a mass transport limiting layer or an interferent eliminating layer, as described below. - Typically, a
sensing layer 64, which is not in direct contact with the workingelectrode 58 a, includes a catalyst that facilitates a reaction of the analyte. However, thissensing layer 64 typically does not include an electron transfer agent that transfers electrons directly from the workingelectrode 58 a to the analyte, as thesensing layer 64 is spaced apart from the workingelectrode 58 a. One example of this type of sensor is a glucose or lactate sensor which includes an enzyme (e.g., glucose oxidase or lactate oxidase, respectively) in thesensing layer 64. The glucose or lactate reacts with a second compound (e.g., oxygen) in the presence of the enzyme. The second compound is then electrooxidized or electroreduced at the electrode. Changes in the signal at the electrode indicate changes in the level of the second compound in the fluid and are proportional to changes in glucose or lactate level and, thus, correlate to the analyte level. - In another embodiment, two sensing
layers FIG. 4B . Each of the two sensinglayers electrode 58 a or in proximity to the workingelectrode 58 a. Onesensing layer 64 is typically, although not necessarily, spaced apart from the workingelectrode 58 a. For example, thissensing layer 64 may include a catalyst which catalyzes a reaction of the analyte to form a product compound. The product compound is then electrolyzed in thesecond sensing layer 63 which may include an electron transfer agent to transfer electrons between the workingelectrode 58 a and the product compound and/or a second catalyst to catalyze a reaction of the product compound to generate a signal at the workingelectrode 58 a. - For example, a glucose or lactate sensor may include a
first sensing layer 64 which is spaced apart from the working electrode and contains an enzyme, for example, glucose oxidase or lactate oxidase. The reaction of glucose or lactate in the presence of the appropriate enzyme forms hydrogen peroxide. Asecond sensing layer 63 is provided directly on the workingelectrode 58 a and contains a peroxidase enzyme and an electron transfer agent to generate a signal at the electrode in response to the hydrogen peroxide. The level of hydrogen peroxide indicated by the sensor then correlates to the level of glucose or lactate. Another sensor which operates similarly can be made using a single sensing layer with both the glucose or lactate oxidase and the peroxidase being deposited in the single sensing layer. Examples of such sensors are described in U.S. Pat. No. 5,593,852, U.S. Pat. No. 5,665,222 and PCT Patent Application No. US 1998/002403 entitled “Electrochemical Analyte Sensors Using Thermostable Soybean Peroxidase”, filed on Feb. 11, 1998, published as WO-1998/035053, incorporated herein by reference. - In some embodiments, one or more of the working electrodes 58 b do not have a
corresponding sensing layer 64, as shown inFIGS. 3A and 4A , or have a sensing layer (not shown) which does not contain one or more components (e.g., an electron transfer agent or catalyst) needed to electrolyze the analyte. The signal generated at this working electrode 58 b typically arises from interferents and other sources, such as ions, in the fluid, and not in response to the analyte (because the analyte is not electrooxidized or electroreduced). Thus, the signal at this working electrode 58 b corresponds to a background signal. The background signal can be removed from the analyte signal obtained from other workingelectrodes 58 a that are associated with fully-functional sensing layers 64 by, for example, subtracting the signal at working electrode 58 b from the signal at workingelectrode 58 a. - Sensors having multiple working
electrodes 58 a may also be used to obtain more precise results by averaging the signals or measurements generated at these workingelectrodes 58 a. In addition, multiple readings at a single workingelectrode 58 a or at multiple working electrodes may be averaged to obtain more precise data. - In many embodiments, the
sensing layer 64 contains one or more electron transfer agents in contact with theconductive material 56 of the workingelectrode 58, as shown inFIGS. 3A and 3B . In some embodiments, it is acceptable for the electron transfer agent to diffuse or leach away from the working electrode, particularly for in vitrosensors 42 that are used only once. Other in vitro sensors may utilize a carrier fluid which contains the electron transfer agent. The analyte is transferred to the carrier fluid from the original sample fluid by, for example, osmotic flow through a microporous membrane or the like. - In yet other embodiments of the invention, there is little or no leaching of the electron transfer agent away from the working
electrode 58 during the period in which thesensor 42 is implanted in the patient or measuring an in vitro analyte-containing sample. A diffusing or leachable (i.e., releasable) electron transfer agent often diffuses into the analyte-containing fluid, thereby reducing the effectiveness of the electrode by reducing the sensitivity of the sensor over time. In addition, a diffusing or leaching electron transfer agent in animplantable sensor 42 may also cause damage to the patient. In these embodiments, preferably, at least 90%, more preferably, at least 95%, and, most preferably, at least 99%, of the electron transfer agent remains disposed on the sensor after immersion in the analyte-containing fluid for 24 hours, and, more preferably, for 72 hours. In particular, for an implantable sensor, preferably, at least 90%, more preferably, at least 95%, and most preferably, at least 99%, of the electron transfer agent remains disposed on the sensor after immersion in the body fluid at 37° C. for 24 hours, and, more preferably, for 72 hours. - In some embodiments of the invention, to prevent leaching, the electron transfer agents are bound or otherwise immobilized on the working
electrode 58 or between or within one or more membranes or films disposed over the workingelectrode 58. The electron transfer agent may be immobilized on the workingelectrode 58 using, for example, a polymeric or sol-gel immobilization technique. Alternatively, the electron transfer agent may be chemically (e.g., ionically, covalently, or coordinatively) bound to the workingelectrode 58, either directly or indirectly through another molecule, such as a polymer, that is in turn bound to the workingelectrode 58. - Application of the
sensing layer 64 on a workingelectrode 58 a is one method for creating a working surface for the workingelectrode 58 a, as shown inFIGS. 3A and 3B . The electron transfer agent mediates the transfer of electrons to electrooxidize or electroreduce an analyte and thereby permits a current flow between the workingelectrode 58 and thecounter electrode 60 via the analyte. The mediation of the electron transfer agent facilitates the electrochemical analysis of analytes which are not suited for direct electrochemical reaction on an electrode. - In general, the preferred electron transfer agents are electroreducible and electrooxidizable ions or molecules having redox potentials that are a few hundred millivolts above or below the redox potential of the standard calomel electrode (SCE). Preferably, the electron transfer agents are not more reducing than about −150 mV and not more oxidizing than about +400 mV versus SCE.
- The electron transfer agent may be organic, organometallic, or inorganic. Examples of organic redox species are quinones and species that in their oxidized state have quinoid structures, such as Nile blue and indophenol. Some quinones and partially oxidized quinhydrones react with functional groups of proteins such as the thiol groups of cysteine, the amine groups of lysine and arginine, and the phenolic groups of tyrosine which may render those redox species unsuitable for some of the sensors of the present invention because of the presence of the interfering proteins in an analyte-containing fluid. Usually substituted quinones and molecules with quinoid structure are less reactive with proteins and are preferred. A preferred tetrasubstituted quinone usually has carbon atoms in
positions - In general, electron transfer agents suitable for use in the invention have structures or charges which prevent or substantially reduce the diffusional loss of the electron transfer agent during the period of time that the sample is being analyzed. The preferred electron transfer agents include a redox species bound to a polymer which can in turn be immobilized on the working electrode. The bond between the redox species and the polymer may be covalent, coordinative, or ionic. Useful electron transfer agents and methods for producing them are described in U.S. Pat. Nos. 5,264,104; 5,356,786; 5,262,035; and 5,320,725, incorporated herein by reference. Although any organic or organometallic redox species can be bound to a polymer and used as an electron transfer agent, the preferred redox species is a transition metal compound or complex. The preferred transition metal compounds or complexes include osmium, ruthenium, iron, and cobalt compounds or complexes. The most preferred are osmium compounds and complexes. It will be recognized that many of the redox species described below may also be used, typically without a polymeric component, as electron transfer agents in a carrier fluid or in a sensing layer of a sensor where leaching of the electron transfer agent is acceptable.
- One type of non-releasable polymeric electron transfer agent contains a redox species covalently bound in a polymeric composition. An example of this type of mediator is poly(vinylferrocene).
- Another type of non-releasable electron transfer agent contains an ionically-bound redox species. Typically, this type of mediator includes a charged polymer coupled to an oppositely charged redox species. Examples of this type of mediator include a negatively charged polymer such as Nafion® (DuPont) coupled to a positively charged redox species such as an osmium or ruthenium polypyridyl cation. Another example of an ionically-bound mediator is a positively charged polymer such as quaternized poly(4-vinyl pyridine) or poly(1-vinyl imidazole) coupled to a negatively charged redox species such as ferricyanide or ferrocyanide. The preferred ionically-bound redox species is a highly charged redox species bound within an oppositely charged redox polymer.
- In another embodiment of the invention, suitable non-releasable electron transfer agents include a redox species coordinatively bound to a polymer. For example, the mediator may be formed by coordination of an osmium or cobalt 2,2′-bipyridyl complex to poly(1-vinyl imidazole) or poly(4-vinyl pyridine).
- The preferred electron transfer agents are osmium transition metal complexes with one or more ligands, each ligand having a nitrogen-containing heterocycle such as 2,2′-bipyridine, 1,10-phenanthroline, or derivatives thereof. Furthermore, the preferred electron transfer agents also have one or more ligands covalently bound in a polymer, each ligand having at least one nitrogen-containing heterocycle, such as pyridine, imidazole, or derivatives thereof. These preferred electron transfer agents exchange electrons rapidly between each other and the working
electrodes 58 so that the complex can be rapidly oxidized and reduced. - One example of a particularly useful electron transfer agent includes (a) a polymer or copolymer having pyridine or imidazole functional groups and (b) osmium cations complexed with two ligands, each ligand containing 2,2′-bipyridine, 1,10-phenanthroline, or derivatives thereof, the two ligands not necessarily being the same. Preferred derivatives of 2,2′-bipyridine for complexation with the osmium cation are 4,4′-dimethyl-2,2′-bipyridine and mono-, di-, and polyalkoxy-2,2′-bipyridines, such as 4,4′-dimethoxy-2,2′-bipyridine. Preferred derivatives of 1,10-phenanthroline for complexation with the osmium cation are 4,7-dimethyl-1,10-phenanthroline and mono, di-, and polyalkoxy-1,10-phenanthrolines, such as 4,7-dimethoxy-1,10-phenanthroline. Preferred polymers for complexation with the osmium cation include polymers and copolymers of poly(1-vinyl imidazole) (referred to as “PVI”) and poly(4-vinyl pyridine) (referred to as “PVP”). Suitable copolymer substituents of poly(1-vinyl imidazole) include acrylonitrile, acrylamide, and substituted or quaternized N-vinyl imidazole. Most preferred are electron transfer agents with osmium complexed to a polymer or copolymer of poly(1-vinyl imidazole).
- The preferred electron transfer agents have a redox potential ranging from −100 mV to about +150 mV versus the standard calomel electrode (SCE). Preferably, the potential of the electron transfer agent ranges from −100 mV to +150 mV and more preferably, the potential ranges from −50 mV to +50 mV. The most preferred electron transfer agents have osmium redox centers and a redox potential ranging from +50 mV to −150 mV versus SCE.
- The
sensing layer 64 may also include a catalyst which is capable of catalyzing a reaction of the analyte. The catalyst may also, in some embodiments, act as an electron transfer agent. One example of a suitable catalyst is an enzyme which catalyzes a reaction of the analyte. For example, a catalyst, such as a glucose oxidase, glucose dehydrogenase (e.g., pyrroloquinoline quinone glucose dehydrogenase (PQQ)), or oligosaccharide dehydrogenase, may be used when the analyte is glucose. A lactate oxidase or lactate dehydrogenase may be used when the analyte is lactate. Laccase may be used when the analyte is oxygen or when oxygen is generated or consumed in response to a reaction of the analyte. - Preferably, the catalyst is non-leachably disposed on the sensor, whether the catalyst is part of a solid sensing layer in the sensor or solvated in a fluid within the sensing layer. More preferably, the catalyst is immobilized within the sensor (e.g., on the electrode and/or within or between a membrane or film) to prevent unwanted leaching of the catalyst away from the working
electrode 58 and into the patient. This may be accomplished, for example, by attaching the catalyst to a polymer, cross linking the catalyst with another electron transfer agent (which, as described above, can be polymeric), and/or providing one or more barrier membranes or films with pore sizes smaller than the catalyst. - As described above, a second catalyst may also be used. This second catalyst is often used to catalyze a reaction of a product compound resulting from the catalyzed reaction of the analyte. The second catalyst typically operates with an electron transfer agent to electrolyze the product compound to generate a signal at the working electrode. Alternatively, the second catalyst may be provided in an interferent-eliminating layer to catalyze reactions that remove interferents, as described below.
- One embodiment of the invention is an electrochemical sensor in which the catalyst is mixed or dispersed in the
conductive material 56 which forms theconductive trace 52 of a workingelectrode 58. This may be accomplished, for example, by mixing a catalyst, such as an enzyme, in a carbon ink and applying the mixture into achannel 54 on the surface of thesubstrate 50. Preferably, the catalyst is immobilized in thechannel 54 so that it cannot leach away from the workingelectrode 58. This may be accomplished, for example, by curing a binder in the carbon ink using a curing technique appropriate to the binder. Curing techniques include, for example, evaporation of a solvent or dispersant, exposure to ultraviolet light, or exposure to heat. Typically, the mixture is applied under conditions that do not substantially degrade the catalyst. For example, the catalyst may be an enzyme that is heat-sensitive. The enzyme and conductive material mixture should be applied and cured, preferably, without sustained periods of heating. The mixture may be cured using evaporation or UV curing techniques or by the exposure to heat that is sufficiently short that the catalyst is not substantially degraded. - Another consideration for in vivo analyte sensors is the thermostability of the catalyst. Many enzymes have only limited stability at biological temperatures. Thus, it may be necessary to use large amounts of the catalyst and/or use a catalyst that is thermostable at the necessary temperature (e.g., 37° C. or higher for normal body temperature). A thermostable catalyst may be defined as a catalyst which loses less than 5% of its activity when held at 37° C. for at least one hour, preferably, at least one day, and more preferably at least three days. One example of a thermostable catalyst is soybean peroxidase. This particular thermostable catalyst may be used in a glucose or lactate sensor when combined either in the same or separate sensing layers with glucose or lactate oxidase or dehydrogenase. A further description of thermostable catalysts and their use in electrochemical inventions is found in U.S. Pat. No. 5,665,222 and in PCT Patent Application No. US1998/002403 entitled “Electrochemical Analyte Sensors Using Thermostable Soybean Peroxidase”, filed on Feb. 11, 1998, published as WO-1998/035053.
- To electrolyze the analyte, a potential (versus a reference potential) is applied across the working and
counter electrodes - The magnitude of the potential may optionally be limited to prevent significant (as determined by the current generated in response to the analyte) electrochemical reaction of interferents, such as urate, ascorbate, and acetaminophen. The limitation of the potential may be obviated if these interferents have been removed in another way, such as by providing an interferent-limiting barrier, as described below, or by including a working electrode 58 b (see
FIG. 3A ) from which a background signal may be obtained. - When a potential is applied between the working
electrode 58 and thecounter electrode 60, an electrical current will flow. The current is a result of the electrolysis of the analyte or a second compound whose level is affected by the analyte. In one embodiment, the electrochemical reaction occurs via an electron transfer agent and the optional catalyst. Many analytes B are oxidized (or reduced) to products C by an electron transfer agent species A in the presence of an appropriate catalyst (e.g., an enzyme). The electron transfer agent A is then oxidized (or reduced) at the electrode. Electrons are collected by (or removed from) the electrode and the resulting current is measured. This process is illustrated by reaction equations (1) and (2) (similar equations may be written for the reduction of the analyte B by a redox mediator A in the presence of a catalyst): -
- As an example, an electrochemical sensor may be based on the reaction of a glucose molecule with two non-leachable ferricyanide anions in the presence of glucose oxidase to produce two non-leachable ferrocyanide anions, two hydrogen ions, and gluconolactone. The amount of glucose present is assayed by electrooxidizing the non-leachable ferrocyanide anions to non-leachable ferricyanide anions and measuring the current.
- In another embodiment, a second compound whose level is affected by the analyte is electrolyzed at the working electrode. In some cases, the analyte D and the second compound, in this case, a reactant compound E, such as oxygen, react in the presence of the catalyst, as shown in reaction equation (3).
-
- The reactant compound E is then directly oxidized (or reduced) at the working electrode, as shown in reaction equation (4)
-
- Alternatively, the reactant compound E is indirectly oxidized (or reduced) using an electron transfer agent H (optionally in the presence of a catalyst), that is subsequently reduced or oxidized at the electrode, as shown in reaction equations (5) and (6).
-
- In either case, changes in the concentration of the reactant compound, as indicated by the signal at the working electrode, correspond inversely to changes in the analyte (i.e., as the level of analyte increases, the level of reactant compound and the signal at the electrode decrease).
- In other embodiments, the relevant second compound is a product compound F, as shown in reaction equation (3). The product compound F is formed by the catalyzed reaction of analyte D, which is directly electrolyzed at the electrode or indirectly electrolyzed using an electron transfer agent and, optionally, a catalyst. In these embodiments, the signal arising from the direct or indirect electrolysis of the product compound F at the working electrode corresponds directly to the level of the analyte (unless there are other sources of the product compound). As the level of analyte increases, the level of the product compound and signal at the working electrode increases.
- Those skilled in the art will recognize that there are many different reactions that will achieve the same result; namely the electrolysis of an analyte or a compound whose level depends on the level of the analyte. Reaction equations (1) through (6) illustrate non-limiting examples of such reactions.
- A variety of optional items may be included in the sensor. One optional item is a temperature probe 66 (
FIGS. 8 and 11 ). Thetemperature probe 66 may be made using a variety of known designs and materials. Oneexemplary temperature probe 66 is formed using two probe leads 68, 70 connected to each other through a temperature-dependent element 72 that is formed using a material with a temperature-dependent characteristic. An example of a suitable temperature-dependent characteristic is the resistance of the temperature-dependent element 72. - The two probe leads 68, 70 are typically formed using a metal, an alloy, a semimetal, such as graphite, a degenerate or highly doped semiconductor, or a small-band gap semiconductor. Examples of suitable materials include gold, silver, ruthenium oxide, titanium nitride, titanium dioxide, indium doped tin oxide, tin doped indium oxide, or graphite. The temperature-dependent element 72 is typically made using a fine trace (e.g., a conductive trace that has a smaller cross-section than that of the probe leads 68, 70) of the same conductive material as the probe leads, or another material such as a carbon ink, a carbon fiber, or platinum, which has a temperature-dependent characteristic, such as resistance, that provides a temperature-dependent signal when a voltage source is attached to the two probe leads 68, 70 of the
temperature probe 66. The temperature-dependent characteristic of the temperature-dependent element 72 may either increase or decrease with temperature. Preferably, the temperature dependence of the characteristic of the temperature-dependent element 72 is approximately linear with temperature over the expected range of biological temperatures (about 25 to 45° C.), although this is not required. - Typically, a signal (e.g., a current) having an amplitude or other property that is a function of the temperature can be obtained by providing a potential across the two probe leads 68, 70 of the
temperature probe 66. As the temperature changes, the temperature-dependent characteristic of the temperature-dependent element 72 increases or decreases with a corresponding change in the signal amplitude. The signal from the temperature probe 66 (e.g., the amount of current flowing through the probe) may be combined with the signal obtained from the workingelectrode 58 by, for example, scaling the temperature probe signal and then adding or subtracting the scaled temperature probe signal from the signal at the workingelectrode 58. In this manner, thetemperature probe 66 can provide a temperature adjustment for the output from the workingelectrode 58 to offset the temperature dependence of the workingelectrode 58. - One embodiment of the temperature probe includes probe leads 68, 70 formed as two spaced-apart channels with a temperature-dependent element 72 formed as a cross-channel connecting the two spaced-apart channels, as illustrated in
FIG. 8 . The two spaced-apart channels contain a conductive material, such as a metal, alloy, semimetal, degenerate semiconductor, or metallic compound. The cross-channel may contain the same material (provided the cross-channel has a smaller cross-section than the two spaced-apart channels) as the probe leads 68, 70. In other embodiments, the material in the cross-channel is different than the material of the probe leads 68, 70. - One exemplary method for forming this particular temperature probe includes forming the two spaced-apart channels and then filling them with the metallic or alloyed conductive material. Next, the cross-channel is formed and then filled with the desired material. The material in the cross-channel overlaps with the conductive material in each of the two spaced-apart channels to form an electrical connection.
- For proper operation of the
temperature probe 66, the temperature-dependent element 72 of thetemperature probe 66 cannot be shorted by conductive material formed between the two probe leads 68, 70. In addition, to prevent conduction between the two probe leads 68, 70 by ionic species within the body or sample fluid, a covering may be provided over the temperature-dependent element 72, and preferably over the portion of the probe leads 68, 70 that is implanted in the patient. The covering may be, for example, a non-conducting film disposed over the temperature-dependent element 72 and probe leads 68, 70 to prevent the ionic conduction. Suitable non-conducting films include, for example, Kapton™ polyimide films (DuPont, Wilmington, Del.). - Another method for eliminating or reducing conduction by ionic species in the body or sample fluid is to use an AC voltage source connected to the probe leads 68, 70. In this way, the positive and negative ionic species are alternately attracted and repelled during each half cycle of the AC voltage. This results in no net attraction of the ions in the body or sample fluid to the
temperature probe 66. The maximum amplitude of the ac current through the temperature-dependent element 72 may then be used to correct the measurements from the workingelectrodes 58. - The temperature probe can be placed on the same substrate as the electrodes. Alternatively, a temperature probe may be placed on a separate substrate. In addition, the temperature probe may be used by itself or in conjunction with other devices.
- An optional
biocompatible film layer 75 is formed over at least that portion of thesensor 42 which is subcutaneously inserted into the patient, as shown inFIG. 9 . This optionalbiocompatible film layer 75 may serve one or more functions. Thebiocompatible film layer 75 prevents the penetration of large biomolecules into the electrodes. This is accomplished by using afilm layer 75 having a pore size that is smaller than the biomolecules that are to be excluded. Such biomolecules may foul the electrodes and/or thesensing layer 64 thereby reducing the effectiveness of thesensor 42 and altering the expected signal amplitude for a given analyte concentration. The fouling of the workingelectrodes 58 may also decrease the effective life of thesensor 42. Thebiocompatible layer 75 may also prevent protein adhesion to thesensor 42, formation of blood clots, and other undesirable interactions between thesensor 42 and body. - For example, the sensor may be completely or partially coated on its exterior with a biocompatible coating. A preferred biocompatible coating is a hydrogel which contains at least 20 wt. % fluid when in equilibrium with the analyte-containing fluid. Examples of suitable hydrogels are described in U.S. Pat. No. 5,593,852, incorporated herein by reference, and include crosslinked polyethylene oxides, such as polyethylene oxide tetraacrylate.
- An interferent-eliminating layer (not shown) may be included in the
sensor 42. The interferent-eliminating layer may be incorporated in thebiocompatible layer 75 or in the mass transport limiting layer 74 (described below) or may be a separate layer. Interferents are molecules or other species that are electroreduced or electrooxidized at the electrode, either directly or via an electron transfer agent, to produce a false signal. In one embodiment, a film or membrane prevents the penetration of one or more interferents into the region around the workingelectrodes 58. Preferably, this type of interferent-eliminating layer is much less permeable to one or more of the interferents than to the analyte. - The interferent-eliminating layer may include ionic components, such as Nafion®, incorporated into a polymeric matrix to reduce the permeability of the interferent-eliminating layer to ionic interferents having the same charge as the ionic components. For example, negatively charged compounds or compounds that form negative ions may be incorporated in the interferent-eliminating layer to reduce the permeation of negative species in the body or sample fluid.
- Another example of an interferent-eliminating layer includes a catalyst for catalyzing a reaction which removes interferents. One example of such a catalyst is a peroxidase. Hydrogen peroxide reacts with interferents, such as acetaminophen, urate, and ascorbate. The hydrogen peroxide may be added to the analyte-containing fluid or may be generated in situ, by, for example, the reaction of glucose or lactate in the presence of glucose oxidase or lactate oxidase, respectively. Examples of interferent eliminating layers include a peroxidase enzyme crosslinked (a) using gluteraldehyde as a crosslinking agent or (b) oxidation of oligosaccharide groups in the peroxidase glycoenzyme with NaIO4, followed by coupling of the aldehydes formed to hydrazide groups in a polyacrylamide matrix to form hydrazones are described in U.S. Pat. Nos. 5,262,305 and 5,356,786, incorporated herein by reference.
- A mass
transport limiting layer 74 may be included with the sensor to act as a diffusion-limiting barrier to reduce the rate of mass transport of the analyte, for example, glucose or lactate, into the region around the workingelectrodes 58. By limiting the diffusion of the analyte, the steady state concentration of the analyte in the proximity of the working electrode 58 (which is proportional to the concentration of the analyte in the body or sample fluid) can be reduced. This extends the upper range of analyte concentrations that can still be accurately measured and may also expand the range in which the current increases approximately linearly with the level of the analyte. - It is preferred that the permeability of the analyte through the
film layer 74 vary little or not at all with temperature, so as to reduce or eliminate the variation of current with temperature. For this reason, it is preferred that in the biologically relevant temperature range from about 25° C. to about 45° C., and most importantly from 30° C. to 40° C., neither the size of the pores in the film nor its hydration or swelling change excessively. Preferably, the mass transport limiting layer is made using a film that absorbs less than 5 wt. % of fluid over 24 hours. This may reduce or obviate any need for a temperature probe. For implantable sensors, it is preferable that the mass transport limiting layer is made using a film that absorbs less than 5 wt. % of fluid over 24 hours at 37° C. - Particularly useful materials for the
film layer 74 are membranes that do not swell in the analyte-containing fluid that the sensor tests. Suitable membranes include 3 to 20,000 nm diameter pores. Membranes having 5 to 500 nm diameter pores with well-defined, uniform pore sizes and high aspect ratios are preferred. In one embodiment, the aspect ratio of the pores is preferably two or greater and more preferably five or greater. - Well-defined and uniform pores can be made by track etching a polymeric membrane using accelerated electrons, ions, or particles emitted by radioactive nuclei. Most preferred are anisotropic, polymeric, track etched membranes that expand less in the direction perpendicular to the pores than in the direction of the pores when heated. Suitable polymeric membranes included polycarbonate membranes from Poretics (Livermore, Calif., catalog number 19401, 0.01 μm pore size polycarbonate membrane) and Corning Costar Corp. (Cambridge, Mass., Nucleopore™ brand membranes with 0.015 μm pore size). Other polyolefin and polyester films may be used. It is preferred that the permeability of the mass transport limiting membrane changes no more than 4%, preferably, no more than 3%, and, more preferably, no more than 2%, per ° C. in the range from 30° C. to 40° C. when the membranes resides in the subcutaneous interstitial fluid.
- In some embodiments of the invention, the mass
transport limiting layer 74 may also limit the flow of oxygen into thesensor 42. This can improve the stability ofsensors 42 that are used in situations where variation in the partial pressure of oxygen causes non-linearity in sensor response. In these embodiments, the masstransport limiting layer 74 restricts oxygen transport by at least 40%, preferably at least 60%, and more preferably at least 80%, of the amount the membrane restricts transport of the analyte. For a given type of polymer, films having a greater density (e.g., a density closer to that of the crystalline polymer) are preferred. Polyesters, such as polyethylene terephthalate, are typically less permeable to oxygen and are, therefore, preferred over polycarbonate membranes. - An implantable sensor may also, optionally, have an anticlotting agent disposed on a portion the substrate which is implanted into a patient. This anticlotting agent may reduce or eliminate the clotting of blood or other body fluid around the sensor, particularly after insertion of the sensor. Blood clots may foul the sensor or irreproducibly reduce the amount of analyte which diffuses into the sensor. Examples of useful anticlotting agents include heparin and tissue plasminogen activator (TPA), as well as other known anticlotting agents.
- The anticlotting agent may be applied to at least a portion of that part of the
sensor 42 that is to be implanted. The anticlotting agent may be applied, for example, by bath, spraying, brushing, or dipping. The anticlotting agent is allowed to dry on thesensor 42. The anticlotting agent may be immobilized on the surface of the sensor or it may be allowed to diffuse away from the sensor surface. Typically, the quantities of anticlotting agent disposed on the sensor are far below the amounts typically used for treatment of medical conditions involving blood clots and, therefore, have only a limited, localized effect. - The
sensor 42 may be designed to be a replaceable component in an in vivo or in vitro analyte monitor, and particularly in an implantable analyte monitor. Typically, thesensor 42 is capable of operation over a period of days. Preferably, the period of operation is at least one day, more preferably at least three days, and most preferably at least one week. Thesensor 42 can then be removed and replaced with a new sensor. The lifetime of thesensor 42 may be reduced by the fouling of the electrodes or by the leaching of the electron transfer agent or catalyst. These limitations on the longevity of thesensor 42 can be overcome by the use of abiocompatible layer 75 or non-leachable electron transfer agent and catalyst, respectively, as described above. - Another primary limitation on the lifetime of the
sensor 42 is the temperature stability of the catalyst. Many catalysts are enzymes, which are very sensitive to the ambient temperature and may degrade at temperatures of the patient's body (e.g., approximately 37° C. for the human body). Thus, robust enzymes should be used where available. Thesensor 42 should be replaced when a sufficient amount of the enzyme has been deactivated to introduce an unacceptable amount of error in the measurements. -
FIG. 12 is a schematic illustration of anexemplary system 200, in accordance with the principles of the present invention, for manufacturing thesensor 42. Thesystem 200 utilizes a continuous film orsubstrate web 202 that is guided along a serpentine pathway by a series ofrollers 206. Along the pathway, theweb 202 is processed at the various processing stations or zones. For example, at one station channels can be formed in theweb 202. At subsequent stations, conductive material can be placed in the channels, sensor chemistry can be deposited over portions of the conductive material corresponding with working electrodes, and a protective film or micro-porous membrane can be affixed to theweb 202. At a final step, thesensor 42 can be cut, stamped or otherwise removed from thecontinuous web 202. A more detailed description of the various steps is provided in the following paragraphs. - The
continuous substrate web 202 ultimately forms thesubstrate 50 of thesensor 42. Consequently, for certain applications, theweb 202 is made of nonconducting plastic or polymeric materials such as those previously identified in the specification with respect to thesubstrate 50. In one particular embodiment, theweb 202 comprises a continuous plastic or polymeric film having a thickness in the range of 50 to 500 μm (2-20 mil), and preferably in the range of 100 to 300 μm (4-12 mil). - To initiate the manufacturing process, the
web 202 is pulled from asource reel 203 and passed through aheater 204. As shown inFIG. 12 , theheater 204 includes two heated platens arranged and configured to allow theweb 202 to pass between parallel heated surfaces at a predetermined feed rate and distance. For many applications, theweb 202 is heated to a sufficient temperature, for example, to a glass transition temperature of thesubstrate web 202 to soften theweb 202 in preparation for subsequent embossing or stamping steps. - With respect to the heating step, it will be appreciated that certain web materials may have sufficient deformability to allow channels to be pressed therein without requiring a heating step. Similarly, if no channels are desired to be formed in the
web 202, or channels are to be formed through non-mechanical techniques such as laser or chemical etching, the initial heating step can also be eliminated from the process. Furthermore, if it is desired to soften theweb 202 via heat, it will be appreciated that any number of known heating sources/configurations, such as radiant or convection heaters, can be utilized. Alternatively, the forming tool may be heated and not the web. - After the
web 202 has been heated to a desired temperature by theheater 204, theweb 202 is preferably conveyed to a channel formation station/zone 205 where thechannels 54 are preferably mechanically pressed into theweb 202 by a continuous embossing process. For example, as shown inFIG. 12 , thechannels 54 of thesensor 42 are formed in theweb 202 by pressing theweb 202 between a flat roller 207 and anembossing roller 208 having a desired embossing pattern formed on its outer surface. As theweb 202 passes between therollers 207 and 208, a desired channel pattern is stamped, embossed, formed or otherwise pressed into one side of theweb 202. During the embossing step, an outline or planform of thesensor 42, as shown inFIG. 2 , can optionally be pressed into theweb 202 to generate perforations that extend partially through theweb 202. In one particular embodiment, theweb 202 is perforated to a depth of about 70% of the thickness of theweb 202. Alternatively, about 70% of the perimeter of the planform is completely perforated. Perforating theweb 202 facilitates subsequently removing thesensor 42 and provides the advantage of lessening registration constraints at later stages of the manufacturing process. -
FIG. 15A is a cross-sectional view taken through theweb 202 immediately after thesensor channels 54 have been formed within theweb 202. As shown inFIG. 15A , thechannels 54 are generally uniformly spaced across the width of theweb 202 and have generally rectangular cross-sectional profiles. The width of the channels may be in the range of about 25 to about 250 μm. In one particular embodiment of the present invention, the channels have individual widths of 250 μm (about 8 mils), 150 μm, 100 μm, 75 μm, 50 μm, 25 μm or less. The depth of the channels is typically related to the thickness of theweb 202. In one embodiment, the channels have depths in the range of about 12.5 to 75 μm (0.5 to 3 mils), and preferably about 25 to 50 μm (1 to 2 mils). The distance between the conductive traces may be in the range of about 25 to 150 μm, and may be, for example, 150 μm, 100 μm, 75 μm, 50 μm, or less. The density of the conductive traces 52 on thesubstrate 50 may be in the range of about 150 to 700 μm and may be as small as 667 μm/trace or less, 333 μm/trace or less, or even 167 μm/trace or less. - It will be appreciated that embossing rollers suitable for use with the present invention can be designed to form a wide range of different channel patterns. For example,
FIG. 13 provides a perspective view of oneembossing roller 208 that is adapted for forming the channel configuration of thesensor 42. As shown inFIG. 13 , the embossing stamp orroller 208 includes a pattern of raised members orportions 210 that project radially outward from the outer surface of theroller 208. The raisedportions 210 extend about the circumference of theroller 208 and are arranged in a configuration that corresponds to the desired channel configuration shown inFIG. 2 . Specifically, the raisedportions 210 include generally parallel, relatively closely spaced raisedlines 211 corresponding to the channel pattern desired to be formed along the narrow portion 67 a of thesensor 42. The raisedportions 210 also include angled or diverging/converging raisedlines 213 corresponding to the channel pattern desired to be formed along the wider portion 65 a of thesensor 42. In certain embodiments, the raisedlines - The raised
portions 210 further include tabs or punchmembers 215 adapted for forming contact pad depressions in which conductive material can be disposed to form thecontact pads 49 of thesensor 42. When theweb 202 is pressed against the outer surface of theroller 208, the raisedportions 210 project or extend into theweb 202 causing theweb 202 to deform or indent such that thechannels 54 and contact pad depressions are formed within theweb 202. In other words, the raisedportions 210 of theroller 208 form a pattern of depressions in theweb 202 that includes such features as thechannels 54 and the contact pad depressions. - As shown in
FIG. 13 , a single embossing pattern is disposed on the outer surface of theroller 208. However, it will be appreciated that by enlarging the diameter of theroller 208, multiple identical patterns can be arranged about the circumference of the roller. Furthermore, multiple different patterns can be arranged about the circumference of the roller to allow different sensor configurations to be manufactured with a single embossing roller. - Referring now to
FIG. 14 , analternative roller 208′ is illustrated. Thealternative roller 208′ includes a plurality of raisedannular rings 210′ that extend about the circumference of theroller 208′. Eachring 210′ can extend continuously about the entire circumference of theroller 208′, or can be separated into discrete segments by gaps located at predetermined intervals about theroller 208′. Theroller 208′ is adapted to form a plurality of substantially parallel, straight channels in theweb 202. One use of such aroller 208′ relates to the manufacture of sensors having substantially constant widths. - It will be appreciated that embossing tools suitable for use with the present invention, such as rollers, presses or stamps, can be manufactured using a variety of techniques. For example, such tools can be molded, formed or cast using conventional techniques. Exemplary materials for making such embossing tools include steel and other metals, minerals such as sapphire and silicon, epoxides, ceramics, and appropriate polymers.
- In one particular embodiment of the present invention, silicon is used to make an embossing tool such as an embossing roller or stamp. Preferably, a desired pattern of raised portions is formed on the embossing surface of the tool using photolithographic and etching techniques to remove selected portions of the tool. It has been determined that such a process can yield an embossing tool having a desirable surface finish, precisely shaped features at small sizes, no burrs, and sharp features (e.g., small radii between intersecting features).
- Silicon is preferred for a flat (non-cylindrical) tool, and may be etched using techniques common to the integrated circuit industry to create profiles in the wafer surface. Such profiles may be either positive in relief above the surface or negative below the wafer surface. Positive profiles may be used directly as tools to create indentations in a softer substrate. Negative profiles may be used as a master to create a series of second generation positives that are used as the final tool. The second generation positives may be made from any castable material with the appropriate mechanical properties.
- Referring back to
FIG. 12 , after thechannels 54 of thesensor 42 have been formed in theweb 202, theweb 202 is conveyed to a channel filling station/zone 210 where conductive material is placed, flowed, applied, filled, flooded or otherwise disposed within thechannels 54. For certain applications, the conductive material can be applied as a precursor conductive material having a liquid form. An exemplary precursor conductive material includes conductive material dissolved or suspended in a solvent or dispersant. A preferred precursor conductive material is a carbon based ink that can be flooded in liquid form into thechannels 54. Other conductive inks or pastes that include carbon or metal, such as, for example, gold, copper, or silver, may be used. Other techniques for applying the conductive material or precursor conductive material include spraying, coating, flooding, applying with a saturated roller, pumping, as well as electrostatic, ionographic, magnetographic, and other impact and non-impact printing methods. - After the
channels 54 have been substantially filled with conductive material or precursor conductive material, theweb 202 is preferably passed through an arrangement/device for scraping or wiping excess conductive material/precursor conductive material from the surface of theweb 202. For example, as shown inFIG. 12 , acoating blade 212 androller 214 are used to remove excess material from theweb 202. After theweb 202 has passed by thecoating blade 212 androller 214, the conductive material/precursor conductive material substantially fills thechannels 54 such that the web and conductive material/precursor conductive material together form a substantially flat or planar surface. -
FIG. 15B shows a cross section through theweb 202 after the excess conductive material/precursor conductive material has been wiped from theweb 202. While it is preferred for thechannels 54 to be substantially filled with the conductive material/precursor conductive material, it will be appreciated that in certain embodiments it may be desirable to only partially fill thechannels 54, or to slightly overfill thechannels 54 with conductive material/precursor conductive material. - As shown in
FIG. 12 , a single series of channel forming, filling and wiping steps are used to fill thechannels 54. It will be appreciated that in alternative embodiments, multiple channel formation, filling and wiping steps can be utilized to fill channels formed in thesubstrate 50. For example, to manufacture thesensor 42 ofFIG. 2 , it may be desirable to utilize two separate channel formation steps, and two separate filling and wiping steps. In such a process, the reference electrode channel could initially be formed in the substrate, and then filled with a suitable conductive material such as silver/silver chloride. Subsequently, the working electrode channels of thesensor 42 could be formed in the substrate and filled with a conductive material such as carbon. Separating the various channel formation, filling and wiping steps can assist in inhibiting cross contamination of conductive materials between the various electrodes. Of course, the particular sequence of processing steps identified herein are strictly exemplary and should not be construed as a limitation upon the scope of the present invention. - Manufacturing Process—other Methods for Forming Conductive Traces
- In addition to the above identified mechanical techniques for forming the
channels 54 in theweb 202, other techniques can also be utilized. For example, the channels can be formed by removing or carbonizing a portion of thesubstrate 50 orweb 202 using a laser, or photolithographic patterning and etching of thesubstrate 50 orweb 202. Furthermore, for certain applications, channels may not be formed in thesubstrate 50 orweb 202 at all. For example, as discussed above, the conductive traces 52 can be formed on thesubstrate 50 by a variety of techniques, including photolithography, screen printing, other printing techniques, stamping traces into the substrate orweb 202, or using a laser to micro-machine traces into thesubstrate 50 orweb 202. Each of these techniques has corresponding limits on the reproducibility, precision, and cost of producing the conductive traces. - Another method for forming the conductive traces uses techniques common to pad printing or hot stamping methods, whereby a film of conductive material is formed, for example, as a continuous sheet or as a coating layer deposited on a carrier film. The film of conductive material is brought between a print head and the substrate 500. A pattern of
conductive traces 52 is formed on thesubstrate 50 using the print head. The conductive material is transferred by pressure and/or heat from the conductive film to thesubstrate 50. This technique may produce channels (e.g., depressions caused by impact of the print head on the substrate 50). Alternatively, the conductive material is deposited directly without forming substantial depressions in the surface of thesubstrate 50. - In other embodiments, the conductive traces 52 are formed by non-impact printing techniques. These methods do not require the formation of channels in the substrate. Instead, conductive traces may be formed directly on a planer substrate. Such techniques include electrophotography and magnetography. In these processes, an image of the conductive traces 52 is electrically or magnetically formed on a drum. A laser or LED may be used to electrically form the image or a magnetic recording head may be used to magnetically form the image. A toner material (e.g., a conductive material, such as a conductive ink) is then attracted to portions of the drum according to the image. The toner material is then applied to the substrate by contact between the drum and the substrate. For example, the substrate may be rolled over the drum. The toner material may then be dried and/or a binder in the toner material may be cured to adhere the toner material to the substrate.
- Another non-impact printing technique includes ejecting droplets of conductive material onto the substrate in a desired pattern. Examples of this technique include ink jet printing and piezo jet printing. An image is sent to the printer which then ejects the conductive material (e.g., a conductive ink) according to the pattern. The printer may provide a continuous stream of conductive material or the printer may eject the conductive material in discrete amounts at the desired points.
- Yet another embodiment of forming the conductive traces includes an ionographic process. In this process, a curable, liquid precursor, such as a photopolymerizable acrylic resin (e.g., Solimer 7501 from Cubital, Bad Kreuznach, Germany), is deposited over a surface of a
substrate 50. A photomask having a positive or negative image of the conductive traces 52 is then used to cure the liquid precursor. Light (e.g., visible or ultraviolet light) is directed through the photomask to cure the liquid precursor and form a solid layer over the substrate according to the image on the photomask. Uncured liquid precursor is removed leaving behindchannels 54 in the solid layer. Thesechannels 54 can then be filled withconductive material 56 to form conductive traces 52. - Once the
web 202 has been wiped by thecoating blade 212 androller mechanism 214, theweb 202 is moved through a dryingchamber 216. The dryingchamber 216 preferably provides sufficient heat to drive off or evaporate solvents or dispersants that may be contained in precursor conductive material within thechannels 54. After heating, conductive material is preferably left as a residue in thechannels 54. In certain cases, the dryingchamber 216 exposes theweb 202 to sufficient temperatures to cure optional binders that may be present with the conductive material. It will be appreciated that ultraviolet light could also be used to cure optional binders interspersed with the conductive material. - After the
web 202 has been heated in theheating chamber 216, theweb 202 is directed to a sensor chemistry deposition station/zone 218 at which sensor chemistry is deposited, placed, or otherwise disposed over portions of the conductive material within thechannels 54 so as to form the sensing layers 64 over the workingelectrodes 58.FIG. 15C is a cross-sectional view cut through theweb 202 after the sensor chemistry has been deposited on theweb 202. As shown inFIG. 15C , sensor chemistry is only deposited over the conductive material corresponding to the workingelectrodes 58, which in one embodiment, as illustrated inFIG. 4A , are formed at the twoouter channels 54. Consequently, a relatively precise application technique is preferably used to inhibit sensor chemistry from being applied to both the workingelectrodes 58 and electrodes that should not be coated. It is acceptable, in some situations, for the sensing layer to also coat thecounter electrode 60. - It will be appreciated that a variety of techniques can be used to apply or deposit the sensor chemistry on the
web 202. In one particular embodiment of the present invention, piezo jet technology or the like is used to deposit the chemistry upon theweb 202 to form the sensing layers 64. A solenoid valve can be rapidly shuttered and when supplied with liquid under a precisely controlled over-pressure condition, a droplet of controlled size will be ejected from the valve. Resolutions to 500 picoliters can be achieved. Conventional ink jet printers can also be used. - To enhance adhesion of the sensor chemistry to the
web 202, the surface of theweb 202 can optionally be roughened by techniques such as abrasion or plasma treatment prior to applying the sensor chemistry. For example, by pre-treating the surface of theweb 202, for example, by a corona discharge, free radicals are generated on the web surface to enhance adhesion of the sensor chemistry to theweb 202 and workingelectrodes 58. - Once the sensor chemistry has been applied to the
web 202, theweb 202 is preferably conveyed through anotherheating chamber 220. Theheating chamber 220 preferably provides sufficient temperature/heating to release solvents from the deposited sensor chemistry. Theheating chamber 220 can also heat theweb 202 to sufficient temperatures to cause potential polymerization reactions such as cross link reactions between polymers and the redox mediator and/or redox enzyme. - Upon exiting the
heating chamber 220, thesubstrate web 202 is brought into alignment with amembrane web 222 adapted for forming a membrane layer, that may include one or more individual membranes, such as a masstransport limiting layer 74 or abiocompatible layer 75, over at least some portions of the electrodes. The membrane layer may be applied to only one or two or more surfaces of the substrate. For certain embodiments, solvents such as methyl ethyl ketone and acetone can be applied, for example, sprayed, on theweb 202 to soften theweb 202 and solvent bond it to themembrane web 222. By heating the solvent after theweb 202 has been brought in contact with themembrane web 222, the twowebs web 222 covers and protects portions of the sensor adapted to be implanted. Alternatively, the twowebs welding station 224 such as a sonic or laser welding station. The resultant combination of thesubstrate web 202 and themembrane web 222 results in a laminated structure in which theprotective membrane 74 is selectively fused to thepolymer substrate 50. In some embodiments,individual membrane webs 222 are bonded to two or more surfaces of theweb 202. - The membrane layer may include one or membranes that individually or in combination serve a number of functions. These include protection of the electrode surface, prevention of leaching of components in the sensing layer, mass transport limitation of the analyte, exclusion of interfering substances, reduction or enhancement of oxygen mass transport, and/or biocompatibility. In one embodiment, a membrane is selected which has mass transport limiting pores that do not change appreciably in size over a physiologically relevant temperature range (e.g., 30° C. to 40° C.). This may reduce the temperature dependence of the sensor output.
- As a final step in the
sequence 200, thelaminated webs zone 226 in which thesensor 42 planform, as shown inFIG. 2 , is cut from thecontinuous webs station 226 can include a die stamper, embosser, embossing roller, laser cutter or any other mechanism for cutting, pressing or otherwise removing thesensors 42 from thewebs reel 230 accumulates the web material remaining after thesensors 42 have been cut from the web. -
FIG. 16 is a schematic illustration of an exemplary system 300, in accordance with the principles of the present invention, for manufacturing thesensor 42 ofFIGS. 6-8 and 10-11. The system 300 utilizes a continuous film orweb 302 that is guided along a serpentine pathway by a series ofrollers 305. To provide channels on opposite sides of theweb 302, the system utilizes a series of embossing steps. For example, the system 300 includes a first embossing roller 308 configured for forming the channels for the working andcounter electrode web 302, a second embossing roller 310 configured for forming the channel for the temperature probe/sensor 66 and thereference electrode 62 in a second opposite side of theweb 302, and athird embossing roller 312 configured for forming the channel for the temperature-dependent element 72 extending between the channels for the two temperature probe leads 68, 70. In a preferred embodiment, opposing embossing rollers are used to emboss both sides simultaneously in a single step. - In basic operation of the system, the
web 302 is first pulled from a spool or reel 301 and preferably heated. Next, the channels for the working electrode andcounter electrodes web 302 by the first embossing roller 308. It will be appreciated that the first embossing roller 308 preferably includes a pattern of raised portions having a configuration that corresponds to the channel configuration depicted inFIG. 7 . Thereafter, the channels of the working andcounter electrodes channel filling station 314. Subsequently, excess conductive material/precursor conductive material is wiped from theweb 302 by a firstweb wiping arrangement 316. - Once the channels for the working and
counter electrodes web 302 is embossed by the second embossing roller 310 such that the channels for the temperature probe leads 68, 70 and thereference electrode 62 are formed in the opposite side of theweb 302. It will be appreciated that the second embossing roller 310 preferably includes a pattern of raised portions having a configuration that corresponds to the channel configuration depicted inFIG. 8 (except for channel for the temperature-dependent element 72). It will also be appreciated that the embossing roller 310 can be equipped with projections or punch members for forming vias through theweb 302 at desiredpad 49 locations of thesensor 42. - After the channels for the temperature probe leads 68, 70 and reference electrode 72 have been formed in the
web 302, such channels are filled with suitable conductive material/precursor conductive material at a secondchannel filling station 318 and excess conductive material/precursor conductive material is wiped from theweb 302 at wipingmechanism 320. While onefilling station 318 is shown for filling both channels for the temperature probe leads 68, 70 and thereference electrode 62, it will be appreciated that the fillingstation 318 may include multiple separate filling steps for individually or separately filling each channel. - Once the channels for the temperature probe leads 68, 70 and
reference electrode 62 have been filled with conductive material/precursor conductive material and wiped, the channel for the temperature-dependent element 72 of thetemperature probe 66 is formed between the channels for the temperature probe leads 68, 70 by thethird embossing roller 312. Subsequently, the channel for the temperature-dependent element 72 is filled with appropriate material atchannel filling station 322, and excess material is wiped from theweb 302 by wipingmechanism 324. - Once both sides of the
web 302 have been filled with the appropriate conductive and/or resistive material, sensor chemistry is applied to the workingelectrodes 58 at a sensor chemical application station 326. The sensor chemistry can be applied at the sensor chemical application station 326 by a variety of techniques. Exemplary techniques include piezo jet printing, ink jet printing, spraying, flowing the sensor chemistry onto the electrodes, coating chemistry on the electrodes, or any other technique suitable for applying chemistry to a relatively precise location. As shown inFIG. 7 , to reduce the required printing precision, the workingelectrodes 58 optionally have ends that are staggered with respect to the end of thecounter electrode 60. Such a configuration assists in inhibiting the sensor chemistry from unintentionally being applied to thecounter electrode 60. - As a next step in the process, a
protective membrane web 328 is then bought into contact with thesubstrate web 302 such that at least portions of the working andcounter electrodes membrane 328. Atmembrane bonding station 330, theprotective membrane 328 and thesubstrate web 302 are bonded or fused together by techniques such as solvent bonding, adhesive bonding, laser bonding, laser welding, and/or sonic welding. In the case of solvent bonding, the solvent is applied before the protective membrane is brought into contact with the substrate web. A second membrane may optionally be laminated onto the opposing side of the substrate web to protect the reference electrode and temperature probe. The resulting laminate structure that exits themembrane bonding station 330 is conveyed to a cuttingstation 332 in which individual discrete planforms of thesensor 42 are cut, pressed, stamped or otherwise separated from thecontinuous web 302. For certain applications, it may be desirable to only partially cut the individual sensor planforms from theweb 302 such that the sensors are retained on the web for secondary operations. Remaining web material is taken up by take-upreel 334. - It will be appreciated that the particular operating sequence illustrated in
FIG. 16 is strictly exemplary and that variations can be made in the number of steps and the sequence of steps without departing from the principles of the present invention. Additionally, although not shown inFIG. 16 , various heating or energy dispersive stations can be placed at locations along the web pathway to heat theweb 302 for such purposes as plasticizing thesubstrate web 302 prior to embossing, curing binders contained within conductive material deposited within the channels of the sensors, and evaporating solvents or dispersants. Furthermore, althoughFIGS. 12 and 16 each relate to continuous web processes, it will be appreciated that the present invention is not limited to continuous web processes. For example, the various process steps disclosed herein can be performed with respect to discrete or individual sensors completely separate from a web. Sheet fed processing may also be employed as an alternative to a continuous web. Moreover, while in certain embodiments of the present invention the web can be moved continuously through various processing steps at a substantially constant speed, in other embodiments the web can be intermittently stopped and started, or the speed of the web can be varied. - The process of the invention for the manufacture of sensors is rapid and efficient. The process of the invention can produce approximately 5000 conductive traces per hour. Within batch variation of the sensors will be less than between batch variation, thus it is desirable to produce the sensors in large batches. For example, batches of 100 or more or of 1000 or more sensors may be produced.
- The sensor may be provided with a code, for example a batch code, during processing. The code may be applied to the sensor, for example by printing the code on the substrate. The sensor code may include information such as the batch number, the type and quantity of chemistry applied to the sensor, and/or calibration data.
- The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification. The claims are intended to cover such modifications and devices.
Claims (1)
1. A process for the manufacture of a sensor, comprising the steps of:
providing a substrate;
forming one or more channels in one or more surfaces of the substrate; and
disposing a conductive material in the one or more channels to form one or more electrodes, thereby producing a product sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/683,129 US20150208969A1 (en) | 1998-03-04 | 2015-04-09 | Method of Making an Electrochemical Sensor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/034,422 US6103033A (en) | 1998-03-04 | 1998-03-04 | Process for producing an electrochemical biosensor |
US59877600A | 2000-06-16 | 2000-06-16 | |
US10/405,765 US6973706B2 (en) | 1998-03-04 | 2003-03-31 | Method of making a transcutaneous electrochemical sensor |
US11/204,551 US7721412B2 (en) | 1998-03-04 | 2005-08-16 | Method of making an electrochemical sensor |
US11/930,011 US20080287760A1 (en) | 1998-03-04 | 2007-10-30 | method of making an electrochemical sensor |
US14/683,129 US20150208969A1 (en) | 1998-03-04 | 2015-04-09 | Method of Making an Electrochemical Sensor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/930,011 Continuation US20080287760A1 (en) | 1998-03-04 | 2007-10-30 | method of making an electrochemical sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150208969A1 true US20150208969A1 (en) | 2015-07-30 |
Family
ID=21876307
Family Applications (16)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/034,422 Expired - Lifetime US6103033A (en) | 1998-03-04 | 1998-03-04 | Process for producing an electrochemical biosensor |
US10/405,765 Expired - Lifetime US6973706B2 (en) | 1998-03-04 | 2003-03-31 | Method of making a transcutaneous electrochemical sensor |
US11/204,551 Expired - Fee Related US7721412B2 (en) | 1998-03-04 | 2005-08-16 | Method of making an electrochemical sensor |
US11/929,959 Expired - Fee Related US7861397B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/930,004 Expired - Fee Related US8136220B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,967 Abandoned US20080281176A1 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/930,011 Abandoned US20080287760A1 (en) | 1998-03-04 | 2007-10-30 | method of making an electrochemical sensor |
US11/929,986 Expired - Fee Related US7879213B2 (en) | 1998-03-04 | 2007-10-30 | Sensor for in vitro determination of glucose |
US11/929,925 Expired - Fee Related US8168051B2 (en) | 1998-03-04 | 2007-10-30 | Sensor for determination of glucose |
US11/929,945 Expired - Fee Related US8117734B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,906 Expired - Fee Related US8273227B2 (en) | 1998-03-04 | 2007-10-30 | Sensor for in vitro determination of glucose |
US11/929,964 Expired - Fee Related US7797814B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,994 Expired - Fee Related US7797825B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,952 Abandoned US20080272007A1 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US13/218,417 Abandoned US20110311711A1 (en) | 1998-03-04 | 2011-08-25 | Method of Making an Electrochemical Sensor |
US14/683,129 Abandoned US20150208969A1 (en) | 1998-03-04 | 2015-04-09 | Method of Making an Electrochemical Sensor |
Family Applications Before (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/034,422 Expired - Lifetime US6103033A (en) | 1998-03-04 | 1998-03-04 | Process for producing an electrochemical biosensor |
US10/405,765 Expired - Lifetime US6973706B2 (en) | 1998-03-04 | 2003-03-31 | Method of making a transcutaneous electrochemical sensor |
US11/204,551 Expired - Fee Related US7721412B2 (en) | 1998-03-04 | 2005-08-16 | Method of making an electrochemical sensor |
US11/929,959 Expired - Fee Related US7861397B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/930,004 Expired - Fee Related US8136220B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,967 Abandoned US20080281176A1 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/930,011 Abandoned US20080287760A1 (en) | 1998-03-04 | 2007-10-30 | method of making an electrochemical sensor |
US11/929,986 Expired - Fee Related US7879213B2 (en) | 1998-03-04 | 2007-10-30 | Sensor for in vitro determination of glucose |
US11/929,925 Expired - Fee Related US8168051B2 (en) | 1998-03-04 | 2007-10-30 | Sensor for determination of glucose |
US11/929,945 Expired - Fee Related US8117734B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,906 Expired - Fee Related US8273227B2 (en) | 1998-03-04 | 2007-10-30 | Sensor for in vitro determination of glucose |
US11/929,964 Expired - Fee Related US7797814B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,994 Expired - Fee Related US7797825B2 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US11/929,952 Abandoned US20080272007A1 (en) | 1998-03-04 | 2007-10-30 | Method of making an electrochemical sensor |
US13/218,417 Abandoned US20110311711A1 (en) | 1998-03-04 | 2011-08-25 | Method of Making an Electrochemical Sensor |
Country Status (5)
Country | Link |
---|---|
US (16) | US6103033A (en) |
EP (3) | EP2302371A1 (en) |
JP (1) | JP4905906B2 (en) |
AU (1) | AU2779799A (en) |
WO (1) | WO1999045375A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019178139A1 (en) * | 2018-03-14 | 2019-09-19 | Lawrence Livermore National Security, Llc | Metallopolymers for additive manufacturing of metal foams |
EP4005480A1 (en) * | 2020-11-16 | 2022-06-01 | IMEC vzw | An electrode arrangement, a neural probe, and a method for manufacturing an electrode arrangement |
Families Citing this family (755)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU6157898A (en) | 1997-02-06 | 1998-08-26 | E. Heller & Company | Small volume (in vitro) analyte sensor |
US20050033132A1 (en) | 1997-03-04 | 2005-02-10 | Shults Mark C. | Analyte measuring device |
US8527026B2 (en) | 1997-03-04 | 2013-09-03 | Dexcom, Inc. | Device and method for determining analyte levels |
US7192450B2 (en) | 2003-05-21 | 2007-03-20 | Dexcom, Inc. | Porous membranes for use with implantable devices |
US6001067A (en) | 1997-03-04 | 1999-12-14 | Shults; Mark C. | Device and method for determining analyte levels |
US9155496B2 (en) | 1997-03-04 | 2015-10-13 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US7899511B2 (en) | 2004-07-13 | 2011-03-01 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US6036924A (en) | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
US8071384B2 (en) | 1997-12-22 | 2011-12-06 | Roche Diagnostics Operations, Inc. | Control and calibration solutions and methods for their use |
US6103033A (en) | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US6350369B1 (en) * | 1998-04-14 | 2002-02-26 | California Institute Of Technology | Method and system for determining analyte activity |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8480580B2 (en) | 1998-04-30 | 2013-07-09 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8974386B2 (en) | 1998-04-30 | 2015-03-10 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US9066695B2 (en) | 1998-04-30 | 2015-06-30 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6949816B2 (en) | 2003-04-21 | 2005-09-27 | Motorola, Inc. | Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
CA2332112C (en) * | 1998-05-13 | 2004-02-10 | Cygnus, Inc. | Monitoring of physiological analytes |
US6294281B1 (en) * | 1998-06-17 | 2001-09-25 | Therasense, Inc. | Biological fuel cell and method |
US6558320B1 (en) * | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6248067B1 (en) | 1999-02-05 | 2001-06-19 | Minimed Inc. | Analyte sensor and holter-type monitor system and method of using the same |
US6602678B2 (en) | 1998-09-04 | 2003-08-05 | Powderject Research Limited | Non- or minimally invasive monitoring methods |
EP1107690B1 (en) | 1998-09-04 | 2003-04-16 | PowderJect Research Limited | Second medical use of a particle delivery method |
JP2002526769A (en) | 1998-10-02 | 2002-08-20 | カリフォルニア インスティチュート オブ テクノロジー | Conductive organic sensors, arrays and methods of use |
US6338790B1 (en) | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
EP1413245B1 (en) | 1998-10-08 | 2011-06-29 | Medtronic MiniMed, Inc. | Telemetered characteristic monitor system |
US7621893B2 (en) | 1998-10-29 | 2009-11-24 | Medtronic Minimed, Inc. | Methods and apparatuses for detecting occlusions in an ambulatory infusion pump |
US7766873B2 (en) | 1998-10-29 | 2010-08-03 | Medtronic Minimed, Inc. | Method and apparatus for detecting occlusions in an ambulatory infusion pump |
AU1725200A (en) * | 1998-11-16 | 2000-06-05 | California Institute Of Technology | Simultaneous determination of equilibrium and kinetic properties |
US6360888B1 (en) | 1999-02-25 | 2002-03-26 | Minimed Inc. | Glucose sensor package system |
US6424847B1 (en) | 1999-02-25 | 2002-07-23 | Medtronic Minimed, Inc. | Glucose monitor calibration methods |
US7122152B2 (en) * | 1999-05-10 | 2006-10-17 | University Of Florida | Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids |
US6631333B1 (en) * | 1999-05-10 | 2003-10-07 | California Institute Of Technology | Methods for remote characterization of an odor |
ATE319080T1 (en) | 1999-05-10 | 2006-03-15 | California Inst Of Techn | USE OF A SPATIO-TEMPORAL RESPONSE IN SENSOR ARRAYS FOR THE DETECTION OF ANALYTES IN FLUID |
US7806886B2 (en) | 1999-06-03 | 2010-10-05 | Medtronic Minimed, Inc. | Apparatus and method for controlling insulin infusion with state variable feedback |
JP4801301B2 (en) | 1999-06-18 | 2011-10-26 | アボット ダイアベティス ケア インコーポレイテッド | In vivo analyte sensor with limited mass transfer |
US6890715B1 (en) * | 1999-08-18 | 2005-05-10 | The California Institute Of Technology | Sensors of conducting and insulating composites |
US7073246B2 (en) | 1999-10-04 | 2006-07-11 | Roche Diagnostics Operations, Inc. | Method of making a biosensor |
US20050103624A1 (en) * | 1999-10-04 | 2005-05-19 | Bhullar Raghbir S. | Biosensor and method of making |
US6645359B1 (en) * | 2000-10-06 | 2003-11-11 | Roche Diagnostics Corporation | Biosensor |
US6662439B1 (en) | 1999-10-04 | 2003-12-16 | Roche Diagnostics Corporation | Laser defined features for patterned laminates and electrodes |
US8444834B2 (en) | 1999-11-15 | 2013-05-21 | Abbott Diabetes Care Inc. | Redox polymers for use in analyte monitoring |
ATE268336T1 (en) | 1999-11-15 | 2004-06-15 | Therasense Inc | TRANSITION METAL COMPLEX COMPOUNDS WITH A BIDENTATE LIGAND WITH AN IMIDAZOLE RING |
US8268143B2 (en) * | 1999-11-15 | 2012-09-18 | Abbott Diabetes Care Inc. | Oxygen-effect free analyte sensor |
US6451191B1 (en) | 1999-11-18 | 2002-09-17 | 3M Innovative Properties Company | Film based addressable programmable electronic matrix articles and methods of manufacturing and using the same |
US20040222183A1 (en) * | 2000-01-03 | 2004-11-11 | Pietila Urho A. | Method of forming an electrically conductive pattern on support |
CA2395868C (en) | 2000-02-10 | 2009-07-14 | Medtronic Minimed, Inc. | Improved analyte sensor and method of making the same |
US7003336B2 (en) | 2000-02-10 | 2006-02-21 | Medtronic Minimed, Inc. | Analyte sensor method of making the same |
US6484045B1 (en) * | 2000-02-10 | 2002-11-19 | Medtronic Minimed, Inc. | Analyte sensor and method of making the same |
US7890295B2 (en) | 2000-02-23 | 2011-02-15 | Medtronic Minimed, Inc. | Real time self-adjusting calibration algorithm |
US7527821B2 (en) * | 2000-05-02 | 2009-05-05 | Smiths Detection Inc. | Sensor fabricating method |
DE10025174A1 (en) * | 2000-05-24 | 2001-12-06 | November Ag Molekulare Medizin | Process for producing an electrode coated with biomolecules |
US6540675B2 (en) * | 2000-06-27 | 2003-04-01 | Rosedale Medical, Inc. | Analyte monitor |
RU2278612C2 (en) * | 2000-07-14 | 2006-06-27 | Лайфскен, Инк. | Immune sensor |
US6540890B1 (en) * | 2000-11-01 | 2003-04-01 | Roche Diagnostics Corporation | Biosensor |
US7144496B2 (en) * | 2000-11-02 | 2006-12-05 | Pall Corporation | Biological fluid analysis device |
US8372139B2 (en) | 2001-02-14 | 2013-02-12 | Advanced Bio Prosthetic Surfaces, Ltd. | In vivo sensor and method of making same |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US6560471B1 (en) | 2001-01-02 | 2003-05-06 | Therasense, Inc. | Analyte monitoring device and methods of use |
GB0106417D0 (en) * | 2001-03-15 | 2001-05-02 | Oxford Biosensors Ltd | Transfer screen-printing |
US7041468B2 (en) | 2001-04-02 | 2006-05-09 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US8070934B2 (en) | 2001-05-11 | 2011-12-06 | Abbott Diabetes Care Inc. | Transition metal complexes with (pyridyl)imidazole ligands |
US8226814B2 (en) * | 2001-05-11 | 2012-07-24 | Abbott Diabetes Care Inc. | Transition metal complexes with pyridyl-imidazole ligands |
US6676816B2 (en) * | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
US6932894B2 (en) * | 2001-05-15 | 2005-08-23 | Therasense, Inc. | Biosensor membranes composed of polymers containing heterocyclic nitrogens |
US7005273B2 (en) | 2001-05-16 | 2006-02-28 | Therasense, Inc. | Method for the determination of glycated hemoglobin |
US6960287B2 (en) * | 2001-06-11 | 2005-11-01 | Bayer Corporation | Underfill detection system for a test sensor |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
JP4272051B2 (en) | 2001-06-12 | 2009-06-03 | ペリカン テクノロジーズ インコーポレイテッド | Blood sampling apparatus and method |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
DE60234598D1 (en) | 2001-06-12 | 2010-01-14 | Pelikan Technologies Inc | SELF-OPTIMIZING LANZET DEVICE WITH ADAPTANT FOR TEMPORAL FLUCTUATIONS OF SKIN PROPERTIES |
ATE497731T1 (en) | 2001-06-12 | 2011-02-15 | Pelikan Technologies Inc | DEVICE FOR INCREASING THE SUCCESS RATE OF BLOOD YIELD OBTAINED BY A FINGER PICK |
US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
ATE485766T1 (en) | 2001-06-12 | 2010-11-15 | Pelikan Technologies Inc | ELECTRICAL ACTUATING ELEMENT FOR A LANCET |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US6702857B2 (en) | 2001-07-27 | 2004-03-09 | Dexcom, Inc. | Membrane for use with implantable devices |
US20030032874A1 (en) | 2001-07-27 | 2003-02-13 | Dexcom, Inc. | Sensor head for use with implantable devices |
US6767441B1 (en) * | 2001-07-31 | 2004-07-27 | Nova Biomedical Corporation | Biosensor with peroxidase enzyme |
JP3775263B2 (en) * | 2001-08-10 | 2006-05-17 | ニプロ株式会社 | Recording medium and blood glucose measurement system using the recording medium |
US6591496B2 (en) | 2001-08-28 | 2003-07-15 | 3M Innovative Properties Company | Method for making embedded electrical traces |
US6814844B2 (en) | 2001-08-29 | 2004-11-09 | Roche Diagnostics Corporation | Biosensor with code pattern |
US6671554B2 (en) | 2001-09-07 | 2003-12-30 | Medtronic Minimed, Inc. | Electronic lead for a medical implant device, method of making same, and method and apparatus for inserting same |
US7286864B1 (en) | 2001-09-07 | 2007-10-23 | Orbital Research, Inc. | Dry physiological recording device |
US6827702B2 (en) | 2001-09-07 | 2004-12-07 | Medtronic Minimed, Inc. | Safety limits for closed-loop infusion pump control |
US6785569B2 (en) | 2001-09-07 | 2004-08-31 | Orbital Research | Dry physiological recording electrode |
US6782283B2 (en) | 2001-09-07 | 2004-08-24 | Robert N. Schmidt | Dry penetrating recording device |
US7025760B2 (en) * | 2001-09-07 | 2006-04-11 | Medtronic Minimed, Inc. | Method and system for non-vascular sensor implantation |
US8506550B2 (en) * | 2001-09-07 | 2013-08-13 | Medtronic Minimed, Inc. | Method and system for non-vascular sensor implantation |
US7323142B2 (en) * | 2001-09-07 | 2008-01-29 | Medtronic Minimed, Inc. | Sensor substrate and method of fabricating same |
US6915147B2 (en) | 2001-09-07 | 2005-07-05 | Medtronic Minimed, Inc. | Sensing apparatus and process |
EP2330407B1 (en) | 2001-09-14 | 2013-05-29 | ARKRAY, Inc. | Method, tool and device for measuring concentration |
US6809507B2 (en) | 2001-10-23 | 2004-10-26 | Medtronic Minimed, Inc. | Implantable sensor electrodes and electronic circuitry |
US8465466B2 (en) | 2001-10-23 | 2013-06-18 | Medtronic Minimed, Inc | Method and system for non-vascular sensor implantation |
US7192766B2 (en) * | 2001-10-23 | 2007-03-20 | Medtronic Minimed, Inc. | Sensor containing molded solidified protein |
CA2467043C (en) * | 2001-11-16 | 2006-03-14 | North Carolina State University | Biomedical electrochemical sensor array and method of fabrication |
US20040137547A1 (en) * | 2001-12-28 | 2004-07-15 | Medtronic Minimed, Inc. | Method for formulating a glucose oxidase enzyme with a desired property or properties and a glucose oxidase enzyme with the desired property |
CN100344963C (en) * | 2002-01-18 | 2007-10-24 | 爱科来株式会社 | Analyzer having temperature sensor |
US7004928B2 (en) * | 2002-02-08 | 2006-02-28 | Rosedale Medical, Inc. | Autonomous, ambulatory analyte monitor or drug delivery device |
US9247901B2 (en) | 2003-08-22 | 2016-02-02 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US8260393B2 (en) | 2003-07-25 | 2012-09-04 | Dexcom, Inc. | Systems and methods for replacing signal data artifacts in a glucose sensor data stream |
US9282925B2 (en) | 2002-02-12 | 2016-03-15 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US7613491B2 (en) | 2002-05-22 | 2009-11-03 | Dexcom, Inc. | Silicone based membranes for use in implantable glucose sensors |
US8364229B2 (en) | 2003-07-25 | 2013-01-29 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US7379765B2 (en) | 2003-07-25 | 2008-05-27 | Dexcom, Inc. | Oxygen enhancing membrane systems for implantable devices |
US8010174B2 (en) | 2003-08-22 | 2011-08-30 | Dexcom, Inc. | Systems and methods for replacing signal artifacts in a glucose sensor data stream |
US7828728B2 (en) | 2003-07-25 | 2010-11-09 | Dexcom, Inc. | Analyte sensor |
US20030180814A1 (en) * | 2002-03-21 | 2003-09-25 | Alastair Hodges | Direct immunosensor assay |
US20060134713A1 (en) | 2002-03-21 | 2006-06-22 | Lifescan, Inc. | Biosensor apparatus and methods of use |
WO2003082733A2 (en) * | 2002-04-03 | 2003-10-09 | Canterprise Ltd. | Continuous method for producing inorganic nanotubes |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US20070227907A1 (en) * | 2006-04-04 | 2007-10-04 | Rajiv Shah | Methods and materials for controlling the electrochemistry of analyte sensors |
US9492111B2 (en) * | 2002-04-22 | 2016-11-15 | Medtronic Minimed, Inc. | Methods and materials for stabilizing analyte sensors |
US7813780B2 (en) * | 2005-12-13 | 2010-10-12 | Medtronic Minimed, Inc. | Biosensors and methods for making and using them |
US6743635B2 (en) * | 2002-04-25 | 2004-06-01 | Home Diagnostics, Inc. | System and methods for blood glucose sensing |
US6964871B2 (en) * | 2002-04-25 | 2005-11-15 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20080112852A1 (en) * | 2002-04-25 | 2008-05-15 | Neel Gary T | Test Strips and System for Measuring Analyte Levels in a Fluid Sample |
US6946299B2 (en) * | 2002-04-25 | 2005-09-20 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US7368190B2 (en) * | 2002-05-02 | 2008-05-06 | Abbott Diabetes Care Inc. | Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods |
US20040068230A1 (en) * | 2002-07-24 | 2004-04-08 | Medtronic Minimed, Inc. | System for providing blood glucose measurements to an infusion device |
US7278983B2 (en) | 2002-07-24 | 2007-10-09 | Medtronic Minimed, Inc. | Physiological monitoring device for controlling a medication infusion device |
US8512276B2 (en) | 2002-07-24 | 2013-08-20 | Medtronic Minimed, Inc. | System for providing blood glucose measurements to an infusion device |
US7005179B2 (en) * | 2002-07-26 | 2006-02-28 | The Regents Of The University Of California | Conductive inks for metalization in integrated polymer microsystems |
DE10244775A1 (en) * | 2002-09-26 | 2004-04-08 | Roche Diagnostics Gmbh | Capillary sensor analysis system |
US20040061232A1 (en) * | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Multilayer substrate |
US7736309B2 (en) * | 2002-09-27 | 2010-06-15 | Medtronic Minimed, Inc. | Implantable sensor method and system |
US8003513B2 (en) * | 2002-09-27 | 2011-08-23 | Medtronic Minimed, Inc. | Multilayer circuit devices and manufacturing methods using electroplated sacrificial structures |
US7727181B2 (en) | 2002-10-09 | 2010-06-01 | Abbott Diabetes Care Inc. | Fluid delivery device with autocalibration |
US9237865B2 (en) * | 2002-10-18 | 2016-01-19 | Medtronic Minimed, Inc. | Analyte sensors and methods for making and using them |
US20040074785A1 (en) * | 2002-10-18 | 2004-04-22 | Holker James D. | Analyte sensors and methods for making them |
US20050272989A1 (en) * | 2004-06-04 | 2005-12-08 | Medtronic Minimed, Inc. | Analyte sensors and methods for making and using them |
US7501053B2 (en) * | 2002-10-23 | 2009-03-10 | Abbott Laboratories | Biosensor having improved hematocrit and oxygen biases |
ATE441106T1 (en) * | 2002-10-30 | 2009-09-15 | Lifescan Scotland Ltd | PRETREATMENT OF A SUBSTRATE IN A CONTINUOUS MANUFACTURING PROCESS FOR ELECTROCHEMICAL SENSORS |
EP1578612B1 (en) * | 2002-10-30 | 2007-02-14 | Lifescan Scotland Ltd | Continuous web process for the manufacture of electrochemical sensors |
CN100489513C (en) * | 2002-10-30 | 2009-05-20 | 因弗内斯医疗有限公司 | Method of manufacture of electrochemical sensors |
AU2003291250A1 (en) * | 2002-11-05 | 2004-06-07 | Therasense, Inc. | Assay device, system and method |
US7381184B2 (en) | 2002-11-05 | 2008-06-03 | Abbott Diabetes Care Inc. | Sensor inserter assembly |
US20050150778A1 (en) * | 2002-11-18 | 2005-07-14 | Lewis Nathan S. | Use of basic polymers in carbon black composite vapor detectors to obtain enhanced sensitivity and classification performance for volatile fatty acids |
US7244264B2 (en) * | 2002-12-03 | 2007-07-17 | Roche Diagnostics Operations, Inc. | Dual blade lancing test strip |
JP2006509594A (en) * | 2002-12-16 | 2006-03-23 | メーガン メディカル アイエヌシー | Apparatus and method for attaching a percutaneous device to a patient and associated manufacturing method |
US20040122353A1 (en) * | 2002-12-19 | 2004-06-24 | Medtronic Minimed, Inc. | Relay device for transferring information between a sensor system and a fluid delivery system |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
AU2003303597A1 (en) | 2002-12-31 | 2004-07-29 | Therasense, Inc. | Continuous glucose monitoring system and methods of use |
US7312197B2 (en) * | 2003-02-24 | 2007-12-25 | University Of Maryland, Baltimore | Method of modifying glucose activity using polypeptides selectively expressed in fat tissue |
US7052652B2 (en) | 2003-03-24 | 2006-05-30 | Rosedale Medical, Inc. | Analyte concentration detection devices and methods |
US7587287B2 (en) | 2003-04-04 | 2009-09-08 | Abbott Diabetes Care Inc. | Method and system for transferring analyte test data |
US7658709B2 (en) * | 2003-04-09 | 2010-02-09 | Medtronic, Inc. | Shape memory alloy actuators |
US7679407B2 (en) | 2003-04-28 | 2010-03-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing peak detection circuitry for data communication systems |
JP2004343275A (en) * | 2003-05-14 | 2004-12-02 | Murata Mach Ltd | Image processing system and scanner |
US7875293B2 (en) | 2003-05-21 | 2011-01-25 | Dexcom, Inc. | Biointerface membranes incorporating bioactive agents |
DE602004028463D1 (en) | 2003-05-30 | 2010-09-16 | Pelikan Technologies Inc | METHOD AND DEVICE FOR INJECTING LIQUID |
DK1633235T3 (en) | 2003-06-06 | 2014-08-18 | Sanofi Aventis Deutschland | Apparatus for sampling body fluid and detecting analyte |
US8066639B2 (en) | 2003-06-10 | 2011-11-29 | Abbott Diabetes Care Inc. | Glucose measuring device for use in personal area network |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
US8187446B2 (en) * | 2003-06-17 | 2012-05-29 | Chun-Mu Huang | Method of manufacturing a disposable electrochemical sensor strip |
US8679853B2 (en) | 2003-06-20 | 2014-03-25 | Roche Diagnostics Operations, Inc. | Biosensor with laser-sealed capillary space and method of making |
US7645373B2 (en) | 2003-06-20 | 2010-01-12 | Roche Diagnostic Operations, Inc. | System and method for coding information on a biosensor test strip |
US8148164B2 (en) | 2003-06-20 | 2012-04-03 | Roche Diagnostics Operations, Inc. | System and method for determining the concentration of an analyte in a sample fluid |
US8206565B2 (en) | 2003-06-20 | 2012-06-26 | Roche Diagnostics Operation, Inc. | System and method for coding information on a biosensor test strip |
PT1639352T (en) | 2003-06-20 | 2018-07-09 | Hoffmann La Roche | Method and reagent for producing narrow, homogenous reagent strips |
US7488601B2 (en) | 2003-06-20 | 2009-02-10 | Roche Diagnostic Operations, Inc. | System and method for determining an abused sensor during analyte measurement |
US7718439B2 (en) | 2003-06-20 | 2010-05-18 | Roche Diagnostics Operations, Inc. | System and method for coding information on a biosensor test strip |
US8058077B2 (en) | 2003-06-20 | 2011-11-15 | Roche Diagnostics Operations, Inc. | Method for coding information on a biosensor test strip |
US8071030B2 (en) | 2003-06-20 | 2011-12-06 | Roche Diagnostics Operations, Inc. | Test strip with flared sample receiving chamber |
US7645421B2 (en) | 2003-06-20 | 2010-01-12 | Roche Diagnostics Operations, Inc. | System and method for coding information on a biosensor test strip |
US7452457B2 (en) | 2003-06-20 | 2008-11-18 | Roche Diagnostics Operations, Inc. | System and method for analyte measurement using dose sufficiency electrodes |
US8423113B2 (en) | 2003-07-25 | 2013-04-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
US20050176136A1 (en) * | 2003-11-19 | 2005-08-11 | Dexcom, Inc. | Afinity domain for analyte sensor |
US9763609B2 (en) | 2003-07-25 | 2017-09-19 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
US8282549B2 (en) | 2003-12-09 | 2012-10-09 | Dexcom, Inc. | Signal processing for continuous analyte sensor |
US7651596B2 (en) | 2005-04-08 | 2010-01-26 | Dexcom, Inc. | Cellulosic-based interference domain for an analyte sensor |
WO2007120442A2 (en) | 2003-07-25 | 2007-10-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US7774145B2 (en) | 2003-08-01 | 2010-08-10 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8275437B2 (en) | 2003-08-01 | 2012-09-25 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8761856B2 (en) | 2003-08-01 | 2014-06-24 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US8160669B2 (en) | 2003-08-01 | 2012-04-17 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8886273B2 (en) | 2003-08-01 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US7591801B2 (en) | 2004-02-26 | 2009-09-22 | Dexcom, Inc. | Integrated delivery device for continuous glucose sensor |
US8845536B2 (en) | 2003-08-01 | 2014-09-30 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8369919B2 (en) | 2003-08-01 | 2013-02-05 | Dexcom, Inc. | Systems and methods for processing sensor data |
US8060173B2 (en) | 2003-08-01 | 2011-11-15 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US20100168543A1 (en) | 2003-08-01 | 2010-07-01 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US7925321B2 (en) | 2003-08-01 | 2011-04-12 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US9135402B2 (en) * | 2007-12-17 | 2015-09-15 | Dexcom, Inc. | Systems and methods for processing sensor data |
US7519408B2 (en) | 2003-11-19 | 2009-04-14 | Dexcom, Inc. | Integrated receiver for continuous analyte sensor |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US8233959B2 (en) | 2003-08-22 | 2012-07-31 | Dexcom, Inc. | Systems and methods for processing analyte sensor data |
US20140121989A1 (en) | 2003-08-22 | 2014-05-01 | Dexcom, Inc. | Systems and methods for processing analyte sensor data |
EP1671096A4 (en) | 2003-09-29 | 2009-09-16 | Pelikan Technologies Inc | Method and apparatus for an improved sample capture device |
US20050067277A1 (en) * | 2003-09-30 | 2005-03-31 | Pierce Robin D. | Low volume electrochemical biosensor |
EP1680014A4 (en) | 2003-10-14 | 2009-01-21 | Pelikan Technologies Inc | Method and apparatus for a variable user interface |
US7299082B2 (en) | 2003-10-31 | 2007-11-20 | Abbott Diabetes Care, Inc. | Method of calibrating an analyte-measurement device, and associated methods, devices and systems |
USD902408S1 (en) | 2003-11-05 | 2020-11-17 | Abbott Diabetes Care Inc. | Analyte sensor control unit |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
US8364231B2 (en) | 2006-10-04 | 2013-01-29 | Dexcom, Inc. | Analyte sensor |
ATE480761T1 (en) | 2003-12-05 | 2010-09-15 | Dexcom Inc | CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR |
US8287453B2 (en) | 2003-12-05 | 2012-10-16 | Dexcom, Inc. | Analyte sensor |
US11633133B2 (en) | 2003-12-05 | 2023-04-25 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8423114B2 (en) | 2006-10-04 | 2013-04-16 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
US8774886B2 (en) | 2006-10-04 | 2014-07-08 | Dexcom, Inc. | Analyte sensor |
EP2228642B1 (en) * | 2003-12-08 | 2017-07-19 | DexCom, Inc. | Systems and methods for improving electrochemical analyte sensors |
KR100568419B1 (en) * | 2003-12-15 | 2006-04-05 | 매그나칩 반도체 유한회사 | Method of manufacturing inductor in a semiconductor device |
US7036220B2 (en) * | 2003-12-18 | 2006-05-02 | The Regents Of The University Of California | Pin-deposition of conductive inks for microelectrodes and contact via filling |
EP3175780A1 (en) | 2003-12-18 | 2017-06-07 | Metronom Health, Inc. | Implantable biosensor and methods of use thereof |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
JP2005216132A (en) * | 2004-01-30 | 2005-08-11 | Sumitomo Eaton Noba Kk | Mobile device control method, mobile device linking apparatus and method, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and mechanical scan ion implantation apparatus |
KR20060131836A (en) | 2004-02-06 | 2006-12-20 | 바이엘 헬쓰케어, 엘엘씨 | Oxidizable species as an internal reference for biosensors and method of use |
US8165651B2 (en) * | 2004-02-09 | 2012-04-24 | Abbott Diabetes Care Inc. | Analyte sensor, and associated system and method employing a catalytic agent |
US7699964B2 (en) * | 2004-02-09 | 2010-04-20 | Abbott Diabetes Care Inc. | Membrane suitable for use in an analyte sensor, analyte sensor, and associated method |
EP1718198A4 (en) | 2004-02-17 | 2008-06-04 | Therasense Inc | Method and system for providing data communication in continuous glucose monitoring and management system |
US8808228B2 (en) | 2004-02-26 | 2014-08-19 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
US20070135697A1 (en) * | 2004-04-19 | 2007-06-14 | Therasense, Inc. | Method and apparatus for providing sensor guard for data monitoring and detection systems |
US8792955B2 (en) | 2004-05-03 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8277713B2 (en) | 2004-05-03 | 2012-10-02 | Dexcom, Inc. | Implantable analyte sensor |
WO2006011062A2 (en) | 2004-05-20 | 2006-02-02 | Albatros Technologies Gmbh & Co. Kg | Printable hydrogel for biosensors |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
EP1765194A4 (en) | 2004-06-03 | 2010-09-29 | Pelikan Technologies Inc | Method and apparatus for a fluid sampling device |
CA3090413C (en) | 2004-06-04 | 2023-10-10 | Abbott Diabetes Care Inc. | Glucose monitoring and graphical representations in a data management system |
US20070100222A1 (en) * | 2004-06-14 | 2007-05-03 | Metronic Minimed, Inc. | Analyte sensing apparatus for hospital use |
US7569126B2 (en) | 2004-06-18 | 2009-08-04 | Roche Diagnostics Operations, Inc. | System and method for quality assurance of a biosensor test strip |
US9414777B2 (en) | 2004-07-13 | 2016-08-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20060016700A1 (en) | 2004-07-13 | 2006-01-26 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8452368B2 (en) | 2004-07-13 | 2013-05-28 | Dexcom, Inc. | Transcutaneous analyte sensor |
US8565848B2 (en) | 2004-07-13 | 2013-10-22 | Dexcom, Inc. | Transcutaneous analyte sensor |
US20060270922A1 (en) | 2004-07-13 | 2006-11-30 | Brauker James H | Analyte sensor |
US8886272B2 (en) | 2004-07-13 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
US7783333B2 (en) | 2004-07-13 | 2010-08-24 | Dexcom, Inc. | Transcutaneous medical device with variable stiffness |
GB0416209D0 (en) * | 2004-07-20 | 2004-08-25 | Inverness Medical Switzerland | Electrode manufacture |
US7344500B2 (en) | 2004-07-27 | 2008-03-18 | Medtronic Minimed, Inc. | Sensing system with auxiliary display |
US20080135408A1 (en) * | 2004-08-20 | 2008-06-12 | Novo Nordisk A/S | Manufacturing Process For Producing Narrow Sensors |
CA2887517C (en) | 2004-10-12 | 2017-09-12 | Bayer Healthcare Llc | Concentration determination in a diffusion barrier layer |
CN101437856A (en) * | 2004-10-14 | 2009-05-20 | 塔夫茨大学信托人 | Electrochemically degradable polymers |
US7303543B1 (en) | 2004-12-03 | 2007-12-04 | Medtronic Minimed, Inc. | Medication infusion set |
WO2006065994A2 (en) * | 2004-12-16 | 2006-06-22 | Independent Natural Resources, Inc. | Buoyancy pump power system |
US8333714B2 (en) | 2006-09-10 | 2012-12-18 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US7731657B2 (en) | 2005-08-30 | 2010-06-08 | Abbott Diabetes Care Inc. | Analyte sensor introducer and methods of use |
US7697967B2 (en) | 2005-12-28 | 2010-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US9351669B2 (en) | 2009-09-30 | 2016-05-31 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
US9743862B2 (en) | 2011-03-31 | 2017-08-29 | Abbott Diabetes Care Inc. | Systems and methods for transcutaneously implanting medical devices |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US9259175B2 (en) | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US7883464B2 (en) | 2005-09-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US8029441B2 (en) | 2006-02-28 | 2011-10-04 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US9572534B2 (en) | 2010-06-29 | 2017-02-21 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US8571624B2 (en) | 2004-12-29 | 2013-10-29 | Abbott Diabetes Care Inc. | Method and apparatus for mounting a data transmission device in a communication system |
US20090105569A1 (en) | 2006-04-28 | 2009-04-23 | Abbott Diabetes Care, Inc. | Introducer Assembly and Methods of Use |
US9636450B2 (en) | 2007-02-19 | 2017-05-02 | Udo Hoss | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
US9398882B2 (en) | 2005-09-30 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor and data processing device |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7704229B2 (en) * | 2005-02-03 | 2010-04-27 | Medtronic Minimed, Inc. | Insertion device |
US20060184104A1 (en) * | 2005-02-15 | 2006-08-17 | Medtronic Minimed, Inc. | Needle guard |
US8133178B2 (en) | 2006-02-22 | 2012-03-13 | Dexcom, Inc. | Analyte sensor |
US20090076360A1 (en) | 2007-09-13 | 2009-03-19 | Dexcom, Inc. | Transcutaneous analyte sensor |
AU2006226988B2 (en) | 2005-03-21 | 2011-12-01 | Abbott Diabetes Care, Inc. | Method and system for providing integrated medication infusion and analyte monitoring system |
US8744546B2 (en) | 2005-05-05 | 2014-06-03 | Dexcom, Inc. | Cellulosic-based resistance domain for an analyte sensor |
US7608367B1 (en) * | 2005-04-22 | 2009-10-27 | Sandia Corporation | Vitreous carbon mask substrate for X-ray lithography |
US8112240B2 (en) | 2005-04-29 | 2012-02-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing leak detection in data monitoring and management systems |
US7768408B2 (en) | 2005-05-17 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing data management in data monitoring system |
US8765060B2 (en) | 2005-05-26 | 2014-07-01 | Regents Of The University Of Minnesota | Chemical sensor |
US20070033074A1 (en) * | 2005-06-03 | 2007-02-08 | Medtronic Minimed, Inc. | Therapy management system |
US20060272652A1 (en) * | 2005-06-03 | 2006-12-07 | Medtronic Minimed, Inc. | Virtual patient software system for educating and treating individuals with diabetes |
US7922883B2 (en) | 2005-06-08 | 2011-04-12 | Abbott Laboratories | Biosensors and methods of using the same |
US7905999B2 (en) * | 2005-06-08 | 2011-03-15 | Abbott Laboratories | Biosensor strips and methods of preparing same |
US20060281187A1 (en) | 2005-06-13 | 2006-12-14 | Rosedale Medical, Inc. | Analyte detection devices and methods with hematocrit/volume correction and feedback control |
US20070016449A1 (en) * | 2005-06-29 | 2007-01-18 | Gary Cohen | Flexible glucose analysis using varying time report deltas and configurable glucose target ranges |
RU2441238C2 (en) | 2005-07-20 | 2012-01-27 | БАЙЕР ХЕЛТКЭА ЭлЭлСи | Strobed amperometry |
US20070066956A1 (en) * | 2005-07-27 | 2007-03-22 | Medtronic Minimed, Inc. | Systems and methods for entering temporary basal rate pattern in an infusion device |
US9404882B2 (en) | 2005-08-11 | 2016-08-02 | New Mexico Tech Research Foundation | Method of producing a multi-microchannel, flow-through element and device using same |
US20070034298A1 (en) * | 2005-08-11 | 2007-02-15 | New Mexico Technical Research Foundation | Method of producing a multi-microchannel, flow-through element and device using same |
US20090227855A1 (en) | 2005-08-16 | 2009-09-10 | Medtronic Minimed, Inc. | Controller device for an infusion pump |
US20070093786A1 (en) * | 2005-08-16 | 2007-04-26 | Medtronic Minimed, Inc. | Watch controller for a medical device |
US7737581B2 (en) | 2005-08-16 | 2010-06-15 | Medtronic Minimed, Inc. | Method and apparatus for predicting end of battery life |
US20070060870A1 (en) * | 2005-08-16 | 2007-03-15 | Tolle Mike Charles V | Controller device for an infusion pump |
CN102440785A (en) | 2005-08-31 | 2012-05-09 | 弗吉尼亚大学专利基金委员会 | Sensor signal processing method and sensor signal processing device |
KR100643934B1 (en) * | 2005-09-02 | 2006-11-10 | 삼성전기주식회사 | Method of forming circuit pattern of pcb |
US20070059459A1 (en) * | 2005-09-12 | 2007-03-15 | Haixin Yang | Ink jet printable hydrogel for sensor electrode applications |
US7713240B2 (en) | 2005-09-13 | 2010-05-11 | Medtronic Minimed, Inc. | Modular external infusion device |
US9072476B2 (en) | 2005-09-23 | 2015-07-07 | Medtronic Minimed, Inc. | Flexible sensor apparatus |
US7725148B2 (en) * | 2005-09-23 | 2010-05-25 | Medtronic Minimed, Inc. | Sensor with layered electrodes |
US9521968B2 (en) | 2005-09-30 | 2016-12-20 | Abbott Diabetes Care Inc. | Analyte sensor retention mechanism and methods of use |
KR101477948B1 (en) | 2005-09-30 | 2014-12-30 | 바이엘 헬스케어 엘엘씨 | Gated voltammetry analysis duration determination |
JP5232003B2 (en) | 2005-09-30 | 2013-07-10 | インテュイティ メディカル インコーポレイテッド | Multi-part body fluid sampling and analysis cartridge |
US8801631B2 (en) | 2005-09-30 | 2014-08-12 | Intuity Medical, Inc. | Devices and methods for facilitating fluid transport |
US8880138B2 (en) | 2005-09-30 | 2014-11-04 | Abbott Diabetes Care Inc. | Device for channeling fluid and methods of use |
US7583190B2 (en) | 2005-10-31 | 2009-09-01 | Abbott Diabetes Care Inc. | Method and apparatus for providing data communication in data monitoring and management systems |
US20070095661A1 (en) * | 2005-10-31 | 2007-05-03 | Yi Wang | Method of making, and, analyte sensor |
US7766829B2 (en) | 2005-11-04 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and system for providing basal profile modification in analyte monitoring and management systems |
US7955484B2 (en) * | 2005-12-14 | 2011-06-07 | Nova Biomedical Corporation | Glucose biosensor and method |
US7674864B2 (en) * | 2005-12-23 | 2010-03-09 | Boston Scientific Scimed, Inc. | Polymeric hybrid precursors, polymeric hybrid precursor composite matrices, medical devices, and methods |
US8455088B2 (en) | 2005-12-23 | 2013-06-04 | Boston Scientific Scimed, Inc. | Spun nanofiber, medical devices, and methods |
US11298058B2 (en) | 2005-12-28 | 2022-04-12 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US8515518B2 (en) * | 2005-12-28 | 2013-08-20 | Abbott Diabetes Care Inc. | Analyte monitoring |
US8160670B2 (en) | 2005-12-28 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent |
WO2007120363A2 (en) | 2005-12-28 | 2007-10-25 | Abbott Diabetes Care, Inc. | Medical device insertion |
US20070173712A1 (en) | 2005-12-30 | 2007-07-26 | Medtronic Minimed, Inc. | Method of and system for stabilization of sensors |
US8114268B2 (en) * | 2005-12-30 | 2012-02-14 | Medtronic Minimed, Inc. | Method and system for remedying sensor malfunctions detected by electrochemical impedance spectroscopy |
US7985330B2 (en) * | 2005-12-30 | 2011-07-26 | Medtronic Minimed, Inc. | Method and system for detecting age, hydration, and functional states of sensors using electrochemical impedance spectroscopy |
US8114269B2 (en) | 2005-12-30 | 2012-02-14 | Medtronic Minimed, Inc. | System and method for determining the point of hydration and proper time to apply potential to a glucose sensor |
US7774038B2 (en) * | 2005-12-30 | 2010-08-10 | Medtronic Minimed, Inc. | Real-time self-calibrating sensor system and method |
US20070169533A1 (en) * | 2005-12-30 | 2007-07-26 | Medtronic Minimed, Inc. | Methods and systems for detecting the hydration of sensors |
JP5019018B2 (en) * | 2006-01-06 | 2012-09-05 | 株式会社日立プラントテクノロジー | Flat membrane element and its regeneration method |
US9757061B2 (en) | 2006-01-17 | 2017-09-12 | Dexcom, Inc. | Low oxygen in vivo analyte sensor |
US8786510B2 (en) | 2006-01-24 | 2014-07-22 | Avery Dennison Corporation | Radio frequency (RF) antenna containing element and methods of making the same |
AU2007209758B2 (en) * | 2006-01-24 | 2013-03-28 | Mycrolab Diagnostics Pty Ltd | Methods for low cost manufacturing of complex layered materials and devices |
US7736310B2 (en) | 2006-01-30 | 2010-06-15 | Abbott Diabetes Care Inc. | On-body medical device securement |
US20090133803A1 (en) * | 2006-02-10 | 2009-05-28 | Sca Hygiene Products Ab | Device and Means of Processing a Material by Means of an Ultrasonic Device |
US7811430B2 (en) * | 2006-02-28 | 2010-10-12 | Abbott Diabetes Care Inc. | Biosensors and methods of making |
US7826879B2 (en) | 2006-02-28 | 2010-11-02 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US8398603B2 (en) * | 2006-02-28 | 2013-03-19 | Coloplast A/S | Leak sensor |
US7885698B2 (en) | 2006-02-28 | 2011-02-08 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US8473022B2 (en) | 2008-01-31 | 2013-06-25 | Abbott Diabetes Care Inc. | Analyte sensor with time lag compensation |
US8140312B2 (en) | 2007-05-14 | 2012-03-20 | Abbott Diabetes Care Inc. | Method and system for determining analyte levels |
US8374668B1 (en) | 2007-10-23 | 2013-02-12 | Abbott Diabetes Care Inc. | Analyte sensor with lag compensation |
US7801582B2 (en) | 2006-03-31 | 2010-09-21 | Abbott Diabetes Care Inc. | Analyte monitoring and management system and methods therefor |
US9675290B2 (en) | 2012-10-30 | 2017-06-13 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US8219173B2 (en) | 2008-09-30 | 2012-07-10 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US8478557B2 (en) | 2009-07-31 | 2013-07-02 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte monitoring system calibration accuracy |
US8226891B2 (en) | 2006-03-31 | 2012-07-24 | Abbott Diabetes Care Inc. | Analyte monitoring devices and methods therefor |
US9339217B2 (en) | 2011-11-25 | 2016-05-17 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods of use |
US8224415B2 (en) | 2009-01-29 | 2012-07-17 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US7653425B2 (en) | 2006-08-09 | 2010-01-26 | Abbott Diabetes Care Inc. | Method and system for providing calibration of an analyte sensor in an analyte monitoring system |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US7620438B2 (en) | 2006-03-31 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for powering an electronic device |
US7630748B2 (en) | 2006-10-25 | 2009-12-08 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US7618369B2 (en) | 2006-10-02 | 2009-11-17 | Abbott Diabetes Care Inc. | Method and system for dynamically updating calibration parameters for an analyte sensor |
US9326709B2 (en) | 2010-03-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US8346335B2 (en) | 2008-03-28 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte sensor calibration management |
WO2007121121A2 (en) * | 2006-04-11 | 2007-10-25 | Home Diagnostics Inc. | Laminated biosensor and its manufacturing method |
US20100012049A1 (en) * | 2006-04-12 | 2010-01-21 | Jms Co., Ltd | Cavitation heating system and method |
US7942844B2 (en) | 2006-04-28 | 2011-05-17 | Medtronic Minimed, Inc. | Remote monitoring for networked fluid infusion systems |
US8073008B2 (en) | 2006-04-28 | 2011-12-06 | Medtronic Minimed, Inc. | Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network |
US20070266871A1 (en) * | 2006-05-17 | 2007-11-22 | Greta Wegner | Diagnostic test media and methods for the manufacture thereof |
WO2007143225A2 (en) | 2006-06-07 | 2007-12-13 | Abbott Diabetes Care, Inc. | Analyte monitoring system and method |
US20070283832A1 (en) * | 2006-06-09 | 2007-12-13 | Apple Computer, Inc. | Imprint circuit patterning |
US9119582B2 (en) | 2006-06-30 | 2015-09-01 | Abbott Diabetes Care, Inc. | Integrated analyte sensor and infusion device and methods therefor |
US7699973B2 (en) * | 2006-06-30 | 2010-04-20 | Abbott Diabetes Care Inc. | Rapid analyte measurement assay |
WO2008021758A1 (en) * | 2006-08-11 | 2008-02-21 | Home Diagnostics, Inc. | Methods for fabricating a biosensor with a surface texture |
US7908018B2 (en) * | 2006-09-06 | 2011-03-15 | Cardiomems, Inc. | Flexible electrode |
US8311606B2 (en) * | 2006-09-20 | 2012-11-13 | Cardiac Pacemakers Inc. | Conductive polymer patterned electrode for pacing |
US7831287B2 (en) | 2006-10-04 | 2010-11-09 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
WO2008051742A2 (en) | 2006-10-24 | 2008-05-02 | Bayer Healthcare Llc | Transient decay amperometry |
US7312042B1 (en) | 2006-10-24 | 2007-12-25 | Abbott Diabetes Care, Inc. | Embossed cell analyte sensor and methods of manufacture |
WO2008052199A2 (en) | 2006-10-26 | 2008-05-02 | Abbott Diabetes Care, Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US20080164142A1 (en) * | 2006-10-27 | 2008-07-10 | Manuel Alvarez-Icaza | Surface treatment of carbon composite material to improve electrochemical properties |
US20080119702A1 (en) * | 2006-10-31 | 2008-05-22 | Abbott Diabetes Care, Inc. | Analyte meter having alert, alarm and test reminder capabilities and methods of use |
US8579853B2 (en) | 2006-10-31 | 2013-11-12 | Abbott Diabetes Care Inc. | Infusion devices and methods |
US20080119710A1 (en) * | 2006-10-31 | 2008-05-22 | Abbott Diabetes Care, Inc. | Medical devices and methods of using the same |
US8255034B2 (en) | 2006-11-30 | 2012-08-28 | Abbott Diabetes Care Inc. | Lyotropic liquid crystal coated analyte monitoring device and methods of use |
US20080139910A1 (en) * | 2006-12-06 | 2008-06-12 | Metronic Minimed, Inc. | Analyte sensor and method of using the same |
EP1935843A1 (en) * | 2006-12-22 | 2008-06-25 | Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO | Device built by joining a plurality of layers |
US7842173B2 (en) * | 2007-01-29 | 2010-11-30 | Semitool, Inc. | Apparatus and methods for electrochemical processing of microfeature wafers |
TWI384095B (en) * | 2007-01-29 | 2013-02-01 | Applied Materials Inc | Apparatus and methods for electrochemical processing of wafers |
US8808515B2 (en) | 2007-01-31 | 2014-08-19 | Abbott Diabetes Care Inc. | Heterocyclic nitrogen containing polymers coated analyte monitoring device and methods of use |
US10154804B2 (en) | 2007-01-31 | 2018-12-18 | Medtronic Minimed, Inc. | Model predictive method and system for controlling and supervising insulin infusion |
US20080287866A1 (en) * | 2007-01-31 | 2008-11-20 | Adam Heller | Methods and compositions for the treatment of pain |
US8121857B2 (en) | 2007-02-15 | 2012-02-21 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
US20080199894A1 (en) | 2007-02-15 | 2008-08-21 | Abbott Diabetes Care, Inc. | Device and method for automatic data acquisition and/or detection |
US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
US8123686B2 (en) | 2007-03-01 | 2012-02-28 | Abbott Diabetes Care Inc. | Method and apparatus for providing rolling data in communication systems |
ES2784736T3 (en) | 2007-04-14 | 2020-09-30 | Abbott Diabetes Care Inc | Procedure and apparatus for providing data processing and control in a medical communication system |
CA2683930A1 (en) | 2007-04-14 | 2008-10-23 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
CA2683721C (en) | 2007-04-14 | 2017-05-23 | Abbott Diabetes Care Inc. | Method and apparatus for providing dynamic multi-stage signal amplification in a medical device |
EP4108162A1 (en) | 2007-04-14 | 2022-12-28 | Abbott Diabetes Care, Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9204827B2 (en) | 2007-04-14 | 2015-12-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US9008743B2 (en) | 2007-04-14 | 2015-04-14 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in medical communication system |
US20080269723A1 (en) * | 2007-04-25 | 2008-10-30 | Medtronic Minimed, Inc. | Closed loop/semi-closed loop therapy modification system |
US20080269714A1 (en) | 2007-04-25 | 2008-10-30 | Medtronic Minimed, Inc. | Closed loop/semi-closed loop therapy modification system |
US8665091B2 (en) | 2007-05-08 | 2014-03-04 | Abbott Diabetes Care Inc. | Method and device for determining elapsed sensor life |
US8461985B2 (en) | 2007-05-08 | 2013-06-11 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US7928850B2 (en) | 2007-05-08 | 2011-04-19 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8456301B2 (en) | 2007-05-08 | 2013-06-04 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods |
US8260558B2 (en) | 2007-05-14 | 2012-09-04 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US7996158B2 (en) | 2007-05-14 | 2011-08-09 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8103471B2 (en) | 2007-05-14 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8600681B2 (en) | 2007-05-14 | 2013-12-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US10002233B2 (en) | 2007-05-14 | 2018-06-19 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8239166B2 (en) | 2007-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8560038B2 (en) | 2007-05-14 | 2013-10-15 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US8444560B2 (en) | 2007-05-14 | 2013-05-21 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US9125548B2 (en) | 2007-05-14 | 2015-09-08 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
US20200037874A1 (en) | 2007-05-18 | 2020-02-06 | Dexcom, Inc. | Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise |
WO2008150917A1 (en) | 2007-05-31 | 2008-12-11 | Abbott Diabetes Care, Inc. | Insertion devices and methods |
AU2008262018A1 (en) | 2007-06-08 | 2008-12-18 | Dexcom, Inc. | Integrated medicament delivery device for use with continuous analyte sensor |
EP3473167A1 (en) * | 2007-06-21 | 2019-04-24 | Abbott Diabetes Care, Inc. | Health monitor |
CA2690742C (en) | 2007-06-21 | 2018-05-15 | Abbott Diabetes Care Inc. | Health management devices and methods |
US8160900B2 (en) | 2007-06-29 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
KR20100044176A (en) | 2007-07-19 | 2010-04-29 | 바이엘 머티리얼사이언스 아게 | Method for producing thin, conductive structures on surfaces |
DE102007043396A1 (en) | 2007-09-12 | 2009-03-19 | Bayer Materialscience Ag | Method for manufacturing electrical conducting structures, involves producing channels on surface of substrate by mechanical and additionally thermal effects and ink is applied on channels |
US8834366B2 (en) | 2007-07-31 | 2014-09-16 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor calibration |
US7768386B2 (en) | 2007-07-31 | 2010-08-03 | Abbott Diabetes Care Inc. | Method and apparatus for providing data processing and control in a medical communication system |
WO2009032760A2 (en) | 2007-08-30 | 2009-03-12 | Pepex Biomedical Llc | Electrochmical sensor and method for manufacturing |
WO2009051901A2 (en) | 2007-08-30 | 2009-04-23 | Pepex Biomedical, Llc | Electrochemical sensor and method for manufacturing |
US9452258B2 (en) | 2007-10-09 | 2016-09-27 | Dexcom, Inc. | Integrated insulin delivery system with continuous glucose sensor |
US8163146B2 (en) * | 2007-10-12 | 2012-04-24 | Abbott Diabetes Care Inc. | Mediator stabilized reagent compositions for use in biosensor electrodes |
US8216138B1 (en) | 2007-10-23 | 2012-07-10 | Abbott Diabetes Care Inc. | Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration |
US8409093B2 (en) | 2007-10-23 | 2013-04-02 | Abbott Diabetes Care Inc. | Assessing measures of glycemic variability |
US8000918B2 (en) | 2007-10-23 | 2011-08-16 | Edwards Lifesciences Corporation | Monitoring and compensating for temperature-related error in an electrochemical sensor |
US8377031B2 (en) | 2007-10-23 | 2013-02-19 | Abbott Diabetes Care Inc. | Closed loop control system with safety parameters and methods |
US8417312B2 (en) | 2007-10-25 | 2013-04-09 | Dexcom, Inc. | Systems and methods for processing sensor data |
MX2010004059A (en) * | 2007-10-31 | 2010-04-30 | Hoffmann La Roche | Electrical patterns for biosensor and method of making. |
US7783442B2 (en) | 2007-10-31 | 2010-08-24 | Medtronic Minimed, Inc. | System and methods for calibrating physiological characteristic sensors |
US8241488B2 (en) * | 2007-11-06 | 2012-08-14 | Bayer Healthcare Llc | Auto-calibrating test sensors |
US20090188811A1 (en) | 2007-11-28 | 2009-07-30 | Edwards Lifesciences Corporation | Preparation and maintenance of sensors |
WO2009076302A1 (en) | 2007-12-10 | 2009-06-18 | Bayer Healthcare Llc | Control markers for auto-detection of control solution and methods of use |
US8290559B2 (en) | 2007-12-17 | 2012-10-16 | Dexcom, Inc. | Systems and methods for processing sensor data |
US20090164239A1 (en) | 2007-12-19 | 2009-06-25 | Abbott Diabetes Care, Inc. | Dynamic Display Of Glucose Information |
US8313467B2 (en) | 2007-12-27 | 2012-11-20 | Medtronic Minimed, Inc. | Reservoir pressure equalization systems and methods |
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US8431011B2 (en) | 2008-01-31 | 2013-04-30 | Abbott Diabetes Care Inc. | Method for automatically and rapidly distinguishing between control and sample solutions in a biosensor strip |
CA2715628A1 (en) | 2008-02-21 | 2009-08-27 | Dexcom, Inc. | Systems and methods for processing, transmitting and displaying sensor data |
US20090275815A1 (en) * | 2008-03-21 | 2009-11-05 | Nova Biomedical Corporation | Temperature-compensated in-vivo sensor |
US8396528B2 (en) | 2008-03-25 | 2013-03-12 | Dexcom, Inc. | Analyte sensor |
US11730407B2 (en) | 2008-03-28 | 2023-08-22 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8583204B2 (en) | 2008-03-28 | 2013-11-12 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
US8682408B2 (en) | 2008-03-28 | 2014-03-25 | Dexcom, Inc. | Polymer membranes for continuous analyte sensors |
CA2721214A1 (en) | 2008-04-10 | 2009-10-15 | Abbott Diabetes Care Inc. | Method and system for sterilizing an analyte sensor |
EP2265324B1 (en) | 2008-04-11 | 2015-01-28 | Sanofi-Aventis Deutschland GmbH | Integrated analyte measurement system |
US9295786B2 (en) | 2008-05-28 | 2016-03-29 | Medtronic Minimed, Inc. | Needle protective device for subcutaneous sensors |
CA2725264C (en) | 2008-05-30 | 2017-06-20 | Intuity Medical, Inc. | Body fluid sampling device -- sampling site interface |
US8591410B2 (en) | 2008-05-30 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8924159B2 (en) | 2008-05-30 | 2014-12-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US20090294277A1 (en) * | 2008-05-30 | 2009-12-03 | Abbott Diabetes Care, Inc. | Method and system for producing thin film biosensors |
US7826382B2 (en) | 2008-05-30 | 2010-11-02 | Abbott Diabetes Care Inc. | Close proximity communication device and methods |
EP2299903B1 (en) | 2008-06-06 | 2021-01-27 | Intuity Medical, Inc. | Detection meter and mode of operation |
ES2907152T3 (en) | 2008-06-06 | 2022-04-22 | Intuity Medical Inc | Blood glucose meter and method of operation |
DE102008027461B4 (en) * | 2008-06-09 | 2011-07-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 | Apparatus and method for microstructured plasma treatment |
JP5405916B2 (en) * | 2008-06-24 | 2014-02-05 | パナソニック株式会社 | Biosensor, method for manufacturing the same, and detection system including the same |
US8876755B2 (en) | 2008-07-14 | 2014-11-04 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US8900431B2 (en) | 2008-08-27 | 2014-12-02 | Edwards Lifesciences Corporation | Analyte sensor |
US8734422B2 (en) | 2008-08-31 | 2014-05-27 | Abbott Diabetes Care Inc. | Closed loop control with improved alarm functions |
US9943644B2 (en) | 2008-08-31 | 2018-04-17 | Abbott Diabetes Care Inc. | Closed loop control with reference measurement and methods thereof |
US8622988B2 (en) | 2008-08-31 | 2014-01-07 | Abbott Diabetes Care Inc. | Variable rate closed loop control and methods |
US20100057040A1 (en) | 2008-08-31 | 2010-03-04 | Abbott Diabetes Care, Inc. | Robust Closed Loop Control And Methods |
EP2163190A1 (en) | 2008-09-11 | 2010-03-17 | Roche Diagnostics GmbH | Electrode system for measurement of an analyte concentration in-vivo |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
WO2010033878A2 (en) | 2008-09-19 | 2010-03-25 | David Brown | Solute concentration measurement device and related methods |
EP3795987B1 (en) | 2008-09-19 | 2023-10-25 | Dexcom, Inc. | Particle-containing membrane and particulate electrode for analyte sensors |
US8986208B2 (en) | 2008-09-30 | 2015-03-24 | Abbott Diabetes Care Inc. | Analyte sensor sensitivity attenuation mitigation |
US8208973B2 (en) | 2008-11-05 | 2012-06-26 | Medtronic Minimed, Inc. | System and method for variable beacon timing with wireless devices |
US9326707B2 (en) | 2008-11-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US8951377B2 (en) * | 2008-11-14 | 2015-02-10 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor module |
NZ573247A (en) * | 2008-11-28 | 2011-03-31 | Canterprise Ltd | Activating carbon material using an arc to heat to a specific temperature |
US9330237B2 (en) * | 2008-12-24 | 2016-05-03 | Medtronic Minimed, Inc. | Pattern recognition and filtering in a therapy management system |
US20100160740A1 (en) * | 2008-12-24 | 2010-06-24 | Gary Cohen | Use of Patterns in a Therapy Management System |
US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US20100198034A1 (en) | 2009-02-03 | 2010-08-05 | Abbott Diabetes Care Inc. | Compact On-Body Physiological Monitoring Devices and Methods Thereof |
EP4449989A2 (en) | 2009-02-26 | 2024-10-23 | Abbott Diabetes Care, Inc. | Improved analyte sensors and methods of making and using the same |
US8965477B2 (en) | 2009-02-26 | 2015-02-24 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
US20100213057A1 (en) | 2009-02-26 | 2010-08-26 | Benjamin Feldman | Self-Powered Analyte Sensor |
US20100219085A1 (en) * | 2009-02-27 | 2010-09-02 | Edwards Lifesciences Corporation | Analyte Sensor Offset Normalization |
WO2010111660A1 (en) | 2009-03-27 | 2010-09-30 | Dexcom, Inc. | Methods and systems for promoting glucose management |
US8497777B2 (en) | 2009-04-15 | 2013-07-30 | Abbott Diabetes Care Inc. | Analyte monitoring system having an alert |
EP2419015A4 (en) | 2009-04-16 | 2014-08-20 | Abbott Diabetes Care Inc | Analyte sensor calibration management |
WO2010129375A1 (en) | 2009-04-28 | 2010-11-11 | Abbott Diabetes Care Inc. | Closed loop blood glucose control algorithm analysis |
WO2010127050A1 (en) | 2009-04-28 | 2010-11-04 | Abbott Diabetes Care Inc. | Error detection in critical repeating data in a wireless sensor system |
US8368556B2 (en) | 2009-04-29 | 2013-02-05 | Abbott Diabetes Care Inc. | Method and system for providing data communication in continuous glucose monitoring and management system |
EP2425209A4 (en) | 2009-04-29 | 2013-01-09 | Abbott Diabetes Care Inc | Method and system for providing real time analyte sensor calibration with retrospective backfill |
US9184490B2 (en) | 2009-05-29 | 2015-11-10 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
EP2438527B1 (en) | 2009-06-04 | 2018-05-02 | Abbott Diabetes Care, Inc. | Method and system for updating a medical device |
KR101104391B1 (en) * | 2009-06-30 | 2012-01-16 | 주식회사 세라젬메디시스 | Sensor for measuring biomaterial used with measuring meter, and measuring device using this sensor |
US20100326842A1 (en) * | 2009-06-30 | 2010-12-30 | Abbott Diabetes Care Inc. | Extruded Electrode Structures and Methods of Using Same |
US8613892B2 (en) | 2009-06-30 | 2013-12-24 | Abbott Diabetes Care Inc. | Analyte meter with a moveable head and methods of using the same |
US8437827B2 (en) * | 2009-06-30 | 2013-05-07 | Abbott Diabetes Care Inc. | Extruded analyte sensors and methods of using same |
WO2011003039A2 (en) | 2009-07-02 | 2011-01-06 | Dexcom, Inc. | Analyte sensors and methods of manufacturing same |
US8344847B2 (en) | 2009-07-09 | 2013-01-01 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device |
EP4252648A3 (en) | 2009-07-23 | 2024-01-03 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
CA2769030C (en) | 2009-07-30 | 2016-05-10 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
WO2011025999A1 (en) * | 2009-08-29 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte sensor |
WO2011026148A1 (en) | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Analyte monitoring system and methods for managing power and noise |
EP2473098A4 (en) | 2009-08-31 | 2014-04-09 | Abbott Diabetes Care Inc | Analyte signal processing device and methods |
EP3923295A1 (en) | 2009-08-31 | 2021-12-15 | Abbott Diabetes Care, Inc. | Medical devices and methods |
EP3718922B1 (en) | 2009-08-31 | 2022-04-06 | Abbott Diabetes Care, Inc. | A glucose monitoring system and method |
US8487758B2 (en) | 2009-09-02 | 2013-07-16 | Medtronic Minimed, Inc. | Medical device having an intelligent alerting scheme, and related operating methods |
WO2011041469A1 (en) | 2009-09-29 | 2011-04-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
CN102724913A (en) | 2009-09-30 | 2012-10-10 | 德克斯康公司 | Transcutaneous analyte sensor |
WO2011053881A1 (en) | 2009-10-30 | 2011-05-05 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US8386042B2 (en) | 2009-11-03 | 2013-02-26 | Medtronic Minimed, Inc. | Omnidirectional accelerometer device and medical device incorporating same |
US8919605B2 (en) | 2009-11-30 | 2014-12-30 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
WO2011075575A1 (en) | 2009-12-17 | 2011-06-23 | Bayer Healthcare Llc | Transdermal systems, devices, and methods to optically analyze an analyte |
US8660628B2 (en) * | 2009-12-21 | 2014-02-25 | Medtronic Minimed, Inc. | Analyte sensors comprising blended membrane compositions and methods for making and using them |
US8574201B2 (en) | 2009-12-22 | 2013-11-05 | Medtronic Minimed, Inc. | Syringe piston with check valve seal |
US8755269B2 (en) | 2009-12-23 | 2014-06-17 | Medtronic Minimed, Inc. | Ranking and switching of wireless channels in a body area network of medical devices |
USD924406S1 (en) | 2010-02-01 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
JP5405361B2 (en) * | 2010-03-10 | 2014-02-05 | 翰沃生電科技股▲分▼有限公司 | Planar biometric sheet manufacturing method and product |
CA3135001A1 (en) | 2010-03-24 | 2011-09-29 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
JP5812681B2 (en) | 2010-05-19 | 2015-11-17 | アークレイ株式会社 | Electrochemical sensor |
US8726266B2 (en) | 2010-05-24 | 2014-05-13 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
WO2011159720A1 (en) | 2010-06-14 | 2011-12-22 | Avery Dennison Corporation | Foil laminate intermediate and method of manufacturing |
US8635046B2 (en) | 2010-06-23 | 2014-01-21 | Abbott Diabetes Care Inc. | Method and system for evaluating analyte sensor response characteristics |
US10330667B2 (en) | 2010-06-25 | 2019-06-25 | Intuity Medical, Inc. | Analyte monitoring methods and systems |
US9029168B2 (en) * | 2010-06-28 | 2015-05-12 | The Trustees Of Princeton University | Use and making of biosensors utilizing antimicrobial peptides for highly sensitive biological monitoring |
US10092229B2 (en) | 2010-06-29 | 2018-10-09 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
US11064921B2 (en) | 2010-06-29 | 2021-07-20 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
WO2012012537A1 (en) * | 2010-07-20 | 2012-01-26 | Ohmx Corporation | Novel chemistry used in biosensors |
EP2598433B1 (en) * | 2010-07-27 | 2022-04-13 | The Regents of The University of California | Method and device for restoring and maintaining superhydrophobicity under liquid |
EP2624745A4 (en) | 2010-10-07 | 2018-05-23 | Abbott Diabetes Care, Inc. | Analyte monitoring devices and methods |
US8603033B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device and related assembly having an offset element for a piezoelectric speaker |
US8562565B2 (en) | 2010-10-15 | 2013-10-22 | Medtronic Minimed, Inc. | Battery shock absorber for a portable medical device |
US8603032B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device with membrane keypad sealing element, and related manufacturing method |
US8495918B2 (en) | 2010-10-20 | 2013-07-30 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8479595B2 (en) | 2010-10-20 | 2013-07-09 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
KR101051447B1 (en) * | 2010-10-26 | 2011-07-22 | 한국기계연구원 | Transparent electrode manufacturing apparatus using metal grid based printing |
JP5661424B2 (en) | 2010-10-29 | 2015-01-28 | アークレイ株式会社 | Electrochemical sensor |
US8197444B1 (en) | 2010-12-22 | 2012-06-12 | Medtronic Minimed, Inc. | Monitoring the seating status of a fluid reservoir in a fluid infusion device |
US8628510B2 (en) | 2010-12-22 | 2014-01-14 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US8469942B2 (en) | 2010-12-22 | 2013-06-25 | Medtronic Minimed, Inc. | Occlusion detection for a fluid infusion device |
US8690855B2 (en) | 2010-12-22 | 2014-04-08 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
PL2658444T3 (en) | 2010-12-30 | 2015-04-30 | Hoffmann La Roche | Method for providing an efficient biosensor, as well as corresponding biosensor, substrate and insertion kit |
WO2012108938A1 (en) | 2011-02-11 | 2012-08-16 | Abbott Diabetes Care Inc. | Software applications residing on handheld analyte determining devices |
US20140088392A1 (en) | 2011-02-11 | 2014-03-27 | Abbott Diabetes Care Inc. | Feedback from Cloud or HCP to Payer or Patient via Meter or Cell Phone |
US9760679B2 (en) | 2011-02-11 | 2017-09-12 | Abbott Diabetes Care Inc. | Data synchronization between two or more analyte detecting devices in a database |
US8352034B2 (en) | 2011-02-18 | 2013-01-08 | Medtronic, Inc. | Medical device programmer with adjustable kickstand |
CN102762254B (en) | 2011-02-18 | 2015-09-23 | 麦德托尼克公司 | Modular medical device programmer |
US9393399B2 (en) | 2011-02-22 | 2016-07-19 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US9463309B2 (en) | 2011-02-22 | 2016-10-11 | Medtronic Minimed, Inc. | Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir |
US8870829B2 (en) | 2011-02-22 | 2014-10-28 | Medtronic Minimed, Inc. | Fluid infusion device and related sealing assembly for a needleless fluid reservoir |
US9283318B2 (en) | 2011-02-22 | 2016-03-15 | Medtronic Minimed, Inc. | Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir |
US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US8614596B2 (en) | 2011-02-28 | 2013-12-24 | Medtronic Minimed, Inc. | Systems and methods for initializing a voltage bus and medical devices incorporating same |
AU2012254094B2 (en) | 2011-02-28 | 2016-08-25 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US9101305B2 (en) | 2011-03-09 | 2015-08-11 | Medtronic Minimed, Inc. | Glucose sensor product and related manufacturing and packaging methods |
US8564447B2 (en) | 2011-03-18 | 2013-10-22 | Medtronic Minimed, Inc. | Battery life indication techniques for an electronic device |
US9018893B2 (en) | 2011-03-18 | 2015-04-28 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
DK3575796T3 (en) | 2011-04-15 | 2021-01-18 | Dexcom Inc | ADVANCED ANALYZE SENSOR CALIBRATION AND ERROR DETECTION |
WO2012162151A2 (en) | 2011-05-20 | 2012-11-29 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor modules |
EP3106870B1 (en) | 2011-08-03 | 2018-04-11 | Intuity Medical, Inc. | Body fluid sampling arrangement |
KR20140069144A (en) * | 2011-09-13 | 2014-06-09 | 히어 아이피 피티와이 엘티디 | Biocompatible electrode component and method for fabrication thereof |
WO2013066873A1 (en) | 2011-10-31 | 2013-05-10 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
WO2013066849A1 (en) | 2011-10-31 | 2013-05-10 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
EP2773650A1 (en) | 2011-11-04 | 2014-09-10 | Ohmx Corporation | Novel chemistry used in biosensors |
CA2840640C (en) | 2011-11-07 | 2020-03-24 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
CA2856380C (en) * | 2011-11-22 | 2020-05-12 | Siemens Healthcare Diagnostics Inc. | Interdigitated array and method of manufacture |
US8710993B2 (en) | 2011-11-23 | 2014-04-29 | Abbott Diabetes Care Inc. | Mitigating single point failure of devices in an analyte monitoring system and methods thereof |
US9317656B2 (en) | 2011-11-23 | 2016-04-19 | Abbott Diabetes Care Inc. | Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof |
ES2951067T3 (en) | 2011-12-11 | 2023-10-17 | Abbott Diabetes Care Inc | Analyte Sensor Devices, Connections and Procedures |
US9610401B2 (en) | 2012-01-13 | 2017-04-04 | Medtronic Minimed, Inc. | Infusion set component with modular fluid channel element |
DE102012201843A1 (en) | 2012-02-08 | 2013-08-08 | Siemens Aktiengesellschaft | Arrangement and method for the electrical detection of liquid samples with lateral flow assays |
US8523803B1 (en) | 2012-03-20 | 2013-09-03 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US8603026B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US8603027B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer |
US20130338629A1 (en) | 2012-06-07 | 2013-12-19 | Medtronic Minimed, Inc. | Diabetes therapy management system for recommending basal pattern adjustments |
US9333292B2 (en) | 2012-06-26 | 2016-05-10 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US8894831B2 (en) | 2012-06-27 | 2014-11-25 | Roche Diagnostics Operations, Inc. | Printed memory on strip |
WO2014001382A1 (en) * | 2012-06-29 | 2014-01-03 | Roche Diagnostics Gmbh | Sensor element for detecting an analyte in a body fluid |
US8808269B2 (en) | 2012-08-21 | 2014-08-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US9878096B2 (en) | 2012-08-30 | 2018-01-30 | Medtronic Minimed, Inc. | Generation of target glucose values for a closed-loop operating mode of an insulin infusion system |
US10130767B2 (en) | 2012-08-30 | 2018-11-20 | Medtronic Minimed, Inc. | Sensor model supervisor for a closed-loop insulin infusion system |
EP3395252A1 (en) | 2012-08-30 | 2018-10-31 | Abbott Diabetes Care, Inc. | Dropout detection in continuous analyte monitoring data during data excursions |
US10496797B2 (en) | 2012-08-30 | 2019-12-03 | Medtronic Minimed, Inc. | Blood glucose validation for a closed-loop operating mode of an insulin infusion system |
US9849239B2 (en) | 2012-08-30 | 2017-12-26 | Medtronic Minimed, Inc. | Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system |
US9623179B2 (en) | 2012-08-30 | 2017-04-18 | Medtronic Minimed, Inc. | Safeguarding techniques for a closed-loop insulin infusion system |
US9526834B2 (en) | 2012-08-30 | 2016-12-27 | Medtronic Minimed, Inc. | Safeguarding measures for a closed-loop insulin infusion system |
US9662445B2 (en) | 2012-08-30 | 2017-05-30 | Medtronic Minimed, Inc. | Regulating entry into a closed-loop operating mode of an insulin infusion system |
US9968306B2 (en) | 2012-09-17 | 2018-05-15 | Abbott Diabetes Care Inc. | Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems |
US9907492B2 (en) | 2012-09-26 | 2018-03-06 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US8802568B2 (en) | 2012-09-27 | 2014-08-12 | Sensirion Ag | Method for manufacturing chemical sensor with multiple sensor cells |
US11371951B2 (en) | 2012-09-27 | 2022-06-28 | Sensirion Ag | Gas sensor comprising a set of one or more sensor cells |
US20140107450A1 (en) * | 2012-10-12 | 2014-04-17 | Dexcom, Inc. | Sensors for continuous analyte monitoring, and related methods |
US20140213866A1 (en) | 2012-10-12 | 2014-07-31 | Dexcom, Inc. | Sensors for continuous analyte monitoring, and related methods |
US8870818B2 (en) | 2012-11-15 | 2014-10-28 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
CN104918551B (en) | 2012-12-03 | 2019-07-26 | Pepex生物医药有限公司 | Sensor module and the method for using sensor module |
CN103048286B (en) * | 2012-12-26 | 2015-01-14 | 宁波美康盛德生物科技有限公司 | Diabetes detection analyzer |
US9107994B2 (en) | 2013-01-18 | 2015-08-18 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9033924B2 (en) | 2013-01-18 | 2015-05-19 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9522223B2 (en) | 2013-01-18 | 2016-12-20 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9308321B2 (en) | 2013-02-18 | 2016-04-12 | Medtronic Minimed, Inc. | Infusion device having gear assembly initialization |
US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US9182368B2 (en) | 2013-03-14 | 2015-11-10 | Sano Intelligence, Inc. | Method of manufacturing a sensor for sensing analytes |
US9192313B1 (en) | 2013-03-14 | 2015-11-24 | Orbital Research Inc. | Dry physiological recording device and method of manufacturing |
US10820860B2 (en) | 2013-03-14 | 2020-11-03 | One Drop Biosensor Technologies, Llc | On-body microsensor for biomonitoring |
US8858884B2 (en) | 2013-03-15 | 2014-10-14 | American Sterilizer Company | Coupled enzyme-based method for electronic monitoring of biological indicator |
US9121050B2 (en) | 2013-03-15 | 2015-09-01 | American Sterilizer Company | Non-enzyme based detection method for electronic monitoring of biological indicator |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
US8920381B2 (en) | 2013-04-12 | 2014-12-30 | Medtronic Minimed, Inc. | Infusion set with improved bore configuration |
CN109222991B (en) | 2013-04-30 | 2022-04-19 | 雅培糖尿病护理公司 | Method for supplying power in living body analyte monitoring environment and monitoring system |
WO2014205412A1 (en) | 2013-06-21 | 2014-12-24 | Intuity Medical, Inc. | Analyte monitoring system with audible feedback |
US9433731B2 (en) | 2013-07-19 | 2016-09-06 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US10215753B2 (en) * | 2013-08-05 | 2019-02-26 | University Of Rochester | Method for the topographically-selective passivation of micro- and nanoscale devices |
US9402949B2 (en) | 2013-08-13 | 2016-08-02 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US9889257B2 (en) | 2013-08-21 | 2018-02-13 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US9880528B2 (en) | 2013-08-21 | 2018-01-30 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US9259528B2 (en) | 2013-08-22 | 2016-02-16 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US9750877B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Predicted time to assess and/or control a glycemic state |
US9750878B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Closed-loop control of glucose according to a predicted blood glucose trajectory |
US10105488B2 (en) | 2013-12-12 | 2018-10-23 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US9849240B2 (en) | 2013-12-12 | 2017-12-26 | Medtronic Minimed, Inc. | Data modification for predictive operations and devices incorporating same |
US9694132B2 (en) | 2013-12-19 | 2017-07-04 | Medtronic Minimed, Inc. | Insertion device for insertion set |
EP3089666B1 (en) | 2013-12-31 | 2020-08-19 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
US9861748B2 (en) | 2014-02-06 | 2018-01-09 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
US9399096B2 (en) | 2014-02-06 | 2016-07-26 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
EP3116397A4 (en) | 2014-03-13 | 2017-11-01 | Sano Intelligence, Inc. | System for monitoring body chemistry |
US10595754B2 (en) | 2014-03-13 | 2020-03-24 | Sano Intelligence, Inc. | System for monitoring body chemistry |
US9987422B2 (en) | 2014-03-24 | 2018-06-05 | Medtronic Minimed, Inc. | Fluid infusion patch pump device with automatic startup feature |
US20170185748A1 (en) | 2014-03-30 | 2017-06-29 | Abbott Diabetes Care Inc. | Method and Apparatus for Determining Meal Start and Peak Events in Analyte Monitoring Systems |
US20150289788A1 (en) | 2014-04-10 | 2015-10-15 | Dexcom, Inc. | Sensors for continuous analyte monitoring, and related methods |
US10531977B2 (en) | 2014-04-17 | 2020-01-14 | Coloplast A/S | Thermoresponsive skin barrier appliances |
US10001450B2 (en) | 2014-04-18 | 2018-06-19 | Medtronic Minimed, Inc. | Nonlinear mapping technique for a physiological characteristic sensor |
US10232113B2 (en) | 2014-04-24 | 2019-03-19 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
US9681828B2 (en) | 2014-05-01 | 2017-06-20 | Medtronic Minimed, Inc. | Physiological characteristic sensors and methods for forming such sensors |
US10275572B2 (en) | 2014-05-01 | 2019-04-30 | Medtronic Minimed, Inc. | Detecting blockage of a reservoir cavity during a seating operation of a fluid infusion device |
US10274349B2 (en) | 2014-05-19 | 2019-04-30 | Medtronic Minimed, Inc. | Calibration factor adjustments for infusion devices and related methods and systems |
US10007765B2 (en) | 2014-05-19 | 2018-06-26 | Medtronic Minimed, Inc. | Adaptive signal processing for infusion devices and related methods and systems |
US10152049B2 (en) | 2014-05-19 | 2018-12-11 | Medtronic Minimed, Inc. | Glucose sensor health monitoring and related methods and systems |
CN107003264B (en) | 2014-06-04 | 2020-02-21 | 普佩克斯生物医药有限公司 | Electrochemical sensor and method of manufacturing an electrochemical sensor using advanced printing techniques |
EP3155691B1 (en) * | 2014-06-12 | 2021-04-07 | BAE Systems PLC | Electro-optic windows |
US10004433B2 (en) | 2014-07-07 | 2018-06-26 | Verily Life Sciences Llc | Electrochemical sensor chip |
US9833563B2 (en) | 2014-09-26 | 2017-12-05 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9839753B2 (en) | 2014-09-26 | 2017-12-12 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US10279126B2 (en) | 2014-10-07 | 2019-05-07 | Medtronic Minimed, Inc. | Fluid conduit assembly with gas trapping filter in the fluid flow path |
US10598624B2 (en) | 2014-10-23 | 2020-03-24 | Abbott Diabetes Care Inc. | Electrodes having at least one sensing structure and methods for making and using the same |
US9833564B2 (en) | 2014-11-25 | 2017-12-05 | Medtronic Minimed, Inc. | Fluid conduit assembly with air venting features |
US9987420B2 (en) | 2014-11-26 | 2018-06-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US10195341B2 (en) | 2014-11-26 | 2019-02-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US9636453B2 (en) | 2014-12-04 | 2017-05-02 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
US9943645B2 (en) | 2014-12-04 | 2018-04-17 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US9937292B2 (en) | 2014-12-09 | 2018-04-10 | Medtronic Minimed, Inc. | Systems for filling a fluid infusion device reservoir |
US9506890B2 (en) | 2014-12-16 | 2016-11-29 | Eastman Chemical Company | Physical vapor deposited biosensor components |
US10307535B2 (en) | 2014-12-19 | 2019-06-04 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US10265031B2 (en) | 2014-12-19 | 2019-04-23 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for automatic alert clearing |
US10307528B2 (en) | 2015-03-09 | 2019-06-04 | Medtronic Minimed, Inc. | Extensible infusion devices and related methods |
US10449298B2 (en) | 2015-03-26 | 2019-10-22 | Medtronic Minimed, Inc. | Fluid injection devices and related methods |
US10674944B2 (en) | 2015-05-14 | 2020-06-09 | Abbott Diabetes Care Inc. | Compact medical device inserters and related systems and methods |
US10213139B2 (en) | 2015-05-14 | 2019-02-26 | Abbott Diabetes Care Inc. | Systems, devices, and methods for assembling an applicator and sensor control device |
US10137243B2 (en) | 2015-05-26 | 2018-11-27 | Medtronic Minimed, Inc. | Infusion devices with distributed motor control and related operating methods |
US9999721B2 (en) | 2015-05-26 | 2018-06-19 | Medtronic Minimed, Inc. | Error handling in infusion devices with distributed motor control and related operating methods |
US10575767B2 (en) | 2015-05-29 | 2020-03-03 | Medtronic Minimed, Inc. | Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus |
CN107743584B (en) * | 2015-06-15 | 2021-02-19 | 豪夫迈·罗氏有限公司 | Method and test element for the electrochemical detection of at least one analyte in a body fluid sample |
US9879668B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor |
US9993594B2 (en) | 2015-06-22 | 2018-06-12 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors |
US10010668B2 (en) | 2015-06-22 | 2018-07-03 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor |
US9878095B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements |
US9987425B2 (en) | 2015-06-22 | 2018-06-05 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements |
US10888272B2 (en) | 2015-07-10 | 2021-01-12 | Abbott Diabetes Care Inc. | Systems, devices, and methods for meal information collection, meal assessment, and analyte data correlation |
CN108024765B (en) | 2015-07-10 | 2021-06-11 | 雅培糖尿病护理公司 | System, device and method for dynamic glucose curve response to physiological parameters |
US10463297B2 (en) | 2015-08-21 | 2019-11-05 | Medtronic Minimed, Inc. | Personalized event detection methods and related devices and systems |
US10543314B2 (en) | 2015-08-21 | 2020-01-28 | Medtronic Minimed, Inc. | Personalized parameter modeling with signal calibration based on historical data |
US10293108B2 (en) | 2015-08-21 | 2019-05-21 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US10664569B2 (en) | 2015-08-21 | 2020-05-26 | Medtronic Minimed, Inc. | Data analytics and generation of recommendations for controlling glycemic outcomes associated with tracked events |
US10201657B2 (en) | 2015-08-21 | 2019-02-12 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
BR112018003309A2 (en) | 2015-09-02 | 2019-01-08 | Metronom Health Inc | systems and methods for continuous health monitoring using an opto-enzymatic analyte sensor |
US10117992B2 (en) | 2015-09-29 | 2018-11-06 | Medtronic Minimed, Inc. | Infusion devices and related rescue detection methods |
US11666702B2 (en) | 2015-10-19 | 2023-06-06 | Medtronic Minimed, Inc. | Medical devices and related event pattern treatment recommendation methods |
US11501867B2 (en) | 2015-10-19 | 2022-11-15 | Medtronic Minimed, Inc. | Medical devices and related event pattern presentation methods |
US10146911B2 (en) | 2015-10-23 | 2018-12-04 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US10037722B2 (en) | 2015-11-03 | 2018-07-31 | Medtronic Minimed, Inc. | Detecting breakage in a display element |
US10449306B2 (en) | 2015-11-25 | 2019-10-22 | Medtronics Minimed, Inc. | Systems for fluid delivery with wicking membrane |
US9801276B2 (en) * | 2015-11-25 | 2017-10-24 | The Boeing Company | Methof of forming an integrated composite structure |
MA45299A (en) | 2015-12-22 | 2018-10-31 | Univ Catalunya Politecnica | ELECTROCHEMICAL SENSOR AND COATING PROCESS, MANUFACTURING PROCESS AND ASSOCIATED USES |
JP6668072B2 (en) * | 2015-12-25 | 2020-03-18 | 日本電波工業株式会社 | Sensing sensor and sensing device |
US10589038B2 (en) | 2016-04-27 | 2020-03-17 | Medtronic Minimed, Inc. | Set connector systems for venting a fluid reservoir |
JP6905543B2 (en) | 2016-06-15 | 2021-07-21 | イーストマン ケミカル カンパニー | Physically vapor-deposited biosensor components |
WO2018052713A1 (en) | 2016-09-16 | 2018-03-22 | Eastman Chemical Company | Biosensor electrodes prepared by physical vapor deposition |
WO2018052711A1 (en) | 2016-09-16 | 2018-03-22 | Eastman Chemical Company | Biosensor electrodes prepared by physical vapor deposition |
US11097051B2 (en) | 2016-11-04 | 2021-08-24 | Medtronic Minimed, Inc. | Methods and apparatus for detecting and reacting to insufficient hypoglycemia response |
US20180150614A1 (en) | 2016-11-28 | 2018-05-31 | Medtronic Minimed, Inc. | Interactive patient guidance for medical devices |
US10238030B2 (en) | 2016-12-06 | 2019-03-26 | Medtronic Minimed, Inc. | Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference |
USD824034S1 (en) | 2016-12-15 | 2018-07-24 | Sano Intelligence, Inc. | Biomonitoring interface device |
US10272201B2 (en) | 2016-12-22 | 2019-04-30 | Medtronic Minimed, Inc. | Insertion site monitoring methods and related infusion devices and systems |
KR102024608B1 (en) * | 2017-01-11 | 2019-09-24 | 엘지전자 주식회사 | Sensor |
US20180199873A1 (en) | 2017-01-19 | 2018-07-19 | Dexcom, Inc. | Flexible analyte sensors |
USD820988S1 (en) | 2017-01-20 | 2018-06-19 | Sano Intelligence, Inc. | Biomonitoring sensor system for monitoring body chemistry |
CN110461217B (en) | 2017-01-23 | 2022-09-16 | 雅培糖尿病护理公司 | Systems, devices, and methods for analyte sensor insertion |
US10532165B2 (en) | 2017-01-30 | 2020-01-14 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10500135B2 (en) | 2017-01-30 | 2019-12-10 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10552580B2 (en) | 2017-02-07 | 2020-02-04 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US10363365B2 (en) | 2017-02-07 | 2019-07-30 | Medtronic Minimed, Inc. | Infusion devices and related consumable calibration methods |
US11207463B2 (en) | 2017-02-21 | 2021-12-28 | Medtronic Minimed, Inc. | Apparatuses, systems, and methods for identifying an infusate in a reservoir of an infusion device |
US10646649B2 (en) | 2017-02-21 | 2020-05-12 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
EP3600014A4 (en) | 2017-03-21 | 2020-10-21 | Abbott Diabetes Care Inc. | Methods, devices and system for providing diabetic condition diagnosis and therapy |
KR102646492B1 (en) | 2017-06-22 | 2024-03-12 | 이스트만 케미칼 컴파니 | Physically deposited electrodes for electrochemical sensors |
DE202018006591U1 (en) | 2017-08-18 | 2021-07-21 | Abbott Diabetes Care, Inc. | Systems and devices relating to the individualized calibration and / or manufacture of medical devices |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
CN111246797A (en) | 2017-10-24 | 2020-06-05 | 德克斯康公司 | Pre-attached analyte sensors |
US10500084B2 (en) | 2017-12-22 | 2019-12-10 | Coloplast A/S | Accessory devices of an ostomy system, and related methods for communicating leakage state |
WO2019120429A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Data collection schemes for an ostomy appliance and related methods |
US11707376B2 (en) | 2017-12-22 | 2023-07-25 | Coloplast A/S | Base plate for a medical appliance and a sensor assembly part for a base plate and a method for manufacturing a base plate and sensor assembly part |
WO2019120452A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Coupling part with a hinge for an ostomy base plate and sensor assembly part |
WO2019120425A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Ostomy appliance system, monitor device, and method of monitoring an ostomy appliance |
US11654043B2 (en) | 2017-12-22 | 2023-05-23 | Coloplast A/S | Sensor assembly part and a base plate for a medical appliance and a method for manufacturing a base plate or a sensor assembly part |
WO2019120439A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Calibration methods for ostomy appliance tools |
EP3727247B1 (en) | 2017-12-22 | 2022-04-20 | Coloplast A/S | Tools and methods for placing an ostomy appliance on a user |
EP3727226B1 (en) | 2017-12-22 | 2024-08-21 | Coloplast A/S | Ostomy system and monitor device with angular leakage detection |
DK3727243T3 (en) | 2017-12-22 | 2023-10-02 | Coloplast As | BASE PLATE AND SENSOR UNIT FOR A STOMA SYSTEM WITH A LEAK SENSOR |
US10849781B2 (en) | 2017-12-22 | 2020-12-01 | Coloplast A/S | Base plate for an ostomy appliance |
AU2018386861B2 (en) | 2017-12-22 | 2024-03-14 | Coloplast A/S | Ostomy appliance with angular leakage detection |
LT3727242T (en) | 2017-12-22 | 2022-04-11 | Coloplast A/S | Monitor device of an ostomy system having a connector for coupling to both a base plate and an accessory device |
WO2019120434A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Processing schemes for an ostomy system, monitor device for an ostomy appliance and related methods |
EP4275663A3 (en) | 2017-12-22 | 2024-01-17 | Coloplast A/S | Moisture detecting base plate for an ostomy appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part |
EP3727236A1 (en) | 2017-12-22 | 2020-10-28 | Coloplast A/S | Sensor assembly part and a base plate for an ostomy appliance and a method for manufacturing a sensor assembly part and a base plate |
WO2019120431A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Tools and methods for cutting holes in an ostomy appliance |
US11612508B2 (en) | 2017-12-22 | 2023-03-28 | Coloplast A/S | Sensor assembly part for a medical appliance and a method for manufacturing a sensor assembly part |
CN111447896B (en) | 2017-12-22 | 2023-03-28 | 科洛普拉斯特公司 | Base plate for an ostomy appliance, monitoring device and system for an ostomy appliance |
JP7402161B2 (en) | 2017-12-22 | 2023-12-20 | コロプラスト アクティーゼルスカブ | Ostomy appliance with selective sensor points and related methods |
US10799385B2 (en) | 2017-12-22 | 2020-10-13 | Coloplast A/S | Ostomy appliance with layered base plate |
WO2019120433A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Monitor device of an ostomy system and associated method for operating a monitor device |
WO2019120442A1 (en) | 2017-12-22 | 2019-06-27 | Coloplast A/S | Sensor assembly part and a base plate for an ostomy appliance and a device for connecting to a base plate or a sensor assembly part |
EP3755286A1 (en) | 2018-02-20 | 2020-12-30 | Coloplast A/S | Accessory devices of an ostomy system, and related methods for changing an ostomy appliance based on future operating state |
US11931285B2 (en) | 2018-02-20 | 2024-03-19 | Coloplast A/S | Sensor assembly part and a base plate for a medical appliance and a device for connecting to a base plate and/or a sensor assembly part |
WO2019174697A1 (en) | 2018-03-15 | 2019-09-19 | Coloplast A/S | Apparatus and methods for navigating ostomy appliance user to changing room |
US11744492B2 (en) | 2018-08-29 | 2023-09-05 | Medtronic, Inc. | Electrochemical sensor including multiple work electrodes and common reference electrode |
US10852268B2 (en) * | 2018-08-29 | 2020-12-01 | Medtronic, Inc. | Electrochemical sensor including multiple work electrodes and common reference electrode |
US11786153B2 (en) * | 2018-11-02 | 2023-10-17 | The Johns Hopkins University | Wearable sensor |
EP3897482A1 (en) | 2018-12-20 | 2021-10-27 | Coloplast A/S | Ostomy condition classification with image data transformation, devices and related methods |
US11612512B2 (en) | 2019-01-31 | 2023-03-28 | Coloplast A/S | Moisture detecting base plate for an ostomy appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part |
KR102646472B1 (en) | 2019-04-30 | 2024-03-11 | 데쿠세리아루즈 가부시키가이샤 | sliding device |
US20220234073A1 (en) | 2019-04-30 | 2022-07-28 | Dexerials Corporation | Method for supplying or removing sliding process material to/from surface of object to be slid |
USD1002852S1 (en) | 2019-06-06 | 2023-10-24 | Abbott Diabetes Care Inc. | Analyte sensor device |
WO2020246981A1 (en) * | 2019-06-06 | 2020-12-10 | Hewlett-Packard Development Company, L.P. | Liquid electrophotographic ink compositions |
EP3798628A1 (en) * | 2019-09-27 | 2021-03-31 | Heraeus Deutschland GmbH & Co KG | Method for manufacturing an electrochemical sensor |
USD957438S1 (en) | 2020-07-29 | 2022-07-12 | Abbott Diabetes Care Inc. | Display screen or portion thereof with graphical user interface |
USD959948S1 (en) * | 2020-10-29 | 2022-08-09 | Slice, Inc. | Folding knife |
USD999913S1 (en) | 2020-12-21 | 2023-09-26 | Abbott Diabetes Care Inc | Analyte sensor inserter |
USD988882S1 (en) | 2021-04-21 | 2023-06-13 | Informed Data Systems Inc. | Sensor assembly |
Family Cites Families (377)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US32947A (en) * | 1861-07-30 | Machine for bending fifth-wheels fob | ||
US3260656A (en) * | 1962-09-27 | 1966-07-12 | Corning Glass Works | Method and apparatus for electrolytically determining a species in a fluid |
GB1121170A (en) | 1965-12-31 | 1968-07-24 | Ft Products Ltd | An improved clip |
US3653841A (en) * | 1969-12-19 | 1972-04-04 | Hoffmann La Roche | Methods and compositions for determining glucose in blood |
US3776832A (en) * | 1970-11-10 | 1973-12-04 | Energetics Science | Electrochemical detection cell |
US3719564A (en) * | 1971-05-10 | 1973-03-06 | Philip Morris Inc | Method of determining a reducible gas concentration and sensor therefor |
US3837339A (en) * | 1972-02-03 | 1974-09-24 | Whittaker Corp | Blood glucose level monitoring-alarm system and method therefor |
US4184429A (en) | 1972-02-09 | 1980-01-22 | Max Datwyler & Co. | Constant bevel doctor blade and method and apparatus using same |
US3908657A (en) * | 1973-01-15 | 1975-09-30 | Univ Johns Hopkins | System for continuous withdrawal of blood |
GB1394171A (en) | 1973-05-16 | 1975-05-14 | Whittaker Corp | Blood glucose level monitoring-alarm system and method therefor |
US4100048A (en) * | 1973-09-20 | 1978-07-11 | U.S. Philips Corporation | Polarographic cell |
US3926760A (en) * | 1973-09-28 | 1975-12-16 | Du Pont | Process for electrophoretic deposition of polymer |
US3911901A (en) * | 1974-07-24 | 1975-10-14 | Gen Electric | In vivo hydrogen ion sensor |
US3972320A (en) * | 1974-08-12 | 1976-08-03 | Gabor Ujhelyi Kalman | Patient monitoring system |
US3979274A (en) * | 1975-09-24 | 1976-09-07 | The Yellow Springs Instrument Company, Inc. | Membrane for enzyme electrodes |
US4016866A (en) * | 1975-12-18 | 1977-04-12 | General Electric Company | Implantable electrochemical sensor |
US4055175A (en) * | 1976-05-07 | 1977-10-25 | Miles Laboratories, Inc. | Blood glucose control apparatus |
DE2625834B2 (en) * | 1976-06-09 | 1978-10-12 | Boehringer Mannheim Gmbh, 6800 Mannheim | Method for the determination of substrates or enzyme activities |
US4059406A (en) * | 1976-07-12 | 1977-11-22 | E D T Supplies Limited | Electrochemical detector system |
US4076596A (en) * | 1976-10-07 | 1978-02-28 | Leeds & Northrup Company | Apparatus for electrolytically determining a species in a fluid and method of use |
FR2387659A1 (en) * | 1977-04-21 | 1978-11-17 | Armines | GLYCEMIA CONTROL AND REGULATION DEVICE |
US4098574A (en) * | 1977-08-01 | 1978-07-04 | Eastman Kodak Company | Glucose detection system free from fluoride-ion interference |
US4178916A (en) * | 1977-09-26 | 1979-12-18 | Mcnamara Elger W | Diabetic insulin alarm system |
JPS5912135B2 (en) * | 1977-09-28 | 1984-03-21 | 松下電器産業株式会社 | enzyme electrode |
US4151845A (en) * | 1977-11-25 | 1979-05-01 | Miles Laboratories, Inc. | Blood glucose control apparatus |
JPS5921500B2 (en) | 1978-01-28 | 1984-05-21 | 東洋紡績株式会社 | Enzyme membrane for oxygen electrode |
DK151000C (en) * | 1978-02-17 | 1988-06-13 | Radiometer As | PROCEDURE AND APPARATUS FOR DETERMINING A PATIENT'S IN VIVO PLASMA-PH VALUE |
US4172770A (en) * | 1978-03-27 | 1979-10-30 | Technicon Instruments Corporation | Flow-through electrochemical system analytical method |
DE2817363C2 (en) * | 1978-04-20 | 1984-01-26 | Siemens AG, 1000 Berlin und 8000 München | Method for determining the concentration of sugar and a suitable electrocatalytic sugar sensor |
US4210156A (en) | 1978-04-24 | 1980-07-01 | Bennett Elmer T | Finger stick blood collection apparatus |
HU177369B (en) * | 1978-09-08 | 1981-09-28 | Radelkis Electrokemiai | Industrial molecule-selective sensing device and method for producing same |
EP0010375B1 (en) | 1978-10-02 | 1983-07-20 | Xerox Corporation | Electrostatographic processing system |
US4240438A (en) * | 1978-10-02 | 1980-12-23 | Wisconsin Alumni Research Foundation | Method for monitoring blood glucose levels and elements |
US4186205A (en) * | 1979-01-08 | 1980-01-29 | Smithkline Corporation | 2,3-Di(4-substituted phenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles |
US4247297A (en) * | 1979-02-23 | 1981-01-27 | Miles Laboratories, Inc. | Test means and method for interference resistant determination of oxidizing substances |
US4573994A (en) * | 1979-04-27 | 1986-03-04 | The Johns Hopkins University | Refillable medication infusion apparatus |
US4365637A (en) * | 1979-07-05 | 1982-12-28 | Dia-Med, Inc. | Perspiration indicating alarm for diabetics |
US4401122A (en) * | 1979-08-02 | 1983-08-30 | Children's Hospital Medical Center | Cutaneous methods of measuring body substances |
US4458686A (en) * | 1979-08-02 | 1984-07-10 | Children's Hospital Medical Center | Cutaneous methods of measuring body substances |
US4293396A (en) | 1979-09-27 | 1981-10-06 | Prototech Company | Thin carbon-cloth-based electrocatalytic gas diffusion electrodes, and electrochemical cells comprising the same |
DE3114441A1 (en) | 1980-04-11 | 1982-03-04 | Radiometer A/S, 2400 Koebenhavn | ELECTROCHEMICAL MEASURING ELECTRODE DEVICE |
US4450842A (en) * | 1980-04-25 | 1984-05-29 | Cordis Corporation | Solid state reference electrode |
US4340458A (en) * | 1980-06-02 | 1982-07-20 | Joslin Diabetes Center, Inc. | Glucose sensor |
US4360016A (en) | 1980-07-01 | 1982-11-23 | Transidyne General Corp. | Blood collecting device |
US4356074A (en) * | 1980-08-25 | 1982-10-26 | The Yellow Springs Instrument Company, Inc. | Substrate specific galactose oxidase enzyme electrodes |
US4404066A (en) * | 1980-08-25 | 1983-09-13 | The Yellow Springs Instrument Company | Method for quantitatively determining a particular substrate catalyzed by a multisubstrate enzyme |
USRE32947E (en) | 1980-09-30 | 1989-06-13 | Baptist Medical Center Of Oklahoma, Inc. | Magnetic transcutaneous mount for external device of an associated implant |
US4352960A (en) * | 1980-09-30 | 1982-10-05 | Baptist Medical Center Of Oklahoma, Inc. | Magnetic transcutaneous mount for external device of an associated implant |
US4390621A (en) * | 1980-12-15 | 1983-06-28 | Miles Laboratories, Inc. | Method and device for detecting glucose concentration |
US4436094A (en) * | 1981-03-09 | 1984-03-13 | Evreka, Inc. | Monitor for continuous in vivo measurement of glucose concentration |
AT369254B (en) * | 1981-05-07 | 1982-12-27 | Otto Dipl Ing Dr Tech Prohaska | MEDICAL PROBE |
FR2508305B1 (en) * | 1981-06-25 | 1986-04-11 | Slama Gerard | DEVICE FOR CAUSING A LITTLE BITE TO COLLECT A BLOOD DROP |
US4440175A (en) * | 1981-08-10 | 1984-04-03 | University Patents, Inc. | Membrane electrode for non-ionic species |
DE3133826A1 (en) * | 1981-08-27 | 1983-03-10 | Boehringer Mannheim Gmbh, 6800 Mannheim | ANALYSIS TEST STRIP AND METHOD FOR THE PRODUCTION THEREOF |
EP0078636B2 (en) * | 1981-10-23 | 1997-04-02 | MediSense, Inc. | Sensor for components of a liquid mixture |
US4431004A (en) * | 1981-10-27 | 1984-02-14 | Bessman Samuel P | Implantable glucose sensor |
US4418148A (en) * | 1981-11-05 | 1983-11-29 | Miles Laboratories, Inc. | Multilayer enzyme electrode membrane |
JPS5886083A (en) | 1981-11-12 | 1983-05-23 | Wako Pure Chem Ind Ltd | Stabilizing agent for glycerol-3-phosphoric acid oxidase |
JPS58153154A (en) * | 1982-03-09 | 1983-09-12 | Ajinomoto Co Inc | Qualified electrode |
US4581336A (en) * | 1982-04-26 | 1986-04-08 | Uop Inc. | Surface-modified electrodes |
DD227029A3 (en) | 1982-05-13 | 1985-09-04 | Zentralinst F Diabetiker G Kat | ENZYME ELECTRODE FOR GLUCOSE MEASUREMENT |
DE3221339A1 (en) | 1982-06-05 | 1983-12-08 | Basf Ag, 6700 Ludwigshafen | METHOD FOR THE ELECTROCHEMICAL HYDRATION OF NICOTINAMIDADENINE-DINUCLEOTIDE |
US4427770A (en) * | 1982-06-14 | 1984-01-24 | Miles Laboratories, Inc. | High glucose-determining analytical element |
DE3228551A1 (en) * | 1982-07-30 | 1984-02-02 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR DETERMINING SUGAR CONCENTRATION |
US4534356A (en) * | 1982-07-30 | 1985-08-13 | Diamond Shamrock Chemicals Company | Solid state transcutaneous blood gas sensors |
US4571292A (en) * | 1982-08-12 | 1986-02-18 | Case Western Reserve University | Apparatus for electrochemical measurements |
US4552840A (en) * | 1982-12-02 | 1985-11-12 | California And Hawaiian Sugar Company | Enzyme electrode and method for dextran analysis |
US4461691A (en) * | 1983-02-10 | 1984-07-24 | The United States Of America As Represented By The United States Department Of Energy | Organic conductive films for semiconductor electrodes |
US4679562A (en) * | 1983-02-16 | 1987-07-14 | Cardiac Pacemakers, Inc. | Glucose sensor |
EP0136362B1 (en) | 1983-03-11 | 1990-12-19 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
IT1170375B (en) * | 1983-04-19 | 1987-06-03 | Giuseppe Bombardieri | Implantable device for measuring body fluid parameters |
GB2154003B (en) | 1983-12-16 | 1988-02-17 | Genetics Int Inc | Diagnostic aid |
CA1219040A (en) * | 1983-05-05 | 1987-03-10 | Elliot V. Plotkin | Measurement of enzyme-catalysed reactions |
CA1220818A (en) | 1983-05-05 | 1987-04-21 | Hugh A.O. Hill | Assay techniques utilising specific binding agents |
US5682884A (en) * | 1983-05-05 | 1997-11-04 | Medisense, Inc. | Strip electrode with screen printing |
CA1218704A (en) * | 1983-05-05 | 1987-03-03 | Graham Davis | Assay systems using more than one enzyme |
CA1226036A (en) | 1983-05-05 | 1987-08-25 | Irving J. Higgins | Analytical equipment and sensor electrodes therefor |
US5509410A (en) | 1983-06-06 | 1996-04-23 | Medisense, Inc. | Strip electrode including screen printing of a single layer |
US4484987A (en) * | 1983-05-19 | 1984-11-27 | The Regents Of The University Of California | Method and membrane applicable to implantable sensor |
US4650547A (en) * | 1983-05-19 | 1987-03-17 | The Regents Of The University Of California | Method and membrane applicable to implantable sensor |
US4524114A (en) * | 1983-07-05 | 1985-06-18 | Allied Corporation | Bifunctional air electrode |
US4538616A (en) * | 1983-07-25 | 1985-09-03 | Robert Rogoff | Blood sugar level sensing and monitoring transducer |
US4543955A (en) * | 1983-08-01 | 1985-10-01 | Cordis Corporation | System for controlling body implantable action device |
US4655880A (en) * | 1983-08-01 | 1987-04-07 | Case Western Reserve University | Apparatus and method for sensing species, substances and substrates using oxidase |
US4917274A (en) | 1983-09-27 | 1990-04-17 | Maurice Asa | Miniscule droplet dispenser tip |
SE8305704D0 (en) * | 1983-10-18 | 1983-10-18 | Leo Ab | Cuvette |
US4560534A (en) * | 1983-11-02 | 1985-12-24 | Miles Laboratories, Inc. | Polymer catalyst transducers |
US4522690A (en) * | 1983-12-01 | 1985-06-11 | Honeywell Inc. | Electrochemical sensing of carbon monoxide |
EP0149339B1 (en) * | 1983-12-16 | 1989-08-23 | MediSense, Inc. | Assay for nucleic acids |
JPS60135756A (en) * | 1983-12-24 | 1985-07-19 | Ngk Insulators Ltd | Production of electrochemical cell |
JPS60173457A (en) * | 1984-02-20 | 1985-09-06 | Matsushita Electric Ind Co Ltd | Biosensor |
SU1281988A1 (en) | 1984-03-15 | 1987-01-07 | Институт биохимии АН ЛитССР | Electrochemical transducer for measuring glucose concentration |
WO1985005119A1 (en) * | 1984-04-30 | 1985-11-21 | Stiftung, R., E. | Process for the sensitization of an oxidoreduction photocalatyst, and photocatalyst thus obtained |
JP2527933B2 (en) | 1984-06-13 | 1996-08-28 | ユニリ−バ−・ナ−ムロ−ゼ・ベンノ−トシヤ−プ | Device for collecting and testing specific reactive sample and method for manufacturing the same |
US5141868A (en) | 1984-06-13 | 1992-08-25 | Internationale Octrooi Maatschappij "Octropa" Bv | Device for use in chemical test procedures |
DK8601218A (en) * | 1984-07-18 | 1986-03-17 | ||
US4820399A (en) | 1984-08-31 | 1989-04-11 | Shimadzu Corporation | Enzyme electrodes |
CA1254091A (en) | 1984-09-28 | 1989-05-16 | Vladimir Feingold | Implantable medication infusion system |
US5171689A (en) * | 1984-11-08 | 1992-12-15 | Matsushita Electric Industrial Co., Ltd. | Solid state bio-sensor |
GB2168815A (en) | 1984-11-13 | 1986-06-25 | Genetics Int Inc | Bioelectrochemical assay electrode |
US4717673A (en) * | 1984-11-23 | 1988-01-05 | Massachusetts Institute Of Technology | Microelectrochemical devices |
US4721601A (en) * | 1984-11-23 | 1988-01-26 | Massachusetts Institute Of Technology | Molecule-based microelectronic devices |
JPH0617889B2 (en) * | 1984-11-27 | 1994-03-09 | 株式会社日立製作所 | Biochemical sensor |
EP0186210B1 (en) | 1984-12-28 | 1992-04-22 | TERUMO KABUSHIKI KAISHA trading as TERUMO CORPORATION | Ion sensor |
GB8500729D0 (en) * | 1985-01-11 | 1985-02-13 | Hill H A O | Surface-modified electrode |
US4653499A (en) * | 1985-02-07 | 1987-03-31 | Gould Inc. | Solid phase electrode |
AU5481786A (en) | 1985-03-20 | 1986-09-25 | Hochmair, E.S. | Transcutaneous power and signal transmission system |
US4787398A (en) | 1985-04-08 | 1988-11-29 | Garid, Inc. | Glucose medical monitoring system |
US5279294A (en) | 1985-04-08 | 1994-01-18 | Cascade Medical, Inc. | Medical diagnostic system |
US4627445A (en) * | 1985-04-08 | 1986-12-09 | Garid, Inc. | Glucose medical monitoring system |
US4781798A (en) * | 1985-04-19 | 1988-11-01 | The Regents Of The University Of California | Transparent multi-oxygen sensor array and method of using same |
US4671288A (en) * | 1985-06-13 | 1987-06-09 | The Regents Of The University Of California | Electrochemical cell sensor for continuous short-term use in tissues and blood |
EP0230472B2 (en) | 1985-06-21 | 2000-12-13 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method of manufacturing same |
US4938860A (en) | 1985-06-28 | 1990-07-03 | Miles Inc. | Electrode for electrochemical sensors |
US5030310A (en) * | 1985-06-28 | 1991-07-09 | Miles Inc. | Electrode for electrochemical sensors |
US4796634A (en) * | 1985-08-09 | 1989-01-10 | Lawrence Medical Systems, Inc. | Methods and apparatus for monitoring cardiac output |
US4653513A (en) | 1985-08-09 | 1987-03-31 | Dombrowski Mitchell P | Blood sampler |
US4805624A (en) * | 1985-09-09 | 1989-02-21 | The Montefiore Hospital Association Of Western Pa | Low-potential electrochemical redox sensors |
US4680268A (en) * | 1985-09-18 | 1987-07-14 | Children's Hospital Medical Center | Implantable gas-containing biosensor and method for measuring an analyte such as glucose |
US4890620A (en) | 1985-09-20 | 1990-01-02 | The Regents Of The University Of California | Two-dimensional diffusion glucose substrate sensing electrode |
US4627908A (en) * | 1985-10-24 | 1986-12-09 | Chevron Research Company | Process for stabilizing lube base stocks derived from bright stock |
US4830959A (en) * | 1985-11-11 | 1989-05-16 | Medisense, Inc. | Electrochemical enzymic assay procedures |
US4714874A (en) | 1985-11-12 | 1987-12-22 | Miles Inc. | Test strip identification and instrument calibration |
GB8529300D0 (en) * | 1985-11-28 | 1986-01-02 | Ici Plc | Membrane |
US4894339A (en) * | 1985-12-18 | 1990-01-16 | Seitaikinouriyou Kagakuhin Sinseizogijutsu Kenkyu Kumiai | Immobilized enzyme membrane for a semiconductor sensor |
US4776944A (en) * | 1986-03-20 | 1988-10-11 | Jiri Janata | Chemical selective sensors utilizing admittance modulated membranes |
US4685463A (en) * | 1986-04-03 | 1987-08-11 | Williams R Bruce | Device for continuous in vivo measurement of blood glucose concentrations |
GB8608700D0 (en) | 1986-04-10 | 1986-05-14 | Genetics Int Inc | Measurement of electroactive species in solution |
US4726378A (en) * | 1986-04-11 | 1988-02-23 | Minnesota Mining And Manufacturing Company | Adjustable magnetic supercutaneous device and transcutaneous coupling apparatus |
US4757022A (en) * | 1986-04-15 | 1988-07-12 | Markwell Medical Institute, Inc. | Biological fluid measuring device |
US4994167A (en) | 1986-04-15 | 1991-02-19 | Markwell Medical Institute, Inc. | Biological fluid measuring device |
US4909908A (en) | 1986-04-24 | 1990-03-20 | Pepi Ross | Electrochemical cncentration detector method |
US4795542A (en) * | 1986-04-24 | 1989-01-03 | St. Jude Medical, Inc. | Electrochemical concentration detector device |
DE3614821A1 (en) * | 1986-05-02 | 1987-11-05 | Siemens Ag | IMPLANTABLE, CALIBRABLE MEASURING DEVICE FOR A BODY SUBSTANCE AND CALIBRATION METHOD |
US4703756A (en) * | 1986-05-06 | 1987-11-03 | The Regents Of The University Of California | Complete glucose monitoring system with an implantable, telemetered sensor module |
GB8612861D0 (en) | 1986-05-27 | 1986-07-02 | Cambridge Life Sciences | Immobilised enzyme biosensors |
US4969468A (en) | 1986-06-17 | 1990-11-13 | Alfred E. Mann Foundation For Scientific Research | Electrode array for use in connection with a living body and method of manufacture |
AU598820B2 (en) | 1986-06-20 | 1990-07-05 | Molecular Devices Corporation | Zero volume electrochemical cell |
US5001054A (en) | 1986-06-26 | 1991-03-19 | Becton, Dickinson And Company | Method for monitoring glucose |
JPS636451A (en) | 1986-06-27 | 1988-01-12 | Terumo Corp | Enzyme sensor |
US4764416A (en) * | 1986-07-01 | 1988-08-16 | Mitsubishi Denki Kabushiki Kaisha | Electric element circuit using oxidation-reduction substances |
US4784736A (en) * | 1986-07-07 | 1988-11-15 | Bend Research, Inc. | Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers |
US4917800A (en) | 1986-07-07 | 1990-04-17 | Bend Research, Inc. | Functional, photochemically active, and chemically asymmetric membranes by interfacial polymerization of derivatized multifunctional prepolymers |
US4726716A (en) * | 1986-07-21 | 1988-02-23 | Mcguire Thomas V | Fastener for catheter |
GB8618022D0 (en) | 1986-07-23 | 1986-08-28 | Unilever Plc | Electrochemical measurements |
US4787837A (en) | 1986-08-07 | 1988-11-29 | Union Carbide Corporation | Wear-resistant ceramic, cermet or metallic embossing surfaces, methods for producing same, methods of embossing articles by same and novel embossed articles |
US4894137A (en) | 1986-09-12 | 1990-01-16 | Omron Tateisi Electronics Co. | Enzyme electrode |
US4897162A (en) | 1986-11-14 | 1990-01-30 | The Cleveland Clinic Foundation | Pulse voltammetry |
DE3700119A1 (en) | 1987-01-03 | 1988-07-14 | Inst Diabetestechnologie Gemei | IMPLANTABLE ELECTROCHEMICAL SENSOR |
US4934369A (en) | 1987-01-30 | 1990-06-19 | Minnesota Mining And Manufacturing Company | Intravascular blood parameter measurement system |
EP0278647A3 (en) | 1987-02-09 | 1989-09-20 | AT&T Corp. | Electronchemical processes involving enzymes |
GB2201248B (en) | 1987-02-24 | 1991-04-17 | Ici Plc | Enzyme electrode sensors |
GB2204408A (en) | 1987-03-04 | 1988-11-09 | Plessey Co Plc | Biosensor device |
US4848351A (en) * | 1987-03-04 | 1989-07-18 | Sentry Medical Products, Inc. | Medical electrode assembly |
US4923586A (en) | 1987-03-31 | 1990-05-08 | Daikin Industries, Ltd. | Enzyme electrode unit |
US4935345A (en) | 1987-04-07 | 1990-06-19 | Arizona Board Of Regents | Implantable microelectronic biochemical sensor incorporating thin film thermopile |
US4759828A (en) * | 1987-04-09 | 1988-07-26 | Nova Biomedical Corporation | Glucose electrode and method of determining glucose |
US5352348A (en) | 1987-04-09 | 1994-10-04 | Nova Biomedical Corporation | Method of using enzyme electrode |
US5286364A (en) | 1987-06-08 | 1994-02-15 | Rutgers University | Surface-modified electochemical biosensor |
US4822337A (en) * | 1987-06-22 | 1989-04-18 | Stanley Newhouse | Insulin delivery method and apparatus |
JPH07122624B2 (en) | 1987-07-06 | 1995-12-25 | ダイキン工業株式会社 | Biosensor |
GB8718430D0 (en) | 1987-08-04 | 1987-09-09 | Ici Plc | Sensor |
US4874500A (en) | 1987-07-15 | 1989-10-17 | Sri International | Microelectrochemical sensor and sensor array |
JPS6423155A (en) | 1987-07-17 | 1989-01-25 | Daikin Ind Ltd | Electrode refreshing device for biosensor |
WO1989001310A1 (en) | 1987-08-11 | 1989-02-23 | Terumo Kabushiki Kaisha | Automatic sphygmomanometer |
US4974929A (en) | 1987-09-22 | 1990-12-04 | Baxter International, Inc. | Fiber optical probe connector for physiologic measurement devices |
NL8702370A (en) | 1987-10-05 | 1989-05-01 | Groningen Science Park | METHOD AND SYSTEM FOR GLUCOSE DETERMINATION AND USEABLE MEASURING CELL ASSEMBLY. |
US4815469A (en) * | 1987-10-08 | 1989-03-28 | Siemens-Pacesetter, Inc. | Implantable blood oxygen sensor and method of use |
DE3740149A1 (en) | 1987-11-26 | 1989-06-08 | Herbert Dr Strohwald | Method for producing a conductor pattern on a substrate |
JPH01140054A (en) | 1987-11-26 | 1989-06-01 | Nec Corp | Glucose sensor |
US4813424A (en) * | 1987-12-23 | 1989-03-21 | University Of New Mexico | Long-life membrane electrode for non-ionic species |
US5128015A (en) | 1988-03-15 | 1992-07-07 | Tall Oak Ventures | Method and apparatus for amperometric diagnostic analysis |
US5108564A (en) | 1988-03-15 | 1992-04-28 | Tall Oak Ventures | Method and apparatus for amperometric diagnostic analysis |
WO1989009397A1 (en) | 1988-03-31 | 1989-10-05 | Matsushita Electric Industrial Co., Ltd. | Biosensor and process for its production |
US4923442A (en) | 1988-05-02 | 1990-05-08 | Cryomedical Sciences Inc. | Blood substitute |
GB8817421D0 (en) | 1988-07-21 | 1988-08-24 | Medisense Inc | Bioelectrochemical electrodes |
US4954129A (en) | 1988-07-25 | 1990-09-04 | Abbott Laboratories | Hydrodynamic clot flushing |
US5264106A (en) | 1988-10-07 | 1993-11-23 | Medisense, Inc. | Enhanced amperometric sensor |
US4995402A (en) * | 1988-10-12 | 1991-02-26 | Thorne, Smith, Astill Technologies, Inc. | Medical droplet whole blood and like monitoring |
US4895147A (en) * | 1988-10-28 | 1990-01-23 | Sherwood Medical Company | Lancet injector |
US5025798A (en) | 1988-10-31 | 1991-06-25 | Medical Systems Development Corporation | Methods and apparatus for directly sensing and measuring blood related parameters |
JPH02128152A (en) | 1988-11-08 | 1990-05-16 | Nec Corp | Immobilization of enzyme and biosensor |
US5063081A (en) | 1988-11-14 | 1991-11-05 | I-Stat Corporation | Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor |
US5200051A (en) * | 1988-11-14 | 1993-04-06 | I-Stat Corporation | Wholly microfabricated biosensors and process for the manufacture and use thereof |
US4955380A (en) | 1988-12-15 | 1990-09-11 | Massachusetts Institute Of Technology | Flexible measurement probes |
US5089320A (en) * | 1989-01-09 | 1992-02-18 | James River Ii, Inc. | Resealable packaging material |
US5205920A (en) | 1989-03-03 | 1993-04-27 | Noboru Oyama | Enzyme sensor and method of manufacturing the same |
US5269891A (en) | 1989-03-09 | 1993-12-14 | Novo Nordisk A/S | Method and apparatus for determination of a constituent in a fluid |
US5089112A (en) | 1989-03-20 | 1992-02-18 | Associated Universities, Inc. | Electrochemical biosensor based on immobilized enzymes and redox polymers |
JPH02298855A (en) | 1989-03-20 | 1990-12-11 | Assoc Univ Inc | Electrochemical biosensor using immobilized enzyme and redox polymer |
US5054499A (en) | 1989-03-27 | 1991-10-08 | Swierczek Remi D | Disposable skin perforator and blood testing device |
US4953552A (en) | 1989-04-21 | 1990-09-04 | Demarzo Arthur P | Blood glucose monitoring system |
EP0396788A1 (en) | 1989-05-08 | 1990-11-14 | Dräger Nederland B.V. | Process and sensor for measuring the glucose content of glucosecontaining fluids |
US5236567A (en) * | 1989-05-31 | 1993-08-17 | Nakano Vinegar Co., Ltd. | Enzyme sensor |
US4988341A (en) * | 1989-06-05 | 1991-01-29 | Eastman Kodak Company | Sterilizing dressing device and method for skin puncture |
US5198367A (en) | 1989-06-09 | 1993-03-30 | Masuo Aizawa | Homogeneous amperometric immunoassay |
CH677149A5 (en) | 1989-07-07 | 1991-04-15 | Disetronic Ag | |
US4986271A (en) | 1989-07-19 | 1991-01-22 | The University Of New Mexico | Vivo refillable glucose sensor |
US5320725A (en) | 1989-08-02 | 1994-06-14 | E. Heller & Company | Electrode and method for the detection of hydrogen peroxide |
US5264104A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5264105A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5262035A (en) | 1989-08-02 | 1993-11-16 | E. Heller And Company | Enzyme electrodes |
US4944299A (en) | 1989-08-08 | 1990-07-31 | Siemens-Pacesetter, Inc. | High speed digital telemetry system for implantable device |
US5101814A (en) | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5190041A (en) | 1989-08-11 | 1993-03-02 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5095904A (en) | 1989-09-08 | 1992-03-17 | Cochlear Pty. Ltd. | Multi-peak speech procession |
FR2652736A1 (en) | 1989-10-06 | 1991-04-12 | Neftel Frederic | IMPLANTABLE DEVICE FOR EVALUATING THE RATE OF GLUCOSE. |
DE3934299C1 (en) | 1989-10-13 | 1990-10-25 | Gesellschaft Fuer Biotechnologische Forschung Mbh (Gbf), 3300 Braunschweig, De | |
DE69025134T2 (en) | 1989-11-24 | 1996-08-14 | Matsushita Electric Ind Co Ltd | Method of manufacturing a biosensor |
US5082550A (en) | 1989-12-11 | 1992-01-21 | The United States Of America As Represented By The Department Of Energy | Enzyme electrochemical sensor electrode and method of making it |
KR0171222B1 (en) | 1989-12-15 | 1999-02-18 | 스티브 올드함 | Redox mediator reagent and biosensor |
US5508171A (en) * | 1989-12-15 | 1996-04-16 | Boehringer Mannheim Corporation | Assay method with enzyme electrode system |
US5286362A (en) | 1990-02-03 | 1994-02-15 | Boehringer Mannheim Gmbh | Method and sensor electrode system for the electrochemical determination of an analyte or an oxidoreductase as well as the use of suitable compounds therefor |
US5109850A (en) | 1990-02-09 | 1992-05-05 | Massachusetts Institute Of Technology | Automatic blood monitoring for medication delivery method and apparatus |
US5161532A (en) | 1990-04-19 | 1992-11-10 | Teknekron Sensor Development Corporation | Integral interstitial fluid sensor |
US5165407A (en) | 1990-04-19 | 1992-11-24 | The University Of Kansas | Implantable glucose sensor |
DE4014109A1 (en) | 1990-05-02 | 1991-11-07 | Siemens Ag | ELECROCHEMICAL DETERMINATION OF THE OXYGEN CONCENTRATION |
GB2244135B (en) * | 1990-05-04 | 1994-07-13 | Gen Electric Co Plc | Sensor devices |
GB2245665A (en) | 1990-06-30 | 1992-01-08 | Draftex Ind Ltd | Flexible protective bellows. |
US5202261A (en) | 1990-07-19 | 1993-04-13 | Miles Inc. | Conductive sensors and their use in diagnostic assays |
US5250439A (en) | 1990-07-19 | 1993-10-05 | Miles Inc. | Use of conductive sensors in diagnostic assays |
US5025920A (en) * | 1990-09-11 | 1991-06-25 | Walsh Alison J | Evidence gathering kit |
US5431806A (en) | 1990-09-17 | 1995-07-11 | Fujitsu Limited | Oxygen electrode and temperature sensor |
US5520731A (en) | 1990-10-20 | 1996-05-28 | Zanders Feinpapiere Ag | Doctor blade for use in coating continuous strips of material or similar substrates |
US5058592A (en) | 1990-11-02 | 1991-10-22 | Whisler G Douglas | Adjustable mountable doppler ultrasound transducer device |
US5082112A (en) * | 1991-02-05 | 1992-01-21 | United States Surgical Corporation | Package for endoscopic ligating instrument |
FR2673289B1 (en) | 1991-02-21 | 1994-06-17 | Asulab Sa | SENSOR FOR MEASURING THE QUANTITY OF A COMPONENT IN SOLUTION. |
US5593852A (en) * | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
JPH04278450A (en) | 1991-03-04 | 1992-10-05 | Adam Heller | Biosensor and method for analyzing subject |
US5262305A (en) | 1991-03-04 | 1993-11-16 | E. Heller & Company | Interferant eliminating biosensors |
GB9107193D0 (en) | 1991-04-05 | 1991-05-22 | Wilson Robert | Analytical devices |
US5208154A (en) | 1991-04-08 | 1993-05-04 | The United States Of America As Represented By The Department Of Energy | Reversibly immobilized biological materials in monolayer films on electrodes |
US5192416A (en) | 1991-04-09 | 1993-03-09 | New Mexico State University Technology Transfer Corporation | Method and apparatus for batch injection analysis |
US5293546A (en) | 1991-04-17 | 1994-03-08 | Martin Marietta Corporation | Oxide coated metal grid electrode structure in display devices |
JP3118015B2 (en) | 1991-05-17 | 2000-12-18 | アークレイ株式会社 | Biosensor and separation and quantification method using the same |
US5209229A (en) | 1991-05-20 | 1993-05-11 | Telectronics Pacing Systems, Inc. | Apparatus and method employing plural electrode configurations for cardioversion of atrial fibrillation in an arrhythmia control system |
JP2816262B2 (en) | 1991-07-09 | 1998-10-27 | 工業技術院長 | Carbon microsensor electrode and method of manufacturing the same |
JPH0572171A (en) * | 1991-09-12 | 1993-03-23 | Omron Corp | Enzyme electrode |
US5322063A (en) | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5264103A (en) | 1991-10-18 | 1993-11-23 | Matsushita Electric Industrial Co., Ltd. | Biosensor and a method for measuring a concentration of a substrate in a sample |
US5217595A (en) | 1991-10-25 | 1993-06-08 | The Yellow Springs Instrument Company, Inc. | Electrochemical gas sensor |
US5415164A (en) | 1991-11-04 | 1995-05-16 | Biofield Corp. | Apparatus and method for screening and diagnosing trauma or disease in body tissues |
JP3135959B2 (en) | 1991-12-12 | 2001-02-19 | アークレイ株式会社 | Biosensor and separation and quantification method using the same |
US5271815A (en) | 1991-12-26 | 1993-12-21 | Via Medical Corporation | Method for measuring glucose |
JP3084877B2 (en) | 1992-01-21 | 2000-09-04 | 松下電器産業株式会社 | Manufacturing method of glucose sensor |
NL9200207A (en) | 1992-02-05 | 1993-09-01 | Nedap Nv | IMPLANTABLE BIOMEDICAL SENSOR DEVICE, IN PARTICULAR FOR MEASUREMENT OF THE GLUCOSE CONCENTRATION. |
DE69319771T2 (en) | 1992-03-31 | 1999-04-22 | Dai Nippon Printing Co., Ltd., Tokio/Tokyo | Immobilized enzyme electrode, composition for its production and electrically conductive enzymes |
US5496772A (en) * | 1992-04-07 | 1996-03-05 | Nissin Electric Co., Ltd. | Method of manufacturing film carrier type substrate |
DE4212315A1 (en) | 1992-04-13 | 1993-10-14 | Boehringer Mannheim Gmbh | Blood lancet device for drawing blood for diagnostic purposes |
GB9211402D0 (en) | 1992-05-29 | 1992-07-15 | Univ Manchester | Sensor devices |
US5217480A (en) | 1992-06-09 | 1993-06-08 | Habley Medical Technology Corporation | Capillary blood drawing device |
US5290420A (en) | 1992-08-12 | 1994-03-01 | Esa, Inc. | Sampling system and analysis cell for stripping voltammetry |
JP2541081B2 (en) * | 1992-08-28 | 1996-10-09 | 日本電気株式会社 | Biosensor and method of manufacturing and using biosensor |
US5421816A (en) | 1992-10-14 | 1995-06-06 | Endodermic Medical Technologies Company | Ultrasonic transdermal drug delivery system |
US5387327A (en) | 1992-10-19 | 1995-02-07 | Duquesne University Of The Holy Ghost | Implantable non-enzymatic electrochemical glucose sensor |
US5320098A (en) | 1992-10-20 | 1994-06-14 | Sun Microsystems, Inc. | Optical transdermal link |
US5956501A (en) | 1997-01-10 | 1999-09-21 | Health Hero Network, Inc. | Disease simulation system and method |
ZA938555B (en) | 1992-11-23 | 1994-08-02 | Lilly Co Eli | Technique to improve the performance of electrochemical sensors |
DK148592D0 (en) | 1992-12-10 | 1992-12-10 | Novo Nordisk As | APPARATUS |
FR2701117B1 (en) | 1993-02-04 | 1995-03-10 | Asulab Sa | Electrochemical measurement system with multizone sensor, and its application to glucose measurement. |
US5547555A (en) | 1993-02-22 | 1996-08-20 | Ohmicron Technology, Inc. | Electrochemical sensor cartridge |
DE4310583A1 (en) | 1993-03-31 | 1994-10-06 | Boehringer Mannheim Gmbh | Test strip analysis system |
DE4318519C2 (en) | 1993-06-03 | 1996-11-28 | Fraunhofer Ges Forschung | Electrochemical sensor |
US5366609A (en) | 1993-06-08 | 1994-11-22 | Boehringer Mannheim Corporation | Biosensing meter with pluggable memory key |
DE69434647T2 (en) | 1993-06-08 | 2007-01-18 | Roche Diagnostics Operations, Inc., Indianapolis | Biosensor meter with detection of correct electrode contact and distinction between sample and reference strips |
US5352351A (en) | 1993-06-08 | 1994-10-04 | Boehringer Mannheim Corporation | Biosensing meter with fail/safe procedures to prevent erroneous indications |
US5658443A (en) | 1993-07-23 | 1997-08-19 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method for producing the same |
US5572140A (en) * | 1993-08-25 | 1996-11-05 | Sunright Limited | Reusable carrier for burn-in/testing on non packaged die |
US5582184A (en) | 1993-10-13 | 1996-12-10 | Integ Incorporated | Interstitial fluid collection and constituent measurement |
US5791344A (en) | 1993-11-19 | 1998-08-11 | Alfred E. Mann Foundation For Scientific Research | Patient monitoring system |
US5497772A (en) | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
US5589326A (en) | 1993-12-30 | 1996-12-31 | Boehringer Mannheim Corporation | Osmium-containing redox mediator |
US5643721A (en) * | 1994-02-09 | 1997-07-01 | Abbott Laboratories | Bioreagent immobilization medium |
US5437999A (en) | 1994-02-22 | 1995-08-01 | Boehringer Mannheim Corporation | Electrochemical sensor |
US5391250A (en) * | 1994-03-15 | 1995-02-21 | Minimed Inc. | Method of fabricating thin film sensors |
SG40010A1 (en) | 1994-03-15 | 1997-06-14 | Univ Singapore | Process for selective metallization on insulating surfaces |
US5390671A (en) | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
AUPM506894A0 (en) * | 1994-04-14 | 1994-05-05 | Memtec Limited | Novel electrochemical cells |
US5569186A (en) | 1994-04-25 | 1996-10-29 | Minimed Inc. | Closed loop infusion pump system with removable glucose sensor |
JP3061351B2 (en) | 1994-04-25 | 2000-07-10 | 松下電器産業株式会社 | Method and apparatus for quantifying specific compounds |
US5545191A (en) | 1994-05-06 | 1996-08-13 | Alfred E. Mann Foundation For Scientific Research | Method for optimally positioning and securing the external unit of a transcutaneous transducer of the skin of a living body |
JP3027306B2 (en) | 1994-06-02 | 2000-04-04 | 松下電器産業株式会社 | Biosensor and manufacturing method thereof |
JP2723048B2 (en) | 1994-06-24 | 1998-03-09 | 株式会社ニッショー | Blood suction device |
GB9412789D0 (en) | 1994-06-24 | 1994-08-17 | Environmental Sensors Ltd | Improvements to electrodes |
US5494562A (en) | 1994-06-27 | 1996-02-27 | Ciba Corning Diagnostics Corp. | Electrochemical sensors |
US5429735A (en) | 1994-06-27 | 1995-07-04 | Miles Inc. | Method of making and amperometric electrodes |
US5653864A (en) | 1994-06-30 | 1997-08-05 | Nok Corporation | Protein biosensor and method for protein measurement with the same |
US5700695A (en) * | 1994-06-30 | 1997-12-23 | Zia Yassinzadeh | Sample collection and manipulation method |
US5518006A (en) | 1994-08-09 | 1996-05-21 | International Technidyne Corp. | Blood sampling device |
US5513636A (en) | 1994-08-12 | 1996-05-07 | Cb-Carmel Biotechnology Ltd. | Implantable sensor chip |
AT402452B (en) | 1994-09-14 | 1997-05-26 | Avl Verbrennungskraft Messtech | PLANAR SENSOR FOR DETECTING A CHEMICAL PARAMETER OF A SAMPLE |
IE72524B1 (en) | 1994-11-04 | 1997-04-23 | Elan Med Tech | Analyte-controlled liquid delivery device and analyte monitor |
US5575403A (en) | 1995-01-13 | 1996-11-19 | Bayer Corporation | Dispensing instrument for fluid monitoring sensors |
US5630986A (en) | 1995-01-13 | 1997-05-20 | Bayer Corporation | Dispensing instrument for fluid monitoring sensors |
JPH08287515A (en) | 1995-02-13 | 1996-11-01 | Matsushita Electric Ind Co Ltd | Optical information recording medium |
US5568806A (en) | 1995-02-16 | 1996-10-29 | Minimed Inc. | Transcutaneous sensor insertion set |
US5586553A (en) | 1995-02-16 | 1996-12-24 | Minimed Inc. | Transcutaneous sensor insertion set |
US5651869A (en) | 1995-02-28 | 1997-07-29 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
US5596150A (en) | 1995-03-08 | 1997-01-21 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Capacitance probe for fluid flow and volume measurements |
JPH08247987A (en) | 1995-03-15 | 1996-09-27 | Omron Corp | Portable measuring instrument |
US5582697A (en) | 1995-03-17 | 1996-12-10 | Matsushita Electric Industrial Co., Ltd. | Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same |
US5882494A (en) | 1995-03-27 | 1999-03-16 | Minimed, Inc. | Polyurethane/polyurea compositions containing silicone for biosensor membranes |
CA2170560C (en) * | 1995-04-17 | 2005-10-25 | Joseph L. Moulton | Means of handling multiple sensors in a glucose monitoring instrument system |
US5510266A (en) | 1995-05-05 | 1996-04-23 | Bayer Corporation | Method and apparatus of handling multiple sensors in a glucose monitoring instrument system |
US5567302A (en) | 1995-06-07 | 1996-10-22 | Molecular Devices Corporation | Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change |
US5584813A (en) * | 1995-06-07 | 1996-12-17 | Minimed Inc. | Subcutaneous injection set |
AUPN363995A0 (en) * | 1995-06-19 | 1995-07-13 | Memtec Limited | Electrochemical cell |
US5873990A (en) | 1995-08-22 | 1999-02-23 | Andcare, Inc. | Handheld electromonitor device |
US5786584A (en) | 1995-09-06 | 1998-07-28 | Eli Lilly And Company | Vial and cartridge reading device providing audio feedback for a blood glucose monitoring system |
US5658802A (en) * | 1995-09-07 | 1997-08-19 | Microfab Technologies, Inc. | Method and apparatus for making miniaturized diagnostic arrays |
US5682233A (en) | 1995-09-08 | 1997-10-28 | Integ, Inc. | Interstitial fluid sampler |
US5989409A (en) | 1995-09-11 | 1999-11-23 | Cygnus, Inc. | Method for glucose sensing |
US5628890A (en) | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
US5972199A (en) | 1995-10-11 | 1999-10-26 | E. Heller & Company | Electrochemical analyte sensors using thermostable peroxidase |
US5665222A (en) | 1995-10-11 | 1997-09-09 | E. Heller & Company | Soybean peroxidase electrochemical sensor |
US5741211A (en) | 1995-10-26 | 1998-04-21 | Medtronic, Inc. | System and method for continuous monitoring of diabetes-related blood constituents |
DE19541619A1 (en) | 1995-11-08 | 1997-05-15 | Bosch Gmbh Robert | Electrochemical sensor and method for producing an electrochemical sensor |
US5711861A (en) | 1995-11-22 | 1998-01-27 | Ward; W. Kenneth | Device for monitoring changes in analyte concentration |
JPH09159644A (en) * | 1995-12-11 | 1997-06-20 | Dainippon Printing Co Ltd | Biosensor and manufacture thereof |
JP3365184B2 (en) | 1996-01-10 | 2003-01-08 | 松下電器産業株式会社 | Biosensor |
US5917320A (en) | 1996-01-17 | 1999-06-29 | Allegro Microsystems, Inc. | Detection of passing magnetic articles while periodically adapting detection threshold |
US5830341A (en) * | 1996-01-23 | 1998-11-03 | Gilmartin; Markas A. T. | Electrodes and metallo isoindole ringed compounds |
US5743861A (en) | 1996-01-23 | 1998-04-28 | Abbott Laboratories | Blood collection device |
JPH09201337A (en) * | 1996-01-25 | 1997-08-05 | Casio Comput Co Ltd | Glucose measuring device |
FI118509B (en) | 1996-02-12 | 2007-12-14 | Nokia Oyj | A method and apparatus for predicting blood glucose levels in a patient |
US5708247A (en) | 1996-02-14 | 1998-01-13 | Selfcare, Inc. | Disposable glucose test strips, and methods and compositions for making same |
JP3028752U (en) | 1996-03-05 | 1996-09-13 | 株式会社オフィス・オートメーション・システム | Telepromotion system |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
EP1579814A3 (en) | 1996-05-17 | 2006-06-14 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US5951492A (en) | 1996-05-17 | 1999-09-14 | Mercury Diagnostics, Inc. | Methods and apparatus for sampling and analyzing body fluid |
ES2297858T3 (en) | 1996-05-17 | 2008-05-01 | Roche Diagnostics Operations, Inc. | DISPOSABLE ELEMENT THAT IS USED IN A BODY LIQUID SAMPLING DEVICE. |
JP2000512762A (en) | 1996-06-17 | 2000-09-26 | マーキュリー ダイアグノスティックス インコーポレイテッド | Electrochemical test equipment and related methods |
DE19644757C2 (en) | 1996-10-29 | 2001-04-12 | Bosch Gmbh Robert | Measuring device |
US6093156A (en) | 1996-12-06 | 2000-07-25 | Abbott Laboratories | Method and apparatus for obtaining blood for diagnostic tests |
US6063039A (en) * | 1996-12-06 | 2000-05-16 | Abbott Laboratories | Method and apparatus for obtaining blood for diagnostic tests |
US5964993A (en) | 1996-12-19 | 1999-10-12 | Implanted Biosystems Inc. | Glucose sensor |
US20070142776A9 (en) | 1997-02-05 | 2007-06-21 | Medtronic Minimed, Inc. | Insertion device for an insertion set and method of using the same |
US6093172A (en) * | 1997-02-05 | 2000-07-25 | Minimed Inc. | Injector for a subcutaneous insertion set |
AU6157898A (en) * | 1997-02-06 | 1998-08-26 | E. Heller & Company | Small volume (in vitro) analyte sensor |
US5759364A (en) | 1997-05-02 | 1998-06-02 | Bayer Corporation | Electrochemical biosensor |
US5779665A (en) * | 1997-05-08 | 1998-07-14 | Minimed Inc. | Transdermal introducer assembly |
US5954643A (en) | 1997-06-09 | 1999-09-21 | Minimid Inc. | Insertion set for a transcutaneous sensor |
CA2294610A1 (en) * | 1997-06-16 | 1998-12-23 | George Moshe Katz | Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods |
US6071391A (en) * | 1997-09-12 | 2000-06-06 | Nok Corporation | Enzyme electrode structure |
JP3063837B2 (en) * | 1997-09-26 | 2000-07-12 | 日本電気株式会社 | Urine multi-sensor |
US5906921A (en) | 1997-09-29 | 1999-05-25 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method for quantitative measurement of a substrate using the same |
US5971941A (en) | 1997-12-04 | 1999-10-26 | Hewlett-Packard Company | Integrated system and method for sampling blood and analysis |
US6036924A (en) * | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
US6579690B1 (en) * | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
US5997817A (en) | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
US6074725A (en) | 1997-12-10 | 2000-06-13 | Caliper Technologies Corp. | Fabrication of microfluidic circuits by printing techniques |
US5908434A (en) * | 1998-02-13 | 1999-06-01 | Schraga; Steven | Lancet device |
US6103033A (en) | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
GB2337122B (en) | 1998-05-08 | 2002-11-13 | Medisense Inc | Test strip |
US6022366A (en) | 1998-06-11 | 2000-02-08 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US6346114B1 (en) * | 1998-06-11 | 2002-02-12 | Stat Medical Devices, Inc. | Adjustable length member such as a cap of a lancet device for adjusting penetration depth |
JP3293556B2 (en) | 1998-06-12 | 2002-06-17 | 住友電装株式会社 | Protector |
US6338790B1 (en) | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6210420B1 (en) | 1999-01-19 | 2001-04-03 | Agilent Technologies, Inc. | Apparatus and method for efficient blood sampling with lancet |
US6306152B1 (en) | 1999-03-08 | 2001-10-23 | Agilent Technologies, Inc. | Lancet device with skin movement control and ballistic preload |
US6192891B1 (en) * | 1999-04-26 | 2001-02-27 | Becton Dickinson And Company | Integrated system including medication delivery pen, blood monitoring device, and lancer |
US6152942A (en) | 1999-06-14 | 2000-11-28 | Bayer Corporation | Vacuum assisted lancing device |
DE19948759A1 (en) | 1999-10-09 | 2001-04-12 | Roche Diagnostics Gmbh | Blood lancet device for drawing blood for diagnostic purposes |
US6283982B1 (en) | 1999-10-19 | 2001-09-04 | Facet Technologies, Inc. | Lancing device and method of sample collection |
US6616819B1 (en) | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
DE60029127T2 (en) * | 1999-11-16 | 2007-05-31 | Matsushita Electric Industrial Co., Ltd., Kadoma | BIOSENSOR |
DE60019547T2 (en) | 1999-12-27 | 2005-10-06 | Matsushita Electric Industrial Co., Ltd., Kadoma | biosensor |
JP2001201479A (en) | 2000-01-21 | 2001-07-27 | Matsushita Electric Ind Co Ltd | Biosensor |
US6506168B1 (en) * | 2000-05-26 | 2003-01-14 | Abbott Laboratories | Apparatus and method for obtaining blood for diagnostic tests |
DE60140000D1 (en) * | 2000-07-24 | 2009-11-05 | Panasonic Corp | Biosensor |
US6454992B1 (en) | 2000-09-29 | 2002-09-24 | Ohio Aerospace Institute | Oxidation resistant and low coefficient of thermal expansion NiA1-CoCrAly alloy |
US7016866B1 (en) * | 2000-11-28 | 2006-03-21 | Accenture Sdn. Bhd. | System and method for assisting the buying and selling of property |
US20030143113A2 (en) | 2002-05-09 | 2003-07-31 | Lifescan, Inc. | Physiological sample collection devices and methods of using the same |
US9414777B2 (en) * | 2004-07-13 | 2016-08-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7507838B2 (en) * | 2004-09-01 | 2009-03-24 | Bristol-Myers Squibb Company | Process for the preparation of Z-5-carboxymethylene-1,3-dioxolan-4-ones |
US9352561B2 (en) | 2012-12-27 | 2016-05-31 | Kateeva, Inc. | Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances |
US9802652B1 (en) | 2016-10-28 | 2017-10-31 | Teraflex, Inc. | Removable mud flap |
-
1998
- 1998-03-04 US US09/034,422 patent/US6103033A/en not_active Expired - Lifetime
-
1999
- 1999-02-22 EP EP10012411A patent/EP2302371A1/en not_active Withdrawn
- 1999-02-22 AU AU27797/99A patent/AU2779799A/en not_active Abandoned
- 1999-02-22 WO PCT/US1999/003781 patent/WO1999045375A1/en active Application Filing
- 1999-02-22 JP JP2000534863A patent/JP4905906B2/en not_active Expired - Lifetime
- 1999-02-22 EP EP99908338.9A patent/EP1060388B1/en not_active Expired - Lifetime
- 1999-02-22 EP EP10012412A patent/EP2324767A1/en not_active Withdrawn
-
2003
- 2003-03-31 US US10/405,765 patent/US6973706B2/en not_active Expired - Lifetime
-
2005
- 2005-08-16 US US11/204,551 patent/US7721412B2/en not_active Expired - Fee Related
-
2007
- 2007-10-30 US US11/929,959 patent/US7861397B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/930,004 patent/US8136220B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,967 patent/US20080281176A1/en not_active Abandoned
- 2007-10-30 US US11/930,011 patent/US20080287760A1/en not_active Abandoned
- 2007-10-30 US US11/929,986 patent/US7879213B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,925 patent/US8168051B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,945 patent/US8117734B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,906 patent/US8273227B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,964 patent/US7797814B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,994 patent/US7797825B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,952 patent/US20080272007A1/en not_active Abandoned
-
2011
- 2011-08-25 US US13/218,417 patent/US20110311711A1/en not_active Abandoned
-
2015
- 2015-04-09 US US14/683,129 patent/US20150208969A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019178139A1 (en) * | 2018-03-14 | 2019-09-19 | Lawrence Livermore National Security, Llc | Metallopolymers for additive manufacturing of metal foams |
EP4005480A1 (en) * | 2020-11-16 | 2022-06-01 | IMEC vzw | An electrode arrangement, a neural probe, and a method for manufacturing an electrode arrangement |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8136220B2 (en) | Method of making an electrochemical sensor | |
US20090294277A1 (en) | Method and system for producing thin film biosensors | |
EP1060394B1 (en) | Electrochemical analyte sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |