US20150182672A1 - Coatings for implantable medical devices - Google Patents
Coatings for implantable medical devices Download PDFInfo
- Publication number
- US20150182672A1 US20150182672A1 US14/643,576 US201514643576A US2015182672A1 US 20150182672 A1 US20150182672 A1 US 20150182672A1 US 201514643576 A US201514643576 A US 201514643576A US 2015182672 A1 US2015182672 A1 US 2015182672A1
- Authority
- US
- United States
- Prior art keywords
- coating
- group
- peg
- eval
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 [1*]C([2*])(C)CC Chemical compound [1*]C([2*])(C)CC 0.000 description 5
- WYUNGNGCIFXLHJ-UHFFFAOYSA-N CCCCC(C)(C)C(=O)OCC1CC1 Chemical compound CCCCC(C)(C)C(=O)OCC1CC1 WYUNGNGCIFXLHJ-UHFFFAOYSA-N 0.000 description 2
- IXNPOAWHPXYJHW-UHFFFAOYSA-N C.C.C=S(=O)(O)C1=CC=C(C)C=C1.CCCCC(C)NCCOCCOC.CCCCC(C)OS(=O)(=O)C1=CC=C(C)C=C1.COCCOCCN Chemical compound C.C.C=S(=O)(O)C1=CC=C(C)C=C1.CCCCC(C)NCCOCCOC.CCCCC(C)OS(=O)(=O)C1=CC=C(C)C=C1.COCCOCCN IXNPOAWHPXYJHW-UHFFFAOYSA-N 0.000 description 1
- HUSKLSXXJKZETD-UHFFFAOYSA-N C.C.CC1=CC=C(S(=O)(=O)Cl)C=C1.CCCCC(C)O.CCCCC(C)OS(=O)(=O)C1=CC=C(C)C=C1 Chemical compound C.C.CC1=CC=C(S(=O)(=O)Cl)C=C1.CCCCC(C)O.CCCCC(C)OS(=O)(=O)C1=CC=C(C)C=C1 HUSKLSXXJKZETD-UHFFFAOYSA-N 0.000 description 1
- ZPHVSDSKSZQNQI-UHFFFAOYSA-N C.C.CCCCC(C)O.CCCCC(C)OS(=O)(=O)CC(F)(F)F.O=S(=O)(Cl)CC(F)(F)F Chemical compound C.C.CCCCC(C)O.CCCCC(C)OS(=O)(=O)CC(F)(F)F.O=S(=O)(Cl)CC(F)(F)F ZPHVSDSKSZQNQI-UHFFFAOYSA-N 0.000 description 1
- DIHJVICCLUTUHL-UHFFFAOYSA-N C.C=C(NCCOC)OC(C)CCCC.CCCCC(C)O.COCCN=C=O Chemical compound C.C=C(NCCOC)OC(C)CCCC.CCCCC(C)O.COCCN=C=O DIHJVICCLUTUHL-UHFFFAOYSA-N 0.000 description 1
- WTSOGTDAUYMHMI-UHFFFAOYSA-N C.CCCCC(C)(C)C(=O)OCC(O)CNCCOCCOC.CCCCC(C)(C)C(=O)OCC1CO1.COCCOCCN Chemical compound C.CCCCC(C)(C)C(=O)OCC(O)CNCCOCCOC.CCCCC(C)(C)C(=O)OCC1CO1.COCCOCCN WTSOGTDAUYMHMI-UHFFFAOYSA-N 0.000 description 1
- RRHBHUCUSWODPK-UHFFFAOYSA-N C.CCCCC(C)C(=O)NCCOCCOC.CCCCC(C)C(=O)O.COCCOCCN Chemical compound C.CCCCC(C)C(=O)NCCOCCOC.CCCCC(C)C(=O)O.COCCOCCN RRHBHUCUSWODPK-UHFFFAOYSA-N 0.000 description 1
- RATUOEPGGFWBMN-UHFFFAOYSA-N C.CCCCC(C)O.CCCCC(C)OC(CC)COCCOC.COCCOCC1CO1 Chemical compound C.CCCCC(C)O.CCCCC(C)OC(CC)COCCOC.COCCOCC1CO1 RATUOEPGGFWBMN-UHFFFAOYSA-N 0.000 description 1
- UVQGVNLXTFRLNL-YPKPFQOOSA-N C1CCC(/N=N\C2CCCCC2)CC1 Chemical compound C1CCC(/N=N\C2CCCCC2)CC1 UVQGVNLXTFRLNL-YPKPFQOOSA-N 0.000 description 1
- YSCYEMBXNGURSP-UHFFFAOYSA-N COCCOCC1CC1 Chemical compound COCCOCC1CC1 YSCYEMBXNGURSP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4738—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4745—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
- C08F8/32—Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6212—Polymers of alkenylalcohols; Acetals thereof; Oxyalkylation products thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/71—Monoisocyanates or monoisothiocyanates
- C08G18/711—Monoisocyanates or monoisothiocyanates containing oxygen in addition to isocyanate oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/003—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/06—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/08—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/43—Hormones, e.g. dexamethasone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/50—Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority
Definitions
- This invention relates to the field of medical devices, more particularly, to coatings for devices such as stents.
- a polymeric matrix A polymer impregnated with a drug can be formed into particles or can be coated on implantable medical devices such as stents. Subsequent to the implantation of the particle or the device, the drug slowly elutes from the polymer.
- implantable medical devices such as stents.
- a variety of well known polymers have suitable biocompatible properties which allow the polymers to serve as suitable hosts for local drug delivery.
- a selected group of these polymers can also form a film layer or a coating for implantable devices such as stents.
- poly(ethylene-co-vinyl alcohol) or EVOH ethylene-co-vinyl alcohol
- EVOH poly(ethylene-co-vinyl alcohol)
- Poly(ethylene-co-vinyl alcohol) is also known under the trade name EVAL and is distributed commercially by Aldrich Chemical Company of Milwaukee, Wis. EVAL is also manufactured by EVAL Company of America of Lisle, Ill.
- Other polymers which can be used to coat stents include a copolymer of ethylene and acrylic acid (EAA) and a copolymer of ethylene and glycidyl methacrylate (EGMA).
- EAA ethylene and acrylic acid
- EGMA glycidyl methacrylate
- EVAL is a product of hydrolysis and contains ethylene-vinyl acetate copolymers.
- EVAL may also be a terpolymer and may include up to 5% (molar) units derived from styrene, propylene and other suitable unsaturated monomers.
- EVAL can be described as being hydrophobic and thus is essentially insensitive to moisture.
- EAA and EGMA likewise, are hydrophobic and relatively impermeable to gases.
- the ethylene fragments of EVAL, EAA and EGMA provide hydrophobicity and barrier properties, while functional fragments of each copolymer (hydroxyl groups, carboxyl groups, and glycidyl groups, respectively) provide at least limited solubility in organic solvents.
- EVAL, EAA and EGMA are inert and biocompatible polymers which are quite suitable for use as a drug delivery matrix, and more particularly when used in conjunction with medical devices, some of the properties of these polymers can be improved. In particular, the polymers are prone to protein fouling, which may significantly inhibit the polymers' lifetime in vivo efficacy.
- polymeric carriers suitable for the delivery of drugs, and more particularly for coating medical devices used as a means for drug delivery.
- Suitable characteristics of the polymeric materials should be significantly impermeable to oxygen, high degree of hydrophobicity and long term biocompatibility with minimum protein fouling effects.
- the present application generally encompasses a coating having a biologically compatible compound conjugated to, or blended with, a polymer, wherein the polymer includes at least one olefin-derived unit and at least one unit derived from a vinyl alcohol, an allyl alcohol, or derivatives thereof.
- the invention includes a coating for a medical device, wherein the coating includes a modified polymer comprising a biologically compatible compound conjugated to a polymer.
- the modified polymer comprises at least one unit (I)
- R 1 comprises a component selected from a group consisting of an ester, an ether, an amine, an amide, a urethane, and a combination thereof; and R 2 comprises a component selected from a group consisting of a hydrogen and an alkyl group.
- the biologically compatible compound is blended with the polymer.
- the present invention includes a method of fabricating a medical device comprising forming a coating on the device, wherein the coating comprises a modified polymer comprising a biologically compatible compound conjugated to a polymer.
- the modified polymer comprises at least one unit (I)
- R 1 comprises a component selected from a group consisting of an ester, an ether, an amine, an amide, a urethane, and a combination thereof; and R 2 comprises a component selected from a group consisting of a hydrogen and an alkyl group.
- the forming comprises reacting the polymer with the biologically compatible compound to create the modified polymer, and depositing the modified polymer on the medical device.
- the forming comprises depositing the polymer on the medical device to produce a coating, and reacting the coating with a biologically compatible compound to create a modified coating.
- the present invention provides for a modification of polymers to be used for the local delivery of therapeutic substances or drugs.
- the polymers can also be used as coatings for implantable medical devices such as stents.
- the polymers can be referred to herein as “modified polymers,” “polymers to be modified,” or “polymers subject to modification.”
- the polymers can be characterized by the presence of a polyolefin backbone, pendant on which are alkyl, hydroxyl, and/or carboxyl groups.
- EVAL is one example of a polymer that can be modified according to this invention.
- Other examples of polymers that can be modified include a copolymer of ethylene and acrylic acid (EAA) and a copolymer of ethylene and glycidyl methacrylate (EGMA).
- EVAL, EAA, and EGMA have relatively high oxygen-barrier properties and are resistant to water vapor; however, the polymers' long-term biocompatibility is somewhat limited due to protein fouling effects. Modification of the polymers by covalent conjugation to biologically active materials will enhance the polymers' in vivo behavior, thus providing better long-term results.
- EVAL, EAA and EGMA can be modified by biologically active compounds, hereinafter also referred to as “modifiers” or “modifying compounds.” Modification can be accomplished by covalent conjugation of the polymer to one or more modifiers.
- the functional groups of the polymers such as the hydroxyl groups in EVAL, the carboxyl groups in EAA, and the glycidyl groups in EGMA, can be used as the target sites for the conjugation.
- the modification of the polymer can be conducted directly on the stent or the polymer can be modified first, and the modified product can then applied to the stent.
- the modifiers include poly(ethylene glycol) (PEG) and PEG's functionalized derivatives. More particularly, representative examples include PEG, PEG-isocyanate, PEG-epoxide, and amino-terminated PEG.
- the modifier can be an intracellular enzyme, for example, oxidoreductases containing seven-coordinate complexes of manganese, which is also known as superoxide dismutase mimics (SODm).
- the modifier can include diazenium diolate type nitric oxide donors.
- the modifier can include hyaluronic acids.
- the modifying compound(s) can be conjugated to proteins or polysaccharides followed by cold-blending of the conjugates with the matrix polymer such as EVAL.
- a therapeutic substance or a drug can be incorporated in the modified polymer.
- the therapeutic substance can include any compound that exerts a therapeutic or prophylactic effect for the patient.
- the substance can be for inhibiting the migration and/or proliferation of smooth muscle cells or for the treatment of restenosis and can include small molecule drugs, peptides, proteins, oligonucleotides, or DNA.
- the drugs include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof. Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I 1 , actinomycin X 1 , and actinomycin C 1 .
- the substance can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances.
- antineoplastics and/or antimitotics include paclitaxel, docetaxel, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride, and mitomycin.
- antiplatelets examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin.
- sodium heparin low molecular weight heparins
- heparinoids examples include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein II
- cytostatic or antiproliferative agents examples include angiopeptin, angiotensin converting enzyme inhibitors such as captopril, cilazapril or lisinopril, calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil ( ⁇ -3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide.
- angiopeptin angiotensin converting enzyme inhibitors such as captopril, cilazapril or lisinopril
- an antiallergic agent is permirolast potassium.
- Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, rapamycin, rapamycin derivatives and analogs, and dexamethasone.
- the coating of the present invention can be used in conjunction with a balloon-expandable or self-expandable stent.
- the application of the coating is not limited to stents and the coating can also be used with a variety of other medical devices.
- implantable medical device include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, axius coronary shunts and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation).
- the underlying structure of the device can be of virtually any design.
- the device can be made of a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel-titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof.
- Devices made from bioabsorbable or biostable polymers can also be used with the embodiments of the present invention.
- MP35N and MP20N are trade names for alloys of cobalt, nickel chromium and molybdenum, available from Standard Press Steel Co. of Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
- EVAL (—[CH 2 —CH 2 ] m —[CH 2 —CH(OH)] n —) manufactured by EVALCA Corp., Lisle, Ill., has an m:n ratio of 44:56.
- EVAL with higher or lower ethylene content can be modified by the same methods as those discussed below.
- EVAL is modified as shown in the following examples.
- Poly((ethylene glycol) (PEG) is a highly biologically compatible product. Due to the presence of hydroxyl groups, PEG is capable of entering reactions of condensation with EVAL. The reaction may need to be catalyzed by a suitable acidic or basic catalyst. PEG can be in an oligomeric or polymeric form and can have a molecular weight within a range of between about 500 and about 30,000 Daltons. The conditions under which this reaction is conducted can be determined by one having ordinary skill in the art. EVAL can be firmly bonded to the biologically compatible PEG. Thus, EVAL is modified by PEG and the modified EVAL can have an enhanced long-term biocompatibility.
- PEG-ISO Poly(ethylene glycol)-isocyanate
- An example of a PEG-ISO suitable as a modifier for EVAL is a methoxylated PEG-ISO.
- the PEG-ISO has a general formula CH 3 —[O—CH 2 —CH 2 ] p —N ⁇ C ⁇ O.
- This modifier manufactured by Shearwater Corp. of Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 112. Due to the presence of the isocyanate groups, PEG-ISO is chemically very active and readily reacts with EVAL in solution.
- the —N ⁇ C ⁇ O group of PEG-ISO having strong electron accepting properties, reacts with the nucleophilic hydroxyl group of EVAL, as illustrated by reaction scheme (I):
- reaction scheme (I) The conditions under which reaction scheme (I) is conducted can be determined by one having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible PEG-ISO to form the urethane product of reaction scheme (I). Thus, EVAL, modified by PEG-ISO, can have an enhanced long-term biocompatibility.
- PEG-EPO Poly(ethylene glycol)-epoxide
- PEG-EPO is a PEG-based product having epoxy fragments.
- An example of a PEG-EPO suitable as a modifier for EVAL is a methoxylated PEG-EPO, such as methoxy-PEG-glycidyl ether and has the following general formula
- the PEG-EPO has a molecular weight of about 5,000, which corresponds to the value of the integer “p” of about 112, and is manufactured by Shearwater Corp. of Huntsville, Ala.
- Epoxy groups in PEG-EPO are reactive, and PEG-EPO easily reacts with EVAL in solution.
- the epoxy group of PEG-EPO can react with the nucleophilic hydroxyl group of EVAL, via the nucleophilic substitution reaction S N 2.
- the proton of the hydroxyl group attacks the less substituted ⁇ -carbon atom of the epoxy group.
- the ⁇ -carbon is less accessible due to the steric hindrances.
- the ring opens, and the modified EVAL is formed according to a reaction that can be shown as reaction scheme (II):
- Reaction scheme (II) is carried out more effectively in the presence of electron acceptors, because the electron acceptors facilitate electrophilic polarization of the C—O bond of the epoxy ring, thus making the subsequent attack by the proton of the hydroxyl group of EVAL easier. Accordingly, modification of EVAL with PEG-EPO is facilitated in the presence of electrophilic ring-opening catalysts, for instance, aprotonic acids such as amine-boron trifluoride products or tertiary amines. The use of any ring-opening catalyst is optional. The conditions under which this reaction is conducted can be determined by one having ordinary skill in the art.
- Hyaluronic acid is a linear polysaccharide composed of disaccharide units of N-acetylglucosamine and D-glucoronic acid.
- uronic acid and the aminosugar are linked by alternating ⁇ -1,4 and ⁇ -1,3 glucosidic bonds.
- Hyaluronic acid has hydroxymethyl groups and secondary amino groups. EVAL can be modified by these groups.
- an appropriate catalyst may be needed.
- EVAL hyaluronic acid
- modification of EVAL by hyaluronic acid can be carried in the presence of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide, also known as carbodiimide or EDC, having the formula CH 3 —CH 2 —N ⁇ C ⁇ N—CH 2 —CH 2 —CH 2 —N(CH 3 ) 2 .
- EDC is manufactured by Pierce Corp., Rockford, Ill.
- DCC 1,3-dicyclohexylcarbodiimide
- EVAL is firmly bonded to the biologically compatible hyaluronic acid for enhanced long-term biocompatibility.
- a biologically active agent is conjugated to a protein or a polysaccharide, or to a combination of the protein and the polysaccharide.
- Albumin also known as albumen or the egg white protein
- heparin, heparin derivatives, including the derivatives containing hydrophobic counter-ions, hyaluronic acid or chitosan can be used as polysaccharides.
- PEG is one example of the biologically active agent to be conjugated to the protein or polysaccharide, or to a combination of the protein and the polysaccharide.
- Other biologically active agents that can be used include superoxide dismutase-mimetics (SOD-mimetics or SODm) and diazenium diolate type nitric oxide donors.
- Superoxide dismutase-mimetics are oxidoreductase-based complexes that contain cations of copper, iron, or manganese.
- SOD-mimetics are major intracellular enzymes that protect the cell against oxygen toxicity by dismutating the radical oxygen superoxide, .O 2 , to oxygen and hydrogen peroxide.
- SODm manganese-based SODm, manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene (SOD-40470) manufactured by Metaphore Pharmaceuticals, Inc., St. Louis, Mo. is one example of a SODm that can be used to conjugate to the protein or polysaccharide. Those having ordinary skill in the art can also select other types of SODm. Due to the presence of the primary amino ligands, SOD-40470 is chemically quite active and can be easily conjugated to the protein or the polysaccharide, or to a combination of the protein and the polysaccharide.
- Diazenium diolate type nitric oxide donors are products of nitric oxide (NO) with nucleophilic amines.
- Diazenium diolates also known as NONOates are highly biologically compatible and possess valuable medicinal properties. In slightly acidic medium they spontaneously release NO which has excellent therapeutic properties.
- spermine diazenium diolate SDD.
- An aliphatic NONOate, SDD, or 1,3-propanediamine, N- ⁇ 4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl ⁇ -diazen-1-ium-1,2-diolate has the formula NH 2 —(CH 2 ) 3 —N[N + (O)—(N—OH)]—(CH 2 ) 4 —NH—(CH 2 ) 3 —NH 2 and is manufactured by Molecular Probes, Inc., Eugene, Oreg. Alternatively, other diazenium diolate-type NO donors can be used.
- a suitable alternative diazenium diolate-type NO donor can be 1- ⁇ N-methyl-N-[6-(N-methylammonio)hexyl]amino ⁇ diazen-1-ium-1,2-diolate having the formula CH 3 —N + H 2 —(CH 2 ) 6 —N(CH 3 )—N + (O ⁇ ) ⁇ N—O ⁇ (MAHMA-NO).
- NONOate can be Z-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate having the formula O ⁇ —N + [N(CH 2 —CH 2 —NH 2 )CH 2 —CH 2 —N + H 3 ] ⁇ N—O ⁇ (DETA-NO).
- MAHMA-NO and DETA-NO can be obtained from Cayman Chemical Co., Ann Arbor, Mich.
- both SDD, MAHMA-NO and DETA-NO are easily conjugated to the above-mentioned proteins and/or polysaccharides, or to a combination thereof.
- the conditions under which the reaction of conjugation of PEG, SODm or diazenium diolates to the protein or polysaccharide, or a combination thereof, is conducted can be determined by those having ordinary skill in the art.
- the product of conjugation of PEG, SODm or diazenium diolates to the protein or polysaccharide, or a combination thereof is cold-blended with EVAL.
- EVAL is modified with a product having high biocompatibility.
- EVAL can be preliminarily derivatized by tosylation (treatment with tosyl chloride), or alternatively by tresylation (by reacting with tresyl chloride).
- Tosyl chloride is a derivative of toluene, p-toluene sulfonyl chloride having the formula CH 3 —C 6 H 4 —SO 2 Cl (TsCl).
- TsCl p-toluene sulfonyl chloride having the formula CH 3 —C 6 H 4 —SO 2 Cl
- a 2% (mass) solution of EVAL in dimethylacetamide (DMAC) can be sprayed on the stent and dried for 10 minutes at 80° C., and then again for 1 hour at 140° C.
- a 3% (mass) of TsCl in dry xylene can be prepared and the coated EVAL stent can be shaken for 1 minute with 1.4 ml of the TsCl solution.
- 0.25 ml of 33% (mass) of pyridine in dry xylene can be added, followed by shaking for 4 hours in a desiccator.
- the stent can be then rinsed with acetone and twice with 1 mM solution of HCl to remove the excess TsCl.
- EVAL can be tosylated according to reaction scheme (III) and the tosyl group is attached to the EVAL backbone via a hydroxy group to yield the toluenesulfoester:
- tresyl chloride (2,2,2-trifluoroethanesulphonyl chloride) can be used to derivatrize EVAL according to reaction scheme (IV), and the tresyl group is attached to the EVAL backbone via hydroxy group:
- PEG-NH 2 Poly(ethylene glycol)-amine product
- PEG-NH 2 Poly(ethylene glycol)-amine product
- An example of a PEG-NH 2 that can be used as a modifier for the tosylated or tresylated EVAL is a methoxylated PEG-NH 2 product having a general formula CH 3 —[O—CH 2 —CH 2 ] p —O—CH 2 —CH 2 —NH 2 .
- This product manufactured by Shearwater Corp., Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 113.
- PEG-NH 2 is chemically active and is readily alkylated with the tosylated or tresylated EVAL in solution.
- the amino group of PEG-NH 2 is more reactive with alkylating agents such as tosylated or tresylated agents.
- toluenesulfonic acid is known to be a very strong acid, on par with sulfuric or hydrochloric acids, its anion, CH 3 —C 6 H 4 —SO 3 ⁇ , is an excellent leaving group in the nucleophilic substitution alkylation reaction of a primary amine; it is much better than the hydroxyl group of an underivatized EVAL. Accordingly, the tosylated EVAL obtained as described above, readily reacts with PEG-NH 2 as schematically shown by the alkylation reaction scheme (V):
- reaction scheme (V) The conditions under which this reaction are conducted can be determined by those having ordinary skill in the art.
- the reaction of tresylated EVAL and PEG-NH 2 is similar to reaction scheme (V).
- EVAL is firmly bonded to the biologically compatible PEG-NH 2 to form the secondary amine product of reaction (V).
- SOD-mimetics are highly biocompatible and can be used for modifying tosylated or tresylated EVAL.
- SOD-40470 can be used as a modifying agent with the tosylated or tresylated EVAL. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and is readily alkylated with the tosylated or tresylated EVAL in solution. Alternatively, other SOD-mimetics can be used so long as they have amino groups.
- the mechanism of the tosylation or tresylation is via a reaction of alkylation of the amino group of SODm and is similar to reaction scheme (V) discussed above. The conditions under which this reaction is conducted will be determined by those having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible amino ligand-containing SODm to form the secondary amine product.
- Tosylated or tresylated EVAL can be modified by binding to a NONOate.
- Spermine diazenium diolate, SDD can be used as a modifying agent for the tosylated or tresylated EVAL. Due to the presence of two primary and one secondary amino groups, SDD is easily alkylated with the tosylated or tresylated EVAL in solution.
- the mechanism of such tosylation or tresylation includes alkylation of the amino group of SDD and is similar to reaction scheme (V) discussed above.
- other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO.
- the mechanism of binding of the tosylated or tresylated EVAL to MAHMA-NO or DETA-NO is the same as the mechanism of binding to SDD.
- the conditions under which the tosylated or tresylated EVAL is bound to SDD, or the alternative diazenium diolate-type NO donors, can be determined by those having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible diazenium diolate-type NO donors to form the secondary amine product. Since the modified product will be able to release NO having valuable medicinal properties, the stent coating will acquire additional therapeutical properties.
- the Polymer Subject to Modification is a Copolymer of Ethylene with Acrylic Acid (EAA)
- EAA has the general formula —[CH 2 —CH 2 ] m —[CH 2 —CH(COOH)] n —.
- 25% (by mass) aqueous, ammonia-neutralized dispersion of EAA manufactured by Michelman, Inc., Cincinnati, Ohio is used.
- EAA is modified as illustrated in the following examples.
- PEG-NH 2 is chemically active and readily acylated with the carboxyl groups of EAA. Accordingly, EAA readily reacts with PEG-NH 2 . The reaction is carried out in the presence of EDC. EAA reacts with EDC and forms an O-acylisourea, an amine-reactive intermediate. This intermediate is unstable in an aqueous environment and immediately reacts with PEG-NH 2 utilizing PEG-NH 2 's amino groups.
- the path of the reaction is via a nucleophilic attack of the carbon of the carboxyl group of EAA by the electron-rich nitrogen of the amino group of PEG-NH 2 , followed by the formation of the peptide bond —NH—CO—. Water is the by-product.
- the process is schematically shown by the acylation reaction scheme (VI):
- SOD-40470 can be used as a modifying agent of EAA. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and readily couples with EAA. As in the case of modification with PEG-NH 2 , the reaction is carried out in the presence of EDC. The mechanism of the reaction is via acylation of the amino group of SOD-40470 and is similar to reaction scheme (VI). Other SOD-mimetics can be used so long as they have amino groups. EAA can be firmly bonded to the biologically compatible amino ligand-containing SOD-40470 to form the peptide-type product.
- SDD can be used as a modifying agent for EAA. Due to the presence of the amino groups, SDD is chemically active and readily couples with EAA. As in the case of modification with PEG-NH 2 and SOD-40470, the reaction is carried out in the presence of EDC. The mechanism of the reaction is via acylation of the amino group of SDD and is similar to reaction scheme (VI). Other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of the coupling of EAA to MAHMA-NO or to DETA-NO is the same as the mechanism of coupling EAA to SDD.
- EAA is firmly bonded to the biologically compatible diazenium diolate-type NO donors to form the peptide-type product.
- the modified product will be able to release NO.
- EGMA has the general formula
- EGMA is an aliphatic epoxy oligomer with relatively high contents of epoxy functionality. Due to the presence of the epoxy groups, EGMA is chemically reactive and can be modified via these epoxy groups, particularly, by reacting EGMA with substances containing amino-, carboxyl-, and/or hydroxyl groups. In accordance with some of the embodiments of this invention, EGMA is modified as shown in the following examples.
- Reaction scheme (VII) may then continue and, depending on the amounts of EGMA and PEG-NH 2 , the second proton of the amino group of the product can attack the second molecule of EGMA by the same nucleophilic mechanism. As a result, a cross-linked oligomer may form.
- the conditions under which reaction (VII) is conducted can be determined by those having ordinary skill in the art. Irrespective of whether the reaction stops at a stage shown by reaction (VII) or continues through the formation of the cross-linked tri-dimensional oligomeric network, EGMA is firmly bonded to the biologically compatible PEG-NH 2 .
- SOD-40470 can be used as a modifying agent of EGMA. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and readily couples with EGMA. The mechanism of the reaction is via nucleophilic bonding of the amino group of SOD-40470 to the oxirane group of EGMA and is similar to the reaction (VII) discussed above. Alternatively, other SOD-mimetics can be used so long as they have amino groups. EGMA can be firmly bonded to the biologically compatible amino ligand-containing SOD-40470 to form a linear or cross-linked oligomer, depending on the conditions of the reaction of modification.
- SDD can be used as a modifying agent of EGMA. Due to the presence of the amino groups, SDD is chemically active and readily couples with EGMA according to the mechanism similar to reaction scheme (VII). Other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of coupling of EAA to MAHMA-NO or DETA-NO is the same as the mechanism of coupling to SDD. The conditions under which the reaction of binding EGMA to SDD, or the alternative diazenium diolate-type NO donors, is conducted can be determined by those having ordinary skill in the art. EGMA can be firmly bonded to the biologically compatible diazenium diolate-type NO donors.
- Hydroxyl-terminated methoxy-PEG is a PEG-based product having hydroxyl groups.
- An example of a hydroxyl-terminated methoxy-PEG suitable as a modifier for EGMA is a monomethyl ether of PEG, a methoxylated PEG product having a general formula CH 3 O—[CH 2 —CH 2 —O] p —CH 2 —CH 2 —OH, known as a low-diol mPEG.
- the product is manufactured by Shearwater Corp., Huntsville, Ala., and, like PEG-ISO or PEG-EPO, has a molecular weight of about 5,000 which corresponds to “p” being an integer of about 112.
- the low-diol mPEG is a strong nucleophilic agent and bonds with EGMA via a nucleophilic substitution reaction of its nucleophilic hydroxyl group with the oxirane ring of EGMA.
- the mechanism of that reaction is similar to the mechanism illustrated schematically by reaction (II).
- modification of EGMA by the low diol mPEG is carried out more effectively in the presence of the electron acceptors, which facilitate the nucleophilic attack of the epoxy group of EGMA by the proton of the hydroxyl group of the low diol mPEG. Accordingly, modification of EGMA with the low diol mPEG is facilitated in the presence of ring-opening catalysts that include either amines or electrophilic agents which can be, for example, aprotonic acids such as amine-boron trifluoride products. The use of any ring-opening catalysts is optional.
- Carboxyl-terminated methoxy-PEG is a PEG-based product having carboxyl groups.
- An example of a carboxyl-terminated methoxy-PEG suitable as a modifier for EGMA is methoxy-PEG propionic acid, a methoxylated PEG-based product having a general formula CH 3 O—[CH 2 —CH 2 —O] p —CH 2 —CH 2 COOH, known as PA-PEG.
- the product manufactured by Shearwater Corp., Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 111.
- PA-PEG is a strong nucleophilic agent which can react with the epoxy group of EGMA.
- the mechanism of this reaction is similar to the mechanism illustrated schematically by reaction (II), except a proton of carboxyl group carries out the nucleophilic attack instead of the alcohol proton illustrated by the reaction (II).
- EGMA can be firmly bonded to the biologically compatible PA-PEG to form a product similar to the product of the reaction (II).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present application teaches a coating having a biologically compatible compound conjugated to, or blended with, a polymer, wherein the polymer includes at least one olefin-derived unit and at least one unit derived from a vinyl alcohol, an allyl alcohol, or derivatives thereof.
Description
- This application is a divisional application of U.S. application Ser. No. 14/044,693 filed on Oct. 2, 2013, which is a divisional application of U.S. application Ser. No. 11/338,058 filed on Jan. 23, 2006 and issued as U.S. Pat. No. 8,563,025, which is a continuation application of U.S. application Ser. No. 10/104,769 filed on Mar. 20, 2002 and issued as U.S. Pat. No. 7,919,075, which are hereby incorporated by reference in their entirety.
- 1. Field of the Invention
- This invention relates to the field of medical devices, more particularly, to coatings for devices such as stents.
- 2. Description of the Background
- In the field of medical technology, there is frequently a necessity to administer drugs locally. To provide an efficacious concentration to the treatment site, systemic administration of medication often produces adverse or toxic side effect for the patient. Local delivery is a preferred method in that smaller total levels of medication are administered in comparison to systemic dosages but are concentrated at a specific site. Thus, local delivery produces fewer side effects and achieves more effective results.
- One commonly applied technique for local delivery of a drug is through the use of a polymeric matrix. A polymer impregnated with a drug can be formed into particles or can be coated on implantable medical devices such as stents. Subsequent to the implantation of the particle or the device, the drug slowly elutes from the polymer. A variety of well known polymers have suitable biocompatible properties which allow the polymers to serve as suitable hosts for local drug delivery. A selected group of these polymers can also form a film layer or a coating for implantable devices such as stents. One example of a polymer that serves the dual function of being very biocompatible and capable of forming a coating for devices is a copolymer of ethylene and vinyl alcohol, also known as poly(ethylene-co-vinyl alcohol) or EVOH. Poly(ethylene-co-vinyl alcohol) is also known under the trade name EVAL and is distributed commercially by Aldrich Chemical Company of Milwaukee, Wis. EVAL is also manufactured by EVAL Company of America of Lisle, Ill. Other polymers which can be used to coat stents include a copolymer of ethylene and acrylic acid (EAA) and a copolymer of ethylene and glycidyl methacrylate (EGMA).
- EVAL is a product of hydrolysis and contains ethylene-vinyl acetate copolymers. EVAL may also be a terpolymer and may include up to 5% (molar) units derived from styrene, propylene and other suitable unsaturated monomers. EVAL can be described as being hydrophobic and thus is essentially insensitive to moisture. EAA and EGMA, likewise, are hydrophobic and relatively impermeable to gases. The ethylene fragments of EVAL, EAA and EGMA provide hydrophobicity and barrier properties, while functional fragments of each copolymer (hydroxyl groups, carboxyl groups, and glycidyl groups, respectively) provide at least limited solubility in organic solvents.
- While EVAL, EAA and EGMA are inert and biocompatible polymers which are quite suitable for use as a drug delivery matrix, and more particularly when used in conjunction with medical devices, some of the properties of these polymers can be improved. In particular, the polymers are prone to protein fouling, which may significantly inhibit the polymers' lifetime in vivo efficacy.
- There is a need for polymeric carriers suitable for the delivery of drugs, and more particularly for coating medical devices used as a means for drug delivery. Suitable characteristics of the polymeric materials should be significantly impermeable to oxygen, high degree of hydrophobicity and long term biocompatibility with minimum protein fouling effects.
- The present application generally encompasses a coating having a biologically compatible compound conjugated to, or blended with, a polymer, wherein the polymer includes at least one olefin-derived unit and at least one unit derived from a vinyl alcohol, an allyl alcohol, or derivatives thereof. In some embodiments, the invention includes a coating for a medical device, wherein the coating includes a modified polymer comprising a biologically compatible compound conjugated to a polymer. The modified polymer comprises at least one unit (I)
-
—CH2—CH2— (I) - and at least one unit (II)
- wherein, R1 comprises a component selected from a group consisting of an ester, an ether, an amine, an amide, a urethane, and a combination thereof; and R2 comprises a component selected from a group consisting of a hydrogen and an alkyl group. In some embodiments, the biologically compatible compound is blended with the polymer.
- In some embodiments, the present invention includes a method of fabricating a medical device comprising forming a coating on the device, wherein the coating comprises a modified polymer comprising a biologically compatible compound conjugated to a polymer. The modified polymer comprises at least one unit (I)
-
—CH2—CH2— (I) - and at least one unit (II)
- wherein, R1 comprises a component selected from a group consisting of an ester, an ether, an amine, an amide, a urethane, and a combination thereof; and R2 comprises a component selected from a group consisting of a hydrogen and an alkyl group. In some embodiments, the forming comprises reacting the polymer with the biologically compatible compound to create the modified polymer, and depositing the modified polymer on the medical device. In some embodiments, the forming comprises depositing the polymer on the medical device to produce a coating, and reacting the coating with a biologically compatible compound to create a modified coating.
- The present invention provides for a modification of polymers to be used for the local delivery of therapeutic substances or drugs. The polymers can also be used as coatings for implantable medical devices such as stents. The polymers can be referred to herein as “modified polymers,” “polymers to be modified,” or “polymers subject to modification.”
- The polymers can be characterized by the presence of a polyolefin backbone, pendant on which are alkyl, hydroxyl, and/or carboxyl groups. EVAL is one example of a polymer that can be modified according to this invention. Other examples of polymers that can be modified include a copolymer of ethylene and acrylic acid (EAA) and a copolymer of ethylene and glycidyl methacrylate (EGMA). EVAL, EAA, and EGMA have relatively high oxygen-barrier properties and are resistant to water vapor; however, the polymers' long-term biocompatibility is somewhat limited due to protein fouling effects. Modification of the polymers by covalent conjugation to biologically active materials will enhance the polymers' in vivo behavior, thus providing better long-term results.
- EVAL, EAA and EGMA can be modified by biologically active compounds, hereinafter also referred to as “modifiers” or “modifying compounds.” Modification can be accomplished by covalent conjugation of the polymer to one or more modifiers. The functional groups of the polymers, such as the hydroxyl groups in EVAL, the carboxyl groups in EAA, and the glycidyl groups in EGMA, can be used as the target sites for the conjugation. The modification of the polymer can be conducted directly on the stent or the polymer can be modified first, and the modified product can then applied to the stent.
- In one embodiment, the modifiers include poly(ethylene glycol) (PEG) and PEG's functionalized derivatives. More particularly, representative examples include PEG, PEG-isocyanate, PEG-epoxide, and amino-terminated PEG. In accordance with another embodiment of the invention, the modifier can be an intracellular enzyme, for example, oxidoreductases containing seven-coordinate complexes of manganese, which is also known as superoxide dismutase mimics (SODm). In yet another embodiment, the modifier can include diazenium diolate type nitric oxide donors. In yet another embodiment, the modifier can include hyaluronic acids. In yet another embodiment of the invention, the modifying compound(s) can be conjugated to proteins or polysaccharides followed by cold-blending of the conjugates with the matrix polymer such as EVAL.
- A therapeutic substance or a drug can be incorporated in the modified polymer. The therapeutic substance can include any compound that exerts a therapeutic or prophylactic effect for the patient. The substance can be for inhibiting the migration and/or proliferation of smooth muscle cells or for the treatment of restenosis and can include small molecule drugs, peptides, proteins, oligonucleotides, or DNA. Examples of the drugs include antiproliferative substances such as actinomycin D, or derivatives and analogs thereof. Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. The substance can also fall under the genus of antineoplastic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel, docetaxel, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride, and mitomycin. Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, and thrombin. Examples of such cytostatic or antiproliferative agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril, cilazapril or lisinopril, calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (ω-3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, rapamycin, rapamycin derivatives and analogs, and dexamethasone.
- The coating of the present invention can be used in conjunction with a balloon-expandable or self-expandable stent. The application of the coating is not limited to stents and the coating can also be used with a variety of other medical devices. Examples of other implantable medical device include stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, axius coronary shunts and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation). The underlying structure of the device can be of virtually any design.
- The device can be made of a metallic material or an alloy such as, but not limited to, cobalt-chromium alloys (e.g., ELGILOY), stainless steel (316L), “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, tantalum-based alloys, nickel-titanium alloy, platinum, platinum-based alloys such as, e.g., platinum-iridium alloy, iridium, gold, magnesium, titanium, titanium-based alloys, zirconium-based alloys, or combinations thereof. Devices made from bioabsorbable or biostable polymers can also be used with the embodiments of the present invention. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel chromium and molybdenum, available from Standard Press Steel Co. of Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum.
- The following examples illustrate various embodiments for the modified polymers.
- In one embodiment of the invention, EVAL (—[CH2—CH2]m—[CH2—CH(OH)]n—) manufactured by EVALCA Corp., Lisle, Ill., has an m:n ratio of 44:56. Those having ordinary skill in the art will understand that EVAL with higher or lower ethylene content can be modified by the same methods as those discussed below. In accordance with some of the embodiments of this invention, EVAL is modified as shown in the following examples.
- Poly((ethylene glycol) (PEG) is a highly biologically compatible product. Due to the presence of hydroxyl groups, PEG is capable of entering reactions of condensation with EVAL. The reaction may need to be catalyzed by a suitable acidic or basic catalyst. PEG can be in an oligomeric or polymeric form and can have a molecular weight within a range of between about 500 and about 30,000 Daltons. The conditions under which this reaction is conducted can be determined by one having ordinary skill in the art. EVAL can be firmly bonded to the biologically compatible PEG. Thus, EVAL is modified by PEG and the modified EVAL can have an enhanced long-term biocompatibility.
- Poly(ethylene glycol)-isocyanate (hereinafter, PEG-ISO) is a PEG based product having the isocyanate fragments —N═C═O. An example of a PEG-ISO suitable as a modifier for EVAL is a methoxylated PEG-ISO. The PEG-ISO has a general formula CH3—[O—CH2—CH2]p—N═C═O. This modifier, manufactured by Shearwater Corp. of Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 112. Due to the presence of the isocyanate groups, PEG-ISO is chemically very active and readily reacts with EVAL in solution. The —N═C═O group of PEG-ISO, having strong electron accepting properties, reacts with the nucleophilic hydroxyl group of EVAL, as illustrated by reaction scheme (I):
- The conditions under which reaction scheme (I) is conducted can be determined by one having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible PEG-ISO to form the urethane product of reaction scheme (I). Thus, EVAL, modified by PEG-ISO, can have an enhanced long-term biocompatibility.
- Poly(ethylene glycol)-epoxide (hereinafter, PEG-EPO) is a PEG-based product having epoxy fragments. An example of a PEG-EPO suitable as a modifier for EVAL is a methoxylated PEG-EPO, such as methoxy-PEG-glycidyl ether and has the following general formula
- The PEG-EPO has a molecular weight of about 5,000, which corresponds to the value of the integer “p” of about 112, and is manufactured by Shearwater Corp. of Huntsville, Ala.
- Epoxy groups in PEG-EPO are reactive, and PEG-EPO easily reacts with EVAL in solution. The epoxy group of PEG-EPO can react with the nucleophilic hydroxyl group of EVAL, via the nucleophilic substitution reaction SN2. Normally, the proton of the hydroxyl group attacks the less substituted α-carbon atom of the epoxy group. The β-carbon is less accessible due to the steric hindrances. As a result of the proton attack on the α-carbon atom, the ring opens, and the modified EVAL is formed according to a reaction that can be shown as reaction scheme (II):
- Reaction scheme (II) is carried out more effectively in the presence of electron acceptors, because the electron acceptors facilitate electrophilic polarization of the C—O bond of the epoxy ring, thus making the subsequent attack by the proton of the hydroxyl group of EVAL easier. Accordingly, modification of EVAL with PEG-EPO is facilitated in the presence of electrophilic ring-opening catalysts, for instance, aprotonic acids such as amine-boron trifluoride products or tertiary amines. The use of any ring-opening catalyst is optional. The conditions under which this reaction is conducted can be determined by one having ordinary skill in the art.
- Hyaluronic acid is a linear polysaccharide composed of disaccharide units of N-acetylglucosamine and D-glucoronic acid. In hyaluronic acid, uronic acid and the aminosugar are linked by alternating β-1,4 and β-1,3 glucosidic bonds. Hyaluronic acid has hydroxymethyl groups and secondary amino groups. EVAL can be modified by these groups. In order to facilitate the condensation reaction of either the hydroxymethyl groups or the secondary amino groups of hyaluronic acid with the hydroxyl groups of EVAL, an appropriate catalyst may be needed. Alternatively, the modification of EVAL by hyaluronic acid can be carried in the presence of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide, also known as carbodiimide or EDC, having the formula CH3—CH2—N═C═N—CH2—CH2—CH2—N(CH3)2. EDC is manufactured by Pierce Corp., Rockford, Ill. Instead of EDC, 1,3-dicyclohexylcarbodiimide (DCC) having the formula
- can be used. As a result, EVAL is firmly bonded to the biologically compatible hyaluronic acid for enhanced long-term biocompatibility.
- As a first step, a biologically active agent is conjugated to a protein or a polysaccharide, or to a combination of the protein and the polysaccharide. Albumin (also known as albumen or the egg white protein) can be used as the protein, and heparin, heparin derivatives, including the derivatives containing hydrophobic counter-ions, hyaluronic acid or chitosan can be used as polysaccharides. PEG is one example of the biologically active agent to be conjugated to the protein or polysaccharide, or to a combination of the protein and the polysaccharide. Other biologically active agents that can be used include superoxide dismutase-mimetics (SOD-mimetics or SODm) and diazenium diolate type nitric oxide donors.
- Superoxide dismutase-mimetics are oxidoreductase-based complexes that contain cations of copper, iron, or manganese. SOD-mimetics are major intracellular enzymes that protect the cell against oxygen toxicity by dismutating the radical oxygen superoxide, .O2, to oxygen and hydrogen peroxide.
- Manganese-based SODm, manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene (SOD-40470) manufactured by Metaphore Pharmaceuticals, Inc., St. Louis, Mo. is one example of a SODm that can be used to conjugate to the protein or polysaccharide. Those having ordinary skill in the art can also select other types of SODm. Due to the presence of the primary amino ligands, SOD-40470 is chemically quite active and can be easily conjugated to the protein or the polysaccharide, or to a combination of the protein and the polysaccharide.
- Diazenium diolate type nitric oxide donors are products of nitric oxide (NO) with nucleophilic amines. Diazenium diolates also known as NONOates are highly biologically compatible and possess valuable medicinal properties. In slightly acidic medium they spontaneously release NO which has excellent therapeutic properties. One example of a diazenium diolate that can be used to conjugate to the protein or polysaccharide is spermine diazenium diolate (SDD).
- An aliphatic NONOate, SDD, or 1,3-propanediamine, N-{4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl}-diazen-1-ium-1,2-diolate has the formula NH2—(CH2)3—N[N+(O)—(N—OH)]—(CH2)4—NH—(CH2)3—NH2 and is manufactured by Molecular Probes, Inc., Eugene, Oreg. Alternatively, other diazenium diolate-type NO donors can be used. One example of a suitable alternative diazenium diolate-type NO donor can be 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino}diazen-1-ium-1,2-diolate having the formula CH3—N+H2—(CH2)6—N(CH3)—N+(O−)═N—O− (MAHMA-NO). Another example of a suitable alternative NONOate can be Z-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate having the formula O−—N+[N(CH2—CH2—NH2)CH2—CH2—N+H3]═N—O− (DETA-NO). MAHMA-NO and DETA-NO can be obtained from Cayman Chemical Co., Ann Arbor, Mich.
- Due to the presence of amino groups, both SDD, MAHMA-NO and DETA-NO are easily conjugated to the above-mentioned proteins and/or polysaccharides, or to a combination thereof. The conditions under which the reaction of conjugation of PEG, SODm or diazenium diolates to the protein or polysaccharide, or a combination thereof, is conducted can be determined by those having ordinary skill in the art.
- As a second step, the product of conjugation of PEG, SODm or diazenium diolates to the protein or polysaccharide, or a combination thereof, is cold-blended with EVAL. As a result, EVAL is modified with a product having high biocompatibility.
- EVAL can be preliminarily derivatized by tosylation (treatment with tosyl chloride), or alternatively by tresylation (by reacting with tresyl chloride). Tosyl chloride is a derivative of toluene, p-toluene sulfonyl chloride having the formula CH3—C6H4—SO2Cl (TsCl). The process of EVAL derivatization can be conducted directly on the stent. The following process of tosylation can be used.
- A 2% (mass) solution of EVAL in dimethylacetamide (DMAC) can be sprayed on the stent and dried for 10 minutes at 80° C., and then again for 1 hour at 140° C. A 3% (mass) of TsCl in dry xylene can be prepared and the coated EVAL stent can be shaken for 1 minute with 1.4 ml of the TsCl solution. 0.25 ml of 33% (mass) of pyridine in dry xylene can be added, followed by shaking for 4 hours in a desiccator. The stent can be then rinsed with acetone and twice with 1 mM solution of HCl to remove the excess TsCl. As a result, EVAL can be tosylated according to reaction scheme (III) and the tosyl group is attached to the EVAL backbone via a hydroxy group to yield the toluenesulfoester:
- Alternatively, tresyl chloride (2,2,2-trifluoroethanesulphonyl chloride) can be used to derivatrize EVAL according to reaction scheme (IV), and the tresyl group is attached to the EVAL backbone via hydroxy group:
- Poly(ethylene glycol)-amine product (hereinafter, PEG-NH2) is a PEG-based product having amino groups NH2. An example of a PEG-NH2 that can be used as a modifier for the tosylated or tresylated EVAL is a methoxylated PEG-NH2 product having a general formula CH3—[O—CH2—CH2]p—O—CH2—CH2—NH2. This product, manufactured by Shearwater Corp., Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 113.
- Due to the presence of the amino groups, PEG-NH2 is chemically active and is readily alkylated with the tosylated or tresylated EVAL in solution. Typically, compared with the hydroxyl group of EVAL, the amino group of PEG-NH2 is more reactive with alkylating agents such as tosylated or tresylated agents.
- In addition, since toluenesulfonic acid is known to be a very strong acid, on par with sulfuric or hydrochloric acids, its anion, CH3—C6H4—SO3 −, is an excellent leaving group in the nucleophilic substitution alkylation reaction of a primary amine; it is much better than the hydroxyl group of an underivatized EVAL. Accordingly, the tosylated EVAL obtained as described above, readily reacts with PEG-NH2 as schematically shown by the alkylation reaction scheme (V):
- The conditions under which this reaction are conducted can be determined by those having ordinary skill in the art. The reaction of tresylated EVAL and PEG-NH2 is similar to reaction scheme (V). As a result, EVAL is firmly bonded to the biologically compatible PEG-NH2 to form the secondary amine product of reaction (V).
- SOD-mimetics are highly biocompatible and can be used for modifying tosylated or tresylated EVAL. In particular, SOD-40470 can be used as a modifying agent with the tosylated or tresylated EVAL. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and is readily alkylated with the tosylated or tresylated EVAL in solution. Alternatively, other SOD-mimetics can be used so long as they have amino groups. The mechanism of the tosylation or tresylation is via a reaction of alkylation of the amino group of SODm and is similar to reaction scheme (V) discussed above. The conditions under which this reaction is conducted will be determined by those having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible amino ligand-containing SODm to form the secondary amine product.
- Tosylated or tresylated EVAL can be modified by binding to a NONOate. Spermine diazenium diolate, SDD, can be used as a modifying agent for the tosylated or tresylated EVAL. Due to the presence of two primary and one secondary amino groups, SDD is easily alkylated with the tosylated or tresylated EVAL in solution. The mechanism of such tosylation or tresylation includes alkylation of the amino group of SDD and is similar to reaction scheme (V) discussed above. Alternatively, other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of binding of the tosylated or tresylated EVAL to MAHMA-NO or DETA-NO is the same as the mechanism of binding to SDD.
- The conditions under which the tosylated or tresylated EVAL is bound to SDD, or the alternative diazenium diolate-type NO donors, can be determined by those having ordinary skill in the art. As a result, EVAL is firmly bonded to the biologically compatible diazenium diolate-type NO donors to form the secondary amine product. Since the modified product will be able to release NO having valuable medicinal properties, the stent coating will acquire additional therapeutical properties.
- EAA has the general formula —[CH2—CH2]m—[CH2—CH(COOH)]n—. In one embodiment of this invention, 25% (by mass) aqueous, ammonia-neutralized dispersion of EAA manufactured by Michelman, Inc., Cincinnati, Ohio is used. In some of the embodiments of this invention, EAA is modified as illustrated in the following examples.
- Due to the presence of the amino groups, PEG-NH2 is chemically active and readily acylated with the carboxyl groups of EAA. Accordingly, EAA readily reacts with PEG-NH2. The reaction is carried out in the presence of EDC. EAA reacts with EDC and forms an O-acylisourea, an amine-reactive intermediate. This intermediate is unstable in an aqueous environment and immediately reacts with PEG-NH2 utilizing PEG-NH2's amino groups.
- The path of the reaction is via a nucleophilic attack of the carbon of the carboxyl group of EAA by the electron-rich nitrogen of the amino group of PEG-NH2, followed by the formation of the peptide bond —NH—CO—. Water is the by-product. The process is schematically shown by the acylation reaction scheme (VI):
- SOD-40470 can be used as a modifying agent of EAA. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and readily couples with EAA. As in the case of modification with PEG-NH2, the reaction is carried out in the presence of EDC. The mechanism of the reaction is via acylation of the amino group of SOD-40470 and is similar to reaction scheme (VI). Other SOD-mimetics can be used so long as they have amino groups. EAA can be firmly bonded to the biologically compatible amino ligand-containing SOD-40470 to form the peptide-type product.
- SDD can be used as a modifying agent for EAA. Due to the presence of the amino groups, SDD is chemically active and readily couples with EAA. As in the case of modification with PEG-NH2 and SOD-40470, the reaction is carried out in the presence of EDC. The mechanism of the reaction is via acylation of the amino group of SDD and is similar to reaction scheme (VI). Other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of the coupling of EAA to MAHMA-NO or to DETA-NO is the same as the mechanism of coupling EAA to SDD. The conditions under which the reaction of binding EAA to SDD or the alternative diazenium diolate-type NO donors is conducted can be determined by those having ordinary skill in the art. As a result, EAA is firmly bonded to the biologically compatible diazenium diolate-type NO donors to form the peptide-type product. The modified product will be able to release NO.
- EGMA has the general formula
- wherein m and n are integers.
- A brand of EGMA having about 80% (by mass) of the units derived from ethylene can be used for modification. EGMA is an aliphatic epoxy oligomer with relatively high contents of epoxy functionality. Due to the presence of the epoxy groups, EGMA is chemically reactive and can be modified via these epoxy groups, particularly, by reacting EGMA with substances containing amino-, carboxyl-, and/or hydroxyl groups. In accordance with some of the embodiments of this invention, EGMA is modified as shown in the following examples.
- As mentioned above, PEG-NH2 is chemically active and its amino group easily reacts with the epoxy group of EGMA. The path of the reaction is via the SN2 nucleophilic attack of the epoxy group of EGMA by the electron-rich nitrogen of the amino group of PEG-NH2. As a result, the oxirane ring of EGMA opens and a hydroxyl group forms. The process is schematically shown by reaction scheme (VII):
- Reaction scheme (VII) may then continue and, depending on the amounts of EGMA and PEG-NH2, the second proton of the amino group of the product can attack the second molecule of EGMA by the same nucleophilic mechanism. As a result, a cross-linked oligomer may form. The conditions under which reaction (VII) is conducted can be determined by those having ordinary skill in the art. Irrespective of whether the reaction stops at a stage shown by reaction (VII) or continues through the formation of the cross-linked tri-dimensional oligomeric network, EGMA is firmly bonded to the biologically compatible PEG-NH2.
- SOD-40470 can be used as a modifying agent of EGMA. Due to the presence of the primary amino ligands, SOD-40470 is chemically active and readily couples with EGMA. The mechanism of the reaction is via nucleophilic bonding of the amino group of SOD-40470 to the oxirane group of EGMA and is similar to the reaction (VII) discussed above. Alternatively, other SOD-mimetics can be used so long as they have amino groups. EGMA can be firmly bonded to the biologically compatible amino ligand-containing SOD-40470 to form a linear or cross-linked oligomer, depending on the conditions of the reaction of modification.
- SDD can be used as a modifying agent of EGMA. Due to the presence of the amino groups, SDD is chemically active and readily couples with EGMA according to the mechanism similar to reaction scheme (VII). Other diazenium diolate-type NO donors can be used, so long as they have amino groups, for example, MAHMA-NO or DETA-NO. The mechanism of coupling of EAA to MAHMA-NO or DETA-NO is the same as the mechanism of coupling to SDD. The conditions under which the reaction of binding EGMA to SDD, or the alternative diazenium diolate-type NO donors, is conducted can be determined by those having ordinary skill in the art. EGMA can be firmly bonded to the biologically compatible diazenium diolate-type NO donors.
- Hydroxyl-terminated methoxy-PEG is a PEG-based product having hydroxyl groups. An example of a hydroxyl-terminated methoxy-PEG suitable as a modifier for EGMA is a monomethyl ether of PEG, a methoxylated PEG product having a general formula CH3O—[CH2—CH2—O]p—CH2—CH2—OH, known as a low-diol mPEG. The product is manufactured by Shearwater Corp., Huntsville, Ala., and, like PEG-ISO or PEG-EPO, has a molecular weight of about 5,000 which corresponds to “p” being an integer of about 112. The low-diol mPEG is a strong nucleophilic agent and bonds with EGMA via a nucleophilic substitution reaction of its nucleophilic hydroxyl group with the oxirane ring of EGMA. The mechanism of that reaction is similar to the mechanism illustrated schematically by reaction (II).
- Naturally, modification of EGMA by the low diol mPEG is carried out more effectively in the presence of the electron acceptors, which facilitate the nucleophilic attack of the epoxy group of EGMA by the proton of the hydroxyl group of the low diol mPEG. Accordingly, modification of EGMA with the low diol mPEG is facilitated in the presence of ring-opening catalysts that include either amines or electrophilic agents which can be, for example, aprotonic acids such as amine-boron trifluoride products. The use of any ring-opening catalysts is optional.
- The conditions under which this reaction is conducted can be determined by those having ordinary skill in the art. As a result, EGMA is firmly bonded to the biologically compatible low diol mPEG to form the product similar to the product of reaction (II).
- Carboxyl-terminated methoxy-PEG is a PEG-based product having carboxyl groups. An example of a carboxyl-terminated methoxy-PEG suitable as a modifier for EGMA is methoxy-PEG propionic acid, a methoxylated PEG-based product having a general formula CH3O—[CH2—CH2—O]p—CH2—CH2COOH, known as PA-PEG. The product, manufactured by Shearwater Corp., Huntsville, Ala., has a molecular weight of about 5,000 which corresponds to the value of the integer “p” of about 111.
- Like low diol mPEG, PA-PEG is a strong nucleophilic agent which can react with the epoxy group of EGMA. The mechanism of this reaction is similar to the mechanism illustrated schematically by reaction (II), except a proton of carboxyl group carries out the nucleophilic attack instead of the alcohol proton illustrated by the reaction (II). EGMA can be firmly bonded to the biologically compatible PA-PEG to form a product similar to the product of the reaction (II).
- Modification of the EVAL, tosylated or tresylated EVAL, EAA and EGMA discussed in Examples 1-16 can be recapitulated as shown in Table 1.
-
TABLE 1 Example The modified polymer The modifying agent 1 EVAL PEG 2 EVAL PEG-ISO 3 EVAL PEG-EPO 4 EVAL Hyaluronic acid 5 EVAL PEG or SODm or diazenium diolate + albumin or heparin or chitosan 6 Tosylated or tresylated EVAL PEG-NH2 7 Tosylated or tresylated EVAL SODm 8 Tosylated or tresylated EVAL SDD 9 EAA PEG-NH2 10 EAA SODm 11 EAA SDD 12 EGMA PEG-NH2 13 EGMA SODm 14 EGMA SDD 15 EGMA Low diol mPEG 16 EGMA PA-PEG - While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Claims (16)
1. A coating for a medical device, wherein the coating comprises:
a biologically compatible compound blended with a polymer, wherein the polymer comprises
at least one unit (I)
—CH2—CH2— (I)
—CH2—CH2— (I)
and at least one unit (II)
wherein,
R1 comprises a component selected from a group consisting of a carboxy, an ester, an ether, an amide, a urethane, an amine, a toluenesulfoester, a 2,2,2-trifluoroethylsulfoester, an epoxy, and a glycidyl group; and
R2 comprises a component selected from a group consisting of a hydrogen and an alkyl group.
2. The coating of claim 1 , wherein the polymer comprises:
wherein,
R1 comprises a component selected from a group consisting of a carboxy, an ester, an ether, an amide, a urethane, an amine, a toluenesulfoester, a 2,2,2-trifluoroethylsulfoester, an epoxy, and a glycidyl group;
R2 comprises a component selected from a group consisting of a hydrogen and an alkyl group;
the molecular weight of R1 or R2 ranges from about 1 to about 30,000 Daltons; and,
the total of m+n is an integer ranging from about 50 to about 7,000.
3. The coating of claim 1 , wherein the molecular weight of R1 or R2 ranges from about 1 to about 30,000 Daltons; and, the total of m+n is an integer ranging from about 50 to about 7,000.
4. The coating of claim 1 , wherein the molecular weight of R1 is about 5000 Daltons.
5. The coating of claim 1 , wherein the alkyl is methyl.
7. The coating of claim 1 , wherein the biologically compatible compound comprises a poly(alkylene glycol), a poly(alkylene glycol) derivative, a protein, a polysaccharide, a superoxide dismutase mimetic, a diazenium diolate, or a combination thereof.
8. The coating of claim 1 , wherein the biologically compatible compound comprises poly(ethylene glycol).
9. The coating of claim 1 , wherein the biologically compatible compound is conjugated to a protein or to a polysaccharide.
10. The coating of claim 9 , wherein the protein comprises albumin.
11. The coating of claim 9 , wherein the polysaccharide comprises a component selected from a group consisting of hyaluronic acid, heparin, heparin derivatives containing a hydrophobic counter-ion and chitosan.
12. The coating of claim 7 , wherein the diazenium diolate comprises a component selected from a group consisting of 1,3-propanediamine, N-{4-[1-(3-aminopropyl)-2-hydroxy-2-nitrosohydrazino]butyl}-diazen-1-ium-1,2-diolate and 1-{N-methyl-N-[6-(N-methylammonio)hexyl]amino}diazen-1-ium-1,2-diolate.
13. The coating of claim 7 , wherein the superoxide dismutase mimetic comprises manganese(II)dichloro-aminoethylthiolated pentaazatetracyclohexacosatriene.
14. The coating of claim 1 , further comprising a therapeutic substance.
15. The coating of claim 14 , wherein the therapeutic substance comprises actinomycin D, estradiol, paclitaxel, docetaxel, or rapamycin.
16. The coating of claim 1 , wherein the medical device comprises a stent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/643,576 US20150182672A1 (en) | 2002-03-20 | 2015-03-10 | Coatings for implantable medical devices |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/104,769 US7919075B1 (en) | 2002-03-20 | 2002-03-20 | Coatings for implantable medical devices |
US11/338,058 US8563025B2 (en) | 2002-03-20 | 2006-01-23 | Coatings for implantable medical devices |
US14/044,693 US9067001B2 (en) | 2002-03-20 | 2013-10-02 | Coatings for implantable medical devices |
US14/643,576 US20150182672A1 (en) | 2002-03-20 | 2015-03-10 | Coatings for implantable medical devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/044,693 Division US9067001B2 (en) | 2002-03-20 | 2013-10-02 | Coatings for implantable medical devices |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150182672A1 true US20150182672A1 (en) | 2015-07-02 |
Family
ID=36574532
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/104,769 Expired - Fee Related US7919075B1 (en) | 2002-03-20 | 2002-03-20 | Coatings for implantable medical devices |
US11/338,058 Expired - Fee Related US8563025B2 (en) | 2002-03-20 | 2006-01-23 | Coatings for implantable medical devices |
US14/044,693 Expired - Fee Related US9067001B2 (en) | 2002-03-20 | 2013-10-02 | Coatings for implantable medical devices |
US14/643,576 Abandoned US20150182672A1 (en) | 2002-03-20 | 2015-03-10 | Coatings for implantable medical devices |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/104,769 Expired - Fee Related US7919075B1 (en) | 2002-03-20 | 2002-03-20 | Coatings for implantable medical devices |
US11/338,058 Expired - Fee Related US8563025B2 (en) | 2002-03-20 | 2006-01-23 | Coatings for implantable medical devices |
US14/044,693 Expired - Fee Related US9067001B2 (en) | 2002-03-20 | 2013-10-02 | Coatings for implantable medical devices |
Country Status (1)
Country | Link |
---|---|
US (4) | US7919075B1 (en) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7396582B2 (en) * | 2001-04-06 | 2008-07-08 | Advanced Cardiovascular Systems, Inc. | Medical device chemically modified by plasma polymerization |
US7919075B1 (en) * | 2002-03-20 | 2011-04-05 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices |
US8062891B2 (en) | 2003-10-24 | 2011-11-22 | Gencia Corporation | Nonviral vectors for delivering polynucleotides to plants |
ES2411962T3 (en) | 2003-10-24 | 2013-07-09 | Gencia Corporation | Methods and compositions for delivering polynucleotides |
US20090208478A1 (en) * | 2003-10-24 | 2009-08-20 | Gencia Corporation | Transducible polypeptides for modifying metabolism |
US8133733B2 (en) | 2003-10-24 | 2012-03-13 | Gencia Corporation | Nonviral vectors for delivering polynucleotides to target tissues |
US20090123468A1 (en) | 2003-10-24 | 2009-05-14 | Gencia Corporation | Transducible polypeptides for modifying metabolism |
US8507277B2 (en) | 2003-10-24 | 2013-08-13 | Gencia Corporation | Nonviral vectors for delivering polynucleotides |
US20090062909A1 (en) | 2005-07-15 | 2009-03-05 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
CA2615452C (en) | 2005-07-15 | 2015-03-31 | Micell Technologies, Inc. | Polymer coatings containing drug powder of controlled morphology |
US8021679B2 (en) | 2005-08-25 | 2011-09-20 | Medtronic Vascular, Inc | Nitric oxide-releasing biodegradable polymers useful as medical devices and coatings therefore |
ES2540059T3 (en) | 2006-04-26 | 2015-07-08 | Micell Technologies, Inc. | Coatings containing multiple drugs |
US8241619B2 (en) | 2006-05-15 | 2012-08-14 | Medtronic Vascular, Inc. | Hindered amine nitric oxide donating polymers for coating medical devices |
US8636767B2 (en) | 2006-10-02 | 2014-01-28 | Micell Technologies, Inc. | Surgical sutures having increased strength |
CA2667228C (en) | 2006-10-23 | 2015-07-14 | Micell Technologies, Inc. | Holder for electrically charging a substrate during coating |
US11426494B2 (en) | 2007-01-08 | 2022-08-30 | MT Acquisition Holdings LLC | Stents having biodegradable layers |
CN101711137B (en) | 2007-01-08 | 2014-10-22 | 米歇尔技术公司 | Stents having biodegradable layers |
US7811600B2 (en) | 2007-03-08 | 2010-10-12 | Medtronic Vascular, Inc. | Nitric oxide donating medical devices and methods of making same |
JP2010527746A (en) * | 2007-05-25 | 2010-08-19 | ミセル テクノロジーズ、インコーポレイテッド | Polymer film for medical device coating |
US8273828B2 (en) * | 2007-07-24 | 2012-09-25 | Medtronic Vascular, Inc. | Methods for introducing reactive secondary amines pendant to polymers backbones that are useful for diazeniumdiolation |
CN101172168B (en) * | 2007-10-10 | 2010-06-02 | 大连理工大学 | Metallic blood vessel bracket coating for osamine glycan load CD133 antibody and method for preparing the same |
US20090222088A1 (en) * | 2008-02-29 | 2009-09-03 | Medtronic Vascular, Inc. | Secondary Amine Containing Nitric Oxide Releasing Polymer Composition |
US20090232863A1 (en) * | 2008-03-17 | 2009-09-17 | Medtronic Vascular, Inc. | Biodegradable Carbon Diazeniumdiolate Based Nitric Oxide Donating Polymers |
US20090232868A1 (en) * | 2008-03-17 | 2009-09-17 | Medtronic Vascular, Inc. | Nitric Oxide Releasing Polymer Composition |
SG192523A1 (en) | 2008-04-17 | 2013-08-30 | Micell Technologies Inc | Stents having bioabsorbable layers |
WO2011009096A1 (en) | 2009-07-16 | 2011-01-20 | Micell Technologies, Inc. | Drug delivery medical device |
EP2313122B1 (en) | 2008-07-17 | 2019-03-06 | Micell Technologies, Inc. | Drug delivery medical device |
US8158187B2 (en) * | 2008-12-19 | 2012-04-17 | Medtronic Vascular, Inc. | Dry diazeniumdiolation methods for producing nitric oxide releasing medical devices |
US8834913B2 (en) | 2008-12-26 | 2014-09-16 | Battelle Memorial Institute | Medical implants and methods of making medical implants |
US20100239635A1 (en) * | 2009-03-23 | 2010-09-23 | Micell Technologies, Inc. | Drug delivery medical device |
EP2411440B1 (en) * | 2009-03-23 | 2018-01-17 | Micell Technologies, Inc. | Improved biodegradable polymers |
CA2757276C (en) | 2009-04-01 | 2017-06-06 | Micell Technologies, Inc. | Coated stents |
US8709465B2 (en) * | 2009-04-13 | 2014-04-29 | Medtronic Vascular, Inc. | Diazeniumdiolated phosphorylcholine polymers for nitric oxide release |
CA2759015C (en) | 2009-04-17 | 2017-06-20 | James B. Mcclain | Stents having controlled elution |
EP2531140B1 (en) | 2010-02-02 | 2017-11-01 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
US8795762B2 (en) | 2010-03-26 | 2014-08-05 | Battelle Memorial Institute | System and method for enhanced electrostatic deposition and surface coatings |
CA2797110C (en) | 2010-04-22 | 2020-07-21 | Micell Technologies, Inc. | Stents and other devices having extracellular matrix coating |
US20130172853A1 (en) | 2010-07-16 | 2013-07-04 | Micell Technologies, Inc. | Drug delivery medical device |
US10464100B2 (en) | 2011-05-31 | 2019-11-05 | Micell Technologies, Inc. | System and process for formation of a time-released, drug-eluting transferable coating |
WO2013012689A1 (en) | 2011-07-15 | 2013-01-24 | Micell Technologies, Inc. | Drug delivery medical device |
US10188772B2 (en) | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
CN110269959A (en) | 2013-03-12 | 2019-09-24 | 脉胜医疗技术公司 | Bioabsorbable biomedical implants |
CN105377318A (en) | 2013-05-15 | 2016-03-02 | 脉胜医疗技术公司 | Bioabsorbable biomedical implants |
US20160250392A1 (en) * | 2015-02-26 | 2016-09-01 | Battelle Memorial Instute | Implant with reactive oxygen species scavenging coating |
CN107216439A (en) * | 2017-06-28 | 2017-09-29 | 重庆工商大学 | A kind of polyurethane-urea chitin copolymer and its preparation method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523341A (en) * | 1991-09-12 | 1996-06-04 | E. I. Du Pont De Nemours And Company | Polyoxymethylene resin compositions having improved weatherability |
US6379691B1 (en) * | 1998-09-29 | 2002-04-30 | Medtronic/Ave, Inc. | Uses for medical devices having a lubricious, nitric oxide-releasing coating |
US6780424B2 (en) * | 2001-03-30 | 2004-08-24 | Charles David Claude | Controlled morphologies in polymer drug for release of drugs from polymer films |
US7201935B1 (en) * | 2002-09-17 | 2007-04-10 | Advanced Cardiovascular Systems, Inc. | Plasma-generated coatings for medical devices and methods for fabricating thereof |
US7919075B1 (en) * | 2002-03-20 | 2011-04-05 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices |
Family Cites Families (141)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3844527A (en) * | 1972-01-04 | 1974-10-29 | S Scott | Water reservoir liner for concrete forms |
US4329383A (en) | 1979-07-24 | 1982-05-11 | Nippon Zeon Co., Ltd. | Non-thrombogenic material comprising substrate which has been reacted with heparin |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4882168A (en) | 1986-09-05 | 1989-11-21 | American Cyanamid Company | Polyesters containing alkylene oxide blocks as drug delivery systems |
JPH0696023B2 (en) | 1986-11-10 | 1994-11-30 | 宇部日東化成株式会社 | Artificial blood vessel and method for producing the same |
US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US6387379B1 (en) * | 1987-04-10 | 2002-05-14 | University Of Florida | Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like |
US4894231A (en) | 1987-07-28 | 1990-01-16 | Biomeasure, Inc. | Therapeutic agent delivery system |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
JP2561309B2 (en) | 1988-03-28 | 1996-12-04 | テルモ株式会社 | Medical material and manufacturing method thereof |
US5328471A (en) | 1990-02-26 | 1994-07-12 | Endoluminal Therapeutics, Inc. | Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens |
US4977901A (en) | 1988-11-23 | 1990-12-18 | Minnesota Mining And Manufacturing Company | Article having non-crosslinked crystallized polymer coatings |
US5272012A (en) | 1989-06-23 | 1993-12-21 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
US5971954A (en) | 1990-01-10 | 1999-10-26 | Rochester Medical Corporation | Method of making catheter |
DK0514406T3 (en) | 1990-01-30 | 1994-08-15 | Akzo Nobel Nv | An article for controlled release of an active substance comprising a cavity completely enclosed by a wall and fully or partially filled with one or more active substances |
US5292516A (en) | 1990-05-01 | 1994-03-08 | Mediventures, Inc. | Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers |
US5306501A (en) | 1990-05-01 | 1994-04-26 | Mediventures, Inc. | Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers |
US5300295A (en) | 1990-05-01 | 1994-04-05 | Mediventures, Inc. | Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH |
US5298260A (en) | 1990-05-01 | 1994-03-29 | Mediventures, Inc. | Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality |
WO1991017724A1 (en) | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
US6060451A (en) | 1990-06-15 | 2000-05-09 | The National Research Council Of Canada | Thrombin inhibitors based on the amino acid sequence of hirudin |
WO1991019529A1 (en) | 1990-06-15 | 1991-12-26 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
US5112457A (en) | 1990-07-23 | 1992-05-12 | Case Western Reserve University | Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants |
US5455040A (en) | 1990-07-26 | 1995-10-03 | Case Western Reserve University | Anticoagulant plasma polymer-modified substrate |
US5462990A (en) | 1990-10-15 | 1995-10-31 | Board Of Regents, The University Of Texas System | Multifunctional organic polymers |
US5330768A (en) | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
US5573934A (en) | 1992-04-20 | 1996-11-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
US5599352A (en) | 1992-03-19 | 1997-02-04 | Medtronic, Inc. | Method of making a drug eluting stent |
EP0568451B1 (en) | 1992-04-28 | 1999-08-04 | Terumo Kabushiki Kaisha | Thermoplastic polymer composition and medical devices made of the same |
EP0604022A1 (en) | 1992-12-22 | 1994-06-29 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method for its manufacture |
US5824048A (en) | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
US20020055710A1 (en) | 1998-04-30 | 2002-05-09 | Ronald J. Tuch | Medical device for delivering a therapeutic agent and method of preparation |
US5994341A (en) | 1993-07-19 | 1999-11-30 | Angiogenesis Technologies, Inc. | Anti-angiogenic Compositions and methods for the treatment of arthritis |
EG20321A (en) | 1993-07-21 | 1998-10-31 | Otsuka Pharma Co Ltd | Medical material and process for producing the same |
US5380299A (en) | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
WO1995010989A1 (en) | 1993-10-19 | 1995-04-27 | Scimed Life Systems, Inc. | Intravascular stent pump |
US5723004A (en) | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
US6231852B1 (en) * | 1993-11-18 | 2001-05-15 | The Regents Of The University Of California | Method for reducing BCL-2 expressing cells resistance to death |
US6051576A (en) | 1994-01-28 | 2000-04-18 | University Of Kentucky Research Foundation | Means to achieve sustained release of synergistic drugs by conjugation |
US5567410A (en) | 1994-06-24 | 1996-10-22 | The General Hospital Corporation | Composotions and methods for radiographic imaging |
US5670558A (en) * | 1994-07-07 | 1997-09-23 | Terumo Kabushiki Kaisha | Medical instruments that exhibit surface lubricity when wetted |
US5788979A (en) | 1994-07-22 | 1998-08-04 | Inflow Dynamics Inc. | Biodegradable coating with inhibitory properties for application to biocompatible materials |
US5578073A (en) | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
US5649977A (en) | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
US5637113A (en) | 1994-12-13 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
US5569198A (en) | 1995-01-23 | 1996-10-29 | Cortrak Medical Inc. | Microporous catheter |
US6017577A (en) | 1995-02-01 | 2000-01-25 | Schneider (Usa) Inc. | Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices |
US5919570A (en) | 1995-02-01 | 1999-07-06 | Schneider Inc. | Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices |
US5702754A (en) | 1995-02-22 | 1997-12-30 | Meadox Medicals, Inc. | Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings |
US5869127A (en) | 1995-02-22 | 1999-02-09 | Boston Scientific Corporation | Method of providing a substrate with a bio-active/biocompatible coating |
US6231600B1 (en) | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices |
US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
US20020091433A1 (en) | 1995-04-19 | 2002-07-11 | Ni Ding | Drug release coated stent |
US6099562A (en) | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
CA2218495A1 (en) | 1995-04-19 | 1996-10-24 | Kazunori Kataoka | Heterotelechelic block copolymer and a method for the production thereof |
US5837313A (en) | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
US5952411A (en) * | 1995-04-27 | 1999-09-14 | C.S.I.R. | Compound bearing an urethane linkage which is an adduct of ricinoleic esters and an isocynate, useful as a plasticizer for polyvinylchloride (PVC) and a process for preparing such compound |
US6010530A (en) | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
CA2178541C (en) | 1995-06-07 | 2009-11-24 | Neal E. Fearnot | Implantable medical device |
US5820917A (en) | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
US5667767A (en) | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
US5877224A (en) | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
US5658995A (en) | 1995-11-27 | 1997-08-19 | Rutgers, The State University | Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide) |
DK2111876T3 (en) | 1995-12-18 | 2011-12-12 | Angiodevice Internat Gmbh | Crosslinked polymer preparations and methods for their use |
US6033582A (en) | 1996-01-22 | 2000-03-07 | Etex Corporation | Surface modification of medical implants |
US5955509A (en) | 1996-05-01 | 1999-09-21 | Board Of Regents, The University Of Texas System | pH dependent polymer micelles |
US5876433A (en) | 1996-05-29 | 1999-03-02 | Ethicon, Inc. | Stent and method of varying amounts of heparin coated thereon to control treatment |
US5874165A (en) | 1996-06-03 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Materials and method for the immobilization of bioactive species onto polymeric subtrates |
US5914182A (en) | 1996-06-03 | 1999-06-22 | Gore Hybrid Technologies, Inc. | Materials and methods for the immobilization of bioactive species onto polymeric substrates |
US5830178A (en) | 1996-10-11 | 1998-11-03 | Micro Therapeutics, Inc. | Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide |
US6060518A (en) | 1996-08-16 | 2000-05-09 | Supratek Pharma Inc. | Polymer compositions for chemotherapy and methods of treatment using the same |
US6495579B1 (en) * | 1996-12-02 | 2002-12-17 | Angiotech Pharmaceuticals, Inc. | Method for treating multiple sclerosis |
US5980972A (en) | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
US6240616B1 (en) | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US5879697A (en) | 1997-04-30 | 1999-03-09 | Schneider Usa Inc | Drug-releasing coatings for medical devices |
US6056993A (en) | 1997-05-30 | 2000-05-02 | Schneider (Usa) Inc. | Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel |
US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
US6232336B1 (en) * | 1997-07-03 | 2001-05-15 | The United States Of America As Represented By The Department Of Health And Human Services | Nitric oxide-releasing amidine- and enamine-derived diazeniumdiolates, compositions and uses thereof and method of making same |
US5980928A (en) | 1997-07-29 | 1999-11-09 | Terry; Paul B. | Implant for preventing conjunctivitis in cattle |
US6121027A (en) | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6015541A (en) | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US6541116B2 (en) * | 1998-01-30 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Superoxide dismutase or superoxide dismutase mimic coating for an intracorporeal medical device |
US6110188A (en) | 1998-03-09 | 2000-08-29 | Corvascular, Inc. | Anastomosis method |
US6113629A (en) | 1998-05-01 | 2000-09-05 | Micrus Corporation | Hydrogel for the therapeutic treatment of aneurysms |
KR100314496B1 (en) | 1998-05-28 | 2001-11-22 | 윤동진 | Non-thrombogenic heparin derivatives, process for preparation and use thereof |
US6153252A (en) | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
JP4898991B2 (en) | 1998-08-20 | 2012-03-21 | クック メディカル テクノロジーズ エルエルシー | Sheathed medical device |
US6248127B1 (en) | 1998-08-21 | 2001-06-19 | Medtronic Ave, Inc. | Thromboresistant coated medical device |
US6335029B1 (en) | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US6419692B1 (en) | 1999-02-03 | 2002-07-16 | Scimed Life Systems, Inc. | Surface protection method for stents and balloon catheters for drug delivery |
US7445641B1 (en) * | 1999-05-27 | 2008-11-04 | Pharmacia Corporation | Biomaterials modified with superoxide dismutase mimics |
US6258121B1 (en) | 1999-07-02 | 2001-07-10 | Scimed Life Systems, Inc. | Stent coating |
US6494862B1 (en) | 1999-07-13 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
US6759054B2 (en) | 1999-09-03 | 2004-07-06 | Advanced Cardiovascular Systems, Inc. | Ethylene vinyl alcohol composition and coating |
US6287628B1 (en) | 1999-09-03 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US6503954B1 (en) | 2000-03-31 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Biocompatible carrier containing actinomycin D and a method of forming the same |
US6379381B1 (en) | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US6503556B2 (en) | 2000-12-28 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Methods of forming a coating for a prosthesis |
US6203551B1 (en) | 1999-10-04 | 2001-03-20 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implant device |
US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US20050238686A1 (en) * | 1999-12-23 | 2005-10-27 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6908624B2 (en) * | 1999-12-23 | 2005-06-21 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6283949B1 (en) | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
US6527801B1 (en) | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6585765B1 (en) | 2000-06-29 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Implantable device having substances impregnated therein and a method of impregnating the same |
US20020077693A1 (en) | 2000-12-19 | 2002-06-20 | Barclay Bruce J. | Covered, coiled drug delivery stent and method |
US6555157B1 (en) | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
US6451373B1 (en) | 2000-08-04 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Method of forming a therapeutic coating onto a surface of an implantable prosthesis |
US6585926B1 (en) | 2000-08-31 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a porous balloon |
US6254632B1 (en) | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
US6506437B1 (en) | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
US6558733B1 (en) | 2000-10-26 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Method for etching a micropatterned microdepot prosthesis |
US6544543B1 (en) | 2000-12-27 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Periodic constriction of vessels to treat ischemic tissue |
US6540776B2 (en) | 2000-12-28 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Sheath for a prosthesis and methods of forming the same |
US6544582B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for coating an implantable device |
US6544223B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
US20020188323A1 (en) * | 2001-03-19 | 2002-12-12 | Remon Medical Technologies Ltd. | Methods, systems and devices for in vivo electrochemical production of therapeutic agents |
US7396582B2 (en) * | 2001-04-06 | 2008-07-08 | Advanced Cardiovascular Systems, Inc. | Medical device chemically modified by plasma polymerization |
US6712845B2 (en) | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
US6660034B1 (en) * | 2001-04-30 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Stent for increasing blood flow to ischemic tissues and a method of using the same |
US6605154B1 (en) | 2001-05-31 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Stent mounting device |
US6572644B1 (en) | 2001-06-27 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | Stent mounting device and a method of using the same to coat a stent |
US6565659B1 (en) | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
US6527863B1 (en) | 2001-06-29 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Support device for a stent and a method of using the same to coat a stent |
EP1273314A1 (en) | 2001-07-06 | 2003-01-08 | Terumo Kabushiki Kaisha | Stent |
US6641611B2 (en) | 2001-11-26 | 2003-11-04 | Swaminathan Jayaraman | Therapeutic coating for an intravascular implant |
US20030065377A1 (en) | 2001-09-28 | 2003-04-03 | Davila Luis A. | Coated medical devices |
US7186789B2 (en) * | 2003-06-11 | 2007-03-06 | Advanced Cardiovascular Systems, Inc. | Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings |
US20060246109A1 (en) * | 2005-04-29 | 2006-11-02 | Hossainy Syed F | Concentration gradient profiles for control of agent release rates from polymer matrices |
US20050288481A1 (en) * | 2004-04-30 | 2005-12-29 | Desnoyer Jessica R | Design of poly(ester amides) for the control of agent-release from polymeric compositions |
US20050265960A1 (en) * | 2004-05-26 | 2005-12-01 | Pacetti Stephen D | Polymers containing poly(ester amides) and agents for use with medical articles and methods of fabricating the same |
US8007775B2 (en) * | 2004-12-30 | 2011-08-30 | Advanced Cardiovascular Systems, Inc. | Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same |
US7202325B2 (en) * | 2005-01-14 | 2007-04-10 | Advanced Cardiovascular Systems, Inc. | Poly(hydroxyalkanoate-co-ester amides) and agents for use with medical articles |
-
2002
- 2002-03-20 US US10/104,769 patent/US7919075B1/en not_active Expired - Fee Related
-
2006
- 2006-01-23 US US11/338,058 patent/US8563025B2/en not_active Expired - Fee Related
-
2013
- 2013-10-02 US US14/044,693 patent/US9067001B2/en not_active Expired - Fee Related
-
2015
- 2015-03-10 US US14/643,576 patent/US20150182672A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523341A (en) * | 1991-09-12 | 1996-06-04 | E. I. Du Pont De Nemours And Company | Polyoxymethylene resin compositions having improved weatherability |
US6379691B1 (en) * | 1998-09-29 | 2002-04-30 | Medtronic/Ave, Inc. | Uses for medical devices having a lubricious, nitric oxide-releasing coating |
US6780424B2 (en) * | 2001-03-30 | 2004-08-24 | Charles David Claude | Controlled morphologies in polymer drug for release of drugs from polymer films |
US7919075B1 (en) * | 2002-03-20 | 2011-04-05 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices |
US8563025B2 (en) * | 2002-03-20 | 2013-10-22 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices |
US7201935B1 (en) * | 2002-09-17 | 2007-04-10 | Advanced Cardiovascular Systems, Inc. | Plasma-generated coatings for medical devices and methods for fabricating thereof |
Also Published As
Publication number | Publication date |
---|---|
US20060121089A1 (en) | 2006-06-08 |
US7919075B1 (en) | 2011-04-05 |
US20140038907A1 (en) | 2014-02-06 |
US9067001B2 (en) | 2015-06-30 |
US8563025B2 (en) | 2013-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9067001B2 (en) | Coatings for implantable medical devices | |
US7070798B1 (en) | Coatings for implantable medical devices incorporating chemically-bound polymers and oligomers of L-arginine | |
US8097268B2 (en) | Coatings for implantable medical devices | |
US9375445B2 (en) | Heparin prodrugs and drug delivery stents formed therefrom | |
US8293890B2 (en) | Hyaluronic acid based copolymers | |
US9561309B2 (en) | Antifouling heparin coatings | |
US8871883B2 (en) | Biocompatible coating for implantable medical devices | |
US7955615B2 (en) | Polycationic peptide coatings and methods of coating implantable medical devices | |
US8986726B2 (en) | Biocompatible polyacrylate compositions for medical applications | |
US20030104028A1 (en) | Rate limiting barriers for implantable devices and methods for fabrication thereof | |
US7318932B2 (en) | Coatings for drug delivery devices comprising hydrolitically stable adducts of poly(ethylene-co-vinyl alcohol) and methods for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |