US20150099244A9 - Substances and method for replacing natural tooth material - Google Patents
Substances and method for replacing natural tooth material Download PDFInfo
- Publication number
- US20150099244A9 US20150099244A9 US13/825,674 US201313825674A US2015099244A9 US 20150099244 A9 US20150099244 A9 US 20150099244A9 US 201313825674 A US201313825674 A US 201313825674A US 2015099244 A9 US2015099244 A9 US 2015099244A9
- Authority
- US
- United States
- Prior art keywords
- mineral trioxide
- trioxide aggregate
- substance
- milled
- total
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000126 substance Substances 0.000 title claims abstract description 143
- 239000000463 material Substances 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 64
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 359
- 239000011707 mineral Substances 0.000 claims abstract description 359
- 239000002245 particle Substances 0.000 claims abstract description 107
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 80
- 238000003801 milling Methods 0.000 claims abstract description 42
- 238000000265 homogenisation Methods 0.000 claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims description 53
- 239000000203 mixture Substances 0.000 claims description 31
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000011049 filling Methods 0.000 claims description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- 210000004262 dental pulp cavity Anatomy 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 239000003589 local anesthetic agent Substances 0.000 claims description 3
- 238000000498 ball milling Methods 0.000 description 11
- 238000000227 grinding Methods 0.000 description 9
- 230000001351 cycling effect Effects 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 230000002028 premature Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- AGWMJKGGLUJAPB-UHFFFAOYSA-N aluminum;dicalcium;iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Ca+2].[Ca+2].[Fe+3] AGWMJKGGLUJAPB-UHFFFAOYSA-N 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000005548 dental material Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000010951 particle size reduction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- YLXIPWWIOISBDD-NDAAPVSOSA-N (2r,3r)-2,3-dihydroxybutanedioic acid;4-[(1r)-1-hydroxy-2-(methylamino)ethyl]benzene-1,2-diol Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.CNC[C@H](O)C1=CC=C(O)C(O)=C1 YLXIPWWIOISBDD-NDAAPVSOSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- HOOWDPSAHIOHCC-UHFFFAOYSA-N dialuminum tricalcium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[Al+3].[Al+3].[Ca++].[Ca++].[Ca++] HOOWDPSAHIOHCC-UHFFFAOYSA-N 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960003157 epinephrine bitartrate Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 1
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 1
- 235000019976 tricalcium silicate Nutrition 0.000 description 1
Classifications
-
- A61K6/0606—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
- A61C5/40—Implements for surgical treatment of the roots or nerves of the teeth; Nerve needles; Methods or instruments for medication of the roots
-
- A61C5/04—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/15—Compositions characterised by their physical properties
- A61K6/17—Particle size
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/50—Preparations specially adapted for dental root treatment
- A61K6/54—Filling; Sealing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/84—Preparations for artificial teeth, for filling teeth or for capping teeth comprising metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/849—Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/849—Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
- A61K6/851—Portland cements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/849—Preparations for artificial teeth, for filling teeth or for capping teeth comprising inorganic cements
- A61K6/853—Silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/30—Oxides other than silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/02—Portland cement
Definitions
- a substance for use in general dentistry and in endodontics to replace natural tooth material comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate, where the untreated mineral trioxide aggregate and milled mineral trioxide aggregate together are total mineral trioxide aggregate.
- the substance further comprises water.
- the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and thirty times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate.
- the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and fifteen times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate.
- the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between eight and twelve times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate.
- the substance comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate.
- the substance comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate.
- the substance comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate.
- the substance comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate.
- the substance comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In another embodiment, the substance comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate.
- the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate.
- the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate.
- the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate.
- the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate.
- the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate.
- the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate. In another embodiment, the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In another embodiment, the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- a method for use in general dentistry and in endodontics to replace natural tooth material comprises: a) performing a dental procedure; b) providing a substance according to the present invention; c) using the substance to fill a space in the tooth; and d) allowing the substance to set.
- the dental procedure is an endodontic procedure.
- the dental procedure comprises removing part of the natural tooth material of a tooth.
- the dental procedure comprises removing material that replaced natural tooth material.
- the dental procedure is selected from the group consisting of apexification, pulp capping, pulpotomy, regenerative endodontics, root canal filling, root-end filling, root perforation repair and sealer during filling or root canals.
- a method of making a substance for use in general dentistry and in endodontics to replace natural tooth material comprising: a) selecting a material suitable for use in the method to make a substance for use in general dentistry and in endodontics to replace natural tooth material, where the material comprises particles having a median maximum particle diameter; b) mixing the selected material with a non-aqueous liquid creating a mixture of the material and liquid; c) providing an instrument for milling by high shear and impact impingement of particles using high pressure homogenization; d) placing the mixture of material and liquid into the instrument for milling by high shear and impact impingement of particles using high pressure homogenization; and e) actuating the instrument thereby milling the material within the mixture, thereby reducing the median maximum particle diameter, and thereby making the substance for use in general dentistry and in endodontics to replace natural tooth material.
- the material is mineral trioxide aggregate.
- the liquid is selected from the group consisting of methanol, ethanol and isopropanol. In a preferred embodiment, the liquid is ethanol.
- the material is mixed with the liquid in a ratio of between 1 part material to between 1 and 100 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 1 and 20 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 5 and 20 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 5 and 10 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of 1 part material to 9 parts liquid.
- mixing the material with a liquid comprises using a magnetic stir bar to produce a suspension.
- placing the mixture of material and liquid into the instrument comprises pouring the mixture into a reservoir of the instrument.
- the reservoir comprises a device for preventing premature settling of the mixture which would cause a concentration gradient within the instrument or a part of the instrument, and the method further comprises actuating the device to prevent premature settling of the mixture which would cause a concentration gradient within the instrument or a part of the instrument.
- the device is an overhead propeller.
- milling the material within the mixture comprises cycling the instrument between two and one hundred cycles. In another embodiment, milling the material within the mixture comprises cycling the instrument between two and fifty cycles.
- milling the material within the mixture comprises cycling the instrument between two and thirty cycles. In another embodiment, milling the material within the mixture comprises cycling the instrument between five and thirty cycles. In another embodiment, milling the material within the mixture comprises is using a pressure between 1000 to 70,000 psi. In another embodiment, milling the material within the mixture comprises is using a pressure of 30,000 psi. In another embodiment, the method further comprises evaporating the liquid from the milled material. In another embodiment, the method further comprises collecting the milled material after milling the material. According to another embodiment of the present invention, there is provided a substance made according to the method of the present invention.
- the substance that sets in a relatively short time for use in general dentistry and in endodontics to replace natural tooth material.
- the substance comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate (prepared by high shear and impact impingement of particles using high pressure homogenization).
- the substance comprises untreated mineral trioxide aggregate, milled mineral trioxide aggregate and water.
- a method of making a substance that sets in a relatively short time for use in general dentistry and in endodontics to replace natural tooth material there is provided a substance made according to the present method.
- the method comprises providing a substance according to the present invention.
- mineral trioxide aggregate and “untreated mineral trioxide aggregate,” mean the substance generally sold under the trade name gray or white ProRoot® MTA (Dentsply International Inc., York, Pa., US).
- mineral trioxide aggregate is mixture of a refined Portland cement and bismuth oxide, and generally comprises a mixture of bismuth oxide, dicalcium silicate, tetracalcium aluminoferrite, tricalcium aluminate and tricalcium silicate.
- mineral trioxide aggregate and “untreated mineral trioxide aggregate,” also mean the substance generally sold under the trade name white ProRoot® MTA (Dentsply International Inc., York, Pa., US), which is similar in composition to gray ProRoot® MTA except that white ProRoot® MTA lacks tetracalcium alumino-ferrite.
- “relatively short time” means between five minutes and twenty minutes, a clinically desirable setting time for substances that replace natural tooth material.
- median maximum particle diameter size means that 50% of the sample has a smaller maximum particle diameter and 50% of the sample has a larger maximum particle diameter.
- milled in reference to substances and methods of the present invention means “impingement of particles at high shear rate and impact by high pressure homogenization.”
- the substance for use in general dentistry and in endodontics to replace natural tooth material.
- the substance sets within a tooth in a relatively short time, minutes rather than hours as is usual for currently used substances.
- the substance comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate (prepared by high shear and impact impingement of particles using high pressure homogenization).
- the substance comprises untreated mineral trioxide aggregate, milled mineral trioxide aggregate and water.
- Mineral trioxide aggregate as currently used, such as sold under the trade name gray or white ProRoot® MTA (Dentsply International Inc., York, Pa., US), was tested to determine the maximum particle diameter size of the mineral trioxide aggregate particles before contacting with liquid for setting.
- Mineral trioxide aggregate particles (hereinafter referred to as “untreated mineral trioxide aggregate”) were found to have a maximum particle diameter of between 0.7 and 42.2 microns with a median of 3.5 microns and a standard deviation of 4.1 microns.
- milled mineral trioxide aggregate A study was performed to determine the effect of adding mineral trioxide aggregate that had been milled by high shear and impact impingement of particles using high pressure homogenization (hereinafter referred to as “milled mineral trioxide aggregate” in the context of the present invention) to the setting time of untreated mineral trioxide aggregate, where milling the mineral trioxide aggregate reduced the maximum particle diameter to between 0.16 and 2.45 microns with a median of 0.49 microns, and a standard deviation of 0.5 microns. That is, the untreated mineral trioxide aggregate had a median maximum particle diameter size approximately eight times the median maximum particle diameter size of the milled mineral trioxide aggregate.
- the suspension was poured into the reservoir of an M-110EH Microfluidizer® (Microfluidics, Newton, Mass., US) with an overhead propeller mixer also in the reservoir (to prevent premature settling causing a concentration gradient in the check-valve of the processor due to the high density of mineral trioxide aggregate).
- the suspension was forced at extreme high pressure through a very small diamond orifice.
- the high pressures up to 40,000 psi/) used delivers the product into the interaction chamber using a constant pressure pumping system.
- Precisely engineered microchannels within the chamber range from 50-500 microns and generate unsurpassed shear and impact forces that cause homogenization and de-agglomerates the mineral trioxide aggregate particles.
- the temperature was regulated by a heat exchanger, and the lack of moving parts maximizes uptime.
- the use of M-110EH Microfluidizer® equipment forced the entire dispersion through the same tortuous path, and as a result, produced tighter/smaller particle size distributions than other technologies. It also creates a narrower particle size distribution.
- the suspension was milled for between five and thirty cycles in a G 10Z (87 microns) diamond Interaction Chamber (IXC) at 30,000 psi and the maximum particle diameter size was measured during the cycles.
- the suspension can be milled for between two and one hundred cycles. Further in general, the suspension can be milled at pressure between 1000 to 70,000.
- the median maximum particle diameter size of the untreated mineral trioxide aggregate was reduced to 0.49 microns after fifty passes, thereby producing the milled mineral trioxide aggregate, or approximately an eight-fold reduction in median particle size.
- the ethanol was evaporated off in an oven at 65° C. and the solids were collected for analysis of the effects of adding the milled mineral trioxide aggregate to untreated mineral trioxide aggregate to the setting time of untreated mineral trioxide aggregate.
- the substance according to the present invention comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate by high pressure homogenization.
- the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and twelve times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate.
- the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and ten times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate.
- the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between seven and eight times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate.
- the substance for use in general dentistry and in endodontics to replace natural tooth material.
- the substance sets within a tooth in a relatively short time, minutes rather than hours.
- the substance comprises a combination of milled mineral trioxide aggregate, untreated mineral trioxide aggregate and a liquid.
- the liquid is water.
- the water is distilled water.
- the water is selected from the group consisting of deionized water, filtered water, slurry water and tap water.
- the liquid is a local anesthetic, such as for example lidocaine hydrochloride, with or without epinephrine bitartrate. Other local anesthetic can also be used, as will be understood by those with skill in the art with respect to this disclosure.
- the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate.
- the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- the method of milling by high shear and impact impingement of particles using high pressure homogenization produces milled particles that have unexpected advantages over all other used methods, in particular decreasing the setting time of the milled particles, as disclosed in this disclosure, when the milled particles are used by themselves or when the milled particles are combined with unmilled particles in general dentistry and in endodontics to replace natural tooth material. Additionally, milling by high shear and impact impingement of particles using high pressure homogenization takes less time to reduce particle size than ball milling.
- instruments used in ball milling are more difficult to clean in preparation for reuse than instruments used in milling by high shear and impact impingement of particles using high pressure homogenization according to the present invention, because in ball milling the milled particles must be separated from the grinding media, where in milling by high shear and impact impingement of particles using high pressure homogenization, the milled particles are merely flushed out of the instrument as there is no grinding media. Because of these advantages, milling by high shear and impact impingement of particles using high pressure homogenization is more efficient and cost effective than ball milling for making a substance for use in general dentistry and in endodontics to replace natural tooth material.
- the method further comprises evaporating the liquid from the milled material.
- the liquid is ethanol
- evaporating the liquid from the milled material comprises placing the milled material and liquid in an oven at 65° C. for sufficient time to evaporate the ethanol.
- the method further comprises collecting the milled material after milling the material.
- a method for use in general dentistry and in endodontics to replace natural tooth material comprises, first performing a dental procedure.
- the dental procedure is an endodontic procedure.
- the dental procedure comprises removing part of the natural tooth material of a tooth.
- the dental procedure comprises removing material that replaced natural tooth material.
- the dental procedure is selected from the group consisting of apexification, pulp capping, pulpotomy, regenerative endodontics, root canal filling, root-end filling, root perforation repair and sealer during filling or root canals.
- the method comprises providing a substance according to the present invention.
- the method comprises using the substance to fill a space in the tooth, and allowing the substance to set.
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- Dentistry (AREA)
- Biomedical Technology (AREA)
- Civil Engineering (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present application claims the benefit of U.S. Provisional Patent Application 61/768,801, titled “Substances and Method for Replacing Natural Tooth Material,” filed Feb. 25, 2013; U.S. Provisional Patent Application 61/712,058, titled “Substances and Method for Replacing Natural Tooth Material,” filed Oct. 10, 2012; and U.S. Provisional Patent Application 61/613,797, titled “Substances and Method for Replacing Natural Tooth Material,” filed Mar. 21, 2012; the contents of which are incorporated herein by reference in their entirety.
- Mineral trioxide aggregate (MTA) (sold under the trade names gray or white ProRoot® MTA (Dentsply International Inc., York, Pa., US) is a substance currently used in general dentistry and in endodontics to replace natural tooth material in apexification, pulp capping, pulpotomy, regenerative endodontics, root canal filling, root-end filling and root perforation repair. While mineral trioxide aggregate has proven to be biocompatible and suitable for these procedures, mineral trioxide aggregate disadvantageously takes approximately three hours to set. This extended time for setting usually requires a patient to return for a second visit to complete treatment increasing the cost and inconvenience of treatment. Further disadvantageously, irrigating the operative field before the mineral trioxide aggregate has set can evacuate some of the mineral trioxide aggregate thereby requiring an additional application of mineral trioxide aggregate.
- Therefore, there is a need for a substance to replace natural tooth material that is not subject to these disadvantages.
- According to one embodiment of the present invention, there is provided a substance for use in general dentistry and in endodontics to replace natural tooth material. The substance comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate, where the untreated mineral trioxide aggregate and milled mineral trioxide aggregate together are total mineral trioxide aggregate. In one embodiment, the substance further comprises water. In one embodiment, the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and thirty times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate. In another embodiment, the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and fifteen times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate. In another embodiment, the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between eight and twelve times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate. In one embodiment, the substance comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In another embodiment, the substance comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In another embodiment, the substance comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate. In another embodiment, the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In another embodiment, the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- According to another embodiment of the present invention, there is provided a method for use in general dentistry and in endodontics to replace natural tooth material. The method comprises: a) performing a dental procedure; b) providing a substance according to the present invention; c) using the substance to fill a space in the tooth; and d) allowing the substance to set. In one embodiment, the dental procedure is an endodontic procedure. In another embodiment, the dental procedure comprises removing part of the natural tooth material of a tooth. In another embodiment, the dental procedure comprises removing material that replaced natural tooth material. In another embodiment, the dental procedure is selected from the group consisting of apexification, pulp capping, pulpotomy, regenerative endodontics, root canal filling, root-end filling, root perforation repair and sealer during filling or root canals.
- According to another embodiment of the present invention, there is provided a method of making a substance for use in general dentistry and in endodontics to replace natural tooth material, where the substance sets in a relatively short time. The method comprises: a) selecting a material suitable for use in the method to make a substance for use in general dentistry and in endodontics to replace natural tooth material, where the material comprises particles having a median maximum particle diameter; b) mixing the selected material with a non-aqueous liquid creating a mixture of the material and liquid; c) providing an instrument for milling by high shear and impact impingement of particles using high pressure homogenization; d) placing the mixture of material and liquid into the instrument for milling by high shear and impact impingement of particles using high pressure homogenization; and e) actuating the instrument thereby milling the material within the mixture, thereby reducing the median maximum particle diameter, and thereby making the substance for use in general dentistry and in endodontics to replace natural tooth material. In one embodiment, the material is mineral trioxide aggregate. In one embodiment, the liquid is selected from the group consisting of methanol, ethanol and isopropanol. In a preferred embodiment, the liquid is ethanol. In one embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 1 and 100 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 1 and 20 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 5 and 20 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 5 and 10 parts liquid. In another embodiment, the material is mixed with the liquid in a ratio of 1 part material to 9 parts liquid. In one embodiment, mixing the material with a liquid comprises using a magnetic stir bar to produce a suspension. In one embodiment, placing the mixture of material and liquid into the instrument comprises pouring the mixture into a reservoir of the instrument. In one embodiment, the reservoir comprises a device for preventing premature settling of the mixture which would cause a concentration gradient within the instrument or a part of the instrument, and the method further comprises actuating the device to prevent premature settling of the mixture which would cause a concentration gradient within the instrument or a part of the instrument. In one embodiment, the device is an overhead propeller. In another embodiment, milling the material within the mixture comprises cycling the instrument between two and one hundred cycles. In another embodiment, milling the material within the mixture comprises cycling the instrument between two and fifty cycles. In another embodiment, milling the material within the mixture comprises cycling the instrument between two and thirty cycles. In another embodiment, milling the material within the mixture comprises cycling the instrument between five and thirty cycles. In another embodiment, milling the material within the mixture comprises is using a pressure between 1000 to 70,000 psi. In another embodiment, milling the material within the mixture comprises is using a pressure of 30,000 psi. In another embodiment, the method further comprises evaporating the liquid from the milled material. In another embodiment, the method further comprises collecting the milled material after milling the material. According to another embodiment of the present invention, there is provided a substance made according to the method of the present invention.
- According to one embodiment of the present invention, there is provided a substance that sets in a relatively short time for use in general dentistry and in endodontics to replace natural tooth material. In one embodiment, the substance comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate (prepared by high shear and impact impingement of particles using high pressure homogenization). In a preferred embodiment, the substance comprises untreated mineral trioxide aggregate, milled mineral trioxide aggregate and water. According to another embodiment of the present invention, there is provided a method of making a substance that sets in a relatively short time for use in general dentistry and in endodontics to replace natural tooth material. According to another embodiment of the present invention, there is provided a substance made according to the present method. According to another embodiment of the present invention, there is provided a method for use in general dentistry and in endodontics to replace natural tooth material. In one embodiment, the method comprises providing a substance according to the present invention. The substances and method will now be disclosed in detail.
- As used in this disclosure, except where the context requires otherwise, the term “comprise” and variations of the term, such as “comprising,” “comprises” and “comprised” are not intended to exclude other additives, components, integers or steps.
- As used in this disclosure, except where the context requires otherwise, the method steps disclosed are not intended to be limiting nor are they intended to indicate that each step is essential to the method or that each step must occur in the order disclosed.
- As used in this disclosure, except where indicated otherwise, “mineral trioxide aggregate,” and “untreated mineral trioxide aggregate,” mean the substance generally sold under the trade name gray or white ProRoot® MTA (Dentsply International Inc., York, Pa., US). As will be understood by those with skill in the art with respect to this disclosure, before mixing with liquid to cause the untreated mineral trioxide aggregate to set, mineral trioxide aggregate is mixture of a refined Portland cement and bismuth oxide, and generally comprises a mixture of bismuth oxide, dicalcium silicate, tetracalcium aluminoferrite, tricalcium aluminate and tricalcium silicate. Additionally, “mineral trioxide aggregate,” and “untreated mineral trioxide aggregate,” also mean the substance generally sold under the trade name white ProRoot® MTA (Dentsply International Inc., York, Pa., US), which is similar in composition to gray ProRoot® MTA except that white ProRoot® MTA lacks tetracalcium alumino-ferrite.
- Unless specified otherwise, all ratios given in this disclosure are by weight.
- As used in this disclosure, “relatively short time” means between five minutes and twenty minutes, a clinically desirable setting time for substances that replace natural tooth material.
- As used in this disclosure, “median maximum particle diameter size” means that 50% of the sample has a smaller maximum particle diameter and 50% of the sample has a larger maximum particle diameter.
- As used in this disclosure, “milled” in reference to substances and methods of the present invention means “impingement of particles at high shear rate and impact by high pressure homogenization.”
- According to one embodiment of the present invention, there is provided a substance for use in general dentistry and in endodontics to replace natural tooth material. The substance sets within a tooth in a relatively short time, minutes rather than hours as is usual for currently used substances. In one embodiment, the substance comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate (prepared by high shear and impact impingement of particles using high pressure homogenization). In a preferred embodiment, the substance comprises untreated mineral trioxide aggregate, milled mineral trioxide aggregate and water. Mineral trioxide aggregate as currently used, such as sold under the trade name gray or white ProRoot® MTA (Dentsply International Inc., York, Pa., US), was tested to determine the maximum particle diameter size of the mineral trioxide aggregate particles before contacting with liquid for setting. Mineral trioxide aggregate particles (hereinafter referred to as “untreated mineral trioxide aggregate”) were found to have a maximum particle diameter of between 0.7 and 42.2 microns with a median of 3.5 microns and a standard deviation of 4.1 microns. A study was performed to determine the effect of adding mineral trioxide aggregate that had been milled by high shear and impact impingement of particles using high pressure homogenization (hereinafter referred to as “milled mineral trioxide aggregate” in the context of the present invention) to the setting time of untreated mineral trioxide aggregate, where milling the mineral trioxide aggregate reduced the maximum particle diameter to between 0.16 and 2.45 microns with a median of 0.49 microns, and a standard deviation of 0.5 microns. That is, the untreated mineral trioxide aggregate had a median maximum particle diameter size approximately eight times the median maximum particle diameter size of the milled mineral trioxide aggregate. The study was performed following ISO standard 6876:1986 for dental materials which specifies the requirements for dental materials used as filling materials. The milled mineral trioxide aggregate was prepared as follows. First, untreated mineral trioxide aggregate (gray ProRoot® MTA) was obtained from Dentsply International Inc. (York, Pa., US). The starting median particle size for the untreated mineral trioxide aggregate was determined to be 3.8 microns. The untreated mineral trioxide aggregate was mixed with ethanol in a ratio of 1 to 9 by weight using a magnetic stir bar to produce a suspension. The suspension was poured into the reservoir of an M-110EH Microfluidizer® (Microfluidics, Newton, Mass., US) with an overhead propeller mixer also in the reservoir (to prevent premature settling causing a concentration gradient in the check-valve of the processor due to the high density of mineral trioxide aggregate). The suspension was forced at extreme high pressure through a very small diamond orifice. The high pressures (up to 40,000 psi/) used delivers the product into the interaction chamber using a constant pressure pumping system. Precisely engineered microchannels within the chamber range from 50-500 microns and generate unsurpassed shear and impact forces that cause homogenization and de-agglomerates the mineral trioxide aggregate particles. The temperature was regulated by a heat exchanger, and the lack of moving parts maximizes uptime. The use of M-110EH Microfluidizer® equipment forced the entire dispersion through the same tortuous path, and as a result, produced tighter/smaller particle size distributions than other technologies. It also creates a narrower particle size distribution. Next, the suspension was milled for between five and thirty cycles in a G 10Z (87 microns) diamond Interaction Chamber (IXC) at 30,000 psi and the maximum particle diameter size was measured during the cycles. In general, the suspension can be milled for between two and one hundred cycles. Further in general, the suspension can be milled at pressure between 1000 to 70,000. The median maximum particle diameter size of the untreated mineral trioxide aggregate was reduced to 0.49 microns after fifty passes, thereby producing the milled mineral trioxide aggregate, or approximately an eight-fold reduction in median particle size. Next, the ethanol was evaporated off in an oven at 65° C. and the solids were collected for analysis of the effects of adding the milled mineral trioxide aggregate to untreated mineral trioxide aggregate to the setting time of untreated mineral trioxide aggregate.
- Referring now to Table 1, there are shown the results of this study.
-
TABLE 1 Untreated Mineral Trioxide Aggregate to Setting Average Milled Mineral Setting Time Setting Time Time Setting Trioxide Aggregate* Sample #1 Sample #2 Sample #3 Time 100%/0% 02:25:55 02:26:11 03:12:00 02:41:22 75%/25% 00:11:52 00:12:30 00:14:30 00:12:57 50%/50% 00:06:45 00:07:05 00:06:30 00:06:47 0%/100% 00:06:33 00:06:33 00:06:33 00:06:33 *All tests were done using a ratio of three parts solids (milled mineral trioxide aggregate and untreated mineral trioxide aggregate) to one part distilled water (600 mg solids/200 liquid).
As can be seen, combining 75% or 50% with untreated mineral trioxide aggregate (comprising a maximum particle diameter of between 0.7 and 42.2 microns with a median of 3.8 microns) with 25% or 50%, respectively, milled mineral trioxide aggregate (comprising a maximum particle diameter of between 0.16 and 2.45 microns with a median of 0.49 microns), and then mixing the combination with one part water to three parts (combined mineral trioxide aggregate) by weight reduced setting time from hours to between approximately six and fourteen minutes. Using one part water with three parts 100% milled mineral trioxide aggregate by weight also reduced the setting time to between six to seven minutes similar to the reduction achieved with the combination of 50% milled mineral trioxide aggregate and 50% untreated mineral trioxide aggregate in water; however, as there are costs associated with milling mineral trioxide aggregate and no apparent advantages with respect to setting time for increasing the amount of milled mineral trioxide aggregate in the substance, it is preferred to use the minimum amount of milled mineral trioxide aggregate in the substance suitable for reducing setting time to a clinically acceptable amount as will be understood by those with skill in the art with respect to this disclosure. Further, because distilled water is non-toxic in the clinical setting, inexpensive and readily available, distilled water is preferred as the mineral trioxide aggregate combination solvent for the substance of the present invention. - In one embodiment, the substance according to the present invention comprises untreated mineral trioxide aggregate and milled mineral trioxide aggregate by high pressure homogenization. In one embodiment, the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and twelve times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate. In another embodiment, the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between five and ten times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate. In another embodiment, the untreated mineral trioxide aggregate comprises a median maximum particle diameter size of between seven and eight times larger than the median maximum particle diameter size of the milled mineral trioxide aggregate.
- According to another embodiment of the present invention, there is provided a substance for use in general dentistry and in endodontics to replace natural tooth material. The substance sets within a tooth in a relatively short time, minutes rather than hours. In one embodiment, the substance comprises a combination of milled mineral trioxide aggregate, untreated mineral trioxide aggregate and a liquid. In one embodiment, the liquid is water. In a preferred embodiment, the water is distilled water. In one embodiment, the water is selected from the group consisting of deionized water, filtered water, slurry water and tap water. In another embodiment, the liquid is a local anesthetic, such as for example lidocaine hydrochloride, with or without epinephrine bitartrate. Other local anesthetic can also be used, as will be understood by those with skill in the art with respect to this disclosure.
- In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 50% and 95% total mineral trioxide aggregate and between 5% and 50% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- In one embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 60% and 90% total mineral trioxide aggregate and between 10% and 40% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- In one embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 1% and 99.9% untreated mineral trioxide aggregate and between 0.1% and 99% milled mineral trioxide aggregate. In another embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 25% and 99.5% untreated mineral trioxide aggregate and between 0.5% and 75% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 40% and 99% untreated mineral trioxide aggregate and between 1% and 60% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises between 45% and 75% untreated mineral trioxide aggregate and between 25% and 55% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises between 70% and 80% total mineral trioxide aggregate and between 20% and 30% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- In one embodiment, the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 75% untreated mineral trioxide aggregate and 25% milled mineral trioxide aggregate. In one embodiment, the substance comprises 75% total mineral trioxide aggregate and 25% water, where the total mineral trioxide aggregate comprises 50% untreated mineral trioxide aggregate and 50% milled mineral trioxide aggregate.
- According to another embodiment of the present invention, there is provided a method of making a substance for use in general dentistry and in endodontics to replace natural tooth material, where the substance sets in a relatively short time, minutes as compared to hours. The method comprises milling by high shear and impact impingement of particles using high pressure homogenization to reduce particle size thereby producing milled particles, rather than ball milling as is currently generally used. Ball milling comprises contacting the particles to be reduced in size with a grinding media in a chamber, where the grinding media is different in composition from the particles, and where repeated contact with the grinding media reduces the size of the particles, thereby producing milled particles. The grinding media is frequently one or more than one ball, such as for example one or more than one glass ball, from which the method is named. By contrast, milling by high shear and impact impingement of particles using high pressure homogenization according to the present invention comprises forcing particles through a channel using pressure, where repeated contact of the particles to be reduced in size with each other and with the pressure and the channel walls reduces the size of the particles, thereby producing milled particles. While milling by high shear and impact impingement of particles using high pressure homogenization has been used in other fields, it has never been used in connection with the preparation of substances for use in general dentistry and in endodontics to replace natural tooth material. Further, the method of milling by high shear and impact impingement of particles using high pressure homogenization according to the present invention produces milled particles that have unexpected advantages over all other used methods, in particular decreasing the setting time of the milled particles, as disclosed in this disclosure, when the milled particles are used by themselves or when the milled particles are combined with unmilled particles in general dentistry and in endodontics to replace natural tooth material. Additionally, milling by high shear and impact impingement of particles using high pressure homogenization takes less time to reduce particle size than ball milling. Further, pieces of the grinding media used in ball milling can contaminate the milled particles produced as the grinding media wears, while the method of milling by high shear and impact impingement of particles using high pressure homogenization does not use a grinding media that can contaminate the milled particles produced. Additionally, the particle size reduction of the milled particles produced by ball milling is less uniform than the particle size reduction of the milled particles produced by milling by high shear and impact impingement of particles using high pressure homogenization, and the decreased uniformity of the milled particles produced by ball milling increases their setting time as compared with the setting time for milled particles produced by milling by high shear and impact impingement of particles using high pressure homogenization that have a more uniform size. Further, the particle size of the milled particles produced by ball milling is generally larger than the particle size of the milled particles produced by milling by high shear and impact impingement of particles using high pressure homogenization, and the larger particle size of the milled particles produced by ball milling increases their setting time as compared with the setting time for milled particles that have a smaller particle size produced by milling by high shear and impact impingement of particles using high pressure homogenization. Additionally, instruments used in ball milling are more difficult to clean in preparation for reuse than instruments used in milling by high shear and impact impingement of particles using high pressure homogenization according to the present invention, because in ball milling the milled particles must be separated from the grinding media, where in milling by high shear and impact impingement of particles using high pressure homogenization, the milled particles are merely flushed out of the instrument as there is no grinding media. Because of these advantages, milling by high shear and impact impingement of particles using high pressure homogenization is more efficient and cost effective than ball milling for making a substance for use in general dentistry and in endodontics to replace natural tooth material.
- As disclosed above, the method of making a substance for use in general dentistry and in endodontics to replace natural tooth material, where the substance sets in a relatively short time, minutes as compared to hours, comprises milling by high shear and impact impingement of particles using high pressure homogenization to reduce particle size thereby producing milled particles. The method comprises, first, selecting a material suitable for use in the method to make a substance for use in general dentistry and in endodontics to replace natural tooth material, where the material comprises particles having a median maximum particle diameter. In one embodiment, the material is mineral trioxide aggregate, such as for example mineral trioxide aggregate (gray ProRoot® MTA, Dentsply International Inc., York, Pa., US).
- Next, the method comprises mixing the selected material with a liquid creating a mixture of the material and liquid. Water is generally used in milling by high shear and impact impingement of particles using high pressure homogenization, however, water cannot be used in the present method because it would cause the material to set prematurely. Therefore, the liquid must be non-aqueous. In one embodiment, the liquid is an alcohol, though any suitable non-aqueous liquid can be used as will be understood by those with skill in the art with respect to this disclosure. In one embodiment, the liquid is selected from the group consisting of methanol, ethanol and isopropanol. In a preferred embodiment, the liquid is ethanol. In one embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 1 and 100 parts liquid. In one embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 1 and 20 parts liquid. In one embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 5 and 20 parts liquid. In one embodiment, the material is mixed with the liquid in a ratio of between 1 part material to between 5 and 10 parts liquid. In one embodiment, the material is mixed with the liquid in a ratio of 1 part material to 9 parts liquid. In a preferred embodiment, mixing the material with a liquid comprises using a magnetic stir bar to produce a suspension.
- Then, the method comprises providing an instrument for milling by high shear and impact impingement of particles using high pressure homogenization. In one embodiment, the instrument provided is an M-110EH Microfluidizer® (Microfluidics, Newton, Mass., US), though any suitable instrument for milling by high shear and impact impingement of particles using high pressure homogenization can be used, as will be understood by those with skill in the art with respect to this disclosure.
- Next, the method comprises placing the mixture of material and liquid into the instrument for milling by high shear and impact impingement of particles using high pressure homogenization. In one embodiment, placing the mixture of material and liquid into the instrument comprises pouring the mixture into a reservoir of the instrument. In a preferred embodiment, the reservoir comprises a device for preventing premature settling of the mixture which would cause a concentration gradient within the instrument or a part of the instrument, and the method further comprises actuating the device to prevent premature settling of the mixture which would cause a concentration gradient within the instrument or a part of the instrument. In one embodiment, the device is an overhead propeller.
- Then, the method comprises actuating the instrument thereby milling the material within the mixture, thereby reducing the median maximum particle diameter, and thereby making the substance for use in general dentistry and in endodontics to replace natural tooth material. In one embodiment, milling the material within the mixture comprises cycling the instrument between two and one hundred cycles. In one embodiment, milling the material within the mixture comprises cycling the instrument between two and fifty cycles. In one embodiment, milling the material within the mixture comprises cycling the instrument between two and thirty cycles. In one embodiment, milling the material within the mixture comprises cycling the instrument between five and thirty cycles. In one embodiment, milling the material is performed at a pressure between 1000 to 70,000 psi. In one embodiment, milling the material is performed at a pressure of 30,000 psi. In one embodiment, the method further comprises evaporating the liquid from the milled material. For example, in one embodiment, the liquid is ethanol, and evaporating the liquid from the milled material comprises placing the milled material and liquid in an oven at 65° C. for sufficient time to evaporate the ethanol. In one embodiment, the method further comprises collecting the milled material after milling the material.
- According to another embodiment of the present invention, there is provided a substance made according to the present method. In one embodiment, the substance is a substance according to the present invention.
- According to another embodiment of the present invention, there is provided a method for use in general dentistry and in endodontics to replace natural tooth material. The method comprises, first performing a dental procedure. In one embodiment, the dental procedure is an endodontic procedure. In one embodiment, the dental procedure comprises removing part of the natural tooth material of a tooth. In another embodiment, the dental procedure comprises removing material that replaced natural tooth material. In a preferred embodiment, the dental procedure is selected from the group consisting of apexification, pulp capping, pulpotomy, regenerative endodontics, root canal filling, root-end filling, root perforation repair and sealer during filling or root canals. Next, the method comprises providing a substance according to the present invention. Then, the method comprises using the substance to fill a space in the tooth, and allowing the substance to set.
- Although the present invention has been discussed in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the scope of the appended claims should not be limited to the description of preferred embodiments contained in this disclosure. All references cited herein are incorporated by reference in their entirety.
Claims (39)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/825,674 US8979991B2 (en) | 2012-03-21 | 2013-03-20 | Substances and method for replacing natural tooth material |
US14/628,003 US20150157538A1 (en) | 2012-03-21 | 2015-02-20 | Substances and methods for replacing natural tooth material |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261613797P | 2012-03-21 | 2012-03-21 | |
US201261712058P | 2012-10-10 | 2012-10-10 | |
US201361768801P | 2013-02-25 | 2013-02-25 | |
PCT/US2013/033164 WO2013142608A1 (en) | 2012-03-21 | 2013-03-20 | Substances and method for replacing natural tooth material |
US13/825,674 US8979991B2 (en) | 2012-03-21 | 2013-03-20 | Substances and method for replacing natural tooth material |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/033164 A-371-Of-International WO2013142608A1 (en) | 2012-03-21 | 2013-03-20 | Substances and method for replacing natural tooth material |
US14/180,711 Division US8960576B2 (en) | 2012-03-21 | 2014-02-14 | Substances and methods for replacing natural tooth material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/628,003 Division US20150157538A1 (en) | 2012-03-21 | 2015-02-20 | Substances and methods for replacing natural tooth material |
Publications (3)
Publication Number | Publication Date |
---|---|
US20140134573A1 US20140134573A1 (en) | 2014-05-15 |
US8979991B2 US8979991B2 (en) | 2015-03-17 |
US20150099244A9 true US20150099244A9 (en) | 2015-04-09 |
Family
ID=49223327
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/825,674 Expired - Fee Related US8979991B2 (en) | 2012-03-21 | 2013-03-20 | Substances and method for replacing natural tooth material |
US14/180,711 Active US8960576B2 (en) | 2012-03-21 | 2014-02-14 | Substances and methods for replacing natural tooth material |
US14/628,003 Abandoned US20150157538A1 (en) | 2012-03-21 | 2015-02-20 | Substances and methods for replacing natural tooth material |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/180,711 Active US8960576B2 (en) | 2012-03-21 | 2014-02-14 | Substances and methods for replacing natural tooth material |
US14/628,003 Abandoned US20150157538A1 (en) | 2012-03-21 | 2015-02-20 | Substances and methods for replacing natural tooth material |
Country Status (5)
Country | Link |
---|---|
US (3) | US8979991B2 (en) |
EP (1) | EP2827828A4 (en) |
AU (1) | AU2013235112A1 (en) |
CA (1) | CA2868200A1 (en) |
WO (1) | WO2013142608A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2013235112A1 (en) * | 2012-03-21 | 2014-10-09 | Loma Linda University | Substances and method for replacing natural tooth material |
WO2015119954A1 (en) * | 2014-02-05 | 2015-08-13 | Loma Linda University | Substances and method for replacing natural tooth material |
EP3288603A1 (en) | 2015-04-29 | 2018-03-07 | Dentsply Sirona Inc. | Method for creating a mineral trioxide aggregate material with improved biological effects |
EP3178439B1 (en) | 2015-12-03 | 2021-10-13 | Ormco Corporation | Fluted endodontic file |
USD842474S1 (en) | 2017-10-20 | 2019-03-05 | Ormco Corporation | Endodontic file |
US11752072B2 (en) | 2019-03-11 | 2023-09-12 | University Of Utah Research Foundation | Quick set cements for dental pulp capping and related methods of use |
MX2022000727A (en) * | 2019-07-18 | 2022-04-06 | Septodont Ou Septodont Sas Ou Specialites Septodont | DENTAL HYDRAULIC CEMENT COMPRISING ULTRAFINE CALCIUM SILICATE PARTICLES WITH RAPID HARDENING AND ADEQUATE MECHANICAL PROPERTIES. |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT339523B (en) | 1973-09-21 | 1977-10-25 | Jenaer Glaswerk Schott & Gen | CERAMIC GLASS FOR FULL DENTALS |
JPS55500040A (en) | 1978-01-17 | 1980-01-31 | ||
US4171544A (en) | 1978-04-05 | 1979-10-23 | Board Of Regents, For And On Behalf Of The University Of Florida | Bonding of bone to materials presenting a high specific area, porous, silica-rich surface |
DE2929121A1 (en) | 1979-07-18 | 1981-02-12 | Espe Pharm Praep | CALCIUM ALUMINUM FLUOROSILICATE GLASS POWDER AND ITS USE |
US4557691A (en) | 1983-04-11 | 1985-12-10 | Johnson & Johnson Dental Products Company | Dental porcelain paste and method of using the same |
JPS60100516A (en) * | 1983-11-04 | 1985-06-04 | Takeda Chem Ind Ltd | Preparation of sustained release microcapsule |
US5236362A (en) | 1991-10-11 | 1993-08-17 | Essential Dental Systems, Inc. | Root canal filling material and adhesive composition |
US5415547A (en) | 1993-04-23 | 1995-05-16 | Loma Linda University | Tooth filling material and method of use |
US20030159618A1 (en) | 2002-01-03 | 2003-08-28 | Primus Carolyn M. | Dental material |
WO2004093734A2 (en) | 2002-01-23 | 2004-11-04 | Ada Foundation | Premixed self-hardening bone graft pastes |
WO2005087178A1 (en) | 2004-03-09 | 2005-09-22 | Dentsply International Inc. | Polymer-bioactive ceramic/cement hybrid composite |
CA2677745C (en) | 2007-02-09 | 2017-04-11 | Dentsply International Inc. | A method of treatment of the dental pulp and filling root canals using water-based materials |
KR101138841B1 (en) | 2009-05-15 | 2012-04-26 | 유준상 | Root Canal Filler Composed of Mineral Trioxide Aggregates And Fabrication Method Thereof |
US8722100B2 (en) | 2009-08-29 | 2014-05-13 | Dentosolve | Mineral trioxide aggregate (MTA) composition and use |
JP5965319B2 (en) | 2009-10-22 | 2016-08-03 | エイピーアイ・ジェネシス,エルエルシー | Production method and use of flavonoid-containing composition |
CN102113965B (en) | 2009-12-31 | 2013-01-09 | 远东新世纪股份有限公司 | Porous bone cement |
US8591645B2 (en) | 2011-09-09 | 2013-11-26 | Ossdsign Ab | Hydraulic cements with optimized grain size distribution, methods, articles and kits |
AU2013235112A1 (en) | 2012-03-21 | 2014-10-09 | Loma Linda University | Substances and method for replacing natural tooth material |
-
2013
- 2013-03-20 AU AU2013235112A patent/AU2013235112A1/en not_active Abandoned
- 2013-03-20 CA CA2868200A patent/CA2868200A1/en not_active Abandoned
- 2013-03-20 WO PCT/US2013/033164 patent/WO2013142608A1/en active Application Filing
- 2013-03-20 US US13/825,674 patent/US8979991B2/en not_active Expired - Fee Related
- 2013-03-20 EP EP13765171.7A patent/EP2827828A4/en not_active Withdrawn
-
2014
- 2014-02-14 US US14/180,711 patent/US8960576B2/en active Active
-
2015
- 2015-02-20 US US14/628,003 patent/US20150157538A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US8960576B2 (en) | 2015-02-24 |
EP2827828A1 (en) | 2015-01-28 |
US20140134573A1 (en) | 2014-05-15 |
CA2868200A1 (en) | 2013-09-26 |
WO2013142608A1 (en) | 2013-09-26 |
EP2827828A4 (en) | 2016-01-06 |
US20140162217A1 (en) | 2014-06-12 |
US8979991B2 (en) | 2015-03-17 |
AU2013235112A1 (en) | 2014-10-09 |
US20150157538A1 (en) | 2015-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8960576B2 (en) | Substances and methods for replacing natural tooth material | |
Carvalho et al. | Do smear‐layer removal agents affect the push‐out bond strength of calcium silicate‐based endodontic sealers? | |
Duarte et al. | Evaluation of the propylene glycol association on some physical and chemical properties of mineral trioxide aggregate | |
Butt et al. | Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine | |
Biočanin et al. | Marginal gaps between 2 calcium silicate and glass ionomer cements and apical root dentin | |
Silva et al. | Push-out bond strength of injectable pozzolan-based root canal sealer | |
Gandolfi et al. | MTA and F‐doped MTA cements used as sealers with warm gutta‐percha. Long‐term study of sealing ability | |
Assmann et al. | Dentin bond strength of two mineral trioxide aggregate–based and one epoxy resin–based sealers | |
Wadhwani et al. | Cement application techniques in luting implant-supported crowns: a quantitative and qualitative survey. | |
Badawy et al. | Evaluation of new bioceramic endodontic sealers: An in vitro study | |
Haragushiku et al. | Analysis of the interface and bond strength of resin‐based endodontic cements to root dentin | |
US20100291512A1 (en) | Root canal filler composed of mineral trioxide aggregate and method of manufacturing the same | |
Guerrero et al. | Porosity analysis of MTA and Biodentine cements for use in endodontics by using micro–computed tomography | |
Chohan et al. | Comparative evaluation of sealing ability of glass ionomer-resin continuum as root-end filling materials: An: in vitro: study | |
Setia et al. | Apical sealing ability of two novel root canal sealers: An: ex-vivo: study | |
Salehimehr et al. | Comparison of physical & chemical properties of Angelus MTA and new endodontic restorative material | |
Saltareli et al. | Apatite‐like forming ability, porosity, and bond strength of calcium aluminate cement with chitosan, zirconium oxide, and hydroxyapatite additives | |
Goldberg et al. | Analysis of the use of Dycal with gutta-percha points as an endodontic filling technique | |
Carrillo Varguez et al. | Comparative in vitro study of the bond strength on dentin of two sealing cements: BC-SEALER and AH-PLUS | |
Gambarini et al. | Sealing ability of a new hydroxyapatite-containing endodontic sealer using lateral condensation and thermatic compaction of gutta-percha, in vitro | |
CN104302267A (en) | Dental filling composition comprising zirconia powder | |
JP7684273B2 (en) | Patent application title: DENTAL HYDRAULIC CEMENT COMPRISING ULTRAFINE CALCIUM SILICATE PARTICLES THAT HAVE RAPID SETTING AND SUITABLE MECHANICAL PROPERTIES | |
Yalniz et al. | Porosity analysis of four bioceramic materials used for the repair of furcation perforations via micro-computed tomography | |
Kaushik et al. | Comparative evaluation of voids present in conventional and capsulated glass ionomer cements using two different conditioners: An in vitro study | |
WO2015119954A1 (en) | Substances and method for replacing natural tooth material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LOMA LINDA UNIVERSITY, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TORABINEJAD, MAHMOUD;MOADDEL, HOMAYOUN;SIGNING DATES FROM 20130529 TO 20130601;REEL/FRAME:030560/0067 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230317 |