US20150027089A1 - Vacuum Packaging and Sealing Appliance with Cooling Fan - Google Patents
Vacuum Packaging and Sealing Appliance with Cooling Fan Download PDFInfo
- Publication number
- US20150027089A1 US20150027089A1 US14/512,921 US201414512921A US2015027089A1 US 20150027089 A1 US20150027089 A1 US 20150027089A1 US 201414512921 A US201414512921 A US 201414512921A US 2015027089 A1 US2015027089 A1 US 2015027089A1
- Authority
- US
- United States
- Prior art keywords
- vacuum
- sealing
- channel
- cooling fan
- appliance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B31/00—Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
- B65B31/04—Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
- B65B31/046—Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzles co-operating, or being combined, with a device for opening or closing the container or wrapper
- B65B31/048—Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzles co-operating, or being combined, with a device for opening or closing the container or wrapper specially adapted for wrappers or bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/18—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
- B29C65/22—Heated wire resistive ribbon, resistive band or resistive strip
- B29C65/221—Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip
- B29C65/224—Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip being a resistive ribbon, a resistive band or a resistive strip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/20—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
- B29C66/23—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
- B29C66/232—Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/349—Cooling the welding zone on the welding spot
- B29C66/3494—Cooling the welding zone on the welding spot while keeping the welding zone under pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
- B29C66/431—Joining the articles to themselves
- B29C66/4312—Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
- B29C66/43121—Closing the ends of tubular or hollow single articles, e.g. closing the ends of bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/82—Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
- B29C66/822—Transmission mechanisms
- B29C66/8221—Scissor or lever mechanisms, i.e. involving a pivot point
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/82—Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
- B29C66/822—Transmission mechanisms
- B29C66/8226—Cam mechanisms; Wedges; Eccentric mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/832—Reciprocating joining or pressing tools
- B29C66/8324—Joining or pressing tools pivoting around one axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/84—Specific machine types or machines suitable for specific applications
- B29C66/849—Packaging machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/84—Specific machine types or machines suitable for specific applications
- B29C66/861—Hand-held tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/912—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
- B29C66/9121—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
- B29C66/91231—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91421—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9141—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
- B29C66/91421—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
- B29C66/91423—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools using joining tools having different temperature zones or using several joining tools with different temperatures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/914—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
- B29C66/9161—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
- B29C66/91651—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
- B29C66/91655—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the current intensity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B51/00—Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
- B65B51/10—Applying or generating heat or pressure or combinations thereof
- B65B51/14—Applying or generating heat or pressure or combinations thereof by reciprocating or oscillating members
- B65B51/146—Closing bags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/18—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
- B29C65/22—Heated wire resistive ribbon, resistive band or resistive strip
- B29C65/221—Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip
- B29C65/222—Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip comprising at least a single heated wire
- B29C65/223—Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip comprising at least a single heated wire comprising several heated wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/001—Joining in special atmospheres
- B29C66/0012—Joining in special atmospheres characterised by the type of environment
- B29C66/0014—Gaseous environments
- B29C66/00145—Vacuum, e.g. partial vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7128—Bags, sacks, sachets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B51/00—Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
- B65B51/10—Applying or generating heat or pressure or combinations thereof
- B65B2051/105—Heat seal temperature control
Definitions
- the present invention generally relates to a vacuum packaging and sealing appliance. More specifically, the present invention relates to a vacuum packaging and sealing appliance for food storage containers utilizing a cooling fan to generate a cooling air flow to prevent excessive heat buildup on a heat sealing element(s) to prevent premature sealing of subsequent food storage containers between successive heat sealing events.
- Various appliances and methods are used for the purpose of vacuum packaging and sealing plastic bags and containers to protect perishables, such as foodstuffs, and other products against oxidation.
- these vacuum and sealing appliances use a heat sealing element to form a seal at the open end of the container being sealed.
- the container may even be evacuated of excess moisture and air through the use of a vacuum pump prior to heat sealing to minimize the spoiling effects of oxygen on food.
- excessive heat may buildup in the heat sealing element which may cause premature heat sealing of subsequent containers being heat sealed.
- a sealing appliance including at least one elongated heat sealing element configured to heat seal an open end of a food container when placed in proximity of the heat sealing element, an elongated channel disposed proximate each heat sealing element, and a cooling fan in fluid communication with the channel for generating a cooling air flow through the channel to remove excessive heat generated by the heat sealing element.
- a vacuum packaging device for evacuating and sealing one or more open ends of a flexible container for storing perishable items
- a vacuum motor assembly generating suction
- a vacuum trough fluidly connected to the vacuum motor assembly configured to receive suction and evacuate the flexible container through one of the open ends
- at least one heat sealing element adjacent the vacuum trough configured to heat seal one of the open ends of the food container after evacuation
- a processor configured to control the vacuum motor assembly and the at least one heat sealing element, an elongated channel disposed proximate each heat sealing element, and a cooling fan in fluid communication with the channel for generating a cooling air flow through the channel to remove excessive heat generated by the heat sealing element.
- FIG. 1 is a prior art container C having a single machine seal SL a distance W from a top edge E of the container C;
- FIG. 2 is an embodiment of a container C′ with a first seal SL 1 a predetermined distance from a top edge E of the container C′ and a second seal SL 2 another predetermined distance from the first seal SL 1 and disposed between the first seal SL 1 and the top edge E of the container C′;
- FIG. 3 is a perspective view of an embodiment of a vacuum packaging and sealing appliance
- FIG. 4 is a perspective view of an embodiment of a vacuum packaging and sealing appliance with the lid in an open configuration
- FIG. 5 is a top view of the vacuum packaging and sealing appliance of FIG. 3 with the lid removed and a portion of the base cutaway;
- FIG. 6 is a cross-section of the vacuum packaging and sealing appliance of FIG. 3 ;
- FIG. 7 is a rear view of the vacuum packaging and sealing appliance of FIG. 3 ;
- FIG. 8 is a cross-section of the embodiment of the vacuum packaging and sealing appliance of FIG. 4 illustrating a cooling fan providing cooling air to a chamber disposed beneath the heat sealing elements;
- FIG. 9 is a bottom cutaway view of the vacuum packaging and sealing appliance of FIG. 4 ;
- FIG. 10 is a bottom view of the vacuum packaging and sealing appliance of FIG. 4 .
- FIG. 1 a prior art container C made from two layers of transparent film or other films known to one of ordinary skill in the art.
- the container C may be pre-sealed at the factory along three edges by sealing the two layers together with seals S 1 , S 2 and S 3 .
- a remaining edge E may form an open end or opening O where items A to be sealed in the container C may be inserted.
- a known vacuum sealing appliance may seal the opening O at a distance W 1 from the edge E by heat sealing or other means by forming a single machine seal SL. It is typical in current vacuum sealing machines of this type that the distance W 1 is in the twenty-five to thirty-eight millimeter range and the width of the machine seal SL is in the two to five millimeter range.
- FIG. 2 there is illustrated a partially formed flexible container C′ that is utilized in the subject vacuum sealing appliance 100 described hereinbelow.
- the container C′ may be pre-sealed along three edges at the factory by sealing the two layers together with seals S 1 , S 2 and S 3 .
- a remaining edge E may form an open end or opening O where items A to be sealed in the container C′ may be inserted.
- only two lateral edges may be pre-sealed with seals S 1 and S 3 at the factory and the remaining edges may be sealed by the vacuum sealing appliance 100 as described below.
- the container C′ may be formed from a roll of container material where a section of the bag material is cut from the roll and the two open ends are then sealed to form a hermetically sealed container C′.
- one of the open ends is sealed using the vacuum sealing appliance 100 to form a seal S 2 .
- the vacuum sealing appliance 100 may seal the opening O at a predetermined distance W 2 (typically in the twenty-five to thirty-eight millimeter range) from the edge E by heat sealing at a predetermined temperature for a predetermined time to form a first machine seal SL 1 .
- the area of the container C′ disposed in the predetermined distance W 2 between the first seal SL 1 and the open end E is commonly known as the after seal area on such containers C′ and its importance herein will be discussed in further detail below.
- the vacuum sealing appliance 100 may form a second machine seal SL 2 a predetermined distance SD (typically in a range of two to three millimeters) from the first machine seal SL 1 and between the edge E and the first machine seal SL 1 .
- the second seal SL 2 may be formed after a predetermined dwell period D between when the first seal SL 1 was formed to allow any liquids that may be between the film layers in the after seal area to be removed. It has been found that such liquid in the proximity of the first machine seal SL 1 during sealing may cause first seal SL 1 to seal poorly.
- the second seal SL 2 may be formed to ensure the integrity of the sealing of the opening O.
- the second seal SL 2 may be formed at a predetermined temperature higher than the predetermined temperature SL 1 was formed at and for a longer predetermined heat sealing time.
- the higher predetermined temperature and longer predetermined heat sealing time ensure a higher integrity seal of the second seal SL 2 as compared to the first seal SL 1 .
- the width of the first and second seals SL 1 and SL 2 may be in the 2-3 millimeter range.
- the vacuum sealing appliance 100 may include a storage compartment 115 for a roll 50 of flexible container material that is pre-sealed on two sides with seals S 1 and S 3 .
- a pivoting lid 120 encloses the storage compartment 115 in the closed position illustrated in FIG. 3 , and oppositely, allows a section of container material to be dispensed from the roll 50 in the open position illustrated in FIG. 4 .
- the section of container material is cut from the roll 50 with the lid 120 pivoted back to the closed position in FIG.
- the remaining open ends of the section of container material may then be sealed using the vacuum sealing appliance 100 forming seal S 2 and seals SL 1 and SL 2 .
- a container C′ FIG. 2 pre-sealed at the factory on three sides with seals S 1 , S 2 and S 3 may be used.
- the remaining open end O may be sealed using the vacuum sealing appliance 100 forming the seals SL 1 and SL 2 .
- the flexible container material is a roll 50 of flattened, tubular container material and is stored in the compartment 115 without support mechanisms and is free to rotate therein.
- the roll 50 of container material is stored in the compartment 115 with support mechanisms (not shown) and is free to rotate therein.
- the storage compartment 115 is eliminated and sections of flexible container material from another source are evacuated and/or sealed using the vacuum sealing appliance 100 .
- the cutting device 175 is disposed in a track 176 formed in the lid 120 .
- a section of container material is pulled from the roll 50 such that the desired location where the bag material to be cut is disposed directly beneath the cutting device 175 and track 176 .
- the lid 120 is then closed and the user then preferably slides the cutting device 175 back and forth along the track 176 in the direction of arrow 420 , whereby the cutting device 175 cuts the container material to provide the user with a partially formed container C′.
- the cutting device 175 is able to be moved in a direction from left to right as well as right to left along the track 176 to cut the flexible container material. Alternately, the user does not dispense the flexible container material from the compartment 115 and/or does not cut the flexible container material using the cutting device 175 .
- one of the open ends of the section of container material may be sealed using the vacuum sealing appliance 100 such as by heat sealing.
- Food items A may then be placed inside the partially formed container C′ followed by the partially formed container C′ being evacuated, and then the remaining open end O may be heat sealed as described below to form a hermetically sealed container C′ that retains the freshness of the food items A therein.
- the vacuum sealing appliance 100 includes a base 110 with the storage compartment 115 formed therein and the lid 120 .
- the lid 120 is hingedly connected to the rear portion of the base 110 for enclosing the compartment 115 and a lower vacuum trough 180 .
- the roll storage compartment 115 is disposed behind the lower vacuum trough 180 .
- An upper vacuum trough 185 and gasket 186 are disposed on the lid 120 and mate against the lower vacuum trough 180 and a gasket 182 when the lid 120 is in the closed position to form a composite sealed vacuum chamber.
- a lip 121 is disposed on the front edge of the lid 120 allowing the user to grasp the lid 120 when moving the lid between the open and closed positions.
- a latch bar 160 is disposed on the exterior of the base 110 which may be depressed to lock the lid 120 into the closed position.
- a pair of latches 154 , 154 on either side of the upper vacuum trough 185 are inserted into respective slots 156 , 156 on either side of a pair of heat sealing elements 190 , 192 when the lid 120 is pivoted in the direction of arrow 430 into the closed position.
- the latches 154 , 154 each include a hook that engages a complementary cam (not shown) disposed inside the base 110 when the latch bar 160 is depressed for sealing the lid 120 into the closed position.
- a control panel 122 is disposed directly adjacent to the lid 120 on the top of the base 110 .
- the control panel 122 includes a circuit board CB disposed directly beneath the control panel 122 .
- a vacuum motor assembly VMA is disposed in the base 110 behind the lower vacuum trough 180 for providing evacuating suction.
- a transformer T is also disposed in the base 110 behind the lower vacuum trough 180 for providing electrical power to the electronic control panel 122 and the vacuum motor assembly VMA.
- a bumper 187 is provided on the front lower side of the lid 120 which mates against the heat sealing strips 190 , 192 when lid 120 is in the closed position to sandwich the open end O of the container in the appliance 100 for evacuating and heat sealing the container C′.
- the electronic control 122 panel may include electronic switches 130 , 132 and 134 .
- the control panel 122 is electrically coupled to the vacuum motor assembly VMA, the circuit board CB, the heat sealing elements 190 , 192 and the transformer T, whereby operation of these components are controlled by a microprocessor M on the circuit board CB.
- Heat sealing elements 190 , 192 may have one or more temperature sensors 191 , 193 , respectively, disposed along their elongated length for measuring the temperature of heat seat elements 190 , 192 .
- temperature sensors 191 , 192 may be input to microprocessor M which may further determine a mean average temperature of heat sealing elements 190 , 192 and adjust current output to heat sealing elements 190 , 192 accordingly.
- temperature sensors 191 , 192 may be integrated into bumper 187 ( FIG. 4 ) that presses on top of the bag material and heating sealing elements 190 , 192 when lid 120 is in the closed position.
- the electronic control panel 122 is inoperative unless the lid 120 is closed and the latch bar 160 is in the latched position.
- a microswitch SW 1 is depressed when the latch bar 160 is moved to the closed position to signal the microprocessor M to energize the control panel 122 .
- the control panel 122 can also include other conventional components such as a power circuit (not shown), an input interface circuit (not shown), an output interface circuit (not shown), and one or more storage devices (not shown), such as a ROM (Read Only Memory) device and a RAM (Random Access Memory) device.
- the power circuit is connected to an AC or DC power source and directs power to the motors, sensors, etc. described herein, as well as provide power to other circuits and components of the control panel 122 .
- the input interface circuit can be electrically connected to the electronic switches 130 , 132 and 134 for user control.
- the output interface circuit can be electrically connected to a display (not shown), for example.
- the storage device stores processing results and control programs that are run by the microprocessor M. It will be apparent to those skilled in the art from this disclosure that the precise structure and algorithms for the electronic control panel 122 can be any combination of hardware and software that will carry out the functions of the present invention.
- the electronic switch 132 may be depressed for commencing a sealing only operation on one of the open ends of the section of container material. In this regard, it may be desirable to commence a sealing only operation on one of two open ends of the section of container material after dispensing from the roll 50 .
- a related indicia 128 may be energized by the microprocessor M to indicate that the sealing operation has commenced.
- the microprocessor M energizes the heat sealing elements 190 , 192 for a predetermined time at a predetermined temperature to form a seal S 2 on the open end of the section of container C′. The seal S 2 along with the pre-sealed edges S 1 and Ss form the partially formed container C′.
- the partially formed container C′ may be removed from the appliance 100 after the latch bar 160 is moved to the unlatched position and the lid 120 is raised. Food items A may now be placed inside the partially formed container C′ which may be processed further by evacuating and/or sealing the remaining open end O as described below.
- the indicia 128 may be a light emitting diode or other light source which is lighted during the sealing operation and may be the color red. The indicia 128 is extinguished after the predetermined sealing time has passed or after the predetermined sealing time and a dwell time for cooling has passed.
- a container C′ such as that illustrated in FIG. 2 that is pre-sealed on three edges at the factory with seals S 1 , S 2 and S 3 may be sealed on the remaining open end O by inserting the open end O into the appliance 100 and depressing the electronic switch 132 for the sealing only operation.
- the electronic switch 130 may be depressed for commencing a vacuum and sealing operation on the remaining open end O of the partially formed container C′.
- the vacuum motor assembly VMA is energized which delivers suction to the vacuum chamber by tubing (not shown) connected to the upper vacuum trough 185 .
- the first heating element 192 is energized at a first predetermined temperature for a first predetermined time to form the first seal SL 1 .
- the vacuum motor assembly VMA remains energized for an additional third predetermined time after the first predetermined sealing time has elapsed.
- the microprocessor M de-energizes the vacuum motor assembly VMA. The microprocessor M then waits a dwell time before energizing the second heat sealing element 190 for a second predetermined time at a second predetermined temperature to form the second seal SL 2 .
- the second seal SL 2 is a higher quality seal since any food or moisture remaining between the two layers of film between the first seal SL 1 and the open end O of the container C′ has been removed.
- the microprocessor M de-energizes the second heat sealing element 190 after the second predetermined time has elapsed and also extinguishes the indicia 128 .
- the values of the first, second and third predetermined times, the predetermined dwell time, the predetermined vacuum pressure, and the first and second predetermined sealing temperatures were determined based upon experimentation for different types of container material.
- the values of the first, second and third predetermined times are in a range between zero (0) and ten (10) seconds.
- the values of the first and second predetermined sealing temperatures are in a range of between 160° C.-200° C. All of the foregoing predetermined values may be pre-programmed into the microprocessor M, stored in look-up tables, or stored in other forms of digital storage media described above.
- the foregoing values may be hard coded or may be programmable with new values as newer container materials and predetermined heat sealing times, temperatures, pressures and dwell times are developed.
- a plurality of indicia 123 - 127 comprising green lights that progressively are lighted starting with indicia 123 being lighted when the evacuating and sealing operation has commenced with the remaining indicia 124 - 127 being lighted as the evacuating and sealing operations progresses.
- the lower most indicia 123 may be lighted green, followed after a predetermined time interval by the next vertically positioned indicia 124 being lighted, followed by the next vertically positioned indicia 125 after the predetermined time interval, etc, until the remaining indicia 126 and 127 are lighted which represents the end of the evacuation cycle.
- all of the plurality of indicia 123 - 127 and indicia 128 are extinguished and the sealed container C′ may be removed from the appliance 100 .
- the time interval between lighting of each of the plurality of indicia 123 - 127 is twenty percent (20%) of the evacuating and/or sealing operating cycle but this is not meant to be limiting as any number of indicia may be used and any increment between lighting of the indicia 123 - 127 may be used.
- an electronic switch 134 is provided to select a “dual seal” cycle as described above, or alternately, a “repetitive seal” cycle as described below.
- the electronic switch 134 is electronically connected to the microprocessor M which controls the operation of the “dual seal” and “repetitive seal” cycles.
- An indicia 135 is lighted when the “repetitive seal” cycle is selected and the indicia 136 is lighted when the “dual seal” cycle is selected.
- the microprocessor M determines the current temperature of the heat sealing elements 190 , 192 through temperature sensors 191 , 193 , respectively ( FIG. 5 ).
- the microprocessor M is programmed to determine whether the first heat sealing element 192 is at or below a threshold temperature such as fifty degrees (50°) Celsius before energizing the heat sealing element 192 . If the first heat sealing element 192 is below fifty degrees (50°) Celsius, the microprocessor M energizes the first heat sealing element 192 for a predetermined time at a predetermined temperature to form the seal SL 1 . If the first heat sealing element 192 is not below fifty degrees (50°) Celsius, the microprocessor M determines whether the second heat sealing element 190 is below fifty degrees (50°) Celsius. If so, the second heat sealing element 190 is energized for a predetermined time at a predetermined temperature to form the seal SL 2 .
- a threshold temperature such as fifty degrees (50°) Celsius
- the microprocessor M waits until one of the heat sealing elements 190 , 192 is below fifty degrees (50°) Celsius until energizing that particular heat sealing element 190 or 192 for the respective predetermined time and at the predetermined temperature to form seal SL 1 or SL 2 . This cycle is repeated each time the electronic switch is depressed so that the heating elements 190 , 192 do not overheat when heat sealing multiple containers C′ in succession.
- the lower vacuum trough 180 may include the removable drip tray 184 inserted therein for collecting excess liquids evacuated from the container C′.
- the drip tray 184 containing excess liquid evacuated from the container C′ may be removed and the excess liquid discarded. Ears on either end of the drip tray 184 are provided for grasping and removing the drip tray 184 .
- a liquid level sensor 188 may be disposed proximate to drip tray 184 for detecting an accumulation of liquids.
- the liquid level sensor 188 may be disposed at one or both ends of drip tray 184 .
- microprocessor M may temporarily disable vacuum motor assembly VMA and heat sealing elements 190 , 192 when drip tray 184 is full of liquid and exceeds a predetermined amount.
- Microprocessor M may also flash a “Check Tray” lighted indicia 137 disposed on control panel 122 . After drip tray 184 is emptied and replaced, lighted indicia 137 is extinguished and vacuum and sealing operations may then resume until the container C′ is evacuated and sealed.
- a similar drip tray is described and claimed in U.S. Pat. Nos. 7,003,928 and 7,076,929, both of which owned by Jarden Consumer Solutions of Boca Raton, Fla. and are incorporated by reference as if fully rewritten herein.
- vacuum motor assembly VMA includes dual turbine fans F 1 , F 2 for improved cooling efficiency.
- the dual turbine fans F 1 , F 2 are disposed on opposite sides of an electrical motor M 1 and are rotated therewith.
- a spindle SP 1 on the hub H 1 of each of the dual turbine fans F 1 , F 2 (only F 1 is illustrated in FIG. 6 ) is connected to crank arms CR 1 , CR 2 of vacuum pump assemblies VPA 1 , VPA 2 , respectively.
- the reciprocating motion of the crank arms CR 1 , CR 2 drive a diaphragm (not shown) in each of the vacuum pump assemblies VPA 1 , VPA 2 for generating suction provided to the upper vacuum trough 185 and the suction port 112 via tubing (not shown) when the motor M 1 is energized.
- the use of the single motor M1 to rotate the dual turbine fans F 1 , F 2 and drive the crank arms CR 1 , CR 2 of the vacuum pump assemblies VPA 1 , VPA 2 eliminate the need for multiple electrical motors for powering the vacuum pump, cooling fan(s) and separate transformers for providing electrical power. As such, only the single transformer T is required reducing power consumption, complexity and the additional cost of multiple transformers.
- the vacuum motor assembly VMA is positioned in the left side of the housing 110 behind the lower vacuum chamber 180 .
- the vacuum motor assembly VMA is fluidly connected to the upper vacuum chamber 185 via tubing (not shown) for providing evacuating suction.
- the vacuum motor assembly VMA is fluidly connected to the lower vacuum trough 180 via tubing (not shown) for providing evacuating suction.
- the circuit board CB is disposed in the housing 110 beneath the electronic control panel 122 .
- the pressure transducer P and microprocessor M are positioned on the circuit board CB.
- the pressure transducer P is fluidly connected to the vacuum motor assembly VMA via tubing (not shown).
- a valve V may also be connected to the tubing (not shown) interconnecting the vacuum motor assembly VMA, the pressure transducer P and the composite vacuum chamber (upper vacuum trough 185 and lower vacuum trough 180 ) which is opened when the latch bar 160 is moved to the unlatched position to vent the vacuum chamber to ambient pressure so that the container C′ may be removed from the appliance 100 .
- the latch bar 160 is mechanically connected to a linkage 161 which is mechanically connected to an offset control rod 162 which is rotated when the latch bar 160 is moved between the latched and unlatched positions.
- the control rod 162 has a pair of spaced apart cams (not shown) which engage the hooks of the latches 154 when the latch bar 160 is moved the closed position to seal the lid 120 in the closed position.
- the switch SW 1 is likewise depressed when the latch bar 160 is moved to the closed position which sends a control signal to the microprocessor M to energize the electronic control panel 122 .
- a humidity or other moisture sensor 195 is connected via tubing to the exhaust ports of VPA 1 and VPA 2 of vacuum motor assembly VMA.
- the humidity sensor 195 is further electrically connected to the microprocessor M.
- the humidity sensor 195 is fluidly connected to an exhaust port 196 on the rear of housing 110 (best seen in FIG. 7 ) via tubing for exhausting air and moisture to the atmosphere. Based on variable input from the humidity sensor 195 detecting moisture content in the exhaust of VPA 1 and VPA 2 of vacuum motor assembly VMA, microprocessor M may slow the rate of vacuum being applied to lower vacuum chamber 186 and/or upper vacuum chamber 185 .
- the accessory port 112 is disposed on the exterior front of the base 110 and is provided for connecting an accessory hose (not shown) for evacuating a separate non-flexible container (not shown) such as a polypropylene or other canister containing a food item to be preserved.
- a connector (not shown) on one end of the accessory hose (not shown) connects to the accessory port 112 .
- Another connector (not shown) on the opposite end of the accessory hose (not shown) connects to an adapter (not shown) that is fitted to an inlet on the container (not shown).
- the accessory hose (not shown) and connectors (not shown) fluidly connect the non-flexible container (not shown) to the vacuum motor assembly VMA disposed in the base 110 which provides the necessary suction to evacuate the non-flexible container (not shown).
- the accessory port 112 may include a ball-valve that closes when the connector (not shown) is not connected to prevent loss of suction.
- the vacuum motor assembly VMA is energized for providing the necessary suction to evacuate the canister (not shown) via the electronic switch 130 controlled by the electronic control panel 122 .
- the accessory hose (not shown), connectors (not shown), and adapter (not shown) may be stored in a designated portion of the base 110 when not in use and may be accessed when the lid 120 is in the open position shown in FIG. 2 .
- a pair of clips (not shown) may be provided on the underside of lid 120 for securably storing these items.
- the electronic control 130 may be depressed to activate the vacuum motor assembly VMA which provides suction to the accessory port 112 which is applied to the container (not shown) through the accessory hose (not shown).
- the pressure transducer P signals the microprocessor M to de-energize the vacuum motor assembly so that the container (not shown) may be disconnected from the accessory hose (not shown) and sealed.
- FIGS. 8-10 and 4 there is illustrated an embodiment of a vacuum sealing appliance 100 for dispensing, evacuating and sealing a container C′ as described above with a cooling fan F3 added disposed proximate the heat sealing elements 190 , 192 .
- the cooling fan F3 provides cooling air drawn from outside the vacuum sealing appliance 100 to the proximity of the heat sealing elements 190 , 192 continuously including between heat sealing events to prevent excessive buildup of heat in the heat sealing elements 190 , 192 . The buildup of excessive heat could cause premature sealing of subsequent containers C′ between successive heat sealing events.
- the cooling fan F3 is operatively connected to the electronic control panel 122 , circuit board CB and the microprocessor M which provide electrical power and control its operation. For example, cooling fan F3 may be energized when electronic control panel 122 is energized.
- the heat sealing elements 190 , 192 are mounted on top of elongated u-shaped channel members 196 , 198 , respectively.
- the u-shaped channel members 196 , 198 may be comprised of any suitable material such as an aluminum alloy which has suitable characteristics such as withstanding high operating temperatures, heat conduction, and heat dissipation.
- the u-shaped channels 196 , 198 partially form inner channels 197 , 199 which cooling air from fan F3 may be directed to remove excessive heat from the heat sealing elements 190 , 192 , respectively.
- An elongated metallic plate 165 comprised of a suitable material such as an aluminum alloy is sandwhiched between the u-shaped channels 196 , 198 and an elongated structural member 168 to complete the inner channels 197 , 199 .
- the structural member 168 has a passage 169 in fluid communication with the inner channels 197 , 199 .
- the passage 169 is in fluid communication with a plenum 166 having a truncated pyramidal shape.
- the plenum 166 is in fluid communication with a cooling fan F3.
- cooling air from the cooling fan F3 is directed to the inner channels 197 , 199 through the plenum 166 and the passage 169 .
- the cooling fan F3 is mounted on a frame 167 that fits into an open end of the plenum 166 .
- the inlet side of the cooling fan F3 abuts an inlet vent 103 formed on the bottom of the base 110 of the appliance 100 .
- the cooling air passes through the inner channels 197 , 199 to absorb excess heat from heat sealing elements 190 , 192 and the u-shaped channels 196 , 198 .
- the heated air is further directed to an outlet vent 104 fluidly connected to the inner channels 197 , 199 and into the atmosphere exterior of the appliance 100 .
- the method begins in step 505 .
- step 510 including using a microprocessor to control a vacuum motor and first and second heating elements in programmable sequences.
- the method includes at least one of the programmable sequences includes energizing the vacuum motor to provide suction to the vacuum trough.
- the method includes the step 530 of energizing the second sealing element at a first predetermined temperature for a first predetermined time when a first predetermined vacuum level is reached in the vacuum trough.
- step 540 the method includes the step 540 of de-energizing the vacuum motor after a second predetermined time has elapsed after the second sealing element has been de-energized.
- step 550 the method includes the step 550 of delaying a dwell time.
- step 560 the method includes the step 560 of energizing the first sealing element at the expiration of the dwell time at a second predetermined temperature for a third predetermined time.
- step 570 the method 500 ends.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Vacuum Packaging (AREA)
Abstract
A vacuum sealing appliance is provided including a vacuum motor assembly generating suction, a vacuum trough fluidly connected to the vacuum motor assembly configured to receive suction and evacuate a food container through an open end, and at least one heat sealing element adjacent the vacuum trough configured to heat seal the open end of the food container after evacuation. The vacuum sealing appliance further includes a control unit configured to control the vacuum motor assembly and the at least one heat sealing element. The vacuum sealing appliance further includes at least one channel disposed proximate the heat sealing element. The channel is fluidly connected to a cooling fan that generates a cooling air flow through the channel to remove excessive heat from the heat sealing element to prevent premature sealing of subsequent food containers between heat sealing events.
Description
- This application is a continuation-in-part application of U.S. patent application Ser. No. 14/058,560 filed on Oct. 21, 2013, which is a continuation-in-part application of U.S. patent application Ser. No. 13/702,135 filed on Dec. 5, 2012, and claims the benefit of U.S. Provisional Patent Application No. 61/889,709 filed on Oct. 11, 2013, which is incorporated by reference as if fully rewritten herein.
- The present invention generally relates to a vacuum packaging and sealing appliance. More specifically, the present invention relates to a vacuum packaging and sealing appliance for food storage containers utilizing a cooling fan to generate a cooling air flow to prevent excessive heat buildup on a heat sealing element(s) to prevent premature sealing of subsequent food storage containers between successive heat sealing events.
- Various appliances and methods are used for the purpose of vacuum packaging and sealing plastic bags and containers to protect perishables, such as foodstuffs, and other products against oxidation. Typically, these vacuum and sealing appliances use a heat sealing element to form a seal at the open end of the container being sealed. The container may even be evacuated of excess moisture and air through the use of a vacuum pump prior to heat sealing to minimize the spoiling effects of oxygen on food. However, during multiple heat sealing cycles excessive heat may buildup in the heat sealing element which may cause premature heat sealing of subsequent containers being heat sealed. Thus, the need exists for removing excessive heat from the heat sealing element to improve repetitive sealing of containers.
- In an embodiment, there is provided a sealing appliance including at least one elongated heat sealing element configured to heat seal an open end of a food container when placed in proximity of the heat sealing element, an elongated channel disposed proximate each heat sealing element, and a cooling fan in fluid communication with the channel for generating a cooling air flow through the channel to remove excessive heat generated by the heat sealing element.
- In an embodiment, there is provided a vacuum packaging device for evacuating and sealing one or more open ends of a flexible container for storing perishable items including a vacuum motor assembly generating suction, a vacuum trough fluidly connected to the vacuum motor assembly configured to receive suction and evacuate the flexible container through one of the open ends, at least one heat sealing element adjacent the vacuum trough configured to heat seal one of the open ends of the food container after evacuation, a processor configured to control the vacuum motor assembly and the at least one heat sealing element, an elongated channel disposed proximate each heat sealing element, and a cooling fan in fluid communication with the channel for generating a cooling air flow through the channel to remove excessive heat generated by the heat sealing element.
- A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
-
FIG. 1 is a prior art container C having a single machine seal SL a distance W from a top edge E of the container C; -
FIG. 2 is an embodiment of a container C′ with a first seal SL1 a predetermined distance from a top edge E of the container C′ and a second seal SL2 another predetermined distance from the first seal SL1 and disposed between the first seal SL1 and the top edge E of the container C′; -
FIG. 3 is a perspective view of an embodiment of a vacuum packaging and sealing appliance; -
FIG. 4 is a perspective view of an embodiment of a vacuum packaging and sealing appliance with the lid in an open configuration; -
FIG. 5 is a top view of the vacuum packaging and sealing appliance ofFIG. 3 with the lid removed and a portion of the base cutaway; -
FIG. 6 is a cross-section of the vacuum packaging and sealing appliance ofFIG. 3 ; -
FIG. 7 is a rear view of the vacuum packaging and sealing appliance ofFIG. 3 ; -
FIG. 8 is a cross-section of the embodiment of the vacuum packaging and sealing appliance ofFIG. 4 illustrating a cooling fan providing cooling air to a chamber disposed beneath the heat sealing elements; -
FIG. 9 is a bottom cutaway view of the vacuum packaging and sealing appliance ofFIG. 4 ; and -
FIG. 10 is a bottom view of the vacuum packaging and sealing appliance ofFIG. 4 . - Referring now to the drawing figures in which like reference designators refer to like elements, there is illustrated in
FIG. 1 a prior art container C made from two layers of transparent film or other films known to one of ordinary skill in the art. The container C may be pre-sealed at the factory along three edges by sealing the two layers together with seals S1, S2 and S3. A remaining edge E may form an open end or opening O where items A to be sealed in the container C may be inserted. After the items A have been inserted through the opening O, a known vacuum sealing appliance may seal the opening O at a distance W1 from the edge E by heat sealing or other means by forming a single machine seal SL. It is typical in current vacuum sealing machines of this type that the distance W1 is in the twenty-five to thirty-eight millimeter range and the width of the machine seal SL is in the two to five millimeter range. - Referring now to
FIG. 2 , there is illustrated a partially formed flexible container C′ that is utilized in the subjectvacuum sealing appliance 100 described hereinbelow. The container C′ may be pre-sealed along three edges at the factory by sealing the two layers together with seals S1, S2 and S3. A remaining edge E may form an open end or opening O where items A to be sealed in the container C′ may be inserted. In another embodiment, only two lateral edges may be pre-sealed with seals S1 and S3 at the factory and the remaining edges may be sealed by thevacuum sealing appliance 100 as described below. As such, the container C′ may be formed from a roll of container material where a section of the bag material is cut from the roll and the two open ends are then sealed to form a hermetically sealed container C′. First, one of the open ends is sealed using thevacuum sealing appliance 100 to form a seal S2. Next, after the items A have been inserted through the opening O, thevacuum sealing appliance 100 may seal the opening O at a predetermined distance W2 (typically in the twenty-five to thirty-eight millimeter range) from the edge E by heat sealing at a predetermined temperature for a predetermined time to form a first machine seal SL1. The area of the container C′ disposed in the predetermined distance W2 between the first seal SL1 and the open end E is commonly known as the after seal area on such containers C′ and its importance herein will be discussed in further detail below. - After a predetermined time has elapsed since the first machine seal SL1 was formed, the
vacuum sealing appliance 100 may form a second machine seal SL2 a predetermined distance SD (typically in a range of two to three millimeters) from the first machine seal SL1 and between the edge E and the first machine seal SL1. The second seal SL2 may be formed after a predetermined dwell period D between when the first seal SL1 was formed to allow any liquids that may be between the film layers in the after seal area to be removed. It has been found that such liquid in the proximity of the first machine seal SL1 during sealing may cause first seal SL1 to seal poorly. As a precaution, after the heat sealing of first seal SL1 is completed and the predetermined dwell time D has elapsed to evacuate any additional food or liquids in the after seal area W2, the second seal SL2 may be formed to ensure the integrity of the sealing of the opening O. In addition, the second seal SL2 may be formed at a predetermined temperature higher than the predetermined temperature SL1 was formed at and for a longer predetermined heat sealing time. The higher predetermined temperature and longer predetermined heat sealing time ensure a higher integrity seal of the second seal SL2 as compared to the first seal SL1. The width of the first and second seals SL1 and SL2 may be in the 2-3 millimeter range. - Referring now to
FIGS. 3 and 4 , there is illustrated an exemplary embodiment of avacuum sealing appliance 100 for dispensing, evacuating and sealing a container C′ as illustrated inFIG. 2 with a double seal SL1, SL2. Thevacuum sealing appliance 100 may include astorage compartment 115 for aroll 50 of flexible container material that is pre-sealed on two sides with seals S1 and S3.A pivoting lid 120 encloses thestorage compartment 115 in the closed position illustrated inFIG. 3 , and oppositely, allows a section of container material to be dispensed from theroll 50 in the open position illustrated inFIG. 4 . The section of container material is cut from theroll 50 with thelid 120 pivoted back to the closed position inFIG. 3 using acutting device 175 fitted into atrack 176 formed in thelid 120. The remaining open ends of the section of container material may then be sealed using thevacuum sealing appliance 100 forming seal S2 and seals SL1 and SL2. Alternately, a container C′ (FIG. 2 ) pre-sealed at the factory on three sides with seals S1, S2 and S3 may be used. The remaining open end O may be sealed using thevacuum sealing appliance 100 forming the seals SL1 and SL2. - In the illustrated embodiment, the flexible container material is a
roll 50 of flattened, tubular container material and is stored in thecompartment 115 without support mechanisms and is free to rotate therein. In another embodiment, theroll 50 of container material is stored in thecompartment 115 with support mechanisms (not shown) and is free to rotate therein. In another embodiment, thestorage compartment 115 is eliminated and sections of flexible container material from another source are evacuated and/or sealed using thevacuum sealing appliance 100. - In an embodiment, the
cutting device 175 is disposed in atrack 176 formed in thelid 120. In order to cut a section of container material from theroll 50, a section of container material is pulled from theroll 50 such that the desired location where the bag material to be cut is disposed directly beneath thecutting device 175 andtrack 176. Thelid 120 is then closed and the user then preferably slides thecutting device 175 back and forth along thetrack 176 in the direction ofarrow 420, whereby thecutting device 175 cuts the container material to provide the user with a partially formed container C′. It should be noted that thecutting device 175 is able to be moved in a direction from left to right as well as right to left along thetrack 176 to cut the flexible container material. Alternately, the user does not dispense the flexible container material from thecompartment 115 and/or does not cut the flexible container material using thecutting device 175. - After dispensing and cutting a section of container material, one of the open ends of the section of container material may be sealed using the
vacuum sealing appliance 100 such as by heat sealing. Food items A may then be placed inside the partially formed container C′ followed by the partially formed container C′ being evacuated, and then the remaining open end O may be heat sealed as described below to form a hermetically sealed container C′ that retains the freshness of the food items A therein. - In the exemplary embodiment, the
vacuum sealing appliance 100 includes abase 110 with thestorage compartment 115 formed therein and thelid 120. Thelid 120 is hingedly connected to the rear portion of thebase 110 for enclosing thecompartment 115 and alower vacuum trough 180. Theroll storage compartment 115 is disposed behind thelower vacuum trough 180. Anupper vacuum trough 185 andgasket 186 are disposed on thelid 120 and mate against thelower vacuum trough 180 and agasket 182 when thelid 120 is in the closed position to form a composite sealed vacuum chamber. Alip 121 is disposed on the front edge of thelid 120 allowing the user to grasp thelid 120 when moving the lid between the open and closed positions. - A
latch bar 160 is disposed on the exterior of the base 110 which may be depressed to lock thelid 120 into the closed position. A pair oflatches upper vacuum trough 185 are inserted intorespective slots heat sealing elements lid 120 is pivoted in the direction ofarrow 430 into the closed position. Thelatches latch bar 160 is depressed for sealing thelid 120 into the closed position. Acontrol panel 122 is disposed directly adjacent to thelid 120 on the top of thebase 110. Thecontrol panel 122 includes a circuit board CB disposed directly beneath thecontrol panel 122. A vacuum motor assembly VMA is disposed in thebase 110 behind thelower vacuum trough 180 for providing evacuating suction. A transformer T is also disposed in thebase 110 behind thelower vacuum trough 180 for providing electrical power to theelectronic control panel 122 and the vacuum motor assembly VMA. Abumper 187 is provided on the front lower side of thelid 120 which mates against the heat sealing strips 190, 192 whenlid 120 is in the closed position to sandwich the open end O of the container in theappliance 100 for evacuating and heat sealing the container C′. - Referring now also to
FIGS. 5 and 6 , the foregoing vacuum and/or heat sealing operations are controlled by the user through the use of theelectronic control panel 122. Theelectronic control 122 panel may includeelectronic switches control panel 122 is electrically coupled to the vacuum motor assembly VMA, the circuit board CB, theheat sealing elements Heat sealing elements more temperature sensors heat seat elements temperature sensors heat sealing elements elements temperature sensors FIG. 4 ) that presses on top of the bag material andheating sealing elements lid 120 is in the closed position. Theelectronic control panel 122 is inoperative unless thelid 120 is closed and thelatch bar 160 is in the latched position. A microswitch SW1 is depressed when thelatch bar 160 is moved to the closed position to signal the microprocessor M to energize thecontrol panel 122. - The
control panel 122 can also include other conventional components such as a power circuit (not shown), an input interface circuit (not shown), an output interface circuit (not shown), and one or more storage devices (not shown), such as a ROM (Read Only Memory) device and a RAM (Random Access Memory) device. The power circuit is connected to an AC or DC power source and directs power to the motors, sensors, etc. described herein, as well as provide power to other circuits and components of thecontrol panel 122. The input interface circuit can be electrically connected to theelectronic switches electronic control panel 122 can be any combination of hardware and software that will carry out the functions of the present invention. - In an embodiment, the
electronic switch 132 may be depressed for commencing a sealing only operation on one of the open ends of the section of container material. In this regard, it may be desirable to commence a sealing only operation on one of two open ends of the section of container material after dispensing from theroll 50. Arelated indicia 128 may be energized by the microprocessor M to indicate that the sealing operation has commenced. In addition, the microprocessor M energizes theheat sealing elements appliance 100 after thelatch bar 160 is moved to the unlatched position and thelid 120 is raised. Food items A may now be placed inside the partially formed container C′ which may be processed further by evacuating and/or sealing the remaining open end O as described below. In an embodiment, theindicia 128 may be a light emitting diode or other light source which is lighted during the sealing operation and may be the color red. Theindicia 128 is extinguished after the predetermined sealing time has passed or after the predetermined sealing time and a dwell time for cooling has passed. - Alternately, a container C′ such as that illustrated in
FIG. 2 that is pre-sealed on three edges at the factory with seals S1, S2 and S3 may be sealed on the remaining open end O by inserting the open end O into theappliance 100 and depressing theelectronic switch 132 for the sealing only operation. - In another embodiment, the
electronic switch 130 may be depressed for commencing a vacuum and sealing operation on the remaining open end O of the partially formed container C′. Upon depressing theswitch 130, the vacuum motor assembly VMA is energized which delivers suction to the vacuum chamber by tubing (not shown) connected to theupper vacuum trough 185. Once a predetermined pressure is reached in the vacuum chamber as measured by a pressure transducer P on the circuit board CB, thefirst heating element 192 is energized at a first predetermined temperature for a first predetermined time to form the first seal SL1. The vacuum motor assembly VMA remains energized for an additional third predetermined time after the first predetermined sealing time has elapsed. This is to allow suction from the vacuum chamber to remove any additional food or moisture between the two layers of film between the first seal SL1 and the open end O of the container C′ that may cause have caused poor seal quality when first seal SL1 was formed. In addition, the second seal SL2 may now be formed between first seal SL1 and the open end O of the container C′. After the third predetermined time has elapsed, the microprocessor M de-energizes the vacuum motor assembly VMA. The microprocessor M then waits a dwell time before energizing the secondheat sealing element 190 for a second predetermined time at a second predetermined temperature to form the second seal SL2. The second seal SL2 is a higher quality seal since any food or moisture remaining between the two layers of film between the first seal SL1 and the open end O of the container C′ has been removed. The microprocessor M de-energizes the secondheat sealing element 190 after the second predetermined time has elapsed and also extinguishes theindicia 128. - The values of the first, second and third predetermined times, the predetermined dwell time, the predetermined vacuum pressure, and the first and second predetermined sealing temperatures were determined based upon experimentation for different types of container material. In an embodiment, the values of the first, second and third predetermined times are in a range between zero (0) and ten (10) seconds. The values of the first and second predetermined sealing temperatures are in a range of between 160° C.-200° C. All of the foregoing predetermined values may be pre-programmed into the microprocessor M, stored in look-up tables, or stored in other forms of digital storage media described above. The foregoing values may be hard coded or may be programmable with new values as newer container materials and predetermined heat sealing times, temperatures, pressures and dwell times are developed.
- In an embodiment, after the
electronic switch 130 is depressed for commencing the vacuum and sealing operation, a plurality of indicia 123-127 comprising green lights that progressively are lighted starting withindicia 123 being lighted when the evacuating and sealing operation has commenced with the remaining indicia 124-127 being lighted as the evacuating and sealing operations progresses. Further, initially as the evacuating and sealing operation commences the lowermost indicia 123 may be lighted green, followed after a predetermined time interval by the next vertically positionedindicia 124 being lighted, followed by the next vertically positionedindicia 125 after the predetermined time interval, etc, until the remainingindicia indicia 128 are extinguished and the sealed container C′ may be removed from theappliance 100. - In an embodiment, the time interval between lighting of each of the plurality of indicia 123-127 is twenty percent (20%) of the evacuating and/or sealing operating cycle but this is not meant to be limiting as any number of indicia may be used and any increment between lighting of the indicia 123-127 may be used.
- In an embodiment, an
electronic switch 134 is provided to select a “dual seal” cycle as described above, or alternately, a “repetitive seal” cycle as described below. Theelectronic switch 134 is electronically connected to the microprocessor M which controls the operation of the “dual seal” and “repetitive seal” cycles. Anindicia 135 is lighted when the “repetitive seal” cycle is selected and theindicia 136 is lighted when the “dual seal” cycle is selected. In particular, when the “repetitive seal” cycle is selected, upon depressing theelectronic switch 132 for a sealing only operation orelectronic switch 130 for a sealing and evacuating operation on the container C′, the microprocessor M determines the current temperature of theheat sealing elements temperature sensors FIG. 5 ). - The microprocessor M is programmed to determine whether the first
heat sealing element 192 is at or below a threshold temperature such as fifty degrees (50°) Celsius before energizing theheat sealing element 192. If the firstheat sealing element 192 is below fifty degrees (50°) Celsius, the microprocessor M energizes the firstheat sealing element 192 for a predetermined time at a predetermined temperature to form the seal SL1. If the firstheat sealing element 192 is not below fifty degrees (50°) Celsius, the microprocessor M determines whether the secondheat sealing element 190 is below fifty degrees (50°) Celsius. If so, the secondheat sealing element 190 is energized for a predetermined time at a predetermined temperature to form the seal SL2. If neither of theheat sealing elements heat sealing elements heat sealing element heating elements - In an embodiment, the
lower vacuum trough 180 may include theremovable drip tray 184 inserted therein for collecting excess liquids evacuated from the container C′. Thedrip tray 184 containing excess liquid evacuated from the container C′ may be removed and the excess liquid discarded. Ears on either end of thedrip tray 184 are provided for grasping and removing thedrip tray 184. Aliquid level sensor 188 may be disposed proximate todrip tray 184 for detecting an accumulation of liquids. For example, theliquid level sensor 188 may be disposed at one or both ends ofdrip tray 184. The output of theliquid level sensor 188 is provided to microprocessor M which may temporarily disable vacuum motor assembly VMA andheat sealing elements drip tray 184 is full of liquid and exceeds a predetermined amount. Microprocessor M may also flash a “Check Tray” lightedindicia 137 disposed oncontrol panel 122. Afterdrip tray 184 is emptied and replaced, lightedindicia 137 is extinguished and vacuum and sealing operations may then resume until the container C′ is evacuated and sealed. A similar drip tray is described and claimed in U.S. Pat. Nos. 7,003,928 and 7,076,929, both of which owned by Jarden Consumer Solutions of Boca Raton, Fla. and are incorporated by reference as if fully rewritten herein. A similar liquid level sensor is described in U.S. patent application serial no. 2005/0039420, which is owned by Jarden Consumer Solutions of Boca Raton, Fla., and incorporated by reference as if fully rewritten herein. This completes the vacuum and sealing operational cycle of the food preservation container C′. - Referring now particularly to
FIG. 6 , a partially cutaway view of the interior of thehousing 110 of thevacuum sealing appliance 100 is provided illustrating the vacuum motor assembly VMA, circuit board CB with microprocessor M and pressure transducer P, and a transformer T for providing all of the necessary electrical power to these electrical components at a desired voltage. The transformer T receives the electrical power from an electrical power source such as 120 vac through an electrical power cord (not shown) connected to a plug PL. In embodiment, vacuum motor assembly VMA includes dual turbine fans F1, F2 for improved cooling efficiency. The dual turbine fans F1, F2 are disposed on opposite sides of an electrical motor M1 and are rotated therewith. A spindle SP1 on the hub H1 of each of the dual turbine fans F1, F2 (only F1 is illustrated inFIG. 6 ) is connected to crank arms CR1, CR2 of vacuum pump assemblies VPA1, VPA2, respectively. The reciprocating motion of the crank arms CR1, CR2 drive a diaphragm (not shown) in each of the vacuum pump assemblies VPA1, VPA2 for generating suction provided to theupper vacuum trough 185 and thesuction port 112 via tubing (not shown) when the motor M1 is energized. The use of the single motor M1 to rotate the dual turbine fans F1, F2 and drive the crank arms CR1, CR2 of the vacuum pump assemblies VPA1, VPA2 eliminate the need for multiple electrical motors for powering the vacuum pump, cooling fan(s) and separate transformers for providing electrical power. As such, only the single transformer T is required reducing power consumption, complexity and the additional cost of multiple transformers. - The exact arrangement of the
electronic control panel 122 and the circuit board CB, the vacuum motor assembly VMA, the pressure transducer P and microprocessor M, and the transformer T is exemplary and is not meant to be limiting in any sense. In the exemplary embodiment illustrated, the vacuum motor assembly VMA is positioned in the left side of thehousing 110 behind thelower vacuum chamber 180. In an embodiment, the vacuum motor assembly VMA is fluidly connected to theupper vacuum chamber 185 via tubing (not shown) for providing evacuating suction. In another embodiment, the vacuum motor assembly VMA is fluidly connected to thelower vacuum trough 180 via tubing (not shown) for providing evacuating suction. - The circuit board CB is disposed in the
housing 110 beneath theelectronic control panel 122. The pressure transducer P and microprocessor M are positioned on the circuit board CB. The pressure transducer P is fluidly connected to the vacuum motor assembly VMA via tubing (not shown). A valve V may also be connected to the tubing (not shown) interconnecting the vacuum motor assembly VMA, the pressure transducer P and the composite vacuum chamber (upper vacuum trough 185 and lower vacuum trough 180) which is opened when thelatch bar 160 is moved to the unlatched position to vent the vacuum chamber to ambient pressure so that the container C′ may be removed from theappliance 100. Thelatch bar 160 is mechanically connected to alinkage 161 which is mechanically connected to an offsetcontrol rod 162 which is rotated when thelatch bar 160 is moved between the latched and unlatched positions. Thecontrol rod 162 has a pair of spaced apart cams (not shown) which engage the hooks of thelatches 154 when thelatch bar 160 is moved the closed position to seal thelid 120 in the closed position. The switch SW1 is likewise depressed when thelatch bar 160 is moved to the closed position which sends a control signal to the microprocessor M to energize theelectronic control panel 122. Oppositely, when thelatch bar 160 is moved to the unlatched position thecontrol rod 162 is rotated and the cams (not shown) release the hooks of thelatches 154 so that thelid 120 is no longer sealed closed. The switch SW1 is released such that a control signal is sent to the microprocessor M to de-energize theelectronic control panel 122. - In an embodiment, a humidity or
other moisture sensor 195 is connected via tubing to the exhaust ports of VPA1 and VPA2 of vacuum motor assembly VMA. Thehumidity sensor 195 is further electrically connected to the microprocessor M. Thehumidity sensor 195 is fluidly connected to anexhaust port 196 on the rear of housing 110 (best seen inFIG. 7 ) via tubing for exhausting air and moisture to the atmosphere. Based on variable input from thehumidity sensor 195 detecting moisture content in the exhaust of VPA1 and VPA2 of vacuum motor assembly VMA, microprocessor M may slow the rate of vacuum being applied tolower vacuum chamber 186 and/orupper vacuum chamber 185. This may be desirable to reduce the amount of liquids being drawn intolower vacuum trough 186/drip tray 184 so that it doesn't overflow. In addition, uponhumidity sensor 195 detecting moisture in the exhaust of VPA1 and VPA2 of vacuum motor assembly VMA the amount of timeheat sealing elements - Referring again particularly to
FIG. 1 , in an embodiment theaccessory port 112 is disposed on the exterior front of thebase 110 and is provided for connecting an accessory hose (not shown) for evacuating a separate non-flexible container (not shown) such as a polypropylene or other canister containing a food item to be preserved. A connector (not shown) on one end of the accessory hose (not shown) connects to theaccessory port 112. Another connector (not shown) on the opposite end of the accessory hose (not shown) connects to an adapter (not shown) that is fitted to an inlet on the container (not shown). The accessory hose (not shown) and connectors (not shown) fluidly connect the non-flexible container (not shown) to the vacuum motor assembly VMA disposed in the base 110 which provides the necessary suction to evacuate the non-flexible container (not shown). Theaccessory port 112 may include a ball-valve that closes when the connector (not shown) is not connected to prevent loss of suction. A similar vacuum sealing appliance with an accessory port with an accessory hose and connectors for evacuating a non-flexible container is disclosed in U.S. patent application Ser. No. 13/445,605 filed on Apr. 12, 2012, owned by a common assignee, and is hereby incorporated be referenced as if fully re-written herein. - The vacuum motor assembly VMA is energized for providing the necessary suction to evacuate the canister (not shown) via the
electronic switch 130 controlled by theelectronic control panel 122. The accessory hose (not shown), connectors (not shown), and adapter (not shown) may be stored in a designated portion of the base 110 when not in use and may be accessed when thelid 120 is in the open position shown inFIG. 2 . A pair of clips (not shown) may be provided on the underside oflid 120 for securably storing these items. - With the
latch bar 160 in the latched position, theelectronic control 130 may be depressed to activate the vacuum motor assembly VMA which provides suction to theaccessory port 112 which is applied to the container (not shown) through the accessory hose (not shown). After a predetermined pressure is achieved in the vacuum tubing connecting theaccessory port 112 to the vacuum motor assembly VMA, the pressure transducer P signals the microprocessor M to de-energize the vacuum motor assembly so that the container (not shown) may be disconnected from the accessory hose (not shown) and sealed. - Referring now also to
FIGS. 8-10 and 4, there is illustrated an embodiment of avacuum sealing appliance 100 for dispensing, evacuating and sealing a container C′ as described above with a cooling fan F3 added disposed proximate theheat sealing elements vacuum sealing appliance 100 to the proximity of theheat sealing elements heat sealing elements electronic control panel 122, circuit board CB and the microprocessor M which provide electrical power and control its operation. For example, cooling fan F3 may be energized whenelectronic control panel 122 is energized. - The
heat sealing elements u-shaped channel members u-shaped channel members u-shaped channels inner channels heat sealing elements metallic plate 165 comprised of a suitable material such as an aluminum alloy is sandwhiched between theu-shaped channels structural member 168 to complete theinner channels structural member 168 has apassage 169 in fluid communication with theinner channels passage 169 is in fluid communication with aplenum 166 having a truncated pyramidal shape. Theplenum 166 is in fluid communication with a cooling fan F3. - When energized, cooling air from the cooling fan F3 is directed to the
inner channels plenum 166 and thepassage 169. The cooling fan F3 is mounted on aframe 167 that fits into an open end of theplenum 166. The inlet side of the cooling fan F3 abuts aninlet vent 103 formed on the bottom of thebase 110 of theappliance 100. Thus, while cooling fan F3 is operating cooling air is drawn through theinlet vent 103 into theplenum 166 and further to thepassage 169 andinner channels inner channels heat sealing elements u-shaped channels outlet vent 104 fluidly connected to theinner channels appliance 100. - In an embodiment, there is provided a method 500 of vacuum packaging and sealing a container C′ using an
appliance 100 as described above and illustrated in the correspondingFIGS. 1-10 . - The method begins in step 505.
- The method continues in step 510 including using a microprocessor to control a vacuum motor and first and second heating elements in programmable sequences.
- In step 520, the method includes at least one of the programmable sequences includes energizing the vacuum motor to provide suction to the vacuum trough.
- In step 530, the method includes the step 530 of energizing the second sealing element at a first predetermined temperature for a first predetermined time when a first predetermined vacuum level is reached in the vacuum trough.
- In step 540, the method includes the step 540 of de-energizing the vacuum motor after a second predetermined time has elapsed after the second sealing element has been de-energized.
- In step 550, the method includes the step 550 of delaying a dwell time.
- In step 560, the method includes the step 560 of energizing the first sealing element at the expiration of the dwell time at a second predetermined temperature for a third predetermined time.
- In step 570, the method 500 ends.
- It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the invention, which is limited only by the following claims.
Claims (12)
1. A sealing appliance, comprising:
at least one elongated heat sealing element configured to heat seal an open end of a food container when placed in proximity of the heat sealing element;
an elongated channel disposed proximate each heat sealing element; and
a cooling fan in fluid communication with the channel for generating a cooling air flow through the channel to remove excessive heat generated by the heat sealing element.
2. The scaling appliance of claim 1 , further comprising:
a cooling air intake vent in fluid communication with the cooling fan and the channel configured to allow entry of cooling air drawn by the cooling fan into the channel.
3. The sealing appliance of claim 1 , further comprising:
an exhaust vent in fluid communication with the channel configured to allow heated airflow to exit the channel.
4. The sealing appliance of claim 1 , wherein the cooling fan is energized continuously.
5. The sealing appliance of claim 1 , further comprising:
a microprocessor and electronic control panel configured to control the operation of the cooling fan.
6. The sealing appliance of claim 5 , wherein the cooling fan is energized continuously when the electronic control panel is energized.
7. A vacuum packaging device for evacuating and sealing one or more open ends of a flexible container for storing perishable items, comprising:
a vacuum motor assembly generating suction;
a vacuum trough fluidly connected to the vacuum motor assembly configured to receive suction and evacuate the flexible container through one of the open ends;
at least one heat sealing element adjacent the vacuum trough configured to heat seal one of the open ends of the food container after evacuation;
a processor configured to control the vacuum motor assembly and the at least one heat sealing element;
an elongated channel disposed proximate each heat sealing element; and
a cooling fan in fluid communication with the channel for generating a cooling air flow through the channel to remove excessive heat generated by the heat sealing element.
8. The sealing appliance of claim 7 , further comprising:
a cooling air intake vent in fluid communication with the cooling fan and the channel configured to allow entry of cooling air drawn by the cooling fan into the channel.
9. The sealing appliance of claim 7 , further comprising:
an exhaust vent in fluid communication with the channel configured to allow heated airflow to exit the channel.
10. The sealing appliance of claim 7 , wherein the cooling fan is energized continuously.
11. The sealing appliance of claim 7 , further comprising:
an electronic control panel connected to the processor configured to control the operation of the cooling fan.
12. The sealing appliance of claim 11 , wherein the cooling fan is energized continuously when the electronic control panel is energized.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/512,921 US20150027089A1 (en) | 2012-10-22 | 2014-10-13 | Vacuum Packaging and Sealing Appliance with Cooling Fan |
EP15002915.5A EP3009255B1 (en) | 2014-10-13 | 2015-10-13 | Vacuum packaging and sealing appliance with cooling fan |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/702,135 US9352864B2 (en) | 2011-10-21 | 2012-10-22 | Vacuum packaging and sealing appliance with double seal |
US14/058,560 US9676506B2 (en) | 2012-10-19 | 2013-10-21 | Vacuum packaging and sealing appliance with liquid detection |
US14/512,921 US20150027089A1 (en) | 2012-10-22 | 2014-10-13 | Vacuum Packaging and Sealing Appliance with Cooling Fan |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/058,560 Continuation-In-Part US9676506B2 (en) | 2012-10-19 | 2013-10-21 | Vacuum packaging and sealing appliance with liquid detection |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150027089A1 true US20150027089A1 (en) | 2015-01-29 |
Family
ID=52392498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/512,921 Abandoned US20150027089A1 (en) | 2012-10-22 | 2014-10-13 | Vacuum Packaging and Sealing Appliance with Cooling Fan |
Country Status (1)
Country | Link |
---|---|
US (1) | US20150027089A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160229115A1 (en) * | 2015-02-05 | 2016-08-11 | Welcome Co., Ltd. | Storage electric sealer |
WO2016197134A1 (en) | 2015-06-05 | 2016-12-08 | Sunbeam Products, Inc. | Food storage appliance |
US20170305585A1 (en) * | 2014-10-10 | 2017-10-26 | Cryovac, Inc. | Apparatus and process for packaging a product |
USD854065S1 (en) * | 2017-06-16 | 2019-07-16 | Sunbeam Products, Inc. | Vacuum sealer |
USD854594S1 (en) * | 2017-10-11 | 2019-07-23 | The Metal Ware Corporation | Vacuum sealer |
US20200027300A1 (en) * | 2018-07-19 | 2020-01-23 | Crane Payment Innovations, Inc. | Multipurpose cashbag level and banknote presence in escrow detector |
CN111099165A (en) * | 2019-12-23 | 2020-05-05 | 上海蓁维印刷有限公司 | Zongzi packing carton |
US20210259454A1 (en) * | 2016-12-27 | 2021-08-26 | Lg Electronics Inc. | Vacuum cooking appliance |
US11772333B2 (en) * | 2019-03-01 | 2023-10-03 | Brainchild Concepts, Llc | System and method for sealing a plastic enclosure |
US20240076079A1 (en) * | 2021-02-10 | 2024-03-07 | Guangzhou Argion Electric Appliance Co., Ltd. | Multifunction vacuum package machine |
US12082315B2 (en) | 2016-12-27 | 2024-09-03 | Lg Electronics Inc. | Cooking appliance |
US12103720B2 (en) * | 2022-11-11 | 2024-10-01 | Liang Xu | Bag sealing machine |
EP4442438A1 (en) * | 2023-04-03 | 2024-10-09 | Marziano Salvaro | Vacuum packaging machine |
US12145758B1 (en) * | 2024-06-03 | 2024-11-19 | Bigland Electric Appliance Co., Ltd. | Household vacuum sealer |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3692613A (en) * | 1970-06-10 | 1972-09-19 | Du Pont Canada | Apparatus for sealing and cutting layers of thermoplastic film |
US3699742A (en) * | 1971-02-18 | 1972-10-24 | Grace W R & Co | Apparatus for vacuum welding of plastics envelopes |
US4267005A (en) * | 1979-04-30 | 1981-05-12 | Barnaby Roland E | Heat sealing apparatus |
US4512138A (en) * | 1982-03-04 | 1985-04-23 | The Dow Chemical Company | Form, fill and seal machine with hot gas and thermal impulse sealing |
US5048269A (en) * | 1990-05-09 | 1991-09-17 | Frank Deni | Vacuum sealer |
US5993593A (en) * | 1996-12-03 | 1999-11-30 | Heat Sealing Technology, Inc. | High-temperature, heat-sealed products and methods and means for their manufacture |
US20050022474A1 (en) * | 2003-07-31 | 2005-02-03 | Albritton Charles Wade | Heat sealing element and control of same |
US20050044814A1 (en) * | 2002-10-04 | 2005-03-03 | Patterson Justin C. | Appliance for vacuum sealing food containers |
US20100242410A1 (en) * | 2009-03-24 | 2010-09-30 | Rethceif Enterprises, Llc | Packaging apparatus and method of packaging |
US20110269611A1 (en) * | 2008-04-22 | 2011-11-03 | Erich Eberhardt | Tubular bagging method |
US8096329B2 (en) * | 2007-06-15 | 2012-01-17 | S. C. Johnson & Son, Inc. | Hand-held vacuum pump |
US20120110956A1 (en) * | 2010-10-13 | 2012-05-10 | Multivac Sepp Haggenmueller Gmbh & Co. Kg | Method and chamber machine for sealing packaging material |
-
2014
- 2014-10-13 US US14/512,921 patent/US20150027089A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3692613A (en) * | 1970-06-10 | 1972-09-19 | Du Pont Canada | Apparatus for sealing and cutting layers of thermoplastic film |
US3699742A (en) * | 1971-02-18 | 1972-10-24 | Grace W R & Co | Apparatus for vacuum welding of plastics envelopes |
US4267005A (en) * | 1979-04-30 | 1981-05-12 | Barnaby Roland E | Heat sealing apparatus |
US4512138A (en) * | 1982-03-04 | 1985-04-23 | The Dow Chemical Company | Form, fill and seal machine with hot gas and thermal impulse sealing |
US5048269A (en) * | 1990-05-09 | 1991-09-17 | Frank Deni | Vacuum sealer |
US5993593A (en) * | 1996-12-03 | 1999-11-30 | Heat Sealing Technology, Inc. | High-temperature, heat-sealed products and methods and means for their manufacture |
US20050044814A1 (en) * | 2002-10-04 | 2005-03-03 | Patterson Justin C. | Appliance for vacuum sealing food containers |
US20050022474A1 (en) * | 2003-07-31 | 2005-02-03 | Albritton Charles Wade | Heat sealing element and control of same |
US8096329B2 (en) * | 2007-06-15 | 2012-01-17 | S. C. Johnson & Son, Inc. | Hand-held vacuum pump |
US20110269611A1 (en) * | 2008-04-22 | 2011-11-03 | Erich Eberhardt | Tubular bagging method |
US20100242410A1 (en) * | 2009-03-24 | 2010-09-30 | Rethceif Enterprises, Llc | Packaging apparatus and method of packaging |
US20120110956A1 (en) * | 2010-10-13 | 2012-05-10 | Multivac Sepp Haggenmueller Gmbh & Co. Kg | Method and chamber machine for sealing packaging material |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10926904B2 (en) * | 2014-10-10 | 2021-02-23 | Cryovac, Llc | Apparatus and process for packaging a product |
US20170305585A1 (en) * | 2014-10-10 | 2017-10-26 | Cryovac, Inc. | Apparatus and process for packaging a product |
US9937661B2 (en) * | 2015-02-05 | 2018-04-10 | Welcome Co., Ltd. | Storage electric sealer |
US20160229115A1 (en) * | 2015-02-05 | 2016-08-11 | Welcome Co., Ltd. | Storage electric sealer |
WO2016197134A1 (en) | 2015-06-05 | 2016-12-08 | Sunbeam Products, Inc. | Food storage appliance |
EP3303152A4 (en) * | 2015-06-05 | 2018-12-05 | Sunbeam Products, Inc. | Food storage appliance |
US10858129B2 (en) * | 2015-06-05 | 2020-12-08 | Sunbeam Products, Inc. | Food storage appliance |
US12114799B2 (en) * | 2016-12-27 | 2024-10-15 | Lg Electronics Inc. | Vacuum cooking appliance |
US12082315B2 (en) | 2016-12-27 | 2024-09-03 | Lg Electronics Inc. | Cooking appliance |
US20210259454A1 (en) * | 2016-12-27 | 2021-08-26 | Lg Electronics Inc. | Vacuum cooking appliance |
USD854065S1 (en) * | 2017-06-16 | 2019-07-16 | Sunbeam Products, Inc. | Vacuum sealer |
USD854594S1 (en) * | 2017-10-11 | 2019-07-23 | The Metal Ware Corporation | Vacuum sealer |
US11210887B2 (en) * | 2018-07-19 | 2021-12-28 | Crane Payment Innovations, Inc. | Multipurpose cashbag level and banknote presence in escrow detector |
US11908264B2 (en) | 2018-07-19 | 2024-02-20 | Crane Payment Innovations, Inc. | Multipurpose cashbag level and banknote presence in escrow detector |
US20200027300A1 (en) * | 2018-07-19 | 2020-01-23 | Crane Payment Innovations, Inc. | Multipurpose cashbag level and banknote presence in escrow detector |
US11772333B2 (en) * | 2019-03-01 | 2023-10-03 | Brainchild Concepts, Llc | System and method for sealing a plastic enclosure |
CN111099165A (en) * | 2019-12-23 | 2020-05-05 | 上海蓁维印刷有限公司 | Zongzi packing carton |
US20240076079A1 (en) * | 2021-02-10 | 2024-03-07 | Guangzhou Argion Electric Appliance Co., Ltd. | Multifunction vacuum package machine |
US12103720B2 (en) * | 2022-11-11 | 2024-10-01 | Liang Xu | Bag sealing machine |
EP4442438A1 (en) * | 2023-04-03 | 2024-10-09 | Marziano Salvaro | Vacuum packaging machine |
US12145758B1 (en) * | 2024-06-03 | 2024-11-19 | Bigland Electric Appliance Co., Ltd. | Household vacuum sealer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10351279B2 (en) | Vacuum packaging and sealing appliance with double seal | |
US9676506B2 (en) | Vacuum packaging and sealing appliance with liquid detection | |
US20150027089A1 (en) | Vacuum Packaging and Sealing Appliance with Cooling Fan | |
US10315792B2 (en) | Vacuum packaging appliance with roll storage | |
US8047128B2 (en) | Vacuum cooking apparatus for household use | |
US7331163B2 (en) | Refrigerator with integral vacuum sealer | |
US9457920B2 (en) | Automated food saver machine | |
US20180162569A1 (en) | Food storage appliance | |
US10392146B2 (en) | Food storage appliance with based seal profile | |
US20050205455A1 (en) | Vacuum packaging system | |
US20120326588A1 (en) | Refrigerator vacuum storage system | |
AU4242400A (en) | Volumetric vacuum control | |
EP3009255B1 (en) | Vacuum packaging and sealing appliance with cooling fan | |
US9463890B2 (en) | Vacuum and ultraviolet light exposure container for maintaining freshness of food | |
CN107404912A (en) | method for cooking and sterilizing | |
US20020043052A1 (en) | Gabi-pak/food preserver | |
CN221189277U (en) | Vacuum packaging machine for fish | |
JPH0720002Y2 (en) | Simple deaeration packaging machine using an electric vacuum cleaner | |
KR100584864B1 (en) | Vacuum Packaging Machine with Pulling Embossing Member | |
JPH05112320A (en) | Simplified deaerating packaging machine | |
JP2007269320A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUNBEAM PRODUCTS, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OWENS, DAVID;MATHIEU, DAVID;SIGNING DATES FROM 20141013 TO 20141014;REEL/FRAME:033983/0843 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |