US20150006472A1 - Listing tune-up system - Google Patents
Listing tune-up system Download PDFInfo
- Publication number
- US20150006472A1 US20150006472A1 US14/486,078 US201414486078A US2015006472A1 US 20150006472 A1 US20150006472 A1 US 20150006472A1 US 201414486078 A US201414486078 A US 201414486078A US 2015006472 A1 US2015006472 A1 US 2015006472A1
- Authority
- US
- United States
- Prior art keywords
- listing
- item
- text
- changing
- category
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G06F17/30589—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/282—Hierarchical databases, e.g. IMS, LDAP data stores or Lotus Notes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0603—Catalogue ordering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
- G06F16/285—Clustering or classification
-
- G06F17/30598—
Definitions
- This application relates to the technical fields of software and/or hardware technology and, in one example embodiment, to an online listing system.
- an electronic listing (hereinafter “listing”) may be used to describe an offering of an item or service provided by a user (e.g., seller) for transaction.
- the listing may be composed by the user via a user interface to include keywords that describe the item or service and then it may be submitted to the on-line transaction processing system.
- the on-line transaction processing system may then provide the listing to other users (e.g., buyers) when it determines that the keywords included in the listing match a query provided by the other users.
- the on-line transaction processing system may use a dedicated search engine for the purpose of determining the match between the keywords in the listing and the query.
- FIG. 1 is a diagrammatic representation of an architecture within which one example embodiment of a listing tune-up system may be implemented
- FIG. 2 is block diagram of a listing tune-up system, in accordance with one example embodiment
- FIG. 3 is a flow chart of a method for using a listing tune-up system, in accordance with an example embodiment.
- FIG. 4 is a diagrammatic representation of an example machine in the form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.
- An online listing system in which goods/services are offered to interested parties may accept a keyword query from a user and respond to the user with a number of matching item listings. The user may then review the returned item listings to select an item listing that best satisfies his requirements.
- an online listing system should ideally narrow a search scope by limiting the search to certain item listings that fall into the same category as one designated by the user before returning the item listings to the user.
- An example listing tune-up system may include a detecting module to detect a listing for an item.
- the listing may comprise various information including a title, and a category of the item for transaction.
- the example listing tune-up system may include a determining module to determine a recommended category set for the item using categories of existing listings that match one or more keywords in the title.
- the example listing tune-up system may include a verifying module to verify whether the category of the item complies with the recommended category set.
- the example listing tune-up system may further include a generating module to generate a tune-up report for the listing upon completion of the verification.
- the tune-up report may comprise the recommended category set and/or other editing suggestions. More detailed explanation about the listing tune-up system and its operation is given below with reference to FIGS. 1-4 .
- FIG. 1 is a diagrammatic representation of an architecture 100 within which one example embodiment of a listing tune-up system may be implemented.
- the architecture 100 may include one or more user devices 110 - 1 , 110 - 2 and 110 -N, in communication with a host device 130 via a network 120 .
- Each of the user devices 110 - 1 through 110 -N may comprise a stand-alone client computer system, a cell phone, or a personal digital assistant (PDA), etc. and run a listing tune-up interface 112 .
- the listing tune-up interface 112 running on the user device 110 - 1 may transfer an item listing 114 to the host device 130 via the network 120 .
- the item listing 114 may comprise various types of data, for example, pictures or texts, etc., that describe an offer of an item for transaction.
- the item listing 114 may include a title and a category as examples of the text data.
- the item listing 114 may further include one or more subtitles and one or more subcategories for the item.
- the transaction may be an auction sale or a fixed-price sale.
- the network 120 may provide a communication channel between the user devices 110 - 1 through 110 -N and the host device 130 .
- the network 120 may comprise a public network (e.g., the Internet, a wireless network, etc.) or a private network (e.g., a local area network (LAN), a wide area network (WAN), Intranet, etc.).
- the network 120 may use a transfer protocol, for example, Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol Secure (HTTPs), or file transfer protocol (FTP), etc. to transfer the listing for the item 114 to the host device 130 .
- HTTP Hypertext Transfer Protocol
- HTTPs Hypertext Transfer Protocol Secure
- FTP file transfer protocol
- the host device 130 may receive the listing for the item 114 transferred from the user device 110 - 1 via the network 120 .
- the host device 130 may comprise a listing tune-up system 132 and an online transaction platform system 134 .
- the listing tune-up system 132 may detect a listing for an item (e.g., the item listing 114 ) listed on the host device 130 , determine a recommended category set for the item using categories of existing listings that match one or more keywords in a title of the item, verify whether the category associated with the item complies with the recommended category set, and generate a tune-up report 136 that includes the recommended category set for the item.
- the listing tune-up system 132 may detect the listing for the item and/or the existing listings from a listing database 140 , which may be operatively coupled to the host device 130 locally or remotely via a network (not shown in FIG. 1 ).
- the network via which the listing database 140 is coupled to the host device 130 may comprise the Internet, a LAN, a WAN, or a wireless network.
- the host device 130 may transfer the tune-up report 136 to the user device 110 - 1 from which the listing for the item (e.g., the item listing 114 ) is listed. More detailed structures and functions of the listing tune-up system 132 will be described below with reference to FIGS. 2 and 3 .
- the online transaction platform system 134 may provide the host device 130 with server-side functionality for a network-based marketplace (not shown in FIG. 1 ).
- the online transaction platform system 134 may run a number of modules or applications, such as a listing module, a search module or a billing module (not shown in FIG. 1 ).
- the listing module may provide a user with capability to post an item listing for transaction via the user devices 110 - 1 through 110 -N.
- the search module may provide access to existing listings associated with the host device 130 according to a user's query.
- the billing module may provide the host device 130 with capabilities to bill users according to various services provided to the users.
- the online transaction platform system 134 may run one or more other applications or modules. It is also noted that although the online transaction platform system 134 is described as an entity separate from the listing tune-up system 132 , these two systems 132 and 134 may be combined as a single entity or divided into more entities, and yet provide the same functionality in some example embodiments.
- FIG. 2 is block diagram 200 of the listing tune-up system 132 , in accordance with one example embodiment.
- the listing tune-up system 132 may comprise a detecting module 210 , a determining module 230 , a verifying module 250 , a generating module 270 , and a communication module 290 .
- the detecting module 210 is configured to detect a listing for an item (e.g., item listing 114 ) which is listed by a user via a user device (e.g., the user device 110 - 1 ) associated with the user.
- the detecting module 210 may automatically detect the item listing 114 upon the item listing 114 being listed on the host device 130 (e.g., the online transaction platform system 134 as shown in FIG. 1 ).
- the item listing 114 may include at least one title and at least one category of the item for transaction.
- the transaction may be different types of transaction, such as an auction, a fixed price sale or a combination thereof.
- the transaction may be a transaction that is not opened to users yet, a transaction that is opened to the user and currently active, or a transaction that is already closed.
- the item listing may include date and time information when the item listing is configured to be published to users for transaction.
- the detecting module 210 may detect the item listing 114 upon a specified triggering condition being met rather than upon being listed on the host device 130 (e.g., the online transaction platform system 134 ).
- the triggering condition may be one week, one day, or one hour before publication to the users, or a specified date and time, such as Aug. 31, 2009, 2:00 PM, etc. It is noted that different conditions may be set as the triggering condition.
- the detecting module 210 may detect the item listing 114 according to a request from the user (e.g., seller) who listed the item listing to the host device 130 .
- the detecting module 210 may detect the item listing 114 from existing item listings whether or not the item listing 114 has been already published to the users for transaction, or even closed for the transaction.
- a minimum number of biddings within a given time frame may be set as the triggering condition for detecting item listings for tune-up. For example, if the minimum number of biddings on the item listing 114 for the first two days after publishing to the users is set to be five and the number of actual biddings on the item is less than five for the first two days, then the detecting module 114 may automatically detect the item listing 114 for an initial or additional tune-up of the item listing 114 .
- the determining module 230 may determine a recommended category set for the item associated with the item listing 114 by using category information of existing listings that match one or more keywords included in the title of the item listing 114 .
- the detecting module 210 may calculate a usage frequency of a category of each existing listing that match the one or more keywords in the title of the item listing 114 , relative to a total number of the existing listings. When the category information for the existing listings is calculated, the detecting module 210 may then sort the categories for the existing listings according to their corresponding usage frequencies.
- the detecting module 210 may then further designate a category with a highest usage frequency and a second highest usage frequency as a first recommended category and a second recommended category for the item, respectively. It is noted that the detecting module 210 may further designate more (e.g., a third or a fourth) recommended categories for the recommended category set for the item in a similar manner.
- the detecting module 210 may parse the title of the item listing 114 and extract the one or more keywords from the title of the item listing 114 . The detecting module 210 may then compose a query based upon the one or more keywords extracted from the title of the item listing 114 . The detecting module 210 may access a listing database (DB) that includes the existing item listings (e.g., listing database 140 ). The detecting module 210 may then retrieve from the listing DB the existing listings that meet the query, and extract the categories of the existing listings to calculate corresponding usage frequencies.
- DB listing database
- the verifying module 250 may verify whether the category of the item included in the item listing 114 complies with the recommended category set. If the category of the item included in the item listing 114 is determined to comply with the recommended category set, then the verifying module 250 may send a notification of compliance (e.g., “a proper category”) to an associated user device (e.g., the user device 110 - 1 ) from which the item listing 114 is listed. The verifying module 250 may then allow the item listing 114 to be viewed by users for an intended transaction, for example, by transferring a control to the online transaction platform system 134 .
- a notification of compliance e.g., “a proper category”
- the verifying module 250 may send a notification of incompliance (e.g., “an inappropriate category”) to the associated user device. At the same time or alternatively, the verifying module 250 may send a corresponding incompliance indication to the generating module 270 .
- a notification of incompliance e.g., “an inappropriate category”
- the generating module 270 may generate a tune-up report 136 for the listing upon completion of the verification.
- the tune-up report 136 may include various recommendations for the item listing 114 such that the item listing can be published to users with more relevant and exact information for the intended transaction.
- the tune-up report 136 may comprise the recommended category set including the first and second recommended categories.
- the tune-up report 136 may further comprise editing suggestions (e.g., spelling, grammar, highlighting, such as a font, size or coloring, etc.) for any texts (e.g., title, category or description, etc.) included in the item listing 114 .
- the tune-up report 136 may further comprise recommended payment options (e.g., PayPal or credit card, etc.) or a recommendation for a relevant picture for the intended transaction of the item.
- the listing tune-up system 132 may further include an optimizing module 272 operatively coupled with the generating module 270 .
- the optimizing module 272 may optimize_the tune-up report 136 according to an attribute value indicating an experience level of a user.
- the listing tune-up system 132 may further include an experience level determining module 274 operatively coupled with the optimizing module 272 .
- the experience level determining module 274 may automatically determine the experience level of the user based on a number of previous transactions by the user.
- the optimizing module 272 and the experience level determining module 274 are illustrated as being included in the generating module 270 , either one or both of the modules may be implemented as separate modules of the listing tune-up system 132 .
- the use of the experience level of the user allows the listing tune-up system 132 to provide the users with different recommendations according to their experience levels. For example, an inexperienced user (e.g., seller) may not know that the item listing 114 of the recommended category set draws more user attentions or activities (e.g., viewing, bidding or buying, etc.) when highlighted (e.g., colored, underlined, flowing or written in a larger font, etc.) or combined with a relevant picture. In contrast, an experience user may be likely to know such tips from their transaction experiences. By using the value indicating the experience level of the user, the generating module 270 may include different recommendations in the tune-up report 136 .
- the listing tune-up system 132 may further comprise a communication module 290 to transmit the tune-up report 136 to a computer system (e.g., user device 110 - 1 ) associated with the user.
- the communication module 290 may further detect a user selection 272 of one or more recommendations from the tune-up report.
- the listing tune-up system 132 may then modify an associated listing (e.g., item listing 114 ) according to the detected user selection 272 .
- the tune-up system 132 may modify the category, or highlight the title for the item listing 114 based on the user selection 272 of the recommendation included in the tune-up report 136 .
- the communication module 290 may keep track of the modification and/or a number of recommendations in the tune-up report in response to which the item listing 114 is modified.
- the tracked information e.g., the number of recommendations in response to which the item listing 114 is modified
- the online transaction platform system 134 may be used to actually modify the item listing 114 according to the detected user selection 272 and bill the user (e.g., seller) according to the modification.
- the listing tune-up system 132 may further include a modifying module 292 to performing and tracking the modification of a plurality of item listings including the item listing 114 .
- the modifying module 292 may be implemented as a separate module of the listing tune-up system 132 .
- each of the engines described above in FIG. 2 may be implemented by hardware (e.g., circuit), firmware, software or any combinations thereof. It is also noted that although each of the modules is described above as a separate module, the entire modules or some of the modules in FIG. 2 may be implemented as a single entity (e.g., module or circuit) and still maintain the same functionality. Example operations performed by the listing tune-up system 132 are discussed with reference to FIG. 3 .
- FIG. 3 is a flow chart illustrating a method 300 for operating the listing tune-up system 132 , in accordance with an example embodiment.
- the method 300 may be performed by processing logic that may comprise hardware (e.g., dedicated logic, programmable logic, microcode, etc.), software (such as run on a general purpose computer system or a dedicated machine), or a combination of both.
- the processing logic resides in various modules illustrated in FIG. 1 and FIG. 2 . It should be noted that the activities described herein may be executed in an order other than the order described. The various activities described with respect to the methods identified herein may also be executed in repetitive, serial, and/or parallel fashion.
- the listing tune-up system 132 may detect, at a server system (e.g., the host device 130 ), a listing for an item (e.g., item listing 114 ).
- the listing for the item may include at least one title, and at least one category of the item for transaction.
- the listing tune-up system 132 may determine a recommended category set for the item using categories of existing listings that match one or more keywords in the title of the listing. In one example embodiment, the listing tune-up system 132 may calculate a usage frequency of a category included in each matching existing listing relative to a total number of the existing listings.
- the listing tune-p system 132 may parse the title and extract the one or more keywords from the title, compose a query based upon the one or more keywords, access a listing database (DB) using the query, retrieve from the listing DB the existing listings that meet the query, and extract the categories of the existing listings to calculate corresponding usage frequencies.
- the listing tune-up system 132 may further sort categories for the existing listings according to their corresponding usage frequencies and then designate a category with a highest usage frequency and a second highest usage frequency as a first recommended category and a second recommended category for the item, respectively.
- the listing tune-up system 132 may verify whether the category of the item complies with the recommended category set.
- the listing tune-up system 132 may generate a tune-up report 136 that includes the recommended category set.
- the tune-up report 136 may further comprise an additional recommendation, such as an editing suggestion, a payment method suggestion or a picture suggestion for the listing.
- the generating of the tune-up report for the listing upon completion of the verification may include optimizing the tune-up report according to an attribute value indicating an experience level of a user. In such a case, the optimizing of the tune-up report may include automatically determining the experience level of the user using a number of previous transactions by the user.
- the listing tune-up system 132 may transmit the tune-up report 136 to a computer system associated with the user (e.g., user device 110 - 1 ) from which the item listing is listed.
- the listing tune-up system 132 may detect a user selection of a recommendation in the tune-up report 136 transmitted to the computer system associated with the user (e.g., user device 110 - 1 ).
- the listing tune-up system 132 may modify the listing in response to the user selection of the recommendation in the transmitted tune-up report.
- the listing tune-up system 132 may further keep track of a number of recommendations in the transmitted tune-up report 136 in response to which the listing is modified.
- the listing tune-up system 132 may bill the user according to the tracked information.
- the item listing 114 may be listed by a user (e.g., seller) via his or her user device (e.g., 110 - 1 ) to the online transaction platform system 134 with a user-provided information, such as “Persian carpet” in its title and “rug” in its category, respectively.
- the listing tune-up system 132 e.g., the detecting module 210
- the listing tune-up system 132 may then search existing item listings (e.g., one hundred listings) that include the term “Persian carpet” in their titles and determine multiple categories (e.g., “antiques” for sixty times, “home decoration” for forty times and “rug” for fifteen times, etc.) are used for items similar to or the same as the item (“Persian carpet”).
- search existing item listings e.g., one hundred listings
- categories e.g., “antiques” for sixty times, “home decoration” for forty times and “rug” for fifteen times, etc.
- the listing tune-up system 132 may then generate a tune-up report 136 that includes the most frequently used categories (“antiques” and “home decoration”) as a recommended category set for the item listing 114 .
- the user e.g., seller
- the listing tune-up system 132 may further modify the item listing 114 according to the user's selection and bill the user according to the modification.
- the item listing 114 may be listed without any user-designated category information in one example embodiment.
- the listing tune-up system 132 e.g., the determining module 230
- the listing tune-up system 132 may determine the most frequently used categories (e.g., “antiques” and “home decoration”) as the recommended category set for the item (e.g., “Persian carpet”).
- the listing tune-up system 132 e.g., the determining module 230
- the listing tune-up system 132 may still generate the tune-up report 136 and recommend the most frequently used categories to the user via the tune-up report 136 instead of automatically designating any of them as system-provided categories.
- the listing tune-up system 132 e.g., the communication module 290
- the online transaction platform system 134 may then request the user to select at least one of the recommended categories before the item listing 114 can be published to other users for further transaction.
- the listing tune-up system 132 and its method of operations allow, among other things, a listing for an item (e.g., the item listing 114 ) to more correctly reflect proper category of the item based upon statistical information over one or more existing listings before it is viewed to other users for an intended transaction. This in turn allows the listing to get exposed to potential buyers more frequently and thus receive more user activities (e.g., viewing, bidding or buying, etc.), ultimately increasing the probability of the item associated with the listing being transacted in a much shorter period of time and/or at more satisfactory price.
- a listing for an item e.g., the item listing 114
- This allows the listing to get exposed to potential buyers more frequently and thus receive more user activities (e.g., viewing, bidding or buying, etc.), ultimately increasing the probability of the item associated with the listing being transacted in a much shorter period of time and/or at more satisfactory price.
- Some example embodiments may include various databases (e.g., the listing database 140 ) being relational databases or in some example cases On Line Analytic Processing (OLAP)-based databases.
- relational databases various tables of data are created and data is inserted into, and/or selected from, these tables using SQL or some other database-query language known in the art.
- OLAP databases one or more multi-dimensional cubes or hypercubes containing multidimensional data from which data is selected or into which data is inserted using Multidimensional Expressions (MDX) may be implemented.
- MDX Multidimensional Expressions
- a database application such as, for example, MySQLTM, SQLServerTM, Oracle 8ITM, 10GTM, or some other suitable database application may be used to manage the data.
- a database using cubes and MDX a database using Multidimensional On Line Analytic Processing (MOLAP), Relational On Line Analytic Processing (ROLAP), Hybrid On Line Analytic Processing (HOLAP), or some other suitable database application may be used to manage the data.
- MOLAP Multidimensional On Line Analytic Processing
- ROLAP Relational On Line Analytic Processing
- HOLAP Hybrid On Line Analytic Processing
- These tables or cubes made up of tables, in the case of, for example, ROLAP are organized into a RDS or Object Relational Data Schema (ORDS), as is known in the art.
- RDS Object Relational Data Schema
- These schemas may be normalized using certain normalization algorithms so as to avoid abnormalities such as non-additive joins and other problems. Additionally, these normalization algorithms may include Boyce-Codd Normal Form or some other normalization, optimization algorithm known in the art.
- a method is illustrated as implemented in a distributed or non-distributed software application designed under a three-tier architecture paradigm, whereby the various components of computer code that implement this method may be categorized as belonging to one or more of these three tiers.
- Some example embodiments may include a first tier as an interface (e.g., an interface tier) that is relatively free from application processing.
- a second tier may be a logic tier that performs application processing in the form of logical/mathematical manipulations of data inputted through the interface level, and that communicates the results of these logical/mathematical manipulations to the interface tier and/or to a backend or storage tier.
- a third storage tier may be a persistent storage medium or non-persistent storage medium.
- one or more of these tiers may be collapsed into another, resulting in a two-tier architecture, or even a one-tier architecture.
- the interface and logic tiers may be consolidated, or the logic and storage tiers may be consolidated, as in the case of a software application with an embedded database.
- This three-tier architecture may be implemented using one technology, or, as may be discussed below, a variety of technologies.
- This three-tier architecture may be executed on two or more computer systems organized in a server-client, peer-to-peer, or some other suitable configuration. Further, these three tiers may be distributed between more than one computer system as various software components.
- Some example embodiments may include the above illustrated tiers and the processes or operations that make them up, as one or more software components. Common to many of these components is the ability to generate, use, and manipulate data. These components, and the functionality associated with each, may be used by client, server, or peer computer systems. These various components may be implemented by a computer system on an as-needed basis. These components may be written in an object-oriented computer language such that a component-oriented or object-oriented programming technique can be implemented using a Visual Component Library (VCL), Component Library for Cross Platform (CLX), JavaBeans (JB), Enterprise JavaBeans (EJB), Component Object Model (COM), Distributed Component Object Model (DCOM), or other suitable technique. These components may be linked to other components via various Application Programming interfaces (APIs), and then compiled into one complete server, client, and/or peer software application. Further, these APIs may be able to communicate through various distributed programming protocols as distributed computing components.
- APIs Application Programming interfaces
- Some example embodiments may include remote procedure calls used to implement one or more of the above-illustrated components across a distributed programming environment as distributed computing components.
- an interface component e.g., an interface tier
- a logic component e.g., a logic tier
- These first and second computer systems may be configured in a server-client, peer-to-peer, or some other suitable configuration.
- These various components may be written using the above-illustrated object-oriented programming techniques, and can be written in the same programming language or a different programming language.
- Various protocols may be implemented to enable these various components to communicate regardless of the programming language used to write these components.
- a component written in C++ may be able to communicate with another component written in the Java programming language using a distributed computing protocol such as a Common Object Request Broker Architecture (CORBA), a Simple Object Access Protocol (SOAP), or some other suitable protocol.
- CORBA Common Object Request Broker Architecture
- SOAP Simple Object Access Protocol
- Some example embodiments may include the use of one or more of these protocols with the various protocols outlined in the Open Systems Interconnection (OSI) model, or Transmission Control Protocol/Internet Protocol (TCP/IP) protocol stack model for defining the protocols used by a network to transmit data.
- OSI Open Systems Interconnection
- TCP/IP Transmission Control Protocol/Internet Protocol
- Some example embodiments may use the OSI model or TCP/IP protocol stack model for defining the protocols used by a network to transmit data.
- OSI model or TCP/IP protocol stack model for defining the protocols used by a network to transmit data.
- a system of data transmission between a server and client or between peer computer systems is illustrated as a series of roughly five layers comprising: an application layer, a transport layer, a network layer, a data link layer, and a physical layer.
- the various tiers e.g., the interface, logic, and storage tiers
- data from an application residing at the application layer is loaded into the data load field of a TCP segment residing at the transport layer.
- This TCP segment also contains port information for a recipient software application residing remotely.
- This TCP segment is loaded into the data load field of an IP datagram residing at the network layer.
- this IP datagram is loaded into a frame residing at the data link layer.
- This frame is then encoded at the physical layer, and the data transmitted over a network such as the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), or some other suitable network.
- Internet refers to a network of networks. These networks may use a variety of protocols for the exchange of data, including the aforementioned TCP/IP, and additionally Asynchronous Transfer Mode (ATM), Systems Network Architecture (SNA), or some other suitable protocol. These networks may be organized within a variety of topologies (e.g., a star topology) or structures.
- FIG. 4 shows a diagrammatic representation of a machine in the example form of a computer system 400 within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.
- the machine operates as a stand-alone device or may be connected (e.g., networked) to other machines.
- the machine may operate in the capacity of a server or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.
- the machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
- PC personal computer
- PDA Personal Digital Assistant
- STB set-top box
- WPA Personal Digital Assistant
- the example computer system 400 includes a processor 402 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory 401 and a static memory 406 , which communicate with each other via a bus 408 .
- the computer system 400 may further include a video display unit 410 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT), etc.).
- the computer system 400 also includes an alpha-numeric input device 417 (e.g., a keyboard), a user interface (UI) navigation device (e.g., a cursor control device 411 ), a disk drive unit 416 , a signal generation device 419 (e.g., a speaker) and a network interface device 420 .
- the disk drive unit 416 includes a machine-readable medium 422 on which is stored one or more sets of instructions 421 and data structures (e.g., software) embodying or utilized by any one or more of the methodologies or functions described herein.
- the instructions 421 and data structures may also reside, completely or at least partially, within the main memory 401 and/or within the processor 402 during execution thereof by the computer system 400 , with the main memory 401 and the processor 402 also constituting machine-readable media.
- the instructions 421 and data structures may further be transmitted or received over a network 426 via the network interface device 420 utilizing any one of a number of well-known transfer protocols (e.g., Hyper Text Transfer Protocol (HTTP)).
- HTTP Hyper Text Transfer Protocol
- machine-readable medium 422 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions.
- the term “machine-readable medium” shall also be taken to include any medium that is capable of storing and encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of embodiments of the present invention, or that is capable of storing and encoding data structures utilized by or associated with such a set of instructions.
- the term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media. Such media may also include, without limitation, hard disks, floppy disks, flash memory cards, digital video disks, random access memory (RAM), read only memory (ROM), and the like.
- inventions described herein may be implemented in an operating environment comprising software installed on a computer, in hardware, or in a combination of software and hardware.
- inventive subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is, in fact, disclosed.
- a system and method are illustrated to tune up a listing for an item.
- the system and method may include detecting, at a server system, a listing for an item.
- the listing may comprise various information including a title, and a category of the item for transaction.
- the system and method may include determining a recommended category set for the item using categories of existing listings that match one or more keywords in the title.
- the system and method may include verifying whether the category of the item complies with the recommended category set.
- the system and method may further include generating a tune-up report for the listing upon completion of the verification.
- the tune-up report may comprise the recommended category set and/or other editing suggestions.
- the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.”
- the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Economics (AREA)
- General Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
A listing tune-up system is provided. An example listing tune-up system may include a detection module configured to detect a listing of an online listing system. The listing may comprise a presentation configuration. The tune-up system may also include a determining module configured to analyze content of the listing, and a generating module configured to generate a recommendation for the listing based on the analyzing of the content of the listing. The recommendation may comprise a modification to a presentation of the item listing. The modification may comprise modifying a textual presentation of text included in the content of the listing or including a suggested picture in the listing.
Description
- This application is a continuation of and claims the benefit of priority under to U.S. patent application Ser. No. 12/609,905, filed on Oct. 30, 2009, which is hereby incorporated by reference herein in its entirety.
- A portion of the disclosure of this document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the software, data, and/or screenshots that may be described below and in the drawings that form a part of this document: Copyright © 2009, eBay Inc. All Rights Reserved.
- This application relates to the technical fields of software and/or hardware technology and, in one example embodiment, to an online listing system.
- The approaches described in this section could be pursued, but are not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated herein, the approaches described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
- Under a current on-line transaction processing system (e.g., eBAY, Amazon, or Rent.com, etc.), an electronic listing (hereinafter “listing”) may be used to describe an offering of an item or service provided by a user (e.g., seller) for transaction. The listing may be composed by the user via a user interface to include keywords that describe the item or service and then it may be submitted to the on-line transaction processing system. The on-line transaction processing system may then provide the listing to other users (e.g., buyers) when it determines that the keywords included in the listing match a query provided by the other users. The on-line transaction processing system may use a dedicated search engine for the purpose of determining the match between the keywords in the listing and the query.
- Embodiments of the present invention are illustrated by way of example and not limitation in the FIG.s of the accompanying drawings, in which like reference numbers indicate similar elements and in which:
-
FIG. 1 is a diagrammatic representation of an architecture within which one example embodiment of a listing tune-up system may be implemented; -
FIG. 2 is block diagram of a listing tune-up system, in accordance with one example embodiment; -
FIG. 3 is a flow chart of a method for using a listing tune-up system, in accordance with an example embodiment; and -
FIG. 4 is a diagrammatic representation of an example machine in the form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed. - In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of an embodiment of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details.
- An online listing system (e.g., online
transaction platform system 134 ofFIG. 1 ) in which goods/services are offered to interested parties may accept a keyword query from a user and respond to the user with a number of matching item listings. The user may then review the returned item listings to select an item listing that best satisfies his requirements. To simplify the user's task of finding a desired item, an online listing system should ideally narrow a search scope by limiting the search to certain item listings that fall into the same category as one designated by the user before returning the item listings to the user. - Numerous techniques exist for allowing an online listing system narrow its search based on category information of the item listing. The existing techniques, however, did not address the fact that the category information designated by a user may be inappropriate for an item associated with a given item listing. Or, even if the category information designated by the user may be proper, there may be other categories that better fit the item according to statistical information from existing item listing in the online listing system. In other cases, the item listings are presented to potential buyers in an inefficient manner (e.g., lack of highlighting, frequent typos and grammatical errors, etc.). Such inappropriate, if not wrong, category information and/or inefficient presentation of an item listing results in the item listing receiving less attention and thus less feedback (e.g., viewing, bidding or buying) from other users (e.g., buyers). These problems occur since the current online listing system only passively accepts the user-provided information (e.g., category or editing suggestions, etc.) for a given item listing without giving consideration to statistical information extracted from relevant existing item listings for similar or identical items. These problems may be aggravated when the item listing is listed on the online listing system by a user with a low experience level. A new method and system is introduced to resolve these and other problems that may be inherently or explicitly disclosed by a further reading of this documentation.
- Illustrated are a listing tune-up system and a method for operating the listing tune-up system in accordance with one example embodiment. An example listing tune-up system may include a detecting module to detect a listing for an item. The listing may comprise various information including a title, and a category of the item for transaction. The example listing tune-up system may include a determining module to determine a recommended category set for the item using categories of existing listings that match one or more keywords in the title. The example listing tune-up system may include a verifying module to verify whether the category of the item complies with the recommended category set. The example listing tune-up system may further include a generating module to generate a tune-up report for the listing upon completion of the verification. The tune-up report may comprise the recommended category set and/or other editing suggestions. More detailed explanation about the listing tune-up system and its operation is given below with reference to
FIGS. 1-4 . -
FIG. 1 is a diagrammatic representation of anarchitecture 100 within which one example embodiment of a listing tune-up system may be implemented. As shown inFIG. 1 , thearchitecture 100 may include one or more user devices 110-1, 110-2 and 110-N, in communication with ahost device 130 via anetwork 120. Each of the user devices 110-1 through 110-N may comprise a stand-alone client computer system, a cell phone, or a personal digital assistant (PDA), etc. and run a listing tune-upinterface 112. For example, the listing tune-upinterface 112 running on the user device 110-1 may transfer an item listing 114 to thehost device 130 via thenetwork 120. The item listing 114 may comprise various types of data, for example, pictures or texts, etc., that describe an offer of an item for transaction. The item listing 114 may include a title and a category as examples of the text data. In one example embodiment, the item listing 114 may further include one or more subtitles and one or more subcategories for the item. The transaction may be an auction sale or a fixed-price sale. - The
network 120 may provide a communication channel between the user devices 110-1 through 110-N and thehost device 130. In one example embodiment, thenetwork 120 may comprise a public network (e.g., the Internet, a wireless network, etc.) or a private network (e.g., a local area network (LAN), a wide area network (WAN), Intranet, etc.). Thenetwork 120 may use a transfer protocol, for example, Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol Secure (HTTPs), or file transfer protocol (FTP), etc. to transfer the listing for theitem 114 to thehost device 130. - The
host device 130 may receive the listing for theitem 114 transferred from the user device 110-1 via thenetwork 120. Thehost device 130 may comprise a listing tune-upsystem 132 and an onlinetransaction platform system 134. In one example embodiment, the listing tune-upsystem 132 may detect a listing for an item (e.g., the item listing 114) listed on thehost device 130, determine a recommended category set for the item using categories of existing listings that match one or more keywords in a title of the item, verify whether the category associated with the item complies with the recommended category set, and generate a tune-upreport 136 that includes the recommended category set for the item. In one example embodiment, the listing tune-upsystem 132 may detect the listing for the item and/or the existing listings from alisting database 140, which may be operatively coupled to thehost device 130 locally or remotely via a network (not shown inFIG. 1 ). The network via which thelisting database 140 is coupled to thehost device 130 may comprise the Internet, a LAN, a WAN, or a wireless network. In one example embodiment, thehost device 130 may transfer the tune-upreport 136 to the user device 110-1 from which the listing for the item (e.g., the item listing 114) is listed. More detailed structures and functions of the listing tune-upsystem 132 will be described below with reference toFIGS. 2 and 3 . - In one example embodiment, the online
transaction platform system 134 may provide thehost device 130 with server-side functionality for a network-based marketplace (not shown inFIG. 1 ). For this purpose, the onlinetransaction platform system 134 may run a number of modules or applications, such as a listing module, a search module or a billing module (not shown inFIG. 1 ). For example, the listing module may provide a user with capability to post an item listing for transaction via the user devices 110-1 through 110-N. The search module may provide access to existing listings associated with thehost device 130 according to a user's query. The billing module may provide thehost device 130 with capabilities to bill users according to various services provided to the users. It is noted that although only three modules are explained herein, the onlinetransaction platform system 134 may run one or more other applications or modules. It is also noted that although the onlinetransaction platform system 134 is described as an entity separate from the listing tune-upsystem 132, these twosystems -
FIG. 2 is block diagram 200 of the listing tune-upsystem 132, in accordance with one example embodiment. As shown inFIG. 2 , the listing tune-upsystem 132 may comprise a detectingmodule 210, a determiningmodule 230, averifying module 250, agenerating module 270, and acommunication module 290. The detectingmodule 210 is configured to detect a listing for an item (e.g., item listing 114) which is listed by a user via a user device (e.g., the user device 110-1) associated with the user. The detectingmodule 210 may automatically detect the item listing 114 upon the item listing 114 being listed on the host device 130 (e.g., the onlinetransaction platform system 134 as shown inFIG. 1 ). As noted earlier, the item listing 114 may include at least one title and at least one category of the item for transaction. In one example embodiment, the transaction may be different types of transaction, such as an auction, a fixed price sale or a combination thereof. In addition, the transaction may be a transaction that is not opened to users yet, a transaction that is opened to the user and currently active, or a transaction that is already closed. - In one example embodiment, the item listing may include date and time information when the item listing is configured to be published to users for transaction. In such a case, the detecting
module 210 may detect the item listing 114 upon a specified triggering condition being met rather than upon being listed on the host device 130 (e.g., the online transaction platform system 134). For example, the triggering condition may be one week, one day, or one hour before publication to the users, or a specified date and time, such as Aug. 31, 2009, 2:00 PM, etc. It is noted that different conditions may be set as the triggering condition. In one example embodiment, the detectingmodule 210 may detect the item listing 114 according to a request from the user (e.g., seller) who listed the item listing to thehost device 130. In such a case, the detectingmodule 210 may detect the item listing 114 from existing item listings whether or not the item listing 114 has been already published to the users for transaction, or even closed for the transaction. In one example embodiment, a minimum number of biddings within a given time frame may be set as the triggering condition for detecting item listings for tune-up. For example, if the minimum number of biddings on the item listing 114 for the first two days after publishing to the users is set to be five and the number of actual biddings on the item is less than five for the first two days, then the detectingmodule 114 may automatically detect the item listing 114 for an initial or additional tune-up of theitem listing 114. - When the detecting
module 210 detects the item listing 114, the determiningmodule 230 may determine a recommended category set for the item associated with the item listing 114 by using category information of existing listings that match one or more keywords included in the title of theitem listing 114. In one example embodiment, the detectingmodule 210 may calculate a usage frequency of a category of each existing listing that match the one or more keywords in the title of the item listing 114, relative to a total number of the existing listings. When the category information for the existing listings is calculated, the detectingmodule 210 may then sort the categories for the existing listings according to their corresponding usage frequencies. The detectingmodule 210 may then further designate a category with a highest usage frequency and a second highest usage frequency as a first recommended category and a second recommended category for the item, respectively. It is noted that the detectingmodule 210 may further designate more (e.g., a third or a fourth) recommended categories for the recommended category set for the item in a similar manner. - In one example embodiment, in order to calculate the usage frequency of each matching existing listing, the detecting
module 210 may parse the title of the item listing 114 and extract the one or more keywords from the title of theitem listing 114. The detectingmodule 210 may then compose a query based upon the one or more keywords extracted from the title of theitem listing 114. The detectingmodule 210 may access a listing database (DB) that includes the existing item listings (e.g., listing database 140). The detectingmodule 210 may then retrieve from the listing DB the existing listings that meet the query, and extract the categories of the existing listings to calculate corresponding usage frequencies. - When the recommended category set for the items are determined, then the
verifying module 250 may verify whether the category of the item included in the item listing 114 complies with the recommended category set. If the category of the item included in the item listing 114 is determined to comply with the recommended category set, then theverifying module 250 may send a notification of compliance (e.g., “a proper category”) to an associated user device (e.g., the user device 110-1) from which the item listing 114 is listed. Theverifying module 250 may then allow the item listing 114 to be viewed by users for an intended transaction, for example, by transferring a control to the onlinetransaction platform system 134. If the category of the item included in the item listing 114 is determined not to comply with the recommended category set, then theverifying module 250 may send a notification of incompliance (e.g., “an inappropriate category”) to the associated user device. At the same time or alternatively, the verifyingmodule 250 may send a corresponding incompliance indication to thegenerating module 270. - The
generating module 270 may generate a tune-upreport 136 for the listing upon completion of the verification. The tune-upreport 136 may include various recommendations for the item listing 114 such that the item listing can be published to users with more relevant and exact information for the intended transaction. The tune-upreport 136 may comprise the recommended category set including the first and second recommended categories. In one example embodiment, the tune-upreport 136 may further comprise editing suggestions (e.g., spelling, grammar, highlighting, such as a font, size or coloring, etc.) for any texts (e.g., title, category or description, etc.) included in theitem listing 114. In one example embodiment, the tune-upreport 136 may further comprise recommended payment options (e.g., PayPal or credit card, etc.) or a recommendation for a relevant picture for the intended transaction of the item. - In one example embodiment, the listing tune-up
system 132 may further include an optimizingmodule 272 operatively coupled with thegenerating module 270. The optimizingmodule 272 may optimize_the tune-upreport 136 according to an attribute value indicating an experience level of a user. In one example embodiment, the listing tune-upsystem 132 may further include an experiencelevel determining module 274 operatively coupled with the optimizingmodule 272. The experiencelevel determining module 274 may automatically determine the experience level of the user based on a number of previous transactions by the user. Although the optimizingmodule 272 and the experiencelevel determining module 274 are illustrated as being included in thegenerating module 270, either one or both of the modules may be implemented as separate modules of the listing tune-upsystem 132. The use of the experience level of the user allows the listing tune-upsystem 132 to provide the users with different recommendations according to their experience levels. For example, an inexperienced user (e.g., seller) may not know that the item listing 114 of the recommended category set draws more user attentions or activities (e.g., viewing, bidding or buying, etc.) when highlighted (e.g., colored, underlined, flowing or written in a larger font, etc.) or combined with a relevant picture. In contrast, an experience user may be likely to know such tips from their transaction experiences. By using the value indicating the experience level of the user, thegenerating module 270 may include different recommendations in the tune-upreport 136. - The listing tune-up
system 132 may further comprise acommunication module 290 to transmit the tune-upreport 136 to a computer system (e.g., user device 110-1) associated with the user. In one example embodiment, thecommunication module 290 may further detect auser selection 272 of one or more recommendations from the tune-up report. The listing tune-upsystem 132 may then modify an associated listing (e.g., item listing 114) according to the detecteduser selection 272. In other words, for example, the tune-upsystem 132 may modify the category, or highlight the title for the item listing 114 based on theuser selection 272 of the recommendation included in the tune-upreport 136. When the item listing 114 is modified, thecommunication module 290 may keep track of the modification and/or a number of recommendations in the tune-up report in response to which the item listing 114 is modified. In one example embodiment, the tracked information (e.g., the number of recommendations in response to which the item listing 114 is modified) may be used to bill the user who listed the item listing 114 accordingly. In one example embodiment, the onlinetransaction platform system 134 may be used to actually modify the item listing 114 according to the detecteduser selection 272 and bill the user (e.g., seller) according to the modification. In one example embodiment, the listing tune-upsystem 132 may further include a modifyingmodule 292 to performing and tracking the modification of a plurality of item listings including theitem listing 114. Although illustrated as being included in thecommunication module 290, the modifyingmodule 292 may be implemented as a separate module of the listing tune-upsystem 132. - It is noted that each of the engines described above in
FIG. 2 may be implemented by hardware (e.g., circuit), firmware, software or any combinations thereof. It is also noted that although each of the modules is described above as a separate module, the entire modules or some of the modules inFIG. 2 may be implemented as a single entity (e.g., module or circuit) and still maintain the same functionality. Example operations performed by the listing tune-upsystem 132 are discussed with reference toFIG. 3 . -
FIG. 3 is a flow chart illustrating amethod 300 for operating the listing tune-upsystem 132, in accordance with an example embodiment. Themethod 300 may be performed by processing logic that may comprise hardware (e.g., dedicated logic, programmable logic, microcode, etc.), software (such as run on a general purpose computer system or a dedicated machine), or a combination of both. In one example embodiment, the processing logic resides in various modules illustrated inFIG. 1 andFIG. 2 . It should be noted that the activities described herein may be executed in an order other than the order described. The various activities described with respect to the methods identified herein may also be executed in repetitive, serial, and/or parallel fashion. - As shown in
FIG. 3 , atoperation 310, the listing tune-upsystem 132 may detect, at a server system (e.g., the host device 130), a listing for an item (e.g., item listing 114). The listing for the item may include at least one title, and at least one category of the item for transaction. Atoperation 320, the listing tune-upsystem 132 may determine a recommended category set for the item using categories of existing listings that match one or more keywords in the title of the listing. In one example embodiment, the listing tune-upsystem 132 may calculate a usage frequency of a category included in each matching existing listing relative to a total number of the existing listings. For example, in order to calculate the usage frequency of the category for matching existing listings, the listing tune-p system 132 may parse the title and extract the one or more keywords from the title, compose a query based upon the one or more keywords, access a listing database (DB) using the query, retrieve from the listing DB the existing listings that meet the query, and extract the categories of the existing listings to calculate corresponding usage frequencies. In one example embodiment, the listing tune-upsystem 132 may further sort categories for the existing listings according to their corresponding usage frequencies and then designate a category with a highest usage frequency and a second highest usage frequency as a first recommended category and a second recommended category for the item, respectively. - At
operation 330, the listing tune-upsystem 132 may verify whether the category of the item complies with the recommended category set. Atoperation 340, when the verification of the category is completed, the listing tune-upsystem 132 may generate a tune-upreport 136 that includes the recommended category set. In one example embodiment, the tune-upreport 136 may further comprise an additional recommendation, such as an editing suggestion, a payment method suggestion or a picture suggestion for the listing. In one example embodiment, the generating of the tune-up report for the listing upon completion of the verification may include optimizing the tune-up report according to an attribute value indicating an experience level of a user. In such a case, the optimizing of the tune-up report may include automatically determining the experience level of the user using a number of previous transactions by the user. - At
operation 350, the listing tune-upsystem 132 may transmit the tune-upreport 136 to a computer system associated with the user (e.g., user device 110-1) from which the item listing is listed. In one example embodiment, the listing tune-upsystem 132 may detect a user selection of a recommendation in the tune-upreport 136 transmitted to the computer system associated with the user (e.g., user device 110-1). In one example embodiment, the listing tune-upsystem 132 may modify the listing in response to the user selection of the recommendation in the transmitted tune-up report. In one example embodiment, the listing tune-upsystem 132 may further keep track of a number of recommendations in the transmitted tune-upreport 136 in response to which the listing is modified. The listing tune-upsystem 132 may bill the user according to the tracked information. - As an illustration, the item listing 114 may be listed by a user (e.g., seller) via his or her user device (e.g., 110-1) to the online
transaction platform system 134 with a user-provided information, such as “Persian carpet” in its title and “rug” in its category, respectively. The listing tune-up system 132 (e.g., the detecting module 210) then may detect that the item listing 114 is newly listed to the onlinetransaction platform system 134 before the onlinetransaction platform system 134 publishes the item listing 114 to other users. The listing tune-up system 132 (e.g., the determining module 230) may then search existing item listings (e.g., one hundred listings) that include the term “Persian carpet” in their titles and determine multiple categories (e.g., “antiques” for sixty times, “home decoration” for forty times and “rug” for fifteen times, etc.) are used for items similar to or the same as the item (“Persian carpet”). When the usage frequencies of categories used for the matching existing listings are verified to be in the order of “antiques” (sixty percent), “home decoration” (forty percent) and “rug” (fifteen percent), the listing tune-up system 132 (e.g., the generating module 270) may then generate a tune-upreport 136 that includes the most frequently used categories (“antiques” and “home decoration”) as a recommended category set for theitem listing 114. The user (e.g., seller) may then decide whether to accept the recommended category set as new category information for theitem listing 114. Then the listing tune-upsystem 132 may further modify the item listing 114 according to the user's selection and bill the user according to the modification. - It is noted that the item listing 114 may be listed without any user-designated category information in one example embodiment. In such a case, once the item listing 114 is detected, for example, by the detecting
module 210, the listing tune-up system 132 (e.g., the determining module 230) may determine the most frequently used categories (e.g., “antiques” and “home decoration”) as the recommended category set for the item (e.g., “Persian carpet”). The listing tune-up system 132 (e.g., the determining module 230) may then automatically designate one or more of the most frequently used categories as system-provided categories for the item without recommending the most frequently used categories to the user first. In one example embodiment, the listing tune-up system 132 (e.g., the generating module 270) may still generate the tune-upreport 136 and recommend the most frequently used categories to the user via the tune-upreport 136 instead of automatically designating any of them as system-provided categories. In such a case, the listing tune-up system 132 (e.g., the communication module 290) or the onlinetransaction platform system 134 may then request the user to select at least one of the recommended categories before the item listing 114 can be published to other users for further transaction. - The listing tune-up
system 132 and its method of operations allow, among other things, a listing for an item (e.g., the item listing 114) to more correctly reflect proper category of the item based upon statistical information over one or more existing listings before it is viewed to other users for an intended transaction. This in turn allows the listing to get exposed to potential buyers more frequently and thus receive more user activities (e.g., viewing, bidding or buying, etc.), ultimately increasing the probability of the item associated with the listing being transacted in a much shorter period of time and/or at more satisfactory price. - Some example embodiments may include various databases (e.g., the listing database 140) being relational databases or in some example cases On Line Analytic Processing (OLAP)-based databases. In the case of relational databases, various tables of data are created and data is inserted into, and/or selected from, these tables using SQL or some other database-query language known in the art. In the case of OLAP databases, one or more multi-dimensional cubes or hypercubes containing multidimensional data from which data is selected or into which data is inserted using Multidimensional Expressions (MDX) may be implemented. In the case of a database using tables and SQL, a database application such as, for example, MySQL™, SQLServer™, Oracle 8I™, 10G™, or some other suitable database application may be used to manage the data. Here, the case of a database using cubes and MDX, a database using Multidimensional On Line Analytic Processing (MOLAP), Relational On Line Analytic Processing (ROLAP), Hybrid On Line Analytic Processing (HOLAP), or some other suitable database application may be used to manage the data. These tables or cubes made up of tables, in the case of, for example, ROLAP, are organized into a RDS or Object Relational Data Schema (ORDS), as is known in the art. These schemas may be normalized using certain normalization algorithms so as to avoid abnormalities such as non-additive joins and other problems. Additionally, these normalization algorithms may include Boyce-Codd Normal Form or some other normalization, optimization algorithm known in the art.
- In some example embodiments, a method is illustrated as implemented in a distributed or non-distributed software application designed under a three-tier architecture paradigm, whereby the various components of computer code that implement this method may be categorized as belonging to one or more of these three tiers. Some example embodiments may include a first tier as an interface (e.g., an interface tier) that is relatively free from application processing. Further, a second tier may be a logic tier that performs application processing in the form of logical/mathematical manipulations of data inputted through the interface level, and that communicates the results of these logical/mathematical manipulations to the interface tier and/or to a backend or storage tier. These logical/mathematical manipulations may relate to certain business rules or processes that govern the software application as a whole. A third storage tier may be a persistent storage medium or non-persistent storage medium. In some example cases, one or more of these tiers may be collapsed into another, resulting in a two-tier architecture, or even a one-tier architecture. For example, the interface and logic tiers may be consolidated, or the logic and storage tiers may be consolidated, as in the case of a software application with an embedded database. This three-tier architecture may be implemented using one technology, or, as may be discussed below, a variety of technologies. This three-tier architecture, and the technologies through which it is implemented, may be executed on two or more computer systems organized in a server-client, peer-to-peer, or some other suitable configuration. Further, these three tiers may be distributed between more than one computer system as various software components.
- Some example embodiments may include the above illustrated tiers and the processes or operations that make them up, as one or more software components. Common to many of these components is the ability to generate, use, and manipulate data. These components, and the functionality associated with each, may be used by client, server, or peer computer systems. These various components may be implemented by a computer system on an as-needed basis. These components may be written in an object-oriented computer language such that a component-oriented or object-oriented programming technique can be implemented using a Visual Component Library (VCL), Component Library for Cross Platform (CLX), JavaBeans (JB), Enterprise JavaBeans (EJB), Component Object Model (COM), Distributed Component Object Model (DCOM), or other suitable technique. These components may be linked to other components via various Application Programming interfaces (APIs), and then compiled into one complete server, client, and/or peer software application. Further, these APIs may be able to communicate through various distributed programming protocols as distributed computing components.
- Some example embodiments may include remote procedure calls used to implement one or more of the above-illustrated components across a distributed programming environment as distributed computing components. For example, an interface component (e.g., an interface tier) may reside on a first computer system remotely located from a second computer system containing a logic component (e.g., a logic tier). These first and second computer systems may be configured in a server-client, peer-to-peer, or some other suitable configuration. These various components may be written using the above-illustrated object-oriented programming techniques, and can be written in the same programming language or a different programming language. Various protocols may be implemented to enable these various components to communicate regardless of the programming language used to write these components. For example, a component written in C++ may be able to communicate with another component written in the Java programming language using a distributed computing protocol such as a Common Object Request Broker Architecture (CORBA), a Simple Object Access Protocol (SOAP), or some other suitable protocol. Some example embodiments may include the use of one or more of these protocols with the various protocols outlined in the Open Systems Interconnection (OSI) model, or Transmission Control Protocol/Internet Protocol (TCP/IP) protocol stack model for defining the protocols used by a network to transmit data.
- Some example embodiments may use the OSI model or TCP/IP protocol stack model for defining the protocols used by a network to transmit data. In applying these models, a system of data transmission between a server and client or between peer computer systems is illustrated as a series of roughly five layers comprising: an application layer, a transport layer, a network layer, a data link layer, and a physical layer. In the case of software having a three-tier architecture, the various tiers (e.g., the interface, logic, and storage tiers) reside on the application layer of the TCP/IP protocol stack. In an example implementation using the TCP/IP protocol stack model, data from an application residing at the application layer is loaded into the data load field of a TCP segment residing at the transport layer. This TCP segment also contains port information for a recipient software application residing remotely. This TCP segment is loaded into the data load field of an IP datagram residing at the network layer. Next, this IP datagram is loaded into a frame residing at the data link layer. This frame is then encoded at the physical layer, and the data transmitted over a network such as the Internet, a Local Area Network (LAN), a Wide Area Network (WAN), or some other suitable network. In some example cases, “Internet” refers to a network of networks. These networks may use a variety of protocols for the exchange of data, including the aforementioned TCP/IP, and additionally Asynchronous Transfer Mode (ATM), Systems Network Architecture (SNA), or some other suitable protocol. These networks may be organized within a variety of topologies (e.g., a star topology) or structures.
-
FIG. 4 shows a diagrammatic representation of a machine in the example form of acomputer system 400 within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed. In alternative embodiments, the machine operates as a stand-alone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. - The
example computer system 400 includes a processor 402 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), amain memory 401 and astatic memory 406, which communicate with each other via abus 408. Thecomputer system 400 may further include a video display unit 410 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT), etc.). Thecomputer system 400 also includes an alpha-numeric input device 417 (e.g., a keyboard), a user interface (UI) navigation device (e.g., a cursor control device 411), adisk drive unit 416, a signal generation device 419 (e.g., a speaker) and anetwork interface device 420. Thedisk drive unit 416 includes a machine-readable medium 422 on which is stored one or more sets ofinstructions 421 and data structures (e.g., software) embodying or utilized by any one or more of the methodologies or functions described herein. Theinstructions 421 and data structures may also reside, completely or at least partially, within themain memory 401 and/or within theprocessor 402 during execution thereof by thecomputer system 400, with themain memory 401 and theprocessor 402 also constituting machine-readable media. Theinstructions 421 and data structures may further be transmitted or received over anetwork 426 via thenetwork interface device 420 utilizing any one of a number of well-known transfer protocols (e.g., Hyper Text Transfer Protocol (HTTP)). - While the machine-readable medium 422 is shown in an example embodiment to be a single medium, the term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” shall also be taken to include any medium that is capable of storing and encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of embodiments of the present invention, or that is capable of storing and encoding data structures utilized by or associated with such a set of instructions. The term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic media. Such media may also include, without limitation, hard disks, floppy disks, flash memory cards, digital video disks, random access memory (RAM), read only memory (ROM), and the like.
- The embodiments described herein may be implemented in an operating environment comprising software installed on a computer, in hardware, or in a combination of software and hardware. Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is, in fact, disclosed.
- In some example embodiments, a system and method are illustrated to tune up a listing for an item. The system and method may include detecting, at a server system, a listing for an item. The listing may comprise various information including a title, and a category of the item for transaction. The system and method may include determining a recommended category set for the item using categories of existing listings that match one or more keywords in the title. The system and method may include verifying whether the category of the item complies with the recommended category set. The system and method may further include generating a tune-up report for the listing upon completion of the verification. The tune-up report may comprise the recommended category set and/or other editing suggestions.
- The above “DETAILED DESCRIPTION” includes references to the accompanying drawings, which form a part of the “DETAILED DESCRIPTION.” The drawings show, by way of illustration, specific embodiments of the invention can be practiced. These embodiments are also referred to herein as “examples.” Such examples can include elements in addition to those shown and described. However, the present inventors also contemplate examples in which only those elements shown and described are provided.
- All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.
- In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
- The above description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Description of Example Embodiments, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Description of Example Embodiments, with each claim standing on its own as a separate embodiment.
Claims (20)
1. A computer-implemented system comprising:
a detection module configured to detect a listing of an online listing system, the listing comprising a presentation configuration;
a determining module configured to analyze content of the listing; and
a generating module, comprising one or more processors, configured to generate a recommendation for the listing based on the analyzing of the content of the listing, the recommendation comprising a modification to a presentation of the item listing, the modification comprising modifying a textual presentation of text included in the content of the listing or including a suggested picture in the listing.
2. The system of claim 1 , wherein the listing comprises a listing of an item for transaction between a buyer and a seller.
3. The system of claim 1 , wherein the modifying of the textual presentation comprises at least one of changing a spelling of the text, changing a grammar of the text, highlighting the text, changing a font of the text, changing a size of the text, and changing a color of the text.
4. The system of claim 3 , wherein the modifying of the textual presentation comprises highlighting the text.
5. The system of claim 1 , wherein the listing includes a title, and the determining module is further configured to determine a recommended category set for the item using categories of existing listings that match one or more keywords in the title.
6. The system of claim 5 , wherein the determining module is further configured to calculate a usage frequency of a category included in each existing listing relative to a total number of the existing listings.
7. The system of claim 6 , wherein the determining module is further configured to:
parse the title and extract the one or more keywords from the title;
compose a query based upon the one or more keywords;
access a listing database (DB) using the query;
retrieve from the listing DB the existing listings that meet the query; and
extract the categories of the existing listings to calculate corresponding usage frequencies.
8. The system of claim 6 , wherein the determining module is further configured to:
sort the categories for the existing listings according to their corresponding usage frequencies; and
designate a category with the highest usage frequency from the categories for the existing listings and a category with the second highest usage frequency from the categories for the existing listings as a first recommended category for the item and a second recommended category for the item, respectively.
9. A computer-implemented method comprising:
detecting a listing of an online listing system, the listing comprising a presentation configuration, and the listing being of an item for transaction between a buyer and a seller;
analyzing content of the listing; and
generating a recommendation for the listing based on the analyzing of the content of the listing, the recommendation comprising a modification to a presentation of the item listing.
10. The method of claim 9 , wherein the modification comprises modifying a textual presentation of text included in the content of the listing or including a suggested picture in the listing.
11. The method of claim 9 , wherein the modifying of the textual presentation comprises at least one of changing a spelling of the text, changing a grammar of the text, highlighting the text, changing a font of the text, changing a size of the text, and changing a color of the text.
12. The method of claim 11 , wherein the modifying of the textual presentation comprises highlighting the text.
13. The method of claim 9 , further comprising determining a recommended category set for the item using categories of existing listings that match one or more keywords in a title of the listing.
14. The method of claim 13 , further comprising calculating a usage frequency of a category included in each existing listing relative to a total number of the existing listings.
15. The method of claim 14 , further comprising:
parsing the title and extract the one or more keywords from the title;
composing a query based upon the one or more keywords;
accessing a listing database (DB) using the query;
retrieving from the listing DB the existing listings that meet the query; and
extracting the categories of the existing listings to calculate corresponding usage frequencies.
16. The method of claim 14 , further comprising:
sorting the categories for the existing listings according to their corresponding usage frequencies; and
designating a category with the highest usage frequency from the categories for the existing listings and a category with the second highest usage frequency from the categories for the existing listings as a first recommended category for the item and a second recommended category for the item, respectively.
17. A computer-readable storage device storing instructions that, when executed by a processor, cause the processor to perform operations comprising:
detecting a listing of an online listing system, the listing comprising a presentation configuration;
analyzing content of the listing; and
generating a recommendation for the listing based on the analyzing of the content of the listing, the recommendation comprising a modification to a presentation of the item listing.
18. The device of claim 17 , wherein the listing comprises a listing of an item for transaction between a buyer and a seller.
19. The device of claim 17 , wherein the modification comprises modifying a textual presentation of text included in the content of the listing or including a suggested picture in the listing.
20. The device of claim 19 , wherein the modifying of the textual presentation comprises at least one of changing a spelling of the text, changing a grammar of the text, highlighting the text, changing a font of the text, changing a size of the text, and changing a color of the text.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/486,078 US20150006472A1 (en) | 2009-10-30 | 2014-09-15 | Listing tune-up system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/609,905 US8838610B2 (en) | 2009-10-30 | 2009-10-30 | Listing tune-up system |
US14/486,078 US20150006472A1 (en) | 2009-10-30 | 2014-09-15 | Listing tune-up system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/609,905 Continuation US8838610B2 (en) | 2009-10-30 | 2009-10-30 | Listing tune-up system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150006472A1 true US20150006472A1 (en) | 2015-01-01 |
Family
ID=43926520
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/609,905 Expired - Fee Related US8838610B2 (en) | 2009-10-30 | 2009-10-30 | Listing tune-up system |
US14/486,078 Abandoned US20150006472A1 (en) | 2009-10-30 | 2014-09-15 | Listing tune-up system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/609,905 Expired - Fee Related US8838610B2 (en) | 2009-10-30 | 2009-10-30 | Listing tune-up system |
Country Status (1)
Country | Link |
---|---|
US (2) | US8838610B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8818978B2 (en) * | 2008-08-15 | 2014-08-26 | Ebay Inc. | Sharing item images using a similarity score |
US20120271735A1 (en) * | 2011-04-19 | 2012-10-25 | Mylisting Inc. | Method and apparatus for providing an electronic commerce platform |
US10114902B2 (en) * | 2012-06-29 | 2018-10-30 | Ebay Inc. | Method for detecting and analyzing site quality |
US20140052547A1 (en) * | 2012-08-14 | 2014-02-20 | Ebay Inc. | Generating product purchase pages for containers of items |
US9928515B2 (en) | 2012-11-15 | 2018-03-27 | Home Depot Product Authority, Llc | System and method for competitive product assortment |
CN103971244B (en) * | 2013-01-30 | 2018-08-17 | 阿里巴巴集团控股有限公司 | A kind of publication of merchandise news and browsing method, apparatus and system |
US20150324737A1 (en) * | 2014-05-09 | 2015-11-12 | Cargurus, Inc. | Detection of erroneous online listings |
US10769695B2 (en) | 2015-09-02 | 2020-09-08 | Ebay Inc. | Generating titles for a structured browse page |
US11768852B2 (en) * | 2017-12-27 | 2023-09-26 | Marlabs Incorporated | System and method for data analysis and presentation of data |
CN109299376B (en) * | 2018-10-26 | 2021-01-01 | 深圳点猫科技有限公司 | Fuzzy search method and device based on education cloud operating system |
CN111611493B (en) * | 2020-06-03 | 2022-05-17 | 合肥江雪信息科技有限公司 | Internet-based intelligent scientific and technological project consultation service system |
US20230214582A1 (en) * | 2022-01-05 | 2023-07-06 | Cars.Com, Llc | Automatic identifying and emphasizing of key text |
US12026758B2 (en) * | 2022-05-11 | 2024-07-02 | Cars.Com, Llc | Systems and methods for identifying signals of low-quality listings |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030182222A1 (en) * | 2002-03-25 | 2003-09-25 | Sales Online Direct, Inc. | Method and system for improved online auction |
US20040145601A1 (en) * | 2003-01-29 | 2004-07-29 | International Business Machines Corporation | Method and a device for providing additional functionality to a separate application |
US20070150365A1 (en) * | 2005-12-22 | 2007-06-28 | Ebay Inc. | Suggested item category systems and methods |
US20080208717A1 (en) * | 2007-02-15 | 2008-08-28 | Tim Suleymanov | Internet auction system and method |
US20090012991A1 (en) * | 2007-07-06 | 2009-01-08 | Ebay, Inc. | System and method for providing information tagging in a networked system |
US20100094723A1 (en) * | 2008-10-14 | 2010-04-15 | Johnson Brian M | Systems and methods to intialize a data source based on a compatibility with an application |
US7788160B2 (en) * | 2004-04-16 | 2010-08-31 | Sap Ag | Method and system for configurable options in enhanced network-based auctions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7672877B1 (en) * | 2004-02-26 | 2010-03-02 | Yahoo! Inc. | Product data classification |
US7526722B2 (en) * | 2005-12-29 | 2009-04-28 | Sap Ag | System and method for providing user help according to user category |
-
2009
- 2009-10-30 US US12/609,905 patent/US8838610B2/en not_active Expired - Fee Related
-
2014
- 2014-09-15 US US14/486,078 patent/US20150006472A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030182222A1 (en) * | 2002-03-25 | 2003-09-25 | Sales Online Direct, Inc. | Method and system for improved online auction |
US20040145601A1 (en) * | 2003-01-29 | 2004-07-29 | International Business Machines Corporation | Method and a device for providing additional functionality to a separate application |
US7788160B2 (en) * | 2004-04-16 | 2010-08-31 | Sap Ag | Method and system for configurable options in enhanced network-based auctions |
US20070150365A1 (en) * | 2005-12-22 | 2007-06-28 | Ebay Inc. | Suggested item category systems and methods |
US20080208717A1 (en) * | 2007-02-15 | 2008-08-28 | Tim Suleymanov | Internet auction system and method |
US20090012991A1 (en) * | 2007-07-06 | 2009-01-08 | Ebay, Inc. | System and method for providing information tagging in a networked system |
US20100094723A1 (en) * | 2008-10-14 | 2010-04-15 | Johnson Brian M | Systems and methods to intialize a data source based on a compatibility with an application |
Also Published As
Publication number | Publication date |
---|---|
US20110106851A1 (en) | 2011-05-05 |
US8838610B2 (en) | 2014-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8838610B2 (en) | Listing tune-up system | |
US11062369B2 (en) | Providing informational tags within networked systems | |
US20210256575A1 (en) | Visualization of Reputation Ratings | |
US10867346B2 (en) | Systems and methods to extract and utilize textual semantics | |
JP5355733B2 (en) | How the processor performs for advertising or e-commerce | |
US10372791B2 (en) | Content customization | |
US8818978B2 (en) | Sharing item images using a similarity score | |
US8775475B2 (en) | Transaction data representations using an adjacency matrix | |
US11734736B2 (en) | Building containers of uncategorized items | |
US11157930B1 (en) | Systems and methods for defining candidate and target locations based on items and user attributes | |
US20130085900A1 (en) | Enhancing the search experience in a networked publication system by improved search and listing process | |
US20210065245A1 (en) | Using machine learning to discern relationships between individuals from digital transactional data | |
US9330071B1 (en) | Tag merging | |
US20210334848A1 (en) | Publishing information for available products and services within private networks | |
US9323832B2 (en) | Determining desirability value using sale format of item listing | |
CN112005228A (en) | Aggregation and comparison of multi-labeled content | |
US20110119117A1 (en) | Generation of products in catalogs from divergent listings | |
WO2009008985A1 (en) | System and method for processing categorized product listings with associated computer-implemented information tags | |
US20120130864A1 (en) | Systems and methods to analyze a seller inventory offered for sale on a network-based marketplace | |
CA2907123A1 (en) | Content customization | |
US10885534B1 (en) | Determining product demand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EBAY INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SWARTZ, JASON ADAM;REEL/FRAME:033738/0962 Effective date: 20091029 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |