US20140362860A1 - System and method for interconnecting multiple communication interfaces - Google Patents
System and method for interconnecting multiple communication interfaces Download PDFInfo
- Publication number
- US20140362860A1 US20140362860A1 US14/454,440 US201414454440A US2014362860A1 US 20140362860 A1 US20140362860 A1 US 20140362860A1 US 201414454440 A US201414454440 A US 201414454440A US 2014362860 A1 US2014362860 A1 US 2014362860A1
- Authority
- US
- United States
- Prior art keywords
- port
- fabric
- loop
- interface
- ports
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/74—Address processing for routing
- H04L45/745—Address table lookup; Address filtering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/356—Switches specially adapted for specific applications for storage area networks
- H04L49/357—Fibre channel switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/42—Loop networks
- H04L12/427—Loop networks with decentralised control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4637—Interconnected ring systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/24—Multipath
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Routing of multiclass traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0066—Provisions for optical burst or packet networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/10—Packet switching elements characterised by the switching fabric construction
- H04L49/101—Packet switching elements characterised by the switching fabric construction using crossbar or matrix
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding in a switch fabric
- H04L49/253—Routing or path finding in a switch fabric using establishment or release of connections between ports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding in a switch fabric
- H04L49/253—Routing or path finding in a switch fabric using establishment or release of connections between ports
- H04L49/254—Centralised controller, i.e. arbitration or scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/30—Peripheral units, e.g. input or output ports
- H04L49/3009—Header conversion, routing tables or routing tags
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/351—Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/351—Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
- H04L49/352—Gigabit ethernet switching [GBPS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/60—Software-defined switches
- H04L49/604—Hybrid IP/Ethernet switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0073—Provisions for forwarding or routing, e.g. lookup tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/009—Topology aspects
- H04Q2011/0092—Ring
Definitions
- the present invention relates to input/output channel and networking systems, and more particularly to methods of using a Fibre Channel fabric or intelligent bridging hub to interconnect Fibre Channel Arbitrated Loops composed of private loop devices (i.e., devices which do not support direct fabric attachment).
- Fibre Channel is an American National Standards Institute (ANSI) set of standards which describes a high performance serial transmission protocol which supports higher level storage and network protocols such as HIPPI, SCSI, IP, ATM and others. Fibre Channel was created to merge the advantages of channel technology with network technology to create a new I/O interface which meets the requirements of both channel and network users.
- Channel technology is usually implemented by I/O systems in a closed, structured and predictable environment, whereas network technology usually refers to an open, unstructured and unpredictable environment.
- Fibre Channel typically includes the following. First, it achieves high performance, which is a critical in opening the bandwidth limitations of current computer to storage and computer to computer interfaces at speeds up to 1 gigabit per second or faster. Second, utilizing fiber optic technology, Fibre Channel can overcome traditional I/O channel distance limitations and interconnect devices over distances of 6 miles at gigabit speeds. Third, it is high level protocol independent, enabling Fibre Channel to transport a wide variety of protocols over the same media. Fourth, Fibre Channel uses fiber optic technology which has a very low noise properties. Finally, cabling is simple in that Fibre Channel typically replaces bulky copper cables with small lightweight fiber optic cables.
- Fibre Channel supports three different topologies: point-to-point, Arbitrated Loop and fabric attached.
- the point-to-point topology attaches two devices directly.
- the Arbitrated Loop topology attaches devices in a loop.
- the fabric attached topology attaches a device directly to a fabric.
- the Arbitrated Loop topology was initially designed to provide a lower cost interconnect than fabrics and to provide more interconnect than point-to-point topologies.
- the Arbitrated Loop topology was created by separating the transmit and receive fibers associated with each loop port and connecting the transmit output of one loop port to the receive input of the next loop port.
- characteristics of the Arbitrated Loop topology include: first it, allows up to 126 participating node ports and one participating fabric port to communicate, second, each node port implements a route filtering algorithm, and third, all ports on a single loop have the same upper 16 bits of the 24-bit NL_Port address identifier.
- Public loop devices attempt a Fabric Login (FLOGI) upon initialization.
- Public loop devices also are cognizant of all twenty four bits of the 24-bit NL_Port native port address identifier.
- Public loop devices will open the fabric port at Arbitrated Loop Physical Address (ALPA, bits 7 to 0 ) zero when the domain and area (bits 23 to 8 ) do not match their domain and area.
- APA Arbitrated Loop Physical Address
- the disadvantages of the Arbitrated Loop topology include: first, it is a blocking topology, that is, only a single connection between a pair of nodes is allowed at any point in time (excluding the broadcast mode). Second, device buffering occurs in each device as it has a six word buffer, creating a delay of up to 225 nanoseconds. This delay is additive with each device in the loop. The delay creates overhead for the communicating devices when a large number of devices are connected to a loop. Third, distance also adds delay to a loop and is additive for each device. For copper medium there is a 4 nanosecond delay per meter and for optical medium there is a 5 nanosecond delay per meter.
- Loop devices are typically interconnected on an Arbitrated Loop with a hub, see FIG. 22 numeral 678 .
- the hub is a passive device, that is a loop exists within the hub 674 , 675 , 676 , 677 , 679 .
- a hub in most cases maintains the loop's integrity when devices are removed, powered off, or fail by using a port bypass circuit 674 , 675 , 676 , 677 . Hubs simply receive and redrive the signals to individual devices.
- hubs do not address the blocking nature of the loop topology.
- jitter is propagated from bypassed nodes. This additive affect causes loop instability when a large number of devices are interconnected.
- This invention relates to methods and apparatus for Fibre Channel interconnection of a plurality of private loop devices through a Fibre Channel private loop device interconnect system.
- the Fibre Channel private loop device interconnect system is a fabric or an intelligent bridging hub.
- an interconnection system for connecting a plurality of physically separate Fibre Channel Arbitrated Loops, the loops either containing, or being adapted to contain, one or more private loop devices.
- the apparatus preferably includes at least a first Arbitrated Loop containing, or adapted to contain, one or more private loop devices, and at least a second Arbitrated Loop, either containing, or adapted to contain, one or more private loop devices.
- the Arbitrated Loops are interconnected via a Fibre Channel private loop device interconnect system which is disposed between the Arbitrated Loops.
- a Fibre Channel fabric is disposed between the Arbitrated Loops, and includes a routing filter which filters incoming Arbitrated Loop physical addresses (ALPAs) to determine which Fibre Channel frames must attempt to be routed through the fabric.
- APAs Arbitrated Loop physical addresses
- private loop device Any type of private loop device, consistent with the apparatus and methods stated herein, may be utilized in conjunction with this system.
- Examples of private loop devices include storage devices, such as tape drives, JBODs and RAID subsystems, host systems, and other connections within a system, such as bridges, particularly SCSI to Fibre Channel bridges, routers, particularly Fibre Channel to asynchronous transfer mode systems and Fibre Channel to ethernet systems.
- any number of Arbitrated Loops may be utilized, consistent with the size constraints of the fabric.
- a first fabric, with at least one Arbitrated Loop attached, and a second fabric, with at least one Arbitrated Loop may have the first fabric and second fabric directly connected.
- a first fabric and a third fabric, each having at least one Arbitrated Loop may be connected through a second fabric.
- Yet another topology includes a first fabric having M ports, where one port is connected to storage, preferably JBODs, and the remaining M ⁇ 1 ports of the first fabric are connected to M ⁇ 1 second fabrics.
- An alternative interconnect topology includes a first fabric with M ports, and M second fabrics, each second fabric being connected to the first fabric.
- a device is connected to a first fabric by a first path and to a second fabric by a second, independent path.
- a first set of fabrics and a second set of fabrics may be interconnected through a first intermediate fabric and a second intermediate fabric, each of the first sets of fabrics connected to the first intermediate fabric, and separately to the second intermediate fabric, and each of the second set of fabrics connected to the first intermediate fabric and separately to the second intermediate fabric.
- a method for implementing a logical loop of private loop devices in a novel manner.
- the method generally comprises the steps of segmenting the logical loop of private loop devices into a plurality of sets, assigning each set to a physical Arbitrated Loop and connecting the Arbitrated Loops to a Fibre Channel private loop device interconnect system to effect interconnection of the Arbitrated Loops.
- a method for selectively filtering Fibre Channel frames.
- This method serves to route frames between one or more private loop devices on a first Arbitrated Loop and one or more private loop devices on at least a second Arbitrated Loop.
- the method includes the steps of receiving the Fibre Channel frames over the first Arbitrated Loop at a connected port of a Fibre Channel private loop device interconnect system and filtering the frame by, either, forwarding the frame on the first Arbitrated Loop if the frame has an address on the first Arbitrated Loop, or, providing an “open” response on the first Arbitrated Loop if the address is not on the first Arbitrated Loop.
- the additional step of attempting to route the frame through the Fibre Channel private loop device interconnect system may be made.
- buffering of the frames destined to private loop devices not on the first Arbitrated Loop may be performed, most preferably, permitting cut-through if the route can be made without substantial buffering.
- Yet another novel method of these inventions is a method for restricting attached devices to Arbitrated Loop physical addresses (ALPAs) within certain ranges.
- ALPAs Arbitrated Loop physical addresses
- the steps in the preferred method comprise, first, dividing the ALPAs into nonoverlapping sets, second, assigning each set to a separate physical Arbitrated Loop, and thereafter, during loop initialization, forcing the attached private loop devices to choose from the assigned set.
- Yet another novel method comprises a method for resetting hosts within a Fibre Channel interconnection system of private loop devices.
- the system including more than one Arbitrated Loop, at least one loop being adapted to contain storage and one loop adapted to contain a host, those devices being private loop devices, the loops being connected to a Fibre Channel private loop device interconnect system
- the method generally comprises the steps of, first, detecting at least the addition of a storage device to a first Arbitrated Loop, and thereafter, resetting the Arbitrated Loop or loops on which a host or hosts reside upon such detected addition.
- a host resident on an Arbitrated Loop becomes aware of storage private loop devices which have been added to other Arbitrated Loops separated from the host bearing Arbitrated Loop by a Fibre Channel private loop device interconnect system.
- the system includes more than one Arbitrated Loop, at least one loop adapted to contain storage and one loop containing a host, the devices attached to the loops being private loop devices, the loops being connected to a Fibre Channel private loop device interconnect system.
- the method generally comprises the steps of first, receiving port login (PLOGI) input/output (I/O) probes at the Fibre Channel private loop device interconnect system, thereafter, performing address look-up for the received PLOGI I/O probes, and, if a match exists in the look up, routing the PLOGI I/O probes from the Fibre Channel SCSI initiator to private loop devices on the Fibre Channel private loop device interconnect system or other Fibre Channel private loop device interconnect system.
- PLOGI I/O probes are routed to the Fibre Channel private loop device interconnect system controller, and a link service reject (LS_RJT) is returned.
- LS_RJT link service reject
- a link service reject is returned in the event that an address match is found, but where no device with the destination ALPA exists on the Arbitrated Loop corresponding to the destination.
- the intelligent bridging hub adapted to interconnect a plurality of Arbitrated Loops containing private loop devices.
- the intelligent bridging hub includes at least first and second hub submodules, the submodules comprising a plurality of ports, the ports including port bypass circuits connected to the ports for connecting to the Arbitrated Loops adapted to contain private loop devices, and, an Arbitrated Loop physical address filtering port, a router, the router being disposed between the first and second hub submodules, and a processor control coupled to the router and the first and second submodules.
- the router need not support all classes of Fibre Channel connections, for example, the router may optionally not support class 1 connections.
- the processor control need not provide back-up route determination mechanisms.
- FIG. 1 is a block diagram illustrating the use of the Stealth Mode in connecting one logical loop of private loop devices by segmenting it into several physical loops all interconnected through a network of fabrics.
- FIG. 2 is a block diagram illustrating the bandwidth advantage in connecting multiple pairs of simultaneously communicating private loop devices.
- FIG. 3 is a block diagram showing the additive delays of interconnecting several devices in a loop.
- FIG. 4 is a block diagram showing the Stealth Mode procedure for routing Fibre Channel SCSI Initiator PLOGI I/O probes which do not correspond to an existent ALPA.
- FIG. 5 is a block diagram showing the fabric router modifications necessary to route Fibre Channel SCSI Initiator PLOGI I/O probes which do not correspond to an existent ALPA.
- FIG. 6 is a block diagram showing the interconnection of seven host computers with ten racks of JBODs, each JBOD consisting of up to eight disk drives.
- FIG. 7 is a block diagram showing the interconnection of thirteen host computers with ten racks of JBODS, each JBOD consisting of up to eight disk drives.
- FIG. 8 is a block diagram showing the interconnection of forty nine host computers with five racks of JBODS, each JBOD consisting of up to eight disk drives.
- FIG. 9 is a block diagram showing the interconnection of a JBOD and a RAID storage subsystem with four hosts. Each device is connected through a redundant path.
- FIG. 10 is a block diagram showing the interconnection of forty eight hosts with eight RAID storage subsystems.
- FIG. 11 is a block diagram showing the interconnection of four hosts with a JBOD and a RAID storage subsystem. There are redundant links to the JBOD and the RAID subsystems.
- FIG. 12 is a block diagram showing the interconnection of forty hosts with eight RAID storage subsystems. There are redundant paths for all connections which span at least two fabrics.
- FIG. 13 is a block diagram illustrating the use of a Fibre Channel Fabric.
- FIG. 14 is a block diagram of a Fibre Channel Fabric.
- FIG. 15 is a block diagram of the Fabric Control module.
- FIG. 16 is a block diagram of the fabric Router.
- FIG. 17 is a block diagram of the fabric Port Control.
- FIG. 18 is a diagram of the LIFA frame format.
- FIG. 19 is a diagram of an example LIFA frame to restrict ALPA selection to the range 1x, i.e., 10, 17, 18, 1B, 1D, 1E and 1F.
- FIG. 20 is a diagram of a LISM frame with a World-wide name of all zeros.
- FIG. 21 is a block diagram of a fabric with eight ports, showing the port locations.
- FIG. 22 is a block diagram of a four port Fibre Channel hub.
- FIG. 23 is a block diagram of a JBOD (Just a Bunch of Disks) storage subsystem.
- JBOD Just a Bunch of Disks
- FIG. 24 is a diagram illustrating the relationship between a logical Arbitrated Loop and a physical Arbitrated Loop.
- the physical Arbitrated Loop is segmented over a fabric or an intelligent bridging hub.
- FIG. 25 is a block diagram of an intelligent bridging hub.
- the present invention in various aspects is referred to as the Stealth Loop Mode, the lexicon being devoid of a succinct descriptive name for a system of the type hereinafter described.
- the following discussions will be made clearer by a brief review of the relevant terminology as it is typically (but not exclusively) used.
- the “Fibre Channel ANSI standard” describes the physical interface, transmission protocol and signaling protocol of a high-performance serial link for support of the higher level protocols associated with HIPPI, IPI, SCSI, IP, ATM and others.
- the Fibre Channel Fabric comprises hardware and software that switches Fibre Channel frames between attached devices at speeds up to one gigabit per second.
- FC-1 defines the Fibre Channel transmission protocol which includes the serial encoding, decoding, and error control.
- FC-2 defines the signaling protocol which includes the frame structure and byte sequences.
- FC-3 defines a set of services which are common across multiple ports of a node.
- FC-4 is the highest level in the Fibre Channel standards set. It defines the mapping between the lower levels of the Fibre Channel and the IPI and SCSI command sets, the HIPPI data framing, IP, and other Upper Level Protocols (ULPs).
- a “fabric” (sometimes referred to as a switch or router) is an entity which interconnects various N_Ports attached to it and is capable of routing frames by using the Destination Identifier (D_ID) information in the FC-2 frame header.
- D_ID Destination Identifier
- An “intelligent bridging hub” is a hub with one or more ports which implement ALPA filtering and/or routing functions and contains control logic.
- FC-PLD-IS Fibre Channel Private Loop Device Interconnect System
- FC-PLD-IS Fibre Channel Private Loop Device Interconnect System
- a “RAID” or redundant array of inexpensive disks storage device is an interleaved storage technique which speeds access to disks along with implementing redundant storage access methods.
- JBOD Just A Bunch Of Disks is a storage subsystem composed of a series of disks.
- a JBOD is similar to a RAID system without the RAID controller which implements the RAID striping and mirroring features.
- Topology is an interconnection scheme that allows multiple Fibre Channel ports to communicate. For example point-to-point, Arbitrated Loop and fabric-attached are all Fibre Channel topologies.
- Fabric topology is a topology where a device is directly attached to a fabric and that uses the Destination Identifier (D_ID) embedded in the frame header to route the frame through a Fabric to the desired destination N_Port.
- D_ID Destination Identifier
- Arbitrated Loop topology permits two or more L_Ports to communicate using arbitration to establish a point-to-point circuit.
- the Arbitrated Loop topology supports simultaneous, symmetrical bidirectional data flow.
- Step Mode is a fabric or intelligent bridging hub mode of operation which allows the interconnection of private loop devices over multiple fabric/hub ports.
- Port is a generic reference to an N_Port or F_Port.
- Link Control Facility is a facility which attaches to an end of a link and manages transmission and reception of data. It is contained within each Port type.
- N_Port is a hardware entity which includes a Link Control Facility.
- NL_Port is an N_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology.
- F_Port is a generic reference to an F_Port or FL_Port.
- FL_Port is an F_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology.
- L_Port is an N_Port or F_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology.
- a “Node” is a collection of one or more N_Ports controlled by a level above FC-2.
- a “frame” is an indivisible unit of information used by FC-2.
- Classes of Service are different types of services provided by the Fabric and used by the communicating N_Ports.
- Class 1 service is a service which establishes a dedicated connection between communicating N_Ports.
- Class 2 service is a service which multiplexes frames at frame boundaries to or from one or more N_Ports with acknowledgment provided.
- Class 3 service is a service which multiplexes frames at frame boundaries to or from one or more N_Ports without acknowledgment.
- a “Gigabit Link Module” is a module which interfaces to the Endec through either a 10-bit or 20-bit interface and interfaces to the Fibre Channel link through either a copper or fiber interface.
- An “Encoder/Decoder” or Endec is a device which implements the FC-1 layer protocol.
- Fabric Login Protocol is when an N_Port interchanges Service Parameters with the Fabric by explicitly performing the Fabric Login protocol or implicitly through an equivalent method not defined in FC-PH.
- Primary Loop Device is a device which does not attempt a fabric login (FLOGI) ELS command and cannot open a fabric port, e.g., ALPA zero, when the domain and area addresses of a frame to be transmitted is not equal to zero.
- FLOGI fabric login
- Public Loop Device is a device which attempts fabric login and can communicate with devices that contain nonzero domain and area address values. Public loop devices can observe the rules of either public or private loop behavior. A public loop device may communicate with both private and public loop devices.
- PLDA Primary Loop Direct Attach
- N_Port Login or PLOGI is a Fibre Channel Extended Link Service Command defined in the FCPH Revision 4.3 ANSI standard that requests transfer of Service Parameters from the initiating N_Port/NL_Port to the N_Port/NL_Port or F_Port/FL_Port associated with the Destination Identifier.
- WWN World-wide Name
- N_Port or F_Port Each N_Port or F_Port must have a WWN which is unique worldwide.
- N_Port Identifier is a 3-byte native address field which is unique within the Fibre Channel address domain.
- Source Identifier or S_ID is the address identifier used to indicate the source Port of the transmitted frame.
- D_ID is the address identifier used to indicate the targeted destination of the transmitted frame.
- Link Services Reject or LS_RJT is a Fibre Channel Extended Link Service Command defined in the FCPH Revision 4.3 ANSI standard that notifies the transmitter of a Link Service request that the Link Service request Sequence has been rejected.
- LS_RJT frames may be transmitted for a variety of conditions which may be unique to a specific Link Service Request.
- Loop Initialization is a protocol used to initialize the loop prior to beginning loop operations or when configuration changes are detected.
- LIP frames are used to accomplish loop initialization.
- Loop Initialization Select Master or LISM frame contains the devices World-wide unique name (WWN). The device with the lowest WWN becomes the temporary loop master during the loop initialization sequence.
- WWN World-wide unique name
- LIFA loop primitive allows public ports that had logged-in with the fabric to reclaim the ALPA they had been using immediately prior to loop initialization.
- the LIFA is the first loop primitive transmitted by the temporary loop master which contains ALPA information.
- Loop Initialization Report Position or LIRP loop primitive is used to build a map of all loop devices relative to the loop master. This primitive is optional in loop initialization.
- Loop Initialization Loop Position or LILP loop primitive allows any interested device on the loop to view the current loop map. This primitive is optional in loop initialization.
- “Jitter” is random variation in the timing of a signal, especially a clock.
- the Stealth Mode is a combination of features and functions applied to a fabric or an intelligent bridging hub which allows it to interconnect private loop devices between ports on the fabric or hub, preferably without the private loop device's knowledge.
- the result of this mode allows one logical Arbitrated Loop to be segmented into multiple physical loops.
- a logical loop 709 of Arbitrated Loop devices 700 , 701 , 702 , 703 is connected physically 705 , 706 , 707 , 708 to a fabric or intelligent bridging hub 704 .
- a Fibre Channel Fabric is an entity which transports Fibre Channel frames between attached devices.
- the data transmission between the connected device port (i.e., N_Port) and the Fabric port (i.e., F_Port) is serial and consists of one or more frames.
- the transmission protocol and speeds along with the fabric functionality are defined in the American National Standard for Information Systems (ANSI) FCPH standard (see Other Documents section, below).
- a primary function of the Fabric is to receive frames from a source N_Port and route the frames to the destination N_Port whose address identifier is specified in the frames.
- Each N_Port is physically attached through a link to the Fabric or in the case of an Arbitrated Loop topology attached to the same loop.
- FC-2 specifies the protocol between the Fabric and the attached N_Ports.
- a Fabric is characterized by a single address space in which every N_Port has a unique N_Port identifier.
- the Fabric model contains three or more F_Port or FL_Ports. Each F_Port is attached to an N_Port through a link. Each F_Port is bidirectional and supports one or more communication models. The receiving F_Port responds to the sending N_Port according to the FC-2 protocol. The Fabric may or may not verify the validity of the frame as it passes through the Fabric. The Fabric routes the frame to the F_Port directly attached to the destination N_Port based on the N_Port identifier (D_ID) embedded in the frame. The address translation and the routing mechanisms within the Fabric are transparent to N_Ports.
- D_ID N_Port identifier
- FIG. 13 shows a possible environment containing a Fibre Channel fabric.
- the fabric is identified by the reference numerals 401 and 402 .
- the fabrics illustrated are connected with a mix of workstations 403 , disk arrays 404 , mainframe computers 405 , and Personal Computers (PC) 406 .
- Fabric interconnection is not limited to particular equipment or a network topology as illustrated in FIG. 13 .
- Two types of fabric topologies are illustrated in FIG. 13 , the direct fabric attached topology 409 and the Arbitrated Loop topology 407 .
- the fabrics in FIG. 13 are shown interconnected or networked through a link 408 . All links to the fabric can operate at either 266 Mbps, 533 Mbps or 1.063 Gbps speeds and operate over either copper or fiber media.
- FIG. 14 shows a block diagram of the fabric.
- the fabric is composed of a fabric control module 454 , a router module 452 , multiple port control modules 451 , 474 , 475 a switch core module 453 and optionally one or more brouter modules 455 .
- the Fabric Control module controls and configures the rest of the fabric but is not usually involved in the normal routing of frames.
- the fabric Router 452 performs route address matching, route determination based on the ANSI X3T11 rules, route request blocking & unblocking, switch core programming 463 , statistics collection and port control module route request/response handling 459 , 460 , 461 , 462 , 466 , 467 , 472 , 473 .
- the fabric Port Control modules (PCM) 451 , 470 , 474 , 475 receive Fibre Channel frames from the fiber or copper media 456 , 477 , 478 , perform frame validation, send a route request to the router 459 , 461 , 466 , 472 , receives a route response from the router 460 , 462 , 463 , 467 , 473 , forwards the frame to the switch core 457 , 469 , and either discards the frame, modifies the frame into a fabric reject (F_RJT) or fabric busy (F_BSY) frame or forwards the frame depending on the route response from the router.
- F_RJT fabric reject
- F_BSY fabric busy
- the fabric switch core 453 is a nonblocking N ⁇ N matrix switch with 36 bit wide transmit and receive I/Os.
- the switch core switches frames from the PCMs 451 , 470 , 474 , 475 to the destination PCMs or Brouter Module.
- FIG. 14 shows the Fabric Control module (FCM) 454 .
- the FCM configures the fabric, collects and reports network management parameters and implements the fabric defined servers such as the Simple Name Server, Directory Services, etc.
- the FCM configures the router 452 , the port control modules 451 , 474 , 475 and the brouter module 455 .
- FIG. 15 shows the Fabric Control module (FCM) in more detail.
- the FCM is made up of fast SRAM 482 , DRAM 483 , a DUART 484 , flash memory 485 (nonvolatile storage), a processor 481 and a Decode/DMA Control module 487 .
- the code for the processor is contained in the flash memory 485 and is copied to SRAM upon bootup.
- the interface to the brouter module 455 allows the FCM to communicate through legacy networks such as ethernet and fast ethernet, depending on the brouter module.
- the Fabric Router receives route requests generated from the Port Control modules 459 , 461 , 466 , 472 , determines the frame route, reports the route responses to the Port Control modules 460 , 462 , 467 , 473 , programs the switch core to connect and disconnect the routes 463 , manages blocked route requests and collects the routing statistics.
- the Router connects and disconnects routes on a frame by frame basis. Since the router can determine a route in real time (i.e., Fibre Channel frame time) the Fabric can support Class 1 frames.
- the router is realized in hardware through either an FPGA or a custom ASIC.
- the router is composed of thirteen functional modules as illustrated in FIG. 16 :
- the Address Table is shown in FIG. 16 numeral 532 .
- the address table is initially configured by the processor in the fabric control module 522 .
- the Address Table contains entries against which the incoming Fibre Channel frame destination identifier (D_ID) is compared.
- the address entry contains a twenty four bit address mask register along with a twenty four bit address register.
- the incoming D_ID is ANDed with the address mask register and the result is compared to the address register. This allows a match to be performed on any number of bits in the address.
- This also implements routing based on any combination of the address domain (upper eight bits of the address field), area (middle eight bits of the address field) or port (lower eight bits of the address field) fields. Additional address fields include the destination port and the address priority fields.
- the destination port indicates which remote F_Port to route the frame to and the address priority field specifies a priority for this address table entry match. For any two address matches the address table entry match which is the highest priority will be used. This implements alternate routing
- the Address Match module (ADM) is shown in FIG. 16 numeral 531 .
- the ADM performs the comparison with the incoming frame D_ID address from the route request 505 with the Address Table contents 509 .
- the results are used by the Route determination module 538 .
- the ADM has as an input the twenty-four bit address to match, i.e., the incoming frame D_ID address from the route request, and returns the following responses: the remote match port, the address matched indication and the route to control module indication.
- the ADM will match an incoming D_ID address to all the addresses in the address table in one clock.
- the ADM logic is implemented in combinatorial logic.
- the ADM performs the following checks for each address table entry:
- the results are then priority decoded based on address priority contained in the address table and the resulting address match signal and port are generated.
- FIG. 16 numeral 538 shows the Route Determination module (RDM).
- the RDM applies rules defined in the ANSI Fibre Channel specifications to calculate how to route the incoming frame.
- the RDM receives the route request 510 from the RRS 537 along with route context for the source and destination ports 512 from the Route State Table 539 .
- the RRS outputs the route results 545 , 511 to both the Router Control FSM 540 and the PCRSPM 544 .
- the RDM is implemented in combinatorial logic and applied the route rules in one clock.
- FIG. 14 shows the Switch Core.
- the switch core implements a nonblocking N ⁇ N matrix switch.
- the input to the switch core comes from the individual Port Control modules FIG. 14 numerals 457 and 469 .
- the output from the switch core is wired to the Endec FIG. 14 numeral 458 and the Brouter Module FIG. 14 numeral 476 .
- the switch core is paths are setup and torn down by the router FIG. 14 numeral 463 .
- FIG. 14 shows the Port Control (PC) locations 451 , 470 , 474 , 475 , within the fabric block diagram.
- PC Port Control
- the PC interfaces with the fabric attached device through either copper or fiber media 456 , 477 , 478 .
- the PC interfaces to the switch core through transmit 458 and receive 457 data buses and control signals.
- the PC interfaces to the router through route request 459 , 461 , 466 , 472 and route response 460 , 462 , 467 , 473 buses and control signals.
- the PC interfaces to the Fabric Control module through a processor interface bus 465 .
- FIG. 17 shows the Port Control in more detail.
- Frames are received from the fiber or copper link 551 and enter the Endec 553 .
- the Endec implements the 8B/10B encoding/decoding, the loop port state machine and fabric/point-to-point state machine functions and outputs thirty two bit data words with two bits of parity and tag information to the receive FIFO 555 .
- the PC contains a module which guards against a receive FIFO overrun 154 condition.
- the Port Control Module (PCM) 556 reads the frame header, requests a route from the router 563 , 564 and forwards the frame to the switch core 561 , 562 .
- the PCM is configurable by the processor 570 in the Fabric Control module.
- the Port Control also receives frames from the switch core 565 , 566 to be transmitted by the Endec 553 .
- An intelligent bridging hub is a device composed of one or more passive hubs interconnected by some additional logic to bridge between two or more Fibre Channel Arbitrated Loops.
- An intelligent bridging hub can implement the Stealth routing mode if it contains the following functionality:
- FIG. 25 A block diagram of an intelligent bridging hub is shown in FIG. 25 .
- the intelligent bridging hub 773 is composed of two or more hub submodules 774 , 775 containing a route filtering port 759 , 760 , some logic to perform limited routing 761 and a processor 762 to perform loop initialization and some other stealth features.
- Each hub submodule contains port bypass circuits 751 through 758 or their equivalent.
- the fabric port implements receive frame ALPA range filtering. This filtering function is done in the encoder/decoder module, see FIG. 17 numeral 553 of the port control logic, FIG. 14 , numerals 451 , 474 , 475 .
- the fabric port applies a mask to the received ALPA (Arbitrated Loop Physical Address) and compares it with a preconfigured value. Depending on the “receive on match/no match” bit the fabric will receive the frame on a resultant match or no match. This algorithm is shown below.
- the receive frame on match/no match bit is used to allow greater filtering flexibility of incoming frames.
- An example of this filtering is shown by the following example. Assume there is one private loop device attached to the fabric port and its ALPA is 17h (where h means hexadecimal notation). To route all frames from this device to the fabric the fabric mask would be 00, the predetermined address would be 00h and the port would receive frame “on match”. This has the affect of filtering, i.e., receiving, all frames transmitted from the attached device.
- Another example would be a hub connected to a fabric port with attached hub device ALPAs of B1h, B2h, B3h, B4h, B5h, B6h, B9h, BAh, BCh.
- the fabric mask would be F0
- the predetermined address would be B0h
- the port would receive frame on “no match”.
- the result would have the fabric port receiving all frames that do not contain B in bits 7 to 4 of the ALPA.
- ALPA filters there can be multiple ALPA filters per port.
- An example would be a port with a fabric mask of F0 and a predetermined address of both 20h and 40h. If the mask algorithm returns a positive result when applied to any of multiple filters for a single port (i.e., an OR result) the frame is forwarded on the local loop and not filtered.
- the fabric In order to support the Stealth Mode the fabric must have a priori knowledge of the device ALPA ranges on each port. This is accomplished by the fabric by forcing the attached devices to choose a predetermined ALPA range. This is done during the LIFA loop initialization phase.
- the fabric reserves all ALPAs in the LIFA bit map, see FIG. 18 numeral 600 , by setting them equal to 1, except the range that the fabric desires the port to choose from.
- FIG. 19 shows the ALPA bit map 601 to exclude all ALPAs from being chosen from the attached devices except 10, 17, 18, 1B, 1D, 1E or 1F.
- the fabric is guaranteed to generated the LIFA by becoming loop master in the LISM phase.
- the fabric does this by choosing the lowest World-wide name, i.e., zero in the LISM frame, see FIG. 20 numeral 610 .
- Private loop Fibre Channel SCSI Initiator devices send out N_Port Logins (PLOGI) to the entire ALPA range after loop initialization to probe for SCSI devices.
- PLOGIs are transmitted serially. After each PLOGI transmission the Fibre Channel SCSI Initiator waits for each reply before sending another PLOGI. If the host driver receives the PLOGI it has just sent that indicates there are no devices on the loop with the ALPA.
- Fibre Channel SCSI Initiator Since a fabric in the Stealth Mode is filtering and routing frames off the local Arbitrated Loop, in many cases the Fibre Channel SCSI Initiator will not receive its own PLOGIs destined for nonexistent ALPAs and will timeout before sending another one. Since this timeout can be up to ten seconds and there are 126 possible devices on a loop the initialization time is not acceptable unless the fabric acts on the PLOGI frame.
- the fabric In the Stealth Mode the fabric is optimized to automatically route the PLOGIs destined to nonexistent ALPAs to the fabric controller which will return an immediate response.
- the ANSI FCPH standard requires all Class 3 frames which are not deliverable to be discarded.
- the fabric In the Stealth Mode the fabric deviates slightly from the ANSI standard and routes Class 3 frames to be discarded to the internal fabric controller.
- the fabric element will return a Link Services Reject (LS_RJT) to indicate that the exchange is not to be setup. All other Class 3 frames will be discarded by the fabric element satisfying the ANSI FCPH standard. This satisfies the requirement to return a frame to the PLOGI in real time to avoid PLOGI timeout.
- LS_RJT Link Services Reject
- the first modification is to route all rejected Class 3 frames to the fabric controller. As shown in FIG. 4 , all PLOGI's 78 which should be discarded by the router 76 due to the destination being nonexistent are routed to the fabric controller 75 .
- the fabric controller generates an LS_RJT (Extended Link Services Reject) frame 80 , 81 for every Class 3 PLOGI frames it receives.
- the LS_RJT frame is routed back to the originating port 82 to expedite the PLOGI probing phase.
- the second modification is to route all Class 3 frames which were transmitted and received back from a loop (i.e., no device present) to the fabric controller.
- a PLOGI is generated from a loop 96 and routed to a destination loop 97 , 98 which does not contain a device which matches the ALPA, it is received by the router 93 and routed to the fabric controller 95 .
- the fabric controller 95 generates an LS_RJT (Extended Link Services Reject) frame 101 for every Class 3 PLOGI frames it receives. That frame is routed back to the originating port 102 , 103 to expedite the PLOGI probing phase.
- LS_RJT Extended Link Services Reject
- Fibre Channel SCSI Initiators only I/O probe with PLOGI frames whenever the loop is reset. If private loop storage devices are added to remote fabric ports in a Stealth Mode environment after private loop Fibre Channel SCSI Initiators are initialized, they will have missed the PLOGI I/O probe phase and will not be “seen” by the SCSI Initiators. Fibre Channel SCSI Initiators must be notified of the addition of the storage device so as to reinitiate I/O probing with PLOGI frames. In the Stealth Mode the fabric implements an option to reset ports, i.e., transmit LIP, which have hosts attached if a port with storage is added.
- reset ports i.e., transmit LIP
- the Stealth Mode requires the ALPAs for the devices attached to the fabric port to be predetermined in order to simplify fabric routing.
- the fabric enforces this configuration by generating special LIFA frames during loop initialization, see Port ALPA Range Configuration Section.
- the strategy is to allocate numerically similar ALPA ranges to fabric ports to simplify routing.
- the ALPA ranges are chosen based on the number of ALPAs in certain ranges.
- ALPA ranges are defined as 1x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, Ax, Bx, Cx, Dx and Ex, where x is ALPA bits 3 to 0 , and represents a don't care value. Note that all numbers are in hexadecimal notation. Since the ALPA values are not contiguous, ALPA range selection must be done carefully.
- the table below organizes the ALPA values into ranges and shows the number of available ALPA addresses in each range.
- JBOD Just a Bunch of Disks
- Storage devices are typically composed of several Fibre Channel disk drives in a single 19′′ equipment rack mount enclosure, see FIG. 23 .
- Each drive 680 , 681 , 682 , 683 requires a separate ALPA.
- the ports which contain JBODs should use a range have enough ALPAs to assign to all drives.
- Hubs are another device which contain several addressable entities, see FIG. 22 . Therefore only the ranges 2x, 3x, 4x, 5x, 6x, 7x, Ax, Bx, Cx and Dx can be assigned to ports which have JBODs, hubs or other fabrics attached.
- Hosts and RAID devices Redundant Array's of Inexpensive Disks
- Fabric links use seven ALPAs and use ALPA ranges which contain seven or more ALPAs.
- Stealth Mode There are a large number of topologies which are supported by the Stealth Mode. In addition all types of private loop devices are supported such as hosts, RAIDs, JBODs, hubs, SCSI-to-Fibre Channel bridges, tape drives, other fabrics, etc. Below are descriptions of several representative examples of the Stealth Mode topologies.
- the fabric shown contains eight ports. As shown in FIG. 21 , port 1 641 is on the far left hand side and port 8 648 is on the far right hand side of the fabric.
- the example topologies are representative but not exhaustive.
- the examples show a single line between the fabric and the attached device(s).
- the single line represents an Arbitrated Loop connecting the fabric to the attached device(s), except for fabric-to-fabric links which are point-to-point and not Arbitrated Loop. In many cases the loop is only composed of two devices, the fabric port and the attached device.
- the examples show an eight port fabric, higher or lower port size fabrics or intelligent bridging hubs may also be used.
- FIG. 1 shows a fabric interconnecting a mix of private loop devices including: JBOD systems 3 , 6 , 9 , a hub 16 , hosts, RAID systems 19 , 29 , 36 , in addition to other fabrics 2 , 37 .
- All the links between the fabric and attached devices are Arbitrated Loops, there connection is shown by a single line.
- the fabric routing table for the AGS/8 1 fabric is shown below. Note the primary/backup column indicates whether the link should be used as the primary link or a backup link in case the primary link fails.
- the port ALPA filtering table (i.e., of received frames) is shown below.
- FIG. 6 shows a fabric interconnecting a mix of private loop devices including: JBODs and host devices on a single fabric.
- the fabric routing table for the AGS/8 120 fabric is shown below.
- the port ALPA filtering table is shown below.
- FIG. 7 replaces host port number 7 in FIG. 6 with a fabric 141 containing seven more hosts 159 , 160 , 161 , 162 , 163 , 164 , 165 .
- the routing table is similar to FIG. 6 except the routing address for port 7 is 9x, the routing mask is F0, the ALPA filtering address is 9x and the ALPA filtering mask is F0.
- FIG. 8 replaces all hosts in FIG. 6 with fabrics 201 , 202 , 203 , 204 , 205 , 206 , 207 with attached host devices.
- the ALPA ranges that the fabrics use are 1x, 9x, 3x, 5x, 7x, Bx and Dx. Because of limited ALPA ranges the maximum number of JBODs 208 in this configuration is five 209 , 210 , 211 , 212 , 213 .
- the JBODs are assigned ALPAs of 2x, 4x, 6x, Ax and Cx.
- FIG. 9 shows a topology utilizing two redundant fabrics 220 , 241 to provide redundant links 229 , 230 , 231 , 232 , 233 , 234 , 235 , 236 , 237 , 238 , 239 , 240 from hosts 223 , 224 , 225 , 226 to either JBOD 221 or RAID 222 devices. Both the routing tables and the port ALPA filtering tables for the two fabrics would be identical.
- FIG. 10 shows a topology containing maximum single ALPA private loop devices interconnected with fabrics 250 , 251 , 252 , 253 , 254 , 255 , 256 , 257 , 258 . There are no devices with multiple ALPA's in this topology such as JBODs or hubs.
- FIG. 11 shows a topology of two storage systems, a JBOD 261 and a RAID 262 , which are connected to a fabric with redundant links 269 , 270 and 271 , 272 .
- FIG. 11 also shows interconnection of four host private loop devices 263 , 264 , 265 , 266 . Each storage system connection is composed of a primary/active link 269 , 271 and a backup link 270 , 272 .
- FIG. 12 shows a topology similar to FIG. 10 except for redundant fabrics 300 , 301 interconnecting the leaf or outer fabrics 302 , 303 , 304 , 305 , 306 , 307 , 308 , 309 .
- This topology allows redundant paths between each leaf fabric.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Small-Scale Networks (AREA)
Abstract
Description
- This application is a continuation of application Ser. No. 12/138,308, filed Jun. 12, 2008, which is a continuation of application Ser. No. 10/289,128, filed Nov. 5, 2002, which is a continuation of application Ser. No. 10/198,867, filed Jul. 18, 2002, which is a continuation of application Ser. No. 09/611,173, filed Jul. 6, 2000, now U.S. Pat. No. 6,470,007, which is a continuation of application Ser. No. 08/907,385, filed Aug. 7, 1997, now U.S. Pat. No. 6,118,776, which is a continuation-in-part of application Ser. No. 08/801,471, filed Feb. 8, 1997, now U.S. Pat. No. 6,185,203.
- The present invention relates to input/output channel and networking systems, and more particularly to methods of using a Fibre Channel fabric or intelligent bridging hub to interconnect Fibre Channel Arbitrated Loops composed of private loop devices (i.e., devices which do not support direct fabric attachment).
- Fibre Channel is an American National Standards Institute (ANSI) set of standards which describes a high performance serial transmission protocol which supports higher level storage and network protocols such as HIPPI, SCSI, IP, ATM and others. Fibre Channel was created to merge the advantages of channel technology with network technology to create a new I/O interface which meets the requirements of both channel and network users. Channel technology is usually implemented by I/O systems in a closed, structured and predictable environment, whereas network technology usually refers to an open, unstructured and unpredictable environment.
- Advantages of Fibre Channel typically include the following. First, it achieves high performance, which is a critical in opening the bandwidth limitations of current computer to storage and computer to computer interfaces at speeds up to 1 gigabit per second or faster. Second, utilizing fiber optic technology, Fibre Channel can overcome traditional I/O channel distance limitations and interconnect devices over distances of 6 miles at gigabit speeds. Third, it is high level protocol independent, enabling Fibre Channel to transport a wide variety of protocols over the same media. Fourth, Fibre Channel uses fiber optic technology which has a very low noise properties. Finally, cabling is simple in that Fibre Channel typically replaces bulky copper cables with small lightweight fiber optic cables.
- Fibre Channel supports three different topologies: point-to-point, Arbitrated Loop and fabric attached. The point-to-point topology attaches two devices directly. The Arbitrated Loop topology attaches devices in a loop. The fabric attached topology attaches a device directly to a fabric.
- The Arbitrated Loop topology was initially designed to provide a lower cost interconnect than fabrics and to provide more interconnect than point-to-point topologies. The Arbitrated Loop topology was created by separating the transmit and receive fibers associated with each loop port and connecting the transmit output of one loop port to the receive input of the next loop port. Typically, characteristics of the Arbitrated Loop topology include: first it, allows up to 126 participating node ports and one participating fabric port to communicate, second, each node port implements a route filtering algorithm, and third, all ports on a single loop have the same upper 16 bits of the 24-bit NL_Port address identifier.
- There are two classifications of devices on an Arbitrated Loop: private loop devices and public loop devices. Public loop devices attempt a Fabric Login (FLOGI) upon initialization. Public loop devices also are cognizant of all twenty four bits of the 24-bit NL_Port native port address identifier. Public loop devices will open the fabric port at Arbitrated Loop Physical Address (ALPA,
bits 7 to 0) zero when the domain and area (bits 23 to 8) do not match their domain and area. Private loop devices use only the lower eight bits of the ALPA and can only communicate within the local loop. - Generally, the disadvantages of the Arbitrated Loop topology include: first, it is a blocking topology, that is, only a single connection between a pair of nodes is allowed at any point in time (excluding the broadcast mode). Second, device buffering occurs in each device as it has a six word buffer, creating a delay of up to 225 nanoseconds. This delay is additive with each device in the loop. The delay creates overhead for the communicating devices when a large number of devices are connected to a loop. Third, distance also adds delay to a loop and is additive for each device. For copper medium there is a 4 nanosecond delay per meter and for optical medium there is a 5 nanosecond delay per meter. Fourth, robustness is an issue since all devices are on one loop any device failure will cause the entire loop to fail or reset. Fifth, the total bandwidth available is limited to the bandwidth of the loop itself. Finally, device failure is an issue since while frames are being transmitted, a timeout in an upper level protocol may occur, thereby disrupting the applications.
- Loop devices are typically interconnected on an Arbitrated Loop with a hub, see
FIG. 22 numeral 678. The hub is a passive device, that is a loop exists within thehub port bypass circuit - There are many disadvantages which result when interconnecting private loop devices with hubs: First, hubs do not address the blocking nature of the loop topology. Second, jitter is propagated from bypassed nodes. This additive affect causes loop instability when a large number of devices are interconnected. Third, when data is currently being transferred and a device attached to a hub is powered off or fails, the loop could be reset which is destructive to the communicating devices. Fourth, if a device is inserted into a live loop the loop will be reset which is destructive to the communicating devices.
- The majority of initial Fibre Channel equipment deployment utilizes the Arbitrated Loop topology with hubs as the interconnect. These environments are experiencing all the previously defined problems inherent in both Arbitrated Loop topology and with hub deployment. The blocking nature of the Arbitrated Loop is limiting the number of devices on a loop. The distance and delay parameters are also creating more overhead for the loop. Finally the loop is being reset by single devices.
- As such, it is the goal of this invention to provide apparatus and methods which solve or mitigate these problems.
- This invention relates to methods and apparatus for Fibre Channel interconnection of a plurality of private loop devices through a Fibre Channel private loop device interconnect system. In the preferred embodiments, the Fibre Channel private loop device interconnect system is a fabric or an intelligent bridging hub. Through these methods and apparatus, multiple Fibre Channel Arbitrated Loops, the loops containing one or more private loop devices, may be interconnected even though on separate Arbitrated Loops.
- In the preferred embodiment, an interconnection system is provided for connecting a plurality of physically separate Fibre Channel Arbitrated Loops, the loops either containing, or being adapted to contain, one or more private loop devices. The apparatus preferably includes at least a first Arbitrated Loop containing, or adapted to contain, one or more private loop devices, and at least a second Arbitrated Loop, either containing, or adapted to contain, one or more private loop devices. The Arbitrated Loops are interconnected via a Fibre Channel private loop device interconnect system which is disposed between the Arbitrated Loops.
- In one embodiment, a Fibre Channel fabric is disposed between the Arbitrated Loops, and includes a routing filter which filters incoming Arbitrated Loop physical addresses (ALPAs) to determine which Fibre Channel frames must attempt to be routed through the fabric. Thus, by disposing routing information regarding private loop devices within the Fibre Channel private loop device interconnect system, multiple Arbitrated Loops containing private loop devices may be interconnected.
- Any type of private loop device, consistent with the apparatus and methods stated herein, may be utilized in conjunction with this system. Examples of private loop devices include storage devices, such as tape drives, JBODs and RAID subsystems, host systems, and other connections within a system, such as bridges, particularly SCSI to Fibre Channel bridges, routers, particularly Fibre Channel to asynchronous transfer mode systems and Fibre Channel to ethernet systems.
- Various interconnection topologies may be utilized with these systems. Beyond a single fabric having two Arbitrated Loops, any number of Arbitrated Loops may be utilized, consistent with the size constraints of the fabric. Alternately, a first fabric, with at least one Arbitrated Loop attached, and a second fabric, with at least one Arbitrated Loop, may have the first fabric and second fabric directly connected. Alternatively, or additionally, a first fabric and a third fabric, each having at least one Arbitrated Loop, may be connected through a second fabric. Yet another topology includes a first fabric having M ports, where one port is connected to storage, preferably JBODs, and the remaining M−1 ports of the first fabric are connected to M−1 second fabrics. An alternative interconnect topology includes a first fabric with M ports, and M second fabrics, each second fabric being connected to the first fabric. In yet another interconnect topology, a device is connected to a first fabric by a first path and to a second fabric by a second, independent path. In yet another interconnect topology, a first set of fabrics and a second set of fabrics may be interconnected through a first intermediate fabric and a second intermediate fabric, each of the first sets of fabrics connected to the first intermediate fabric, and separately to the second intermediate fabric, and each of the second set of fabrics connected to the first intermediate fabric and separately to the second intermediate fabric.
- In yet another aspect of this invention, a method is provided for implementing a logical loop of private loop devices in a novel manner. The method generally comprises the steps of segmenting the logical loop of private loop devices into a plurality of sets, assigning each set to a physical Arbitrated Loop and connecting the Arbitrated Loops to a Fibre Channel private loop device interconnect system to effect interconnection of the Arbitrated Loops.
- In another aspect of this invention, a method is provided for selectively filtering Fibre Channel frames. This method serves to route frames between one or more private loop devices on a first Arbitrated Loop and one or more private loop devices on at least a second Arbitrated Loop. Preferably, the method includes the steps of receiving the Fibre Channel frames over the first Arbitrated Loop at a connected port of a Fibre Channel private loop device interconnect system and filtering the frame by, either, forwarding the frame on the first Arbitrated Loop if the frame has an address on the first Arbitrated Loop, or, providing an “open” response on the first Arbitrated Loop if the address is not on the first Arbitrated Loop. Optionally, in the event that the frame includes an address not on the first Arbitrated Loop, the additional step of attempting to route the frame through the Fibre Channel private loop device interconnect system may be made. In yet another optional step, buffering of the frames destined to private loop devices not on the first Arbitrated Loop may be performed, most preferably, permitting cut-through if the route can be made without substantial buffering.
- Yet another novel method of these inventions is a method for restricting attached devices to Arbitrated Loop physical addresses (ALPAs) within certain ranges. Through this method, multiple Fibre Channel Arbitrated Loops of private loop devices are configured, each private loop device on the Arbitrated Loop having an Arbitrated Loop physical address. Generally, the steps in the preferred method comprise, first, dividing the ALPAs into nonoverlapping sets, second, assigning each set to a separate physical Arbitrated Loop, and thereafter, during loop initialization, forcing the attached private loop devices to choose from the assigned set.
- Yet another novel method comprises a method for resetting hosts within a Fibre Channel interconnection system of private loop devices. In this method of operation of an interconnection system, the system including more than one Arbitrated Loop, at least one loop being adapted to contain storage and one loop adapted to contain a host, those devices being private loop devices, the loops being connected to a Fibre Channel private loop device interconnect system, the method generally comprises the steps of, first, detecting at least the addition of a storage device to a first Arbitrated Loop, and thereafter, resetting the Arbitrated Loop or loops on which a host or hosts reside upon such detected addition. In this manner, a host resident on an Arbitrated Loop becomes aware of storage private loop devices which have been added to other Arbitrated Loops separated from the host bearing Arbitrated Loop by a Fibre Channel private loop device interconnect system.
- In yet another method of operation of the inventive system, a method for operation with use of SCSI initiators is provided. In this interconnection system, the system includes more than one Arbitrated Loop, at least one loop adapted to contain storage and one loop containing a host, the devices attached to the loops being private loop devices, the loops being connected to a Fibre Channel private loop device interconnect system. The method generally comprises the steps of first, receiving port login (PLOGI) input/output (I/O) probes at the Fibre Channel private loop device interconnect system, thereafter, performing address look-up for the received PLOGI I/O probes, and, if a match exists in the look up, routing the PLOGI I/O probes from the Fibre Channel SCSI initiator to private loop devices on the Fibre Channel private loop device interconnect system or other Fibre Channel private loop device interconnect system. In the event that no match is found upon address look up, the PLOGI I/O probes are routed to the Fibre Channel private loop device interconnect system controller, and a link service reject (LS_RJT) is returned. Similarly, a link service reject is returned in the event that an address match is found, but where no device with the destination ALPA exists on the Arbitrated Loop corresponding to the destination.
- An intelligent bridging hub adapted to interconnect a plurality of Arbitrated Loops containing private loop devices is provided. The intelligent bridging hub includes at least first and second hub submodules, the submodules comprising a plurality of ports, the ports including port bypass circuits connected to the ports for connecting to the Arbitrated Loops adapted to contain private loop devices, and, an Arbitrated Loop physical address filtering port, a router, the router being disposed between the first and second hub submodules, and a processor control coupled to the router and the first and second submodules. The router need not support all classes of Fibre Channel connections, for example, the router may optionally not support
class 1 connections. Optionally, the processor control need not provide back-up route determination mechanisms. - Accordingly, it is an object of this invention to interconnect separate Arbitrated Loops of private loop devices through Fibre Channel private loop device interconnect system.
- It is yet a further object of this invention to segment one logical loop composed of private loop devices into several physical Arbitrated Loops each of which is connected to Fibre Channel private loop device interconnect system.
- It is yet a further object of this invention to connect private loop devices over a fabric without any a priori knowledge by those devices or special software driver modifications to support the Fibre Channel private loop device interconnect system.
- It is yet a further object of this invention to route the I/O probes from a Fibre Channel SCSI Initiator to private loop devices on other ports on the Fibre Channel private loop device interconnect system or on other ports on connected Fibre Channel private loop device interconnect systems.
- It is yet a further object of this invention to handle I/O probes from Fibre Channel SCSI Initiators which are destined for nonexistent devices.
- It is yet a further object of this invention to filter the frames received by a Fibre Channel private loop device interconnect system port and select those frames which are destined to private loop devices on separate fabric ports or for other ports on connected Fibre Channel private loop device interconnect system.
- It is yet a further object of this invention to reset private loop hosts when storage devices are added or removed on other ports on the Fibre Channel private loop device interconnect system or on other ports on connected Fibre Channel private loop device interconnect system.
- It is yet a further object of this invention to limit the ALPA range that connected private loop devices can choose when connected to a Fibre Channel private loop device interconnect system port.
-
FIG. 1 is a block diagram illustrating the use of the Stealth Mode in connecting one logical loop of private loop devices by segmenting it into several physical loops all interconnected through a network of fabrics. -
FIG. 2 is a block diagram illustrating the bandwidth advantage in connecting multiple pairs of simultaneously communicating private loop devices. -
FIG. 3 is a block diagram showing the additive delays of interconnecting several devices in a loop. -
FIG. 4 is a block diagram showing the Stealth Mode procedure for routing Fibre Channel SCSI Initiator PLOGI I/O probes which do not correspond to an existent ALPA. -
FIG. 5 is a block diagram showing the fabric router modifications necessary to route Fibre Channel SCSI Initiator PLOGI I/O probes which do not correspond to an existent ALPA. -
FIG. 6 is a block diagram showing the interconnection of seven host computers with ten racks of JBODs, each JBOD consisting of up to eight disk drives. -
FIG. 7 is a block diagram showing the interconnection of thirteen host computers with ten racks of JBODS, each JBOD consisting of up to eight disk drives. -
FIG. 8 is a block diagram showing the interconnection of forty nine host computers with five racks of JBODS, each JBOD consisting of up to eight disk drives. -
FIG. 9 is a block diagram showing the interconnection of a JBOD and a RAID storage subsystem with four hosts. Each device is connected through a redundant path. -
FIG. 10 is a block diagram showing the interconnection of forty eight hosts with eight RAID storage subsystems. -
FIG. 11 is a block diagram showing the interconnection of four hosts with a JBOD and a RAID storage subsystem. There are redundant links to the JBOD and the RAID subsystems. -
FIG. 12 is a block diagram showing the interconnection of forty hosts with eight RAID storage subsystems. There are redundant paths for all connections which span at least two fabrics. -
FIG. 13 is a block diagram illustrating the use of a Fibre Channel Fabric. -
FIG. 14 is a block diagram of a Fibre Channel Fabric. -
FIG. 15 is a block diagram of the Fabric Control module. -
FIG. 16 is a block diagram of the fabric Router. -
FIG. 17 is a block diagram of the fabric Port Control. -
FIG. 18 is a diagram of the LIFA frame format. -
FIG. 19 is a diagram of an example LIFA frame to restrict ALPA selection to the range 1x, i.e., 10, 17, 18, 1B, 1D, 1E and 1F. -
FIG. 20 is a diagram of a LISM frame with a World-wide name of all zeros. -
FIG. 21 is a block diagram of a fabric with eight ports, showing the port locations. -
FIG. 22 is a block diagram of a four port Fibre Channel hub. -
FIG. 23 is a block diagram of a JBOD (Just a Bunch of Disks) storage subsystem. -
FIG. 24 is a diagram illustrating the relationship between a logical Arbitrated Loop and a physical Arbitrated Loop. The physical Arbitrated Loop is segmented over a fabric or an intelligent bridging hub. -
FIG. 25 is a block diagram of an intelligent bridging hub. - 1. Fabric Control Module
- 2. Fabric Router
-
- a. Address Table
- b. Address Match Module
- c. Route Determination Module
- 3. Switch Core
- 4. Port Control Module
- For expository convenience, the present invention in various aspects is referred to as the Stealth Loop Mode, the lexicon being devoid of a succinct descriptive name for a system of the type hereinafter described. The following discussions will be made clearer by a brief review of the relevant terminology as it is typically (but not exclusively) used.
- The “Fibre Channel ANSI standard” describes the physical interface, transmission protocol and signaling protocol of a high-performance serial link for support of the higher level protocols associated with HIPPI, IPI, SCSI, IP, ATM and others.
- The Fibre Channel Fabric comprises hardware and software that switches Fibre Channel frames between attached devices at speeds up to one gigabit per second.
- “FC-1” defines the Fibre Channel transmission protocol which includes the serial encoding, decoding, and error control.
- “FC-2” defines the signaling protocol which includes the frame structure and byte sequences.
- “FC-3” defines a set of services which are common across multiple ports of a node.
- “FC-4” is the highest level in the Fibre Channel standards set. It defines the mapping between the lower levels of the Fibre Channel and the IPI and SCSI command sets, the HIPPI data framing, IP, and other Upper Level Protocols (ULPs).
- A “fabric” (sometimes referred to as a switch or router) is an entity which interconnects various N_Ports attached to it and is capable of routing frames by using the Destination Identifier (D_ID) information in the FC-2 frame header.
- An “intelligent bridging hub” is a hub with one or more ports which implement ALPA filtering and/or routing functions and contains control logic.
- A “FC-PLD-IS” or Fibre Channel Private Loop Device Interconnect System is a fabric or intelligent bridging hub, or a device which achieves the functionality of these devices.
- A “RAID” or redundant array of inexpensive disks storage device is an interleaved storage technique which speeds access to disks along with implementing redundant storage access methods.
- A “JBOD” or Just A Bunch Of Disks is a storage subsystem composed of a series of disks. A JBOD is similar to a RAID system without the RAID controller which implements the RAID striping and mirroring features.
- “Topology” is an interconnection scheme that allows multiple Fibre Channel ports to communicate. For example point-to-point, Arbitrated Loop and fabric-attached are all Fibre Channel topologies.
- “Fabric topology” is a topology where a device is directly attached to a fabric and that uses the Destination Identifier (D_ID) embedded in the frame header to route the frame through a Fabric to the desired destination N_Port.
- “Point-to-point topology” allows communication between two N_Ports without the use of a Fabric.
- “Arbitrated Loop topology” permits two or more L_Ports to communicate using arbitration to establish a point-to-point circuit. When two L_Ports are communicating, the Arbitrated Loop topology supports simultaneous, symmetrical bidirectional data flow.
- “Stealth Mode” is a fabric or intelligent bridging hub mode of operation which allows the interconnection of private loop devices over multiple fabric/hub ports.
- “Port” is a generic reference to an N_Port or F_Port.
- “Link Control Facility” is a facility which attaches to an end of a link and manages transmission and reception of data. It is contained within each Port type.
- An “N_Port” is a hardware entity which includes a Link Control Facility.
- An “NL_Port” is an N_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology.
- An “F_Port” is a generic reference to an F_Port or FL_Port.
- An “FL_Port” is an F_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology.
- An “L_Port” is an N_Port or F_Port that contains Arbitrated Loop functions associated with Arbitrated Loop topology.
- A “Node” is a collection of one or more N_Ports controlled by a level above FC-2.
- A “frame” is an indivisible unit of information used by FC-2.
- “Classes of Service” are different types of services provided by the Fabric and used by the communicating N_Ports.
- “
Class 1” service is a service which establishes a dedicated connection between communicating N_Ports. - “
Class 2” service is a service which multiplexes frames at frame boundaries to or from one or more N_Ports with acknowledgment provided. - “
Class 3” service is a service which multiplexes frames at frame boundaries to or from one or more N_Ports without acknowledgment. - A “Gigabit Link Module” is a module which interfaces to the Endec through either a 10-bit or 20-bit interface and interfaces to the Fibre Channel link through either a copper or fiber interface.
- An “Encoder/Decoder” or Endec is a device which implements the FC-1 layer protocol.
- “Fabric Login Protocol” is when an N_Port interchanges Service Parameters with the Fabric by explicitly performing the Fabric Login protocol or implicitly through an equivalent method not defined in FC-PH.
- “Private Loop Device” is a device which does not attempt a fabric login (FLOGI) ELS command and cannot open a fabric port, e.g., ALPA zero, when the domain and area addresses of a frame to be transmitted is not equal to zero.
- “Public Loop Device” is a device which attempts fabric login and can communicate with devices that contain nonzero domain and area address values. Public loop devices can observe the rules of either public or private loop behavior. A public loop device may communicate with both private and public loop devices.
- “Private Loop Direct Attach” or PLDA is a technical report which defines a subset of the relevant standards suitable for the operation of peripheral devices such as disks on a private loop.
- “N_Port Login” or PLOGI is a Fibre Channel Extended Link Service Command defined in the FCPH Revision 4.3 ANSI standard that requests transfer of Service Parameters from the initiating N_Port/NL_Port to the N_Port/NL_Port or F_Port/FL_Port associated with the Destination Identifier.
- “World-wide Name” or WWN is an 8-byte field which uniquely identifies an N_Port or F_Port. Each N_Port or F_Port must have a WWN which is unique worldwide.
- “N_Port Identifier” is a 3-byte native address field which is unique within the Fibre Channel address domain.
- “Source Identifier” or S_ID is the address identifier used to indicate the source Port of the transmitted frame.
- “Destination Identifier” or D_ID is the address identifier used to indicate the targeted destination of the transmitted frame.
- “Link Services Reject” or LS_RJT is a Fibre Channel Extended Link Service Command defined in the FCPH Revision 4.3 ANSI standard that notifies the transmitter of a Link Service request that the Link Service request Sequence has been rejected. LS_RJT frames may be transmitted for a variety of conditions which may be unique to a specific Link Service Request.
- “Loop Initialization” is a protocol used to initialize the loop prior to beginning loop operations or when configuration changes are detected.
- “Loop Initialization Primitive” or LIP frames are used to accomplish loop initialization.
- “Loop Initialization Select Master” or LISM frame contains the devices World-wide unique name (WWN). The device with the lowest WWN becomes the temporary loop master during the loop initialization sequence.
- “Loop Initialization Fabric Address” or LIFA loop primitive allows public ports that had logged-in with the fabric to reclaim the ALPA they had been using immediately prior to loop initialization. The LIFA is the first loop primitive transmitted by the temporary loop master which contains ALPA information.
- “Loop Initialization Report Position” or LIRP loop primitive is used to build a map of all loop devices relative to the loop master. This primitive is optional in loop initialization.
- “Loop Initialization Loop Position” or LILP loop primitive allows any interested device on the loop to view the current loop map. This primitive is optional in loop initialization.
- “Jitter” is random variation in the timing of a signal, especially a clock.
- The Stealth Mode is a combination of features and functions applied to a fabric or an intelligent bridging hub which allows it to interconnect private loop devices between ports on the fabric or hub, preferably without the private loop device's knowledge. The result of this mode allows one logical Arbitrated Loop to be segmented into multiple physical loops. As shown in
FIG. 24 alogical loop 709 ofArbitrated Loop devices - This segmentation solves some or all of the problems inherent in Arbitrated Loop topologies, such as:
-
- Multiple loops allow more than two devices to communicate simultaneously, thereby increasing the bandwidth of the entire logical loop. As shown in
FIG. 2 ,Host number 41 andJBOD 43 can simultaneously communicate 45 whileHost number 42 andRAID 44 communicates 46. - When a private loop device powers up or down or resets, only the port in which that device is connected is affected (except for certain conditions, see Resetting Host Ports Upon Storage Addition section, below). In
FIG. 4 , if the Host connected toport 1 numeral 70 powers down, only that port is affected. The loop state of the devices connected toports - Jitter is not additive for the entire logical loop, just the physical loop directly attached to the fabric port.
- Device buffering delay is minimized since there are less devices per physical loop. As shown in
FIG. 3 each device on the loop adds six words of buffering and associateddelay 51, 52, 53 and 54. - Delay introduced from interdevice distance is minimized since the delay will only affect the devices on the single fabric port. As shown in
FIG. 3 the distance between devices 59, 60, 61, 62 creates an additive delay. - Existing Fibre Channel SCSI Initiator and IP (Internet protocol) software drivers and Fibre Channel native disk drive firmware do not have to be modified.
- Multiple loops allow more than two devices to communicate simultaneously, thereby increasing the bandwidth of the entire logical loop. As shown in
- Some or all of the following features are implemented by the fabric or intelligent bridging hub to create the Stealth Mode.
-
- The fabric port looks to the loop devices as a device with a large amount of ALPAs. The fabric accomplishes this by applying a routing filter to the incoming ALPAs.
- The fabric predetermines the ALPA range available for each port and forces the connected devices to choose that ALPA range during loop initialization to simplify system routing.
- Upon initialization the Fibre Channel SCSI Initiators send out PLOGI I/O probes to all ALPAs to find any attached SCSI devices. The fabric routes the I/O probes to actual attached SCSI devices and redirects those I/O probes to nonexistent ALPAs to the fabric controller where they are responded to.
- The fabric may reset host ports when storage is added to a fabric port to initiate Fibre Channel SCSI Initiator PLOGI I/O probing.
- Block transmission of the LIRP and LILP frames during loop initialization in case host driver software modifies its PLOGI I/O probing based on the ALPA map information contained in those frames.
- While a majority of the description in this application describes the implementation via a Fibre Channel fabric, because that is our preferred embodiment, the inventions are equally applicable to Intelligent Bridging hubs or any Fibre Channel private loop device interconnect system.
- As shown in
FIG. 13 , a Fibre Channel Fabric is an entity which transports Fibre Channel frames between attached devices. The data transmission between the connected device port (i.e., N_Port) and the Fabric port (i.e., F_Port) is serial and consists of one or more frames. The transmission protocol and speeds along with the fabric functionality are defined in the American National Standard for Information Systems (ANSI) FCPH standard (see Other Documents section, below). - A primary function of the Fabric is to receive frames from a source N_Port and route the frames to the destination N_Port whose address identifier is specified in the frames. Each N_Port is physically attached through a link to the Fabric or in the case of an Arbitrated Loop topology attached to the same loop. FC-2 specifies the protocol between the Fabric and the attached N_Ports. A Fabric is characterized by a single address space in which every N_Port has a unique N_Port identifier.
- The Fabric model contains three or more F_Port or FL_Ports. Each F_Port is attached to an N_Port through a link. Each F_Port is bidirectional and supports one or more communication models. The receiving F_Port responds to the sending N_Port according to the FC-2 protocol The Fabric may or may not verify the validity of the frame as it passes through the Fabric. The Fabric routes the frame to the F_Port directly attached to the destination N_Port based on the N_Port identifier (D_ID) embedded in the frame. The address translation and the routing mechanisms within the Fabric are transparent to N_Ports.
-
FIG. 13 shows a possible environment containing a Fibre Channel fabric. The fabric is identified by thereference numerals workstations 403,disk arrays 404,mainframe computers 405, and Personal Computers (PC) 406. Fabric interconnection is not limited to particular equipment or a network topology as illustrated inFIG. 13 . Two types of fabric topologies are illustrated inFIG. 13 , the direct fabric attachedtopology 409 and theArbitrated Loop topology 407. The fabrics inFIG. 13 are shown interconnected or networked through alink 408. All links to the fabric can operate at either 266 Mbps, 533 Mbps or 1.063 Gbps speeds and operate over either copper or fiber media. -
FIG. 14 shows a block diagram of the fabric. The fabric is composed of afabric control module 454, arouter module 452, multipleport control modules switch core module 453 and optionally one ormore brouter modules 455. The Fabric Control module controls and configures the rest of the fabric but is not usually involved in the normal routing of frames. Thefabric Router 452 performs route address matching, route determination based on the ANSI X3T11 rules, route request blocking & unblocking,switch core programming 463, statistics collection and port control module route request/response handling 459, 460, 461, 462, 466, 467, 472, 473. The fabric Port Control modules (PCM) 451, 470, 474, 475 receive Fibre Channel frames from the fiber orcopper media router router switch core fabric switch core 453 is a nonblocking N×N matrix switch with 36 bit wide transmit and receive I/Os. The switch core switches frames from thePCMs -
FIG. 14 shows the Fabric Control module (FCM) 454. The FCM configures the fabric, collects and reports network management parameters and implements the fabric defined servers such as the Simple Name Server, Directory Services, etc. The FCM configures therouter 452, theport control modules brouter module 455.FIG. 15 shows the Fabric Control module (FCM) in more detail. The FCM is made up offast SRAM 482,DRAM 483, aDUART 484, flash memory 485 (nonvolatile storage), aprocessor 481 and a Decode/DMA Control module 487. The code for the processor is contained in theflash memory 485 and is copied to SRAM upon bootup. The interface to thebrouter module 455 allows the FCM to communicate through legacy networks such as ethernet and fast ethernet, depending on the brouter module. - The Fabric Router,
FIG. 14 numeral 452 receives route requests generated from thePort Control modules Port Control modules routes 463, manages blocked route requests and collects the routing statistics. There is one central router contained in a fabric. The Router connects and disconnects routes on a frame by frame basis. Since the router can determine a route in real time (i.e., Fibre Channel frame time) the Fabric can supportClass 1 frames. The router is realized in hardware through either an FPGA or a custom ASIC. The router is composed of thirteen functional modules as illustrated inFIG. 16 : -
- Port Control Route Request Interface (PCRRIM) 530
- Port Control Route Response Interface (PCRSPM) 544
- Address Table 532
- Address Match Module (ADM) 531
- Blocked Route Request Table Module (BRTBL) 533
- Blocked Route Request Port Register Array (BRRA) 534
- Blocked Route Request Timer (BRTMR) 535
- Route Request Unblock Determination Module (RRUNB) 536
- Route Request Selector (RRS) 537
- Route Determination Module (RDM) 538
- Route State Table (RST) 539
- Router Statistics Gathering Module (RST) 541
- Router Control FSM (RCFSM) 540.
a. Address Table
- The Address Table is shown in
FIG. 16 numeral 532. The address table is initially configured by the processor in thefabric control module 522. The Address Table contains entries against which the incoming Fibre Channel frame destination identifier (D_ID) is compared. The address entry contains a twenty four bit address mask register along with a twenty four bit address register. The incoming D_ID is ANDed with the address mask register and the result is compared to the address register. This allows a match to be performed on any number of bits in the address. This also implements routing based on any combination of the address domain (upper eight bits of the address field), area (middle eight bits of the address field) or port (lower eight bits of the address field) fields. Additional address fields include the destination port and the address priority fields. The destination port indicates which remote F_Port to route the frame to and the address priority field specifies a priority for this address table entry match. For any two address matches the address table entry match which is the highest priority will be used. This implements alternate routing in case of port failure feature. - b. Address Match Module
- The Address Match module (ADM) is shown in
FIG. 16 numeral 531. The ADM performs the comparison with the incoming frame D_ID address from theroute request 505 with theAddress Table contents 509. The results are used by theRoute determination module 538. The ADM has as an input the twenty-four bit address to match, i.e., the incoming frame D_ID address from the route request, and returns the following responses: the remote match port, the address matched indication and the route to control module indication. The ADM will match an incoming D_ID address to all the addresses in the address table in one clock. The ADM logic is implemented in combinatorial logic. The ADM performs the following checks for each address table entry: - Address Match indication=(address in table==(address mask & D_ID))
- The results are then priority decoded based on address priority contained in the address table and the resulting address match signal and port are generated. There is one special mode which is implemented which will preemptively route all frames to the Fabric Control module except frames originating from the Fabric Control module. This allows the fabric control module to process all incoming frames which is useful when the fabric is functioning in certain environments.
- c. Route Determination Module
-
FIG. 16 numeral 538 shows the Route Determination module (RDM). The RDM applies rules defined in the ANSI Fibre Channel specifications to calculate how to route the incoming frame. The RDM receives theroute request 510 from theRRS 537 along with route context for the source anddestination ports 512 from the Route State Table 539. The RRS outputs the route results 545, 511 to both theRouter Control FSM 540 and thePCRSPM 544. The RDM is implemented in combinatorial logic and applied the route rules in one clock. -
FIG. 14 shows the Switch Core. The switch core implements a nonblocking N×N matrix switch. The input to the switch core comes from the individual Port Control modulesFIG. 14 numerals FIG. 14 numeral 458 and the Brouter ModuleFIG. 14 numeral 476. The switch core is paths are setup and torn down by the routerFIG. 14 numeral 463. -
FIG. 14 shows the Port Control (PC)locations fiber media route request route response processor interface bus 465. -
FIG. 17 shows the Port Control in more detail. Frames are received from the fiber orcopper link 551 and enter theEndec 553. The Endec implements the 8B/10B encoding/decoding, the loop port state machine and fabric/point-to-point state machine functions and outputs thirty two bit data words with two bits of parity and tag information to the receive FIFO 555. The PC contains a module which guards against a receive FIFO overrun 154 condition. Once the receive FIFO 555 starts filling, the Port Control Module (PCM) 556 reads the frame header, requests a route from therouter switch core 561, 562. The PCM is configurable by theprocessor 570 in the Fabric Control module. The Port Control also receives frames from theswitch core Endec 553. - An intelligent bridging hub is a device composed of one or more passive hubs interconnected by some additional logic to bridge between two or more Fibre Channel Arbitrated Loops. An intelligent bridging hub can implement the Stealth routing mode if it contains the following functionality:
-
- Route filtering for two or more hub submodules
- Basic routing between hub submodules
- Minimum processor functions to “spoof” the PLOGI I/O probes and participate in loop initialization.
- A block diagram of an intelligent bridging hub is shown in
FIG. 25 . As shown inFIG. 25 , theintelligent bridging hub 773 is composed of two ormore hub submodules route filtering port 759, 760, some logic to performlimited routing 761 and aprocessor 762 to perform loop initialization and some other stealth features. Each hub submodule containsport bypass circuits 751 through 758 or their equivalent. - To receive frames for attached physical Arbitrated Loop segments the fabric port implements receive frame ALPA range filtering. This filtering function is done in the encoder/decoder module, see
FIG. 17 numeral 553 of the port control logic,FIG. 14 ,numerals -
- if (((received frame ALPA & mask)==predetermined address)==(match/no match))
- receive frame
- else
- forward frame to next device
- if (((received frame ALPA & mask)==predetermined address)==(match/no match))
- The receive frame on match/no match bit is used to allow greater filtering flexibility of incoming frames. An example of this filtering is shown by the following example. Assume there is one private loop device attached to the fabric port and its ALPA is 17h (where h means hexadecimal notation). To route all frames from this device to the fabric the fabric mask would be 00, the predetermined address would be 00h and the port would receive frame “on match”. This has the affect of filtering, i.e., receiving, all frames transmitted from the attached device.
- Another example would be a hub connected to a fabric port with attached hub device ALPAs of B1h, B2h, B3h, B4h, B5h, B6h, B9h, BAh, BCh. The fabric mask would be F0, the predetermined address would be B0h and the port would receive frame on “no match”. The result would have the fabric port receiving all frames that do not contain B in
bits 7 to 4 of the ALPA. - There can be multiple ALPA filters per port. An example would be a port with a fabric mask of F0 and a predetermined address of both 20h and 40h. If the mask algorithm returns a positive result when applied to any of multiple filters for a single port (i.e., an OR result) the frame is forwarded on the local loop and not filtered.
- While the preceding description is of the preferred embodiment, you can still achieve some of the benefits of the invention without the capability of a settable match/no match bit. Even if you do not support a match/no match bit you can still support numerous topologies of interconnected Arbitrated Loops composed of private loop devices with a fabric or intelligent bridging hub.
- In order to support the Stealth Mode the fabric must have a priori knowledge of the device ALPA ranges on each port. This is accomplished by the fabric by forcing the attached devices to choose a predetermined ALPA range. This is done during the LIFA loop initialization phase. The fabric reserves all ALPAs in the LIFA bit map, see
FIG. 18 numeral 600, by setting them equal to 1, except the range that the fabric desires the port to choose from.FIG. 19 shows theALPA bit map 601 to exclude all ALPAs from being chosen from the attached devices except 10, 17, 18, 1B, 1D, 1E or 1F. - The fabric is guaranteed to generated the LIFA by becoming loop master in the LISM phase. The fabric does this by choosing the lowest World-wide name, i.e., zero in the LISM frame, see
FIG. 20 numeral 610. - Private loop Fibre Channel SCSI Initiator devices send out N_Port Logins (PLOGI) to the entire ALPA range after loop initialization to probe for SCSI devices. The PLOGIs are transmitted serially. After each PLOGI transmission the Fibre Channel SCSI Initiator waits for each reply before sending another PLOGI. If the host driver receives the PLOGI it has just sent that indicates there are no devices on the loop with the ALPA.
- Since a fabric in the Stealth Mode is filtering and routing frames off the local Arbitrated Loop, in many cases the Fibre Channel SCSI Initiator will not receive its own PLOGIs destined for nonexistent ALPAs and will timeout before sending another one. Since this timeout can be up to ten seconds and there are 126 possible devices on a loop the initialization time is not acceptable unless the fabric acts on the PLOGI frame.
- In the Stealth Mode the fabric is optimized to automatically route the PLOGIs destined to nonexistent ALPAs to the fabric controller which will return an immediate response. The ANSI FCPH standard requires all
Class 3 frames which are not deliverable to be discarded. In the Stealth Mode the fabric deviates slightly from the ANSI standard androutes Class 3 frames to be discarded to the internal fabric controller. - If the frames received by the fabric controller are
Class 3 PLOGI frames (i.e., Fibre Channel SCSI Initiator I/O probes) the fabric element will return a Link Services Reject (LS_RJT) to indicate that the exchange is not to be setup. Allother Class 3 frames will be discarded by the fabric element satisfying the ANSI FCPH standard. This satisfies the requirement to return a frame to the PLOGI in real time to avoid PLOGI timeout. - Two modifications of the fabric router are necessary to handle PLOGI probes to nonexistent ALPAs. The first modification is to route all rejected
Class 3 frames to the fabric controller. As shown inFIG. 4 , all PLOGI's 78 which should be discarded by therouter 76 due to the destination being nonexistent are routed to the fabric controller 75. The fabric controller generates an LS_RJT (Extended Link Services Reject)frame Class 3 PLOGI frames it receives. The LS_RJT frame is routed back to the originatingport 82 to expedite the PLOGI probing phase. - The second modification is to route all
Class 3 frames which were transmitted and received back from a loop (i.e., no device present) to the fabric controller. As shown inFIG. 5 if a PLOGI is generated from aloop 96 and routed to adestination loop router 93 and routed to thefabric controller 95. As in the previous case thefabric controller 95 generates an LS_RJT (Extended Link Services Reject)frame 101 for everyClass 3 PLOGI frames it receives. That frame is routed back to the originatingport - Fibre Channel SCSI Initiators only I/O probe with PLOGI frames whenever the loop is reset. If private loop storage devices are added to remote fabric ports in a Stealth Mode environment after private loop Fibre Channel SCSI Initiators are initialized, they will have missed the PLOGI I/O probe phase and will not be “seen” by the SCSI Initiators. Fibre Channel SCSI Initiators must be notified of the addition of the storage device so as to reinitiate I/O probing with PLOGI frames. In the Stealth Mode the fabric implements an option to reset ports, i.e., transmit LIP, which have hosts attached if a port with storage is added.
- The Stealth Mode requires the ALPAs for the devices attached to the fabric port to be predetermined in order to simplify fabric routing. The fabric enforces this configuration by generating special LIFA frames during loop initialization, see Port ALPA Range Configuration Section. The strategy is to allocate numerically similar ALPA ranges to fabric ports to simplify routing. The ALPA ranges are chosen based on the number of ALPAs in certain ranges. ALPA ranges are defined as 1x, 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, Ax, Bx, Cx, Dx and Ex, where x is
ALPA bits 3 to 0, and represents a don't care value. Note that all numbers are in hexadecimal notation. Since the ALPA values are not contiguous, ALPA range selection must be done carefully. The table below organizes the ALPA values into ranges and shows the number of available ALPA addresses in each range. -
Number of ALPA Values Addresses in Ranges 00 1 01, 02, 04, 08, 0F 5 10, 17, 18, 1B, 1D, 1E, 1F 7 23, 25, 26, 27, 29, 2A, 2B, 2C, 2D, 2E 10 31, 32, 33, 34, 35, 36, 39, 3A, 3C 8 43, 45, 46, 47, 49, 4A, 4B, 4C, 4D, 4E 10 51, 52, 53, 54, 55, 56, 59, 5A, 5C 9 63, 65, 66, 67, 69, 6A, 6B, 6C, 6D, 6E 10 71, 72, 73, 74, 75, 76, 79, 7A, 7C 9 80, 81, 82, 84, 88, 8F 6 90, 97, 98, 9B, 9D, 9E, 9F 7 A3, A5, A6, A7, A9, AA, AB, AC, AD, AE 10 B1, B2, B3, B4, B5, B6, B9, BA, BC 9 C3, C5, C6, C7, C9, CA, CB, CC, CD, CE 10 D1, D2, D3, D4, D5, D6, D9, DA, DC 9 E0, E1, E2, E4, E8, EF 6 - For example, JBOD (Just a Bunch of Disks) storage devices are typically composed of several Fibre Channel disk drives in a single 19″ equipment rack mount enclosure, see
FIG. 23 . Eachdrive FIG. 22 . Therefore only the ranges 2x, 3x, 4x, 5x, 6x, 7x, Ax, Bx, Cx and Dx can be assigned to ports which have JBODs, hubs or other fabrics attached. Hosts and RAID devices (Redundant Array's of Inexpensive Disks) only use one ALPA and can use any ALPA range. Fabric links use seven ALPAs and use ALPA ranges which contain seven or more ALPAs. - To take full advantage of the Stealth Mode all private loop devices should be connected to the fabric in such a way to expedite simultaneous communication between pairs of devices. When multiple devices must share fabric ports, similar devices should share the same loops to simplify the routing requirements. For example storage devices should share the same loop and fabric port(s).
- There are a large number of topologies which are supported by the Stealth Mode. In addition all types of private loop devices are supported such as hosts, RAIDs, JBODs, hubs, SCSI-to-Fibre Channel bridges, tape drives, other fabrics, etc. Below are descriptions of several representative examples of the Stealth Mode topologies.
- In all diagrams the fabric shown contains eight ports. As shown in
FIG. 21 ,port 1 641 is on the far left hand side andport 8 648 is on the far right hand side of the fabric. The example topologies are representative but not exhaustive. The examples show a single line between the fabric and the attached device(s). The single line represents an Arbitrated Loop connecting the fabric to the attached device(s), except for fabric-to-fabric links which are point-to-point and not Arbitrated Loop. In many cases the loop is only composed of two devices, the fabric port and the attached device. Although the examples show an eight port fabric, higher or lower port size fabrics or intelligent bridging hubs may also be used. -
FIG. 1 shows a fabric interconnecting a mix of private loop devices including:JBOD systems hub 16, hosts,RAID systems other fabrics -
Port Device Type Address Mask Primary/ Backup 1 JBOD, 2 racks Ax, Cx F0 Primary 2 Hub 162x F0 Primary 3 JBOD, 2 racks 4x, 6x F0 Primary 4 RAID 1980 FF Primary 5 Host 2081 FF Primary 6 JBOD, 5 racks 3x, 5x, 7x, F0 Primary 10, 11, 12, 13, 14 Bx, Dx 7 Fabric link 21 9x F0 Primary 8 Fabric link 22 1x F0 Primary
The port ALPA filtering table (i.e., of received frames) is shown below. -
Filter on Match/No Port Device Type Address Mask Match 1 JBOD, 2 racks Ax, Cx F0 No Match 2 Hub 2x F0 No Match 3 JBOD, 2 racks 4x, 6x F0 No Match 4 RAID 80 FF No Match 5 Host 81 FF No Match 6 JBOD, 5 racks 3x, 5x, 7x, F0 No Match Bx, Dx 7 Fabric link 9x F0 No Match 8 Fabric link 1x F0 No Match -
FIG. 6 shows a fabric interconnecting a mix of private loop devices including: JBODs and host devices on a single fabric. The fabric routing table for the AGS/8 120 fabric is shown below. -
Port Device Type Address Mask Primary/ Backup 1 Host 121 10 FF Primary 2 Host 12217 FF Primary 3 Host 12318 FF Primary 4 Host 1241B FF Primary 5 Host 1361D FF Primary 6 Host 1371E FF Primary 7 Host 1381F FF Primary 8 JBOD, 10 racks Cx, Ax, 6x, 4x, F0 Primary 126, 127, 128, 129, 2x, Dx, Bx, 7x, 130, 131, 132, 133, 5x, 3x 134, 135
The port ALPA filtering table is shown below. -
Filter on Port Device Type Address Mask Match/ No Match 1 Host 10 FF No Match 2 Host 17 FF No Match 3 Host 18 FF No Match 4 Host 1B FF No Match 5 Host 1D FF No Match 6 Host 1E FF No Match 7 Host 1F FF No Match 8 JBOD, 10 racks Cx, Ax, 6x, 4x, F0 No Match 2x, Dx, Bx, 7x, 5x, 3x -
FIG. 7 replaceshost port number 7 inFIG. 6 with afabric 141 containing sevenmore hosts FIG. 6 except the routing address forport 7 is 9x, the routing mask is F0, the ALPA filtering address is 9x and the ALPA filtering mask is F0. -
FIG. 8 replaces all hosts inFIG. 6 withfabrics JBODs 208 in this configuration is five 209, 210, 211, 212, 213. The JBODs are assigned ALPAs of 2x, 4x, 6x, Ax and Cx. -
FIG. 9 shows a topology utilizing tworedundant fabrics redundant links hosts JBOD 221 orRAID 222 devices. Both the routing tables and the port ALPA filtering tables for the two fabrics would be identical. -
FIG. 10 shows a topology containing maximum single ALPA private loop devices interconnected withfabrics -
FIG. 11 shows a topology of two storage systems, a JBOD 261 and aRAID 262, which are connected to a fabric withredundant links FIG. 11 also shows interconnection of four hostprivate loop devices active link backup link -
FIG. 12 shows a topology similar toFIG. 10 except forredundant fabrics outer fabrics - The following documents provide selected ANSI information regarding Fibre Channel technology:
- 1) ANSI X3.230-1994, “Fibre Channel Physical and Signaling Interface (FC-PH)”.
- 2) ANSI X3.297-1996, “Fibre Channel Physical and Signaling Interface (FC-PH-2)”.
- 3) ANSI X3.303-1996, “Fibre Channel Physical and Signaling Interface (FC-PH-3)”.
- 4) ANSI X3.272-1996, “Fibre Channel Arbitrated Loop (FC-AL)”.
- 5) ANSI X3T11 Project #1162-DT, “Fibre Channel Private Loop Direct Attach (PLDA)”.
- 6) ANSI X3T11 Project #1133-D, “Fibre Channel Arbitrated Loop 2 (FC-AL-2)”.
- 7) Kembel, R., “The Fibre Channel Consultant-Arbitrated Loop”, Connectivity Solutions. ISBN 0-931836-82-4, 1996, 1997.
- Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it may be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/454,440 US20140362860A1 (en) | 1997-02-18 | 2014-08-07 | System and method for interconnecting multiple communication interfaces |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/801,471 US6185203B1 (en) | 1997-02-18 | 1997-02-18 | Fibre channel switching fabric |
US08/907,385 US6118776A (en) | 1997-02-18 | 1997-08-07 | Methods and apparatus for fiber channel interconnection of private loop devices |
US09/611,173 US6470007B1 (en) | 1997-02-18 | 2000-07-06 | Interconnect system for fiber channel arbitrated loop including private loop devices |
US10/198,867 US7012914B2 (en) | 1997-02-18 | 2002-07-18 | Methods and apparatus for fibre channel interconnection of private loop devices |
US10/289,128 US20030095549A1 (en) | 1997-08-07 | 2002-11-05 | Methods and apparatus for fibre channel interconnection of private loop devices |
US12/138,308 US8204068B2 (en) | 1997-08-07 | 2008-06-12 | Methods and apparatus for fibre channel interconnection of private loop devices |
US13/524,831 US8831022B2 (en) | 1997-02-18 | 2012-06-15 | System and method for interconnecting multiple communication interfaces |
US14/454,440 US20140362860A1 (en) | 1997-02-18 | 2014-08-07 | System and method for interconnecting multiple communication interfaces |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/524,831 Continuation US8831022B2 (en) | 1997-02-18 | 2012-06-15 | System and method for interconnecting multiple communication interfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140362860A1 true US20140362860A1 (en) | 2014-12-11 |
Family
ID=25424009
Family Applications (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/907,385 Expired - Lifetime US6118776A (en) | 1997-02-18 | 1997-08-07 | Methods and apparatus for fiber channel interconnection of private loop devices |
US09/611,173 Expired - Lifetime US6470007B1 (en) | 1997-02-18 | 2000-07-06 | Interconnect system for fiber channel arbitrated loop including private loop devices |
US10/198,867 Expired - Lifetime US7012914B2 (en) | 1997-02-18 | 2002-07-18 | Methods and apparatus for fibre channel interconnection of private loop devices |
US10/289,241 Expired - Fee Related US7881213B2 (en) | 1997-02-18 | 2002-11-05 | Methods and apparatus for fibre channel interconnection of private loop devices |
US10/289,128 Abandoned US20030095549A1 (en) | 1997-02-18 | 2002-11-05 | Methods and apparatus for fibre channel interconnection of private loop devices |
US11/375,268 Expired - Fee Related US7522619B2 (en) | 1997-02-18 | 2006-03-13 | Methods and apparatus for fibre channel interconnection of private loop devices |
US12/138,308 Expired - Fee Related US8204068B2 (en) | 1997-02-18 | 2008-06-12 | Methods and apparatus for fibre channel interconnection of private loop devices |
US12/421,961 Expired - Fee Related US8121137B2 (en) | 1997-02-18 | 2009-04-10 | Methods and apparatus for fibre channel interconnection of private loop devices |
US13/015,940 Expired - Fee Related US8780912B2 (en) | 1997-02-18 | 2011-01-28 | Systems and method for routing data |
US13/401,177 Expired - Fee Related US8902911B2 (en) | 1997-02-18 | 2012-02-21 | System and method for interconnecting ethernet and fibre channel |
US13/524,831 Expired - Fee Related US8831022B2 (en) | 1997-02-18 | 2012-06-15 | System and method for interconnecting multiple communication interfaces |
US14/292,068 Abandoned US20140270763A1 (en) | 1997-08-07 | 2014-05-30 | Systems and method for routing data |
US14/454,440 Abandoned US20140362860A1 (en) | 1997-02-18 | 2014-08-07 | System and method for interconnecting multiple communication interfaces |
US14/526,610 Expired - Fee Related US9137177B2 (en) | 1997-02-18 | 2014-10-29 | System and method for interconnecting physical channels |
Family Applications Before (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/907,385 Expired - Lifetime US6118776A (en) | 1997-02-18 | 1997-08-07 | Methods and apparatus for fiber channel interconnection of private loop devices |
US09/611,173 Expired - Lifetime US6470007B1 (en) | 1997-02-18 | 2000-07-06 | Interconnect system for fiber channel arbitrated loop including private loop devices |
US10/198,867 Expired - Lifetime US7012914B2 (en) | 1997-02-18 | 2002-07-18 | Methods and apparatus for fibre channel interconnection of private loop devices |
US10/289,241 Expired - Fee Related US7881213B2 (en) | 1997-02-18 | 2002-11-05 | Methods and apparatus for fibre channel interconnection of private loop devices |
US10/289,128 Abandoned US20030095549A1 (en) | 1997-02-18 | 2002-11-05 | Methods and apparatus for fibre channel interconnection of private loop devices |
US11/375,268 Expired - Fee Related US7522619B2 (en) | 1997-02-18 | 2006-03-13 | Methods and apparatus for fibre channel interconnection of private loop devices |
US12/138,308 Expired - Fee Related US8204068B2 (en) | 1997-02-18 | 2008-06-12 | Methods and apparatus for fibre channel interconnection of private loop devices |
US12/421,961 Expired - Fee Related US8121137B2 (en) | 1997-02-18 | 2009-04-10 | Methods and apparatus for fibre channel interconnection of private loop devices |
US13/015,940 Expired - Fee Related US8780912B2 (en) | 1997-02-18 | 2011-01-28 | Systems and method for routing data |
US13/401,177 Expired - Fee Related US8902911B2 (en) | 1997-02-18 | 2012-02-21 | System and method for interconnecting ethernet and fibre channel |
US13/524,831 Expired - Fee Related US8831022B2 (en) | 1997-02-18 | 2012-06-15 | System and method for interconnecting multiple communication interfaces |
US14/292,068 Abandoned US20140270763A1 (en) | 1997-08-07 | 2014-05-30 | Systems and method for routing data |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/526,610 Expired - Fee Related US9137177B2 (en) | 1997-02-18 | 2014-10-29 | System and method for interconnecting physical channels |
Country Status (2)
Country | Link |
---|---|
US (14) | US6118776A (en) |
WO (1) | WO1999048252A1 (en) |
Families Citing this family (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6275864B1 (en) * | 1991-08-13 | 2001-08-14 | Storage Technology Corporation | Matrix switch for a network management system |
US5978379A (en) * | 1997-01-23 | 1999-11-02 | Gadzoox Networks, Inc. | Fiber channel learning bridge, learning half bridge, and protocol |
US6185203B1 (en) | 1997-02-18 | 2001-02-06 | Vixel Corporation | Fibre channel switching fabric |
US6118776A (en) * | 1997-02-18 | 2000-09-12 | Vixel Corporation | Methods and apparatus for fiber channel interconnection of private loop devices |
JP3228182B2 (en) | 1997-05-29 | 2001-11-12 | 株式会社日立製作所 | Storage system and method for accessing storage system |
USRE42761E1 (en) | 1997-12-31 | 2011-09-27 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
US5941972A (en) * | 1997-12-31 | 1999-08-24 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
US6061360A (en) * | 1998-02-24 | 2000-05-09 | Seagate Technology, Inc. | Method and apparatus for preserving loop fairness with dynamic half-duplex |
US6256307B1 (en) * | 1998-03-27 | 2001-07-03 | Hewlett-Packard Co. | Local area network receive filter |
US6324181B1 (en) * | 1998-04-16 | 2001-11-27 | 3Com Corporation | Fibre channel switched arbitrated loop |
US6314488B1 (en) * | 1998-05-12 | 2001-11-06 | Crossroads Systems, Inc. | System for segmenting a fibre channel arbitrated loop to a plurality of logical sub-loops using segmentation router as a master to cause the segmentation of physical addresses |
DE69826640T2 (en) * | 1998-05-29 | 2005-10-06 | International Business Machines Corp. | Switching architecture with two switching networks |
US6353612B1 (en) * | 1998-06-19 | 2002-03-05 | Brocade Communications Systems, Inc. | Probing device |
US6401128B1 (en) * | 1998-08-07 | 2002-06-04 | Brocade Communiations Systems, Inc. | System and method for sending and receiving frames between a public device and a private device |
US6643693B1 (en) * | 1998-09-15 | 2003-11-04 | Crossroads Systems, Inc. | Method and system for managing I/O transmissions in a fibre channel network after a break in communication |
US6765919B1 (en) | 1998-10-23 | 2004-07-20 | Brocade Communications Systems, Inc. | Method and system for creating and implementing zones within a fibre channel system |
US6888800B1 (en) * | 1998-11-14 | 2005-05-03 | Emulex Design & Manufacturing Corporation | High performance digital loop diagnostic technology |
US6470397B1 (en) * | 1998-11-16 | 2002-10-22 | Qlogic Corporation | Systems and methods for network and I/O device drivers |
US7430171B2 (en) * | 1998-11-19 | 2008-09-30 | Broadcom Corporation | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
US6772207B1 (en) | 1999-01-28 | 2004-08-03 | Brocade Communications Systems, Inc. | System and method for managing fibre channel switching devices |
US6785742B1 (en) * | 1999-02-24 | 2004-08-31 | Brocade Communications Systems, Inc. | SCSI enclosure services |
US6341315B1 (en) | 1999-02-26 | 2002-01-22 | Crossroads Systems, Inc. | Streaming method and system for fiber channel network devices |
DE10027216B4 (en) * | 1999-05-31 | 2008-10-16 | Electronics And Telecommunications Research Institute | Apparatus and method for modulating a data message by using Orthogonal Variable Spreading Factor (OVSF) codes in a mobile communication system |
AUPQ090499A0 (en) | 1999-06-10 | 1999-07-01 | Peters, William S | Heart assist device and system |
US6581136B1 (en) * | 1999-06-30 | 2003-06-17 | Emc Corporation | Fibre channel data storage system having expansion/contraction |
US6567890B1 (en) * | 1999-06-30 | 2003-05-20 | Emc Corporation | Fibre channel port by-pass selector section for dual ported disk drives |
US6636934B1 (en) | 1999-06-30 | 2003-10-21 | Emc Corporation | Fiber channel port by-pass selector section for dual ported disk drives |
US6629216B1 (en) | 1999-06-30 | 2003-09-30 | Emc Corporation | Fibre channel by-pass |
US6697359B1 (en) * | 1999-07-02 | 2004-02-24 | Ancor Communications, Inc. | High performance switch fabric element and switch systems |
US7082126B2 (en) * | 1999-08-04 | 2006-07-25 | International Business Machines Corporation | Fiber channel address blocking |
CA2392603C (en) * | 1999-12-10 | 2010-06-22 | Qlogic Switch Products, Inc. | Fibre channel credit extender and repeater |
JP2001167040A (en) | 1999-12-14 | 2001-06-22 | Hitachi Ltd | Memory subsystem and memory control unit |
US6742034B1 (en) * | 1999-12-16 | 2004-05-25 | Dell Products L.P. | Method for storage device masking in a storage area network and storage controller and storage subsystem for using such a method |
US6560683B1 (en) | 1999-12-29 | 2003-05-06 | Emc Corporation | Fibre channel data storage system having improved rear-end I/O adapted hub |
US6571355B1 (en) | 1999-12-29 | 2003-05-27 | Emc Corporation | Fibre channel data storage system fail-over mechanism |
US6574687B1 (en) | 1999-12-29 | 2003-06-03 | Emc Corporation | Fibre channel data storage system |
US6615315B1 (en) * | 1999-12-29 | 2003-09-02 | Emc Corporation | Fibre channel data storage system having improved fro-end I/O adapted hub |
US7657727B2 (en) * | 2000-01-14 | 2010-02-02 | Hitachi, Ltd. | Security for logical unit in storage subsystem |
JP4651230B2 (en) * | 2001-07-13 | 2011-03-16 | 株式会社日立製作所 | Storage system and access control method to logical unit |
US6684209B1 (en) * | 2000-01-14 | 2004-01-27 | Hitachi, Ltd. | Security method and system for storage subsystem |
US7346075B1 (en) * | 2000-02-25 | 2008-03-18 | International Business Machines Corporation | Portable networking interface method and apparatus for distributed switching system |
JP4719957B2 (en) * | 2000-05-24 | 2011-07-06 | 株式会社日立製作所 | Storage control device, storage system, and storage system security setting method |
US7978695B2 (en) * | 2000-06-05 | 2011-07-12 | Qlogic Switch Products, Inc. | Hardware-enforced loop and NPIV hard zoning for fibre channel switch fabric |
ATE376735T1 (en) * | 2000-06-05 | 2007-11-15 | Qlogic Switch Products Inc | HARDWARE FORCED LOOP LEVEL HARD ZONING FOR FIBER CHANNEL SWITCH ARRANGEMENT |
JP2002014777A (en) * | 2000-06-29 | 2002-01-18 | Hitachi Ltd | Data moving method and protocol converting device, and switching device using the same |
US7792023B2 (en) * | 2000-06-30 | 2010-09-07 | Arris Group | Per-flow rate control for an asynchronous metro packet transport ring |
US7080133B1 (en) * | 2000-07-17 | 2006-07-18 | International Business Machines Corporation | Method and system for configuring a computer network |
US7401139B1 (en) * | 2000-09-07 | 2008-07-15 | International Business Machines Corporation | Storage area network management and configuration method and apparatus via enabling in-band communications |
US6847647B1 (en) * | 2000-09-26 | 2005-01-25 | Hewlett-Packard Development Company, L.P. | Method and apparatus for distributing traffic over multiple switched fiber channel routes |
US7103686B1 (en) * | 2000-10-12 | 2006-09-05 | Adaptec, Inc. | Method and apparatus for device discovery |
US6999460B1 (en) * | 2000-10-16 | 2006-02-14 | Storage Technology Corporation | Arbitrated loop port switching |
US7613183B1 (en) | 2000-10-31 | 2009-11-03 | Foundry Networks, Inc. | System and method for router data aggregation and delivery |
WO2002061525A2 (en) * | 2000-11-02 | 2002-08-08 | Pirus Networks | Tcp/udp acceleration |
US7002926B1 (en) | 2000-11-30 | 2006-02-21 | Western Digital Ventures, Inc. | Isochronous switched fabric network |
US6715111B2 (en) | 2000-12-27 | 2004-03-30 | Intel Corporation | Method and apparatus for detecting strobe errors |
US6999454B1 (en) * | 2001-02-09 | 2006-02-14 | Nortel Networks Limited | Information routing system and apparatus |
US6947393B2 (en) * | 2001-03-30 | 2005-09-20 | Hewlett-Packard Development Company, L.P. | Segmented fiber channel arbitrated loop and intra-loop routing system |
US6961775B2 (en) * | 2001-04-04 | 2005-11-01 | Sun Microsystems, Inc. | Method, system, and program for enabling communication between devices using different address formats |
US7366194B2 (en) | 2001-04-18 | 2008-04-29 | Brocade Communications Systems, Inc. | Fibre channel zoning by logical unit number in hardware |
US7151778B2 (en) | 2001-04-18 | 2006-12-19 | Brocade Communications Systems, Inc. | Frame filtering of fibre channel packets |
US7167472B2 (en) | 2001-04-18 | 2007-01-23 | Brocade Communications Systems, Inc. | Fibre channel zoning by device name in hardware |
US7346674B1 (en) * | 2001-06-07 | 2008-03-18 | Emc Corporation | Configurable fibre channel loop system |
US7212534B2 (en) | 2001-07-23 | 2007-05-01 | Broadcom Corporation | Flow based congestion control |
GB0119070D0 (en) * | 2001-08-06 | 2001-09-26 | Ibm | Method and apparatus for managing a loop network |
US20030033398A1 (en) * | 2001-08-10 | 2003-02-13 | Sun Microsystems, Inc. | Method, system, and program for generating and using configuration policies |
US20030033346A1 (en) * | 2001-08-10 | 2003-02-13 | Sun Microsystems, Inc. | Method, system, and program for managing multiple resources in a system |
US7472231B1 (en) | 2001-09-07 | 2008-12-30 | Netapp, Inc. | Storage area network data cache |
US7330892B2 (en) * | 2001-09-07 | 2008-02-12 | Network Appliance, Inc. | High-speed data transfer in a storage virtualization controller |
US7133907B2 (en) * | 2001-10-18 | 2006-11-07 | Sun Microsystems, Inc. | Method, system, and program for configuring system resources |
US7447197B2 (en) * | 2001-10-18 | 2008-11-04 | Qlogic, Corporation | System and method of providing network node services |
US7200144B2 (en) * | 2001-10-18 | 2007-04-03 | Qlogic, Corp. | Router and methods using network addresses for virtualization |
US6965559B2 (en) * | 2001-10-19 | 2005-11-15 | Sun Microsystems, Inc. | Method, system, and program for discovering devices communicating through a switch |
JP2003141055A (en) * | 2001-11-07 | 2003-05-16 | Hitachi Ltd | Connection setting method for computer system |
US7734808B1 (en) | 2001-12-18 | 2010-06-08 | Cisco Technology, Inc. | End-to-end congestion control in a Fibre Channel network |
US7596627B2 (en) * | 2001-12-18 | 2009-09-29 | Cisco Technology, Inc. | Methods and apparatus for network congestion control |
US20030135609A1 (en) * | 2002-01-16 | 2003-07-17 | Sun Microsystems, Inc. | Method, system, and program for determining a modification of a system resource configuration |
US7552265B2 (en) * | 2002-01-23 | 2009-06-23 | Xerox Corporation | System and method for providing context information |
US7295555B2 (en) | 2002-03-08 | 2007-11-13 | Broadcom Corporation | System and method for identifying upper layer protocol message boundaries |
US7099814B2 (en) * | 2002-03-29 | 2006-08-29 | International Business Machines Corportion | I/O velocity projection for bridge attached channel |
US7630300B2 (en) * | 2002-07-02 | 2009-12-08 | Emulex Design & Manufacturing Corporation | Methods and apparatus for trunking in fibre channel arbitrated loop systems |
US7397788B2 (en) * | 2002-07-02 | 2008-07-08 | Emulex Design & Manufacturing Corporation | Methods and apparatus for device zoning in fibre channel arbitrated loop systems |
US7664018B2 (en) * | 2002-07-02 | 2010-02-16 | Emulex Design & Manufacturing Corporation | Methods and apparatus for switching fibre channel arbitrated loop devices |
US7660316B2 (en) * | 2002-07-02 | 2010-02-09 | Emulex Design & Manufacturing Corporation | Methods and apparatus for device access fairness in fibre channel arbitrated loop systems |
US7382790B2 (en) * | 2002-07-02 | 2008-06-03 | Emulex Design & Manufacturing Corporation | Methods and apparatus for switching fibre channel arbitrated loop systems |
US7230929B2 (en) * | 2002-07-22 | 2007-06-12 | Qlogic, Corporation | Method and system for dynamically assigning domain identification in a multi-module fibre channel switch |
US7154886B2 (en) | 2002-07-22 | 2006-12-26 | Qlogic Corporation | Method and system for primary blade selection in a multi-module fiber channel switch |
US7103889B2 (en) | 2002-07-23 | 2006-09-05 | Sun Microsystems, Inc. | Method, system, and article of manufacture for agent processing |
WO2004012399A1 (en) * | 2002-07-30 | 2004-02-05 | Xyratex Technology Limited | Apparatus and method for connecting fibre channel devices via bypass buffers |
US20040024887A1 (en) * | 2002-07-31 | 2004-02-05 | Sun Microsystems, Inc. | Method, system, and program for generating information on components within a network |
US7143615B2 (en) | 2002-07-31 | 2006-12-05 | Sun Microsystems, Inc. | Method, system, and program for discovering components within a network |
US20040022200A1 (en) * | 2002-07-31 | 2004-02-05 | Sun Microsystems, Inc. | Method, system, and program for providing information on components within a network |
US7367029B2 (en) * | 2002-08-01 | 2008-04-29 | Xerox Corporation | Method and system for handling data |
US7334046B1 (en) | 2002-08-05 | 2008-02-19 | Qlogic, Corporation | System and method for optimizing frame routing in a network |
US7411959B2 (en) | 2002-08-30 | 2008-08-12 | Broadcom Corporation | System and method for handling out-of-order frames |
US7346701B2 (en) | 2002-08-30 | 2008-03-18 | Broadcom Corporation | System and method for TCP offload |
US7934021B2 (en) | 2002-08-29 | 2011-04-26 | Broadcom Corporation | System and method for network interfacing |
US8180928B2 (en) | 2002-08-30 | 2012-05-15 | Broadcom Corporation | Method and system for supporting read operations with CRC for iSCSI and iSCSI chimney |
US7313623B2 (en) | 2002-08-30 | 2007-12-25 | Broadcom Corporation | System and method for TCP/IP offload independent of bandwidth delay product |
US7397768B1 (en) | 2002-09-11 | 2008-07-08 | Qlogic, Corporation | Zone management in a multi-module fibre channel switch |
US7362717B1 (en) | 2002-10-03 | 2008-04-22 | Qlogic, Corporation | Method and system for using distributed name servers in multi-module fibre channel switches |
US20040085908A1 (en) * | 2002-10-31 | 2004-05-06 | Brocade Communications Systems, Inc. | Method and apparatus for managing locking of resources in a cluster by use of a network fabric |
US20080008202A1 (en) * | 2002-10-31 | 2008-01-10 | Terrell William C | Router with routing processors and methods for virtualization |
US7319669B1 (en) | 2002-11-22 | 2008-01-15 | Qlogic, Corporation | Method and system for controlling packet flow in networks |
US8081642B2 (en) | 2003-01-31 | 2011-12-20 | Brocade Communications Systems, Inc. | Method and apparatus for routing between fibre channel fabrics |
US7003617B2 (en) * | 2003-02-11 | 2006-02-21 | Dell Products L.P. | System and method for managing target resets |
US6754728B1 (en) * | 2003-02-12 | 2004-06-22 | Dell Products L.P. | System and method for aggregating shelf IDs in a fibre channel storage loop |
JP2004348464A (en) | 2003-05-22 | 2004-12-09 | Hitachi Ltd | Storage device and communication signal shaping circuit |
US6883300B2 (en) * | 2003-07-11 | 2005-04-26 | Allan Sanders | Assembly including a chain for suspending an article such as a light and for concealing an electrical conductor |
US7152132B2 (en) * | 2003-07-16 | 2006-12-19 | Qlogic Corporation | Method and apparatus for improving buffer utilization in communication networks |
US7463646B2 (en) | 2003-07-16 | 2008-12-09 | Qlogic Corporation | Method and system for fibre channel arbitrated loop acceleration |
US7471635B2 (en) * | 2003-07-16 | 2008-12-30 | Qlogic, Corporation | Method and apparatus for test pattern generation |
US7620059B2 (en) | 2003-07-16 | 2009-11-17 | Qlogic, Corporation | Method and apparatus for accelerating receive-modify-send frames in a fibre channel network |
US7388843B2 (en) | 2003-07-16 | 2008-06-17 | Qlogic, Corporation | Method and apparatus for testing loop pathway integrity in a fibre channel arbitrated loop |
US7525910B2 (en) | 2003-07-16 | 2009-04-28 | Qlogic, Corporation | Method and system for non-disruptive data capture in networks |
US7355966B2 (en) | 2003-07-16 | 2008-04-08 | Qlogic, Corporation | Method and system for minimizing disruption in common-access networks |
US7453802B2 (en) | 2003-07-16 | 2008-11-18 | Qlogic, Corporation | Method and apparatus for detecting and removing orphaned primitives in a fibre channel network |
US7684401B2 (en) | 2003-07-21 | 2010-03-23 | Qlogic, Corporation | Method and system for using extended fabric features with fibre channel switch elements |
US7558281B2 (en) | 2003-07-21 | 2009-07-07 | Qlogic, Corporation | Method and system for configuring fibre channel ports |
US7477655B2 (en) | 2003-07-21 | 2009-01-13 | Qlogic, Corporation | Method and system for power control of fibre channel switches |
US7447224B2 (en) | 2003-07-21 | 2008-11-04 | Qlogic, Corporation | Method and system for routing fibre channel frames |
US7646767B2 (en) * | 2003-07-21 | 2010-01-12 | Qlogic, Corporation | Method and system for programmable data dependant network routing |
US7894348B2 (en) | 2003-07-21 | 2011-02-22 | Qlogic, Corporation | Method and system for congestion control in a fibre channel switch |
US7466700B2 (en) | 2003-07-21 | 2008-12-16 | Qlogic, Corporation | LUN based hard zoning in fibre channel switches |
US7522522B2 (en) | 2003-07-21 | 2009-04-21 | Qlogic, Corporation | Method and system for reducing latency and congestion in fibre channel switches |
US7583597B2 (en) | 2003-07-21 | 2009-09-01 | Qlogic Corporation | Method and system for improving bandwidth and reducing idles in fibre channel switches |
US7630384B2 (en) | 2003-07-21 | 2009-12-08 | Qlogic, Corporation | Method and system for distributing credit in fibre channel systems |
US7580354B2 (en) * | 2003-07-21 | 2009-08-25 | Qlogic, Corporation | Multi-speed cut through operation in fibre channel switches |
US7573909B2 (en) * | 2003-07-21 | 2009-08-11 | Qlogic, Corporation | Method and system for programmable data dependant network routing |
US7430175B2 (en) | 2003-07-21 | 2008-09-30 | Qlogic, Corporation | Method and system for managing traffic in fibre channel systems |
US7792115B2 (en) | 2003-07-21 | 2010-09-07 | Qlogic, Corporation | Method and system for routing and filtering network data packets in fibre channel systems |
US7406092B2 (en) | 2003-07-21 | 2008-07-29 | Qlogic, Corporation | Programmable pseudo virtual lanes for fibre channel systems |
US7420982B2 (en) | 2003-07-21 | 2008-09-02 | Qlogic, Corporation | Method and system for keeping a fibre channel arbitrated loop open during frame gaps |
US7522529B2 (en) | 2003-07-21 | 2009-04-21 | Qlogic, Corporation | Method and system for detecting congestion and over subscription in a fibre channel network |
US7525983B2 (en) * | 2003-07-21 | 2009-04-28 | Qlogic, Corporation | Method and system for selecting virtual lanes in fibre channel switches |
US20060195565A1 (en) * | 2003-08-01 | 2006-08-31 | Antoine De-Poorter | Method and Apparatus for Routing a Service Request |
US7352701B1 (en) | 2003-09-19 | 2008-04-01 | Qlogic, Corporation | Buffer to buffer credit recovery for in-line fibre channel credit extension devices |
US20050061516A1 (en) * | 2003-09-22 | 2005-03-24 | West Evans Arthur | Prestaged intermitting process |
WO2005042082A1 (en) | 2003-10-31 | 2005-05-12 | Sunshine Heart Company Pty Ltd | Percutaneous gas-line |
AU2004286722B2 (en) | 2003-11-11 | 2011-03-03 | Sunshine Heart Company Pty Ltd | Actuator for a heart assist device |
US7103504B1 (en) | 2003-11-21 | 2006-09-05 | Qlogic Corporation | Method and system for monitoring events in storage area networks |
US7545817B1 (en) * | 2003-12-01 | 2009-06-09 | Vitesse Semiconductor Corporation | Data loop port acceleration circuit |
US7701957B1 (en) * | 2004-01-20 | 2010-04-20 | Integrated Device Technology, Inc. | Method and apparatus for switching, merging, and demerging data between data communication locations |
US7430203B2 (en) * | 2004-01-29 | 2008-09-30 | Brocade Communications Systems, Inc. | Fibre channel zoning hardware for directing a data packet to an external processing device |
US7707309B2 (en) * | 2004-01-29 | 2010-04-27 | Brocade Communication Systems, Inc. | Isolation switch for fibre channel fabrics in storage area networks |
SG135176A1 (en) | 2004-02-02 | 2007-09-28 | Ambrx Inc | Modified human four helical bundle polypeptides and their uses |
US7564789B2 (en) | 2004-02-05 | 2009-07-21 | Qlogic, Corporation | Method and system for reducing deadlock in fibre channel fabrics using virtual lanes |
US7480293B2 (en) | 2004-02-05 | 2009-01-20 | Qlogic, Corporation | Method and system for preventing deadlock in fibre channel fabrics using frame priorities |
US7930377B2 (en) | 2004-04-23 | 2011-04-19 | Qlogic, Corporation | Method and system for using boot servers in networks |
US7340167B2 (en) * | 2004-04-23 | 2008-03-04 | Qlogic, Corporation | Fibre channel transparent switch for mixed switch fabrics |
US7669190B2 (en) | 2004-05-18 | 2010-02-23 | Qlogic, Corporation | Method and system for efficiently recording processor events in host bus adapters |
US8195744B2 (en) * | 2004-07-09 | 2012-06-05 | Orb Networks, Inc. | File sharing system for use with a network |
US7404020B2 (en) | 2004-07-20 | 2008-07-22 | Qlogic, Corporation | Integrated fibre channel fabric controller |
US7936769B2 (en) | 2004-07-30 | 2011-05-03 | Brocade Communications System, Inc. | Multifabric zone device import and export |
US7466712B2 (en) * | 2004-07-30 | 2008-12-16 | Brocade Communications Systems, Inc. | System and method for providing proxy and translation domains in a fibre channel router |
US7796627B2 (en) * | 2004-08-12 | 2010-09-14 | Broadcom Corporation | Apparatus and system for coupling and decoupling initiator devices to a network using an arbitrated loop without disrupting the network |
US8295299B2 (en) | 2004-10-01 | 2012-10-23 | Qlogic, Corporation | High speed fibre channel switch element |
US7380030B2 (en) | 2004-10-01 | 2008-05-27 | Qlogic, Corp. | Method and system for using an in-line credit extender with a host bus adapter |
US7593997B2 (en) | 2004-10-01 | 2009-09-22 | Qlogic, Corporation | Method and system for LUN remapping in fibre channel networks |
US7411958B2 (en) | 2004-10-01 | 2008-08-12 | Qlogic, Corporation | Method and system for transferring data directly between storage devices in a storage area network |
US7676611B2 (en) | 2004-10-01 | 2010-03-09 | Qlogic, Corporation | Method and system for processing out of orders frames |
US7673071B2 (en) * | 2004-11-10 | 2010-03-02 | International Business Machines Corporation | Apparatus, system, and method for generating a name for a system of devices |
US7519693B2 (en) * | 2004-11-18 | 2009-04-14 | International Business Machines Corporation | Apparatus, system, and method for integrating an enclosure |
US7327744B2 (en) * | 2005-01-12 | 2008-02-05 | Cisco Technology, Inc. | Fibre channel forwarding information base |
US7519058B2 (en) * | 2005-01-18 | 2009-04-14 | Qlogic, Corporation | Address translation in fibre channel switches |
US7392437B2 (en) * | 2005-01-20 | 2008-06-24 | Qlogic, Corporation | Method and system for testing host bus adapters |
US7839865B2 (en) * | 2005-01-26 | 2010-11-23 | Emulex Design & Manufacturing Corporation | Dynamically controlling fair access to a system packet interface attached switch enclosure |
US20060182110A1 (en) * | 2005-02-17 | 2006-08-17 | Bomhoff Matthew D | Apparatus, system, and method for fibre channel device addressing |
US7281077B2 (en) * | 2005-04-06 | 2007-10-09 | Qlogic, Corporation | Elastic buffer module for PCI express devices |
US7577134B2 (en) * | 2005-08-19 | 2009-08-18 | Brocade Communications Systems, Inc. | Port expander for fibre channel fabrics in storage area networks |
US7760717B2 (en) * | 2005-10-25 | 2010-07-20 | Brocade Communications Systems, Inc. | Interface switch for use with fibre channel fabrics in storage area networks |
JP4892275B2 (en) * | 2006-05-16 | 2012-03-07 | 株式会社日立製作所 | Storage system and configuration change method thereof |
US7613816B1 (en) | 2006-11-15 | 2009-11-03 | Qlogic, Corporation | Method and system for routing network information |
JP4465417B2 (en) * | 2006-12-14 | 2010-05-19 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Customer segment estimation device |
US7860103B1 (en) | 2006-12-18 | 2010-12-28 | Pmc-Sierra Us, Inc. | Method and apparatus for extended addressing in a fiber channel arbitrated loop |
US7653767B2 (en) | 2007-01-23 | 2010-01-26 | International Business Machines Corporation | Hierarchical enclosure management services |
US8655999B2 (en) * | 2007-07-19 | 2014-02-18 | International Business Machines Corporation | Automatically adjusting scheduled inventory of switched fabrics |
US7969989B2 (en) * | 2007-08-07 | 2011-06-28 | Emulex Design & Manufacturing Corporation | High performance ethernet networking utilizing existing fibre channel arbitrated loop HBA technology |
US7774465B1 (en) | 2007-11-28 | 2010-08-10 | Netapp, Inc. | High-speed data transfer in a storage virtualization controller |
WO2010041294A1 (en) * | 2008-10-07 | 2010-04-15 | Hitachi, Ltd. | Storage system detecting physical storage device suffering failure, and method of performing processing for additional storage device provision |
US8095820B2 (en) * | 2009-06-02 | 2012-01-10 | Hitachi, Ltd. | Storage system and control methods for the same |
US8817804B2 (en) * | 2009-10-30 | 2014-08-26 | Brocade Communications Systems, Inc. | Selective network merging |
US9632930B2 (en) * | 2010-03-03 | 2017-04-25 | Cisco Technology, Inc. | Sub-area FCID allocation scheme |
US8635375B2 (en) | 2010-04-14 | 2014-01-21 | Brocade Communications Systems, Inc. | Remote F—ports |
US9606863B2 (en) * | 2010-10-25 | 2017-03-28 | SMART High Reliability Solutions, LLC | Fabric-based solid state drive architecture |
US8364852B1 (en) | 2010-12-22 | 2013-01-29 | Juniper Networks, Inc. | Methods and apparatus to generate and update fibre channel firewall filter rules using address prefixes |
US8958429B2 (en) | 2010-12-22 | 2015-02-17 | Juniper Networks, Inc. | Methods and apparatus for redundancy associated with a fibre channel over ethernet network |
US9094460B2 (en) * | 2012-09-06 | 2015-07-28 | Unisys Corporation | Socket tables for fast data packet transfer operations |
US9270786B1 (en) | 2012-12-21 | 2016-02-23 | Emc Corporation | System and method for proxying TCP connections over a SCSI-based transport |
US9514151B1 (en) | 2012-12-21 | 2016-12-06 | Emc Corporation | System and method for simultaneous shared access to data buffers by two threads, in a connection-oriented data proxy service |
US9237057B1 (en) | 2012-12-21 | 2016-01-12 | Emc Corporation | Reassignment of a virtual connection from a busiest virtual connection or locality domain to a least busy virtual connection or locality domain |
US9563423B1 (en) * | 2012-12-21 | 2017-02-07 | EMC IP Holding Company LLC | System and method for simultaneous shared access to data buffers by two threads, in a connection-oriented data proxy service |
US9473591B1 (en) | 2012-12-21 | 2016-10-18 | Emc Corporation | Reliable server transport over fibre channel using a block device access model |
US9407601B1 (en) | 2012-12-21 | 2016-08-02 | Emc Corporation | Reliable client transport over fibre channel using a block device access model |
US9531765B1 (en) | 2012-12-21 | 2016-12-27 | Emc Corporation | System and method for maximizing system data cache efficiency in a connection-oriented data proxy service |
US9647905B1 (en) | 2012-12-21 | 2017-05-09 | EMC IP Holding Company LLC | System and method for optimized management of statistics counters, supporting lock-free updates, and queries for any to-the-present time interval |
US9473590B1 (en) | 2012-12-21 | 2016-10-18 | Emc Corporation | Client connection establishment over fibre channel using a block device access model |
US9591099B1 (en) | 2012-12-21 | 2017-03-07 | EMC IP Holding Company LLC | Server connection establishment over fibre channel using a block device access model |
US9232000B1 (en) | 2012-12-21 | 2016-01-05 | Emc Corporation | Method and system for balancing load across target endpoints on a server and initiator endpoints accessing the server |
US9712427B1 (en) | 2012-12-21 | 2017-07-18 | EMC IP Holding Company LLC | Dynamic server-driven path management for a connection-oriented transport using the SCSI block device model |
US9509797B1 (en) | 2012-12-21 | 2016-11-29 | Emc Corporation | Client communication over fibre channel using a block device access model |
US9473589B1 (en) | 2012-12-21 | 2016-10-18 | Emc Corporation | Server communication over fibre channel using a block device access model |
US10275273B2 (en) * | 2016-10-28 | 2019-04-30 | Nicira, Inc. | Efficient computation of address groupings across multiple network interfaces |
JP7226166B2 (en) * | 2019-07-22 | 2023-02-21 | 株式会社デンソー | Repeater and in-vehicle communication network |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802052A (en) * | 1996-06-26 | 1998-09-01 | Level One Communication, Inc. | Scalable high performance switch element for a shared memory packet or ATM cell switch fabric |
US6118776A (en) * | 1997-02-18 | 2000-09-12 | Vixel Corporation | Methods and apparatus for fiber channel interconnection of private loop devices |
US6185203B1 (en) * | 1997-02-18 | 2001-02-06 | Vixel Corporation | Fibre channel switching fabric |
US7382790B2 (en) * | 2002-07-02 | 2008-06-03 | Emulex Design & Manufacturing Corporation | Methods and apparatus for switching fibre channel arbitrated loop systems |
US20100165874A1 (en) * | 2008-12-30 | 2010-07-01 | International Business Machines Corporation | Differentiating Blade Destination and Traffic Types in a Multi-Root PCIe Environment |
US7769892B2 (en) * | 2007-08-27 | 2010-08-03 | International Business Machines Corporation | System and method for handling indirect routing of information between supernodes of a multi-tiered full-graph interconnect architecture |
US20120177039A1 (en) * | 2011-01-07 | 2012-07-12 | Berman Stuart B | Methods, systems and apparatus for converged network adapters |
Family Cites Families (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4716575A (en) | 1982-03-25 | 1987-12-29 | Apollo Computer, Inc. | Adaptively synchronized ring network for data communication |
EP0276349B1 (en) * | 1987-01-28 | 1992-03-25 | International Business Machines Corporation | Apparatus for switching information between channels for synchronous information traffic and asynchronous data packets |
US4821034A (en) * | 1987-02-06 | 1989-04-11 | Ancor Communications, Inc. | Digital exchange switch element and network |
US4809269A (en) | 1987-04-02 | 1989-02-28 | Advanced Micro Devices, Inc. | Dual-port timing controller |
US5007051A (en) * | 1987-09-30 | 1991-04-09 | Hewlett-Packard Company | Link layer protocol and apparatus for data communication |
US4908823A (en) * | 1988-01-29 | 1990-03-13 | Hewlett-Packard Company | Hybrid communications link adapter incorporating input/output and data communications technology |
US4958341A (en) * | 1988-03-31 | 1990-09-18 | At&T Bell Laboratories | Integrated packetized voice and data switching system |
US5042032A (en) | 1989-06-23 | 1991-08-20 | At&T Bell Laboratories | Packet route scheduling in a packet cross connect switch system for periodic and statistical packets |
CA1331215C (en) * | 1989-09-29 | 1994-08-02 | Andrew Lazlo Aczel | Resource-decoupled architecture for a telecommunications switching system |
EP0446493B1 (en) * | 1990-03-14 | 1994-11-30 | Alcatel N.V. | Routing logic means for a communication switching element |
US6784572B1 (en) * | 1991-03-17 | 2004-08-31 | Anorad Corporation | Path arrangement for a multi-track linear motor system and method to control same |
US5262625A (en) | 1991-11-15 | 1993-11-16 | Ncr Corporation | Multiple bar code decoding system and method |
JPH05275774A (en) * | 1992-03-30 | 1993-10-22 | Nec Corp | Ion laser tube |
US5742760A (en) * | 1992-05-12 | 1998-04-21 | Compaq Computer Corporation | Network packet switch using shared memory for repeating and bridging packets at media rate |
US5432907A (en) * | 1992-05-12 | 1995-07-11 | Network Resources Corporation | Network hub with integrated bridge |
US5802290A (en) * | 1992-07-29 | 1998-09-01 | Virtual Computer Corporation | Computer network of distributed virtual computers which are EAC reconfigurable in response to instruction to be executed |
US5319644A (en) * | 1992-08-21 | 1994-06-07 | Synoptics Communications, Inc. | Method and apparatus for identifying port/station relationships in a network |
US5341476A (en) | 1992-12-23 | 1994-08-23 | Abbott Laboratories | Dynamic data distribution network with sink and source files for particular data types |
US5617413A (en) * | 1993-08-18 | 1997-04-01 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Scalable wrap-around shuffle exchange network with deflection routing |
US5526503A (en) * | 1993-10-06 | 1996-06-11 | Ast Research, Inc. | Virtual addressing buffer circuit |
US5412653A (en) * | 1993-10-15 | 1995-05-02 | International Business Machines Corporation | Dynamic switch cascading system |
USH1641H (en) | 1993-11-30 | 1997-04-01 | Gte Mobile Communications Service Corporation | Connection of mobile devices to heterogenous networks |
US5655140A (en) * | 1994-07-22 | 1997-08-05 | Network Peripherals | Apparatus for translating frames of data transferred between heterogeneous local area networks |
US5659718A (en) * | 1994-08-19 | 1997-08-19 | Xlnt Designs, Inc. | Synchronous bus and bus interface device |
US5619500A (en) | 1994-09-01 | 1997-04-08 | Digital Link Corporation | ATM network interface |
US5535035A (en) * | 1994-09-15 | 1996-07-09 | International Business Machines Corporation | Optical fiber ring communications system and communications method |
US5638518A (en) * | 1994-10-24 | 1997-06-10 | Lsi Logic Corporation | Node loop core for implementing transmission protocol in fibre channel |
US5598541A (en) * | 1994-10-24 | 1997-01-28 | Lsi Logic Corporation | Node loop port communication interface super core for fibre channel |
US5603064A (en) | 1994-10-27 | 1997-02-11 | Hewlett-Packard Company | Channel module for a fiber optic switch with bit sliced memory architecture for data frame storage |
US5592472A (en) | 1994-10-27 | 1997-01-07 | Hewlett-Packard Company | High performance path allocation system and method for a fiber optic switch for a fiber optic network |
US5502719A (en) * | 1994-10-27 | 1996-03-26 | Hewlett-Packard Company | Path allocation system and method having double link list queues implemented with a digital signal processor (DSP) for a high performance fiber optic switch |
US5519695A (en) * | 1994-10-27 | 1996-05-21 | Hewlett-Packard Company | Switch element for fiber channel networks |
US5528584A (en) * | 1994-10-27 | 1996-06-18 | Hewlett-Packard Company | High performance path allocation system and method with fairness insurance mechanism for a fiber optic switch |
US5490007A (en) * | 1994-10-31 | 1996-02-06 | Hewlett-Packard Company | Bypass switching and messaging mechanism for providing intermix data transfer for a fiber optic switch |
US5805924A (en) | 1994-11-08 | 1998-09-08 | Stoevhase; Bent | Method and apparatus for configuring fabrics within a fibre channel system |
US5475679A (en) * | 1994-12-08 | 1995-12-12 | Northern Telecom Limited | Large capacity ATM switch |
US5619497A (en) * | 1994-12-22 | 1997-04-08 | Emc Corporation | Method and apparatus for reordering frames |
US5548590A (en) | 1995-01-30 | 1996-08-20 | Hewlett-Packard Company | High performance frame time monitoring system and method for a fiber optic switch for a fiber optic network |
JPH08307420A (en) | 1995-03-03 | 1996-11-22 | Fujitsu Ltd | Congestion control system for cell exchange |
US5642337A (en) * | 1995-03-14 | 1997-06-24 | Sony Corporation | Network with optical mass storage devices |
US5570360A (en) | 1995-03-20 | 1996-10-29 | Stratacom, Inc. | Method and apparatus for implementing communication service contract using cell arrival information |
IT1274368B (en) * | 1995-03-28 | 1997-07-17 | Pirelli Cavi Spa | OPTICAL TELECOMMUNICATION METHOD WITH SERVICE CHANNEL TRANSMISSION AND RECEPTION |
US6289408B1 (en) * | 1995-05-08 | 2001-09-11 | Apple Computer, Inc. | Bus interface with address mask register for transferring selected data from one bus to another |
JP3288712B2 (en) | 1995-05-26 | 2002-06-04 | エミュレックス コーポレーション | Link cache for context data search |
US5781537A (en) * | 1995-07-07 | 1998-07-14 | International Business Machines Corporation | Setting up, taking down and maintaining connections in a communications network |
US5768623A (en) * | 1995-09-19 | 1998-06-16 | International Business Machines Corporation | System and method for sharing multiple storage arrays by dedicating adapters as primary controller and secondary controller for arrays reside in different host computers |
US5768551A (en) | 1995-09-29 | 1998-06-16 | Emc Corporation | Inter connected loop channel for reducing electrical signal jitter |
US5828475A (en) | 1995-10-25 | 1998-10-27 | Mcdata Corporation | Bypass switching and messaging mechanism for providing intermix data transfer for a fiber optic switch using a bypass bus and buffer |
US5592160A (en) | 1995-10-26 | 1997-01-07 | Hewlett-Packard Company | Method and apparatus for transmission code decoding and encoding |
US5872822A (en) | 1995-10-26 | 1999-02-16 | Mcdata Corporation | Method and apparatus for memory sequencing |
US5610745A (en) | 1995-10-26 | 1997-03-11 | Hewlett-Packard Co. | Method and apparatus for tracking buffer availability |
US5655153A (en) * | 1995-11-07 | 1997-08-05 | Emc Corporation | Buffer system |
US5793954A (en) * | 1995-12-20 | 1998-08-11 | Nb Networks | System and method for general purpose network analysis |
KR0152228B1 (en) * | 1995-12-23 | 1998-11-02 | 양승택 | Method for transmitting and receiving data by using dispersed routine control in data switching system |
US5768530A (en) * | 1995-12-28 | 1998-06-16 | Emc Corporation | High speed integrated circuit interface for fibre channel communications |
US5898828A (en) * | 1995-12-29 | 1999-04-27 | Emc Corporation | Reduction of power used by transceivers in a data transmission loop |
US5799209A (en) * | 1995-12-29 | 1998-08-25 | Chatter; Mukesh | Multi-port internally cached DRAM system utilizing independent serial interfaces and buffers arbitratively connected under a dynamic configuration |
JPH09275418A (en) * | 1996-04-05 | 1997-10-21 | Hitachi Ltd | Network connector |
US7218017B1 (en) * | 1996-06-24 | 2007-05-15 | Anorad Corporation | System and method to control a rotary-linear actuator |
US6038217A (en) | 1996-06-27 | 2000-03-14 | Xerox Corporation | Rate shaping in per-flow output queued routing mechanisms for available bit rate (ABR) service in networks having segmented ABR control loops |
US5937174A (en) * | 1996-06-28 | 1999-08-10 | Lsi Logic Corporation | Scalable hierarchial memory structure for high data bandwidth raid applications |
US5751715A (en) * | 1996-08-08 | 1998-05-12 | Gadzoox Microsystems, Inc. | Accelerator fiber channel hub and protocol |
JPH1055674A (en) | 1996-08-09 | 1998-02-24 | Nec Corp | Semiconductor memory |
US5894481A (en) * | 1996-09-11 | 1999-04-13 | Mcdata Corporation | Fiber channel switch employing distributed queuing |
US6031842A (en) | 1996-09-11 | 2000-02-29 | Mcdata Corporation | Low latency shared memory switch architecture |
US5812754A (en) * | 1996-09-18 | 1998-09-22 | Silicon Graphics, Inc. | Raid system with fibre channel arbitrated loop |
US6552832B1 (en) * | 1996-10-07 | 2003-04-22 | Telesector Resources Group, Inc. | Telecommunications system including transmultiplexer installed between digital switch and optical signal transmission fiber |
US5892913A (en) * | 1996-12-02 | 1999-04-06 | International Business Machines Corporation | System and method for datastreams employing shared loop architecture multimedia subsystem clusters |
US6055228A (en) | 1996-12-23 | 2000-04-25 | Lsi Logic Corporation | Methods and apparatus for dynamic topology configuration in a daisy-chained communication environment |
US5991891A (en) * | 1996-12-23 | 1999-11-23 | Lsi Logic Corporation | Method and apparatus for providing loop coherency |
US6073218A (en) * | 1996-12-23 | 2000-06-06 | Lsi Logic Corp. | Methods and apparatus for coordinating shared multiple raid controller access to common storage devices |
US6414953B1 (en) * | 1996-12-23 | 2002-07-02 | Tech Laboratories Incorporated | Multi-protocol cross connect switch |
US6226296B1 (en) * | 1997-01-16 | 2001-05-01 | Physical Optics Corporation | Metropolitan area network switching system and method of operation thereof |
US5978379A (en) * | 1997-01-23 | 1999-11-02 | Gadzoox Networks, Inc. | Fiber channel learning bridge, learning half bridge, and protocol |
US6138199A (en) * | 1997-01-23 | 2000-10-24 | Sun Microsystems, Inc. | System for data transfer in a ring topology comprising selectors to selectively bypass external devices or a downstream device based upon presence indications |
JP3156623B2 (en) | 1997-01-31 | 2001-04-16 | 日本電気株式会社 | Fiber channel fabric |
CA2279343C (en) * | 1997-02-03 | 2003-10-07 | Barry J. Ethridge | Distributed ethernet hub |
US6014383A (en) | 1997-02-10 | 2000-01-11 | Compaq Computer Corporation | System and method for controlling multiple initiators in a fibre channel environment |
US6151316A (en) * | 1997-02-14 | 2000-11-21 | Advanced Micro Devices, Inc. | Apparatus and method for synthesizing management packets for transmission between a network switch and a host controller |
JPH10253505A (en) * | 1997-03-10 | 1998-09-25 | Honda Motor Co Ltd | Vehicle diagnosing method and device therefor |
US6160813A (en) * | 1997-03-21 | 2000-12-12 | Brocade Communications Systems, Inc. | Fibre channel switching system and method |
US5956723A (en) | 1997-03-21 | 1999-09-21 | Lsi Logic Corporation | Maintaining identifier information in a memory using unique identifiers as a linked list |
US6356944B1 (en) * | 1997-03-31 | 2002-03-12 | Compaq Information Technologies Group, L.P. | System and method for increasing write performance in a fibre channel environment |
US5779209A (en) | 1997-06-02 | 1998-07-14 | Robert G. Johnston | Positioning unit |
DE19723468A1 (en) | 1997-06-04 | 1998-12-10 | Hoechst Diafoil Gmbh | Biaxially oriented polyester film with a high oxygen barrier, process for its production and its use |
US6304910B1 (en) | 1997-09-24 | 2001-10-16 | Emulex Corporation | Communication processor having buffer list modifier control bits |
US6005849A (en) * | 1997-09-24 | 1999-12-21 | Emulex Corporation | Full-duplex communication processor which can be used for fibre channel frames |
US6192048B1 (en) | 1997-10-02 | 2001-02-20 | Mcdata Corporation | Method and apparatus for implementing hunt group support for a crosspoint controller |
US6057863A (en) * | 1997-10-31 | 2000-05-02 | Compaq Computer Corporation | Dual purpose apparatus, method and system for accelerated graphics port and fibre channel arbitrated loop interfaces |
US5941972A (en) * | 1997-12-31 | 1999-08-24 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
US6041381A (en) * | 1998-02-05 | 2000-03-21 | Crossroads Systems, Inc. | Fibre channel to SCSI addressing method and system |
US6314100B1 (en) | 1998-03-26 | 2001-11-06 | Emulex Corporation | Method of validation and host buffer allocation for unmapped fibre channel frames |
US6324181B1 (en) * | 1998-04-16 | 2001-11-27 | 3Com Corporation | Fibre channel switched arbitrated loop |
US6426947B1 (en) | 1998-10-21 | 2002-07-30 | Kim K. Banker | Apparatus and method for unilateral topology discovery in network management |
US6314488B1 (en) * | 1998-05-12 | 2001-11-06 | Crossroads Systems, Inc. | System for segmenting a fibre channel arbitrated loop to a plurality of logical sub-loops using segmentation router as a master to cause the segmentation of physical addresses |
US6470026B1 (en) * | 1998-10-30 | 2002-10-22 | Agilent Technologies, Inc. | Fibre channel loop map initialization protocol implemented in hardware |
US7430171B2 (en) | 1998-11-19 | 2008-09-30 | Broadcom Corporation | Fibre channel arbitrated loop bufferless switch circuitry to increase bandwidth without significant increase in cost |
JP2000261438A (en) | 1999-03-08 | 2000-09-22 | Sony Corp | Frame data exchange and its method |
US6400730B1 (en) | 1999-03-10 | 2002-06-04 | Nishan Systems, Inc. | Method and apparatus for transferring data between IP network devices and SCSI and fibre channel devices over an IP network |
US6167463A (en) * | 1999-04-08 | 2000-12-26 | Hewlett-Packard Company | Firm addressing for devices on a fibre channel arbitrated loop |
US6987770B1 (en) * | 2000-08-04 | 2006-01-17 | Intellon Corporation | Frame forwarding in an adaptive network |
US6975590B2 (en) * | 2000-09-07 | 2005-12-13 | Eurologic Systems Limited | Fiber-channel arbitrated-loop split loop operation |
US6963536B1 (en) * | 2001-03-23 | 2005-11-08 | Advanced Micro Devices, Inc. | Admission control in a network device |
US6961775B2 (en) * | 2001-04-04 | 2005-11-01 | Sun Microsystems, Inc. | Method, system, and program for enabling communication between devices using different address formats |
JP3857572B2 (en) * | 2001-11-20 | 2006-12-13 | 沖電気工業株式会社 | IP telephone apparatus and IP telephone apparatus search method |
US20030229721A1 (en) * | 2002-06-05 | 2003-12-11 | Bonola Thomas J. | Address virtualization of a multi-partitionable machine |
US7664018B2 (en) * | 2002-07-02 | 2010-02-16 | Emulex Design & Manufacturing Corporation | Methods and apparatus for switching fibre channel arbitrated loop devices |
US7145877B2 (en) * | 2003-03-31 | 2006-12-05 | Cisco Technology, Inc. | Apparatus and method for distance extension of fibre-channel over transport |
US7518990B2 (en) * | 2003-12-26 | 2009-04-14 | Alcatel Lucent Usa Inc. | Route determination method and apparatus for virtually-concatenated data traffic |
US7340167B2 (en) * | 2004-04-23 | 2008-03-04 | Qlogic, Corporation | Fibre channel transparent switch for mixed switch fabrics |
WO2007040450A1 (en) * | 2005-10-04 | 2007-04-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Redirection of ip-connected radio base station to correct control node |
US7484021B2 (en) * | 2005-10-27 | 2009-01-27 | Cisco Technology, Inc. | Technique for implementing virtual fabric membership assignments for devices in a storage area network |
US7770208B2 (en) * | 2006-03-28 | 2010-08-03 | International Business Machines Corporation | Computer-implemented method, apparatus, and computer program product for securing node port access in a switched-fabric storage area network |
US8244257B2 (en) * | 2007-02-20 | 2012-08-14 | Telefonaktiebolaget L M Ericsson (Publ) | Handover from a Macro cell back to a Femto cell |
US20090086742A1 (en) * | 2007-08-24 | 2009-04-02 | Rajat Ghai | Providing virtual services with an enterprise access gateway |
JP5782999B2 (en) * | 2011-11-10 | 2015-09-24 | 富士通株式会社 | Route determining device, node device, and route determining method |
JP5831318B2 (en) * | 2012-03-19 | 2015-12-09 | 富士通株式会社 | Network device, network control method, and program |
-
1997
- 1997-08-07 US US08/907,385 patent/US6118776A/en not_active Expired - Lifetime
-
1998
- 1998-07-24 WO PCT/US1998/015554 patent/WO1999048252A1/en active Application Filing
-
2000
- 2000-07-06 US US09/611,173 patent/US6470007B1/en not_active Expired - Lifetime
-
2002
- 2002-07-18 US US10/198,867 patent/US7012914B2/en not_active Expired - Lifetime
- 2002-11-05 US US10/289,241 patent/US7881213B2/en not_active Expired - Fee Related
- 2002-11-05 US US10/289,128 patent/US20030095549A1/en not_active Abandoned
-
2006
- 2006-03-13 US US11/375,268 patent/US7522619B2/en not_active Expired - Fee Related
-
2008
- 2008-06-12 US US12/138,308 patent/US8204068B2/en not_active Expired - Fee Related
-
2009
- 2009-04-10 US US12/421,961 patent/US8121137B2/en not_active Expired - Fee Related
-
2011
- 2011-01-28 US US13/015,940 patent/US8780912B2/en not_active Expired - Fee Related
-
2012
- 2012-02-21 US US13/401,177 patent/US8902911B2/en not_active Expired - Fee Related
- 2012-06-15 US US13/524,831 patent/US8831022B2/en not_active Expired - Fee Related
-
2014
- 2014-05-30 US US14/292,068 patent/US20140270763A1/en not_active Abandoned
- 2014-08-07 US US14/454,440 patent/US20140362860A1/en not_active Abandoned
- 2014-10-29 US US14/526,610 patent/US9137177B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802052A (en) * | 1996-06-26 | 1998-09-01 | Level One Communication, Inc. | Scalable high performance switch element for a shared memory packet or ATM cell switch fabric |
US6118776A (en) * | 1997-02-18 | 2000-09-12 | Vixel Corporation | Methods and apparatus for fiber channel interconnection of private loop devices |
US6185203B1 (en) * | 1997-02-18 | 2001-02-06 | Vixel Corporation | Fibre channel switching fabric |
US7382790B2 (en) * | 2002-07-02 | 2008-06-03 | Emulex Design & Manufacturing Corporation | Methods and apparatus for switching fibre channel arbitrated loop systems |
US7769892B2 (en) * | 2007-08-27 | 2010-08-03 | International Business Machines Corporation | System and method for handling indirect routing of information between supernodes of a multi-tiered full-graph interconnect architecture |
US20100165874A1 (en) * | 2008-12-30 | 2010-07-01 | International Business Machines Corporation | Differentiating Blade Destination and Traffic Types in a Multi-Root PCIe Environment |
US20120177039A1 (en) * | 2011-01-07 | 2012-07-12 | Berman Stuart B | Methods, systems and apparatus for converged network adapters |
Also Published As
Publication number | Publication date |
---|---|
US20140270763A1 (en) | 2014-09-18 |
US20130016969A1 (en) | 2013-01-17 |
US9137177B2 (en) | 2015-09-15 |
US6470007B1 (en) | 2002-10-22 |
US20030095549A1 (en) | 2003-05-22 |
US8204068B2 (en) | 2012-06-19 |
US20080240137A1 (en) | 2008-10-02 |
US20150055950A1 (en) | 2015-02-26 |
US20130016733A1 (en) | 2013-01-17 |
US8780912B2 (en) | 2014-07-15 |
US20030086377A1 (en) | 2003-05-08 |
US8831022B2 (en) | 2014-09-09 |
WO1999048252A1 (en) | 1999-09-23 |
US7012914B2 (en) | 2006-03-14 |
US8902911B2 (en) | 2014-12-02 |
US7881213B2 (en) | 2011-02-01 |
US8121137B2 (en) | 2012-02-21 |
US20020196773A1 (en) | 2002-12-26 |
US6118776A (en) | 2000-09-12 |
US20060176889A1 (en) | 2006-08-10 |
US20110243137A1 (en) | 2011-10-06 |
US20090225772A1 (en) | 2009-09-10 |
US7522619B2 (en) | 2009-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8831022B2 (en) | System and method for interconnecting multiple communication interfaces | |
US9077653B2 (en) | Interconnect system and method for ethernet networks | |
US8018936B2 (en) | Inter-fabric routing | |
US7684401B2 (en) | Method and system for using extended fabric features with fibre channel switch elements | |
US7548560B1 (en) | Method and system for checking frame-length in fibre channel frames | |
Rickard | Fibre channel as a network backbone | |
Primmer | An introduction to fibre channel | |
Munson | Introduction To Fibre Channel Connectivity. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMULEX CORPORATION;REEL/FRAME:036942/0213 Effective date: 20150831 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |