US20140192767A1 - System and Method for Small Traffic Transmissions - Google Patents
System and Method for Small Traffic Transmissions Download PDFInfo
- Publication number
- US20140192767A1 US20140192767A1 US13/911,716 US201313911716A US2014192767A1 US 20140192767 A1 US20140192767 A1 US 20140192767A1 US 201313911716 A US201313911716 A US 201313911716A US 2014192767 A1 US2014192767 A1 US 2014192767A1
- Authority
- US
- United States
- Prior art keywords
- mobile device
- grant
- resources
- packet
- transmission code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 121
- 238000000034 method Methods 0.000 title claims description 81
- 230000011664 signaling Effects 0.000 claims abstract description 26
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 230000015654 memory Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 6
- 230000000153 supplemental effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 1
Images
Classifications
-
- H04W72/0413—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H04W72/042—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0866—Non-scheduled access, e.g. ALOHA using a dedicated channel for access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0466—Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
Definitions
- the present invention relates to a system and method for wireless communications, and, in particular embodiments, to a system and method for small traffic transmissions.
- both downlink (DL) and uplink (UL) transmissions utilize scheduling-based access, meaning that network resources (e.g., time-frequency resources) are allocated for each transmission.
- the scheduling-based access typically comprises either dynamic scheduling or semi-static scheduling.
- dynamic scheduling the user equipment (UE) and base station (BS) will communicate grant based signaling for each transmission time interval (TTI).
- semi-static scheduling the UE and BS will communicate grant based signaling for blocks of TTIs.
- Dynamic scheduling may allow the UE and BS to achieve fast link adaptation, while semi-static signaling may produce less signaling overhead.
- another method for communicating data includes identifying a search space for a group of mobile devices.
- the search space includes resources of a downlink channel.
- the method further includes determining a set of candidate transmission codes associated with the search space, and receiving a packet communicated in the search space using blind detection.
- the search space comprises resources of a downlink channel, and the packet is communicated in accordance with a first transmission code in the set of candidate transmission codes.
- An apparatus for performing this method is also provided.
- yet another method for communicating data includes identifying an access space for a group of mobile devices.
- the access space comprises resources of an uplink channel.
- the method further comprises determining a first transmission code in a set of transmission codes for a first mobile device in the group of mobile devices, and transmitting a packet over the resources of the uplink channel using the first transmission code without obtaining an uplink grant.
- An apparatus for performing this method is also provided.
- yet another method for communicating data includes identifying an access space for a group of mobile devices.
- the access space comprises resources of an uplink channel.
- the method further comprises identifying a set of transmission codes associated with access space, and receiving packets communicated over the resources of the uplink channel using blind detection.
- An apparatus for performing this method is also provided.
- a method for advertising grant-free communication mode capabilities includes communicating capability information between a mobile device and a base station.
- the capability information indicates a grant-free communication mode capability.
- the method further comprises communicating grant-free signaling parameters between the mobile device and the base station.
- the grant-free signaling parameters define a search space or an access space for the grant-free communication mode.
- An apparatus for performing this method is also provided.
- FIG. 1 illustrates a diagram of a wireless network for communicating data
- FIG. 2 illustrates a diagram of another wireless network for communicating data
- FIG. 3 illustrates a diagram of an embodiment downlink data channel for carrying grant free small packet transmissions
- FIG. 4 illustrates a flowchart of an embodiment method for communicating grant free small packet transmissions in a downlink data channel
- FIG. 5 illustrates a flowchart of an embodiment method for receiving grant free small packet transmissions in a downlink data channel
- FIG. 6 illustrates a diagram of an embodiment downlink data channel for carrying grant free small packet transmissions
- FIG. 8 illustrates a flowchart of an embodiment method for receiving grant free small packet transmissions over an uplink data channel
- FIG. 10 illustrates a block diagram of an embodiment communications device.
- the grant based signaling is communicated via a physical uplink control channel (PUCCH) and/or physical downlink control channel (PDCCH). More specifically, downlink transmission parameters, (e.g., modulation and coding scheme (MCS), channel resource allocation, multiple-input multiple output (MIMO) transmission mode, etc.) and uplink grant assignments are traditionally communicated through the PDCCH, while uplink grant requests are signaled through the PUCCH.
- MCS modulation and coding scheme
- MIMO multiple-input multiple output
- Many future applications will rely on small packet transmissions, including for example, real time gaming, instant messaging, machine-to-machine (M2M) communications, status update messaging, etc. Communicating small packet transmissions using conventional scheduling-based transmission techniques may be relatively inefficient and/or undesirable.
- dynamic scheduling may generate significant amounts of overhead compared to the small packet communication's payload size, while semi-persistent scheduling may be unable to meet the QoS requirements for delay sensitive small traffic transmission. Accordingly, an alternative communication scheme for small packet transmissions is desired.
- aspects of this disclosure provide a grant-free transmission mode for small traffic transmissions in downlink and uplink data channels of a wireless network.
- a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs.
- the UEs receive the downlink packets using blind detection.
- UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. In any event, UEs can make small traffic transmissions without waiting for uplink grant requests.
- grant-free transmissions refer to data transmissions that are performed without communicating grant-based signaling in a dynamic control channel, such as a PUCCH or PDCCH. Grant-free transmissions can include uplink or downlink transmissions, and should be interpreted as such unless otherwise specified.
- FIG. 1 illustrates a network 100 for communicating data.
- the network 100 comprises an access point (AP) 110 having a coverage area 112 , a plurality of user equipments (UEs) 120 , and a backhaul network 130 .
- the AP 110 may comprise any component capable of providing wireless access by, inter alia, establishing uplink (dashed line) and/or downlink (dotted line) connections with the UEs 120 , such as a base station, an enhanced base station (eNB), a femtocell, and other wirelessly enabled devices.
- the UEs 120 may comprise any component capable of establishing a wireless connection with the AP 110 .
- the backhaul network 130 may be any component or collection of components that allow data to be exchanged between the AP 110 and a remote end (not shown).
- the network 100 may comprise various other wireless devices, such as relays, femtocells, etc.
- FIG. 2 illustrates a wireless communications network 200 comprising a plurality of base stations (BS) providing voice and/or data wireless communication service to a plurality of mobile stations (MSs).
- the BSs may be referred to by other names such as access network (AN) elements, access points (APs), Node-Bs, eNBs, or any other network device configured to communicate with MSs in the wireless communications network 200 .
- AN access network
- APs access points
- Node-Bs Node-Bs
- eNBs evolved Node-Bs
- Each BS has a corresponding coverage area for communicating data, and coverage areas of adjacent BSs may overlap in order to accommodate handoffs.
- BSs may include schedulers for allocating radio resources.
- FIG. 3 illustrates a downlink data channel 300 for carrying grant-free small packet transmissions.
- different groups of UEs are assigned different search spaces comprising time-frequency resources of the downlink data channel 300 .
- UEs within a given group are assigned individual transmission codes.
- Transmission codes may include various types of sequences, such as low density signatures, code division multiple access signatures, pseudo noise (PN) sequences, Zadoff-Chu sequences, Walsh-Hadamard codes, and others.
- the transmission codes can be obtained from the codewords defined in a codebook or metrics.
- individual transmission codes are assigned exclusively to individual UEs to achieve unicast transmission.
- an individual codeword is assigned to a multicast group of users to achieve multicast transmission.
- the search space for a group of UEs may be defined, for example, as a specific downlink channel resources (e.g., time, frequency, spatial etc.) over which transmissions for the group are communicated.
- the search space may be assigned by the network or derived from a UE connection signature.
- the arrival time of the packet may be unpredictable, so multiple detection trials may be used.
- multiple transmission codes and/or search spaces can be allocated to a UE requiring more bandwidth.
- FIG. 4 illustrates a method 400 for sending grant-free transmissions in a downlink data channel, as might be performed by a base station.
- the method 400 begins at step 410 , where the base station allocates time frequency resources of a downlink data channel as a search space for a group of UEs. Thereafter, the method 400 proceeds to step 420 , where the base station assigns candidate transmission codes to individual UEs in the group of UEs. Notably, while the transmission code assignments are known to the base station, the transmission code assignments are not communicated to UEs. Subsequently, the method 400 proceeds to step 430 , where the base station transmits packets over the resources in accordance with the predefined codes. Notably, the packets are transmitted without communicating any transmission code assignments to the group of UEs.
- FIG. 5 illustrates a method 500 for receiving grant-free transmissions in a downlink data channel, as might be performed by a mobile device.
- the mobile device may be a user equipment, a mobile station, or any other device configured to receive wireless transmissions from a base station.
- the method 500 begins with step 510 , where the mobile device identifies a search space for a group of UEs to which the mobile device belongs. Thereafter, the method 500 proceeds to step 520 , where the mobile station determines a set of candidate transmission codes associated with the search space.
- the set of candidate transmission codes may be identified via a priori information, or in accordance with control information communicated by the base station (e.g., during initialization, via a slow-signaling channel, etc.).
- the method 500 proceeds to step 530 , where the mobile station receives a packet communicated in the search space using blind detection. More specifically, the mobile station may perform blind detection by decoding packets communicated in the search space using corresponding transmission codes in the set of candidate transmission codes. The mobile station may then perform a cyclic redundancy check (CRC) on each decoded packet to verify which of the packets was destined for the mobile station.
- the packet destined for the mobile station includes an identifier associated with the mobile station, e.g., a UE identifier, etc.
- the CRC is masked by a mobile device connection ID associated with the mobile device.
- the mobile station may be able to decode other UEs' packets if the mobile station has knowledge of the other UEs' information. Examples of such information are other UEs' IDs or a group ID.
- Embodiments of non-adaptive transmission include a predefined modulation level and/or a predefined possible coding level, and also a repetition pattern.
- FIG. 6 illustrates a diagram of an uplink data channel 600 for carrying grant free small packet transmissions.
- different groups of UEs are assigned different access spaces comprising time-frequency resources of the uplink data channel 600 .
- UEs within a given group are assigned individual access codes.
- the access codes may include various types of sequences, such as low density signatures, code division multiple access signatures, pseudo noise (PN) sequences, Zadoff-Chu sequences, Walsh-Hadamard codes, and others.
- PN pseudo noise
- an individual access code is used by a single user to achieve contention-free access in the uplink channel.
- an individual access code is used by multiple users to perform transmissions over the access space in a contentious manner.
- the access space and/or access code may be assigned by the network or derived from a prior information or information communicated over a slow-signaling channel.
- the information used to derive the access code/spaces are predefined rules known by the network and UEs, e.g. UE connection signatures, UE IDs, etc.
- more access space and/or access codes can be assigned to a UE that needs more bandwidth.
- the base station detects the UL packets by trying all possible access codes assigned to the predefined access space.
- the base station identifies the UE through CRC checking or header identification.
- Embodiments of non-adaptive transmission include a predefined modulation level, a predefined possible coding level, a repetition pattern, or combinations thereof.
- FIG. 7 illustrates a method 700 for sending grant free transmissions in an uplink data channel, as might be performed by a mobile station.
- the method 700 begins at step 710 , the mobile station identifies an access space for a group of UEs. Thereafter, the method 700 proceeds to step 720 , where the mobile station identifies assigned access codes associated with the access space.
- the mobile station independently derives the assigned access code in accordance with some pre-defined rules known at the base station and mobile stations.
- the assigned access code is communicated by the base station via a slow-signaling channel.
- the mobile station derives the assigned access code from an access code set in accordance with some pre-defined rules such that the base station only needs to announce a pre-defined access code set comprising all possible codes associated with the predefined access resources. Subsequently, the method 700 proceeds to step 730 , where the mobile station transmits the packet in the access space using the selected access code. The packet is transmitted without obtaining an uplink grant.
- FIG. 8 illustrates a method 800 for receiving grant-free transmissions in an uplink data channel, as might be performed by a base station.
- the method 800 begins with step 810 , where the base station identifies an access space for a group of UEs to which the mobile device belongs. Thereafter, the method 800 proceeds to step 820 , where the base station determines a set of candidate access codes associated with the access space. Subsequently, the method 800 proceeds to step 830 , where the base station receives a packet communicated in the access space using blind detection. More specifically, the base station may perform blind detection by decoding packets communicated in the access space using corresponding access codes in the set of candidate access codes.
- the base station may then perform a cyclic redundancy check (CRC) on each decoded packet and identify the mobile station.
- CRC cyclic redundancy check
- the packet destined for the base station includes an identifier associated with the mobile station, e.g., a UE identifier, etc.
- the CRC is masked by a mobile device connection ID associated with the mobile device.
- Access codes may be defined differently in various embodiments.
- the network may define orthogonal pseudo-orthogonal code sets or codebooks, such as low density signature (LDS), code division multiple access (CDMA), pseudo-random noise (PN) sequence, Zadoff-chu (ZC) sequence, Walsh-Hadamard code, and other sparse multiple access codes.
- the code set or codebook may typically be known by both the base station and the mobile terminals. The mobile terminals may select one or multiple codes from the code set to transmit small packets.
- a semi-static transmission mode configuration is signaled to the UE through the broadcast channel.
- the broadcast signaling may indicate whether a grant-free transmission mode is supported by the network, as well as traffic types or other parameters associated with the grant-free transmission mode.
- the network may support grant-free transmission mode in the downlink channel, the uplink channel, or both, and may indicate such capability via broadcast transmission (or otherwise).
- the UE may advertise or otherwise indicate a grant-free transmission mode capability (or lack thereof) when accessing the network. For example, the UE may indicate whether the UE is capable of performing grant-free transmission over the uplink channel and/or receiving grant-free transmissions over the downlink channel.
- Modulation and Coding Scheme (MCS) settings can be updated through the broadcast channel or other slow-signaling channel.
- the search space and the access space for each UE may be determined by the network in accordance with the UE connection ID, geometry location, active traffic/service types, or other criteria.
- the defined search space and access space can be signaled to the UEs through the broadcast channel.
- the search space and access space can be updated and signaled to the UEs through the slow-signaling channel.
- the maximum size of code set and the formation of the code set can also be updated and signaled to the UE through the slow signaling channel.
- FIG. 9 is a block diagram of a processing system that may be used for implementing the devices and methods disclosed herein. Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device. Furthermore, a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc.
- the processing system may comprise a processing unit equipped with one or more input/output devices, such as a speaker, microphone, mouse, touchscreen, keypad, keyboard, printer, display, and the like.
- the processing unit may include a central processing unit (CPU), memory, a mass storage device, a video adapter, and an input/output (I/O) interface connected to a bus.
- the bus may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like.
- the CPU may comprise any type of electronic data processor.
- the memory may comprise any type of system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like.
- SRAM static random access memory
- DRAM dynamic random access memory
- SDRAM synchronous DRAM
- ROM read-only memory
- the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
- the mass storage device may comprise any type of storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus.
- the mass storage device may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
- the video adapter and the I/O interface provide interfaces to couple external input and output devices to the processing unit.
- input and output devices include the display coupled to the video adapter and the mouse/keyboard/printer coupled to the I/O interface.
- Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized.
- a serial interface such as Universal Serial Bus (USB) (not shown) may be used to provide an interface for a printer.
- USB Universal Serial Bus
- the processing unit also includes one or more network interfaces, which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks.
- the network interface allows the processing unit to communicate with remote units via the networks.
- the network interface may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas.
- the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.
- FIG. 10 illustrates a block diagram of an embodiment of a communications device 1000 , which may be equivalent to one or more devices (e.g., UEs, NBs, etc.) discussed above.
- the communications device 1000 may include a processor 1004 , a memory 1006 , a cellular interface 1010 , a supplemental interface 1012 , and a backhaul interface 1014 , which may (or may not) be arranged as shown in FIG. 10 .
- the processor 1004 may be any component capable of performing computations and/or other processing related tasks
- the memory 1006 may be any component capable of storing programming and/or instructions for the processor 1004 .
- the cellular interface 1010 may be any component or collection of components that allows the communications device 1000 to communicate using a cellular signal, and may be used to receive and/or transmit information over a cellular connection of a cellular network.
- the supplemental interface 1012 may be any component or collection of components that allows the communications device 1000 to communicate data or control information via a supplemental protocol.
- the supplemental interface 1012 may be a non-cellular wireless interface for communicating in accordance with a Wireless-Fidelity (Wi-Fi) or Bluetooth protocol.
- Wi-Fi Wireless-Fidelity
- the supplemental interface 1012 may be a wireline interface.
- the backhaul interface 1014 may be optionally included in the communications device 1000 , and may comprise any component or collection of components that allows the communications device 1000 to communicate with another device via a backhaul network.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 61/737,636 filed on Dec. 14, 2012, entitled “System and Method for Small Traffic Transmissions,” which is incorporated herein by reference as if reproduced in its entirety.
- The present invention relates to a system and method for wireless communications, and, in particular embodiments, to a system and method for small traffic transmissions.
- In third generation partnership (3GPP) long term evolution (LTE) networks, both downlink (DL) and uplink (UL) transmissions utilize scheduling-based access, meaning that network resources (e.g., time-frequency resources) are allocated for each transmission. The scheduling-based access typically comprises either dynamic scheduling or semi-static scheduling. In dynamic scheduling, the user equipment (UE) and base station (BS) will communicate grant based signaling for each transmission time interval (TTI). In semi-static scheduling, the UE and BS will communicate grant based signaling for blocks of TTIs. Dynamic scheduling may allow the UE and BS to achieve fast link adaptation, while semi-static signaling may produce less signaling overhead.
- Technical advantages are generally achieved, by embodiments of this disclosure which describe a system and method for small traffic transmissions.
- In accordance with an embodiment, a method for communicating data is provided. In this example, the method includes allocating resources of a downlink channel as a search space for a group of mobile devices; assigning a first transmission code to a first mobile device; and transmitting a packet over the resources in accordance with the first transmission code without communicating transmission code assignments to the first mobile device. The first mobile device is configured to receive the packet using blind detection. An apparatus for performing this method is also provided.
- In accordance with another embodiment, another method for communicating data is provided. In this example, the method includes identifying a search space for a group of mobile devices. The search space includes resources of a downlink channel. The method further includes determining a set of candidate transmission codes associated with the search space, and receiving a packet communicated in the search space using blind detection. The search space comprises resources of a downlink channel, and the packet is communicated in accordance with a first transmission code in the set of candidate transmission codes. An apparatus for performing this method is also provided.
- In accordance with yet another embodiment, yet another method for communicating data is provided. In this example, the method includes identifying an access space for a group of mobile devices. The access space comprises resources of an uplink channel. The method further comprises determining a first transmission code in a set of transmission codes for a first mobile device in the group of mobile devices, and transmitting a packet over the resources of the uplink channel using the first transmission code without obtaining an uplink grant. An apparatus for performing this method is also provided.
- In accordance with yet another embodiment, yet another method for communicating data is provided. In this example, the method includes identifying an access space for a group of mobile devices. The access space comprises resources of an uplink channel. The method further comprises identifying a set of transmission codes associated with access space, and receiving packets communicated over the resources of the uplink channel using blind detection. An apparatus for performing this method is also provided.
- In accordance with yet another embodiment, a method for advertising grant-free communication mode capabilities is provided. In this example, the method includes communicating capability information between a mobile device and a base station. The capability information indicates a grant-free communication mode capability. The method further comprises communicating grant-free signaling parameters between the mobile device and the base station. The grant-free signaling parameters define a search space or an access space for the grant-free communication mode. An apparatus for performing this method is also provided.
- For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
-
FIG. 1 illustrates a diagram of a wireless network for communicating data; -
FIG. 2 illustrates a diagram of another wireless network for communicating data; -
FIG. 3 illustrates a diagram of an embodiment downlink data channel for carrying grant free small packet transmissions; -
FIG. 4 illustrates a flowchart of an embodiment method for communicating grant free small packet transmissions in a downlink data channel; -
FIG. 5 illustrates a flowchart of an embodiment method for receiving grant free small packet transmissions in a downlink data channel; -
FIG. 6 illustrates a diagram of an embodiment downlink data channel for carrying grant free small packet transmissions; -
FIG. 7 illustrates a flowchart of an embodiment method for performing grant free small packet transmissions in an uplink data channel; -
FIG. 8 illustrates a flowchart of an embodiment method for receiving grant free small packet transmissions over an uplink data channel; -
FIG. 9 illustrates a block diagram of an embodiment processing system; and -
FIG. 10 illustrates a block diagram of an embodiment communications device. - Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the embodiments and are not necessarily drawn to scale.
- The making and using of embodiments of this disclosure are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.
- In both dynamic and semi-static scheduling, the grant based signaling is communicated via a physical uplink control channel (PUCCH) and/or physical downlink control channel (PDCCH). More specifically, downlink transmission parameters, (e.g., modulation and coding scheme (MCS), channel resource allocation, multiple-input multiple output (MIMO) transmission mode, etc.) and uplink grant assignments are traditionally communicated through the PDCCH, while uplink grant requests are signaled through the PUCCH. Many future applications will rely on small packet transmissions, including for example, real time gaming, instant messaging, machine-to-machine (M2M) communications, status update messaging, etc. Communicating small packet transmissions using conventional scheduling-based transmission techniques may be relatively inefficient and/or undesirable. More specifically, dynamic scheduling may generate significant amounts of overhead compared to the small packet communication's payload size, while semi-persistent scheduling may be unable to meet the QoS requirements for delay sensitive small traffic transmission. Accordingly, an alternative communication scheme for small packet transmissions is desired.
- Aspects of this disclosure provide a grant-free transmission mode for small traffic transmissions in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. In any event, UEs can make small traffic transmissions without waiting for uplink grant requests. In this disclosure, grant-free transmissions refer to data transmissions that are performed without communicating grant-based signaling in a dynamic control channel, such as a PUCCH or PDCCH. Grant-free transmissions can include uplink or downlink transmissions, and should be interpreted as such unless otherwise specified.
-
FIG. 1 illustrates anetwork 100 for communicating data. Thenetwork 100 comprises an access point (AP) 110 having acoverage area 112, a plurality of user equipments (UEs) 120, and abackhaul network 130. TheAP 110 may comprise any component capable of providing wireless access by, inter alia, establishing uplink (dashed line) and/or downlink (dotted line) connections with theUEs 120, such as a base station, an enhanced base station (eNB), a femtocell, and other wirelessly enabled devices. TheUEs 120 may comprise any component capable of establishing a wireless connection with theAP 110. Thebackhaul network 130 may be any component or collection of components that allow data to be exchanged between theAP 110 and a remote end (not shown). In some embodiments, thenetwork 100 may comprise various other wireless devices, such as relays, femtocells, etc. -
FIG. 2 illustrates awireless communications network 200 comprising a plurality of base stations (BS) providing voice and/or data wireless communication service to a plurality of mobile stations (MSs). The BSs may be referred to by other names such as access network (AN) elements, access points (APs), Node-Bs, eNBs, or any other network device configured to communicate with MSs in thewireless communications network 200. Each BS has a corresponding coverage area for communicating data, and coverage areas of adjacent BSs may overlap in order to accommodate handoffs. BSs may include schedulers for allocating radio resources. -
FIG. 3 illustrates adownlink data channel 300 for carrying grant-free small packet transmissions. As shown, different groups of UEs are assigned different search spaces comprising time-frequency resources of thedownlink data channel 300. Further, UEs within a given group are assigned individual transmission codes. Transmission codes may include various types of sequences, such as low density signatures, code division multiple access signatures, pseudo noise (PN) sequences, Zadoff-Chu sequences, Walsh-Hadamard codes, and others. In one embodiment, the transmission codes can be obtained from the codewords defined in a codebook or metrics. In an embodiment, individual transmission codes are assigned exclusively to individual UEs to achieve unicast transmission. In another embodiment, an individual codeword is assigned to a multicast group of users to achieve multicast transmission. The search space for a group of UEs may be defined, for example, as a specific downlink channel resources (e.g., time, frequency, spatial etc.) over which transmissions for the group are communicated. The search space may be assigned by the network or derived from a UE connection signature. The arrival time of the packet may be unpredictable, so multiple detection trials may be used. In various embodiments, multiple transmission codes and/or search spaces can be allocated to a UE requiring more bandwidth. -
FIG. 4 illustrates amethod 400 for sending grant-free transmissions in a downlink data channel, as might be performed by a base station. As shown, themethod 400 begins atstep 410, where the base station allocates time frequency resources of a downlink data channel as a search space for a group of UEs. Thereafter, themethod 400 proceeds to step 420, where the base station assigns candidate transmission codes to individual UEs in the group of UEs. Notably, while the transmission code assignments are known to the base station, the transmission code assignments are not communicated to UEs. Subsequently, themethod 400 proceeds to step 430, where the base station transmits packets over the resources in accordance with the predefined codes. Notably, the packets are transmitted without communicating any transmission code assignments to the group of UEs. -
FIG. 5 illustrates amethod 500 for receiving grant-free transmissions in a downlink data channel, as might be performed by a mobile device. The mobile device may be a user equipment, a mobile station, or any other device configured to receive wireless transmissions from a base station. As shown, themethod 500 begins withstep 510, where the mobile device identifies a search space for a group of UEs to which the mobile device belongs. Thereafter, themethod 500 proceeds to step 520, where the mobile station determines a set of candidate transmission codes associated with the search space. The set of candidate transmission codes may be identified via a priori information, or in accordance with control information communicated by the base station (e.g., during initialization, via a slow-signaling channel, etc.). Subsequently, themethod 500 proceeds to step 530, where the mobile station receives a packet communicated in the search space using blind detection. More specifically, the mobile station may perform blind detection by decoding packets communicated in the search space using corresponding transmission codes in the set of candidate transmission codes. The mobile station may then perform a cyclic redundancy check (CRC) on each decoded packet to verify which of the packets was destined for the mobile station. In an embodiment, the packet destined for the mobile station includes an identifier associated with the mobile station, e.g., a UE identifier, etc. In another embodiment, the CRC is masked by a mobile device connection ID associated with the mobile device. In embodiments, the mobile station may be able to decode other UEs' packets if the mobile station has knowledge of the other UEs' information. Examples of such information are other UEs' IDs or a group ID. Embodiments of non-adaptive transmission include a predefined modulation level and/or a predefined possible coding level, and also a repetition pattern. -
FIG. 6 illustrates a diagram of anuplink data channel 600 for carrying grant free small packet transmissions. As shown, different groups of UEs are assigned different access spaces comprising time-frequency resources of theuplink data channel 600. Further, UEs within a given group are assigned individual access codes. The access codes may include various types of sequences, such as low density signatures, code division multiple access signatures, pseudo noise (PN) sequences, Zadoff-Chu sequences, Walsh-Hadamard codes, and others. In an embodiment, an individual access code is used by a single user to achieve contention-free access in the uplink channel. Alternatively, an individual access code is used by multiple users to perform transmissions over the access space in a contentious manner. The access space and/or access code may be assigned by the network or derived from a prior information or information communicated over a slow-signaling channel. In an embodiment, the information used to derive the access code/spaces are predefined rules known by the network and UEs, e.g. UE connection signatures, UE IDs, etc. In various embodiments, more access space and/or access codes can be assigned to a UE that needs more bandwidth. The base station detects the UL packets by trying all possible access codes assigned to the predefined access space. The base station identifies the UE through CRC checking or header identification. Embodiments of non-adaptive transmission include a predefined modulation level, a predefined possible coding level, a repetition pattern, or combinations thereof. -
FIG. 7 illustrates amethod 700 for sending grant free transmissions in an uplink data channel, as might be performed by a mobile station. As shown, themethod 700 begins atstep 710, the mobile station identifies an access space for a group of UEs. Thereafter, themethod 700 proceeds to step 720, where the mobile station identifies assigned access codes associated with the access space. In an embodiment, the mobile station independently derives the assigned access code in accordance with some pre-defined rules known at the base station and mobile stations. In another embodiment, the assigned access code is communicated by the base station via a slow-signaling channel. In yet another embodiment, the mobile station derives the assigned access code from an access code set in accordance with some pre-defined rules such that the base station only needs to announce a pre-defined access code set comprising all possible codes associated with the predefined access resources. Subsequently, themethod 700 proceeds to step 730, where the mobile station transmits the packet in the access space using the selected access code. The packet is transmitted without obtaining an uplink grant. -
FIG. 8 illustrates amethod 800 for receiving grant-free transmissions in an uplink data channel, as might be performed by a base station. As shown, themethod 800 begins withstep 810, where the base station identifies an access space for a group of UEs to which the mobile device belongs. Thereafter, themethod 800 proceeds to step 820, where the base station determines a set of candidate access codes associated with the access space. Subsequently, themethod 800 proceeds to step 830, where the base station receives a packet communicated in the access space using blind detection. More specifically, the base station may perform blind detection by decoding packets communicated in the access space using corresponding access codes in the set of candidate access codes. The base station may then perform a cyclic redundancy check (CRC) on each decoded packet and identify the mobile station. In an embodiment, the packet destined for the base station includes an identifier associated with the mobile station, e.g., a UE identifier, etc. In another embodiment, the CRC is masked by a mobile device connection ID associated with the mobile device. - Access codes may be defined differently in various embodiments. For example, the network may define orthogonal pseudo-orthogonal code sets or codebooks, such as low density signature (LDS), code division multiple access (CDMA), pseudo-random noise (PN) sequence, Zadoff-chu (ZC) sequence, Walsh-Hadamard code, and other sparse multiple access codes. The code set or codebook may typically be known by both the base station and the mobile terminals. The mobile terminals may select one or multiple codes from the code set to transmit small packets.
- A semi-static transmission mode configuration is signaled to the UE through the broadcast channel. The broadcast signaling may indicate whether a grant-free transmission mode is supported by the network, as well as traffic types or other parameters associated with the grant-free transmission mode. The network may support grant-free transmission mode in the downlink channel, the uplink channel, or both, and may indicate such capability via broadcast transmission (or otherwise). Additionally, the UE may advertise or otherwise indicate a grant-free transmission mode capability (or lack thereof) when accessing the network. For example, the UE may indicate whether the UE is capable of performing grant-free transmission over the uplink channel and/or receiving grant-free transmissions over the downlink channel. Modulation and Coding Scheme (MCS) settings can be updated through the broadcast channel or other slow-signaling channel. The search space and the access space for each UE may be determined by the network in accordance with the UE connection ID, geometry location, active traffic/service types, or other criteria. The defined search space and access space can be signaled to the UEs through the broadcast channel. The search space and access space can be updated and signaled to the UEs through the slow-signaling channel. The maximum size of code set and the formation of the code set can also be updated and signaled to the UE through the slow signaling channel.
-
FIG. 9 is a block diagram of a processing system that may be used for implementing the devices and methods disclosed herein. Specific devices may utilize all of the components shown, or only a subset of the components, and levels of integration may vary from device to device. Furthermore, a device may contain multiple instances of a component, such as multiple processing units, processors, memories, transmitters, receivers, etc. The processing system may comprise a processing unit equipped with one or more input/output devices, such as a speaker, microphone, mouse, touchscreen, keypad, keyboard, printer, display, and the like. The processing unit may include a central processing unit (CPU), memory, a mass storage device, a video adapter, and an input/output (I/O) interface connected to a bus. - The bus may be one or more of any type of several bus architectures including a memory bus or memory controller, a peripheral bus, video bus, or the like. The CPU may comprise any type of electronic data processor. The memory may comprise any type of system memory such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), read-only memory (ROM), a combination thereof, or the like. In an embodiment, the memory may include ROM for use at boot-up, and DRAM for program and data storage for use while executing programs.
- The mass storage device may comprise any type of storage device configured to store data, programs, and other information and to make the data, programs, and other information accessible via the bus. The mass storage device may comprise, for example, one or more of a solid state drive, hard disk drive, a magnetic disk drive, an optical disk drive, or the like.
- The video adapter and the I/O interface provide interfaces to couple external input and output devices to the processing unit. As illustrated, examples of input and output devices include the display coupled to the video adapter and the mouse/keyboard/printer coupled to the I/O interface. Other devices may be coupled to the processing unit, and additional or fewer interface cards may be utilized. For example, a serial interface such as Universal Serial Bus (USB) (not shown) may be used to provide an interface for a printer.
- The processing unit also includes one or more network interfaces, which may comprise wired links, such as an Ethernet cable or the like, and/or wireless links to access nodes or different networks. The network interface allows the processing unit to communicate with remote units via the networks. For example, the network interface may provide wireless communication via one or more transmitters/transmit antennas and one or more receivers/receive antennas. In an embodiment, the processing unit is coupled to a local-area network or a wide-area network for data processing and communications with remote devices, such as other processing units, the Internet, remote storage facilities, or the like.
-
FIG. 10 illustrates a block diagram of an embodiment of acommunications device 1000, which may be equivalent to one or more devices (e.g., UEs, NBs, etc.) discussed above. Thecommunications device 1000 may include aprocessor 1004, amemory 1006, acellular interface 1010, asupplemental interface 1012, and abackhaul interface 1014, which may (or may not) be arranged as shown inFIG. 10 . Theprocessor 1004 may be any component capable of performing computations and/or other processing related tasks, and thememory 1006 may be any component capable of storing programming and/or instructions for theprocessor 1004. Thecellular interface 1010 may be any component or collection of components that allows thecommunications device 1000 to communicate using a cellular signal, and may be used to receive and/or transmit information over a cellular connection of a cellular network. Thesupplemental interface 1012 may be any component or collection of components that allows thecommunications device 1000 to communicate data or control information via a supplemental protocol. For instance, thesupplemental interface 1012 may be a non-cellular wireless interface for communicating in accordance with a Wireless-Fidelity (Wi-Fi) or Bluetooth protocol. Alternatively, thesupplemental interface 1012 may be a wireline interface. Thebackhaul interface 1014 may be optionally included in thecommunications device 1000, and may comprise any component or collection of components that allows thecommunications device 1000 to communicate with another device via a backhaul network. - Although the description has been described in detail, it should be understood that various changes, substitutions and alterations can be made without departing from the spirit and scope of this disclosure as defined by the appended claims. Moreover, the scope of the disclosure is not intended to be limited to the particular embodiments described herein, as one of ordinary skill in the art will readily appreciate from this disclosure that processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, may perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Claims (35)
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/911,716 US20140192767A1 (en) | 2012-12-14 | 2013-06-06 | System and Method for Small Traffic Transmissions |
EP13861605.7A EP2929744B1 (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmissions |
PCT/CN2013/089545 WO2014090200A1 (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmissions |
CN201910401696.1A CN110213824B (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmission |
KR1020157018891A KR101728021B1 (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmissions |
KR1020187011561A KR20180043860A (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmissions |
KR1020177009903A KR20170042830A (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmissions |
CN201380063848.2A CN104838713B (en) | 2012-12-14 | 2013-12-16 | System and method for the transmission of small business |
CN201910402283.5A CN110138508B (en) | 2012-12-14 | 2013-12-16 | System and method for small business transmission |
CN201910401999.3A CN110213825B (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmission |
EP19161783.6A EP3570612A1 (en) | 2012-12-14 | 2013-12-16 | System and method for uplink grant-free transmission scheme |
JP2015546837A JP6139695B2 (en) | 2012-12-14 | 2013-12-16 | System and method for small traffic transmission |
JP2017013003A JP6451957B2 (en) | 2012-12-14 | 2017-01-27 | System and method for small traffic transmission |
US15/962,525 US10945243B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
US15/962,637 US10945244B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261737636P | 2012-12-14 | 2012-12-14 | |
US13/911,716 US20140192767A1 (en) | 2012-12-14 | 2013-06-06 | System and Method for Small Traffic Transmissions |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/962,637 Continuation US10945244B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
US15/962,525 Continuation US10945243B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140192767A1 true US20140192767A1 (en) | 2014-07-10 |
Family
ID=50933772
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/911,716 Abandoned US20140192767A1 (en) | 2012-12-14 | 2013-06-06 | System and Method for Small Traffic Transmissions |
US15/962,637 Active US10945244B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
US15/962,525 Active US10945243B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/962,637 Active US10945244B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
US15/962,525 Active US10945243B2 (en) | 2012-12-14 | 2018-04-25 | System and method for small traffic transmissions |
Country Status (6)
Country | Link |
---|---|
US (3) | US20140192767A1 (en) |
EP (2) | EP2929744B1 (en) |
JP (2) | JP6139695B2 (en) |
KR (3) | KR101728021B1 (en) |
CN (4) | CN110138508B (en) |
WO (1) | WO2014090200A1 (en) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140254544A1 (en) * | 2013-03-08 | 2014-09-11 | Futurewei Technologies, Inc. | System and Method for Uplink Grant-Free Transmission Scheme |
WO2016048906A1 (en) * | 2014-09-22 | 2016-03-31 | Qualcomm Incorporated | Ultra-low latency lte downlink communications |
US20160150525A1 (en) * | 2014-11-25 | 2016-05-26 | Qualcomm Incorporated | Low latency physical layer design for contention-based uplink channels |
US9369241B2 (en) | 2014-02-18 | 2016-06-14 | Huawei Technologies Co., Ltd. | HARQ frame data structure and method of transmitting and receiving with HARQ in systems using blind detection |
WO2016093972A1 (en) * | 2014-12-11 | 2016-06-16 | Qualcomm Incorporated | Traffic data allocations in low latency lte downlink communications |
WO2016119651A1 (en) * | 2015-01-27 | 2016-08-04 | Huawei Technologies Co., Ltd. | System and method for transmission in grant-free uplink transmission scheme |
WO2016192597A1 (en) | 2015-05-29 | 2016-12-08 | Huawei Technologies Co., Ltd. | System and method of ue-centric radio access procedure |
WO2016206006A1 (en) * | 2015-06-24 | 2016-12-29 | 华为技术有限公司 | Method and apparatus for uplink data transmission |
WO2017000900A1 (en) * | 2015-06-30 | 2017-01-05 | 华为技术有限公司 | Method and device for transmitting information |
US20170164382A1 (en) * | 2014-03-21 | 2017-06-08 | Alcatel Lucent | Device and method for performing device-to-device broadcast communication in a wireless network |
US20170164390A1 (en) * | 2015-12-02 | 2017-06-08 | Qualcomm Incorporated | Uplink channel selection using channel interference tolerance level feedback for grantless data transmission |
US9736774B2 (en) | 2015-01-30 | 2017-08-15 | Huawei Technologies Co., Ltd. | Apparatus and method for a wireless device to receive data in an eco state |
WO2017139005A1 (en) * | 2016-02-09 | 2017-08-17 | Intel IP Corporation | Spreading options for non-orthogonal multiple access |
US20170290052A1 (en) * | 2016-04-01 | 2017-10-05 | Huawei Technologies Co., Ltd. | System and method for pilot assisted grant-free uplink transmission identification |
US20170318584A1 (en) * | 2016-04-28 | 2017-11-02 | Huawei Technologies Co., Ltd. | User equipment operating mode control |
US9819565B2 (en) | 2015-01-26 | 2017-11-14 | Ciena Corporation | Dynamic policy engine for multi-layer network management |
WO2018058255A1 (en) * | 2016-09-30 | 2018-04-05 | Sierra Wireless, Inc. | Methods and apparatuses for user equipment access to a wireless communication system |
US20180109346A1 (en) * | 2015-06-11 | 2018-04-19 | Intel Corporation | Enhanced overlaid code division multiple access (cdma) |
WO2018082572A1 (en) * | 2016-11-03 | 2018-05-11 | Huawei Technologies Co., Ltd. | Harq signaling for grant-free uplink transmissions |
US20180139773A1 (en) * | 2016-11-17 | 2018-05-17 | Huawei Technologies Co., Ltd. | System and method for uplink communications |
US20180139656A1 (en) * | 2015-07-17 | 2018-05-17 | Huawei Technologies Co., Ltd. | Method and apparatus for obtaining configuration information |
WO2018086541A1 (en) * | 2016-11-11 | 2018-05-17 | Huawei Technologies Co., Ltd. | Systems and methods for grant-free uplink transmission |
US10015057B2 (en) | 2015-01-26 | 2018-07-03 | Ciena Corporation | Representative bandwidth calculation systems and methods in a network |
US20180213572A1 (en) * | 2015-07-27 | 2018-07-26 | Zte Corporation | Method and system for data transmission |
EP3340726A4 (en) * | 2015-09-08 | 2018-08-08 | Huawei Technologies Co., Ltd. | Method for uplink data transmission, terminal device and network device |
WO2018143741A1 (en) * | 2017-02-05 | 2018-08-09 | 엘지전자 주식회사 | Method for transmitting physical uplink shared channel in wireless communication system and device therefor |
CN108471615A (en) * | 2015-03-27 | 2018-08-31 | 胡汉强 | A kind of method of shared sub-band and base station |
US10104652B2 (en) | 2015-01-13 | 2018-10-16 | Sharp Kabushiki Kaisha | Transmission apparatus |
WO2018207375A1 (en) * | 2017-05-12 | 2018-11-15 | 株式会社Nttドコモ | User terminal and wireless communication method |
US10135562B2 (en) * | 2015-05-28 | 2018-11-20 | Huawei Technologies Co., Ltd. | Apparatus and method for link adaptation in uplink grant-less random access |
US20180338324A1 (en) * | 2016-07-13 | 2018-11-22 | Huawei Technologies Co., Ltd. | Network node, user device and methods thereof |
EP3422770A4 (en) * | 2016-04-13 | 2019-01-23 | Huawei Technologies Co., Ltd. | Data transmission method, network device, terminal device, and base station |
US20190045448A1 (en) * | 2014-01-08 | 2019-02-07 | Huawei Technologies Co., Ltd. | System and Method for Always On Connections in Wireless Communications System |
CN109479192A (en) * | 2016-07-27 | 2019-03-15 | 联想创新有限公司(香港) | For uplink transmission based on leading access |
US20190098605A1 (en) * | 2014-10-31 | 2019-03-28 | Lg Electronics Inc. | Method and devices for selecting transmission resource in wireless access system supporting non-licensed band |
US10271309B2 (en) * | 2014-03-14 | 2019-04-23 | Telefonaktiebolaget L M Ericsson (Publ) | Uplink multi-TTI scheduling in TDD system |
CN109672506A (en) * | 2017-10-16 | 2019-04-23 | 华为技术有限公司 | The confirmation method and equipment of data transmission |
CN109863714A (en) * | 2016-10-21 | 2019-06-07 | 高通股份有限公司 | Command deployment space monitoring based on service type |
US10382169B2 (en) * | 2016-04-01 | 2019-08-13 | Huawei Technologies Co., Ltd. | HARQ systems and methods for grant-free uplink transmissions |
WO2019164916A1 (en) * | 2018-02-21 | 2019-08-29 | Qualcomm Incorporated | Pairwise cross correlation sequences for non-orthogonal multiple access wireless communications |
US10412762B2 (en) | 2014-08-27 | 2019-09-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and nodes for decoding of contention based uplink transmissions |
US10420131B2 (en) | 2015-06-25 | 2019-09-17 | Huawei Technologies Co., Ltd. | Uplink data transmission method and apparatus |
US20190335494A1 (en) * | 2016-06-30 | 2019-10-31 | Sharp Kabushiki Kaisha | Radio terminal apparatus, radio base station apparatus, mobility management apparatus, radio transmission method, radio communication method, and mobility management method |
US10616910B2 (en) | 2015-03-03 | 2020-04-07 | Huawei Technologies Co., Ltd. | Uplink data transmission method and apparatus |
US10645730B2 (en) | 2017-04-06 | 2020-05-05 | Huawei Technologies Co., Ltd. | Flexible grant-free resource configuration signaling |
EP3539338A4 (en) * | 2016-11-14 | 2020-06-10 | Nokia Technologies Oy | Method, apparatus and computer program product for transmission |
CN111448780A (en) * | 2017-12-15 | 2020-07-24 | 瑞典爱立信有限公司 | Method for handling traffic in a communication network and traffic processing unit |
TWI706649B (en) * | 2016-10-19 | 2020-10-01 | 大陸商Oppo廣東移動通信有限公司 | Method for transmitting data, network equipment, and terminal equipment |
US10869272B2 (en) | 2016-03-03 | 2020-12-15 | Huawei Technologies Co., Ltd. | Communication method and apparatus applied to hyper cell |
US10912123B2 (en) | 2016-11-14 | 2021-02-02 | Vivo Mobile Communication Co., Ltd. | Method for transmitting uplink data, user equipment and network-side device |
US10917189B2 (en) * | 2014-08-29 | 2021-02-09 | Wilus Institute Of Standards And Technology Inc. | Wireless communication method and wireless communication terminal |
US10925073B2 (en) | 2017-01-23 | 2021-02-16 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Radio communication method, terminal device, and network device |
US11057495B2 (en) | 2019-05-01 | 2021-07-06 | Ciena Corporation | Selecting where to process data associated with Internet of Things (IoT) devices |
US11128403B2 (en) | 2017-01-06 | 2021-09-21 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Data transmission method and device |
US11147047B2 (en) | 2017-01-06 | 2021-10-12 | Huawei Technologies Co., Ltd. | Uplink transmission method, terminal, and network side device |
US11153028B2 (en) | 2016-11-04 | 2021-10-19 | Huawei Technologies Co., Ltd. | Grant-free transmission method, terminal, and network device |
US11206112B2 (en) | 2017-04-11 | 2021-12-21 | Huawei Technologies Co., Ltd. | Grant-free uplink transmission method and apparatus |
US11218883B2 (en) * | 2014-07-31 | 2022-01-04 | Ntt Docomo, Inc. | User terminal, radio base station, radio communication method and radio communication system |
US11265896B2 (en) * | 2017-01-18 | 2022-03-01 | Huawei Technologies Co., Ltd. | Systems and methods for asynchronous grant-free access |
US11310839B2 (en) * | 2017-03-20 | 2022-04-19 | Ntt Docomo, Inc. | Grant-free transmission method, user equipment and base station |
US11375550B2 (en) * | 2017-12-22 | 2022-06-28 | Zte Corporation | Sequence selection for non-orthogonal multiple access transmissions |
US11388701B2 (en) | 2017-06-22 | 2022-07-12 | Vivo Mobile Communication Co., Ltd. | Data transmission method, base station, and user equipment |
US11516826B2 (en) | 2017-01-09 | 2022-11-29 | Huawei Technologies Co., Ltd. | Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions |
US11533741B2 (en) | 2017-01-09 | 2022-12-20 | Huawei Technologies Co., Ltd. | Uplink transmission method, terminal, and network side device |
US11589384B2 (en) * | 2017-11-17 | 2023-02-21 | Huawei Technologies Co., Ltd. | Data transmission method, terminal device, and network device |
EP4135410A4 (en) * | 2020-04-29 | 2023-05-17 | Huawei Technologies Co., Ltd. | Access method and device, and communication system |
US12150062B2 (en) | 2022-02-18 | 2024-11-19 | Huawei Technologies Co., Ltd. | System and method for always on connections in wireless communications system |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107615815B (en) * | 2015-06-23 | 2020-10-09 | 华为技术有限公司 | Authorization-free transmission switching method, terminal equipment and network equipment |
EP3301984A4 (en) * | 2015-06-23 | 2018-06-20 | Huawei Technologies Co., Ltd. | Data transmission power control method and device |
CN107736066B (en) * | 2015-06-30 | 2020-08-14 | 华为技术有限公司 | Data transmission method and device |
CN107852703B (en) | 2015-07-17 | 2020-10-09 | 华为技术有限公司 | Method and device for acquiring configuration information |
EP3139679A1 (en) * | 2015-09-03 | 2017-03-08 | Alcatel Lucent | Method to operate a user equipment |
WO2017039564A1 (en) * | 2015-09-04 | 2017-03-09 | Intel Corporation | Grant-less pusch uplink |
CN106550473B (en) * | 2015-09-23 | 2020-09-25 | 大唐移动通信设备有限公司 | Service scheduling method and device |
US20170171855A1 (en) * | 2015-12-11 | 2017-06-15 | Qualcomm Incorporated | Network assistance for distributed unscheduled transmissions |
US10244538B2 (en) | 2016-02-12 | 2019-03-26 | Futurewei Technologies, Inc. | System and method for determining a resource selection technique |
CN108781149B (en) * | 2016-03-22 | 2021-11-09 | 苹果公司 | Apparatus for coexistence of unlicensed uplink and scheduled transmissions |
JP6630850B2 (en) * | 2016-04-01 | 2020-01-15 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | HARQ system and method for grant-free uplink transmission |
JP6812457B2 (en) | 2016-04-20 | 2021-01-13 | コンヴィーダ ワイヤレス, エルエルシー | System Information Provisioning and Lightweight Connection Signaling |
KR102153077B1 (en) | 2016-04-20 | 2020-09-07 | 콘비다 와이어리스, 엘엘씨 | Downlink synchronization |
WO2017184865A1 (en) | 2016-04-20 | 2017-10-26 | Convida Wireless, Llc | Configurable reference signals |
CN113965295A (en) * | 2016-04-20 | 2022-01-21 | 康维达无线有限责任公司 | Physical channel in new radio |
US10299283B2 (en) * | 2016-04-29 | 2019-05-21 | Huawei Technologies Co., Ltd. | System and method for coexistence of grant-free and grant-based uplink traffic |
JP6935426B2 (en) | 2016-05-11 | 2021-09-15 | コンヴィーダ ワイヤレス, エルエルシー | New wireless downlink control channel |
CN107466084A (en) * | 2016-06-06 | 2017-12-12 | 中国移动通信有限公司研究院 | Network insertion collocation method, method for network access, base station and user equipment |
EP3473049A1 (en) * | 2016-06-15 | 2019-04-24 | Convida Wireless, LLC | Grant-less operations |
KR20190017994A (en) | 2016-06-15 | 2019-02-20 | 콘비다 와이어리스, 엘엘씨 | Upload control signaling for new radio |
KR102714660B1 (en) | 2016-06-15 | 2024-10-10 | 인터디지탈 패튼 홀딩스, 인크 | Grantless Uplink Transmission for New Radio |
BR112019000088A2 (en) * | 2016-07-07 | 2019-04-09 | Huawei Technologies Co., Ltd. | data transmission method, user equipment, and base station |
CN107666374A (en) * | 2016-07-27 | 2018-02-06 | 普天信息技术有限公司 | A kind of transmission method of the HARQ ACK informations of sPUCCH |
CN107690193A (en) * | 2016-08-05 | 2018-02-13 | 株式会社Ntt都科摩 | Uplink data transmission method and device |
CN107734651B (en) | 2016-08-10 | 2021-10-26 | 华为技术有限公司 | Data transmission method, terminal and network equipment |
CN109845129B (en) | 2016-08-11 | 2023-10-31 | 交互数字专利控股公司 | Beamforming scanning and training in flexible frame structure for new radios |
JP2019208086A (en) * | 2016-09-29 | 2019-12-05 | シャープ株式会社 | Base station apparatus, terminal apparatus, and communication method of the same |
US10932276B2 (en) | 2016-11-03 | 2021-02-23 | Convida Wireless, Llc | Frame structure in NR |
WO2018081969A1 (en) * | 2016-11-03 | 2018-05-11 | 富士通株式会社 | Information transmission device, method and communication system |
US11038641B2 (en) | 2016-12-09 | 2021-06-15 | Huawei Technologies Co., Ltd. | Pilot-data overlap design for uplink transmission |
JP2020031253A (en) * | 2016-12-27 | 2020-02-27 | シャープ株式会社 | Base station device, terminal device, and communication method therefor |
GB2561806B (en) * | 2017-01-05 | 2021-10-06 | Tcl Communication Ltd | Methods and devices for accessing a radio access network |
WO2018132953A1 (en) * | 2017-01-17 | 2018-07-26 | 华为技术有限公司 | Uplink data transmission method, terminal apparatus, and network apparatus |
CN108347322B (en) * | 2017-01-25 | 2020-07-07 | 华为技术有限公司 | Method and device for uplink transmission |
CN108616911B (en) * | 2017-01-25 | 2023-05-16 | 中兴通讯股份有限公司 | Uplink data transmission method, device and system |
CN108347321A (en) * | 2017-01-25 | 2018-07-31 | 华为技术有限公司 | A kind of communication means and device |
CN108347779B (en) * | 2017-01-25 | 2020-02-21 | 维沃移动通信有限公司 | Uplink data sending method, receiving method, user terminal and network side equipment |
CN108400837B (en) * | 2017-02-06 | 2022-08-02 | 中兴通讯股份有限公司 | Data sending method and terminal equipment |
CN108401298B (en) | 2017-02-07 | 2019-11-15 | 上海朗帛通信技术有限公司 | A kind of method and apparatus in wirelessly communicating |
CN108512633B (en) * | 2017-02-28 | 2021-02-12 | 华为技术有限公司 | Data transmission method and device |
KR101975342B1 (en) * | 2017-03-16 | 2019-09-10 | 엘지전자 주식회사 | Operation method of terminal and base station in wireless communication system and apparatus supporting same |
CN108633005B (en) * | 2017-03-17 | 2019-12-24 | 维沃移动通信有限公司 | Resource allocation method and device, authorization-free service processing method and user equipment |
US10833822B2 (en) * | 2017-04-24 | 2020-11-10 | Huawei Technologies Co., Ltd. | System and method for MA signature assignment based on UE group separation |
US10779222B2 (en) * | 2017-05-04 | 2020-09-15 | Qualcomm Incorporated | Grant-free admission control to a shared channel |
CN109891790B (en) | 2017-05-18 | 2023-03-14 | Lg 电子株式会社 | Method of performing uplink transmission in wireless communication system and apparatus therefor |
WO2019010733A1 (en) * | 2017-07-10 | 2019-01-17 | 华为技术有限公司 | Data transmission method and apparatus |
WO2019014993A1 (en) * | 2017-07-17 | 2019-01-24 | 华为技术有限公司 | Uplink transmission method, terminal device and network device |
GB2565339A (en) * | 2017-08-11 | 2019-02-13 | Tcl Communication Ltd | Improvements in or relating to signalling aspects of uplink data transmissions |
US20190068335A1 (en) * | 2017-08-25 | 2019-02-28 | Qualcomm Incorporated | Grant-free uplink communication |
CN113114447B (en) * | 2017-09-11 | 2023-09-12 | 维沃移动通信有限公司 | Method for transmitting control signal, user terminal and network side equipment |
US10833836B2 (en) * | 2017-12-20 | 2020-11-10 | Qualcomm Incorporated | Managing release of resources for uplink grant-free transmissions on bandwidth part deactivation |
US11038567B2 (en) * | 2018-01-23 | 2021-06-15 | Qualcomm Incorporated | Adaptive autonomous uplink communication design |
EP3858023A1 (en) | 2018-09-27 | 2021-08-04 | Convida Wireless, Llc | Sub-band operations in unlicensed spectrums of new radio |
US20210392625A1 (en) * | 2018-09-30 | 2021-12-16 | Samsung Electronics Co., Ltd. | Detecting method and transmitting method of physical downlink control channel, and corresponding equipments |
CN111371480B (en) * | 2018-12-25 | 2023-04-14 | 中兴通讯股份有限公司 | Data pre-coding processing method and device and storage medium |
CN115087075B (en) * | 2021-03-11 | 2024-10-25 | 维沃移动通信有限公司 | Method, device, terminal and network equipment for using unlicensed frequency band |
US11777598B2 (en) | 2021-06-21 | 2023-10-03 | Ciena Corporation | Utilizing polarization characteristics to detect vibrations in optical fibers |
US11595761B2 (en) | 2021-06-25 | 2023-02-28 | Ciena Corporation | Detecting and localizing acoustic signals with an optical network |
US11894969B2 (en) | 2021-07-12 | 2024-02-06 | Ciena Corporation | Identifying root causes of network service degradation |
US11477070B1 (en) | 2021-07-12 | 2022-10-18 | Ciena Corporation | Identifying root causes of network service degradation |
US11683260B2 (en) | 2021-07-13 | 2023-06-20 | Ciena Corporation | Estimating a traffic matrix of a communication network using network topology features |
US12056220B2 (en) | 2022-08-23 | 2024-08-06 | Ciena Corporation | Embedding concealed meta-data into deep neural networks (DNNs) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100232388A1 (en) * | 2007-10-29 | 2010-09-16 | Panasonic Corporation | Radio communication mobile station device and response signal spread sequence control method |
US20110194525A1 (en) * | 2008-10-31 | 2011-08-11 | Panasonic Corporation | Wireless communication base station equipment, wireless communication terminal device and search space setting method |
US20110200004A1 (en) * | 2008-10-29 | 2011-08-18 | Daiichiro Nakashima | Wireless communication system, mobile station device, and base station device |
US20110199995A1 (en) * | 2008-10-30 | 2011-08-18 | Fujitsu Limited | Base station, terminal device, control channel assignment method and region size determination method |
US20120127946A1 (en) * | 2009-08-17 | 2012-05-24 | Panasonic Corporation | Wireless communication base station device, wireless communication terminal device, cce allocation method and cce blind decoding method |
US20130022012A1 (en) * | 2010-04-09 | 2013-01-24 | Hyun Woo Lee | Method for transceiving contention-based uplink channel signal |
US20130155968A1 (en) * | 2011-08-12 | 2013-06-20 | Interdigital Patent Holdings, Inc. | Method for channel estimation and pilot reception for remote radio head (rrh) deployments and multi-antenna downlink mimo |
US20130176952A1 (en) * | 2011-08-12 | 2013-07-11 | Interdigital Patent Holdings, Inc. | Flexible Bandwidth Operation In Wireless Systems |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7539507B2 (en) * | 2003-11-21 | 2009-05-26 | Qualcomm Incorporated | Peer-to-peer communications |
US7457588B2 (en) | 2005-08-01 | 2008-11-25 | Motorola, Inc. | Channel quality indicator for time, frequency and spatial channel in terrestrial radio access network |
US8625652B2 (en) * | 2007-01-11 | 2014-01-07 | Qualcomm Incorporated | Collision-free group hopping in a wireless communication system |
CN101272602B (en) * | 2007-03-21 | 2012-05-23 | 华为技术有限公司 | Method, system and device for switching between networks |
JP5462908B2 (en) * | 2007-08-22 | 2014-04-02 | エルジー エレクトロニクス インコーポレイティド | Radio resource allocation method in radio communication system |
CN101785218B (en) | 2007-08-22 | 2015-10-07 | Lg电子株式会社 | The method of distributing radio resource in a wireless communication system |
KR101531419B1 (en) | 2008-02-01 | 2015-06-24 | 엘지전자 주식회사 | Method of an uplink harq operation at an expiry of time alignment timer |
EP2166804A1 (en) | 2008-09-17 | 2010-03-24 | Panasonic Corporation | Deactivation of semi-persistent resource allocations in a mobile communication network |
EP2368401B1 (en) * | 2008-11-21 | 2018-10-03 | Telefonaktiebolaget LM Ericsson (publ) | Transmission method and devices in a communication system with contention-based data transmission |
CA2749669C (en) | 2009-02-01 | 2014-12-16 | Lg Electronics Inc. | Method of allocating resources for transmitting uplink signal in mimo wireless communication system and apparatus thereof |
CN101534508B (en) * | 2009-04-15 | 2010-07-28 | 南京邮电大学 | Dynamic resource scheduling method with introduced heterogeneous customer service executing coefficient |
CN101932024A (en) * | 2009-06-24 | 2010-12-29 | 华为技术有限公司 | Downlink control information transmitting method and device |
CN104469923B (en) * | 2009-08-12 | 2018-06-01 | 交互数字专利控股公司 | WTRU, method and base station for transmitting information in uplink physical channel |
US8964658B2 (en) * | 2010-03-31 | 2015-02-24 | Mediatek Inc. | Methods of contention-based transmission |
WO2012092721A1 (en) * | 2011-01-07 | 2012-07-12 | 富士通株式会社 | Method and user equipment for transmitting sounding reference signal, and e-nodeb thereof |
CN102740473B (en) * | 2011-04-08 | 2017-12-01 | 中兴通讯股份有限公司 | A kind of processing method and system of Downlink Control Information |
CN102749473B (en) * | 2012-06-30 | 2014-04-16 | 东南大学 | Two-dimensional hot-film wind speed and direction sensor and preparation method thereof |
US10568121B2 (en) * | 2013-03-08 | 2020-02-18 | Huawei Technologies Co., Ltd. | System and method for reduced signaling transmissions in a communications system |
-
2013
- 2013-06-06 US US13/911,716 patent/US20140192767A1/en not_active Abandoned
- 2013-12-16 KR KR1020157018891A patent/KR101728021B1/en active IP Right Grant
- 2013-12-16 JP JP2015546837A patent/JP6139695B2/en active Active
- 2013-12-16 CN CN201910402283.5A patent/CN110138508B/en active Active
- 2013-12-16 KR KR1020187011561A patent/KR20180043860A/en active Search and Examination
- 2013-12-16 WO PCT/CN2013/089545 patent/WO2014090200A1/en active Application Filing
- 2013-12-16 CN CN201910401696.1A patent/CN110213824B/en active Active
- 2013-12-16 EP EP13861605.7A patent/EP2929744B1/en active Active
- 2013-12-16 CN CN201380063848.2A patent/CN104838713B/en active Active
- 2013-12-16 EP EP19161783.6A patent/EP3570612A1/en not_active Withdrawn
- 2013-12-16 CN CN201910401999.3A patent/CN110213825B/en active Active
- 2013-12-16 KR KR1020177009903A patent/KR20170042830A/en active Application Filing
-
2017
- 2017-01-27 JP JP2017013003A patent/JP6451957B2/en active Active
-
2018
- 2018-04-25 US US15/962,637 patent/US10945244B2/en active Active
- 2018-04-25 US US15/962,525 patent/US10945243B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100232388A1 (en) * | 2007-10-29 | 2010-09-16 | Panasonic Corporation | Radio communication mobile station device and response signal spread sequence control method |
US20110200004A1 (en) * | 2008-10-29 | 2011-08-18 | Daiichiro Nakashima | Wireless communication system, mobile station device, and base station device |
US20110199995A1 (en) * | 2008-10-30 | 2011-08-18 | Fujitsu Limited | Base station, terminal device, control channel assignment method and region size determination method |
US20110194525A1 (en) * | 2008-10-31 | 2011-08-11 | Panasonic Corporation | Wireless communication base station equipment, wireless communication terminal device and search space setting method |
US20120127946A1 (en) * | 2009-08-17 | 2012-05-24 | Panasonic Corporation | Wireless communication base station device, wireless communication terminal device, cce allocation method and cce blind decoding method |
US20130022012A1 (en) * | 2010-04-09 | 2013-01-24 | Hyun Woo Lee | Method for transceiving contention-based uplink channel signal |
US20130155968A1 (en) * | 2011-08-12 | 2013-06-20 | Interdigital Patent Holdings, Inc. | Method for channel estimation and pilot reception for remote radio head (rrh) deployments and multi-antenna downlink mimo |
US20130176952A1 (en) * | 2011-08-12 | 2013-07-11 | Interdigital Patent Holdings, Inc. | Flexible Bandwidth Operation In Wireless Systems |
Cited By (158)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10887898B2 (en) | 2013-03-08 | 2021-01-05 | Huawei Technologies Co., Ltd. | System and method for uplink grant-free transmission scheme |
US20140254544A1 (en) * | 2013-03-08 | 2014-09-11 | Futurewei Technologies, Inc. | System and Method for Uplink Grant-Free Transmission Scheme |
US11019645B2 (en) | 2013-03-08 | 2021-05-25 | Huawei Technologies Co., Ltd. | System and method for uplink grant-free transmission scheme |
US11013024B2 (en) | 2013-03-08 | 2021-05-18 | Huawei Technologies Co., Ltd. | System and method for uplink grant-free transmission scheme |
US10028302B2 (en) * | 2013-03-08 | 2018-07-17 | Huawei Technologies Co., Ltd. | System and method for uplink grant-free transmission scheme |
US11936481B2 (en) | 2013-03-08 | 2024-03-19 | Huawei Technologies Co., Ltd. | System and method for uplink grant-free transmission scheme |
US10887900B2 (en) | 2013-03-08 | 2021-01-05 | Huawei Technologies Co., Ltd. | System and method for uplink grant-free transmission scheme |
US10887899B2 (en) | 2013-03-08 | 2021-01-05 | Huawei Technologies Co., Ltd. | System and method for uplink grant-free transmission scheme |
US20190045449A1 (en) * | 2014-01-08 | 2019-02-07 | Huawei Technologies Co., Ltd. | System and Method for Always On Connections in Wireless Communications System |
US11012940B2 (en) * | 2014-01-08 | 2021-05-18 | Huawei Technologies Co., Ltd. | System and method for always on connections in wireless communications system |
US11019570B2 (en) * | 2014-01-08 | 2021-05-25 | Huawei Technologies Co., Ltd. | System and method for always on connections in wireless communications system |
US11012939B2 (en) | 2014-01-08 | 2021-05-18 | Huawei Technologies Co., Ltd. | System and method for always on connections in wireless communications system |
US11259246B2 (en) | 2014-01-08 | 2022-02-22 | Huawei Technologies Co., Ltd. | System and method for always on connections in wireless communications system |
US20190045448A1 (en) * | 2014-01-08 | 2019-02-07 | Huawei Technologies Co., Ltd. | System and Method for Always On Connections in Wireless Communications System |
US10631179B2 (en) * | 2014-02-18 | 2020-04-21 | Huawei Technologies Co., Ltd. | HARQ frame data structure and method of transmitting and receiving with HARQ in systems using blind detection |
US20160286416A1 (en) * | 2014-02-18 | 2016-09-29 | Huawei Technologies Co., Ltd. | HARQ Frame Data Structure and Method of Transmitting and Receiving with HARQ in Systems Using Blind Detection |
US9369241B2 (en) | 2014-02-18 | 2016-06-14 | Huawei Technologies Co., Ltd. | HARQ frame data structure and method of transmitting and receiving with HARQ in systems using blind detection |
US10212613B2 (en) * | 2014-02-18 | 2019-02-19 | Huawei Technologies Co., Ltd. | HARQ frame data structure and method of transmitting and receiving with HARQ in systems using blind detection |
US10271309B2 (en) * | 2014-03-14 | 2019-04-23 | Telefonaktiebolaget L M Ericsson (Publ) | Uplink multi-TTI scheduling in TDD system |
US11197271B2 (en) | 2014-03-14 | 2021-12-07 | Telefonaktiebolaget L M Ericsson (Publ) | Uplink multi-TTI scheduling in TDD system |
US20170164382A1 (en) * | 2014-03-21 | 2017-06-08 | Alcatel Lucent | Device and method for performing device-to-device broadcast communication in a wireless network |
US11218883B2 (en) * | 2014-07-31 | 2022-01-04 | Ntt Docomo, Inc. | User terminal, radio base station, radio communication method and radio communication system |
US11723065B2 (en) | 2014-08-27 | 2023-08-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and nodes for decoding of contention based uplink transmissions |
US10412762B2 (en) | 2014-08-27 | 2019-09-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and nodes for decoding of contention based uplink transmissions |
US11109407B2 (en) | 2014-08-27 | 2021-08-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and nodes for decoding of contention based uplink transmissions |
US11515957B2 (en) | 2014-08-29 | 2022-11-29 | Wilus Institute Of Standards And Technology Inc. | Wireless communication method and wireless communication terminal |
US11824630B2 (en) | 2014-08-29 | 2023-11-21 | Wilus Institute Of Standards And Technology Inc. | Wireless communication method and wireless communication terminal |
US10917189B2 (en) * | 2014-08-29 | 2021-02-09 | Wilus Institute Of Standards And Technology Inc. | Wireless communication method and wireless communication terminal |
US11515958B2 (en) | 2014-08-29 | 2022-11-29 | Wilus Institute Of Standards And Technology Inc. | Wireless communication method and wireless communication terminal |
US11212779B2 (en) | 2014-09-22 | 2021-12-28 | Qualcomm Incorporated | Ultra-low latency LTE downlink communications |
EP3742657A1 (en) * | 2014-09-22 | 2020-11-25 | QUALCOMM Incorporated | Ultra-low latency lte downlink communications |
WO2016048906A1 (en) * | 2014-09-22 | 2016-03-31 | Qualcomm Incorporated | Ultra-low latency lte downlink communications |
US10517070B2 (en) * | 2014-10-31 | 2019-12-24 | Lg Electronics Inc. | Method and devices for selecting transmission resource in wireless access system supporting non-licensed band |
US20190098605A1 (en) * | 2014-10-31 | 2019-03-28 | Lg Electronics Inc. | Method and devices for selecting transmission resource in wireless access system supporting non-licensed band |
US10904865B2 (en) | 2014-11-25 | 2021-01-26 | Qualcomm Incorporated | Low latency physical layer design for contention-based uplink channels |
CN112911722A (en) * | 2014-11-25 | 2021-06-04 | 高通股份有限公司 | Low latency physical layer design for contention-based uplink channels |
US20160150525A1 (en) * | 2014-11-25 | 2016-05-26 | Qualcomm Incorporated | Low latency physical layer design for contention-based uplink channels |
US20190029013A1 (en) * | 2014-11-25 | 2019-01-24 | Qualcomm Incorporated | Low latency physical layer design for contention-based uplink channels |
US10129858B2 (en) * | 2014-11-25 | 2018-11-13 | Qualcomm Incorporated | Low latency physical layer design for contention-based uplink channels |
US10153875B2 (en) | 2014-12-11 | 2018-12-11 | Qualcomm Incorporated | Traffic data allocations in low latency LTE downlink communications |
WO2016093972A1 (en) * | 2014-12-11 | 2016-06-16 | Qualcomm Incorporated | Traffic data allocations in low latency lte downlink communications |
US10104652B2 (en) | 2015-01-13 | 2018-10-16 | Sharp Kabushiki Kaisha | Transmission apparatus |
US10015057B2 (en) | 2015-01-26 | 2018-07-03 | Ciena Corporation | Representative bandwidth calculation systems and methods in a network |
US9819565B2 (en) | 2015-01-26 | 2017-11-14 | Ciena Corporation | Dynamic policy engine for multi-layer network management |
US20220183083A1 (en) * | 2015-01-27 | 2022-06-09 | Kelvin Kar Kin Au | System and method for transmission in a grant-free uplink transmission scheme |
US10721776B2 (en) * | 2015-01-27 | 2020-07-21 | Huawei Technologies Co., Ltd. | System and method for transmission in a grant-free uplink transmission scheme |
US11284450B2 (en) * | 2015-01-27 | 2022-03-22 | Huawei Technologies Co., Ltd. | System and method for transmission in a grant-free uplink transmission scheme |
CN107113826A (en) * | 2015-01-27 | 2017-08-29 | 华为技术有限公司 | Transmission system and method for exempting from authorized uplink transmission plan |
KR101906523B1 (en) | 2015-01-27 | 2018-10-10 | 후아웨이 테크놀러지 컴퍼니 리미티드 | System and method for transmission in unauthorized uplink transmission scheme |
US20180279385A1 (en) * | 2015-01-27 | 2018-09-27 | Kelvin Kar Kin Au | System and method for transmission in a grant-free uplink transmission scheme |
US10149327B2 (en) | 2015-01-27 | 2018-12-04 | Huawei Technologies Co., Ltd. | System and method for transmission in a grant-free uplink transmission scheme |
KR20170107538A (en) * | 2015-01-27 | 2017-09-25 | 후아웨이 테크놀러지 컴퍼니 리미티드 | System and method for transmission in unauthorized uplink transmission scheme |
WO2016119651A1 (en) * | 2015-01-27 | 2016-08-04 | Huawei Technologies Co., Ltd. | System and method for transmission in grant-free uplink transmission scheme |
CN111654915A (en) * | 2015-01-27 | 2020-09-11 | 华为技术有限公司 | Transmission system and method for grant-free uplink transmission scheme |
US11864243B2 (en) * | 2015-01-27 | 2024-01-02 | Huawei Technologies Co., Ltd. | System and method for transmission in a grant-free uplink transmission scheme |
US9750056B2 (en) | 2015-01-27 | 2017-08-29 | Huawei Technologies Co., Ltd. | System and method for transmission in a grant-free uplink transmission scheme |
US9736774B2 (en) | 2015-01-30 | 2017-08-15 | Huawei Technologies Co., Ltd. | Apparatus and method for a wireless device to receive data in an eco state |
US10849065B2 (en) | 2015-01-30 | 2020-11-24 | Huawei Technologies Co., Ltd. | Apparatus and method for a wireless device to receive data in an eco state |
US10142929B2 (en) | 2015-01-30 | 2018-11-27 | Huawei Technologies Co., Ltd. | Apparatus and method for a wireless device to receive data in an eco state |
US10873905B2 (en) | 2015-01-30 | 2020-12-22 | Huawei Technologies Co., Ltd. | Apparatus and method for a wireless device to receive data in an eco state |
US10728845B2 (en) | 2015-01-30 | 2020-07-28 | Huawei Technologies Co., Ltd. | Apparatus and method for a wireless device to receive data in an eco state |
US10616910B2 (en) | 2015-03-03 | 2020-04-07 | Huawei Technologies Co., Ltd. | Uplink data transmission method and apparatus |
US11265899B2 (en) | 2015-03-03 | 2022-03-01 | Huawei Technologies Co., Ltd. | Uplink data transmission method and apparatus |
CN108471615A (en) * | 2015-03-27 | 2018-08-31 | 胡汉强 | A kind of method of shared sub-band and base station |
US10873413B2 (en) | 2015-05-28 | 2020-12-22 | Huawei Technologies Co., Ltd. | Apparatus and method for link adaptation in uplink grant-less random access |
US10135562B2 (en) * | 2015-05-28 | 2018-11-20 | Huawei Technologies Co., Ltd. | Apparatus and method for link adaptation in uplink grant-less random access |
AU2016268298B2 (en) * | 2015-05-28 | 2019-05-16 | Huawei Technologies Co., Ltd. | Apparatus and method for link adaptation in uplink grant-less random access |
US10911200B2 (en) | 2015-05-29 | 2021-02-02 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
EP3295713A4 (en) * | 2015-05-29 | 2018-06-27 | Huawei Technologies Co. Ltd. | System and method of ue-centric radio access procedure |
WO2016192597A1 (en) | 2015-05-29 | 2016-12-08 | Huawei Technologies Co., Ltd. | System and method of ue-centric radio access procedure |
US10880063B2 (en) | 2015-05-29 | 2020-12-29 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
US11799607B2 (en) | 2015-05-29 | 2023-10-24 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
KR20190083003A (en) * | 2015-05-29 | 2019-07-10 | 후아웨이 테크놀러지 컴퍼니 리미티드 | System and method of ue-centric radio access procedure |
US11070339B2 (en) | 2015-05-29 | 2021-07-20 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
US10735166B2 (en) | 2015-05-29 | 2020-08-04 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
KR101998178B1 (en) * | 2015-05-29 | 2019-07-09 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Systems and methods for user equipment-centric wireless access procedures |
KR20180012825A (en) * | 2015-05-29 | 2018-02-06 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Systems and methods for user equipment-centric wireless access procedures |
US10903961B2 (en) | 2015-05-29 | 2021-01-26 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
US10917213B2 (en) | 2015-05-29 | 2021-02-09 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
KR102440137B1 (en) | 2015-05-29 | 2022-09-02 | 후아웨이 테크놀러지 컴퍼니 리미티드 | System and method of ue-centric radio access procedure |
JP2018522459A (en) * | 2015-05-29 | 2018-08-09 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | System and method for UE-centric radio access procedure |
US10903960B2 (en) | 2015-05-29 | 2021-01-26 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
US10903959B2 (en) | 2015-05-29 | 2021-01-26 | Huawei Technologies Co., Ltd. | System and method of UE-centric radio access procedure |
US11050504B2 (en) | 2015-06-11 | 2021-06-29 | Apple Inc. | Enhanced overlaid code division multiple access (CDMA) |
US20180109346A1 (en) * | 2015-06-11 | 2018-04-19 | Intel Corporation | Enhanced overlaid code division multiple access (cdma) |
US10581549B2 (en) * | 2015-06-11 | 2020-03-03 | Apple Inc. | Enhanced overlaid code division multiple access (CDMA) |
WO2016206006A1 (en) * | 2015-06-24 | 2016-12-29 | 华为技术有限公司 | Method and apparatus for uplink data transmission |
US10420131B2 (en) | 2015-06-25 | 2019-09-17 | Huawei Technologies Co., Ltd. | Uplink data transmission method and apparatus |
WO2017000900A1 (en) * | 2015-06-30 | 2017-01-05 | 华为技术有限公司 | Method and device for transmitting information |
US20180139656A1 (en) * | 2015-07-17 | 2018-05-17 | Huawei Technologies Co., Ltd. | Method and apparatus for obtaining configuration information |
US20180213572A1 (en) * | 2015-07-27 | 2018-07-26 | Zte Corporation | Method and system for data transmission |
EP3340726A4 (en) * | 2015-09-08 | 2018-08-08 | Huawei Technologies Co., Ltd. | Method for uplink data transmission, terminal device and network device |
US10568142B2 (en) | 2015-09-08 | 2020-02-18 | Huawei Technologies Co., Ltd. | Method for uplink data transmission, terminal device and network device |
US10595328B2 (en) | 2015-12-02 | 2020-03-17 | Qualcomm Incorporated | Uplink channel selection using channel interference tolerance level feedback for grantless data transmission |
CN108293263A (en) * | 2015-12-02 | 2018-07-17 | 高通股份有限公司 | By channel disturbance tolerance level feedback for without the uplink channel selection for granting data transmission |
US10045368B2 (en) * | 2015-12-02 | 2018-08-07 | Qualcomm Incorporated | Uplink channel selection using channel interference tolerance level feedback for grantless data transmission |
US20170164390A1 (en) * | 2015-12-02 | 2017-06-08 | Qualcomm Incorporated | Uplink channel selection using channel interference tolerance level feedback for grantless data transmission |
WO2017139005A1 (en) * | 2016-02-09 | 2017-08-17 | Intel IP Corporation | Spreading options for non-orthogonal multiple access |
US10560959B2 (en) | 2016-02-09 | 2020-02-11 | Apple Inc. | Spreading options for non-orthogonal multiple access |
US10869272B2 (en) | 2016-03-03 | 2020-12-15 | Huawei Technologies Co., Ltd. | Communication method and apparatus applied to hyper cell |
US10959261B2 (en) * | 2016-04-01 | 2021-03-23 | Huawei Technologies Co., Ltd. | System and method for pilot assisted grant-free uplink transmission identification |
US10382169B2 (en) * | 2016-04-01 | 2019-08-13 | Huawei Technologies Co., Ltd. | HARQ systems and methods for grant-free uplink transmissions |
US10651980B2 (en) | 2016-04-01 | 2020-05-12 | Huawei Technologies Co., Ltd. | HARQ systems and methods for grant-free uplink transmissions |
US10868640B2 (en) | 2016-04-01 | 2020-12-15 | Huawei Technologies Co., Ltd. | HARQ systems and methods for grant-free uplink transmissions |
US20170290052A1 (en) * | 2016-04-01 | 2017-10-05 | Huawei Technologies Co., Ltd. | System and method for pilot assisted grant-free uplink transmission identification |
EP3422770A4 (en) * | 2016-04-13 | 2019-01-23 | Huawei Technologies Co., Ltd. | Data transmission method, network device, terminal device, and base station |
US10701547B2 (en) | 2016-04-13 | 2020-06-30 | Huawei Technologies Co., Ltd. | Data transmission method, network device, terminal device, and base station |
US11963148B2 (en) * | 2016-04-28 | 2024-04-16 | Huawei Technologies Co., Ltd. | User equipment operating mode control |
US20200260453A1 (en) * | 2016-04-28 | 2020-08-13 | Huawei Technologies Co., Ltd. | User Equipment Operating Mode Control |
US20170318584A1 (en) * | 2016-04-28 | 2017-11-02 | Huawei Technologies Co., Ltd. | User equipment operating mode control |
US10674508B2 (en) * | 2016-04-28 | 2020-06-02 | Huawei Technologies Co., Ltd. | User equipment operating mode control |
US20190335494A1 (en) * | 2016-06-30 | 2019-10-31 | Sharp Kabushiki Kaisha | Radio terminal apparatus, radio base station apparatus, mobility management apparatus, radio transmission method, radio communication method, and mobility management method |
US10917910B2 (en) * | 2016-06-30 | 2021-02-09 | Sharp Kabushiki Kaisha | Radio terminal apparatus, radio base station apparatus, mobility management apparatus, radio transmission method, radio communication method, and mobility management method |
US10681729B2 (en) * | 2016-07-13 | 2020-06-09 | Huawei Technologies Co., Ltd. | Network node, user device and methods thereof |
US20180338324A1 (en) * | 2016-07-13 | 2018-11-22 | Huawei Technologies Co., Ltd. | Network node, user device and methods thereof |
CN109479192A (en) * | 2016-07-27 | 2019-03-15 | 联想创新有限公司(香港) | For uplink transmission based on leading access |
WO2018058255A1 (en) * | 2016-09-30 | 2018-04-05 | Sierra Wireless, Inc. | Methods and apparatuses for user equipment access to a wireless communication system |
US11202324B2 (en) | 2016-09-30 | 2021-12-14 | Sierra Wireless, Inc. | Methods and apparatuses for user equipment access to a wireless communication system |
TWI706649B (en) * | 2016-10-19 | 2020-10-01 | 大陸商Oppo廣東移動通信有限公司 | Method for transmitting data, network equipment, and terminal equipment |
US10912060B2 (en) | 2016-10-19 | 2021-02-02 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Data transmission method, network device and terminal device |
CN109863714A (en) * | 2016-10-21 | 2019-06-07 | 高通股份有限公司 | Command deployment space monitoring based on service type |
US10673593B2 (en) | 2016-11-03 | 2020-06-02 | Huawei Technologies Co., Ltd. | HARQ signaling for grant-free uplink transmissions |
WO2018082572A1 (en) * | 2016-11-03 | 2018-05-11 | Huawei Technologies Co., Ltd. | Harq signaling for grant-free uplink transmissions |
US11658788B2 (en) | 2016-11-03 | 2023-05-23 | Huawei Technologies Co., Ltd. | HARQ signaling for grant-free uplink transmissions |
US11153028B2 (en) | 2016-11-04 | 2021-10-19 | Huawei Technologies Co., Ltd. | Grant-free transmission method, terminal, and network device |
US10448368B2 (en) | 2016-11-11 | 2019-10-15 | Huawei Technologies Co., Ltd. | Systems and methods for grant-free uplink transmission |
WO2018086541A1 (en) * | 2016-11-11 | 2018-05-17 | Huawei Technologies Co., Ltd. | Systems and methods for grant-free uplink transmission |
US10912123B2 (en) | 2016-11-14 | 2021-02-02 | Vivo Mobile Communication Co., Ltd. | Method for transmitting uplink data, user equipment and network-side device |
EP3539338A4 (en) * | 2016-11-14 | 2020-06-10 | Nokia Technologies Oy | Method, apparatus and computer program product for transmission |
US10873968B2 (en) | 2016-11-14 | 2020-12-22 | Nokia Technologies Oy | Method, apparatus and computer program product for transmission |
US10856317B2 (en) * | 2016-11-17 | 2020-12-01 | Huawei Technologies Co., Ltd. | System and method for uplink communications |
US20180139773A1 (en) * | 2016-11-17 | 2018-05-17 | Huawei Technologies Co., Ltd. | System and method for uplink communications |
US11128403B2 (en) | 2017-01-06 | 2021-09-21 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Data transmission method and device |
US11147047B2 (en) | 2017-01-06 | 2021-10-12 | Huawei Technologies Co., Ltd. | Uplink transmission method, terminal, and network side device |
US11722251B2 (en) | 2017-01-06 | 2023-08-08 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Data transmission method and device |
US11533741B2 (en) | 2017-01-09 | 2022-12-20 | Huawei Technologies Co., Ltd. | Uplink transmission method, terminal, and network side device |
US11546929B2 (en) | 2017-01-09 | 2023-01-03 | Huawei Technologies Co., Ltd. | Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions |
US11516826B2 (en) | 2017-01-09 | 2022-11-29 | Huawei Technologies Co., Ltd. | Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions |
US11265896B2 (en) * | 2017-01-18 | 2022-03-01 | Huawei Technologies Co., Ltd. | Systems and methods for asynchronous grant-free access |
US10925073B2 (en) | 2017-01-23 | 2021-02-16 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Radio communication method, terminal device, and network device |
US11082952B2 (en) | 2017-02-05 | 2021-08-03 | Lg Electronics Inc. | Method for transmitting physical uplink shared channel in wireless communication system and device therefor |
WO2018143741A1 (en) * | 2017-02-05 | 2018-08-09 | 엘지전자 주식회사 | Method for transmitting physical uplink shared channel in wireless communication system and device therefor |
US11310839B2 (en) * | 2017-03-20 | 2022-04-19 | Ntt Docomo, Inc. | Grant-free transmission method, user equipment and base station |
US11490425B2 (en) | 2017-04-06 | 2022-11-01 | Huawei Technologies Co., Ltd. | Flexible grant-free resource configuration signaling |
US10645730B2 (en) | 2017-04-06 | 2020-05-05 | Huawei Technologies Co., Ltd. | Flexible grant-free resource configuration signaling |
US11206112B2 (en) | 2017-04-11 | 2021-12-21 | Huawei Technologies Co., Ltd. | Grant-free uplink transmission method and apparatus |
WO2018207375A1 (en) * | 2017-05-12 | 2018-11-15 | 株式会社Nttドコモ | User terminal and wireless communication method |
US11388701B2 (en) | 2017-06-22 | 2022-07-12 | Vivo Mobile Communication Co., Ltd. | Data transmission method, base station, and user equipment |
CN109672506A (en) * | 2017-10-16 | 2019-04-23 | 华为技术有限公司 | The confirmation method and equipment of data transmission |
US11589384B2 (en) * | 2017-11-17 | 2023-02-21 | Huawei Technologies Co., Ltd. | Data transmission method, terminal device, and network device |
CN111448780A (en) * | 2017-12-15 | 2020-07-24 | 瑞典爱立信有限公司 | Method for handling traffic in a communication network and traffic processing unit |
US11375550B2 (en) * | 2017-12-22 | 2022-06-28 | Zte Corporation | Sequence selection for non-orthogonal multiple access transmissions |
US10797748B2 (en) | 2018-02-21 | 2020-10-06 | Qualcomm Incorporated | Pairwise cross correlation sequences for non-orthogonal multiple access wireless communications |
WO2019164916A1 (en) * | 2018-02-21 | 2019-08-29 | Qualcomm Incorporated | Pairwise cross correlation sequences for non-orthogonal multiple access wireless communications |
CN111742507A (en) * | 2018-02-21 | 2020-10-02 | 高通股份有限公司 | Paired cross-correlation sequences for non-orthogonal multiple access wireless communications |
US11057495B2 (en) | 2019-05-01 | 2021-07-06 | Ciena Corporation | Selecting where to process data associated with Internet of Things (IoT) devices |
EP4135410A4 (en) * | 2020-04-29 | 2023-05-17 | Huawei Technologies Co., Ltd. | Access method and device, and communication system |
US12150062B2 (en) | 2022-02-18 | 2024-11-19 | Huawei Technologies Co., Ltd. | System and method for always on connections in wireless communications system |
Also Published As
Publication number | Publication date |
---|---|
WO2014090200A1 (en) | 2014-06-19 |
CN110213824B (en) | 2021-01-05 |
EP2929744A1 (en) | 2015-10-14 |
CN110138508A (en) | 2019-08-16 |
JP2016504851A (en) | 2016-02-12 |
KR101728021B1 (en) | 2017-04-18 |
US20180242310A1 (en) | 2018-08-23 |
KR20170042830A (en) | 2017-04-19 |
CN110213825B (en) | 2020-12-08 |
KR20180043860A (en) | 2018-04-30 |
JP2017118552A (en) | 2017-06-29 |
JP6139695B2 (en) | 2017-05-31 |
CN110213825A (en) | 2019-09-06 |
CN104838713B (en) | 2019-05-10 |
CN110138508B (en) | 2023-10-24 |
EP2929744B1 (en) | 2019-04-17 |
US10945243B2 (en) | 2021-03-09 |
KR20150093841A (en) | 2015-08-18 |
CN104838713A (en) | 2015-08-12 |
JP6451957B2 (en) | 2019-01-16 |
US20180242309A1 (en) | 2018-08-23 |
US10945244B2 (en) | 2021-03-09 |
EP2929744A4 (en) | 2015-12-16 |
EP3570612A1 (en) | 2019-11-20 |
CN110213824A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10945243B2 (en) | System and method for small traffic transmissions | |
US11013024B2 (en) | System and method for uplink grant-free transmission scheme | |
KR102026845B1 (en) | System and method for transmission in grant-free uplink transmission scheme | |
US10433341B2 (en) | Random access response message sending method and node | |
CN107769898B (en) | User equipment device operating in wireless communication system and operating method thereof | |
JP2019533966A (en) | System and method for uplink transmission without authorization | |
CN114051761A (en) | Dynamic indication of multiple TRP PDSCH transmission schemes | |
WO2016165388A1 (en) | Random access processing method and device | |
US20240179730A1 (en) | Method and apparatus for inter-user equipment (ue) coordination in sidelink (sl) communications | |
US20240080867A1 (en) | Method and apparatus for sidelink communications of power saving ues in shared resource pool | |
US11234220B2 (en) | Allocation of resources in physical uplink control channels | |
WO2016165428A1 (en) | Method and apparatus for configuring message resources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUTUREWEI TECHNOLOGIES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AU, KELVIN KAR KIN;MA, JIANGLEI;NIKOPOUR, HOSEIN;AND OTHERS;SIGNING DATES FROM 20130613 TO 20130614;REEL/FRAME:030791/0854 |
|
AS | Assignment |
Owner name: HUAWEI TECHNOLOGIES CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUTUREWEI TECHNOLOGIES, INC.;REEL/FRAME:036754/0965 Effective date: 20090101 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |