[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20140189922A1 - Impact-absorbing member, protective clothing, and process for producing impact-absorbing member - Google Patents

Impact-absorbing member, protective clothing, and process for producing impact-absorbing member Download PDF

Info

Publication number
US20140189922A1
US20140189922A1 US14/238,768 US201314238768A US2014189922A1 US 20140189922 A1 US20140189922 A1 US 20140189922A1 US 201314238768 A US201314238768 A US 201314238768A US 2014189922 A1 US2014189922 A1 US 2014189922A1
Authority
US
United States
Prior art keywords
stretched resin
impact
resin films
absorbing member
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/238,768
Inventor
Masanori Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Assigned to SEKISUI CHEMICAL CO., LTD. reassignment SEKISUI CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAMURA, MASANORI
Publication of US20140189922A1 publication Critical patent/US20140189922A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/02Armoured or projectile- or missile-resistant garments; Composite protection fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/03Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features
    • B32B7/035Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers with respect to the orientation of features using arrangements of stretched films, e.g. of mono-axially stretched films arranged alternately
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/06Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions for securing layers together; for attaching the product to another member, e.g. to a support, or to another product, e.g. groove/tongue, interlocking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/04Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a layer being specifically extensible by reason of its structure or arrangement, e.g. by reason of the chemical nature of the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates or anti-ballistic clothing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3854Woven fabric with a preformed polymeric film or sheet
    • Y10T442/3862Ester condensation polymer sheet or film [e.g., polyethylene terephthalate, etc.]

Definitions

  • the present invention relates to an impact-absorbing member, protective clothing including the impact-absorbing member, and a process for producing an impact-absorbing member.
  • Patent Document 1 proposes a fiber-reinforced resin molded product as an impact-absorbing plate, and the fiber-reinforced resin molded product is formed by impregnating a fabric, which contains 0.01% by weight to 10% by weight of a fluorine compound, with a resin composition.
  • Patent Document 1 JP 2002-316319 A
  • a principal object of the present invention is to provide an impact-absorbing member having excellent blade-proof performance.
  • An impact-absorbing member according to the present invention includes a plurality of stretched resin films stacked and bonded to one another.
  • the plurality of stretched resin films include a biaxially stretched resin film.
  • the plurality of stretched resin films include the biaxially stretched resin film and a uniaxially stretched resin film.
  • At least one of principal surfaces of a laminate of the plurality of stretched resin films may be formed of a uniaxially stretched resin film.
  • the plurality of stretched resin films include a plurality of uniaxially stretched resin films whose stretching directions are mutually different.
  • the impact-absorbing member according to the present invention may further include at least one of a woven fabric and a braided fabric which is stacked on the plurality of stretched resin films.
  • the plurality of stretched resin films include a plurality of biaxially stretched resin films whose stretching directions are mutually inclined.
  • the stretched resin film includes a crystalline polymer.
  • a 180° peeling strength per 1 cm of width of the adjacent stretched resin films is preferably 0.1 kgf to 3 kgf.
  • the adjacent stretched resin films may be bonded directly to each other.
  • the impact-absorbing member according to the present invention may further include an adhesive layer which bonds adjacent stretched resin films to each other.
  • the adjacent stretched resin films may be at least partially kept from being not bonded to each other.
  • the stretched resin films may have a through-hole, and the plurality of stretched resin films may be bound together by a binding member inserted in the through-hole.
  • a binding member is formed of a metal.
  • the stretched resin film may be formed of a porous material.
  • the stretched resin film may have a vent hole.
  • the vent hole provided in one of the stretched resin films and a vent hole provided in a stretched resin film adjacent to the one of the stretched resin films do not overlap each other.
  • Protective clothing according to the present invention includes the impact-absorbing member according to the present invention.
  • a plurality of stretched resin films including a biaxially stretched resin film are stacked and thermocompression-bonded to obtain an impact-absorbing member.
  • FIG. 1 is a schematic sectional view of an impact-absorbing plate according to a first embodiment.
  • FIG. 2 is a schematic sectional view of an impact-absorbing plate according to a modification.
  • FIG. 3 is a schematic sectional view of an impact-absorbing member according to a second embodiment.
  • FIG. 4 is a schematic sectional view of protective clothing according to a third embodiment.
  • FIG. 5 is a schematic sectional view taken along the line V-V in FIG. 4 .
  • the dimension ratio etc. of an article drawn in the drawing may be different from the dimension ratio etc. of the real article.
  • the dimension ratio etc. of an article may vary among drawings.
  • the specific dimension ratio etc. of the article should be determined by considering the following descriptions.
  • an impact-absorbing plate 1 includes a plurality of stretched resin films 10 .
  • a plurality of stretched resin films 10 are stacked along a z axis direction, i.e. a thickness direction.
  • the stretched resin films 10 adjacent to each other in the z axis direction are bonded to each other.
  • the stretched resin films 10 adjacent to each other in the z axis direction are bonded directly to each other.
  • the impact-absorbing plate 1 A is configurated by a laminate including the plurality of stretched resin films 10 stacked and stacked to one another form.
  • adjacent stretched resin films 10 may be bonded to each other by an adhesive layer 13 .
  • the adhesive layer 13 is formed of, for example, a thermoplastic resin having a low melting point.
  • the thermoplastic resin that is preferably used include ethylene-vinyl acetate copolymers, PVB resins, styrene ethylene-butylene styrene block copolymers and polyethylene resins etc.
  • the stretched resin film 10 includes a crystalline polymer.
  • the strength of the stretched resin film 10 in a stretching direction can be enhanced.
  • the crystalline polymer that is preferably used include polyethylene, polypropylene, polyamide, polyacetal, polyethylene terephthalate, polybutylene terephthalate and liquid crystal polymers etc. Among them, polyethylen, polypropylene, and polyethylene terephthalate, which are easily draw-molded and are inexpensive, are more preferably used.
  • the stretched resin film 10 may be formed of a resin composition containing fibers.
  • the thickness of the stretched resin film 10 is not particularly limited, and may be, for example, about 5 ⁇ m to 100 ⁇ m. When the thickness of the stretched resin film 10 is excessively thin, it may become difficult to mold the stretched resin film 10 . When the thickness of the stretched resin film 10 is excessively thick, impact absorption performance may be deteriorated because the number of stacked films per unit thickness decreases.
  • the number of stretched resin films 10 of the impact-absorbing plate 1 may be appropriately set according to a required level of blade-proof performance and bulletproof performance and a thickness of the stretched resin film 10 .
  • the number of stretched resin films 10 of the impact-absorbing plate 1 is more preferably, for example, about 50 to 400.
  • the thickness of the stretched resin film 10 and the number of stacked stretched resin films 10 are adjusted so that the thickness of the impact-absorbing plate 1 is about 2 mm to 10 mm.
  • a plurality of stretched resin films 10 include biaxially stretched resin films 12 .
  • the impact-absorbing plate 1 includes a biaxially stretched resin film laminate 1 b including a plurality of biaxially stretched resin films 12 stacked and bonded to one another.
  • a plurality of stretched resin films 10 include uniaxially stretched resin films 11 a and 11 b in addition to biaxially stretched resin films 12 .
  • the uniaxially stretched resin film 11 a and the uniaxially stretched resin film 11 b have mutually different stretching directions. Specifically, the stretching direction of the uniaxially stretched resin film 11 a and the stretching direction of the uniaxially stretched resin film 11 b are perpendicular to each other.
  • the bonding strength of adjacent stretched resin films 10 is appropriate for obtaining preferred impact absorption performance.
  • a 180° peeling strength per 1 cm of width of adjacent stretched resin films 10 is preferably 0.1 kgf to 3 kgf.
  • a plurality of stretched resin films 10 include biaxially stretched resin films 12 as described above.
  • the biaxially stretched resin film 12 has a high strength in each of two directions in which the film is stretched.
  • a sharp-edged member such as an ice pick is hard to pierce the impact-absorbing plate 1 including biaxially stretched resin films 12 .
  • the impact absorbing plate 1 is hard to be pierced with the edged tool. Therefore, the impact-absorbing plate 1 has excellent blade-proof performance.
  • all of the stretched resin films included in the impact-absorbing plate may be biaxially stretched resin films.
  • the biaxially stretched resin film has the problem that it is difficult to enhance an elastic modulus.
  • the impact-absorbing plate may include at least one of a woven fabric and a braided fabric which is stacked on the stretched resin films.
  • the impact-absorbing plate may include at least one of a woven fabric and a braided fabric in place of the uniaxially stretched resin film. That is, the impact-absorbing plate may include at least one of a woven fabric, a braided fabric and the uniaxially stretched resin film in addition to the biaxially stretched resin film.
  • those formed by alternately stacking strip-shaped uniaxially stretched resin films along two or more different directions are preferably used.
  • those formed by alternately stacking strip-shaped uniaxially stretched resin films along one direction and another direction perpendicular to the one direction those formed by alternately stacking strip-shaped uniaxially stretched resin films along the one direction, the another direction and a direction inclined to the one direction at an angle of 45°, and the like are preferably used.
  • woven fabric for example, plane weaves, twill weaves, basket weaves and the like are preferably used.
  • At least one of principal surfaces 1 A and 1 B of the impact-absorbing plate 1 is preferably formed of the uniaxially stretched resin film 11 a or the uniaxially stretched resin film 11 b, and both principal surfaces 1 A and 1 B of the impact-absorbing plate 1 are more preferably formed of the uniaxially stretched resin film 11 a or the uniaxially stretched resin film 11 b.
  • the impact-absorbing plate 1 includes a plurality of uniaxially stretched resin films 11 a and 11 b whose stretching directions are mutually different, and more preferably the stretching direction of the uniaxially stretched resin film 11 a and the stretching direction of the uniaxially stretched resin film 11 b are orthogonal to each other.
  • a plurality of stretched resin films 10 include a plurality of biaxially stretched resin films 12 whose stretching directions are mutually inclined.
  • the total of the thicknesses of uniaxially stretched resin films 11 a and 11 b of the impact-absorbing plate 1 is preferably, for example, about 0.2 mm to 1 mm.
  • the total of the thicknesses of biaxially stretched resin films 12 of the impact-absorbing plate 1 is preferably, for example, about 1 mm to 9 mm.
  • uniaxially stretched resin films 11 a and 11 b and the biaxially stretched resin film 12 are provided.
  • Uniaxially stretched resin films 11 a and 11 b can be molded using at least one of stretching methods such as, for example, a roll stretching method, a draw-stretching method, a zone heating stretching method and a stretching method by rolling.
  • the draw ratio may be, for example, about 15 to 30.
  • the biaxially stretched resin film 12 can be molded using at least one of stretching methods such as, for example, an inflation molding, a tubular-type biaxial stretching method and a tender-type biaxial stretching method.
  • the draw ratio may be, for example, about 2 to 5.
  • the stacking order of stretched resin films 10 is not particularly limited to the stacking order in the impact-absorbing plate 1 .
  • uniaxially stretched resin films and biaxially stretched resin films may be alternately stacked.
  • a uniaxially stretched resin film stretched in one direction the biaxially stretched resin film, a uniaxially stretched resin film stretched in a direction perpendicular to the one direction, and the biaxially stretched resin film 12 may be stacked in this order.
  • FIG. 3 is a schematic sectional view of an impact-absorbing member according to a second embodiment.
  • the first embodiment has been described by showing as an example the impact-absorbing plate 1 that is a rigid body in which adjacent stretched resin films 10 are wholly bonded to each other as one embodiment of the impact-absorbing member according to the present invention.
  • the present invention is not limited to this configuration.
  • adjacent stretched resin films may at least partially kept from being not bonded to each other.
  • adjacent stretched resin films 10 are not bonded to each other, and therefore can be relatively displaced.
  • a plurality of through-holes 10 a are provided at intervals from one another.
  • a plurality of stretched resin films 10 are stacked such that through-holes 10 a of one film overlap those of another film.
  • the binding member 20 is formed of a metal.
  • excellent bulletproof performance and blade-proof performance can also be imparted to sections provided with through-holes 10 a.
  • the first and second head portions 22 a and 22 b are so sized as to cover the whole through-hole 10 a irrespective of a location in the through-hole 10 a at which the pillar portion 21 is situated.
  • the impact-absorbing member 1 a having flexibility can be provided.
  • the impact-absorbing member la having flexibility as described above is particularly suitably used in applications where flexibility or plasticity is required, such as, for example, those of clothing etc.
  • the pillar portion 21 is thinner than the through-hole 10 a, and a clearance is provided between the outer circumferential surface of the pillar portion 21 and the inner circumferential surface of the through-hole 10 a.
  • the ratio of the diameter of the pillar portion 21 to the diameter of the through-hole 10 a is preferably 1.0 or less, more preferably 0.8 or less.
  • the ratio of the diameter of the pillar portion 21 to the diameter of the through-hole 10 a is preferably 0.6 or more.
  • the length of the pillar portion 21 is preferably longer than the total thickness of a plurality of stacked stretched resin films 10 .
  • the ratio of the length of the pillar portion 21 to the total thickness of a plurality of stacked stretched resin films 10 is more preferably 1.0 or more, further preferably 1.2 or more.
  • the ratio of the length of the pillar portion 21 to the total thickness of a plurality of stacked stretched resin films 10 is preferably 1.3 or less.
  • the stacked form of stretched resin films 10 is substantially the same as that in the impact-absorbing member 1 according to the first embodiment. Therefore, in this embodiment, the descriptions of the first embodiment are incorporated with regard to the stacked form of stretched resin films 10 .
  • FIG. 4 is a schematic sectional view of protective clothing according to a third embodiment.
  • FIG. 5 is a schematic sectional view taken along the line V-V in FIG. 4 .
  • the impact-absorbing member according to the present invention is excellent in bulletproof performance and blade-proof performance, and therefore can be used in various applications such as, for example, those of protective clothing, protective shoes, vehicles, buildings and protectors such as shields.
  • an impact-absorbing member having flexibility like the impact-absorbing member 1 a according to the second embodiment, is suitably used for protective clothing etc.
  • protective clothing 2 including an impact-absorbing member 1 b having flexibility as illustrated in FIG. 5 will be described.
  • the protective clothing 2 includes a clothing body 30 made of cloth which forms the outer surface of the protective clothing 2 .
  • the impact-absorbing member 1 b is arranged inside the clothing body 30 .
  • the impact-absorbing member 1 b has substantially the same configuration as that of the impact-absorbing member 1 a according to the second embodiment except that the stretched resin film 10 has a vent hole 10 b.
  • the impact-absorbing member 1 b is continuously arranged substantially all over the clothing body 30 .
  • the rigid body when a rigid body such as a metal plate etc. is arranged inside the clothing body, the rigid body can be arranged only on a part of the clothing body. When the rigid body is arranged all over the clothing body, flexibility of the protective clothing is lost, so that it becomes difficult to put on and take off the clothing, and also movement of a person wearing the protective clothing is significantly restricted.
  • tile-shaped rigid bodies are arranged in a matrix form at intervals from one another. In this case, bulletproof performance and blade-proof performance between rigid bodies are not secured.
  • the impact-absorbing member 1 b has flexibility. Therefore, for example, even when the impact-absorbing member 1 b is continuously provided all over the clothing body 30 with no gap left, flexibility of the protective clothing 2 is maintained. Therefore, the impact-absorbing member 1 b can be continuously and largely provided inside the clothing body 30 . Accordingly, the protective clothing 2 excellent in protective performance can be provided.
  • the stretched resin film 10 is provided with the vent hole 10 b, the protective clothing 2 excellent in air permeability can be provided.
  • the stretched resin film 10 may be formed of a porous material having an interconnected cell.
  • the stretched resin film 10 may be formed of a porous material having an interconnected cell, and provided with the vent hole 10 b.
  • vent holes 10 b of adjacent stretched resin films 10 are provided so as not overlap each other in a stacking direction. Therefore, for example, portions having low bulletproof performance and blade-proof performance are hard to occur as compared to a case where vent holes are provided so as to overlap one another in a stacking direction.
  • the clothing body 30 and the impact-absorbing member 1 b are fixed to each other by the binding member 20 .
  • the length of the impact-absorbing member 1 b is longer than the length of the clothing body 30 . That is, the impact-absorbing member 1 b is loosely fixed to the clothing body 30 by the binding member 20 . In this way, flexibility of the protective clothing 2 is further enhanced.
  • the ratio of the length of the impact-absorbing member 1 b to the clothing body 30 is preferably 1.0 or more, more preferably 1.1 or more for enhancing flexibility of the protective clothing 2 .
  • the ratio of the length of the clothing body 30 to the length of the impact-absorbing member 1 b is usually 1.2 or less.
  • the distance between adjacent binding members 20 may be, for example, about 30 mm to 100 mm.
  • flexibility of the protective clothing 2 may be excessively reduced.
  • handling characteristics of the protective clothing 2 may be deteriorated.
  • a biaxially stretched polyester film having a thickness of 16 ⁇ m (FT16 manufactured by Teijin Limited) was cut into squares of 200 mm, and the sheets thus obtained were stacked in 150 layers.
  • the obtained laminate was heated and pressed under a press load of 10 t using a pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.) with the surface temperature set at 180° C. Thereafter, the setting of the surface temperature of the pressing machine was changed to 140° C. and the laminate was held for 60 minutes while a press load of 10 t was maintained.
  • the sample was cooled to room temperature while a pressure of 5 t was applied using a cooled pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.).
  • the thickness of the obtained biaxially stretched polyester film laminate was 2 mm.
  • the uniaxially stretched resin film laminate prepared as described above was stacked on both surfaces of the biaxially stretched polyester film laminate prepared as described above, with a film, which was obtained by heating and compressing to a thickness of 0.1 mm an ethylene vinyl acetate film (SP Sealant manufactured by Sekisui Film Co., Ltd.) having a thickness of 0.1 mm, interposed therebetween, and the obtained laminate was heated and pressed under a press load of 5 t for approximately 2 minutes using a pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.) with the surface temperature set at 125° C., thereby preparing an impact-absorbing plate having a thickness of 2.9 mm.
  • a pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.
  • a biaxially stretched polyester film having a thickness of 16 ⁇ m (FT16 manufactured by Teijin Limited) was cut into squares of 200 mm, and the sheets thus obtained were stacked in 150 layers. Holes having a diameter of 10 mm were formed in a matrix form at intervals of 50 mm in the obtained laminate using a drill.
  • An epoxy adhesive (Araldite 8-254-01 manufactured by AS ONE Corporation) was poured into each of a plurality of holes formed, and the laminate was left standing for 2 days to bond the stacked biaxially stretched polyester films, thereby obtaining an impact-absorbing plate.
  • a cylindrical hole having a diameter of 20 mm and a depth of 30 mm was formed at one end surface of a cylindrical brass material having a diameter of 38 mm, thereby preparing a 1 kg weight provided with a cylindrical hole.
  • An eyeleteer hilt manufactured by DEBIKA Corporation was inserted into the cylindrical hole of the weight to prepare a blade with a weight.
  • the blade with a weight was caused to fall down from 1.5 m above the impact-absorbing plate through the inside of an aluminum cylindrical pipe having a diameter of 40 mm, which was arranged on the impact-absorbing plate arranged on a cork board having a thickness of 5 cm, thereby colliding the blade against the impact-absorbing plate.
  • the length of a part, which pierced through the impact-absorbing plate prepared in Example 1 was 6 mm.
  • the length of a part, which pierced through the impact-absorbing plate prepared in Example 2 was 12 mm.
  • the length of a part, which pierced through the impact-absorbing plate prepared in Comparative Example was 18 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

An impact-absorbing member having excellent blade-proof performance is provided.
An impact-absorbing plate (1) includes a plurality of stretched resin films (10) stacked and bonded to one another, and the plurality of stretched resin films (10) include a biaxially stretched resin film (12).

Description

    TECHNICAL FIELD
  • The present invention relates to an impact-absorbing member, protective clothing including the impact-absorbing member, and a process for producing an impact-absorbing member.
  • BACKGROUND ART
  • As a material to be used for a bulletproof vest or the like, an impact-absorbing plate excellent in bulletproof performance and blade-proof performance has been desired heretofore.
  • For example, Patent Document 1 proposes a fiber-reinforced resin molded product as an impact-absorbing plate, and the fiber-reinforced resin molded product is formed by impregnating a fabric, which contains 0.01% by weight to 10% by weight of a fluorine compound, with a resin composition.
  • RELATED ART DOCUMENT Patent Document
  • Patent Document 1: JP 2002-316319 A
  • SUMMARY OF THE INVENTION Problems to be Solved by the Invention
  • It is desired to further enhance blade-proof performance of impact-absorbing plates.
  • A principal object of the present invention is to provide an impact-absorbing member having excellent blade-proof performance.
  • Means for Solving the Problems
  • An impact-absorbing member according to the present invention includes a plurality of stretched resin films stacked and bonded to one another. The plurality of stretched resin films include a biaxially stretched resin film.
  • Preferably, the plurality of stretched resin films include the biaxially stretched resin film and a uniaxially stretched resin film.
  • At least one of principal surfaces of a laminate of the plurality of stretched resin films may be formed of a uniaxially stretched resin film.
  • Preferably, the plurality of stretched resin films include a plurality of uniaxially stretched resin films whose stretching directions are mutually different.
  • The impact-absorbing member according to the present invention may further include at least one of a woven fabric and a braided fabric which is stacked on the plurality of stretched resin films.
  • Preferably, the plurality of stretched resin films include a plurality of biaxially stretched resin films whose stretching directions are mutually inclined.
  • Preferably, the stretched resin film includes a crystalline polymer.
  • A 180° peeling strength per 1 cm of width of the adjacent stretched resin films is preferably 0.1 kgf to 3 kgf.
  • The adjacent stretched resin films may be bonded directly to each other.
  • The impact-absorbing member according to the present invention may further include an adhesive layer which bonds adjacent stretched resin films to each other.
  • The adjacent stretched resin films may be at least partially kept from being not bonded to each other.
  • The stretched resin films may have a through-hole, and the plurality of stretched resin films may be bound together by a binding member inserted in the through-hole.
  • Preferably, a binding member is formed of a metal.
  • The stretched resin film may be formed of a porous material.
  • The stretched resin film may have a vent hole.
  • Preferably, the vent hole provided in one of the stretched resin films and a vent hole provided in a stretched resin film adjacent to the one of the stretched resin films do not overlap each other.
  • Protective clothing according to the present invention includes the impact-absorbing member according to the present invention.
  • In a method for producing an impact-absorbing member according to the present invention, a plurality of stretched resin films including a biaxially stretched resin film are stacked and thermocompression-bonded to obtain an impact-absorbing member.
  • Effect of the Invention
  • According to the present invention, it is possible to provide an impact-absorbing member having excellent blade-proof performance.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic sectional view of an impact-absorbing plate according to a first embodiment.
  • FIG. 2 is a schematic sectional view of an impact-absorbing plate according to a modification.
  • FIG. 3 is a schematic sectional view of an impact-absorbing member according to a second embodiment.
  • FIG. 4 is a schematic sectional view of protective clothing according to a third embodiment.
  • FIG. 5 is a schematic sectional view taken along the line V-V in FIG. 4.
  • MODE(S) FOR CARRYING OUT THE INVENTION
  • One example of a preferred embodiment in which the present invention is carried out will be described below. However, the embodiment described below is merely illustrative. The present invention is in no way limited to the embodiment described below.
  • In the drawings which are referred to in the embodiment etc., members having substantially the same function are referred to with the same symbol. The drawings which are referred to in the embodiment etc. are schematically described, so that the dimension ratio etc.
  • of an article drawn in the drawing may be different from the dimension ratio etc. of the real article. The dimension ratio etc. of an article may vary among drawings. The specific dimension ratio etc. of the article should be determined by considering the following descriptions.
  • First Embodiment
  • As illustrated in FIG. 1, an impact-absorbing plate 1 includes a plurality of stretched resin films 10. A plurality of stretched resin films 10 are stacked along a z axis direction, i.e. a thickness direction. The stretched resin films 10 adjacent to each other in the z axis direction are bonded to each other. Specifically, the stretched resin films 10 adjacent to each other in the z axis direction are bonded directly to each other. The impact-absorbing plate 1A is configurated by a laminate including the plurality of stretched resin films 10 stacked and stacked to one another form.
  • As illustrated in FIG. 2, adjacent stretched resin films 10 may be bonded to each other by an adhesive layer 13. Preferably, the adhesive layer 13 is formed of, for example, a thermoplastic resin having a low melting point. Specific examples of the thermoplastic resin that is preferably used include ethylene-vinyl acetate copolymers, PVB resins, styrene ethylene-butylene styrene block copolymers and polyethylene resins etc.
  • Preferably, the stretched resin film 10 includes a crystalline polymer. In this case, the strength of the stretched resin film 10 in a stretching direction can be enhanced. Specific examples of the crystalline polymer that is preferably used include polyethylene, polypropylene, polyamide, polyacetal, polyethylene terephthalate, polybutylene terephthalate and liquid crystal polymers etc. Among them, polyethylen, polypropylene, and polyethylene terephthalate, which are easily draw-molded and are inexpensive, are more preferably used. The stretched resin film 10 may be formed of a resin composition containing fibers.
  • The thickness of the stretched resin film 10 is not particularly limited, and may be, for example, about 5 μm to 100 μm. When the thickness of the stretched resin film 10 is excessively thin, it may become difficult to mold the stretched resin film 10. When the thickness of the stretched resin film 10 is excessively thick, impact absorption performance may be deteriorated because the number of stacked films per unit thickness decreases.
  • The number of stretched resin films 10 of the impact-absorbing plate 1 may be appropriately set according to a required level of blade-proof performance and bulletproof performance and a thickness of the stretched resin film 10. The number of stretched resin films 10 of the impact-absorbing plate 1 is more preferably, for example, about 50 to 400. Generally, the thickness of the stretched resin film 10 and the number of stacked stretched resin films 10 are adjusted so that the thickness of the impact-absorbing plate 1 is about 2 mm to 10 mm.
  • A plurality of stretched resin films 10 include biaxially stretched resin films 12. Specifically, the impact-absorbing plate 1 includes a biaxially stretched resin film laminate 1 b including a plurality of biaxially stretched resin films 12 stacked and bonded to one another.
  • A plurality of stretched resin films 10 include uniaxially stretched resin films 11 a and 11 b in addition to biaxially stretched resin films 12. The uniaxially stretched resin film 11 a and the uniaxially stretched resin film 11 b have mutually different stretching directions. Specifically, the stretching direction of the uniaxially stretched resin film 11 a and the stretching direction of the uniaxially stretched resin film 11 b are perpendicular to each other.
  • The impact-absorbing plate 1 is configurated by uniaxially stretched resin film laminates 1 a and 1 c in which uniaxially stretched resin film 11 a and uniaxially stretched resin film 11 b are alternately stacked and bonded to one another. First and second principal surfaces 1A and 1B of the impact-absorbing plate 1 are formed of uniaxially stretched resin film laminates 1 a and 1 c. Therefore, first and second principal surfaces 1A and 1B of the impact-absorbing plate 1 are formed of the uniaxially stretched resin film.
  • Next, action of the impact-absorbing plate 1 will be described. When an impact is applied to the principal surface 1A or the principal surface 1B of the impact-absorbing plate 1, stretched resin films 10 bonded are peeled by the impact. Consequently, energy of the impact is absorbed. Accordingly, for example, a crack extending through the impact-absorbing plate 1 in a thickness direction (z axis direction) is hard to be generated by energy of the applied impact. Preferably the bonding strength of adjacent stretched resin films 10 is appropriate for obtaining preferred impact absorption performance. Specifically, a 180° peeling strength per 1 cm of width of adjacent stretched resin films 10 is preferably 0.1 kgf to 3 kgf. When the 180° peeling strength per 1 cm of width of adjacent stretched resin films 10 is excessively low, sufficient impact absorption performance may not be obtained at the time of collision of articles because stretched resin films 10 are peeled during transportation or storage etc. When the 180° peeling strength per 1 cm of width of adjacent stretched resin films 10 is excessively high, energy of impact may not be adequately absorbed because stretched resin films 10 are not peeled when the impact is applied.
  • In the impact-absorbing plate 1, a plurality of stretched resin films 10 include biaxially stretched resin films 12 as described above. The biaxially stretched resin film 12 has a high strength in each of two directions in which the film is stretched. Thus, for example, even if an acute member sticks into biaxially stretched resin films 12, the hole is hard to expand, and therefore a sharp-edged member such as an ice pick is hard to pierce the impact-absorbing plate 1 including biaxially stretched resin films 12. Similarly, even when slashed with an edged tool, the impact absorbing plate 1 is hard to be pierced with the edged tool. Therefore, the impact-absorbing plate 1 has excellent blade-proof performance.
  • For obtaining further excellent blade-proof performance, all of the stretched resin films included in the impact-absorbing plate may be biaxially stretched resin films. However, the biaxially stretched resin film has the problem that it is difficult to enhance an elastic modulus. When all of the stretched resin films are biaxially stretched resin films, it may become difficult to obtain an impact-absorbing plate which has a high elastic modulus and is excellent in bulletproof performance.
  • On the other hand, the impact-absorbing plate 1 includes uniaxially stretched resin films 11 a and 11 b in addition to biaxially stretched resin films 2. In the case of uniaxially stretched resin films 11 a and 11 b, elastic modulus is easily enhanced as compared to the biaxially stretched resin film. Therefore, according to the impact-absorbing plate 1 including uniaxially stretched resin films 11 a and 11 b in addition to the biaxially stretched resin films 2, not only excellent blade-proof performance but also excellent bulletproof performance can be achieved.
  • The impact-absorbing plate may include at least one of a woven fabric and a braided fabric which is stacked on the stretched resin films. The impact-absorbing plate may include at least one of a woven fabric and a braided fabric in place of the uniaxially stretched resin film. That is, the impact-absorbing plate may include at least one of a woven fabric, a braided fabric and the uniaxially stretched resin film in addition to the biaxially stretched resin film.
  • As the braided fabric, for example, those formed by alternately stacking strip-shaped uniaxially stretched resin films along two or more different directions are preferably used. Specifically, for example, those formed by alternately stacking strip-shaped uniaxially stretched resin films along one direction and another direction perpendicular to the one direction, those formed by alternately stacking strip-shaped uniaxially stretched resin films along the one direction, the another direction and a direction inclined to the one direction at an angle of 45°, and the like are preferably used.
  • As the woven fabric, for example, plane weaves, twill weaves, basket weaves and the like are preferably used.
  • For further improving bulletproof performance of the impact-absorbing plate 1, at least one of principal surfaces 1A and 1B of the impact-absorbing plate 1 is preferably formed of the uniaxially stretched resin film 11 a or the uniaxially stretched resin film 11 b, and both principal surfaces 1A and 1B of the impact-absorbing plate 1 are more preferably formed of the uniaxially stretched resin film 11 a or the uniaxially stretched resin film 11 b.
  • For further improving bulletproof performance of the impact-absorbing plate 1, preferably the impact-absorbing plate 1 includes a plurality of uniaxially stretched resin films 11 a and 11 b whose stretching directions are mutually different, and more preferably the stretching direction of the uniaxially stretched resin film 11 a and the stretching direction of the uniaxially stretched resin film 11 b are orthogonal to each other.
  • Similarly, for further improving bulletproof performance of the impact-absorbing plate 1, preferably a plurality of stretched resin films 10 include a plurality of biaxially stretched resin films 12 whose stretching directions are mutually inclined.
  • For achieving excellent bulletproof performance, the total of the thicknesses of uniaxially stretched resin films 11 a and 11 b of the impact-absorbing plate 1 is preferably, for example, about 0.2 mm to 1 mm. For achieving excellent blade-proof performance, the total of the thicknesses of biaxially stretched resin films 12 of the impact-absorbing plate 1 is preferably, for example, about 1 mm to 9 mm.
  • Next, a method for producing the impact-absorbing plate 1 will be described.
  • First, uniaxially stretched resin films 11 a and 11 b and the biaxially stretched resin film 12 are provided. Uniaxially stretched resin films 11 a and 11 b can be molded using at least one of stretching methods such as, for example, a roll stretching method, a draw-stretching method, a zone heating stretching method and a stretching method by rolling. The draw ratio may be, for example, about 15 to 30.
  • The biaxially stretched resin film 12 can be molded using at least one of stretching methods such as, for example, an inflation molding, a tubular-type biaxial stretching method and a tender-type biaxial stretching method. The draw ratio may be, for example, about 2 to 5.
  • Next, uniaxially stretched resin films 11 a and 11 b and the biaxially stretched resin film 12 are appropriately stacked and thermocompression-bonded, whereby the impact-absorbing plate 1 can be produced. When the temperature during thermocompression bonding is excessively high, stretched resin films 10 may be excessively strongly fused together, or orientational relaxation of molecules in the stretched resin film 10 may occur. On the other hand, when the temperature during thermocompression bonding is extremely low, the bonding strength of stretched resin films 10 may become excessively low. Therefore, the temperature during thermocompression bonding is preferably approximately a temperature lower by 100° C. to a temperature higher by 5° C. than the melting point of the stretched resin film 10. Specifically, when the stretched resin film 10 is formed of high-density polyethylene, the temperature during themocompression bonding is preferably about 120° C. to 130° C. When the stretched resin film 10 is formed of polyethylene terephthalate, the temperature during themocompression bonding is preferably about 150° C. to 200° C.
  • The stacking order of stretched resin films 10 is not particularly limited to the stacking order in the impact-absorbing plate 1. For example, uniaxially stretched resin films and biaxially stretched resin films may be alternately stacked. In this case, for example, a uniaxially stretched resin film stretched in one direction, the biaxially stretched resin film, a uniaxially stretched resin film stretched in a direction perpendicular to the one direction, and the biaxially stretched resin film 12 may be stacked in this order.
  • Another example of a preferred embodiment of the present invention will be described. In the following descriptions, members having substantially the same function with the first embodiment are referred to with the same symbol, and explanations thereof are omitted.
  • Second Embodiment
  • FIG. 3 is a schematic sectional view of an impact-absorbing member according to a second embodiment.
  • The first embodiment has been described by showing as an example the impact-absorbing plate 1 that is a rigid body in which adjacent stretched resin films 10 are wholly bonded to each other as one embodiment of the impact-absorbing member according to the present invention. However, the present invention is not limited to this configuration. For example, adjacent stretched resin films may at least partially kept from being not bonded to each other.
  • In an impact-absorbing member 1 a according to this embodiment, adjacent stretched resin films 10 are not bonded to each other, and therefore can be relatively displaced. In each of a plurality of stretched resin films 10, a plurality of through-holes 10 a are provided at intervals from one another. A plurality of stretched resin films 10 are stacked such that through-holes 10 a of one film overlap those of another film.
  • A plurality of stretched resin films 10 are bound together by binding members 20 inserted in through-holes 10 a. The binding member 20 includes a pillar portion 21 and first and second head portions 22 a and 22 b. The pillar portion 21 is inserted in the through-hole 10 a, and extends from one side to the other side of a laminate of a plurality of stretched resin films 10. The first head portion 22 a is joined to one end of the pillar portion 21, and situated at one side of the laminate of a plurality of stretched resin films 10. The second head portion 22 b is joined to the other end of the pillar portion 21, and situated at the other side of the laminate of a plurality of stretched resin films 10. The first and second head portions 22 a and 22 b are larger than the through-hole 10 a. Therefore, stretched resin films 10 are integrated in such a manner as to be retained by the first and second head portions 22 a and 22 b.
  • Preferably, the binding member 20 is formed of a metal. In this case, excellent bulletproof performance and blade-proof performance can also be imparted to sections provided with through-holes 10 a. Preferably, the first and second head portions 22 a and 22 b are so sized as to cover the whole through-hole 10 a irrespective of a location in the through-hole 10 a at which the pillar portion 21 is situated.
  • When adjacent stretched resin films 10 are at least partially kept from being not bonded to each other as in this embodiment, the impact-absorbing member 1 a having flexibility can be provided. The impact-absorbing member la having flexibility as described above is particularly suitably used in applications where flexibility or plasticity is required, such as, for example, those of clothing etc.
  • For obtaining higher plasticity, it is preferred that the pillar portion 21 is thinner than the through-hole 10 a, and a clearance is provided between the outer circumferential surface of the pillar portion 21 and the inner circumferential surface of the through-hole 10 a. The ratio of the diameter of the pillar portion 21 to the diameter of the through-hole 10 a is preferably 1.0 or less, more preferably 0.8 or less. However, when the pillar portion 21 is excessively thin, the strength of the pillar portion 21 may be excessively reduced. Therefore, the ratio of the diameter of the pillar portion 21 to the diameter of the through-hole 10 a is preferably 0.6 or more.
  • The length of the pillar portion 21 is preferably longer than the total thickness of a plurality of stacked stretched resin films 10. The ratio of the length of the pillar portion 21 to the total thickness of a plurality of stacked stretched resin films 10 is more preferably 1.0 or more, further preferably 1.2 or more. However, when the pillar portion 21 is excessively long, a plurality of stretched resin films 10 may not be suitably bound. Therefore, the ratio of the length of the pillar portion 21 to the total thickness of a plurality of stacked stretched resin films 10 is preferably 1.3 or less.
  • In the impact-absorbing member 1 a according to this embodiment, the stacked form of stretched resin films 10 is substantially the same as that in the impact-absorbing member 1 according to the first embodiment. Therefore, in this embodiment, the descriptions of the first embodiment are incorporated with regard to the stacked form of stretched resin films 10.
  • In this embodiment, an example has been described in which a plurality of stretched resin films 10 are bound using the binding member 20, but adjacent stretched resin films 10 may be partially bonded to each other using an adhesive, or bonded directly to each other.
  • Third Embodiment
  • FIG. 4 is a schematic sectional view of protective clothing according to a third embodiment. FIG. 5 is a schematic sectional view taken along the line V-V in FIG. 4.
  • The impact-absorbing member according to the present invention is excellent in bulletproof performance and blade-proof performance, and therefore can be used in various applications such as, for example, those of protective clothing, protective shoes, vehicles, buildings and protectors such as shields. Particularly, an impact-absorbing member having flexibility, like the impact-absorbing member 1 a according to the second embodiment, is suitably used for protective clothing etc.
  • In this embodiment, protective clothing 2 including an impact-absorbing member 1 b having flexibility as illustrated in FIG. 5 will be described.
  • The protective clothing 2 includes a clothing body 30 made of cloth which forms the outer surface of the protective clothing 2. As illustrated in FIG. 5, the impact-absorbing member 1 b is arranged inside the clothing body 30. The impact-absorbing member 1 b has substantially the same configuration as that of the impact-absorbing member 1 a according to the second embodiment except that the stretched resin film 10 has a vent hole 10 b. The impact-absorbing member 1 b is continuously arranged substantially all over the clothing body 30.
  • For example, when a rigid body such as a metal plate etc. is arranged inside the clothing body, the rigid body can be arranged only on a part of the clothing body. When the rigid body is arranged all over the clothing body, flexibility of the protective clothing is lost, so that it becomes difficult to put on and take off the clothing, and also movement of a person wearing the protective clothing is significantly restricted. Commonly tile-shaped rigid bodies are arranged in a matrix form at intervals from one another. In this case, bulletproof performance and blade-proof performance between rigid bodies are not secured. On the other hand, the impact-absorbing member 1 b has flexibility. Therefore, for example, even when the impact-absorbing member 1 b is continuously provided all over the clothing body 30 with no gap left, flexibility of the protective clothing 2 is maintained. Therefore, the impact-absorbing member 1 b can be continuously and largely provided inside the clothing body 30. Accordingly, the protective clothing 2 excellent in protective performance can be provided.
  • Since the stretched resin film 10 is provided with the vent hole 10 b, the protective clothing 2 excellent in air permeability can be provided. Instead of providing the vent hole 10 b, the stretched resin film 10 may be formed of a porous material having an interconnected cell. The stretched resin film 10 may be formed of a porous material having an interconnected cell, and provided with the vent hole 10 b.
  • In this embodiment, vent holes 10 b of adjacent stretched resin films 10 are provided so as not overlap each other in a stacking direction. Therefore, for example, portions having low bulletproof performance and blade-proof performance are hard to occur as compared to a case where vent holes are provided so as to overlap one another in a stacking direction.
  • As illustrated in FIG. 5, in the protective clothing 2, the clothing body 30 and the impact-absorbing member 1 b are fixed to each other by the binding member 20. Between adjacent binding members 20, the length of the impact-absorbing member 1 b is longer than the length of the clothing body 30. That is, the impact-absorbing member 1 b is loosely fixed to the clothing body 30 by the binding member 20. In this way, flexibility of the protective clothing 2 is further enhanced. Between adjacent binding members 20, the ratio of the length of the impact-absorbing member 1 b to the clothing body 30 is preferably 1.0 or more, more preferably 1.1 or more for enhancing flexibility of the protective clothing 2. The ratio of the length of the clothing body 30 to the length of the impact-absorbing member 1 b is usually 1.2 or less.
  • The distance between adjacent binding members 20 may be, for example, about 30 mm to 100 mm. When the distance between adjacent binding members 20 is excessively short, flexibility of the protective clothing 2 may be excessively reduced. When the distance between adjacent binding members 20 is excessively long, handling characteristics of the protective clothing 2 may be deteriorated.
  • EXAMPLE 1
  • A biaxially stretched polyester film having a thickness of 16 μm (FT16 manufactured by Teijin Limited) was cut into squares of 200 mm, and the sheets thus obtained were stacked in 150 layers. The obtained laminate was heated and pressed under a press load of 10 t using a pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.) with the surface temperature set at 180° C. Thereafter, the setting of the surface temperature of the pressing machine was changed to 140° C. and the laminate was held for 60 minutes while a press load of 10 t was maintained. The sample was cooled to room temperature while a pressure of 5 t was applied using a cooled pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.). The thickness of the obtained biaxially stretched polyester film laminate was 2 mm.
  • Two uniaxially stretched high-density polyethylene sheets with a laminate film (Forte manufactured by SEKISUI SEIKEI Co., Ltd.), which had a thickness of 0.2 mm and a width of 200 mm, were stacked such that stretching directions were orthogonal to each other, and the obtained laminate was heated and pressed under a press load of 5 t for approximately 2 minutes using a pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.) with the surface temperature set at 125° C., thereby obtaining a uniaxially stretched resin film laminate having a thickness of 0.4 mm.
  • The uniaxially stretched resin film laminate prepared as described above was stacked on both surfaces of the biaxially stretched polyester film laminate prepared as described above, with a film, which was obtained by heating and compressing to a thickness of 0.1 mm an ethylene vinyl acetate film (SP Sealant manufactured by Sekisui Film Co., Ltd.) having a thickness of 0.1 mm, interposed therebetween, and the obtained laminate was heated and pressed under a press load of 5 t for approximately 2 minutes using a pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.) with the surface temperature set at 125° C., thereby preparing an impact-absorbing plate having a thickness of 2.9 mm.
  • COMPARATIVE EXAMPLE
  • 14 uniaxially stretched high-density polyethylene sheets with a laminate film (Forte manufactured by SEKISUI SEIKEI Co., Ltd.), which had a thickness of 0.2 mm and a width of 200 mm, were stacked such that stretching directions were orthogonal to each other between adjacent sheets, and the obtained laminate was heated and pressed under a press load of 5 t for approximately 10 minutes using a pressing machine (30 t Pressure Pressing Machine manufactured by Toyo Seiki Seisaku-Sho, Ltd.) with the surface temperature set at 125° C., thereby preparing an impact-absorbing plate having a thickness of 2.9 mm.
  • EXAMPLE 2
  • A biaxially stretched polyester film having a thickness of 16 μm (FT16 manufactured by Teijin Limited) was cut into squares of 200 mm, and the sheets thus obtained were stacked in 150 layers. Holes having a diameter of 10 mm were formed in a matrix form at intervals of 50 mm in the obtained laminate using a drill. An epoxy adhesive (Araldite 8-254-01 manufactured by AS ONE Corporation) was poured into each of a plurality of holes formed, and the laminate was left standing for 2 days to bond the stacked biaxially stretched polyester films, thereby obtaining an impact-absorbing plate.
  • (Impact Resistance Test)
  • A cylindrical hole having a diameter of 20 mm and a depth of 30 mm was formed at one end surface of a cylindrical brass material having a diameter of 38 mm, thereby preparing a 1 kg weight provided with a cylindrical hole. An eyeleteer hilt manufactured by DEBIKA Corporation was inserted into the cylindrical hole of the weight to prepare a blade with a weight. The blade with a weight was caused to fall down from 1.5 m above the impact-absorbing plate through the inside of an aluminum cylindrical pipe having a diameter of 40 mm, which was arranged on the impact-absorbing plate arranged on a cork board having a thickness of 5 cm, thereby colliding the blade against the impact-absorbing plate. A length of a part of the blade (needle), which resultantly pierced through the impact-absorbing plate, was measured.
  • As a result, the length of a part, which pierced through the impact-absorbing plate prepared in Example 1, was 6 mm. The length of a part, which pierced through the impact-absorbing plate prepared in Example 2, was 12 mm. On the other hand, the length of a part, which pierced through the impact-absorbing plate prepared in Comparative Example, was 18 mm.
  • EXPLANATION OF SYMBOLS
    • 1, 1 a, 1 b . . . impact-absorbing plate
    • 1A, 1B . . . principal surface
    • 1 a, 1 c uniaxially stretched resin film laminate
    • 1 b . . . biaxially stretched resin film laminate
    • 2 . . . protective clothing
    • 10 . . . stretched resin film
    • 10 a . . . through-hole
    • 11 a, 11 b . . . uniaxially stretched resin film
    • 12 . . . biaxially stretched resin film
    • 13 . . . adhesive layer
    • 20 . . . binding member
    • 21 . . . pillar portion
    • 22 a . . . first head portion
    • 22 b . . . second head portion

Claims (20)

1. An impact-absorbing member comprising:
a plurality of stretched resin films stacked and bonded to one another,
wherein the plurality of stretched resin films include a biaxially stretched resin film.
2. The impact-absorbing member according to claim 1,
wherein the plurality of stretched resin films include the biaxially stretched resin film and a uniaxially stretched resin film.
3. The impact-absorbing member according to claim 2,
wherein at least one of principal surfaces of a laminate of the plurality of stretched resin films is formed of the uniaxially stretched resin film.
4. The impact-absorbing member according to claim 2,
wherein the plurality of stretched resin films include a plurality of uniaxially stretched resin films whose stretching directions are mutually different.
5. The impact-absorbing member according to claim 1,
further comprising at least one of a woven fabric and a braided fabric which is stacked on the plurality of stretched resin films.
6. The impact-absorbing member according to claim 1,
wherein the plurality of stretched resin films include a plurality of biaxially stretched resin films Whose stretching directions are mutually inclined.
7. The impact-absorbing member according to claim 1,
wherein the stretched resin film includes a crystalline polymer.
8. The impact-absorbing member according to claim 1,
wherein a 180° peeling strength per 1 cm of width of the adjacent stretched resin films is 0.1 kgf to 3 kgf.
9. The impact-absorbing member according to claim 1,
wherein the adjacent stretched resin films are bonded directly to each other.
10. The impact-absorbing member according to claim 1,
further comprising an adhesive layer that bonds the adjacent stretched resin films.
11. The impact-absorbing member according to claim 1,
wherein the adjacent stretched resin films are at least partially kept from being not bonded to each other.
12. The impact-absorbing member according to claim 11,
wherein the stretched resin films have as through-hole, and
the plurality of stretched resin films are bound together by a binding member inserted in the through-hole.
13. The impact-absorbing member according to claim 12,
wherein the binding member is formed of a metal.
14. The impact-absorbing member according to claim 1,
wherein the stretched resin films are formed of a porous material.
15. The impact-absorbing member according to claim 1,
wherein the stretched resin film has a vent hole.
16. The impact-absorbing member according to claim 15,
wherein the vent hole provided in one of the stretched resin films and a vent hole provided in a stretched resin film adjacent to the one of the stretched resin films do not overlap each other.
17. Protective clothing comprising:
the impact-absorbing member according to claim 1.
18. A method for producing an impact-absorbing member,
wherein a plurality of stretched resin films including a biaxially stretched resin film are stacked and thermocompression-bonded to obtain an impact-absorbing member.
19. The impact-absorbing member according to claim 1,
further comprising at least one of a woven fabric and a braided fabric which is stacked on the plurality of stretched resin films,
wherein the adjacent stretched resin films are partially kept from being not bonded to each other.
20. The method for producing an impact-absorbing member according to claim 18,
wherein the impact-absorbing member comprises a plurality of stretched resin films stacked and bonded to one another, and at least one of a woven fabric and a braided fabric which is stacked on the plurality of stretched resin films, and
the plurality of stretched resin films include a biaxially stretched resin film, and the adjacent stretched resin films are partially kept from being not bonded to each other.
US14/238,768 2012-03-12 2013-02-08 Impact-absorbing member, protective clothing, and process for producing impact-absorbing member Abandoned US20140189922A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-054528 2012-03-12
JP2012054528 2012-03-12
PCT/JP2013/053041 WO2013136886A1 (en) 2012-03-12 2013-02-08 Impact-absorbing member, protective clothing, and process for producing impact-absorbing member

Publications (1)

Publication Number Publication Date
US20140189922A1 true US20140189922A1 (en) 2014-07-10

Family

ID=49160805

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/238,768 Abandoned US20140189922A1 (en) 2012-03-12 2013-02-08 Impact-absorbing member, protective clothing, and process for producing impact-absorbing member

Country Status (4)

Country Link
US (1) US20140189922A1 (en)
EP (1) EP2826622A4 (en)
JP (1) JP5412008B1 (en)
WO (1) WO2013136886A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101964527B1 (en) * 2017-09-29 2019-07-31 한국생산기술연구원 Bullistic protection material with multi-layered structure and manufacturing method therefor
JP7385248B2 (en) * 2019-08-29 2023-11-22 有限会社ポルテ work protector
JPWO2022065402A1 (en) * 2020-09-24 2022-03-31

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1479740A (en) * 1922-04-11 1924-01-01 Reiter Lues Connecter for loose-leaf binders
US2058718A (en) * 1935-05-31 1936-10-27 Bankers Box Company Binder
US4948653A (en) * 1988-08-03 1990-08-14 Hoechst Aktiengesellschaft High-strength panel-type article with a textured surface
US20030015821A1 (en) * 2001-06-22 2003-01-23 Yeu Ming Tai Chemical Industrial Co., Ltd. Polytetrafluoroethylene sheet or film, gasket tape produced therefrom and production method thereof
US20030148064A1 (en) * 2000-06-12 2003-08-07 Ole-Bendt Rasmussen Cross-laminate of films and method of manufacturing
US20090068453A1 (en) * 2006-10-11 2009-03-12 Sengshiu Chung Impact-resistant lightweight polymeric laminates
US7578003B2 (en) * 2004-01-01 2009-08-25 Dsm Ip Assets B.V. Ballistic-resistant article
US20130213208A1 (en) * 2012-02-22 2013-08-22 Cryovac, Inc. Ballistic-Resistant Composite Assembly

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06321263A (en) * 1993-05-07 1994-11-22 Atsusato Kitamura Shock absorbing packing material
US6048609A (en) * 1994-03-07 2000-04-11 Daicel Chemical Industries, Ltd. Biaxially stretched styrenic resin sheet
JP4770054B2 (en) 2001-04-20 2011-09-07 東レ株式会社 Shock plate
JP4056350B2 (en) * 2002-06-19 2008-03-05 帝人株式会社 Biaxially stretched multilayer laminated film and method for producing the same
US6841492B2 (en) * 2002-06-07 2005-01-11 Honeywell International Inc. Bi-directional and multi-axial fabrics and fabric composites
JP2006002971A (en) * 2004-06-16 2006-01-05 Tsutsunaka Plast Ind Co Ltd Transparent synthetic resin laminated body for protection shield
JP4871172B2 (en) * 2007-03-02 2012-02-08 積水化学工業株式会社 Laminated molded body
US7964267B1 (en) * 2007-04-13 2011-06-21 Bae Systems Tensylon H.P.M., Inc. Ballistic-resistant panel including high modulus ultra high molecular weight polyethylene tape
KR20100101567A (en) * 2007-10-19 2010-09-17 조지 씨. 투니스 Armor panel system to deflect incoming projectiles
JP5353404B2 (en) * 2009-04-22 2013-11-27 東洋紡株式会社 Laminated biaxially oriented polyamide film
JP5353405B2 (en) * 2009-04-22 2013-11-27 東洋紡株式会社 Laminated biaxially oriented polyamide film
JP5462746B2 (en) * 2010-08-31 2014-04-02 積水化学工業株式会社 Film laminate manufacturing method, film laminate and shock absorber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1479740A (en) * 1922-04-11 1924-01-01 Reiter Lues Connecter for loose-leaf binders
US2058718A (en) * 1935-05-31 1936-10-27 Bankers Box Company Binder
US4948653A (en) * 1988-08-03 1990-08-14 Hoechst Aktiengesellschaft High-strength panel-type article with a textured surface
US20030148064A1 (en) * 2000-06-12 2003-08-07 Ole-Bendt Rasmussen Cross-laminate of films and method of manufacturing
US20030015821A1 (en) * 2001-06-22 2003-01-23 Yeu Ming Tai Chemical Industrial Co., Ltd. Polytetrafluoroethylene sheet or film, gasket tape produced therefrom and production method thereof
US7578003B2 (en) * 2004-01-01 2009-08-25 Dsm Ip Assets B.V. Ballistic-resistant article
US20090068453A1 (en) * 2006-10-11 2009-03-12 Sengshiu Chung Impact-resistant lightweight polymeric laminates
US20130213208A1 (en) * 2012-02-22 2013-08-22 Cryovac, Inc. Ballistic-Resistant Composite Assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Abstract translation of NL 6407436 A, January 6, 1965, p 1-2. *

Also Published As

Publication number Publication date
EP2826622A4 (en) 2015-10-07
JP5412008B1 (en) 2014-02-12
WO2013136886A1 (en) 2013-09-19
EP2826622A1 (en) 2015-01-21
JPWO2013136886A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
CN105190221B (en) Evacuated panel for mitigating shock wave in flak jackets
EP2899016B1 (en) Multilayered textile material for forming three dimensional objects
EP2529176B1 (en) Use of machine direction oriented films in ballistic articles
US20160016382A1 (en) Layered substrate and method for manufacturing same
JP6267468B2 (en) Polyolefin-based laminated sheet and method for producing the same
KR20160048768A (en) Ballistic resistant sheets, articles comprising such sheets and methods of making the same
WO2015112861A2 (en) Light weight trauma reducing body armor
JP6262053B2 (en) Foam sheet laminate, fiber-reinforced composite, and foam sheet laminate manufacturing method
US20140189922A1 (en) Impact-absorbing member, protective clothing, and process for producing impact-absorbing member
US10655940B2 (en) Ballistic resistant sheet and use of such a sheet
JP2021527191A (en) Polyethylene fabric with shape compatibility and articles manufactured from the fabric
US10442167B2 (en) Ballistic cloth using a unidirectional-oriented aramid sheet and polyethylene film and method for manufacturing the same
JP6305714B2 (en) Thermoplastic laminated sheet and method for producing the same
KR102263817B1 (en) Manufacturing method of stab proof hybrid composite structure
WO2022059598A1 (en) Molded body and method for manufacturing same
JP6731875B2 (en) Fiber reinforced composite
JP2007038609A (en) Composite material for molding and molding using the same
CA2693638C (en) Use of machine direction oriented films in ballistic articles
CN203586949U (en) Composite bulletproof inserting plate
KR101751338B1 (en) The method for shield having bullet-proof and knife-proof function simultaneously
WO2019058599A1 (en) Stab-proof laminate and stab-proof implement using same, and nonwoven fabric for stab-proof implement
JP2012051428A (en) Laminate for vehicle exterior material, method for manufacturing the same, and vehicle exterior material
JPH04251714A (en) Manufacture of carbon fiber reinforced composite material
JP2953185B2 (en) Waterproof sheet with nonwoven fabric and method for producing the same
JP2001032121A (en) Material for protecting clothing

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEKISUI CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAKAMURA, MASANORI;REEL/FRAME:032212/0181

Effective date: 20140127

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION