[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20140108241A1 - Method for Replacing Traditional Payment and Identity Management Systems and Components to Provide Additional Security and a System Implementing Said Method - Google Patents

Method for Replacing Traditional Payment and Identity Management Systems and Components to Provide Additional Security and a System Implementing Said Method Download PDF

Info

Publication number
US20140108241A1
US20140108241A1 US14/049,175 US201314049175A US2014108241A1 US 20140108241 A1 US20140108241 A1 US 20140108241A1 US 201314049175 A US201314049175 A US 201314049175A US 2014108241 A1 US2014108241 A1 US 2014108241A1
Authority
US
United States
Prior art keywords
information
personal information
wallet
user
card
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/049,175
Inventor
Charles David Tunnell
Justin Mitchell
Gino Pereira
Jacob Zurasky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Garmin International Inc
Original Assignee
NXT ID Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/049,175 priority Critical patent/US20140108241A1/en
Application filed by NXT ID Inc filed Critical NXT ID Inc
Assigned to NXT-ID, Inc. reassignment NXT-ID, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MITCHELL, JUSTIN, PEREIRA, GINO, TUNNELL, CHARLES DAVID, ZURASKY, JACOB
Publication of US20140108241A1 publication Critical patent/US20140108241A1/en
Assigned to EXWORKS CAPITAL FUND I, L.P., AS AGENT reassignment EXWORKS CAPITAL FUND I, L.P., AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOGICMARK, LLC, NXT-ID, Inc.
Priority to US15/252,468 priority patent/US10269010B2/en
Assigned to LOGICMARK, LLC, NXT-ID, Inc. reassignment LOGICMARK, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: EXWORKS CAPITAL FUND I, L.P.
Assigned to SAGARD HOLDINGS MANAGER LP reassignment SAGARD HOLDINGS MANAGER LP SECURITY AGREEMENT Assignors: 3D-ID, LLC, FIT PAY, INC., LOGICMARK, LLC, NXT-ID, Inc.
Priority to US16/005,598 priority patent/US10679209B2/en
Assigned to LOGICMARK, LLC, NXT-ID, Inc., FIT PAY, INC., 3D-ID, LLC reassignment LOGICMARK, LLC RELEASE OF SECURITY INTEREST IN PATENTS Assignors: SAGARD HOLDINGS MANAGER LP
Assigned to LOGICMARK, LLC, FIT PAY, INC., 3D-ID, LLC, NXT-ID, Inc. reassignment LOGICMARK, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: SAGARD HOLDINGS MANAGER LP
Assigned to FIT PAY, INC. reassignment FIT PAY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NXT-ID, Inc.
Assigned to GARMIN INTERNATIONAL, INC. reassignment GARMIN INTERNATIONAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FIT PAY, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes
    • G06Q20/367Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes involving electronic purses or money safes
    • G06Q20/3674Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes involving electronic purses or money safes involving authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/32Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices
    • G06Q20/321Payment architectures, schemes or protocols characterised by the use of specific devices or networks using wireless devices using wearable devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • G06F21/6245Protecting personal data, e.g. for financial or medical purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/36Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes
    • G06Q20/363Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes with the personal data of a user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/355Personalisation of cards for use
    • G06Q20/3552Downloading or loading of personalisation data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/30Payment architectures, schemes or protocols characterised by the use of specific devices or networks
    • G06Q20/34Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
    • G06Q20/357Cards having a plurality of specified features

Definitions

  • the present invention relates to the field of digital and electronic wallets, specifically methods and related apparatuses for securing private information found within a typical wallet, such as payment accounts, payment cards, identification information, medical information and records, and virtually any private information desired to be carried by a person.
  • Prior art digital wallets focus on financial transactions, attempting to replace current technologies of credit and debit cards and the like with mostly electronic commerce (e-commerce) and similar methods and devices. Likewise, security concerns for most digital wallet technologies are focused primarily on the transaction between the customer, merchant and banking institutions.
  • digital wallet is used loosely to describe a broad spectrum of methods and devices to perform electronic commerce (e-commerce).
  • Digital wallets refer to software that resides on the consumer's personal computer (PC) or other web-enabled devices that enable a user to select a payment account digitally. Digital wallets require an internet connection.
  • electronic wallets refer to electronic methods to allow a user to select a payment account locally, on some physical electronic device. Most digital wallet technologies involve software that resides on the consumer's personal computer (PC) or other web-enabled devices. Most browsers now support digital wallets.
  • Digital wallet software spans methods to improve consumer's ability to purchase goods and services from on-line e-retailers (the “transaction”) to methods to keep personal information private (the “security”).
  • One embodiment of the invention comprises a method to send private information to authenticated devices securely to replicate the information in a format that supports a specific transaction method, and thereby reduce the number of devices, cards and other methods a user must carry, while improving security to protect private information.
  • the invention also addresses the broader issue of securing and replacing the number and variety of devices holding personal information within a wallet, such as identification information, medical information, and payment account devices, while conforming to current transaction methods, such as those utilizing magnetic stripes and/or NFC (near-field communications) for financial transactions and other known methods for HIPPA-controlled medical documents.
  • current transaction methods such as those utilizing magnetic stripes and/or NFC (near-field communications) for financial transactions and other known methods for HIPPA-controlled medical documents.
  • One embodiment of the invention focuses on security between a secure electronic payment and identity management device (referred to as a first device) and second devices that facilitate a transaction per a conventional transaction method, such as a dynamically programmable card and/or a mobile device such as a cell phone.
  • a conventional transaction method such as a dynamically programmable card and/or a mobile device such as a cell phone.
  • This dual device relationship ideally addresses where most theft and fraud occurs, prior to the point-of-sale (POS), replacing payment transaction accounts and other private information with one or more standard devices that can perform the transaction over standard communications, only after being authorized to receive the private information from the first device, such as a private electronic vault or an electronic wallet.
  • POS point-of-sale
  • this invention requires a second device to authenticate with the secure electronic payment and identity management device before a transaction can occur, even if the information is transferred via one of these communication methods directly to a POS terminal directly from the private electronic wallet or via an authenticated second device.
  • the second device can be “dumb” most of the time, completely void of any personal information, while the private electronic wallet device holds all private data safe and secure, and only releases it to secondary device(s) or POS terminals after a full authentication has occurred.
  • the present invention provides unique alternatives to reducing the number and variety of devices holding personal information within a wallet while increasing security of the user authentication process and the consumer transaction.
  • this invention reduces the number of payment devices and methods carried by a user and increases security while working within the paradigm of the current magnetic stripe readers, contactless NFC and EMV systems, and bar code payment methods that are so prevalent within society today. Further, this invention addresses chief security concerns not only with physical electronic wallets, but also digital wallets on mobile devices such as cell phones, which urgent need authentication and security solutions to overcome current mobile payment security deficiencies and user perceptions.
  • the first device is an electronic vault device that can be physically part of a physical wallet, insert to a wallet, or in other embodiments, wearable/portable devices such as money clips, key chain accessories, watches, dongles, cell phone accessories, or any other device typically carried or worn by an individual.
  • the first device requires unique user-configurable, biometrically enabled multi-factor authentication to ensure only owners and their private information can be copied into the secure vault wallet device. Authenticated users may then select payment information, identification information, medical information or virtually any private information via touch display or voice command on the first device, or alternatively on the second device after a successful authentication.
  • Encrypted information can be then sent from the first device to the second device, after successful authentication.
  • the second device can comprise a programmable card having a dynamic magnetic stripe, a cell phone, or a display device displaying a payment barcode to replicate the selected private information stored on the first device. This method and attendant devices reduces the number of cards and other devices a user must carry.
  • the second device may include mobile devices such as cell phone, tablets and laptops, or fixed devices such as desktop PCs and the like.
  • the second device then acts as a conduit to provide private information via other communication methods such as NFC or dynamic magnetic stripe for financial transactions, and HIPPA controlled communication methods for private medical documents.
  • FIG. 1 is a conceptual drawing of the private electronic vault with secondary authenticated device, in this case a powered card.
  • FIG. 2 is a mechanical design of the invention configured with the display of the private identity vault device on the outside of the wallet.
  • FIG. 3 illustrates mechanical designs with the display located at the left 115 or the right 116 sides of the inside of the wallet.
  • FIG. 4 is a mechanical design of the personal identity wallet as an insert 117 to a conventional wallet.
  • FIG. 5 is a mechanical design of a standalone personal identity vault with an optional clip for inserting into a conventional wallet.
  • FIG. 6 describes another embodiment of the mechanical design of this invention to not only hold a powered card, but also communicate with it and charge its battery by aligning physical contacts or embedded electrical components such as antenna, coils, or the like.
  • FIG. 7 is a mechanical design of a standalone private electronic wallet with optional enclosed card.
  • FIG. 8 is a mechanical design of a standalone private electronic vault with an optional enclosed card and clip for insertion into a conventional wallet.
  • FIG. 9 is a mechanical design of a standalone private electronic vault with an optional open card and clip for insertion into a conventional wallet.
  • FIG. 10 is a mechanical design of a clamshell wallet with private electronic vault embedded in the wallet (part of the wallet) with an optional enclosed card.
  • FIG. 11 describes an authentication process called dynamic pairing that can authenticate between a personal identity vault and a secondary device acting as a controller and display for the vault, and another second device acting as a conduit to support consumer transactions via communication paths not inherent on the personal identity vault.
  • FIG. 12 is a block diagram of the personal identity vault that illustrates the major functional blocks of the invention.
  • FIG. 13 is a block diagram of a powered card as a secondary device with major functional blocks of the invention including a dynamic magnetic stripe module.
  • FIG. 14 describes areas where pinch conductive material can be applied to both sides of a powered card to achieve pinch power, a method to turn on a powered card by completing a circuit as a user naturally holds the card.
  • FIG. 15 illustrates a pinch power prototype with copper material on the designated areas of both sides of a card and an LED that lights to show when the card is pick up, the circuit activates the powered card.
  • FIG. 16 illustrates a pinch power prototype with transparent conductive material on designated areas of both sides of a card.
  • FIG. 17 details how two devices authenticate one another via dynamic pairing.
  • FIG. 18 describes a user interface (UI) concept for a user to access a private electronic vault by drawing a user-configured pattern.
  • UI user interface
  • FIG. 19 describes a user interface (UI) concept for a user to access a private electronic vault by typing a user-configured PIN.
  • UI user interface
  • FIG. 20 describes the user interface (UI) for the private electronic vault where users may select from user-configured aliases.
  • FIG. 21 describes the user interface (UI) for scrolling through user-definable categories on the private electronic vault.
  • FIG. 22 describes another user interface (UI) concept for a user to access categories of aliases to personal information.
  • UI user interface
  • FIG. 23 describes another user interface (UI) concept for a user to access preferred aliases.
  • FIG. 24 describes a user interface (UI) concept for a user to view details of private information such as a payment card.
  • UI user interface
  • FIG. 25 describes another user interface (UI) concept for a user to view details of private information such as a payment card.
  • UI user interface
  • FIG. 26 describes a user interface (UI) concept to manage personal information and cards within a private electronic wallet from an app on a second device, such as mobile and fixed devices like cell phones, tablets, laptops, PCs and the like.
  • UI user interface
  • the present invention differs from other “digital wallets” in that other wallets are more focused on solutions that rely upon an internet connection to perform card/account selection and/or transaction.
  • this invention is focused on replacing the number and variety of devices holding personal information within a physical wallet, and replication of their functionality onto a secondary authenticated device that conforms to current common communication interfaces for private methods such as HIPPA controlled communication methods for private medical documents and payment methods such as NFC or dynamic magnetic stripe.
  • the first device which may comprise and be referred to as an electronic vault device, personal identity vault, private electronic vault, a private electronic wallet, a secure electronic payment and identity management device, a secure electronic payment and identification device or system, a next generation payment and personal identity wallet, and a next generation payment and personal identity device, can be physically part of a physical wallet as shown for examples in FIGS. 2 and 3 , 102 and 104 , insert to a wallet as shown in FIG.
  • wearable/portable devices such as money clips, key chain accessories, watches, dongles, cell phone accessories, or any other device typically carried or worn by an individual.
  • This personal identity vault device requires unique biometrically enabled multi-factor authentication to ensure only owners and their private information can be copied into the vault device.
  • Authenticated users may then select credit, debit, identification, medical or virtually any private information via touch display or voice command on the first device, or alternatively on the second device that connects to the first device.
  • Encrypted information can be then sent from the first device to the second (authenticated) device, such as a programmable card with dynamic magnetic stripe.
  • the format of the information in the second device is selected to replicate the desired transaction method.
  • the second device can be pre-programmed to be any card type, such as a stand-alone multi-card, or the second device can sit within the electronic wallet device, which acts as a security system for programming the dynamic card.
  • Information can be “zeroized”, writing 1's and 0's over memory iteratively in random pattern, after one use, a preconfigured number of uses, or after a timer has expired.
  • a user may select a card via the touch interface or voice command on the first device or alternatively on an authenticated second device with display interfaces (e.g. cell phone, tablet, PC, etc.), and configure the second device to function just like a copied device.
  • the first device e.g., private vault electronic wallet device
  • the authenticated second device can be used with other mobile payment forms such as NFC, EMV, RFID, infrared, acoustic, and QR Codes in some embodiments.
  • logos, picture of the front and back, signature and even bar codes can be displayed on the sunlight readable display of the first or second devices such that secure electronic payment and identification system can uniquely support all common methods of payment currently supported at point of sale (POS) positions around the world. Other security methods such as a physical signature on the back of a payment device can also be supported.
  • the private electronic vault can encompass many embodiments spanning varying mechanical configurations. As shown in FIG. 1 , one embodiment consists of a standalone private electronic vault 100 with secondary authenticated device, in this case a powered card 101 that can be located anywhere with the vault.
  • FIG. 2 describes a mechanical design of the invention configured with the display of the private identity vault device embedded in the wallet and viewable on the outside of the wallet.
  • a display 102 that can be inserted into a wallet or embedded into an carried or worn device, a touch panel overlay 103 , a battery indicator 104 , a power on/off button 105 , a microphone with exposure through the enclosure for appropriate acoustics 106 , soft or hard material 107 appropriate for gripping the wallet and/or protecting other cards within the wallet such as blocking/attenuating signals to protect RF cards within, curved design 108 to conform to wearing in a rear or front pocket of a person's clothing, magnetic clasp 109 that keeps the wallet closed until opened, magnetic switch 110 that turns the electronic wallet on and off as the wallet is opened, an area for a secondary device 111 , a hinge or fold mechanism 112 , areas and/or folds 113 for other cards and/or receipts, and/or a money clip 114 .
  • FIG. 3 illustrates this concept with the display located at the left 115 or the right 116 sides of the inside of the wallet.
  • FIG. 5 describes the enclosure 118 of a standalone configuration that stores the display and electronics of the private electronic vault, alone with an attachment 119 that serves as a dual purpose as a storage method for a powered card 120 and an insert 119 to hold the device in place inside a pocket of a conventional wallet.
  • FIG. 6 Another embodiment of the mechanical design of this invention described in FIG. 6 is to not only hold a card or powered card with guide 121 and ramp 122 features, but also communicate with a powered card and charge its battery by aligning physical contacts 123 or embedded electrical components (not shown) such as antenna, coils, or the like.
  • FIG. 7 Other embodiments include standalone private electronic wallet 124 with optional enclosed card 125 using molded guides 126 as shown in FIG. 7 , optional removable insert 127 as shown in FIG. 8 , an open version of the private electronic vault 128 where the molded guide is open 129 to allow easier grip to a card, and a clip may be either molded 130 or removable 131 .
  • These standalone embodiments contrast to another clamshell design as shown in FIG.
  • a hard or soft case 132 may still possess each of the optional features such as a hard or soft case 132 , display 133 , touch screen 134 , modern design for comfort such as tapered corners and sides 135 , microphone 136 , battery indicator 137 , power button 138 , magnetic clasp 139 and/or magnetic switch 140 , hinge 141 , card holders 142 , and/or money clip (not shown on this drawing).
  • a hard or soft case 132 display 133 , touch screen 134
  • modern design for comfort such as tapered corners and sides 135 , microphone 136 , battery indicator 137 , power button 138 , magnetic clasp 139 and/or magnetic switch 140 , hinge 141 , card holders 142 , and/or money clip (not shown on this drawing).
  • personal identity vaults 143 may communicate to multiple secondary devices 144 and 145 with NXT approved authentication such as dynamic pairing 146 or equivalent authentication methods.
  • Some second devices 144 may act as a display for the personal ID vault, while other second devices 145 act as conduit to send private information over other protocols and methods not inherent to the vault.
  • the hardware for the private electronic vault and one embodiment of a second device hardware may be similar as shown in FIGS. 12 and 13 , consisting of an ultra low-power microprocessor 147 powered by batteries or super-capacitors 148 managed by a battery monitor, input power condition, DC to DC converters, recharging circuits with optional inductive and/or RF wireless recharging circuits, all within a power management block 149 .
  • the microprocessor 147 acts as the microcontroller for all onboard peripherals including RAM and NAND memory 150 , or optionally FRAM and/or NVRAM (shown as part of the memory block 150 in the diagram) in some configurations.
  • the microprocessor 147 may interface with an optional low-power e-paper, memory LCD and/or color display 151 .
  • a transparent/semitransparent touch screen may be overlaid atop the display 152 , in some configurations, and optionally wired directly to an analog comparator module within the microprocessor for ultimate low power performance while filtering and interpreting touch events, or replaced with physical buttons (not shown) outside of the display for user interface controls.
  • the vault also contains a multi-factor voice recognition algorithm via voice collected by an onboard microphone that connects directly to dual stage amplifiers within the processor for filtering and amplifying the voice. Amplifiers within the processor further reduce power consumption and chip count/cost.
  • Both devices may also communicate via contacts 123 , USB 154 or optional wireless communication including BTLE (Bluetooth Low Energy) 155 , NFC/EMV 156 , RFID 157 , infrared 158 , optical 159 , WiFi 160 , acoustic 161 , or custom low-power RF communication (not shown).
  • BTLE Bluetooth Low Energy
  • NFC/EMV 156 NFC/EMV 156
  • RFID 157 infrared 158
  • optical 159 optical 159
  • WiFi 160 acoustic 161
  • custom low-power RF communication custom low-power RF communication (not shown).
  • other biometrics may be optionally added including gesture, finger, face, 3D face, IRIS, eye, eye vein, eye tracking, DNA, vein, palm, heartbeat, sweat, vibrometry, and/or scent by adding those sensors to the interface of the microprocessor.
  • Microprocessors on each device may also integrate with a tamper-proof authentication crypto chip 153 , which houses identifiers, high quality random number and key generators internally such that no keys or identifiers are ever released by the authentication chip. Only random numbers are ever passed over encrypted communicated between the first and second devices.
  • the second device may provide a conduit to transfer the private information over some specific payment or transfer methods that exist on the second device.
  • some commercial devices may support various communication methods such as WiFi or NFC, negating the need for the next generation payment and personal identity wallet to support these methods directly on its device.
  • the private electronic vault device (the first device) may simply communicate to the second device that then acts as a conduit to adhere to any communication standards from authorities that dictate the transfer of private information, such as HIPPA or financial authorities.
  • the second device(s) may comprise any mobile, portable, or wearable device such as cell phones, tablets and the like, or even fixed computing devices such as PCs.
  • the second device can contain similar components (in function), but not necessarily the exact same chip as that with the primary electronic vault, such as a crypto chip 153 , ultra low-power processor 147 , flash memory, SDRAM, FRAM or NVRAM (collectively part of the memory block of the diagram), display 151 and touch screen 152 , battery 148 and power management 149 , crypto 153 , microphone 162 , biometric modules 162 and communications methods such as USB 154 , BTLE 155 , NFC/EMV 156 , RFID 157 , infrared 158 , optical 159 , WiFi 160 , acoustic 161 , or custom low-power RF communication (not shown).
  • a crypto chip 153 such as a crypto chip 153 , ultra low-power processor 147 , flash memory, SDRAM, FRAM or NVRAM (collectively
  • These second devices powered cards 165 may also include a dynamic magnetic stripe module 164 to interface with mag stripe card readers using a powered card.
  • each of the components may be wired thinner versions of these chips, wafer or die formats 0.5 mm or thinner, in order to conform to ISO standards for payment cards of approximately 0.79 mm or thinner). Displays on these cards may also be thinner and can include other ultra thin displays that shows the payment account number 166 , in whole or in part, and other information such as CVV 167 , name 169 and expiration date 168 as shown in FIG. 14 .
  • Battery and/or super-capacitors are continuously monitored by power management 149 at a predetermined time interval to activate a “low-battery” indicator (LED or equivalent shown as part of the Power Management block 149 ) when power is measured to be below a specific threshold.
  • a rechargeable circuit shown as part of block 149 ) allows power to be recharged when connected to a 5 VDC USB device, or alternatively to be recharged via optional wireless inductive or RF charging methods, or other power harvesting methods such as solar/light, RF, piezoelectric/movement and thermal (each shown as part of the power management block 149 on the block diagram).
  • a second device such as a dynamically programmable card
  • the private electronic vault i.e., the first device
  • the dynamically programmable card is near the private vault device, such as within a wallet.
  • An optional wireless inductive ultra thin coil (shown as part of block 149 ) associated circuitry enables the primary device to communicate and charge the second device(s) using inductive charging conforming to the QI interface standard for inductive electrical power transfer.
  • power may be transferred from the first or primary device to the secondary device via RF energy, such as BTLE, by adding an optional amplifier (shown as part of block 149 ) that boosts the RF energy on the primary device, and an optional power-harvesting chip (shown as part of block 149 ) on the Bluetooth transceiver on the secondary device.
  • RF energy such as BTLE
  • an optional amplifier shown as part of block 149
  • an optional power-harvesting chip shown as part of block 149
  • a powered card sitting within a wallet can be charged by the electronic vault by sending information to the electronic vault when charging should take place.
  • the battery within the powered card can be kept charged just as long as the larger battery for the private electronic vault (the first or primary device) within the wallet has charge, thereby extending the overall operation of the powered card (second device).
  • Power states are closely controlled within the microcontroller to achieve ultra lower power consumption and longest battery-life between charges.
  • power may be totally turned off and turned back on using an innovative switch to FET (field effect transistor), which ensures no power is consumed when the device is powered off.
  • FET field effect transistor
  • a magnetic switch 110 may be connected to a FET such that the electronic wallet automatically turns on as the wallet is opened, and off as the wallet is closed. The advantage of these two switch methods is that no power is consumed while the wallet is powered completely off, which increases the time between charging the battery.
  • the microprocessor can be held at various “power states” that turn off the core processor and all peripherals except the a GPIO pin that can be used to wake up from “deep sleep”.
  • Other power states include keeping the core off while interfaces to peripherals on. This enables DMA (direct memory access) transfers from one peripheral, such as memory, to another peripheral, such as the display, with minimum involvement (and power) by the processor. This allows the microprocessor to be kept at its lowest states and “wake-up” to other states only when the core processor is needed. This schema achieves lower power performance by “ping-ponging” between power states only as resources on the ultra low power microprocessor are needed.
  • power can be conserved by waking up the microprocessor from its lowest power state (deep sleep) while it scans the touch screen at a very low frequency, increase to another state to capture the touch gesture by increasing frequency of scanning of the buttons, and returning to the lower power state after the touch has been completed.
  • interpreting the touch via table rather than requiring a processor to process the touch results can conserve power.
  • power can be saved by transferring data via DMA to a display or RF peripheral that can then be awakened and display, process, or transmit that data.
  • an event such as a touch event, can be interpreted and data sent to a display and other peripherals while conserving power by ping-ponging the microprocessor between states.
  • Another unique power reduction feature is to power peripherals of the microcontroller directly from GPIO (general purpose input output) pins such that any peripheral can be powered on or off directly by the microprocessor.
  • GPIO general purpose input output
  • the microprocessor “wakes up” that peripheral by turning on the appropriate GPIO pin. Powering the peripherals directly by the microprocessor in this manner not only reduces needless power consumed while a peripheral is not used (e.g. in a quiescent state), but also reduces chip count by eliminating DC supplies.
  • the secondary device can be awakened via a membrane switch, or optionally by an RF wake-up circuit or “pinch power” methods.
  • the RF wake-up circuit consists of a resonantly tuned antenna with a receiver that then harvests the power from that signal to wake-up the rest of the circuit. Similar to semi-passive RFID, this RF wake-up method utilizes the frequency and power of the transmitter to create a resonant signal whose power can be harvested to wake-up the microprocessor. This method can be applied to Bluetooth Low Energy (BTLE), NFC, RFID or virtually any RF circuit.
  • BTLE Bluetooth Low Energy
  • Pinch Power Another method to turn on and off powered cards is pinch power. As shown in FIG. 14 , a card may remain in an “off state” until a user “pinches” both sides of the card, completing a circuit by shorting electrical conductive material 136 placed on both sides of the card. Most prior art for conserving energy on a powered card requires the user to actively take some action to activate the powered card, such as push a button in a certain area of the card or flip the card. An advantage of this pinch power method is that it utilizes no such user activity. The card simply works as the user naturally picks up the card.
  • Pinch power allows the device to be powered on by latching the power and can be turned off by the processor 147 when the card is done being used or a timeout occurs.
  • a pinch power device is constructed by applying two planes of conductive material 170 to specific regions on opposite sides of the card as shown in FIG. 14 . These regions are selected to avoid specific areas of the card, such as where a bar code 177 might be located or the magnetic strip 171 in FIGS. 14 and 178 in FIG. 15 . When grasping a card in non-conductive areas 174 as shown by the prototype in FIG. 15 , nothing happens as indicated by the non-lit LED 173 in this prototype.
  • Conductive regions 170 can be achieved either by exposing a conductive material 172 that connects to the inlay or using a transparent/semi-transparent conductive spray 179 as part of the lamination of the card that then touches electrical “posts” or conductive areas that are exposed during the manufacturing process (exposed copper or equivalent material that connects to the inlay much like smart cards such as contact EMV).
  • the material is then wired to the circuit and battery 180 .
  • a circuit is completed when both sides of the card are touched with a conductive material, such as fingers or for the purposes of this prototype, pliers 181 .
  • Conductive translucent coatings are available for use on the typical card PVC material. This method reduces power consumption of powered cards, while simplifying the user experience and reducing the chance of a powered card turning on accidently within a pocket or wallet.
  • the switched output When power is first applied to the circuit, the switched output is not active. When the user completes the circuit by pinching in the conductive regions on both sides of the card, the output becomes active and is latched. If nothing touches the conductive regions on both sides of the card, the circuit will continue to output power until a timer is completed by the microprocessor, or unless both of the conductive planes are shorted again (e.g. the user pinches the powered card on conductive regions on both sides of the card). Upon initial power-up of the microprocessor, the microprocessor control pin is set to an input state. This allows for detection of additional touches of the conductive planes. When the card has finished its task, or a timeout condition occurs, the microprocessor can set the microprocessor control pin to an output, and an active low state will reset the latching circuit to a powered down state.
  • this latching circuit involves using an N-channel enhancement mode vertical DMOS FET.
  • the enhancement mode feature means that if the gate voltage is zero (no touching) then the FET switch is OFF.
  • a person picks up a pinch power enabled card he/she will naturally touch both sides of the card where the conductive material is around the edges of the card.
  • the skin of the person closes the gate (short) of this FET, thereby applying a voltage to the gate to turn on the FET.
  • a timer on a microprocessor (or equivalent) can be programmed to turn off the powered card based on a set interval (a user programmable interval in one embodiment). When the gate reaches the battery voltage, the current flow will cease.
  • the second device 190 must authenticate with the private electronic vault (first device 189 ) before any information is passed or transaction performed. As shown in FIG. 17 , two devices are dynamically paired when a random number 185 output from a high-quality random number generator 184 from within one device is input to the crypto chip 153 of the second device, and a SHA256 hash is generated by a key generator 183 between the random number 185 and some combination of the various identifiers 186 .
  • the generated pseudorandom number response 190 is then sent back to the first device, where it is compared by an internal comparator 182 with a SHA256 hash 193 of the same pseudorandom number generated 192 as that was challenged 185 and the same internal identifiers 191 , all within the crypto chip 153 onboard the first device. If the two numbers match, the devices are authenticated.
  • a one-time-use encryption key may be generated between devices in the same manner as authentication, in order to encrypt and store credit card numbers, names, and other private information on the private electronic vault.
  • the temporary key may be stored in a temporary memory slot 188 within the crypto chip 153
  • the vault then sends encrypted data to the second device via a wireless communication link, where the encrypted data is decrypted via its internal one-time-use encryption key and then sent by the second device via the appropriate transaction method.
  • the transaction method is a common point of sale (POS) that utilizes magnetic stripe techniques
  • the second device may be a powered card with a reprogrammable dynamic magnetic stripe 163 .
  • the second device acts as a conduit to support virtually any method of payment or communications.
  • Dynamic codes are generated from combination of one or more unique identifiers and/or keys 187 that are specific to factors including but not limited to users, manufacturers, devices, accounts, locations and/or sessions or transactions.
  • Identifiers that may be used within the dynamic pairing method include biometrics, proximity sensors, user “secrets” (Passwords/PINs/etc.), manufacturer ID, wallet ID, master encryption key, user customizable card names, card type, device serial number, electrical noise ID, CRC, MAC address, CVV, charge limits and time duration.
  • a high-quality random number generator 184 , Identifiers 187 , embedded key generator 183 , and comparator 182 are all safely hidden within the tamper-proof crypto chip 153 at all times. Even the proprietary dynamic pairing code algorithm used to generate the dynamic pairing codes may be stored in a tamper-proof crypto chip 153 as well, so that no information is ever available to be hacked.
  • the algorithm that generates the dynamic pairing code uses different combinations of these identifiers during different data sequences or at different time instances in combination with a high quality random number generator 184 local on the same protected crypto chip 153 so that identifiers 187 saved on the device are never externally accessible.
  • the combination of which identifiers are used and when they are used is based upon a proprietary NXT-ID (assignee of the present invention) algorithm. Thus, only the generated random number and its response are ever shared between the first and second devices.
  • Any second device such as the dynamic card or even a cell phone, may be authenticated via dynamic pairing or equivalent method that sends a high quality random number 185 as a challenge to the other device, and compares the response 190 with its internally generated result.
  • authentication codes may be generated by a SHA256 generator within software, or for more security for cell phone and other remote applications, the app can be in the middle of the 2 devices, where the app communicates from one device through the app to another device to ensure security at all times, even in demanding remote applications
  • Challenge/response methods of authentication such as dynamic pairing have a distinct advantage of performing multi-factor authentication by passing only pseudorandom numbers, without revealing any identifiers or keys. Furthermore, having the pseudorandom number generator, comparator and the key generator within the same tamperproof device that also holds the identifiers ensures all secrets are kept secure during authentication and encryption key generation.
  • Users may access the private electronic vault by responding correctly to the authentication question from the vault. Questions could be preconfigured by the user or random. A user may be asked to speak a certain word via a microphone 162 , or provide a pattern 194 as shown in FIG. 18 , password or pattern 195 as shown in FIG. 19 .
  • Voice is a unique biometric in that a user may speak a typed word and a VoiceMatchTM algorithm that will recognize both the speaker and the word.
  • the user may simply give a spoken word correlated with specific private information, like a payment account or medical record.
  • the private electronic vault will perform multi-factor authentication on this word by recognizing the speaker and the word itself.
  • the word is then recognized as associated with the private information, and that information can then be sent to the second device. Additional security protection may be put in place, as a user desires, to require another authentication to display private data on the device.
  • the standard communication interface to the devices is BTLE (or for second devices, just simple Bluetooth), but the devices can also support other optional interfaces such as USB, or wireless interfaces such as NFC, RFID, infrared, optical acoustic, or WiFi.
  • these interfaces may be used by applications on the authenticated second device to communicate and control the private electronic wallet to add, delete, modify, manage and receive private information for some transaction.
  • Private information that can be downloaded to the private electronic wallet may consist of payment, loyalty, identity, health, medical, or just about any information found within a typical wallet.
  • Non-private information such as advertisements, coupons, shopping lists and the like may also be transferred to the private electronic wallet.
  • information may be scanned directly into the private electronic vault from a Square reader (a well known magnetic strip reader for mobile platforms), USB or Bluetooth standard magnetic strip reader for added security.
  • One advantage to this architecture of the private electronic vault is its standalone feature where all interfaces are controlled via end-to-end authentication and encryption so that no hacking can be achieved even when connected to other, more vulnerable devices such as cell phones and PCs (i.e., the second device of the system of the invention).
  • a user may submit all money-related cards to an approval process upon initial use, where the identity of the individual and the card are validated, and store the bio key in a personal vault remotely.
  • the authentication key prevents other users from using the private electronic vault to program any new secondary devices. Only private information, such as payment accounts, approved by the approval process can be used by the electronic vault and dynamic card. Note, library, club membership cards and the like need not be approved if not desired by the user.
  • anyone trying to make a card from another individual's private electronic vault would have to follow the same authentication process and therefore would be caught.
  • authorities can be notified to pursue the attempted clone. Combining this with other methods such as timeouts and/or number or type of products to be purchased further reduces theft and fraud.
  • Private Information Selection Once private information is scanned or entered via the validation process, users may correlate the data to user-selected word(s) that act as aliases for the protected private information. These word(s) may be spoken and/or typed for security purposes. Alternatively, a user may also enter other biometrics 163 and user secrets as options to the private identity and payment vault to add further security to the user authentication process.
  • a user may wish to correlate “green gas card #3” to represent his or her Chase Visa credit card that he or she uses for payments for gasoline.
  • a user wants this payment account, he or she would simply press the on button to activate the private electronic wallet and speak the previously recorded word representing the user's associated private information (in this instance, his or her payment account associated with his or her Chase Visa credit card).
  • the word that the user speaks is then analyzed and compared to the previous word using a voice recognition algorithm internal to the private electronic vault. This algorithm identifies both the speaker and the word, and then programs the second (or payment) device with the Chase Visa credit card information and/or displays the information to a display on the local device as previously configured by the user.
  • FIG. 20 describes the user interface (UI) 196 for the private electronic vault where users may select from user-configured aliases 198 that associate to some personal information within some user-configured categories 197 that has been stored to the vault.
  • This user interface enables users to slide through a number of aliases 198 using a sliding gesture and/or buttons.
  • the number of aliases (associated to captured personal information) is only limited by the memory configured on the device (defaults to 100 cards, but can support higher numbers with a larger memory chip).
  • the user interface may scroll through user-definable categories 200 on the private electronic vault where users may select a category of aliases 199 .
  • This menu is activated by pressing the “menu” button 199 (whose icon is obvious to those that have used current cell phone app technology), or by sliding left or right to open or close the menu.
  • This app may also be applied to other second devices that are authenticated.
  • a user may select the alias 198 by sliding through categories 199 , selecting the appropriate category 200 the word(s) associated with the alias 198 , or sliding through all categories 200 and aliases 198 on the vault; the vault then programs an authenticated second device, which in turn programs its internal programmable magnetic stripe.
  • the alias could be selected by speaking into an application on an authenticated second device such as a cell phone, which then in turn commands the private electronic vault to select the appropriate alias and programs the authenticated second device with the programmable magnetic strip.
  • FIG. 22 Another user interface (UI) concept for a user to access categories 201 of aliases to personal information is shown in FIG. 22 , while FIG. 23 describes another concept for a user to access preferred 202 aliases.
  • FIGS. 24 and 25 illustrate a user interface (UI) concept for a user to view details 203 and 204 of private information such as a payment card.
  • personal information and cards securely hidden within a private electronic wallet may be managed from an app on a authenticated second device, such as mobile and fixed devices like cell phones, tablets, laptops, PCs and the like.
  • a user interface personal information, such as payment cards, may be represented by logos, card pics, or other art 205 that a user may select from a browser 206 .
  • Settings 207 for each card may include alias names, transaction limits, etc.
  • Categories 209 may also be programmed and loaded onto the private electronic wallet from an authenticated app on a second device. From this management UI, a user may search various categories such as cards, coupons, receipts, etc.
  • private information is totally under the owner's control on the private electronic vault.
  • the user may choose to display the private information on the private electronic vault itself, or send the private information from the vault itself using supported payment and/or communication methods optionally installed on the vault such as BTLE, NFC, dynamic magnetic stripe, EMV, QR and bar codes, infrared, acoustic, or WiFi.
  • the user has the added flexibility to interface to other authenticated second devices that then act as a conduit for the private information to be used to interface with other payment or communication methods.
  • private information on the second device is zeroized by iteratively writing random ones and zeros over memory to make the second device “dumb” again and ensure all private information is destroyed. In this way, all private information is preserved 100% of the time as the second devices act as controls and/or conduits for the private information to support various communication and payment methods.
  • Security One advantage of the approach of the various presented embodiments is security. Users can program the devices with any combination of the following security features:
  • the private electronic vault i.e., the first device
  • the second device must both be present for any transaction to take place. Pairing the device(s) reduces theft and fraud by requiring both devices to be present and authenticated with one another prior to any transaction that accesses private information. This significantly limits the ability of thieves to clone cards, for instance, since both devices must be present to program the first device (electronic vault), and they are further protected with a key derived from the combination of methods described.
  • the user may additionally set further limitations before the transaction takes place. Users can select any or a combination of methods including biometrics, proximity sensors, time out periods, maximum dollar amount, number of transactions, type of transactions, or user selected products that are allowed to be purchased. If these limitations are exceeded, the devices immediately detect the anomaly and theft or fraud can be prevented, and authorities can be notified.
  • the methods of the present invention can also be extended to other mobile devices acting as the private electronic wallet. These methods may also be extended such that a mobile device authenticates directly to a second device, such as a dynamic magnetic stripe card.
  • a severed configuration is advantageous, given it significantly reduces the vulnerabilities that still plague the mobile wireless device industry by providing a standalone, separate device that is virtually hack proof.
  • the private electronic wallet can be used standalone or tethered to mobile or fixed devices such as a cell phone or PC and driven by third party apps and user interfaces on those devices. Security is maintained at all times by use of dynamic pairing or equivalent authentication and encryption between the private electronic vault and any of these second devices such as PCs, mobile devices and/or programmable dynamic stripe card.
  • Basic configurations of the private electronic vault support BTLE to configure and validate the user.
  • Other configurations include USB and wireless configurations such as NFC (Near Field Communications), RFID, WiFi, 3G/4G/LTE and Bluetooth, although each of these configurations has separate wireless security profiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Databases & Information Systems (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Storage Device Security (AREA)
  • Credit Cards Or The Like (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

An electronic wallet system that protects payment accounts, identification and other personal information found within a typical wallet with a secure electronic vault (first) device that can be part of a physical wallet, insert to a wallet, or in other embodiments, wearable/portable devices. A unique biometrically enabled multi-factor authentication process ensures only owners of the information can copy the information to the device or retrieve it thereafter. Authenticated users may then select payment, identification, medical or virtually any private information via touch display or voice command on the vault or on another (second) device that operates in conjunction with the vault. The second device comprises, for example, a programmable card with dynamic magnetic stripe, cell phone, or other wearable technology, that initiates and processes a payment and/or transfer of private information.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This patent application claims the benefit of the U.S. provisional patent application filed on Oct. 8, 2012 and assigned Application No. 61/710,826, which is incorporated herein.
  • FIELD OF THE INVENTION
  • The present invention relates to the field of digital and electronic wallets, specifically methods and related apparatuses for securing private information found within a typical wallet, such as payment accounts, payment cards, identification information, medical information and records, and virtually any private information desired to be carried by a person.
  • BACKGROUND OF THE INVENTION
  • Prior art digital wallets focus on financial transactions, attempting to replace current technologies of credit and debit cards and the like with mostly electronic commerce (e-commerce) and similar methods and devices. Likewise, security concerns for most digital wallet technologies are focused primarily on the transaction between the customer, merchant and banking institutions.
  • The term “digital wallet” is used loosely to describe a broad spectrum of methods and devices to perform electronic commerce (e-commerce). Digital wallets refer to software that resides on the consumer's personal computer (PC) or other web-enabled devices that enable a user to select a payment account digitally. Digital wallets require an internet connection. Conversely, electronic wallets refer to electronic methods to allow a user to select a payment account locally, on some physical electronic device. Most digital wallet technologies involve software that resides on the consumer's personal computer (PC) or other web-enabled devices. Most browsers now support digital wallets. Digital wallet software spans methods to improve consumer's ability to purchase goods and services from on-line e-retailers (the “transaction”) to methods to keep personal information private (the “security”).
  • Features and benefits to the consumer to purchase goods and services over internet based e-commerce are well known. However, many shortcomings have limited the use and acceptance of digital wallet software solutions as the technology migrates to mobile devices. The chief issue with mass consumer acceptance of “mobile money” solutions involves securing private information on the devices as well as securing authentication information during the transaction itself. As evident in recent reviews, digital wallet technologies on cell phones will be further challenged to fully secure mobile devices. Security holes within operating systems and firewalls have caused numerous false starts to an already skeptical consumer market. Even if security concerns can be overcome, the perception of the public to utilize cell phones that have open access via the internet is questionable. In this day of rampant identity theft, consumers are understandably cautious to embrace any technology that houses or transmits their private information over electronic mediums without “assured security.”
  • Various methods have been used to secure financial transactions over the internet including encrypting the information stored locally on a device as well as the information transmitted to merchants and on to banking institutions. Since encryption alone does not solve the issue of authenticating, that is, is the individual making the purchase is indeed the individual qualified to make the purchase (e.g. the “card holder”), various methods to “authenticate” the user have arisen, such as biometrics. “End-to-end” biometric authentication is great for a long-term solution (once all security issues are fully addressed to the satisfaction of consumers), but does nothing for the current paradigm of magnetic stripe credit and payment cards that are so prevalent in society. Furthermore, a simple biometric key that authenticates with a server in the cloud does nothing to address hacking of the device and using the captured bio-key improperly “remotely” over the internet.
  • SUMMARY OF THE INVENTION
  • One embodiment of the invention comprises a method to send private information to authenticated devices securely to replicate the information in a format that supports a specific transaction method, and thereby reduce the number of devices, cards and other methods a user must carry, while improving security to protect private information.
  • The invention also addresses the broader issue of securing and replacing the number and variety of devices holding personal information within a wallet, such as identification information, medical information, and payment account devices, while conforming to current transaction methods, such as those utilizing magnetic stripes and/or NFC (near-field communications) for financial transactions and other known methods for HIPPA-controlled medical documents.
  • One embodiment of the invention focuses on security between a secure electronic payment and identity management device (referred to as a first device) and second devices that facilitate a transaction per a conventional transaction method, such as a dynamically programmable card and/or a mobile device such as a cell phone. This dual device relationship arguably addresses where most theft and fraud occurs, prior to the point-of-sale (POS), replacing payment transaction accounts and other private information with one or more standard devices that can perform the transaction over standard communications, only after being authorized to receive the private information from the first device, such as a private electronic vault or an electronic wallet. Unlike current methods that hold and transfer information (such as payment cards and other devices that support USB (universal serial bus), infrared, magnetic stripe, NFC (near field communications), contact/contactless EMV (Europay, MasterCard and Visa)), this invention requires a second device to authenticate with the secure electronic payment and identity management device before a transaction can occur, even if the information is transferred via one of these communication methods directly to a POS terminal directly from the private electronic wallet or via an authenticated second device. Thus, the second device can be “dumb” most of the time, completely void of any personal information, while the private electronic wallet device holds all private data safe and secure, and only releases it to secondary device(s) or POS terminals after a full authentication has occurred.
  • The present invention provides unique alternatives to reducing the number and variety of devices holding personal information within a wallet while increasing security of the user authentication process and the consumer transaction. To conform to current payment methods, rather than requiring any special software or equipment modifications by a merchant or bank, this invention reduces the number of payment devices and methods carried by a user and increases security while working within the paradigm of the current magnetic stripe readers, contactless NFC and EMV systems, and bar code payment methods that are so prevalent within society today. Further, this invention addresses chief security concerns not only with physical electronic wallets, but also digital wallets on mobile devices such as cell phones, which desperately need authentication and security solutions to overcome current mobile payment security deficiencies and user perceptions.
  • This invention improves security by requiring authentication between a user and two devices (i.e., the first and second devices) prior to any transaction taking place. The first device is an electronic vault device that can be physically part of a physical wallet, insert to a wallet, or in other embodiments, wearable/portable devices such as money clips, key chain accessories, watches, dongles, cell phone accessories, or any other device typically carried or worn by an individual. The first device requires unique user-configurable, biometrically enabled multi-factor authentication to ensure only owners and their private information can be copied into the secure vault wallet device. Authenticated users may then select payment information, identification information, medical information or virtually any private information via touch display or voice command on the first device, or alternatively on the second device after a successful authentication.
  • Encrypted information can be then sent from the first device to the second device, after successful authentication. The second device can comprise a programmable card having a dynamic magnetic stripe, a cell phone, or a display device displaying a payment barcode to replicate the selected private information stored on the first device. This method and attendant devices reduces the number of cards and other devices a user must carry. The second device may include mobile devices such as cell phone, tablets and laptops, or fixed devices such as desktop PCs and the like. The second device then acts as a conduit to provide private information via other communication methods such as NFC or dynamic magnetic stripe for financial transactions, and HIPPA controlled communication methods for private medical documents.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The forgoing and other features of the present inventions will be apparent to one skilled in the art to which the present inventions relate upon consideration of the following description of the invention with reference to the accompanying drawings, herein:
  • FIG. 1 is a conceptual drawing of the private electronic vault with secondary authenticated device, in this case a powered card.
  • FIG. 2 is a mechanical design of the invention configured with the display of the private identity vault device on the outside of the wallet.
  • FIG. 3 illustrates mechanical designs with the display located at the left 115 or the right 116 sides of the inside of the wallet.
  • FIG. 4 is a mechanical design of the personal identity wallet as an insert 117 to a conventional wallet.
  • FIG. 5 is a mechanical design of a standalone personal identity vault with an optional clip for inserting into a conventional wallet.
  • FIG. 6 describes another embodiment of the mechanical design of this invention to not only hold a powered card, but also communicate with it and charge its battery by aligning physical contacts or embedded electrical components such as antenna, coils, or the like.
  • FIG. 7 is a mechanical design of a standalone private electronic wallet with optional enclosed card.
  • FIG. 8 is a mechanical design of a standalone private electronic vault with an optional enclosed card and clip for insertion into a conventional wallet.
  • FIG. 9 is a mechanical design of a standalone private electronic vault with an optional open card and clip for insertion into a conventional wallet.
  • FIG. 10 is a mechanical design of a clamshell wallet with private electronic vault embedded in the wallet (part of the wallet) with an optional enclosed card.
  • FIG. 11 describes an authentication process called dynamic pairing that can authenticate between a personal identity vault and a secondary device acting as a controller and display for the vault, and another second device acting as a conduit to support consumer transactions via communication paths not inherent on the personal identity vault.
  • FIG. 12 is a block diagram of the personal identity vault that illustrates the major functional blocks of the invention.
  • FIG. 13 is a block diagram of a powered card as a secondary device with major functional blocks of the invention including a dynamic magnetic stripe module.
  • FIG. 14 describes areas where pinch conductive material can be applied to both sides of a powered card to achieve pinch power, a method to turn on a powered card by completing a circuit as a user naturally holds the card.
  • FIG. 15 illustrates a pinch power prototype with copper material on the designated areas of both sides of a card and an LED that lights to show when the card is pick up, the circuit activates the powered card.
  • FIG. 16 illustrates a pinch power prototype with transparent conductive material on designated areas of both sides of a card.
  • FIG. 17 details how two devices authenticate one another via dynamic pairing.
  • FIG. 18 describes a user interface (UI) concept for a user to access a private electronic vault by drawing a user-configured pattern.
  • FIG. 19 describes a user interface (UI) concept for a user to access a private electronic vault by typing a user-configured PIN.
  • FIG. 20 describes the user interface (UI) for the private electronic vault where users may select from user-configured aliases.
  • FIG. 21 describes the user interface (UI) for scrolling through user-definable categories on the private electronic vault.
  • FIG. 22 describes another user interface (UI) concept for a user to access categories of aliases to personal information.
  • FIG. 23 describes another user interface (UI) concept for a user to access preferred aliases.
  • FIG. 24 describes a user interface (UI) concept for a user to view details of private information such as a payment card.
  • FIG. 25 describes another user interface (UI) concept for a user to view details of private information such as a payment card.
  • FIG. 26 describes a user interface (UI) concept to manage personal information and cards within a private electronic wallet from an app on a second device, such as mobile and fixed devices like cell phones, tablets, laptops, PCs and the like.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Before describing in detail the particular methods and apparatuses related to replacing traditional payment and identify management systems and components with methods and components that provide additional levels of security, it should be observed that the embodiments of the present invention reside primarily in a novel and non-obvious combination of elements and method steps. So as not to obscure the disclosure with details that will be readily apparent to those skilled in the art, certain conventional elements and steps have been presented with lesser detail, while the drawings and the specification describe in greater detail other elements and steps pertinent to understanding the embodiments. The presented embodiments are not intended to define limits as to the structures, elements or methods of the inventions, but only to provide exemplary constructions. The embodiments are permissive rather than mandatory and illustrative rather than exhaustive.
  • The present invention differs from other “digital wallets” in that other wallets are more focused on solutions that rely upon an internet connection to perform card/account selection and/or transaction. In contrast, this invention is focused on replacing the number and variety of devices holding personal information within a physical wallet, and replication of their functionality onto a secondary authenticated device that conforms to current common communication interfaces for private methods such as HIPPA controlled communication methods for private medical documents and payment methods such as NFC or dynamic magnetic stripe.
  • System Overview
  • This invention improves security by requiring authentication between a user and two devices as shown for example in FIG. 1 (referred to herein as first and second devices) prior to a transaction taking place. The first device, which may comprise and be referred to as an electronic vault device, personal identity vault, private electronic vault, a private electronic wallet, a secure electronic payment and identity management device, a secure electronic payment and identification device or system, a next generation payment and personal identity wallet, and a next generation payment and personal identity device, can be physically part of a physical wallet as shown for examples in FIGS. 2 and 3, 102 and 104, insert to a wallet as shown in FIG. 4, 106, or in other embodiments, wearable/portable devices such as money clips, key chain accessories, watches, dongles, cell phone accessories, or any other device typically carried or worn by an individual. This personal identity vault device requires unique biometrically enabled multi-factor authentication to ensure only owners and their private information can be copied into the vault device.
  • Authenticated users may then select credit, debit, identification, medical or virtually any private information via touch display or voice command on the first device, or alternatively on the second device that connects to the first device. Encrypted information can be then sent from the first device to the second (authenticated) device, such as a programmable card with dynamic magnetic stripe. In any case, the format of the information in the second device is selected to replicate the desired transaction method. In one embodiment, for example, the second device can be pre-programmed to be any card type, such as a stand-alone multi-card, or the second device can sit within the electronic wallet device, which acts as a security system for programming the dynamic card. Information can be “zeroized”, writing 1's and 0's over memory iteratively in random pattern, after one use, a preconfigured number of uses, or after a timer has expired.
  • A user may select a card via the touch interface or voice command on the first device or alternatively on an authenticated second device with display interfaces (e.g. cell phone, tablet, PC, etc.), and configure the second device to function just like a copied device. Alternatively, the first device (e.g., private vault electronic wallet device) and the authenticated second device can be used with other mobile payment forms such as NFC, EMV, RFID, infrared, acoustic, and QR Codes in some embodiments. Logos, picture of the front and back, signature and even bar codes can be displayed on the sunlight readable display of the first or second devices such that secure electronic payment and identification system can uniquely support all common methods of payment currently supported at point of sale (POS) positions around the world. Other security methods such as a physical signature on the back of a payment device can also be supported.
  • Mechanical Options
  • The private electronic vault can encompass many embodiments spanning varying mechanical configurations. As shown in FIG. 1, one embodiment consists of a standalone private electronic vault 100 with secondary authenticated device, in this case a powered card 101 that can be located anywhere with the vault. FIG. 2 describes a mechanical design of the invention configured with the display of the private identity vault device embedded in the wallet and viewable on the outside of the wallet. Features of this and any of the embodiments of this invention may include, as options, a display 102 that can be inserted into a wallet or embedded into an carried or worn device, a touch panel overlay 103, a battery indicator 104, a power on/off button 105, a microphone with exposure through the enclosure for appropriate acoustics 106, soft or hard material 107 appropriate for gripping the wallet and/or protecting other cards within the wallet such as blocking/attenuating signals to protect RF cards within, curved design 108 to conform to wearing in a rear or front pocket of a person's clothing, magnetic clasp 109 that keeps the wallet closed until opened, magnetic switch 110 that turns the electronic wallet on and off as the wallet is opened, an area for a secondary device 111, a hinge or fold mechanism 112, areas and/or folds 113 for other cards and/or receipts, and/or a money clip 114.
  • Another embodiment of the mechanical design of this invention is to place the display inside the wallet. FIG. 3 illustrates this concept with the display located at the left 115 or the right 116 sides of the inside of the wallet.
  • Another embodiment of the mechanical design of this invention is to provide the private electronic wallet as an insert 117 to a conventional wallet as shown in FIG. 4. FIG. 5 describes the enclosure 118 of a standalone configuration that stores the display and electronics of the private electronic vault, alone with an attachment 119 that serves as a dual purpose as a storage method for a powered card 120 and an insert 119 to hold the device in place inside a pocket of a conventional wallet.
  • Another embodiment of the mechanical design of this invention described in FIG. 6 is to not only hold a card or powered card with guide 121 and ramp 122 features, but also communicate with a powered card and charge its battery by aligning physical contacts 123 or embedded electrical components (not shown) such as antenna, coils, or the like.
  • Other embodiments include standalone private electronic wallet 124 with optional enclosed card 125 using molded guides 126 as shown in FIG. 7, optional removable insert 127 as shown in FIG. 8, an open version of the private electronic vault 128 where the molded guide is open 129 to allow easier grip to a card, and a clip may be either molded 130 or removable 131. These standalone embodiments contrast to another clamshell design as shown in FIG. 10, but may still possess each of the optional features such as a hard or soft case 132, display 133, touch screen 134, modern design for comfort such as tapered corners and sides 135, microphone 136, battery indicator 137, power button 138, magnetic clasp 139 and/or magnetic switch 140, hinge 141, card holders 142, and/or money clip (not shown on this drawing).
  • Electronic Hardware Components
  • As shown in FIG. 11, personal identity vaults 143 may communicate to multiple secondary devices 144 and 145 with NXT approved authentication such as dynamic pairing 146 or equivalent authentication methods. Some second devices 144 may act as a display for the personal ID vault, while other second devices 145 act as conduit to send private information over other protocols and methods not inherent to the vault.
  • The hardware for the private electronic vault and one embodiment of a second device hardware may be similar as shown in FIGS. 12 and 13, consisting of an ultra low-power microprocessor 147 powered by batteries or super-capacitors 148 managed by a battery monitor, input power condition, DC to DC converters, recharging circuits with optional inductive and/or RF wireless recharging circuits, all within a power management block 149. The microprocessor 147 acts as the microcontroller for all onboard peripherals including RAM and NAND memory 150, or optionally FRAM and/or NVRAM (shown as part of the memory block 150 in the diagram) in some configurations. For either of the two devices, the microprocessor 147 may interface with an optional low-power e-paper, memory LCD and/or color display 151. A transparent/semitransparent touch screen may be overlaid atop the display 152, in some configurations, and optionally wired directly to an analog comparator module within the microprocessor for ultimate low power performance while filtering and interpreting touch events, or replaced with physical buttons (not shown) outside of the display for user interface controls. The vault also contains a multi-factor voice recognition algorithm via voice collected by an onboard microphone that connects directly to dual stage amplifiers within the processor for filtering and amplifying the voice. Amplifiers within the processor further reduce power consumption and chip count/cost. Both devices may also communicate via contacts 123, USB 154 or optional wireless communication including BTLE (Bluetooth Low Energy) 155, NFC/EMV 156, RFID 157, infrared 158, optical 159, WiFi 160, acoustic 161, or custom low-power RF communication (not shown). In addition to multi-factor speaker and word recognition (voice recognition), which is inherent on an private electronic wallet device, other biometrics may be optionally added including gesture, finger, face, 3D face, IRIS, eye, eye vein, eye tracking, DNA, vein, palm, heartbeat, sweat, vibrometry, and/or scent by adding those sensors to the interface of the microprocessor. Microprocessors on each device may also integrate with a tamper-proof authentication crypto chip 153, which houses identifiers, high quality random number and key generators internally such that no keys or identifiers are ever released by the authentication chip. Only random numbers are ever passed over encrypted communicated between the first and second devices.
  • The second device (or in those embodiments having a plurality of second devices) may provide a conduit to transfer the private information over some specific payment or transfer methods that exist on the second device. For instance, some commercial devices may support various communication methods such as WiFi or NFC, negating the need for the next generation payment and personal identity wallet to support these methods directly on its device. Instead, the private electronic vault device (the first device) may simply communicate to the second device that then acts as a conduit to adhere to any communication standards from authorities that dictate the transfer of private information, such as HIPPA or financial authorities.
  • The second device(s) may comprise any mobile, portable, or wearable device such as cell phones, tablets and the like, or even fixed computing devices such as PCs. In one embodiment, as shown in FIG. 13, the second device can contain similar components (in function), but not necessarily the exact same chip as that with the primary electronic vault, such as a crypto chip 153, ultra low-power processor 147, flash memory, SDRAM, FRAM or NVRAM (collectively part of the memory block of the diagram), display 151 and touch screen 152, battery 148 and power management 149, crypto 153, microphone 162, biometric modules 162 and communications methods such as USB 154, BTLE 155, NFC/EMV 156, RFID 157, infrared 158, optical 159, WiFi 160, acoustic 161, or custom low-power RF communication (not shown). These second devices powered cards 165 may also include a dynamic magnetic stripe module 164 to interface with mag stripe card readers using a powered card. For secondary powered cards specifically, each of the components may be wired thinner versions of these chips, wafer or die formats 0.5 mm or thinner, in order to conform to ISO standards for payment cards of approximately 0.79 mm or thinner). Displays on these cards may also be thinner and can include other ultra thin displays that shows the payment account number 166, in whole or in part, and other information such as CVV 167, name 169 and expiration date 168 as shown in FIG. 14.
  • Power Management: Battery and/or super-capacitors (collectively shown as block 148) are continuously monitored by power management 149 at a predetermined time interval to activate a “low-battery” indicator (LED or equivalent shown as part of the Power Management block 149) when power is measured to be below a specific threshold. A rechargeable circuit (shown as part of block 149) allows power to be recharged when connected to a 5 VDC USB device, or alternatively to be recharged via optional wireless inductive or RF charging methods, or other power harvesting methods such as solar/light, RF, piezoelectric/movement and thermal (each shown as part of the power management block 149 on the block diagram).
  • According to this invention, a second device, such as a dynamically programmable card, can be charged wirelessly by the private electronic vault (i.e., the first device) while the dynamically programmable card is near the private vault device, such as within a wallet. An optional wireless inductive ultra thin coil (shown as part of block 149) associated circuitry enables the primary device to communicate and charge the second device(s) using inductive charging conforming to the QI interface standard for inductive electrical power transfer. Alternatively, power may be transferred from the first or primary device to the secondary device via RF energy, such as BTLE, by adding an optional amplifier (shown as part of block 149) that boosts the RF energy on the primary device, and an optional power-harvesting chip (shown as part of block 149) on the Bluetooth transceiver on the secondary device. Under this scenario, a powered card sitting within a wallet can be charged by the electronic vault by sending information to the electronic vault when charging should take place. Thus, with this scheme, the battery within the powered card can be kept charged just as long as the larger battery for the private electronic vault (the first or primary device) within the wallet has charge, thereby extending the overall operation of the powered card (second device).
  • Power states are closely controlled within the microcontroller to achieve ultra lower power consumption and longest battery-life between charges. To take advantage of the infrequent use of a wallet in real-life, power may be totally turned off and turned back on using an innovative switch to FET (field effect transistor), which ensures no power is consumed when the device is powered off. Alternatively, to provide low power performance of the wallet while also automating the on/off mechanism, a magnetic switch 110 may be connected to a FET such that the electronic wallet automatically turns on as the wallet is opened, and off as the wallet is closed. The advantage of these two switch methods is that no power is consumed while the wallet is powered completely off, which increases the time between charging the battery.
  • When the private electronic vault is powered on, the microprocessor can be held at various “power states” that turn off the core processor and all peripherals except the a GPIO pin that can be used to wake up from “deep sleep”. Other power states include keeping the core off while interfaces to peripherals on. This enables DMA (direct memory access) transfers from one peripheral, such as memory, to another peripheral, such as the display, with minimum involvement (and power) by the processor. This allows the microprocessor to be kept at its lowest states and “wake-up” to other states only when the core processor is needed. This schema achieves lower power performance by “ping-ponging” between power states only as resources on the ultra low power microprocessor are needed. For instance, power can be conserved by waking up the microprocessor from its lowest power state (deep sleep) while it scans the touch screen at a very low frequency, increase to another state to capture the touch gesture by increasing frequency of scanning of the buttons, and returning to the lower power state after the touch has been completed. Likewise, interpreting the touch via table rather than requiring a processor to process the touch results can conserve power. Furthermore, power can be saved by transferring data via DMA to a display or RF peripheral that can then be awakened and display, process, or transmit that data. Thus, under this method, an event, such as a touch event, can be interpreted and data sent to a display and other peripherals while conserving power by ping-ponging the microprocessor between states.
  • Another unique power reduction feature is to power peripherals of the microcontroller directly from GPIO (general purpose input output) pins such that any peripheral can be powered on or off directly by the microprocessor. With this schema, no current is consumed by any peripheral unless the microprocessor “wakes up” that peripheral by turning on the appropriate GPIO pin. Powering the peripherals directly by the microprocessor in this manner not only reduces needless power consumed while a peripheral is not used (e.g. in a quiescent state), but also reduces chip count by eliminating DC supplies.
  • To further reduce power, the secondary device can be awakened via a membrane switch, or optionally by an RF wake-up circuit or “pinch power” methods. The RF wake-up circuit consists of a resonantly tuned antenna with a receiver that then harvests the power from that signal to wake-up the rest of the circuit. Similar to semi-passive RFID, this RF wake-up method utilizes the frequency and power of the transmitter to create a resonant signal whose power can be harvested to wake-up the microprocessor. This method can be applied to Bluetooth Low Energy (BTLE), NFC, RFID or virtually any RF circuit.
  • Pinch Power: Another method to turn on and off powered cards is pinch power. As shown in FIG. 14, a card may remain in an “off state” until a user “pinches” both sides of the card, completing a circuit by shorting electrical conductive material 136 placed on both sides of the card. Most prior art for conserving energy on a powered card requires the user to actively take some action to activate the powered card, such as push a button in a certain area of the card or flip the card. An advantage of this pinch power method is that it utilizes no such user activity. The card simply works as the user naturally picks up the card.
  • Pinch power allows the device to be powered on by latching the power and can be turned off by the processor 147 when the card is done being used or a timeout occurs. A pinch power device is constructed by applying two planes of conductive material 170 to specific regions on opposite sides of the card as shown in FIG. 14. These regions are selected to avoid specific areas of the card, such as where a bar code 177 might be located or the magnetic strip 171 in FIGS. 14 and 178 in FIG. 15. When grasping a card in non-conductive areas 174 as shown by the prototype in FIG. 15, nothing happens as indicated by the non-lit LED 173 in this prototype. As a user grasps both sides of the card in the conductive regions of the card 175 (as one would naturally do when attempting to use the card), a conductive path is completed by the user's fingers 175 and activates the Pinch Power latching circuit (not shown but described below), which in turn lights the LED 176 (for purposes of this prototype). Conductive regions 170 can be achieved either by exposing a conductive material 172 that connects to the inlay or using a transparent/semi-transparent conductive spray 179 as part of the lamination of the card that then touches electrical “posts” or conductive areas that are exposed during the manufacturing process (exposed copper or equivalent material that connects to the inlay much like smart cards such as contact EMV). The material is then wired to the circuit and battery 180. As with exposed copper, a circuit is completed when both sides of the card are touched with a conductive material, such as fingers or for the purposes of this prototype, pliers 181. Conductive translucent coatings are available for use on the typical card PVC material. This method reduces power consumption of powered cards, while simplifying the user experience and reducing the chance of a powered card turning on accidently within a pocket or wallet.
  • When power is first applied to the circuit, the switched output is not active. When the user completes the circuit by pinching in the conductive regions on both sides of the card, the output becomes active and is latched. If nothing touches the conductive regions on both sides of the card, the circuit will continue to output power until a timer is completed by the microprocessor, or unless both of the conductive planes are shorted again (e.g. the user pinches the powered card on conductive regions on both sides of the card). Upon initial power-up of the microprocessor, the microprocessor control pin is set to an input state. This allows for detection of additional touches of the conductive planes. When the card has finished its task, or a timeout condition occurs, the microprocessor can set the microprocessor control pin to an output, and an active low state will reset the latching circuit to a powered down state.
  • One embodiment of this latching circuit involves using an N-channel enhancement mode vertical DMOS FET. The enhancement mode feature means that if the gate voltage is zero (no touching) then the FET switch is OFF. When a person picks up a pinch power enabled card, he/she will naturally touch both sides of the card where the conductive material is around the edges of the card. Thus, the skin of the person closes the gate (short) of this FET, thereby applying a voltage to the gate to turn on the FET. Once turned on, a timer on a microprocessor (or equivalent) can be programmed to turn off the powered card based on a set interval (a user programmable interval in one embodiment). When the gate reaches the battery voltage, the current flow will cease.
  • This “pinch power” approach solves two key problems with powered cards:
      • How to turn them on and off without cumbersome switches.
      • How to keep them from turning on when placed in areas that could activate a “switch” mechanism, such as a wallet, and thus needlessly drain the battery.
  • Dual Device Authentication: The second device 190 must authenticate with the private electronic vault (first device 189) before any information is passed or transaction performed. As shown in FIG. 17, two devices are dynamically paired when a random number 185 output from a high-quality random number generator 184 from within one device is input to the crypto chip 153 of the second device, and a SHA256 hash is generated by a key generator 183 between the random number 185 and some combination of the various identifiers 186. The generated pseudorandom number response 190 is then sent back to the first device, where it is compared by an internal comparator 182 with a SHA256 hash 193 of the same pseudorandom number generated 192 as that was challenged 185 and the same internal identifiers 191, all within the crypto chip 153 onboard the first device. If the two numbers match, the devices are authenticated.
  • Likewise, a one-time-use encryption key may generated between devices in the same manner as authentication, in order to encrypt and store credit card numbers, names, and other private information on the private electronic vault. The temporary key may be stored in a temporary memory slot 188 within the crypto chip 153 The vault then sends encrypted data to the second device via a wireless communication link, where the encrypted data is decrypted via its internal one-time-use encryption key and then sent by the second device via the appropriate transaction method. For instance, if the transaction method is a common point of sale (POS) that utilizes magnetic stripe techniques, the second device may be a powered card with a reprogrammable dynamic magnetic stripe 163. Thus, the second device acts as a conduit to support virtually any method of payment or communications.
  • Dynamic codes are generated from combination of one or more unique identifiers and/or keys 187 that are specific to factors including but not limited to users, manufacturers, devices, accounts, locations and/or sessions or transactions. Identifiers that may be used within the dynamic pairing method include biometrics, proximity sensors, user “secrets” (Passwords/PINs/etc.), manufacturer ID, wallet ID, master encryption key, user customizable card names, card type, device serial number, electrical noise ID, CRC, MAC address, CVV, charge limits and time duration. A high-quality random number generator 184, Identifiers 187, embedded key generator 183, and comparator 182 are all safely hidden within the tamper-proof crypto chip 153 at all times. Even the proprietary dynamic pairing code algorithm used to generate the dynamic pairing codes may be stored in a tamper-proof crypto chip 153 as well, so that no information is ever available to be hacked.
  • The algorithm that generates the dynamic pairing code uses different combinations of these identifiers during different data sequences or at different time instances in combination with a high quality random number generator 184 local on the same protected crypto chip 153 so that identifiers 187 saved on the device are never externally accessible. The combination of which identifiers are used and when they are used is based upon a proprietary NXT-ID (assignee of the present invention) algorithm. Thus, only the generated random number and its response are ever shared between the first and second devices.
  • Any second device, such as the dynamic card or even a cell phone, may be authenticated via dynamic pairing or equivalent method that sends a high quality random number 185 as a challenge to the other device, and compares the response 190 with its internally generated result. For second devices that are commercially available, such as cell phones, authentication codes may be generated by a SHA256 generator within software, or for more security for cell phone and other remote applications, the app can be in the middle of the 2 devices, where the app communicates from one device through the app to another device to ensure security at all times, even in demanding remote applications
  • Challenge/response methods of authentication such as dynamic pairing have a distinct advantage of performing multi-factor authentication by passing only pseudorandom numbers, without revealing any identifiers or keys. Furthermore, having the pseudorandom number generator, comparator and the key generator within the same tamperproof device that also holds the identifiers ensures all secrets are kept secure during authentication and encryption key generation.
  • User Authentication: Users may access the private electronic vault by responding correctly to the authentication question from the vault. Questions could be preconfigured by the user or random. A user may be asked to speak a certain word via a microphone 162, or provide a pattern 194 as shown in FIG. 18, password or pattern 195 as shown in FIG. 19.
  • Voice is a unique biometric in that a user may speak a typed word and a VoiceMatch™ algorithm that will recognize both the speaker and the word. In some embodiments, the user may simply give a spoken word correlated with specific private information, like a payment account or medical record. The private electronic vault will perform multi-factor authentication on this word by recognizing the speaker and the word itself. The word is then recognized as associated with the private information, and that information can then be sent to the second device. Additional security protection may be put in place, as a user desires, to require another authentication to display private data on the device.
  • Interfaces: The standard communication interface to the devices is BTLE (or for second devices, just simple Bluetooth), but the devices can also support other optional interfaces such as USB, or wireless interfaces such as NFC, RFID, infrared, optical acoustic, or WiFi. In some embodiments, these interfaces may be used by applications on the authenticated second device to communicate and control the private electronic wallet to add, delete, modify, manage and receive private information for some transaction. Private information that can be downloaded to the private electronic wallet may consist of payment, loyalty, identity, health, medical, or just about any information found within a typical wallet. Non-private information such as advertisements, coupons, shopping lists and the like may also be transferred to the private electronic wallet. In other embodiments, information may be scanned directly into the private electronic vault from a Square reader (a well known magnetic strip reader for mobile platforms), USB or Bluetooth standard magnetic strip reader for added security.
  • One advantage to this architecture of the private electronic vault is its standalone feature where all interfaces are controlled via end-to-end authentication and encryption so that no hacking can be achieved even when connected to other, more vulnerable devices such as cell phones and PCs (i.e., the second device of the system of the invention).
  • Validation process to enter data into wallet
  • One embodiment of the invention supports two validations processes
  • 1. Name variation embedded in the private electronic vault
  • 2. Validation process of payment cards prior to scanning.
  • When a user signs up for first time, she/he enters a last name and up to three variables for first, middle and nicknames. These names are then configured into specific write-only areas within the crypto chip of the electronic vault. As users load data from magnetic stripe cards, the private electronic vault parses the names swiped by a magnetic stripe reader and matches those names internal to its memory vault. If the names match, the card information is accepted and encrypted using a self generated encryption key that is also saved into internal secure memory. If additional names are needed, users may contact NXT-ID to allow more than three variations in an authorized name.
  • To further avoid card cloning, a user may submit all money-related cards to an approval process upon initial use, where the identity of the individual and the card are validated, and store the bio key in a personal vault remotely. Once approved, the authentication key prevents other users from using the private electronic vault to program any new secondary devices. Only private information, such as payment accounts, approved by the approval process can be used by the electronic vault and dynamic card. Note, library, club membership cards and the like need not be approved if not desired by the user. Anyone trying to make a card from another individual's private electronic vault would have to follow the same authentication process and therefore would be caught. When authentication is attempted between the devices and the user and the authentication key does not match, authorities can be notified to pursue the attempted clone. Combining this with other methods such as timeouts and/or number or type of products to be purchased further reduces theft and fraud.
  • Private Information Selection: Once private information is scanned or entered via the validation process, users may correlate the data to user-selected word(s) that act as aliases for the protected private information. These word(s) may be spoken and/or typed for security purposes. Alternatively, a user may also enter other biometrics 163 and user secrets as options to the private identity and payment vault to add further security to the user authentication process.
  • For instance, a user may wish to correlate “green gas card #3” to represent his or her Chase Visa credit card that he or she uses for payments for gasoline. When a user then wants this payment account, he or she would simply press the on button to activate the private electronic wallet and speak the previously recorded word representing the user's associated private information (in this instance, his or her payment account associated with his or her Chase Visa credit card). The word that the user speaks is then analyzed and compared to the previous word using a voice recognition algorithm internal to the private electronic vault. This algorithm identifies both the speaker and the word, and then programs the second (or payment) device with the Chase Visa credit card information and/or displays the information to a display on the local device as previously configured by the user.
  • Alternatively, a user may slide through each of the aliased word(s) 198 via a touch display and select the alias 198 that the user wishes to send to the second device. FIG. 20 describes the user interface (UI) 196 for the private electronic vault where users may select from user-configured aliases 198 that associate to some personal information within some user-configured categories 197 that has been stored to the vault. This user interface enables users to slide through a number of aliases 198 using a sliding gesture and/or buttons. The number of aliases (associated to captured personal information) is only limited by the memory configured on the device (defaults to 100 cards, but can support higher numbers with a larger memory chip).
  • As described in FIG. 21, the user interface (UI) may scroll through user-definable categories 200 on the private electronic vault where users may select a category of aliases 199. This menu is activated by pressing the “menu” button 199 (whose icon is obvious to those that have used current cell phone app technology), or by sliding left or right to open or close the menu.
  • This app may also be applied to other second devices that are authenticated. For instance, in the case of supporting a payment with a point of sale (PoS) system supporting magnetic stripe, a user may select the alias 198 by sliding through categories 199, selecting the appropriate category 200 the word(s) associated with the alias 198, or sliding through all categories 200 and aliases 198 on the vault; the vault then programs an authenticated second device, which in turn programs its internal programmable magnetic stripe. In another embodiment, the alias could be selected by speaking into an application on an authenticated second device such as a cell phone, which then in turn commands the private electronic vault to select the appropriate alias and programs the authenticated second device with the programmable magnetic strip.
  • Another user interface (UI) concept for a user to access categories 201 of aliases to personal information is shown in FIG. 22, while FIG. 23 describes another concept for a user to access preferred 202 aliases. FIGS. 24 and 25 illustrate a user interface (UI) concept for a user to view details 203 and 204 of private information such as a payment card.
  • As shown in FIG. 26, personal information and cards securely hidden within a private electronic wallet may be managed from an app on a authenticated second device, such as mobile and fixed devices like cell phones, tablets, laptops, PCs and the like. Under this user interface (UI) personal information, such as payment cards, may be represented by logos, card pics, or other art 205 that a user may select from a browser 206. Settings 207 for each card may include alias names, transaction limits, etc. Once a card is scanned or entered into the private electronic vault, it appears as its correlated alias 208 (whatever alias name, logo, and settings given that personal information by the user). Categories 209 may also be programmed and loaded onto the private electronic wallet from an authenticated app on a second device. From this management UI, a user may search various categories such as cards, coupons, receipts, etc.
  • Thus, according to one embodiment of this invention, private information is totally under the owner's control on the private electronic vault. The user may choose to display the private information on the private electronic vault itself, or send the private information from the vault itself using supported payment and/or communication methods optionally installed on the vault such as BTLE, NFC, dynamic magnetic stripe, EMV, QR and bar codes, infrared, acoustic, or WiFi. In other embodiments, the user has the added flexibility to interface to other authenticated second devices that then act as a conduit for the private information to be used to interface with other payment or communication methods. Once a transaction is completed, private information on the second device is zeroized by iteratively writing random ones and zeros over memory to make the second device “dumb” again and ensure all private information is destroyed. In this way, all private information is preserved 100% of the time as the second devices act as controls and/or conduits for the private information to support various communication and payment methods.
  • Security: One advantage of the approach of the various presented embodiments is security. Users can program the devices with any combination of the following security features:
      • User to Vault: Regardless if an authenticated second device is used or not, all users must be authenticated to the private electronic vault (the first device) using one of the following methods:
        • a. Biometrics 163 of FIG. 12: A biometric, such as voice, entered by the user matches that entered during setup (Note: Biometrics can include voice, gesture, finger, face, 3D face, IRIS, eye, eye vein, eye tracking, DNA, vein, palm, heartbeat, sweat, vibrometry, and/or scent by simply adding those sensors to the interface of the microprocessor).
        • b. PIN or Password: A PIN or password entered by the user matches that entered during setup.
        • c. Pattern: A pattern drawn on the screen matches that entered during setup.
        • d. Signature: The signature entered by the user matches that which was written on the rear and/or display of the device(s).
      • Private Data to Vault (i.e., the first device): Name variation embedded on the private electronic vault must match that scanned by any private information being input from certain types of cards such as payment, medical, and identity cards.
      • Card to a Card Company: The card is approved as valid by a financial or other institution providing the card.
      • Two paired devices: The two paired devices must be stolen under certain embodiments, not just the wallet.
        • a. Pairing: The second device(s) are dynamically paired to a specific private electronic vault.
        • b. Proximity: The second device(s) close proximity with a paired private electronic vault.
        • c. Name etching: A name may be permanently etched onto the private electronic vault (also referred to as the first device) to match other forms of identification of the user.
        • d. CVV, Names, Numbers and/or Expiration Dates: CVV, names, numbers and/or expiration dates may be displayed on the device(s).
        • e. Charge limits: The transaction does not exceed the amount limit set by the owner of the private information.
        • f. Time duration: The time duration for a transaction or account does not exceed that set by the owner of the private information.
        • h. Dynamic Authentication and Encryption keys: One-time use authentication and encryption keys that are generated dynamically based on the time of day and/or sequence, and/or a combination of the identifiers.
  • In some embodiments, the private electronic vault (i.e., the first device) and the second device must both be present for any transaction to take place. Pairing the device(s) reduces theft and fraud by requiring both devices to be present and authenticated with one another prior to any transaction that accesses private information. This significantly limits the ability of thieves to clone cards, for instance, since both devices must be present to program the first device (electronic vault), and they are further protected with a key derived from the combination of methods described.
  • The user may additionally set further limitations before the transaction takes place. Users can select any or a combination of methods including biometrics, proximity sensors, time out periods, maximum dollar amount, number of transactions, type of transactions, or user selected products that are allowed to be purchased. If these limitations are exceeded, the devices immediately detect the anomaly and theft or fraud can be prevented, and authorities can be notified.
  • Limitations at the point of sale reduce the impact of fraud while keeping within the bounds of current transaction and payment technologies. These methods of security are advantageous to “end-to-end” solutions, since they apply limitations to access private information prior to any transaction and under full control by the user. Enabling the user to set limitations for use of the device(s) is also advantageous, since it occurs prior to any release of private information or point of sale, and the variability of settings will act as a further deterrent to thieves and fraud abusers. In addition, under this invention, the merchant need not be involved at all. Security is maintained without impact to the merchant in any way.
  • The methods of the present invention can also be extended to other mobile devices acting as the private electronic wallet. These methods may also be extended such that a mobile device authenticates directly to a second device, such as a dynamic magnetic stripe card. However, a severed configuration is advantageous, given it significantly reduces the vulnerabilities that still plague the mobile wireless device industry by providing a standalone, separate device that is virtually hack proof.
  • Integration with 3rd Party Mobile Applications: The private electronic wallet can be used standalone or tethered to mobile or fixed devices such as a cell phone or PC and driven by third party apps and user interfaces on those devices. Security is maintained at all times by use of dynamic pairing or equivalent authentication and encryption between the private electronic vault and any of these second devices such as PCs, mobile devices and/or programmable dynamic stripe card. Basic configurations of the private electronic vault support BTLE to configure and validate the user. Other configurations include USB and wireless configurations such as NFC (Near Field Communications), RFID, WiFi, 3G/4G/LTE and Bluetooth, although each of these configurations has separate wireless security profiles.
  • Differences with other implementations of a digital wallet: The unique features of the present invention and its described first and second devices that separate the invention from all other prior art implementations include:
      • A separate solution dedicated to the purpose of an electronic wallet, versus cell phones and other mobile devices that are multi-purpose.
      • Two separate devices that must be “dynamically paired” to each other.
      • Sufficiently small to support a number of different configurations, including:
        • Part of the physical wallet or standalone wallet insert
        • Money clip
        • Key chain accessory
        • Watch
        • Dongle
        • Cell Phone accessory
        • or any other device typically carried by an individual.
      • Support the most common forms of payment today:
        • Magnetic Stripe
        • NFC
        • EMV
        • QR Codes
        • RFID
        • In other embodiments, infrared, acoustic, Bluetooth Low Energy (BTLE), WiFi, 3G/4G/LTE and cloud based payment forms are also supported.
      • Replication of all cards and other information frequently found within a typical physical wallet, not just payment cards, including:
        • Payment cards
          • Credit
          • Debit
          • ATM
          • Gift
          • Cash
          • Calling
        • Loyalty cards
          • Shopping (Restaurants, Retail, etc.)
          • Frequent Flyer
          • Reward Cards
        • Club/Membership cards
          • Shopping (BJ's, Sam's Club, etc.)
          • Organizations/Affiliations (IEEE, etc.)
          • Social
          • Library
          • Hotel
          • Rental Car
          • Vacation
          • Roadside assistance
        • Identity
          • Licenses
          • Passports
          • Visas
          • Voter's Registration
          • Employee
          • Security
          • Passcards
          • Business Cards
        • Insurance
          • Auto
          • Health/Medical
          • Dental
          • House
          • Life
          • Travel
        • Medical Records Cards
          • Conditions
          • Medications
          • Hospitalization
        • Shopping lists
        • Discount
        • Coupons
        • Receipts
        • Tickets
      • Enhanced Security features including:
        • User to Vault
        • Private Information to Vault
        • Card to Card Company
        • Two Separate Dynamically Paired devices as described herein
        • Pairing of external devices to the first device (the private electronic wallet)
        • Proximity
        • PIN or Password
        • Pattern
        • Signature
        • Name etching
        • CVV
        • Biometric enabled generated keys
        • Charge limits
        • Time duration
        • Dynamic authentication and encryption keys (based on dynamic combinations of information listed above).
  • Other Services: Unique services that may be integrated with this private electronic wallet technology include:
      • Receipts (Pocket Accountant)
      • Automatic Receipt Coding and Book Keeping
      • Shopping List
      • Shopping Assistant (Shopper and/or Retail Aisle Assistant
      • Ads/Specials/Coupons
      • Proximity Based Ads/Specials/Coupons
      • RFID Ads/Specials/Coupons
      • Proximity Cards
      • Toll Attendant
      • Money (Wires)
      • Payment
      • 24 hour Replacement Service
      • Travel Service.
  • The following describes each of these services:
      • Receipts (Pocket Accountant): For transactions that utilize 2-way communications with servers, such as wireless/contactless methods such as NFC, RFID, WiFi and 3G/4G/LTE, transactions can be recorded directly to the first device (private electronic wallet) so that it acts as a “pocket accountant”. Within this embodiment of this invention, information regarding the card such as balances can also be displayed with each soft-card.
      • Automatic Receipt Coding and Book Keeping: For transactions that utilize 2-way communications with servers, such as wireless/contactless methods such as NFC, RFID, WiFi and 3G/4G/LTE, transactions can be also automatically recorded, coded, sorted and output to third party programs such as excel and QuickBooks. Within this embodiment of this invention, information regarding the transactions of a card can be automatically output to business accounting tools.
      • Shopping List: Products can be typed, scanned or electronically obtained on a PC or mobile device, and downloaded to the Wocket™ to be used at a retail location.
      • Shopping Assistant (Wocket™ Shopper and/or Retail Aisle Assistant): This invention detects RFID enabled products as a shopper strolls down a retail aisle and notifies the shopper of any product that matches an item on a shopping list previously downloaded to the private electronic wallet or vault, commercially referred to as the Wocket™)
      • Ads/Specials/Coupons: This invention consists of advertisements, specials and coupons can be typed, scanned or electronically obtained on a PC, then managed on the PC, and downloaded to the private electronic wallet or vault to be used at a retail location. Coupons can then be retrieved on the private electronic wallet during shopping, and the bar code displayed for each coupon on the private electronic wallet e-paper, mLCD or low power color display. This display is advantageous since bar codes can be reliably scanned on this display (where they cannot on typical LCD displays on cell phones, for instance). These coupons can also be associated with optional shopping lists also managed and downloaded to the primary electronic vault.
      • Proximity Based Ads/Specials/Coupons: This embodiment consists of advertisements, specials and coupons that can be automatically offered to the shopper (user) based upon the store the user enters. The store location is detected by the private electronic vault via optional integrated GPS module, or via wireless integration with a user's cell phone.
      • RFID Ads/Specials/Coupons: This embodiment consists of advertisements, specials and coupons that can be automatically sent to the vault from the retail item itself as a shopper passes within range of the RFID of the specific retail item (or product). The shopper can then be notified of “specials” (coupons) that can be used with the product.
      • Proximity Cards: Cards can be automatically offered to the shopper (user) based upon the store the user enters. In this embodiment the store location is detected by the vault via optional integrated GPS module, or via wireless integration with a user's cell phone. The best cards are offered to the shopper based on calculating which card provides the best benefits for a given store or list of purchases.
      • Toll Attendant: The private electronic vault is also integrated with novel RFID that can be used as a passive mobile “Toll” payment method. The toll attendant service automatically interfaces with the same RFID technology of the E-ZPass Interagency Group (IAG), which comprises 25 agencies spread across 14 states.
      • Money (Wires): This service enables the private electronic wallet to transfer money to one another via a wallet to wallet validation process. Once validated, payments can take place between two parties with proper authentication of each of their respective Wockets.
      • Payment: The embodiment of this invention enables a private electronic wallet to accept payments. Consumers can pay for items via their typical payment method including magnetic stripe, NFC, contactless EMV, and QR Codes. The private electronic wallet can be configured to accept these forms of payment with connected or disconnected methods of validation (wireless payment validation and/or pre-authorization via housing each of the cards prior to transaction (so that they can be held securely until the validation process can be performed)).
      • 24 hour Replacement Service: This embodiment provides an optional service to users to replace the private electronic wallet by calling the service number, validating the user's identity, and sending a new Wocket with all cards that have been placed by the user on the secure server
      • Travel Service: This embodiment comprises an optional service that enables users to notify card companies of cards on a specific private electronic wallet of impending travel plans, to prevent the card company from calling the user to validate purchases as the user travels.

Claims (20)

What is claimed is:
1. A method for storing and using personal information, comprising:
storing the personal information on a first device;
authenticating the first device to a second device; and
transferring the personal information from the first to the second device.
2. The method of claim 1 further comprising the second device conducting a transaction related to the personal information.
3. The method of claim 2 wherein the personal information comprises information associated with a payment card, the second device replicating the information associated with the payment card and the transaction comprises paying for an item or service using the second device.
4. The method if claim 1 wherein the transaction involves one or more of financial information, medical information and identity information.
5. The method of claim 1 further comprising authenticating a user to the first and second devices prior to transferring the personal information from the first device to the second device.
6. The method of claim 1 wherein the personal information is associated with a user-configured alias comprising at least one of a written or spoken word stored within a memory of the first device, the first device recognizing the alias and selecting the associated personal information.
7. The method of claim 6 wherein the alias comprises one or more keywords for configuring the second device according to a desired payment transaction method.
8. The method of claim 1 further comprising erasing an item of the personal information by randomly writing 1's and 0's over the personal information.
9. The method of claim 8 wherein the step of erasing is executed after the item of personal information has been accessed a predetermined number of times or after a predetermined time interval from storing the item of personal information on the first device.
10. The method of claim 1 further comprising at least one of the first device and the second device entering a sleep state after a period of inactivity.
11. The method of claim 10 further comprising awakening the first device by operation of a third device communicating with at least one of the first and second devices.
12. The method of claim 1 wherein the second device comprises a dynamically programmable magnet stripe.
13. The method of claim 1 wherein the step of transferring is executed over an encrypted communications link.
14. The method of claim 1 further comprising the second device using the personal information to perform a transaction or an action.
15. The method of claim 1 wherein a third device controls operation of at least one of the first and the second devices.
16. The method of claim 15 wherein the third device comprises one or more of a cell phone, a personal computer, a laptop computer, a notebook computer, and a device controlled by a microprocessor or microcomputer.
17. A system for storing and using personal information, comprising:
a first device for storing the personal information;
a second device authenticated to the first device, the personal information transferred from the first device to the second device after authentication between the first and the second devices, the second device using the personal information in a transaction or action by replicating the personal information in a format according to a desired transaction or action.
18. The system of claim 17 wherein a third device controls operation of at least one of the first and the second devices.
19. The system of claim 17 wherein the second device comprises a dynamically programmable magnet stripe.
20. The system of claim 17 wherein the personal information comprises one or more of financial information, medical information and identity information.
US14/049,175 2012-10-08 2013-10-08 Method for Replacing Traditional Payment and Identity Management Systems and Components to Provide Additional Security and a System Implementing Said Method Abandoned US20140108241A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/049,175 US20140108241A1 (en) 2012-10-08 2013-10-08 Method for Replacing Traditional Payment and Identity Management Systems and Components to Provide Additional Security and a System Implementing Said Method
US15/252,468 US10269010B2 (en) 2012-10-08 2016-08-31 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method
US16/005,598 US10679209B2 (en) 2012-10-08 2018-06-11 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261710826P 2012-10-08 2012-10-08
US14/049,175 US20140108241A1 (en) 2012-10-08 2013-10-08 Method for Replacing Traditional Payment and Identity Management Systems and Components to Provide Additional Security and a System Implementing Said Method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/252,468 Continuation US10269010B2 (en) 2012-10-08 2016-08-31 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method
US16/005,598 Continuation US10679209B2 (en) 2012-10-08 2018-06-11 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method

Publications (1)

Publication Number Publication Date
US20140108241A1 true US20140108241A1 (en) 2014-04-17

Family

ID=50476294

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/049,175 Abandoned US20140108241A1 (en) 2012-10-08 2013-10-08 Method for Replacing Traditional Payment and Identity Management Systems and Components to Provide Additional Security and a System Implementing Said Method
US15/252,468 Active 2034-11-19 US10269010B2 (en) 2012-10-08 2016-08-31 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method
US16/005,598 Active 2033-11-09 US10679209B2 (en) 2012-10-08 2018-06-11 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/252,468 Active 2034-11-19 US10269010B2 (en) 2012-10-08 2016-08-31 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method
US16/005,598 Active 2033-11-09 US10679209B2 (en) 2012-10-08 2018-06-11 Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method

Country Status (1)

Country Link
US (3) US20140108241A1 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120252360A1 (en) * 2011-03-29 2012-10-04 Research In Motion Limited Mobile wireless communications device for selecting a payment account to use with a payment processing system based upon a microphone or device profile and associated methods
US20140188708A1 (en) * 2012-12-31 2014-07-03 Satish Narayan GOVINDARAJAN Dongle facilitated wireless consumer payments
US20140249994A1 (en) * 2013-03-04 2014-09-04 Hello Inc. Wearable device with unique user ID and telemetry system for payments
US20150019433A1 (en) * 2013-07-11 2015-01-15 Compagnie Industrielle Et Financiere D'ingenierie "Ingenico" Method for carrying out a transaction, corresponding terminal and computer program
US20150023572A1 (en) * 2013-07-22 2015-01-22 Rocky Williform System and methods for providing finger vein authentication and signature for execution of electronic wallet transactions
US20150072618A1 (en) * 2013-09-06 2015-03-12 John Hastings Granbery Systems and methods for enabling additional devices to check in to bluetooth low energy (ble) beacons
US20150121405A1 (en) * 2013-10-29 2015-04-30 Mastercard International Incorporated System and method for disseminating functionality to a target device
US9225695B1 (en) * 2014-06-10 2015-12-29 Lockheed Martin Corporation Storing and transmitting sensitive data
GB2528486A (en) * 2014-07-23 2016-01-27 Valasca Ltd Verification method and system for digital currency
US20160034887A1 (en) * 2014-07-31 2016-02-04 Lg Electronics Inc. Wearable device and method for controlling the same
WO2016053686A1 (en) * 2014-09-29 2016-04-07 Mastercard International Incorporated Method and apparatus for streamlined digital wallet transactions
US20160140545A1 (en) * 2013-12-19 2016-05-19 Christian Flurscheim Cloud-based transactions with magnetic secure transmission
US9356819B2 (en) 2013-09-27 2016-05-31 Ebay Inc. Systems and methods for checking a user into a location using a packet sequence including location information
US20160156603A1 (en) * 2014-11-28 2016-06-02 Craig Janik Low Power Secure User Identity Authentication Ring
US20160277383A1 (en) * 2015-03-16 2016-09-22 Assa Abloy Ab Binding to a user device
US20160277388A1 (en) * 2015-03-16 2016-09-22 Assa Abloy Ab Enhanced authorization
US20160335608A1 (en) * 2015-05-15 2016-11-17 Bank Of America Corporation Virtual Payment Device Including a Scannable Code
US20170061461A1 (en) * 2015-08-26 2017-03-02 Paypal, Inc. Secondary device communications for intelligent selection of electronic sources
US20170257901A1 (en) * 2014-06-25 2017-09-07 Thomson Licensing Method and device for pairing devices
US9775029B2 (en) 2014-08-22 2017-09-26 Visa International Service Association Embedding cloud-based functionalities in a communication device
US20170317830A1 (en) * 2014-10-30 2017-11-02 Hewlett-Packard Development Company, L.P. Access Medium
US20170344977A1 (en) * 2016-05-31 2017-11-30 The Watchtower Company Smart Wallet
US9881303B2 (en) 2014-06-05 2018-01-30 Paypal, Inc. Systems and methods for implementing automatic payer authentication
US20180046344A1 (en) * 2012-10-09 2018-02-15 Mastercard International Incorporated System and method for payment using a mobile device
US20180060551A1 (en) * 2016-08-23 2018-03-01 Lenovo (Singapore) Pte. Ltd. Using gas chromatography for authentication, advertisements, and therapies
US9972005B2 (en) 2013-12-19 2018-05-15 Visa International Service Association Cloud-based transactions methods and systems
WO2018127741A1 (en) * 2017-01-05 2018-07-12 Gahlaut Shikhar System and method for conducting electronic transactions through personal electronic transaction card
WO2018134855A1 (en) * 2017-01-23 2018-07-26 Stefano Nicolis Personal identification system, particularly for making electronic payments
CN109151515A (en) * 2018-09-12 2019-01-04 广东乐心医疗电子股份有限公司 Interaction system and method in performance scene
US10225243B2 (en) * 2016-09-30 2019-03-05 Palo Alto Networks, Inc. Intercept-based multifactor authentication enrollment of clients as a network service
US10367784B2 (en) 2016-09-30 2019-07-30 Palo Alto Networks, Inc. Detection of compromised credentials as a network service
US10430789B1 (en) 2014-06-10 2019-10-01 Lockheed Martin Corporation System, method and computer program product for secure retail transactions (SRT)
US10547600B2 (en) 2016-09-30 2020-01-28 Palo Alto Networks, Inc. Multifactor authentication as a network service
US20200074418A1 (en) * 2018-08-28 2020-03-05 Juan-Hung Wu System for issuing and converting virtual currency in physical voucher manner and method thereof
US10701049B2 (en) 2016-09-30 2020-06-30 Palo Alto Networks, Inc. Time-based network authentication challenges
US10755248B2 (en) 2016-10-11 2020-08-25 Mastercard Asia Pacific Pte. Ltd. Method and device for digital payment transactions
US10846694B2 (en) 2014-05-21 2020-11-24 Visa International Service Association Offline authentication
US10963888B2 (en) 2019-04-10 2021-03-30 Advanced New Technologies Co., Ltd. Payment complaint method, device, server and readable storage medium
CN112734419A (en) * 2021-01-18 2021-04-30 北京极智数仓科技有限公司 Enterprise electronic wallet management method, system and terminal supporting personal real-time payment
US20210216988A1 (en) * 2017-12-08 2021-07-15 Square, Inc. Reader detection signal bypassing secure processor
US11080693B2 (en) 2011-04-05 2021-08-03 Visa Europe Limited Payment system
US11080580B2 (en) * 2018-12-20 2021-08-03 Ncr Corporation Chip-based card security
US11093593B2 (en) * 2018-08-20 2021-08-17 Lenovo (Singapore) Pte. Ltd. User authentication for protected actions
US20210287224A1 (en) * 2020-03-13 2021-09-16 Toyota Jidosha Kabushiki Kaisha Wallet server, computer readable recording medium, and wallet system
US11238140B2 (en) 2016-07-11 2022-02-01 Visa International Service Association Encryption key exchange process using access device
US11257058B1 (en) * 2017-10-30 2022-02-22 Square, Inc. Sharing output device between unsecured processor and secured processor
US11295291B2 (en) * 2014-12-24 2022-04-05 Paypal, Inc. Low battery and digital wallet
CN114418569A (en) * 2022-03-29 2022-04-29 深圳市合扬智能卡科技有限公司 Operation method and system for digital payment card
US11561593B2 (en) 2017-04-28 2023-01-24 Block, Inc. Point of sale device power management and undervoltage protection
US11748743B1 (en) 2017-12-04 2023-09-05 Wells Fargo Bank, N.A. Trust-based application to application connectivity
US11775672B1 (en) * 2017-12-04 2023-10-03 Wells Fargo Bank, N.A. Trust-based application to application connectivity
US20240013222A1 (en) * 2022-07-08 2024-01-11 Bank Of America Corporation Auxiliary battery power authentication system for use with an emv contactless secure transaction card

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838398A (en) * 2012-10-15 2015-08-12 驱动卡解决方案有限公司 System and method for secure remote access and remote payment using a mobile device and a powered display card
US10395240B2 (en) * 2014-09-02 2019-08-27 NXT-ID, Inc. Components for enhancing or augmenting wearable accessories by adding electronics thereto
US10560135B1 (en) 2015-06-05 2020-02-11 Life365, Inc. Health, wellness and activity monitor
US11329683B1 (en) 2015-06-05 2022-05-10 Life365, Inc. Device configured for functional diagnosis and updates
US9974492B1 (en) * 2015-06-05 2018-05-22 Life365, Inc. Health monitoring and communications device
US10185513B1 (en) 2015-06-05 2019-01-22 Life365, Inc. Device configured for dynamic software change
US10388411B1 (en) 2015-09-02 2019-08-20 Life365, Inc. Device configured for functional diagnosis and updates
US11132682B1 (en) * 2016-07-22 2021-09-28 Wells Fargo Bank, N.A. Piezoelectric biometric card security
US20190080330A1 (en) * 2017-09-08 2019-03-14 Infinacom, LLC Biometric-based transaction authentication system
US11042933B1 (en) * 2017-10-17 2021-06-22 Chicago Mercantile Exchange Inc. System for processing withholding payments
US10796563B1 (en) 2018-06-26 2020-10-06 Amazon Technologies, Inc. Configuring a secondary device
US11455628B2 (en) * 2018-10-05 2022-09-27 Mastercard International Incorporated Systems and methods for facilitating network transactions based on user authentication
US11195242B1 (en) * 2019-02-27 2021-12-07 United Services Automobile Association (Usaa) Systems and methods for anonymizing transaction information
US10467445B1 (en) * 2019-03-28 2019-11-05 Capital One Services, Llc Devices and methods for contactless card alignment with a foldable mobile device
US11935059B2 (en) * 2019-05-31 2024-03-19 Visa International Service Association System to reduce false declines using supplemental devices
US11363069B1 (en) 2019-12-12 2022-06-14 Wells Fargo Bank, N.A. Systems and methods for multiple custody using mobile devices or wearables
US11354555B1 (en) * 2021-05-04 2022-06-07 Capital One Services, Llc Methods, mediums, and systems for applying a display to a transaction card

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020191816A1 (en) * 2001-06-14 2002-12-19 Michael Maritzen System and method of selecting consumer profile and account information via biometric identifiers
US20090143104A1 (en) * 2007-09-21 2009-06-04 Michael Loh Wireless smart card and integrated personal area network, near field communication and contactless payment system
US20110255133A1 (en) * 2010-04-16 2011-10-20 Pablo Dominguez Pastor External storage for imaging devices
US20120191612A1 (en) * 2010-03-02 2012-07-26 Digital Life Technologies, Llc Portable e-wallet and universal card
US20140074569A1 (en) * 2012-09-11 2014-03-13 First Data Corporation Systems and methods for facilitating loyalty and reward functionality in mobile commerce

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221838A (en) 1990-12-24 1993-06-22 Motorola, Inc. Electronic wallet
US6026379A (en) 1996-06-17 2000-02-15 Verifone, Inc. System, method and article of manufacture for managing transactions in a high availability system
US6212634B1 (en) 1996-11-15 2001-04-03 Open Market, Inc. Certifying authorization in computer networks
US8225089B2 (en) 1996-12-04 2012-07-17 Otomaku Properties Ltd., L.L.C. Electronic transaction systems utilizing a PEAD and a private key
US6270011B1 (en) 1998-05-28 2001-08-07 Benenson Tal Remote credit card authentication system
US6250557B1 (en) 1998-08-25 2001-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for a smart card wallet and uses thereof
US7505941B2 (en) 1999-08-31 2009-03-17 American Express Travel Related Services Company, Inc. Methods and apparatus for conducting electronic transactions using biometrics
US7889052B2 (en) 2001-07-10 2011-02-15 Xatra Fund Mx, Llc Authorizing payment subsequent to RF transactions
US7104440B2 (en) 1999-10-26 2006-09-12 First Data Corporation Money transfer systems and methods for travelers
GB2364482B (en) 2000-06-30 2002-10-09 Motorola Inc Server-based electronic wallet system
US6938019B1 (en) 2000-08-29 2005-08-30 Uzo Chijioke Chukwuemeka Method and apparatus for making secure electronic payments
US20020038287A1 (en) 2000-08-30 2002-03-28 Jean-Marc Villaret EMV card-based identification, authentication, and access control for remote access
US20020077993A1 (en) 2000-12-18 2002-06-20 Nokia Corporation Method and system for conducting wireless payments
US20020143634A1 (en) 2001-03-30 2002-10-03 Kumar K. Anand Wireless payment system
US7107249B2 (en) 2001-03-31 2006-09-12 First Data Corporation Electronic identifier payment systems and methods
US20020143655A1 (en) 2001-04-02 2002-10-03 Stephen Elston Remote ordering system for mobile commerce
US20020179704A1 (en) 2001-06-05 2002-12-05 Ncr Corporation Enhanced digital wallet
US7059531B2 (en) 2001-07-10 2006-06-13 American Express Travel Related Services Company, Inc. Method and system for smellprint recognition biometrics on a fob
US7735725B1 (en) 2001-07-10 2010-06-15 Fred Bishop Processing an RF transaction using a routing number
US7303120B2 (en) 2001-07-10 2007-12-04 American Express Travel Related Services Company, Inc. System for biometric security using a FOB
US8548927B2 (en) 2001-07-10 2013-10-01 Xatra Fund Mx, Llc Biometric registration for facilitating an RF transaction
US7249112B2 (en) 2002-07-09 2007-07-24 American Express Travel Related Services Company, Inc. System and method for assigning a funding source for a radio frequency identification device
US7668750B2 (en) 2001-07-10 2010-02-23 David S Bonalle Securing RF transactions using a transactions counter
US20040236699A1 (en) 2001-07-10 2004-11-25 American Express Travel Related Services Company, Inc. Method and system for hand geometry recognition biometrics on a fob
US7746215B1 (en) 2001-07-10 2010-06-29 Fred Bishop RF transactions using a wireless reader grid
US7360689B2 (en) 2001-07-10 2008-04-22 American Express Travel Related Services Company, Inc. Method and system for proffering multiple biometrics for use with a FOB
US7543738B1 (en) 2001-07-10 2009-06-09 American Express Travel Related Services Company, Inc. System and method for secure transactions manageable by a transaction account provider
US7705732B2 (en) 2001-07-10 2010-04-27 Fred Bishop Authenticating an RF transaction using a transaction counter
US8001054B1 (en) 2001-07-10 2011-08-16 American Express Travel Related Services Company, Inc. System and method for generating an unpredictable number using a seeded algorithm
JP2003067731A (en) * 2001-08-28 2003-03-07 Nec Corp Mobile radio terminal unit
US20030154139A1 (en) 2001-12-31 2003-08-14 Woo Kevin K. M. Secure m-commerce transactions through legacy POS systems
US7890393B2 (en) 2002-02-07 2011-02-15 Ebay, Inc. Method and system for completing a transaction between a customer and a merchant
US6805287B2 (en) 2002-09-12 2004-10-19 American Express Travel Related Services Company, Inc. System and method for converting a stored value card to a credit card
US7761374B2 (en) 2003-08-18 2010-07-20 Visa International Service Association Method and system for generating a dynamic verification value
US7740168B2 (en) 2003-08-18 2010-06-22 Visa U.S.A. Inc. Method and system for generating a dynamic verification value
US7024396B2 (en) 2003-12-10 2006-04-04 Ncr Corporation Transaction system and method of conducting a point-of-sale transaction between a merchant and a consumer using a wireless platform
US7363504B2 (en) 2004-07-01 2008-04-22 American Express Travel Related Services Company, Inc. Method and system for keystroke scan recognition biometrics on a smartcard
US7325724B2 (en) 2004-07-01 2008-02-05 American Express Travel Related Services Company, Inc. Method for registering a biometric for use with a smartcard
US7318550B2 (en) 2004-07-01 2008-01-15 American Express Travel Related Services Company, Inc. Biometric safeguard method for use with a smartcard
US7314164B2 (en) 2004-07-01 2008-01-01 American Express Travel Related Services Company, Inc. System for biometric security using a smartcard
US7314165B2 (en) 2004-07-01 2008-01-01 American Express Travel Related Services Company, Inc. Method and system for smellprint recognition biometrics on a smartcard
US7341181B2 (en) 2004-07-01 2008-03-11 American Express Travel Related Services Company, Inc. Method for biometric security using a smartcard
US7357310B2 (en) 2005-03-11 2008-04-15 Gerry Calabrese Mobile phone charge card notification and authorization method
US7818264B2 (en) 2006-06-19 2010-10-19 Visa U.S.A. Inc. Track data encryption
US20080059379A1 (en) 2006-05-18 2008-03-06 Icache, Inc. Method and apparatus for biometrically secured encrypted data storage and retrieval
US8160959B2 (en) 2006-07-06 2012-04-17 Firethorn Mobile, Inc. Methods and systems for payment transactions in a mobile environment
US8145568B2 (en) 2006-07-06 2012-03-27 Firethorn Mobile, Inc. Methods and systems for indicating a payment in a mobile environment
US8121945B2 (en) 2006-07-06 2012-02-21 Firethorn Mobile, Inc. Methods and systems for payment method selection by a payee in a mobile environment
US8121942B2 (en) 2007-06-25 2012-02-21 Visa U.S.A. Inc. Systems and methods for secure and transparent cardless transactions
US7945238B2 (en) 2007-06-28 2011-05-17 Kajeet, Inc. System and methods for managing the utilization of a communications device
US8271285B2 (en) * 2007-08-02 2012-09-18 International Business Machines Corporation Using speaker identification and verification speech processing technologies to activate and deactivate a payment card
EP2105873A1 (en) 2008-03-11 2009-09-30 Imunant S.r.l. System and method for performing a transaction
US8313037B1 (en) 2011-07-08 2012-11-20 Thomas David Humphrey Simulated magnetic stripe card system and method for use with magnetic stripe card reading terminals
US8376239B1 (en) 2011-07-08 2013-02-19 Thomas David Humphrey Method of use of a simulated magnetic stripe card system for use with magnetic stripe card reading terminals
US9076142B2 (en) * 2011-09-22 2015-07-07 Marsiste ADOLPHE Smart electronic wallet or smart e-wallet
US8977569B2 (en) 2011-09-29 2015-03-10 Raj Rao System and method for providing smart electronic wallet and reconfigurable transaction card thereof
US20140073979A1 (en) * 2012-04-11 2014-03-13 Salvatore Richard Inciardi eCard ECG Monitor
CN102722743B (en) * 2012-05-22 2015-07-22 深圳市斯凯荣科技有限公司 Remote wireless smart card, smart card terminal equipment and remote wireless smart card transmission system
US8690059B1 (en) 2013-01-20 2014-04-08 George Wallner System and method for a baseband nearfield magnetic stripe data transmitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020191816A1 (en) * 2001-06-14 2002-12-19 Michael Maritzen System and method of selecting consumer profile and account information via biometric identifiers
US20090143104A1 (en) * 2007-09-21 2009-06-04 Michael Loh Wireless smart card and integrated personal area network, near field communication and contactless payment system
US20120191612A1 (en) * 2010-03-02 2012-07-26 Digital Life Technologies, Llc Portable e-wallet and universal card
US20110255133A1 (en) * 2010-04-16 2011-10-20 Pablo Dominguez Pastor External storage for imaging devices
US20140074569A1 (en) * 2012-09-11 2014-03-13 First Data Corporation Systems and methods for facilitating loyalty and reward functionality in mobile commerce

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120252360A1 (en) * 2011-03-29 2012-10-04 Research In Motion Limited Mobile wireless communications device for selecting a payment account to use with a payment processing system based upon a microphone or device profile and associated methods
US11989727B2 (en) 2011-04-05 2024-05-21 Visa Europe Limited Payment system
US11080693B2 (en) 2011-04-05 2021-08-03 Visa Europe Limited Payment system
US11694199B2 (en) 2011-04-05 2023-07-04 Visa Europe Limited Payment system
US20180046344A1 (en) * 2012-10-09 2018-02-15 Mastercard International Incorporated System and method for payment using a mobile device
US10380577B2 (en) 2012-12-31 2019-08-13 Paypal, Inc. Wireless dongle facilitated mobile transactions
US8972296B2 (en) * 2012-12-31 2015-03-03 Ebay Inc. Dongle facilitated wireless consumer payments
US20150248667A1 (en) * 2012-12-31 2015-09-03 Ebay Inc. Dongle facilitated wireless consumer payments
US10839368B2 (en) 2012-12-31 2020-11-17 Paypal, Inc. Automatic wireless consumer checkins
US11893565B2 (en) 2012-12-31 2024-02-06 Paypal, Inc. Wireless dongle facilitated mobile transactions
US11270287B2 (en) 2012-12-31 2022-03-08 Paypal, Inc. Wireless dongle facilitated mobile transactions
US9471917B2 (en) * 2012-12-31 2016-10-18 Paypal, Inc. Dongle facilitated wireless consumer payments
US20140188708A1 (en) * 2012-12-31 2014-07-03 Satish Narayan GOVINDARAJAN Dongle facilitated wireless consumer payments
US20140249994A1 (en) * 2013-03-04 2014-09-04 Hello Inc. Wearable device with unique user ID and telemetry system for payments
US20150019433A1 (en) * 2013-07-11 2015-01-15 Compagnie Industrielle Et Financiere D'ingenierie "Ingenico" Method for carrying out a transaction, corresponding terminal and computer program
US11907918B2 (en) * 2013-07-11 2024-02-20 Banks And Acquirers International Holding Method for carrying out a transaction, corresponding terminal and computer program
US20150023572A1 (en) * 2013-07-22 2015-01-22 Rocky Williform System and methods for providing finger vein authentication and signature for execution of electronic wallet transactions
US9445220B2 (en) * 2013-09-06 2016-09-13 Paypal, Inc. Systems and methods for enabling additional devices to check in to bluetooth low energy (BLE) beacons
US20170223483A1 (en) * 2013-09-06 2017-08-03 Paypal, Inc. Systems and methods for enabling additional devices to check in to bluetooth low energy (ble) beacons
US12127092B2 (en) * 2013-09-06 2024-10-22 Paypal, Inc. Systems and methods for enabling additional devices to check in to bluetooth low energy (ble) beacons
US10499224B2 (en) 2013-09-06 2019-12-03 Paypal, Inc. Bluetooth low energy (BLE) pre-check in
US20150072618A1 (en) * 2013-09-06 2015-03-12 John Hastings Granbery Systems and methods for enabling additional devices to check in to bluetooth low energy (ble) beacons
US11917510B2 (en) 2013-09-06 2024-02-27 Paypal, Inc. Bluetooth low energy (BLE) pre-check in
US9571957B2 (en) * 2013-09-06 2017-02-14 Paypal, Inc. Systems and methods for enabling additional devices to check in to bluetooth low energy (BLE) beacons
US10631154B2 (en) * 2013-09-06 2020-04-21 Paypal, Inc. Systems and methods for enabling additional devices to check in to Bluetooth low energy (BLE) beacons
US20220022016A1 (en) * 2013-09-06 2022-01-20 Paypal, Inc. Systems and methods for enabling additional devices to check in to bluetooth low energy (ble) beacons
US20230354000A1 (en) * 2013-09-06 2023-11-02 Paypal, Inc. Systems And Methods For Enabling Additional Devices To Check In To Bluetooth Low Energy (Ble) Beacons
US11678166B2 (en) * 2013-09-06 2023-06-13 Paypal, Inc. Systems and methods for enabling additional devices to check in to Bluetooth low energy (BLE) beacons
US11218859B2 (en) * 2013-09-06 2022-01-04 Paypal, Inc. Systems and methods for enabling additional devices to check in to Bluetooth low energy (BLE) beacons
US10251041B2 (en) * 2013-09-06 2019-04-02 Paypal, Inc. Systems and methods for enabling additional devices to check in to bluetooth low energy (BLE) beacons
US9799053B2 (en) 2013-09-27 2017-10-24 Paypal, Inc. Systems and methods for checking a user into a location using a packet sequence including location information
US11682043B2 (en) 2013-09-27 2023-06-20 Paypal, Inc. Systems and methods for checking a user into a location using a packet sequence including location information
US9356819B2 (en) 2013-09-27 2016-05-31 Ebay Inc. Systems and methods for checking a user into a location using a packet sequence including location information
US10049388B2 (en) 2013-09-27 2018-08-14 Paypal, Inc. Systems and methods for checking a user into a location using a packet sequence including location information
US10250929B2 (en) * 2013-10-29 2019-04-02 Mastercard International Incorporated System and method for disseminating digital wallet functionality to a target device
US20150121405A1 (en) * 2013-10-29 2015-04-30 Mastercard International Incorporated System and method for disseminating functionality to a target device
US10402814B2 (en) 2013-12-19 2019-09-03 Visa International Service Association Cloud-based transactions methods and systems
US10664824B2 (en) 2013-12-19 2020-05-26 Visa International Service Association Cloud-based transactions methods and systems
US9972005B2 (en) 2013-12-19 2018-05-15 Visa International Service Association Cloud-based transactions methods and systems
US10909522B2 (en) 2013-12-19 2021-02-02 Visa International Service Association Cloud-based transactions methods and systems
US9922322B2 (en) * 2013-12-19 2018-03-20 Visa International Service Association Cloud-based transactions with magnetic secure transmission
US11875344B2 (en) 2013-12-19 2024-01-16 Visa International Service Association Cloud-based transactions with magnetic secure transmission
US11164176B2 (en) 2013-12-19 2021-11-02 Visa International Service Association Limited-use keys and cryptograms
US20160140545A1 (en) * 2013-12-19 2016-05-19 Christian Flurscheim Cloud-based transactions with magnetic secure transmission
US11017386B2 (en) 2013-12-19 2021-05-25 Visa International Service Association Cloud-based transactions with magnetic secure transmission
US11842350B2 (en) 2014-05-21 2023-12-12 Visa International Service Association Offline authentication
US10846694B2 (en) 2014-05-21 2020-11-24 Visa International Service Association Offline authentication
US9881303B2 (en) 2014-06-05 2018-01-30 Paypal, Inc. Systems and methods for implementing automatic payer authentication
US9419954B1 (en) 2014-06-10 2016-08-16 Lockheed Martin Corporation Storing and transmitting sensitive data
US9760738B1 (en) 2014-06-10 2017-09-12 Lockheed Martin Corporation Storing and transmitting sensitive data
US9225695B1 (en) * 2014-06-10 2015-12-29 Lockheed Martin Corporation Storing and transmitting sensitive data
US9311506B1 (en) 2014-06-10 2016-04-12 Lockheed Martin Corporation Storing and transmitting sensitive data
US10430789B1 (en) 2014-06-10 2019-10-01 Lockheed Martin Corporation System, method and computer program product for secure retail transactions (SRT)
US20170257901A1 (en) * 2014-06-25 2017-09-07 Thomson Licensing Method and device for pairing devices
US10244571B2 (en) * 2014-06-25 2019-03-26 Interdigital Ce Patent Holdings Method and device for pairing devices
GB2528486A (en) * 2014-07-23 2016-01-27 Valasca Ltd Verification method and system for digital currency
US9953312B2 (en) * 2014-07-31 2018-04-24 Lg Electronics Inc. Wearable device and method for processing NFC payment using the wearable device
US20160034887A1 (en) * 2014-07-31 2016-02-04 Lg Electronics Inc. Wearable device and method for controlling the same
US10477393B2 (en) 2014-08-22 2019-11-12 Visa International Service Association Embedding cloud-based functionalities in a communication device
US11036873B2 (en) 2014-08-22 2021-06-15 Visa International Service Association Embedding cloud-based functionalities in a communication device
US11783061B2 (en) 2014-08-22 2023-10-10 Visa International Service Association Embedding cloud-based functionalities in a communication device
US9775029B2 (en) 2014-08-22 2017-09-26 Visa International Service Association Embedding cloud-based functionalities in a communication device
US10049353B2 (en) 2014-08-22 2018-08-14 Visa International Service Association Embedding cloud-based functionalities in a communication device
CN107004194A (en) * 2014-09-29 2017-08-01 万事达卡国际股份有限公司 The method and apparatus for the digital wallet transaction simplified
WO2016053686A1 (en) * 2014-09-29 2016-04-07 Mastercard International Incorporated Method and apparatus for streamlined digital wallet transactions
US10902423B2 (en) 2014-09-29 2021-01-26 Mastercard International Incorporated Method and apparatus for streamlined digital wallet transactions
US20170317830A1 (en) * 2014-10-30 2017-11-02 Hewlett-Packard Development Company, L.P. Access Medium
US20160156603A1 (en) * 2014-11-28 2016-06-02 Craig Janik Low Power Secure User Identity Authentication Ring
US11295291B2 (en) * 2014-12-24 2022-04-05 Paypal, Inc. Low battery and digital wallet
US20160277383A1 (en) * 2015-03-16 2016-09-22 Assa Abloy Ab Binding to a user device
US20160277388A1 (en) * 2015-03-16 2016-09-22 Assa Abloy Ab Enhanced authorization
US11736468B2 (en) * 2015-03-16 2023-08-22 Assa Abloy Ab Enhanced authorization
US20160335608A1 (en) * 2015-05-15 2016-11-17 Bank Of America Corporation Virtual Payment Device Including a Scannable Code
US20170061461A1 (en) * 2015-08-26 2017-03-02 Paypal, Inc. Secondary device communications for intelligent selection of electronic sources
US20170344977A1 (en) * 2016-05-31 2017-11-30 The Watchtower Company Smart Wallet
US11238140B2 (en) 2016-07-11 2022-02-01 Visa International Service Association Encryption key exchange process using access device
US11714885B2 (en) 2016-07-11 2023-08-01 Visa International Service Association Encryption key exchange process using access device
US10942998B2 (en) * 2016-08-23 2021-03-09 Lenovo (Singapore) Pte. Ltd. Using gas chromatography for authentication, advertisements, and therapies
US20180060551A1 (en) * 2016-08-23 2018-03-01 Lenovo (Singapore) Pte. Ltd. Using gas chromatography for authentication, advertisements, and therapies
US10701049B2 (en) 2016-09-30 2020-06-30 Palo Alto Networks, Inc. Time-based network authentication challenges
US10225243B2 (en) * 2016-09-30 2019-03-05 Palo Alto Networks, Inc. Intercept-based multifactor authentication enrollment of clients as a network service
US10701056B2 (en) 2016-09-30 2020-06-30 Palo Alto Networks, Inc. Intercept-based multifactor authentication enrollment of clients as a network service
US10904237B2 (en) 2016-09-30 2021-01-26 Palo Alto Networks, Inc. Multifactor authentication as a network service
US10805265B2 (en) 2016-09-30 2020-10-13 Palo Alto Networks, Inc. Detection of compromised credentials as a network service
US10547600B2 (en) 2016-09-30 2020-01-28 Palo Alto Networks, Inc. Multifactor authentication as a network service
US11470070B2 (en) 2016-09-30 2022-10-11 Palo Alto Networks, Inc. Time-based network authentication challenges
US10367784B2 (en) 2016-09-30 2019-07-30 Palo Alto Networks, Inc. Detection of compromised credentials as a network service
US20190158480A1 (en) * 2016-09-30 2019-05-23 Palo Alto Networks, Inc. Intercept-based multifactor authentication enrollment of clients as a network service
US10755248B2 (en) 2016-10-11 2020-08-25 Mastercard Asia Pacific Pte. Ltd. Method and device for digital payment transactions
WO2018127741A1 (en) * 2017-01-05 2018-07-12 Gahlaut Shikhar System and method for conducting electronic transactions through personal electronic transaction card
WO2018134855A1 (en) * 2017-01-23 2018-07-26 Stefano Nicolis Personal identification system, particularly for making electronic payments
US11899515B2 (en) 2017-04-28 2024-02-13 Block, Inc. Point of sale device power management and undervoltage protection
US11561593B2 (en) 2017-04-28 2023-01-24 Block, Inc. Point of sale device power management and undervoltage protection
US20240249265A1 (en) * 2017-10-30 2024-07-25 Block, Inc. Controlling processor's access to interface device
US11257058B1 (en) * 2017-10-30 2022-02-22 Square, Inc. Sharing output device between unsecured processor and secured processor
US20220164782A1 (en) * 2017-10-30 2022-05-26 Block, Inc. Controlling access to output device between two processors
US11983688B2 (en) * 2017-10-30 2024-05-14 Block, Inc. Controlling access to output device between two processors
US11978039B2 (en) 2017-12-04 2024-05-07 Wells Fargo Bank, N.A. Trust-based application to application connectivity
US11748743B1 (en) 2017-12-04 2023-09-05 Wells Fargo Bank, N.A. Trust-based application to application connectivity
US11775672B1 (en) * 2017-12-04 2023-10-03 Wells Fargo Bank, N.A. Trust-based application to application connectivity
US11797965B2 (en) * 2017-12-08 2023-10-24 Block, Inc. Reader detection signal based proximity feedback
US20210216988A1 (en) * 2017-12-08 2021-07-15 Square, Inc. Reader detection signal bypassing secure processor
US20230410077A1 (en) * 2017-12-08 2023-12-21 Block, Inc. Movement feedback based on reader interface
US11093593B2 (en) * 2018-08-20 2021-08-17 Lenovo (Singapore) Pte. Ltd. User authentication for protected actions
US20200074418A1 (en) * 2018-08-28 2020-03-05 Juan-Hung Wu System for issuing and converting virtual currency in physical voucher manner and method thereof
CN109151515A (en) * 2018-09-12 2019-01-04 广东乐心医疗电子股份有限公司 Interaction system and method in performance scene
US11080580B2 (en) * 2018-12-20 2021-08-03 Ncr Corporation Chip-based card security
US10963888B2 (en) 2019-04-10 2021-03-30 Advanced New Technologies Co., Ltd. Payment complaint method, device, server and readable storage medium
US20210287224A1 (en) * 2020-03-13 2021-09-16 Toyota Jidosha Kabushiki Kaisha Wallet server, computer readable recording medium, and wallet system
CN112734419A (en) * 2021-01-18 2021-04-30 北京极智数仓科技有限公司 Enterprise electronic wallet management method, system and terminal supporting personal real-time payment
CN114418569A (en) * 2022-03-29 2022-04-29 深圳市合扬智能卡科技有限公司 Operation method and system for digital payment card
US20240013222A1 (en) * 2022-07-08 2024-01-11 Bank Of America Corporation Auxiliary battery power authentication system for use with an emv contactless secure transaction card
US12106308B2 (en) * 2022-07-08 2024-10-01 Bank Of America Corporation Auxiliary battery power authentication system for use with an EMV contactless secure transaction card

Also Published As

Publication number Publication date
US20170132613A1 (en) 2017-05-11
US20190139030A1 (en) 2019-05-09
US10679209B2 (en) 2020-06-09
US10269010B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
US10679209B2 (en) Method for replacing traditional payment and identity management systems and components to provide additional security and a system implementing said method
US11620633B2 (en) Biometric reader in card
US9734345B2 (en) Portable e-wallet and universal card
US9177241B2 (en) Portable e-wallet and universal card
US9218557B2 (en) Portable e-wallet and universal card
EP2038227B1 (en) System and method for activating telephone-based payment instrument
US11580527B2 (en) Battery life estimation
US10783514B2 (en) Method and apparatus for use in personalizing identification token
US20190034912A1 (en) Apparatus and method for emulating transactional infrastructure with a digital transaction processing unit (dtpu)
EP2807600A1 (en) Portable e-wallet and universal card
AU2022279388B2 (en) Apparatus and method for externally controlling a digital transaction processing unit (dtpu)
US20150186663A1 (en) Selectable display of data on a payment device
US11657386B2 (en) Reference-based card enrollment for secondary devices
AU2022291488A1 (en) Apparatus and method for communicating with a digital transaction processing unit (dtpu)
AU2022279536A1 (en) Detecting unauthorized usage
AU2022283682A1 (en) Indirect security system and method
AU2022279484A1 (en) Pparatus and method for directly communicating with a digital transaction processing unit (dtpu)

Legal Events

Date Code Title Description
AS Assignment

Owner name: NXT-ID, INC., CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TUNNELL, CHARLES DAVID;MITCHELL, JUSTIN;PEREIRA, GINO;AND OTHERS;REEL/FRAME:032556/0050

Effective date: 20140110

AS Assignment

Owner name: EXWORKS CAPITAL FUND I, L.P., AS AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:NXT-ID, INC.;LOGICMARK, LLC;REEL/FRAME:039247/0912

Effective date: 20160725

AS Assignment

Owner name: NXT-ID, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EXWORKS CAPITAL FUND I, L.P.;REEL/FRAME:045905/0619

Effective date: 20180524

Owner name: LOGICMARK, LLC, KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EXWORKS CAPITAL FUND I, L.P.;REEL/FRAME:045905/0619

Effective date: 20180524

AS Assignment

Owner name: SAGARD HOLDINGS MANAGER LP, CANADA

Free format text: SECURITY AGREEMENT;ASSIGNORS:LOGICMARK, LLC;NXT-ID, INC.;FIT PAY, INC.;AND OTHERS;REEL/FRAME:046269/0411

Effective date: 20180524

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: 3D-ID, LLC, FLORIDA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050235/0083

Effective date: 20190503

Owner name: LOGICMARK, LLC, KENTUCKY

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050235/0083

Effective date: 20190503

Owner name: FIT PAY, INC., COLORADO

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050235/0083

Effective date: 20190503

Owner name: NXT-ID, INC., FLORIDA

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050235/0083

Effective date: 20190503

AS Assignment

Owner name: NXT-ID, INC., FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050246/0397

Effective date: 20190503

Owner name: LOGICMARK, LLC, KENTUCKY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050246/0397

Effective date: 20190503

Owner name: FIT PAY, INC., COLORADO

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050246/0397

Effective date: 20190503

Owner name: 3D-ID, LLC, FLORIDA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SAGARD HOLDINGS MANAGER LP;REEL/FRAME:050246/0397

Effective date: 20190503

AS Assignment

Owner name: FIT PAY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NXT-ID, INC.;REEL/FRAME:050322/0163

Effective date: 20190909

AS Assignment

Owner name: GARMIN INTERNATIONAL, INC., KANSAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIT PAY, INC.;REEL/FRAME:050588/0972

Effective date: 20191001