US20140039726A1 - Methods and Systems for Monitoring a Vehicle's Energy Source - Google Patents
Methods and Systems for Monitoring a Vehicle's Energy Source Download PDFInfo
- Publication number
- US20140039726A1 US20140039726A1 US14/049,377 US201314049377A US2014039726A1 US 20140039726 A1 US20140039726 A1 US 20140039726A1 US 201314049377 A US201314049377 A US 201314049377A US 2014039726 A1 US2014039726 A1 US 2014039726A1
- Authority
- US
- United States
- Prior art keywords
- vehicle
- charge status
- charging
- charge
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012544 monitoring process Methods 0.000 title description 6
- 238000004891 communication Methods 0.000 description 27
- 230000006399 behavior Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 8
- 230000004044 response Effects 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 6
- 230000002085 persistent effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000010267 cellular communication Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000001755 vocal effect Effects 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- B60L11/1809—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/21—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
- B60K35/22—Display screens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/28—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor characterised by the type of the output information, e.g. video entertainment or vehicle dynamics information; characterised by the purpose of the output information, e.g. for attracting the attention of the driver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/20—Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
- B60K35/29—Instruments characterised by the way in which information is handled, e.g. showing information on plural displays or prioritising information according to driving conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/85—Arrangements for transferring vehicle- or driver-related data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/53—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/68—Off-site monitoring or control, e.g. remote control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/008—Registering or indicating the working of vehicles communicating information to a remotely located station
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K2360/00—Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
- B60K2360/16—Type of output information
- B60K2360/174—Economic driving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K2360/00—Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
- B60K2360/589—Wireless data transfers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
- B60K35/10—Input arrangements, i.e. from user to vehicle, associated with vehicle functions or specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/45—External transmission of data to or from the vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/84—Data processing systems or methods, management, administration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- Various embodiments relate to remotely monitoring a battery charge of a vehicle.
- the vehicle may be an electric vehicle.
- the battery charge may be monitored from a nomadic device and/or a personal computer.
- the electronics inside vehicles today are more advanced with, for example, computing systems that can communicate with remote systems, sometimes over the Internet.
- Various OEMs offer software applications that run on a remote device, such as a cellphone, for exchanging information between a remote device and a vehicle. These applications are available for both electric and non-electric vehicles.
- a mobile application for the CHEVROLET VOLT permits a user to, among other things, lock and unlock a vehicle, obtain information about the electric vehicle (such as charge), and receive notifications about the vehicle.
- One aspect includes a computer-implemented method for remotely obtaining information about an energy source of a vehicle.
- the method may include receiving, at one or more computing devices remote from a vehicle, information identifying one or more vehicles and one or more drivers of the one or more vehicles.
- the method may further include transmitting instructions from the one or more remote computing devices requesting information from the one or more vehicles about a status of an energy source for the identified vehicle.
- the method additionally includes receiving the information at the one or more remote computing devices.
- a vehicle energy source status with respect to one or more attributes of the vehicle drivers may be calculated at the one or more remote computing devices.
- the vehicle energy source status may be displayed at the one or more devices.
- the system may include one or more computing devices and one or more software applications stored on the one or more computing devices.
- the software application(s) may include instructions for receiving a charge status of a vehicle and based on the charge status, determining if a charging is needed.
- Further instructions may include determining when the charging is needed if a charging is needed. Further instructions may include commanding vehicle charging based on when charging is needed. Additionally, based on the commanding, further instructions may include transmitting, via the one or more computing devices, one or more charging instructions to the vehicle.
- Another aspect may include a system comprising at least one device configured to receive information identifying a vehicle and vehicle drivers.
- the at least one device may be further configured to receive information for determining the vehicle energy source status.
- the at least one device may be configured to determine an energy source status with respect to a driver attribute based on the status information and the driver information.
- the at least one device may be further configured to display the vehicle energy source status.
- FIG. 1 illustrates a block topology of a system for remote communication and information exchange with a vehicle
- FIG. 2 illustrates a block topology of a vehicle computing system
- FIG. 3 illustrates an operation at a remote device for monitoring a vehicle's charge
- FIG. 4 illustrates a process for obtaining information about a vehicle such as, and without limitation, a vehicle name, location, and charge status;
- FIG. 5 illustrates a process for obtaining a vehicle charge status
- FIG. 6 illustrates a process for obtaining driver analytics.
- one or more devices remote from a vehicle and a data network connection may be used to remotely communicate and exchange information with a vehicle.
- the vehicle may be an electric vehicle. While the various embodiments are described with respect to the use of a battery energy source for the vehicle, other energy storage devices and systems (e.g., and without limitation, fuel, flywheels, supercapacitors, and other like rechargeable energy storage systems) may alternatively or additionally be used without departing from the scope of the invention.
- the remote device(s) may be in a home, office, school, library, or other like remote location. Typically, the remote location may also provide charging capabilities for an electric vehicle. The remote location may or may not be in the same location as the remote device(s). Further, the remote location may additionally be connected to a network, such as the Internet, a local area network (LAN), wide area network (WAN), and the like.
- FIG. 1 illustrates a block architecture of a system 101 for remote communication and information exchange with an electric vehicle.
- the arrangement and configuration of FIG. 1 may be modified without departing from the scope of the invention such that the various components may be on board the vehicle or both on board and off board the vehicle.
- a plug-in electric vehicle (PEV) 31 may be outfitted with one or more electric battery packs 100 for providing power to the PEV vehicle 31 .
- the battery pack(s) 100 may include one or more chargers 102 for capacitive or inductive charging of the battery pack(s) 100 . In some embodiments, the battery pack(s) 100 may not include the charger 102 .
- Electric vehicle (EV) supply equipment (EVSE) 104 may be used to charge the vehicle 31 . Charging may be accomplished using the EV supply equipment 104 by plugging in to the battery pack(s) 100 according to methods known in the art.
- the EV supply equipment 104 may include a transceiver (e.g., a network interface) 118 for receiving and transmitting data exchanged with the user terminal(s) 106 . Further details of this data exchange will be described below.
- the user device(s) 106 may be one or more personal computers or one or more nomadic devices (including, but not limited to, mobile phones, PDAs, personal media players, and the like).
- the user device(s) 106 connection to the network 61 for communication with the vehicle infotainment computer (VCS) 1 may include, but is not limited to, WiFi, WiMax, dial-up, cable modem, DSL, ZigBee and other like wired and wireless connections. Other like network connections may be used without departing from the scope of the invention. Accordingly, the user device(s) 106 may exchange information with the vehicle 31 over a communication network 61 through a wired or wireless connection.
- a network 61 may be, without limitation, the Internet, a local area network (LAN), a wide area network (WAN), powerline carrier communication (PLC), broadband over power line (BPL) or combinations of such networks. Other like networks may be used without departing from the scope of the invention.
- the user device 106 may be configured with one or more software application(s) having graphical interface.
- operation of the application(s) may occur using one or more audible commands.
- the operation may occur with tactile commands.
- the vehicle 31 may be outfitted with an on-board communication unit for data exchange with the user device 106 .
- the on-board communication unit may include a nomadic device (e.g., without limitation, a cellular phone) which may be used to transmit and receive communications through a cellular network (not shown). These communications may be relayed through network 61 .
- the on-board communication unit 1 may additionally or alternatively include a modem (not shown) for communication over network 61 .
- the on-board communications unit may be a vehicle infotainment computer (VCS) 1 .
- VCS vehicle infotainment computer
- An example of such a VCS 1 is the SYNC system manufactured by THE FORD MOTOR COMPANY. Further details of the VCS 1 will be described below with respect to FIG. 2 .
- the on-board communications unit (OCU) 1 may be in communication with a vehicle network 108 that communicates data to various vehicle control modules.
- vehicle network 108 includes an SAE J1850 bus, a CAN bus, a GMLAN bus, and any other vehicle data buses known in the art.
- the one or more battery packs 100 may be connected to the vehicle network 108 .
- Other vehicle modules not shown e.g., powertrain control modules, airbag control modules, and the like
- One non-limiting example of information exchanged between the vehicle 31 and the user device(s) 106 may be information about the battery charge. This information may be received by the OCU 1 from the battery 100 via the vehicle network 108 .
- the device 106 may be configured with one or more software modules for information exchange with the EV 31 .
- One non-limiting example of such information exchange may relate to a battery charge.
- Each of these modules may be implemented on the user device(s) 106 as software.
- the modules may be on a remote server (not shown) which may or may not be a third-party server.
- An application programming interface (API) for interfacing with the modules may or may not be installed on the user device(s) 106 . While FIG. 1 illustrates the modules as separate components for illustration, the various embodiments are not limited to this configuration.
- the modules may comprise a single software application executing on the user device(s) 106 or on a remote server. In some embodiments, some modules may be executing locally (e.g., on the user device(s) 106 ) and others on a remote server.
- one or more modules 110 may provide mapping/navigation information, traffic information, and/or weather information.
- This information may be stored in one or more mapping/traffic/weather databases (not shown) and used by the electric vehicle interface module 112 to exchange trip information with the vehicle 31 .
- this information may be obtained from a third-party source (e.g., a mapping service, traffic service and/or a weather service) (not shown).
- This information exchange may occur via data communication including, but not limited to, data-over-voice, the Internet, and the like.
- the module 110 may be also be a trip planning module or may communicate with a trip planning module (not shown).
- the algorithms implemented on the trip planning module may factor conditions such as (and without limitation) traffic, road conditions (e.g., and without limitation, uphill/downhill, dirt, etc.), road type (e.g., city or highway), and weather in order to provide the trip determination.
- Other non-limiting factors may include environment friendly travel and lowering carbon cost (e.g., carbon footprint).
- the determination may include accounting for inclement weather (which may cause the vehicle to use more battery power).
- the electric vehicle interface module 112 may be a user-interfacing application for information exchange between the user device(s) 106 and the vehicle 31 .
- the module 112 may receive and monitor a battery charge status.
- the module 112 may exchange trip information with the vehicle 31 .
- the module 112 may communicate (via the user device 106 ) with one or more smart meters 116 from which battery charge information may be obtained.
- a smart meter 116 may be a device implemented by a utility company that can measure energy consumption by a commercial or residential establishment over a communications network.
- the smart meters 116 may obtain the charge status from the EV supply equipment 104 by exchanging information with the supply equipment 104 .
- the smart meters 116 may include a network interface 120 for communicating with the EVSE 104 .
- sub-meters (not shown) may additionally be used for energy usage monitoring.
- Battery charge status information may be additionally or alternatively received from the battery 102 via the OCU 1 .
- the OCU 1 may be programmed with logic for translating or converting the battery charge information received via the vehicle network 108 to information capable of being processed and interpreted by the module 112 .
- a look up table stored on the OCU 1 may be used for performing this conversion.
- at least part of the conversion/translation may be performed on the user device 106 (e.g., and without limitation, by the module 112 ).
- An energy usage monitoring module 122 may monitor and report the energy usage of one or more appliances within the remote location (e.g., a home or office), including the EVSE 104 .
- the energy usage monitor 122 may obtain usage information from the smart meter 116 , the appliances (not shown), or both. These one or more appliances may be connected on a local area network (LAN).
- LAN local area network
- the LAN may be a home area network (HAN).
- HAN home area network
- One example of such a module 122 is the MICROSOFT HOHM application from the MICROSOFT CORPORATION.
- the energy usage by some or all appliances at the remote location may be factored into the charge status of the battery. Accordingly, a user may unplug some appliances if a faster charge is desired by the user.
- a user may additionally or alternatively defer usage of some devices. The deferment may or may not be automatically programmed from the user device(s) 106 . As a non-limiting example, the user may schedule usage of other appliances based on a battery charge time.
- System 114 may be a utility data information system operated by and housed at one or more utility companies.
- the utility data may be determined by a utility company based on information obtained from one or more utility grids owned and operated by the utility company.
- the utility data may be stored utility data (e.g., and without limitation, in a database) in the system 114 and received by the module 122 from the system 114 via, for example, a communication network (e.g., and without limitation, PLC, BPL, and the like).
- the data may be received via the smart meters 116 .
- FIG. 2 illustrates an example block topology for a vehicle based computing system 1 (VCS) for a vehicle 31 .
- VCS vehicle based computing system 1
- An example of such a vehicle-based computing system 1 is the SYNC system manufactured by THE FORD MOTOR COMPANY.
- a vehicle enabled with a vehicle-based computing system may contain a visual front end interface 4 located in the vehicle. The user may also be able to interact with the interface if it is provided, for example, with a touch sensitive screen. In another illustrative embodiment, the interaction occurs through, button presses, audible speech and speech synthesis.
- a processor 3 controls at least some portion of the operation of the vehicle-based computing system.
- the processor allows onboard processing of commands and routines.
- the processor is connected to both non-persistent 5 and persistent storage 7 .
- the non-persistent storage is random access memory (RAM) and the persistent storage is a hard disk drive (HDD) or flash memory.
- Outputs to the system can include, but are not limited to, a visual display 4 and a speaker 13 or stereo system output.
- the speaker is connected to an amplifier 11 and receives its signal from the processor 3 through a digital-to-analog converter 9 .
- Output can also be made to a remote BLUETOOTH device such as PND 54 or a USB device such as vehicle navigation device 60 along the bi-directional data streams shown at 19 and 21 respectively.
- Pairing a nomadic device 53 and the BLUETOOTH transceiver 15 can be instructed through a button 52 or similar input. Accordingly, the CPU is instructed that the onboard BLUETOOTH transceiver will be paired with a BLUETOOTH transceiver in a nomadic device.
- Data may be communicated between CPU 3 and network 61 utilizing, for example, a data-plan, data over voice, or DTMF tones associated with nomadic device 53 .
- the nomadic device 53 can then be used to communicate 59 with a network 61 outside the vehicle 31 through, for example, communication 55 with a cellular tower 57 .
- the modem 63 may establish communication 20 with the tower 57 for communicating with network 61 .
- modem 63 may be a USB cellular modem and communication 20 may be cellular communication.
- the processor is provided with an operating system including an API to communicate with modem application software.
- the modem application software may access an embedded module or firmware on the BLUETOOTH transceiver to complete wireless communication with a remote BLUETOOTH transceiver (such as that found in a nomadic device).
- nomadic device 53 includes a modem for voice band or broadband data communication.
- a technique known as frequency division multiplexing may be implemented when the owner of the nomadic device can talk over the device while data is being transferred. At other times, when the owner is not using the device, the data transfer can use the whole bandwidth (300 Hz to 3.4 kHz in one example).
- nomadic device 53 is replaced with a cellular communication device (not shown) that is installed to vehicle 31 .
- the ND 53 may be a wireless local area network (LAN) device capable of communication over, for example (and without limitation), an 802.11g network (i.e., WiFi) or a WiMax network.
- LAN wireless local area network
- incoming data can be passed through the nomadic device via a data-over-voice or data-plan, through the onboard BLUETOOTH transceiver and into the vehicle's internal processor 3 .
- the data can be stored on the HDD or other storage media 7 until such time as the data is no longer needed.
- Additional sources that may interface with the vehicle include a personal navigation device 54 , having, for example, a USB connection 56 and/or an antenna 58 , a vehicle navigation device 60 having a USB 62 or other connection, an onboard GPS device 24 , or remote navigation system (not shown) having connectivity to network 61 .
- a personal navigation device 54 having, for example, a USB connection 56 and/or an antenna 58
- vehicle navigation device 60 having a USB 62 or other connection
- an onboard GPS device 24 or remote navigation system (not shown) having connectivity to network 61 .
- the CPU could be connected to a vehicle based wireless router 73 , using for example a WiFi 71 transceiver. This could allow the CPU to connect to remote networks in range of the local router 73 .
- the vehicle owner(s) may register and establish authorized users during the registration process.
- identification information may be provided for the authorized user(s) including, but not limited to, a name, mobile identification number (e.g., a phone number), and an electronic serial number (ESN).
- ESN electronic serial number
- This information, along with information about the vehicle owner, may be stored in a database of user information (not shown).
- an override feature for user identification may permit a non-vehicle owner use of the system 101 without authorization from the vehicle user.
- the owner(s) may alternatively log in for system use (block 300 ).
- the log in information may be stored in memory obviating a need for a user to input log-in information.
- Non-limiting examples of such instructions may include obtaining information about vehicle battery charge (including, but not limited to, a battery charging status, battery charge life, and information on scheduled charges), scheduling charge times, starting a vehicle charge, obtaining vehicle analytics (including, but not limited to, analytics relating to battery charge, driving, financial cost savings, and environmental cost savings), obtaining maintenance information (e.g., maintenance needed or next scheduled maintenance), obtaining information on the condition of the vehicle (e.g., odometer reading, tire pressure, battery performance, battery health, and the like), and obtaining charge station information.
- vehicle battery charge including, but not limited to, a battery charging status, battery charge life, and information on scheduled charges
- vehicle analytics including, but not limited to, analytics relating to battery charge, driving, financial cost savings, and environmental cost savings
- maintenance information e.g., maintenance needed or next scheduled maintenance
- obtaining information on the condition of the vehicle e.g., odometer reading, tire pressure, battery performance, battery health, and the like
- obtaining charge station information e.
- the application 112 may also enable remote control of vehicle components including, but not limited to, vehicle start, door lock and unlock, radio control, HVAC control (e.g., and without limitation, preconditioning the vehicle using power from a utility grid rather than the battery), window control, and the like. Additional details and non-limiting examples of the vehicle command(s) are described below with respect to FIG. 4 .
- remotely controlling one or more vehicle controls may optimize the use of a vehicle's charge by, for example, enabling greater distance range.
- preconditioning the vehicle while the vehicle is charging e.g., pre-heating and/or pre-cooling the vehicle
- preconditioning the vehicle while the vehicle is charging may use energy from the energy grid rather than the vehicle battery. Accordingly, more battery charge may be available for driving.
- a response may be received at the user device(s) 106 from the VCS 1 for the one or more instruction(s) (block 310 ).
- the response may be based on information obtained from the vehicle modules and received by the VCS 1 via the vehicle network 108 .
- the path followed by the response to the user device(s) 106 may be a reverse path of the data path described above.
- the response to the instruction(s) may be presented at the user device(s) 106 .
- the status of a vehicle battery charge may be output in response to a request for the battery charge status.
- FIG. 4 illustrates the process for communicating with the vehicle through the module 112 for obtaining select non-limiting examples of vehicle information.
- These specific operations of the module 112 illustrated in and described with respect to FIG. 4 are neither limiting nor exhaustive. Rather, these operations are provided as illustration of a non-limiting example of the overall operation of the module 112 .
- a lookup identifier may be received (block 404 ) by the application 112 from memory of the user device(s) 106 (or a remote device, if the application 112 is saved on the remote device).
- the look up identifier may be used to look up and obtain identification information from a database storing vehicle identification information (block 406 ).
- the database may be a part of the centralized system.
- the look up identifier may be, for example (and without limitation), a vehicle identification number (VIN) or a user device identification number.
- the vehicle identification information may be presented on the user device 106 display. In some embodiments, the information may be displayed at or near the top or bottom of the user device screen display (e.g., as a header or a footer).
- a location of the vehicle 31 may be obtained by the module 112 (block 408 ). Based on GPS coordinates of the vehicle (block 410 ), the vehicle location may be determined and received by the module 112 (block 412 ). In some embodiments, the module 112 may use reverse geocoding to determine a vehicle's location. In other embodiments, the location of the vehicle may be determined from a database lookup using the GPS coordinates. Other methods may be used without departing from the scope of the inventions.
- the charge status during a battery charge may include information on the length of time for fully charging the battery.
- the information may be updated in real-time or near real-time. Additionally or alternatively, the information may be automatically or manually updated periodically (e.g., based on units of time).
- the charge status may include a notification as to whether a user can reach a destination or complete roundtrip travel on the current charge of the battery.
- the user may input the distance of travel or the destination(s) (e.g., an address, POI, name, and the like).
- the presentation of the vehicle information may include numbers, text, characters, graphics, or a combination of numbers, texts, characters, and graphics.
- the vehicle identification information and location may be presented as text and the vehicle charge status may be represented by a battery and a charge level on the battery.
- the current charge status (whether or not during a battery charge event) may additionally or alternatively (and without limitation) be presented as a percentage or a numerical value.
- the charge status information may be presented in an e-mail or a text message.
- the vehicle information may be updated and, therefore, the process for obtaining vehicle information may be repeated.
- the updates may be performed automatically on a periodic basis and/or manually in response to user input.
- FIG. 5 illustrates a process for obtaining information on when the vehicle battery is next scheduled to be charged. This information may be obtained at the user device(s) 106 or, in some embodiments, at the VCS 1 .
- a charge-based occurrence may be based on a “distance to empty” (DTE) of the vehicle's battery (block 502 ).
- DTE distance to empty
- a charge may be scheduled when the battery charge is actually or near empty.
- a charge may be scheduled when the DTE may be at or near zero miles.
- the DTE may be defined by a distance threshold such that, for example, falling below the threshold, a charge may be scheduled.
- a charge may be scheduled when the DTE may be exceeded based on one or more driver attributes such as historical driving behaviors and/or a travel distance provided by the user.
- the historical driving behaviors may be stored in memory 7 of the vehicle 31 or on one or more servers.
- the travel distance provided by the user maybe input as an actual or estimated distance or as a destination (from which the distance may be extrapolated).
- the DTE that may trigger a vehicle battery charge may be dynamic based on the historical driving patterns and/or travel distance. As a non-limiting example, based on the battery charge, if the DTE is 100 miles, but the travel distance is a total of 105 miles, the next charge may be scheduled to occur at the next possible charging opportunity. However, if the travel distance is 50 miles, a vehicle charge may be scheduled later. While the examples use mileage as a measure of distance, other measures may be used including, but not limited to, kilometers.
- An additional notification may include a present maximum range of distance (block 516 ).
- the maximum distance range may be included with a notification of the next charge (block 512 ).
- the maximum distance range may be based on the user's historical driving behavior (block 514 ).
- the driving behavior may also influence when to perform the next charge or charge status information.
- the illustration of driving behavior(s) used as part of the determination in FIG. 5 is for purposes of providing a comprehensive illustration and not to limit the various embodiments of the invention.
- next charge may be determined (block 520 ).
- the next charge information may presented at the user device(s) 106 (block 522 ).
- the user may override a scheduled charge or immediately charge the vehicle notwithstanding a scheduled charge.
- the user may elect to charge the vehicle immediately (block 518 ).
- the user may instruct, from the user device(s) 106 , that a charge may commence (block 524 ).
- the instructions may be transmitted to the vehicle as described above.
- the charge status during the vehicle charge may be obtained and presented at the user device(s) 106 .
- Driver analytics may be provided at the user device(s) 106 relating to, for example, a driver's use of the vehicle.
- analytic information may relate to fuel savings, cost savings, battery usage information (e.g., battery usage per mile and total amount used), carbon savings, driving style, and distance driven.
- the analytics may be measured and stored daily, weekly, monthly, yearly, and variations thereof. Additionally or alternatively, the analytics may be measured and stored each time the vehicle is driven.
- the driver analytics may be analytics recorded/stored for a predetermined amount of time.
- the analytics may be based on 30 days of driving.
- the period of time is non-limiting and provided for illustration.
- the unit of measurement for the driver analytics may be the charge cycle. Each trip may be measured from when the vehicle is unplugged to when it is plugged in again. Each charge may be measured/tracked based on the vehicle being plugged-in. In some embodiments, each charge may be measured/tracked based on a complete charge.
- analytics relating to the driving style of the driver with respect to battery charge may be provided.
- the driving style may be characterized as “zippy” (e.g., using more battery charge) or “zen” (e.g., using less battery charge).
- the analytics may report that by driving more “zen,” the driver may obtain greater mileage out of a battery charge as compared to driving “zippy.”
- the driving achievements by the driver may be presented to the driver. These achievements may be based on reaching particular goals, which may be defined by the OEM or the user. As a non-limiting example, the driver may be notified of the first time the driver reaches 75 miles on a single charge. In at least one embodiment, the driver may be rewarded by the OEM for the driving achievements and the driver may be notified of the reward.
- driving suggestions may be provided at the user device(s) 106 based on a user request (e.g., through an audible and/or tactile input) (block 608 ). These suggestions for driving may relate to, for example, suggestions for optimizing use of the battery charge, environmentally friendly driving, and others. If requested, the driving suggestion(s) may be presented at the user device(s) 106 (block 610 ).
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
One or more embodiments may include a method for remotely obtaining information about an energy source of a vehicle. Information identifying one or more vehicles and one or more drivers of the vehicles may be received at one or more computing devices remote from a vehicle. Instructions from the one or more remote computing devices may be transmitted requesting information from the identified vehicle(s) about a status of an energy source for the identified vehicle(s). The status information may be received at the remote computing device(s). Based on the energy source status information and the driver identifying information, a vehicle energy source status with respect to one or more attributes of the vehicle drivers may be calculated. Additionally, the vehicle energy source status may be displayed at the one or more devices.
Description
- This application is a division of U.S. application Ser. No. 12/985,803 filed Jan. 6, 2011, the disclosure of which is hereby incorporated in its entirety by reference herein.
- Various embodiments relate to remotely monitoring a battery charge of a vehicle. In some embodiments, the vehicle may be an electric vehicle. The battery charge may be monitored from a nomadic device and/or a personal computer.
- The electronics inside vehicles today are more advanced with, for example, computing systems that can communicate with remote systems, sometimes over the Internet. Various OEMs offer software applications that run on a remote device, such as a cellphone, for exchanging information between a remote device and a vehicle. These applications are available for both electric and non-electric vehicles.
- For example, a mobile application for the CHEVROLET VOLT permits a user to, among other things, lock and unlock a vehicle, obtain information about the electric vehicle (such as charge), and receive notifications about the vehicle.
- One aspect includes a computer-implemented method for remotely obtaining information about an energy source of a vehicle. The method may include receiving, at one or more computing devices remote from a vehicle, information identifying one or more vehicles and one or more drivers of the one or more vehicles.
- The method may further include transmitting instructions from the one or more remote computing devices requesting information from the one or more vehicles about a status of an energy source for the identified vehicle. The method additionally includes receiving the information at the one or more remote computing devices.
- Based on the energy source status information and the information identifying the one or more drivers, a vehicle energy source status with respect to one or more attributes of the vehicle drivers may be calculated at the one or more remote computing devices. The vehicle energy source status may be displayed at the one or more devices.
- In some embodiments, the method may further include receiving a vehicle charging schedule for automatic charging of the vehicle. The method may additionally include commanding vehicle charging from the one or more remote computing devices based on the vehicle charging schedule. Based on the commanding, one or more charging instructions may be transmitted to the vehicle.
- Another aspect may include a system for controlling vehicle charging. The system may include one or more computing devices and one or more software applications stored on the one or more computing devices. The software application(s) may include instructions for receiving a charge status of a vehicle and based on the charge status, determining if a charging is needed.
- Further instructions may include determining when the charging is needed if a charging is needed. Further instructions may include commanding vehicle charging based on when charging is needed. Additionally, based on the commanding, further instructions may include transmitting, via the one or more computing devices, one or more charging instructions to the vehicle.
- Another aspect may include a system comprising at least one device configured to receive information identifying a vehicle and vehicle drivers. The at least one device may be further configured to receive information for determining the vehicle energy source status. Further, the at least one device may be configured to determine an energy source status with respect to a driver attribute based on the status information and the driver information. The at least one device may be further configured to display the vehicle energy source status.
- These and other aspects will be better understood in view of the attached drawings and following detailed description of the invention.
- The figures identified below are illustrative of some embodiments of the invention. The figures are not intended to be limiting of the invention recited in the appended claims. The embodiments, both as to their organization and manner of operation, together with further object and advantages thereof, may best be understood with reference to the following description, taken in connection with the accompanying drawings, in which:
-
FIG. 1 illustrates a block topology of a system for remote communication and information exchange with a vehicle; -
FIG. 2 illustrates a block topology of a vehicle computing system; -
FIG. 3 illustrates an operation at a remote device for monitoring a vehicle's charge; -
FIG. 4 illustrates a process for obtaining information about a vehicle such as, and without limitation, a vehicle name, location, and charge status; -
FIG. 5 illustrates a process for obtaining a vehicle charge status; and -
FIG. 6 illustrates a process for obtaining driver analytics. - As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
- Detailed embodiments of the invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of an invention that may be embodied in various and alternative forms. Therefore, specific functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for the claims and/or as a representative basis for teaching one skilled in the art to variously employ the present invention.
- Additionally, the disclosure and arrangement of the figures is non-limiting. Accordingly, the disclosure and arrangement of the figures may be modified or re-arranged to best fit a particular implementation of the various embodiments of the invention.
- As will be described in one or more embodiments below, one or more devices remote from a vehicle and a data network connection may be used to remotely communicate and exchange information with a vehicle. In some embodiments, the vehicle may be an electric vehicle. While the various embodiments are described with respect to the use of a battery energy source for the vehicle, other energy storage devices and systems (e.g., and without limitation, fuel, flywheels, supercapacitors, and other like rechargeable energy storage systems) may alternatively or additionally be used without departing from the scope of the invention. The remote device(s) may be in a home, office, school, library, or other like remote location. Typically, the remote location may also provide charging capabilities for an electric vehicle. The remote location may or may not be in the same location as the remote device(s). Further, the remote location may additionally be connected to a network, such as the Internet, a local area network (LAN), wide area network (WAN), and the like.
-
FIG. 1 illustrates a block architecture of asystem 101 for remote communication and information exchange with an electric vehicle. The arrangement and configuration ofFIG. 1 may be modified without departing from the scope of the invention such that the various components may be on board the vehicle or both on board and off board the vehicle. - A plug-in electric vehicle (PEV) 31 may be outfitted with one or more
electric battery packs 100 for providing power to thePEV vehicle 31. The battery pack(s) 100 may include one ormore chargers 102 for capacitive or inductive charging of the battery pack(s) 100. In some embodiments, the battery pack(s) 100 may not include thecharger 102. - Electric vehicle (EV) supply equipment (EVSE) 104 may be used to charge the
vehicle 31. Charging may be accomplished using theEV supply equipment 104 by plugging in to the battery pack(s) 100 according to methods known in the art. TheEV supply equipment 104 may include a transceiver (e.g., a network interface) 118 for receiving and transmitting data exchanged with the user terminal(s) 106. Further details of this data exchange will be described below. - From one or
more user devices 106, which may be at a remote location including, but not limited to, a home, an office, a library, a school, and other like remote locations, a user may exchange information with thevehicle 31. The user device(s) 106 may be one or more personal computers or one or more nomadic devices (including, but not limited to, mobile phones, PDAs, personal media players, and the like). - The user device(s) 106 connection to the
network 61 for communication with the vehicle infotainment computer (VCS) 1 may include, but is not limited to, WiFi, WiMax, dial-up, cable modem, DSL, ZigBee and other like wired and wireless connections. Other like network connections may be used without departing from the scope of the invention. Accordingly, the user device(s) 106 may exchange information with thevehicle 31 over acommunication network 61 through a wired or wireless connection. Anetwork 61 may be, without limitation, the Internet, a local area network (LAN), a wide area network (WAN), powerline carrier communication (PLC), broadband over power line (BPL) or combinations of such networks. Other like networks may be used without departing from the scope of the invention. - As will be described below, the
user device 106 may be configured with one or more software application(s) having graphical interface. In some embodiments, operation of the application(s) may occur using one or more audible commands. In alternative or additional embodiments, the operation may occur with tactile commands. - The
vehicle 31 may be outfitted with an on-board communication unit for data exchange with theuser device 106. The on-board communication unit may include a nomadic device (e.g., without limitation, a cellular phone) which may be used to transmit and receive communications through a cellular network (not shown). These communications may be relayed throughnetwork 61. In some embodiments, the on-board communication unit 1 may additionally or alternatively include a modem (not shown) for communication overnetwork 61. As shown inFIG. 1 , in some non-limiting embodiments, the on-board communications unit may be a vehicle infotainment computer (VCS) 1. An example of such a VCS 1 is the SYNC system manufactured by THE FORD MOTOR COMPANY. Further details of the VCS 1 will be described below with respect toFIG. 2 . - The on-board communications unit (OCU) 1 may be in communication with a
vehicle network 108 that communicates data to various vehicle control modules. Non-limiting examples of avehicle network 108 include an SAE J1850 bus, a CAN bus, a GMLAN bus, and any other vehicle data buses known in the art. As shown inFIG. 1 , the one or more battery packs 100 may be connected to thevehicle network 108. Other vehicle modules not shown (e.g., powertrain control modules, airbag control modules, and the like) may also be connected to thenetwork 108. One non-limiting example of information exchanged between thevehicle 31 and the user device(s) 106 may be information about the battery charge. This information may be received by the OCU 1 from thebattery 100 via thevehicle network 108. - Referring back to the user device(s) 106, the
device 106 may be configured with one or more software modules for information exchange with theEV 31. One non-limiting example of such information exchange may relate to a battery charge. Each of these modules may be implemented on the user device(s) 106 as software. In some embodiments, the modules may be on a remote server (not shown) which may or may not be a third-party server. An application programming interface (API) for interfacing with the modules may or may not be installed on the user device(s) 106. WhileFIG. 1 illustrates the modules as separate components for illustration, the various embodiments are not limited to this configuration. As a non-limiting example, the modules may comprise a single software application executing on the user device(s) 106 or on a remote server. In some embodiments, some modules may be executing locally (e.g., on the user device(s) 106) and others on a remote server. - Referring to the specific modules, one or
more modules 110 may provide mapping/navigation information, traffic information, and/or weather information. This information may be stored in one or more mapping/traffic/weather databases (not shown) and used by the electricvehicle interface module 112 to exchange trip information with thevehicle 31. In some embodiments, this information may be obtained from a third-party source (e.g., a mapping service, traffic service and/or a weather service) (not shown). This information exchange may occur via data communication including, but not limited to, data-over-voice, the Internet, and the like. - In some embodiments, the
module 110 may be also be a trip planning module or may communicate with a trip planning module (not shown). The algorithms implemented on the trip planning module may factor conditions such as (and without limitation) traffic, road conditions (e.g., and without limitation, uphill/downhill, dirt, etc.), road type (e.g., city or highway), and weather in order to provide the trip determination. Other non-limiting factors may include environment friendly travel and lowering carbon cost (e.g., carbon footprint). For example, and without limitation, the determination may include accounting for inclement weather (which may cause the vehicle to use more battery power). - The electric
vehicle interface module 112 may be a user-interfacing application for information exchange between the user device(s) 106 and thevehicle 31. As a non-limiting example, themodule 112 may receive and monitor a battery charge status. As another non-limiting example, themodule 112 may exchange trip information with thevehicle 31. - The
module 112 may communicate (via the user device 106) with one or moresmart meters 116 from which battery charge information may be obtained. Asmart meter 116 may be a device implemented by a utility company that can measure energy consumption by a commercial or residential establishment over a communications network. Thesmart meters 116 may obtain the charge status from theEV supply equipment 104 by exchanging information with thesupply equipment 104. Accordingly, thesmart meters 116 may include anetwork interface 120 for communicating with theEVSE 104. In some embodiments, sub-meters (not shown) may additionally be used for energy usage monitoring. - Battery charge status information may be additionally or alternatively received from the
battery 102 via the OCU 1. In this non-limiting embodiment, the OCU 1 may be programmed with logic for translating or converting the battery charge information received via thevehicle network 108 to information capable of being processed and interpreted by themodule 112. For example, and without limitation, a look up table stored on the OCU 1 may be used for performing this conversion. Alternatively or additionally, at least part of the conversion/translation may be performed on the user device 106 (e.g., and without limitation, by the module 112). - An energy
usage monitoring module 122 may monitor and report the energy usage of one or more appliances within the remote location (e.g., a home or office), including theEVSE 104. The energy usage monitor 122 may obtain usage information from thesmart meter 116, the appliances (not shown), or both. These one or more appliances may be connected on a local area network (LAN). In some embodiments, the LAN may be a home area network (HAN). One example of such amodule 122 is the MICROSOFT HOHM application from the MICROSOFT CORPORATION. - In some embodiments, the energy usage by some or all appliances at the remote location may be factored into the charge status of the battery. Accordingly, a user may unplug some appliances if a faster charge is desired by the user. In some embodiments, a user may additionally or alternatively defer usage of some devices. The deferment may or may not be automatically programmed from the user device(s) 106. As a non-limiting example, the user may schedule usage of other appliances based on a battery charge time.
-
System 114 may be a utility data information system operated by and housed at one or more utility companies. The utility data may be determined by a utility company based on information obtained from one or more utility grids owned and operated by the utility company. The utility data may be stored utility data (e.g., and without limitation, in a database) in thesystem 114 and received by themodule 122 from thesystem 114 via, for example, a communication network (e.g., and without limitation, PLC, BPL, and the like). In some embodiments, the data may be received via thesmart meters 116. -
FIG. 2 illustrates an example block topology for a vehicle based computing system 1 (VCS) for avehicle 31. An example of such a vehicle-based computing system 1 is the SYNC system manufactured by THE FORD MOTOR COMPANY. A vehicle enabled with a vehicle-based computing system may contain a visual front end interface 4 located in the vehicle. The user may also be able to interact with the interface if it is provided, for example, with a touch sensitive screen. In another illustrative embodiment, the interaction occurs through, button presses, audible speech and speech synthesis. - In the illustrative embodiment shown in
FIG. 1 , aprocessor 3 controls at least some portion of the operation of the vehicle-based computing system. Provided within the vehicle, the processor allows onboard processing of commands and routines. Further, the processor is connected to both non-persistent 5 and persistent storage 7. In this illustrative embodiment, the non-persistent storage is random access memory (RAM) and the persistent storage is a hard disk drive (HDD) or flash memory. - The processor is also provided with a number of different inputs allowing the user to interface with the processor. In this illustrative embodiment, a
microphone 29, an auxiliary input 25 (for input 33), aUSB input 23, aGPS input 24 and aBLUETOOTH input 15 are all provided. Aninput selector 51 is also provided, to allow a user to swap between various inputs. Input to both the microphone and the auxiliary connector is converted from analog to digital by aconverter 27 before being passed to the processor. Although not shown, numerous of the vehicle components and auxiliary components in communication with the VCS may use a vehicle network (such as, but not limited to, a CAN bus) to pass data to and from the VCS (or components thereof). - Outputs to the system can include, but are not limited to, a visual display 4 and a
speaker 13 or stereo system output. The speaker is connected to anamplifier 11 and receives its signal from theprocessor 3 through a digital-to-analog converter 9. Output can also be made to a remote BLUETOOTH device such asPND 54 or a USB device such as vehicle navigation device 60 along the bi-directional data streams shown at 19 and 21 respectively. - In one illustrative embodiment, the system 1 uses the
BLUETOOTH transceiver 15 to communicate 17 with a user's nomadic device 53 (e.g., cell phone, smart phone, PDA, or any other device having wireless remote network connectivity). The nomadic device can then be used to communicate 59 with anetwork 61 outside thevehicle 31 through, for example,communication 55 with acellular tower 57. In some embodiments,tower 57 may be a WiFi access point. - Exemplary communication between the nomadic device and the BLUETOOTH transceiver is represented by signal 14.
- Pairing a
nomadic device 53 and theBLUETOOTH transceiver 15 can be instructed through abutton 52 or similar input. Accordingly, the CPU is instructed that the onboard BLUETOOTH transceiver will be paired with a BLUETOOTH transceiver in a nomadic device. - Data may be communicated between
CPU 3 andnetwork 61 utilizing, for example, a data-plan, data over voice, or DTMF tones associated withnomadic device 53. Alternatively, it may be desirable to include an onboard modem 63 havingantenna 18 in order to communicate 16 data betweenCPU 3 andnetwork 61 over the voice band. Thenomadic device 53 can then be used to communicate 59 with anetwork 61 outside thevehicle 31 through, for example,communication 55 with acellular tower 57. In some embodiments, the modem 63 may establishcommunication 20 with thetower 57 for communicating withnetwork 61. As a non-limiting example, modem 63 may be a USB cellular modem andcommunication 20 may be cellular communication. - In one illustrative embodiment, the processor is provided with an operating system including an API to communicate with modem application software. The modem application software may access an embedded module or firmware on the BLUETOOTH transceiver to complete wireless communication with a remote BLUETOOTH transceiver (such as that found in a nomadic device).
- In another embodiment,
nomadic device 53 includes a modem for voice band or broadband data communication. In the data-over-voice embodiment, a technique known as frequency division multiplexing may be implemented when the owner of the nomadic device can talk over the device while data is being transferred. At other times, when the owner is not using the device, the data transfer can use the whole bandwidth (300 Hz to 3.4 kHz in one example). - If the user has a data-plan associated with the nomadic device, it is possible that the data-plan allows for broad-band transmission and the system could use a much wider bandwidth (speeding up data transfer). In still another embodiment,
nomadic device 53 is replaced with a cellular communication device (not shown) that is installed tovehicle 31. In yet another embodiment, theND 53 may be a wireless local area network (LAN) device capable of communication over, for example (and without limitation), an 802.11g network (i.e., WiFi) or a WiMax network. - In one embodiment, incoming data can be passed through the nomadic device via a data-over-voice or data-plan, through the onboard BLUETOOTH transceiver and into the vehicle's
internal processor 3. In the case of certain temporary data, for example, the data can be stored on the HDD or other storage media 7 until such time as the data is no longer needed. - Additional sources that may interface with the vehicle include a
personal navigation device 54, having, for example, aUSB connection 56 and/or anantenna 58, a vehicle navigation device 60 having aUSB 62 or other connection, anonboard GPS device 24, or remote navigation system (not shown) having connectivity to network 61. - Further, the CPU could be in communication with a variety of other
auxiliary devices 65. These devices can be connected through awireless 67 or wired 69 connection.Auxiliary device 65 may include, but are not limited to, personal media players, wireless health devices, portable computers, and the like. - Also, or alternatively, the CPU could be connected to a vehicle based
wireless router 73, using for example aWiFi 71 transceiver. This could allow the CPU to connect to remote networks in range of thelocal router 73. -
FIG. 3 illustrates the process that may occur at the user device(s) 106 for monitoring the vehicle charge ofvehicle 31. From auser device 106, a user, who may be a vehicle owner(s) or an individual authorized by the vehicle owner(s) (e.g., and without limitation, a dealer, service technician, a family member, a colleague, or the like) may register in order to be identified and authenticated for use of the system 101 (block 300). Registration may be performed using, for example, an Internet connection. - In some embodiments, the vehicle owner(s) may register and establish authorized users during the registration process. In this case, identification information may be provided for the authorized user(s) including, but not limited to, a name, mobile identification number (e.g., a phone number), and an electronic serial number (ESN). This information, along with information about the vehicle owner, may be stored in a database of user information (not shown). In some embodiments, an override feature for user identification may permit a non-vehicle owner use of the
system 101 without authorization from the vehicle user. - If a vehicle owner(s) is registered, the owner(s) may alternatively log in for system use (block 300). In some embodiments, the log in information may be stored in memory obviating a need for a user to input log-in information.
- The
application 112 may be operated after the application is started (block 304). The application may be started in response to a user input command (e.g., tactile and/or verbal). In some embodiments, the application may be started after registration and/or login. - One or more instructions for vehicle information may be commanded from the application 112 (block 306). The instruction(s) may be verbal and/or tactile commands based on instructions presented to the user at the user device(s) 106. The instructions may be presented on a display (e.g., in the form of menus, icons, links, etc.) and/or presented in a spoken language. Alternatively or additionally, the instruction(s) may be triggered automatically by the
application 112 at predetermined time intervals (e.g., based on minutes, hours, days, or combinations and/or variations thereof). - Non-limiting examples of such instructions may include obtaining information about vehicle battery charge (including, but not limited to, a battery charging status, battery charge life, and information on scheduled charges), scheduling charge times, starting a vehicle charge, obtaining vehicle analytics (including, but not limited to, analytics relating to battery charge, driving, financial cost savings, and environmental cost savings), obtaining maintenance information (e.g., maintenance needed or next scheduled maintenance), obtaining information on the condition of the vehicle (e.g., odometer reading, tire pressure, battery performance, battery health, and the like), and obtaining charge station information.
- In some embodiments, the
application 112 may also enable remote control of vehicle components including, but not limited to, vehicle start, door lock and unlock, radio control, HVAC control (e.g., and without limitation, preconditioning the vehicle using power from a utility grid rather than the battery), window control, and the like. Additional details and non-limiting examples of the vehicle command(s) are described below with respect toFIG. 4 . - In some instances, remotely controlling one or more vehicle controls may optimize the use of a vehicle's charge by, for example, enabling greater distance range. As a non-limiting example, preconditioning the vehicle while the vehicle is charging (e.g., pre-heating and/or pre-cooling the vehicle) may use energy from the energy grid rather than the vehicle battery. Accordingly, more battery charge may be available for driving.
- The instruction(s) may be transmitted from the user device(s) 106 to the VCS 1 in the
vehicle 31 vianetwork 61. In some embodiments, the instruction(s) may be transmitted via a centralized system (not shown inFIG. 1 ) communicating with the VCS 1 and the user device(s) 106. In some embodiments, the centralized system may be one or more servers. The server system may include processing capability for incoming signals from the user device(s) 106 designated to interact with thevehicle 31. - For example, the server(s) 101 may include an automated call server and/or web host. Further, the server(s) 101 may route an incoming signal from the user device(s) 106 to the appropriate remote vehicle. Data sent in this fashion may be sent using data-over-voice, a data-plan, or in any other suitable format. Once the server(s) receive the incoming data request from the user device(s) 106, the message may be processed and/or relayed to the
vehicle 31. Thevehicle 31 may be identified by a header associated with one or more incoming data packets, or may be identifiable based on a database lookup, for example. The relay to thevehicle 31 may be sent out from the server(s) through a network (e.g., without limitation, a cellular network, the internet, etc.) and to thevehicle 31. - A response may be received at the user device(s) 106 from the VCS 1 for the one or more instruction(s) (block 310). The response may be based on information obtained from the vehicle modules and received by the VCS 1 via the
vehicle network 108. The path followed by the response to the user device(s) 106 may be a reverse path of the data path described above. - The response to the instruction(s) may be presented at the user device(s) 106. As a non-limiting example, the status of a vehicle battery charge may be output in response to a request for the battery charge status.
-
FIG. 4 illustrates the process for communicating with the vehicle through themodule 112 for obtaining select non-limiting examples of vehicle information. These specific operations of themodule 112 illustrated in and described with respect toFIG. 4 are neither limiting nor exhaustive. Rather, these operations are provided as illustration of a non-limiting example of the overall operation of themodule 112. - The one or more instruction(s) for information about the
vehicle 31 may be received by or from the module 112 (block 400). One non-limiting example of instructions may be to receive vehicle identification information (block 402). The identification information may be a vehicle name, a vehicle number, and/or vehicle owner identification information. As a non-limiting example, the identification information may be “Mike's EV.” In some embodiments, the identification information may be stored in memory such that the identification information for the vehicle is automatically presented. - In the case that identification information is requested, a lookup identifier may be received (block 404) by the
application 112 from memory of the user device(s) 106 (or a remote device, if theapplication 112 is saved on the remote device). The look up identifier may be used to look up and obtain identification information from a database storing vehicle identification information (block 406). In some embodiments, the database may be a part of the centralized system. The look up identifier may be, for example (and without limitation), a vehicle identification number (VIN) or a user device identification number. - The vehicle identification information may be presented on the
user device 106 display. In some embodiments, the information may be displayed at or near the top or bottom of the user device screen display (e.g., as a header or a footer). - Additionally or alternatively, a location of the
vehicle 31 may be obtained by the module 112 (block 408). Based on GPS coordinates of the vehicle (block 410), the vehicle location may be determined and received by the module 112 (block 412). In some embodiments, themodule 112 may use reverse geocoding to determine a vehicle's location. In other embodiments, the location of the vehicle may be determined from a database lookup using the GPS coordinates. Other methods may be used without departing from the scope of the inventions. - An additional or alternative information request may be a charge status of the vehicle battery (block 414). A charge status may be include, but is not limited to, the current charge of the battery, one or more notifications that the battery is not charging (e.g., the
vehicle 31 is unplugged), notification(s) that the vehicle has reached a minimum critical charge point, and/or a charging status during a battery charge. The request for charge status may be transmitted from theapplication 112 to the VCS 1 (block 416) as described above. The battery charge information may be obtained from thebattery 100 via thevehicle network 108 and transmitted for receipt at theuser device 106 by the application 112 (block 418). This information exchange may occur throughnetwork 61. In alternative embodiments, the charge status information may be received from theEVSE 104. In some embodiments, the charge status may be automatically monitored and received at predetermined intervals of time (e.g., based on minutes, hours, days, or combinations and/or variations thereof). - In some embodiments, the charge status during a battery charge may include information on the length of time for fully charging the battery. The information may be updated in real-time or near real-time. Additionally or alternatively, the information may be automatically or manually updated periodically (e.g., based on units of time).
- In some embodiments, the charge status may include a notification as to whether a user can reach a destination or complete roundtrip travel on the current charge of the battery. In this case, the user may input the distance of travel or the destination(s) (e.g., an address, POI, name, and the like).
- Any or all of the information received by the
module 112 may be presented at the user device 106 (block 420). The presentation of the vehicle information may include numbers, text, characters, graphics, or a combination of numbers, texts, characters, and graphics. As one non-limiting example, the vehicle identification information and location may be presented as text and the vehicle charge status may be represented by a battery and a charge level on the battery. The current charge status (whether or not during a battery charge event) may additionally or alternatively (and without limitation) be presented as a percentage or a numerical value. In some embodiments, the charge status information may be presented in an e-mail or a text message. - In some embodiments, the vehicle information may be updated and, therefore, the process for obtaining vehicle information may be repeated. The updates may be performed automatically on a periodic basis and/or manually in response to user input.
-
FIG. 5 illustrates a process for obtaining information on when the vehicle battery is next scheduled to be charged. This information may be obtained at the user device(s) 106 or, in some embodiments, at the VCS 1. - A charging schedule may be generated in which charging may occur automatically based on one or more occurrences. These occurrences may be defined as time-based occurrences (e.g., immediately, daily, weekly, on weekends, on particular days of the week, or combinations thereof) and/or charge-based occurrences. Non-limiting and non-exhaustive examples of charge-based occurrences are illustrated and described with respect to
FIG. 5 . While not illustrated inFIG. 5 , it will be appreciated that the charge-based and time-based occurrences may be used together. - Instructions for the next charge may be commanded from the module 112 (block 500). A charge-based occurrence may be based on a “distance to empty” (DTE) of the vehicle's battery (block 502). A charge may be scheduled when the battery charge is actually or near empty. As a non-limiting example, a charge may be scheduled when the DTE may be at or near zero miles. Additionally or alternatively, the DTE may be defined by a distance threshold such that, for example, falling below the threshold, a charge may be scheduled.
- In some embodiments, a charge may be scheduled when the DTE may be exceeded based on one or more driver attributes such as historical driving behaviors and/or a travel distance provided by the user. The historical driving behaviors may be stored in memory 7 of the
vehicle 31 or on one or more servers. The travel distance provided by the user maybe input as an actual or estimated distance or as a destination (from which the distance may be extrapolated). - The DTE that may trigger a vehicle battery charge may be dynamic based on the historical driving patterns and/or travel distance. As a non-limiting example, based on the battery charge, if the DTE is 100 miles, but the travel distance is a total of 105 miles, the next charge may be scheduled to occur at the next possible charging opportunity. However, if the travel distance is 50 miles, a vehicle charge may be scheduled later. While the examples use mileage as a measure of distance, other measures may be used including, but not limited to, kilometers.
- Using the DTE, a determination of charge status with respect to the distance threshold may be determined and a notification of the next charge provided. As a non-limiting example, if the charge in the battery is above the threshold (block 504), within the threshold (block 506), or below the threshold (block 508), a notification of the next charge may be presented (block 512). In some embodiments, when the charge is below a distance threshold, a warning may additionally be presented (block 510).
- In some embodiments, an identifier may be presented of whether the charge is above, within, or below the distance threshold. The identifier may be a color, graphic, text, characters, numbers, or combinations of identifiers.
- An additional notification may include a present maximum range of distance (block 516). In some embodiments, the maximum distance range may be included with a notification of the next charge (block 512).
- In some embodiments, the maximum distance range may be based on the user's historical driving behavior (block 514). The driving behavior may also influence when to perform the next charge or charge status information. Of course, the illustration of driving behavior(s) used as part of the determination in
FIG. 5 is for purposes of providing a comprehensive illustration and not to limit the various embodiments of the invention. - The historical driving behavior may be stored in vehicle memory 7 or on one or more servers. For example, and without limitation, information may be stored after every vehicle drive. As a non-limiting example, information about the vehicle drive may be stored at key-off. Each driver may be associated with an identifier, such as (and without limitation) a vehicle key identifier or a user identifier, which may be stored with the historical driving information. Using this association, the driver's driving behavior may be retrieved. Non-limiting examples of driving behavior may include distance driven (e.g., on a period basis such as daily, weekly, monthly, etc.) and driving habits (such as hard braking, terrain on which the vehicle is driven, speed, etc.).
- Based on the charge status of the vehicle battery, the next charge may be determined (block 520). The next charge information may presented at the user device(s) 106 (block 522).
- In some embodiments, the user may override a scheduled charge or immediately charge the vehicle notwithstanding a scheduled charge. As such, the user may elect to charge the vehicle immediately (block 518). In this case, the user may instruct, from the user device(s) 106, that a charge may commence (block 524). The instructions may be transmitted to the vehicle as described above. As represented by circle block A (and illustrated in
FIG. 4 ), the charge status during the vehicle charge may be obtained and presented at the user device(s) 106. - Driver analytics may be provided at the user device(s) 106 relating to, for example, a driver's use of the vehicle. As non-limiting, non-exhaustive examples, analytic information may relate to fuel savings, cost savings, battery usage information (e.g., battery usage per mile and total amount used), carbon savings, driving style, and distance driven. The analytics may be measured and stored daily, weekly, monthly, yearly, and variations thereof. Additionally or alternatively, the analytics may be measured and stored each time the vehicle is driven.
- In some embodiments, the driving analytics may also include a score of the driver's driving habits. These scores may relate to, for examples, a braking score and an overall driving score. In some embodiments, the analytics may also include information about each vehicle charge including, but not limited to, charge location, the amount filled, charging time, and cost.
- The driver analytics may be analytics recorded/stored for a predetermined amount of time. For example, the analytics may be based on 30 days of driving. Of course, the period of time is non-limiting and provided for illustration.
- The unit of measurement for the driver analytics may be the charge cycle. Each trip may be measured from when the vehicle is unplugged to when it is plugged in again. Each charge may be measured/tracked based on the vehicle being plugged-in. In some embodiments, each charge may be measured/tracked based on a complete charge.
- Instructions for driving analytics may be issued from the module 112 (block 600). A driver may be identified based on a vehicle key identifier or a user identifier. This identifying information for each driver may be input and stored by the vehicle owner or other drivers of the vehicle.
- The driving behaviors for the vehicle driver may be obtained (block 602) for the type of analytic(s) requested (block 604). In some embodiments, the type of analytic(s) request may be determined based on the instructions issued from the module (block 600). The analytic(s) may be presented at the user device(s) (block 606).
- As one non-limiting example, analytics relating to the driving style of the driver with respect to battery charge may be provided. For example, the driving style may be characterized as “zippy” (e.g., using more battery charge) or “zen” (e.g., using less battery charge). The analytics may report that by driving more “zen,” the driver may obtain greater mileage out of a battery charge as compared to driving “zippy.”
- In some embodiments, based on the recorded driving behaviors, the driving achievements by the driver may be presented to the driver. These achievements may be based on reaching particular goals, which may be defined by the OEM or the user. As a non-limiting example, the driver may be notified of the first time the driver reaches 75 miles on a single charge. In at least one embodiment, the driver may be rewarded by the OEM for the driving achievements and the driver may be notified of the reward.
- In some embodiments, the analytics for a driver may be compared with analytics for other vehicle drivers. These other drivers maybe drivers of the same vehicle or drivers of other vehicles. The analytics of all drivers may be stored on a remote computing system (which, e.g., may be owned and operated by an OEM). Drivers may be compared to select other drivers (e.g., based on user selection of other drivers, a geographic area, type of vehicle, age, gender, and other like criteria) or all drivers.
- In some embodiments, the analytics may relate to comparing the use of an electric vehicle to a non-electric (or gas powered) vehicle. The comparison may be made to gas-powered vehicles owned by the driver. In this case, the driver may provide the information on the non-electric vehicles owned (e.g., type of vehicle, mileage, automatic or manual transmission, and the like).
- In some embodiments, driving suggestions may be provided at the user device(s) 106 based on a user request (e.g., through an audible and/or tactile input) (block 608). These suggestions for driving may relate to, for example, suggestions for optimizing use of the battery charge, environmentally friendly driving, and others. If requested, the driving suggestion(s) may be presented at the user device(s) 106 (block 610).
- While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Claims (18)
1. A system comprising:
a processor configured to:
receive a charge status of a vehicle;
determine if a charging is needed based on the charge status;
determine when the charging is needed;
command vehicle charging based on when charging is needed; and
transmit one or more charging instructions to the vehicle.
2. The system of claim 1 wherein the charge status includes a distance to empty charge status.
3. The system of claim 2 wherein the processor is configured to command immediate vehicle charging if the vehicle charge status is empty or near empty.
4. The system of claim 1 wherein the processor is configured to compare charge status against a charge status threshold.
5. The system of claim 4 wherein the processor is configured to command immediate vehicle charging when the charge status is below the threshold.
6. The system of claim 1 wherein processor is further configured to present a maximum distance range based on the charge status.
7. A computer-implemented method comprising:
receiving a charge status of a vehicle;
determining, at a computer remote from the vehicle, if a charging is needed based on the charge status;
determining when the charging is needed;
commanding vehicle charging based on when charging is needed; and
transmitting one or more charging instructions to the vehicle.
8. The method of claim 7 wherein the charge status includes a distance to empty charge status.
9. The method of claim 8 wherein the method further includes commanding immediate vehicle charging if the vehicle charge status is empty or near empty.
10. The method of claim 7 wherein method further includes comparing charge status against a charge status threshold.
11. The method of claim 10 wherein the method further includes commanding immediate vehicle charging when the charge status is below the threshold.
12. The method of claim 7 wherein method further includes presenting a maximum distance range based on the charge status.
13. A non-transitory computer readable storage medium, storing instructions that, when executed by a processor, cause the processor to perform a method comprising:
receiving a charge status of a vehicle;
determining, at a computer remote from the vehicle, if a charging is needed based on the charge status;
determining when the charging is needed;
commanding vehicle charging based on when charging is needed; and
transmitting one or more charging instructions to the vehicle.
14. The storage medium of claim 13 wherein the charge status includes a distance to empty charge status.
15. The storage medium of claim 14 wherein the method further includes commanding immediate vehicle charging if the vehicle charge status is empty or near empty.
16. The storage medium of claim 13 wherein method further includes comparing charge status against a charge status threshold.
17. The storage medium of claim 16 wherein the method further includes commanding immediate vehicle charging when the charge status is below the threshold.
18. The storage medium of claim 13 wherein method further includes presenting a maximum distance range based on the charge status.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/049,377 US20140039726A1 (en) | 2011-01-06 | 2013-10-09 | Methods and Systems for Monitoring a Vehicle's Energy Source |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/985,803 US8849499B2 (en) | 2011-01-06 | 2011-01-06 | Methods and systems for monitoring a vehicle's energy source |
US14/049,377 US20140039726A1 (en) | 2011-01-06 | 2013-10-09 | Methods and Systems for Monitoring a Vehicle's Energy Source |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/985,803 Division US8849499B2 (en) | 2011-01-06 | 2011-01-06 | Methods and systems for monitoring a vehicle's energy source |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140039726A1 true US20140039726A1 (en) | 2014-02-06 |
Family
ID=44560722
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/985,803 Active 2032-11-20 US8849499B2 (en) | 2011-01-06 | 2011-01-06 | Methods and systems for monitoring a vehicle's energy source |
US14/049,377 Abandoned US20140039726A1 (en) | 2011-01-06 | 2013-10-09 | Methods and Systems for Monitoring a Vehicle's Energy Source |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/985,803 Active 2032-11-20 US8849499B2 (en) | 2011-01-06 | 2011-01-06 | Methods and systems for monitoring a vehicle's energy source |
Country Status (3)
Country | Link |
---|---|
US (2) | US8849499B2 (en) |
CN (1) | CN102591272B (en) |
DE (1) | DE102012200130B4 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8725330B2 (en) | 2010-06-02 | 2014-05-13 | Bryan Marc Failing | Increasing vehicle security |
US20150137753A1 (en) * | 2013-11-19 | 2015-05-21 | Hyundai Motor Company | Charging demand verification method of -eco-friendly vehicle and system used therein |
US10360576B1 (en) | 2014-10-09 | 2019-07-23 | Allstate Insurance Company | Interactive rewards system for rewarding drivers |
US11170446B1 (en) * | 2014-10-28 | 2021-11-09 | State Farm Mutual Automobile Insurance Company | Systems and methods for communicating with an electric vehicle |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9134136B2 (en) * | 2010-01-26 | 2015-09-15 | Mitsubishi Electric Corporation | Navigation apparatus, vehicle information display apparatus, and vehicle information display system |
US8954225B2 (en) * | 2010-04-22 | 2015-02-10 | Mission Motor Company | Remote monitoring of a plurality of vehicles |
US8326470B2 (en) * | 2010-05-13 | 2012-12-04 | General Motors Llc | Remote trigger of an alternate energy source to power a vehicle system |
US20110225105A1 (en) * | 2010-10-21 | 2011-09-15 | Ford Global Technologies, Llc | Method and system for monitoring an energy storage system for a vehicle for trip planning |
US20110224852A1 (en) * | 2011-01-06 | 2011-09-15 | Ford Global Technologies, Llc | Methods and system for selectively charging a vehicle |
US9784229B2 (en) | 2011-03-09 | 2017-10-10 | Ford Global Technologies, Llc | Vehicle initiated remote engine start for battery charge maintenance and driver initiated remote engine start for vehicle preconditioning having battery charge maintenance priority |
US8731974B2 (en) * | 2011-04-05 | 2014-05-20 | Hartford Fire Insurance Company | Systems and methods associated with insurance for electric vehicles |
US20130009765A1 (en) * | 2011-07-06 | 2013-01-10 | Ford Global Technologies, Llc | Methods and systems for determining a range limit based on a vehicle's energy source status |
US20130041552A1 (en) | 2011-08-11 | 2013-02-14 | Ford Global Technologies, Llc | Methods and Apparatus for Estimating Power Usage |
JP5409737B2 (en) * | 2011-09-22 | 2014-02-05 | 富士重工業株式会社 | Power supply system, electric vehicle, and charging adapter |
US8907776B2 (en) | 2011-10-05 | 2014-12-09 | Ford Global Technologies, Llc | Method and apparatus for do not disturb message delivery |
US9348381B2 (en) | 2011-10-19 | 2016-05-24 | Zeco Systems Pte Ltd | Methods and apparatuses for charging of electric vehicles |
US8849742B2 (en) | 2012-01-24 | 2014-09-30 | Ford Global Technologies, Llc | Method and apparatus for providing charging state alerts |
WO2013131246A1 (en) * | 2012-03-06 | 2013-09-12 | Guo Chunlin | Device and method applicable in remote controlled charging process |
JP6010995B2 (en) * | 2012-04-17 | 2016-10-19 | ソニー株式会社 | Charging device, charging device control method, electric vehicle, power storage device, and power system |
US20140188367A1 (en) * | 2012-09-04 | 2014-07-03 | Recargo, Inc. | Displaying information associated with an electric vehicle |
TW201431323A (en) * | 2013-01-25 | 2014-08-01 | 光寶動力儲能科技股份有限公司 | EVSE system, EVSE, and control devices for the same |
JP6081817B2 (en) * | 2013-02-26 | 2017-02-15 | 三菱重工業株式会社 | OBE and EV management system |
GB2511349A (en) * | 2013-03-01 | 2014-09-03 | Nissan Motor Mfg Uk Ltd | Vehicle Fuelling Reminder |
US9462545B2 (en) | 2013-03-14 | 2016-10-04 | Ford Global Technologies, Llc | Method and apparatus for a battery saver utilizing a sleep and vacation strategy |
US9066298B2 (en) | 2013-03-15 | 2015-06-23 | Ford Global Technologies, Llc | Method and apparatus for an alert strategy between modules |
US9260031B2 (en) * | 2013-03-15 | 2016-02-16 | International Business Machines Corporation | Distributed charging of electrical assets |
US20140312839A1 (en) * | 2013-04-19 | 2014-10-23 | Honda Motor Co., Ltd. | System and method for electric vehicle charging analysis and feedback |
US9002537B2 (en) * | 2013-05-22 | 2015-04-07 | Elwha Llc | Managed electric vehicle traction battery system |
US9994119B2 (en) | 2013-05-22 | 2018-06-12 | Elwha Llc | Management of a remote electric vehicle traction battery system |
CN103543710A (en) * | 2013-09-24 | 2014-01-29 | 吴江智远信息科技发展有限公司 | Vehicle remote monitoring service system |
US9749252B2 (en) * | 2013-09-30 | 2017-08-29 | Qualcomm Incorporated | Short packet communication in a powerline communication network |
US9151631B2 (en) * | 2013-10-14 | 2015-10-06 | Ford Global Technologies, Llc | Vehicle fueling route planning |
JP6446045B2 (en) | 2013-11-08 | 2018-12-26 | ゴゴロ インク | Apparatus, method and article for providing vehicle event data |
CN104908590B (en) * | 2014-03-11 | 2018-04-03 | 宝马股份公司 | For the system and method for the display for controlling service field |
KR101509596B1 (en) | 2014-05-08 | 2015-04-08 | 경북대학교 산학협력단 | Mobile device system for remote starting and management of vehicle |
CN104076810A (en) * | 2014-06-11 | 2014-10-01 | 深圳市元征软件开发有限公司 | Automobile diagnosis method based on mobile phone voice mode |
KR101637712B1 (en) * | 2014-10-31 | 2016-07-20 | 현대자동차주식회사 | System for guiding economic driving, Vehicle applied to the same, and Method thereof |
KR101612829B1 (en) * | 2014-11-27 | 2016-04-15 | 현대자동차주식회사 | Telematics terminal, center for preventing vehicle discharge and control method for preventing vehicle discharge the same |
US9731617B2 (en) | 2014-12-04 | 2017-08-15 | Ford Global Technologies, Llc | Pattern based charge scheduling |
JP2016185762A (en) * | 2015-03-27 | 2016-10-27 | 株式会社オートネットワーク技術研究所 | On-board light emitting device |
JP6569122B2 (en) * | 2015-08-05 | 2019-09-04 | 株式会社オートネットワーク技術研究所 | In-vehicle charging system |
JP2017178083A (en) * | 2016-03-30 | 2017-10-05 | トヨタ自動車株式会社 | Hybrid motorcar |
US10439427B2 (en) * | 2017-08-03 | 2019-10-08 | Ford Global Technologies, Llc | Determining a fuel quantity to charge a vehicle battery |
US10336210B2 (en) * | 2017-08-15 | 2019-07-02 | Gm Global Technology Operations Llc. | Selection of range for an electric device having a rechargeable energy storage unit |
JP6904211B2 (en) * | 2017-10-25 | 2021-07-14 | トヨタ自動車株式会社 | Vehicle dispatch system and vehicle dispatch device and vehicle dispatch method used for it |
CN108156316A (en) * | 2017-12-20 | 2018-06-12 | 上海斐讯数据通信技术有限公司 | Indicator light information cuing method and terminal, processing method and server and system |
CN110228346B (en) * | 2018-03-06 | 2024-05-10 | 开利公司 | Interactive trip planning application for a transport refrigeration unit with energy storage |
CN108859840B (en) * | 2018-07-23 | 2019-10-25 | 爱驰汽车有限公司 | Electric car charge control method, system, equipment and storage medium |
EP3626489A1 (en) | 2018-09-19 | 2020-03-25 | Thermo King Corporation | Methods and systems for energy management of a transport climate control system |
EP3626490A1 (en) | 2018-09-19 | 2020-03-25 | Thermo King Corporation | Methods and systems for power and load management of a transport climate control system |
US11273684B2 (en) | 2018-09-29 | 2022-03-15 | Thermo King Corporation | Methods and systems for autonomous climate control optimization of a transport vehicle |
US11034213B2 (en) * | 2018-09-29 | 2021-06-15 | Thermo King Corporation | Methods and systems for monitoring and displaying energy use and energy cost of a transport vehicle climate control system or a fleet of transport vehicle climate control systems |
US10870333B2 (en) | 2018-10-31 | 2020-12-22 | Thermo King Corporation | Reconfigurable utility power input with passive voltage booster |
US11059352B2 (en) | 2018-10-31 | 2021-07-13 | Thermo King Corporation | Methods and systems for augmenting a vehicle powered transport climate control system |
US10926610B2 (en) | 2018-10-31 | 2021-02-23 | Thermo King Corporation | Methods and systems for controlling a mild hybrid system that powers a transport climate control system |
US10875497B2 (en) | 2018-10-31 | 2020-12-29 | Thermo King Corporation | Drive off protection system and method for preventing drive off |
US11022451B2 (en) | 2018-11-01 | 2021-06-01 | Thermo King Corporation | Methods and systems for generation and utilization of supplemental stored energy for use in transport climate control |
US11554638B2 (en) | 2018-12-28 | 2023-01-17 | Thermo King Llc | Methods and systems for preserving autonomous operation of a transport climate control system |
US12072193B2 (en) | 2018-12-31 | 2024-08-27 | Thermo King Llc | Methods and systems for notifying and mitigating a suboptimal event occurring in a transport climate control system |
EP3906173B1 (en) | 2018-12-31 | 2024-05-22 | Thermo King LLC | Methods and systems for providing predictive energy consumption feedback for powering a transport climate control system |
EP3906175A1 (en) | 2018-12-31 | 2021-11-10 | Thermo King Corporation | Methods and systems for providing predictive energy consumption feedback for powering a transport climate control system using external data |
US11072321B2 (en) | 2018-12-31 | 2021-07-27 | Thermo King Corporation | Systems and methods for smart load shedding of a transport vehicle while in transit |
EP3906174B1 (en) | 2018-12-31 | 2024-05-29 | Thermo King LLC | Methods and systems for providing feedback for a transport climate control system |
CN110040017A (en) * | 2019-04-02 | 2019-07-23 | 远景能源(江苏)有限公司 | It is a kind of for controlling the method and system of mobile charging device |
KR102443339B1 (en) * | 2019-04-23 | 2022-09-19 | 현대자동차주식회사 | Mobile carrier |
KR20210023056A (en) * | 2019-08-21 | 2021-03-04 | 현대자동차주식회사 | Apparatus for managing power of eleceric vehicle and method thereof |
EP3789221B1 (en) | 2019-09-09 | 2024-06-26 | Thermo King LLC | Prioritized power delivery for facilitating transport climate control |
US10985511B2 (en) | 2019-09-09 | 2021-04-20 | Thermo King Corporation | Optimized power cord for transferring power to a transport climate control system |
US11420495B2 (en) | 2019-09-09 | 2022-08-23 | Thermo King Corporation | Interface system for connecting a vehicle and a transport climate control system |
US11458802B2 (en) | 2019-09-09 | 2022-10-04 | Thermo King Corporation | Optimized power management for a transport climate control energy source |
US11135894B2 (en) | 2019-09-09 | 2021-10-05 | Thermo King Corporation | System and method for managing power and efficiently sourcing a variable voltage for a transport climate control system |
CN112467720A (en) | 2019-09-09 | 2021-03-09 | 冷王公司 | Optimized power distribution for a transport climate control system between one or more power supply stations |
US11203262B2 (en) | 2019-09-09 | 2021-12-21 | Thermo King Corporation | Transport climate control system with an accessory power distribution unit for managing transport climate control loads |
US11376922B2 (en) | 2019-09-09 | 2022-07-05 | Thermo King Corporation | Transport climate control system with a self-configuring matrix power converter |
US11214118B2 (en) | 2019-09-09 | 2022-01-04 | Thermo King Corporation | Demand-side power distribution management for a plurality of transport climate control systems |
US11489431B2 (en) | 2019-12-30 | 2022-11-01 | Thermo King Corporation | Transport climate control system power architecture |
CN112597257B (en) * | 2020-11-11 | 2023-11-14 | 南京智数科技有限公司 | GIS device for catering enterprises and method thereof |
KR20220064599A (en) * | 2020-11-12 | 2022-05-19 | 주식회사 가린시스템 | System and method of providing active service using remote vehicle starter based on big data analysis |
JP7480693B2 (en) | 2020-12-22 | 2024-05-10 | トヨタ自動車株式会社 | Server, vehicle, and vehicle diagnosis method |
CN112572218B (en) * | 2020-12-23 | 2022-03-29 | 尚廉智能科技(上海)有限公司 | Energy-saving energy storage charging pile |
US11623540B2 (en) | 2021-01-13 | 2023-04-11 | Toyota Motor North America, Inc. | Transport recharge level determination |
US11987144B2 (en) | 2021-01-13 | 2024-05-21 | Toyota Motor North America, Inc. | Transport energy transfer using real-time cost information |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734099A (en) * | 1995-12-28 | 1998-03-31 | Yazaki Corporation | Potential travel distance estimation system for electric automobiles |
US7402978B2 (en) * | 2006-06-30 | 2008-07-22 | Gm Global Technology Operations, Inc. | System and method for optimizing grid charging of an electric/hybrid vehicle |
US20110282527A1 (en) * | 2010-05-17 | 2011-11-17 | General Motors Llc | Multifactor Charging for Electric Vehicles |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202617A (en) | 1991-10-15 | 1993-04-13 | Norvik Technologies Inc. | Charging station for electric vehicles |
US5301113A (en) | 1993-01-07 | 1994-04-05 | Ford Motor Company | Electronic system and method for calculating distance to empty for motorized vehicles |
JP3177806B2 (en) | 1993-09-17 | 2001-06-18 | 本田技研工業株式会社 | Display device for electric vehicle |
JP3115197B2 (en) | 1994-10-21 | 2000-12-04 | 本田技研工業株式会社 | Automotive display device |
JPH08237810A (en) | 1995-02-27 | 1996-09-13 | Aqueous Res:Kk | Hybrid vehicle |
DE19519107C1 (en) | 1995-05-24 | 1996-04-04 | Daimler Benz Ag | Travel route guidance device for electric vehicle |
US5916298A (en) | 1996-03-27 | 1999-06-29 | Bayerische Motoren Werke Aktiengesellscaft | Display unit for data dependent on a vehicle's energy consumption |
US5913917A (en) | 1997-08-04 | 1999-06-22 | Trimble Navigation Limited | Fuel consumption estimation |
US6198995B1 (en) | 1998-03-31 | 2001-03-06 | Lear Automotive Dearborn, Inc. | Sleep mode for vehicle monitoring system |
JP3600451B2 (en) | 1998-08-12 | 2004-12-15 | アルパイン株式会社 | Security / emergency communication service cooperation system |
US6714967B1 (en) | 1999-07-30 | 2004-03-30 | Microsoft Corporation | Integration of a computer-based message priority system with mobile electronic devices |
US7444383B2 (en) | 2000-06-17 | 2008-10-28 | Microsoft Corporation | Bounded-deferral policies for guiding the timing of alerting, interaction and communications using local sensory information |
US6606561B2 (en) | 2000-05-17 | 2003-08-12 | Omega Patents, L.L.C. | Vehicle tracker including input/output features and related methods |
US6587781B2 (en) | 2000-08-28 | 2003-07-01 | Estimotion, Inc. | Method and system for modeling and processing vehicular traffic data and information and applying thereof |
US20020164998A1 (en) | 2001-05-01 | 2002-11-07 | Saed Younis | System and method for providing position-based information to a user of a wireless device |
JP2002372427A (en) | 2001-06-15 | 2002-12-26 | Alpine Electronics Inc | Navigation equipment |
JP3758140B2 (en) | 2001-07-09 | 2006-03-22 | 日産自動車株式会社 | Information presentation device |
US6591185B1 (en) | 2002-02-11 | 2003-07-08 | Visteon Global Technologies, Inc. | Method for determination of fuel usage for a vehicle in a vehicle navigation system |
US7142664B2 (en) | 2002-05-06 | 2006-11-28 | Avaya Technology Corp. | Intelligent multimode message alerts |
US6947732B2 (en) | 2002-06-18 | 2005-09-20 | General Motors Corporation | Method and system for communicating with a vehicle in a mixed communication service environment |
JP3803629B2 (en) | 2002-10-01 | 2006-08-02 | 株式会社ザナヴィ・インフォマティクス | Map data transmission method, information distribution device, and information terminal |
US7139806B2 (en) | 2002-10-10 | 2006-11-21 | Motorola, Inc. | Communication system for providing dynamic management of contacts and method therefor |
US7610035B2 (en) | 2002-12-31 | 2009-10-27 | Temic Automotive Of North America, Inc. | System and method for controlling the power in a wireless client device |
JP2004272217A (en) | 2003-02-18 | 2004-09-30 | Canon Inc | Map image display controlling method, its program, storage medium for storing the program and electronic equipment |
JP2004340825A (en) | 2003-05-16 | 2004-12-02 | Xanavi Informatics Corp | Navigation system |
US20040243307A1 (en) | 2003-06-02 | 2004-12-02 | Pieter Geelen | Personal GPS navigation device |
US7143118B2 (en) | 2003-06-13 | 2006-11-28 | Yahoo! Inc. | Method and system for alert delivery architecture |
US7433714B2 (en) | 2003-06-30 | 2008-10-07 | Microsoft Corporation | Alert mechanism interface |
US7126472B2 (en) | 2003-07-22 | 2006-10-24 | Mark W Kraus | System and method of providing emergency response to a user carrying a user device |
DE10340870A1 (en) | 2003-09-04 | 2005-04-28 | Siemens Ag | Controlling output of messages in vehicle information system, by outputting messages based on priority and on criteria received from information system |
JP4304492B2 (en) | 2004-06-30 | 2009-07-29 | 日本電気株式会社 | Matrix target management system and management server |
US7668664B2 (en) * | 2004-07-02 | 2010-02-23 | The United States Of America As Represented By The Secretary Of The Navy | Design and selection of genetic targets for sequence resolved organism detection and identification |
US7586956B1 (en) | 2004-11-05 | 2009-09-08 | Cisco Technology, Inc. | Intelligent event notification processing and delivery at a network switch |
DE102005023742B4 (en) | 2005-05-17 | 2010-08-05 | Eidgenössische Technische Hochschule (ETH) | A method of coordinating networked check-in processes or controlling the transport of mobile units within a network |
WO2007008208A1 (en) | 2005-07-13 | 2007-01-18 | Thomson Licensing | Apparatus having an emergency alert function with priority override feature |
AU2005334686A1 (en) | 2005-07-22 | 2007-01-25 | Telargo Inc. | Method, device and system for modeling a road network graph |
CA2518482C (en) | 2005-09-07 | 2016-05-10 | Ibm Canada Limited - Ibm Canada Limitee | System and method for activating insurance coverage |
US7925426B2 (en) | 2005-11-17 | 2011-04-12 | Motility Systems | Power management systems and devices |
US7668644B2 (en) | 2005-12-22 | 2010-02-23 | Nissan Technical Center North America, Inc. | Vehicle fuel informational system |
US7908051B2 (en) | 2005-12-31 | 2011-03-15 | General Motors Llc | Vehicle maintenance event reporting method |
US9052214B2 (en) | 2006-05-22 | 2015-06-09 | Volkswagen Ag | Navigation system for a motor vehicle, method for operating a navigation system and motor vehicle including a navigation system |
US7798578B2 (en) | 2006-08-17 | 2010-09-21 | Ford Global Technologies, Llc | Driver feedback to improve vehicle performance |
JP2010515899A (en) | 2007-01-10 | 2010-05-13 | トムトム インターナショナル ベスローテン フエンノートシャップ | Navigation apparatus and method for fast option access |
US7782021B2 (en) | 2007-07-18 | 2010-08-24 | Tesla Motors, Inc. | Battery charging based on cost and life |
JP4365429B2 (en) | 2007-07-24 | 2009-11-18 | トヨタ自動車株式会社 | Navigation device for displaying charging information and vehicle equipped with the device |
US7693609B2 (en) | 2007-09-05 | 2010-04-06 | Consolidated Edison Company Of New York, Inc. | Hybrid vehicle recharging system and method of operation |
US8000842B2 (en) | 2007-09-28 | 2011-08-16 | General Motors Llc | Method to prevent excessive current drain of telematics unit network access device |
US8912753B2 (en) | 2007-10-04 | 2014-12-16 | General Motors Llc. | Remote power usage management for plug-in vehicles |
US8355486B2 (en) | 2007-10-31 | 2013-01-15 | Centurylink Intellectual Property Llc | System and method for inbound call billing |
DE102007059121A1 (en) | 2007-12-07 | 2009-06-10 | Robert Bosch Gmbh | Method for determining a route and device therefor |
DE102007059120A1 (en) | 2007-12-07 | 2009-06-10 | Robert Bosch Gmbh | Method for determining a route and device therefor |
TW200928315A (en) | 2007-12-24 | 2009-07-01 | Mitac Int Corp | Voice-controlled navigation device and method thereof |
WO2009108719A1 (en) * | 2008-02-25 | 2009-09-03 | Recovery Systems Holdings, Llc | Vehicle security and monitoring system |
US8284039B2 (en) | 2008-03-05 | 2012-10-09 | Earthwave Technologies, Inc. | Vehicle monitoring system with power consumption management |
US8755968B2 (en) | 2008-04-22 | 2014-06-17 | Mark Gottlieb | Context-sensitive navigational aid |
US9853488B2 (en) | 2008-07-11 | 2017-12-26 | Charge Fusion Technologies, Llc | Systems and methods for electric vehicle charging and power management |
US8294286B2 (en) | 2008-07-15 | 2012-10-23 | F3 & I2, Llc | Network of energy generating modules for transfer of energy outputs |
JP4783414B2 (en) | 2008-09-12 | 2011-09-28 | 株式会社東芝 | Traffic situation prediction system |
US20100094496A1 (en) | 2008-09-19 | 2010-04-15 | Barak Hershkovitz | System and Method for Operating an Electric Vehicle |
WO2010036650A2 (en) | 2008-09-24 | 2010-04-01 | The Regents Of The University Of California | Environmentally friendly driving navigation |
WO2010048146A1 (en) | 2008-10-20 | 2010-04-29 | Carnegie Mellon University | System, method and device for predicting navigational decision-making behavior |
US20100106514A1 (en) | 2008-10-24 | 2010-04-29 | Sirius Xm Radio Inc. | Travel related services via SDARS |
WO2010053562A2 (en) | 2008-11-06 | 2010-05-14 | Silver Springs Networks, Inc. | System and method for identifying power usage issues |
TWI463111B (en) | 2008-11-25 | 2014-12-01 | Elan Microelectronics Corp | Navigation system and control method thereof |
US8886453B2 (en) | 2008-12-11 | 2014-11-11 | Telogis, Inc. | System and method for efficient routing on a network in the presence of multiple-edge restrictions and other constraints |
US9505317B2 (en) | 2008-12-22 | 2016-11-29 | General Electric Company | System and method for electric vehicle charging and billing using a wireless vehicle communication service |
WO2010081836A1 (en) | 2009-01-16 | 2010-07-22 | Tele Atlas B.V. | Method for computing an energy efficient route |
JP4737307B2 (en) | 2009-02-16 | 2011-07-27 | 株式会社デンソー | Plug-in car charging status notification system |
EP2221581B1 (en) | 2009-02-18 | 2017-07-19 | Harman Becker Automotive Systems GmbH | Method of estimating a propulsion-related operating parameter |
US20100235076A1 (en) | 2009-03-10 | 2010-09-16 | Microsoft Corporation | Estimation of fuel consumption from gps trails |
US9751417B2 (en) | 2009-03-18 | 2017-09-05 | Evercharge, Inc. | Method, system, and apparatus for distributing electricity to electric vehicles, monitoring the distribution thereof, and/or providing automated billing |
US20100274653A1 (en) | 2009-04-28 | 2010-10-28 | Ayman Hammad | Notification social networking |
US9291468B2 (en) | 2009-05-05 | 2016-03-22 | GM Global Technology Operations LLC | Route planning system and method |
DE102009027593A1 (en) | 2009-07-09 | 2011-01-13 | Robert Bosch Gmbh | Control unit with sleep mode |
US20100138142A1 (en) | 2009-07-17 | 2010-06-03 | Karen Pease | Vehicle Range Finder |
KR20110019104A (en) | 2009-08-19 | 2011-02-25 | (주)비글 | Apparatus for estimation of energy consumption |
JP4876159B2 (en) | 2009-09-04 | 2012-02-15 | クラリオン株式会社 | Car navigation system |
JP5135308B2 (en) | 2009-09-09 | 2013-02-06 | クラリオン株式会社 | Energy consumption prediction method, energy consumption prediction device, and terminal device |
US8543287B2 (en) | 2009-09-25 | 2013-09-24 | Cross Chasm Technologies Inc. | System, method and computer program for simulating vehicle energy use |
EP2504663A1 (en) | 2009-11-24 | 2012-10-03 | Telogis, Inc. | Vehicle route selection based on energy usage |
US11183001B2 (en) | 2010-01-29 | 2021-11-23 | Chargepoint, Inc. | Electric vehicle charging station host definable pricing |
EP2375364A1 (en) | 2010-04-12 | 2011-10-12 | Karlsruher Institut für Technologie | Method and system for time-dependent routing |
DE102010030309A1 (en) | 2010-06-21 | 2011-12-22 | Ford Global Technologies, Llc | Method and device for determining an energy consumption optimized route |
WO2012009479A1 (en) | 2010-07-13 | 2012-01-19 | Telenav, Inc. | Navigation system with ecological route based destination guidance mechanism and method of operation thereof |
US8718844B2 (en) | 2010-07-19 | 2014-05-06 | General Motors Llc | Charge notification method for extended range electric vehicles |
EP2410294A1 (en) | 2010-07-21 | 2012-01-25 | Harman Becker Automotive Systems GmbH | Method and device for providing cost information associated with junctions and method of determining a route |
US8538621B2 (en) | 2010-09-15 | 2013-09-17 | General Motors Llc. | Charge reminder notification to increase electric only efficiency |
US20110225105A1 (en) | 2010-10-21 | 2011-09-15 | Ford Global Technologies, Llc | Method and system for monitoring an energy storage system for a vehicle for trip planning |
US9057621B2 (en) | 2011-01-11 | 2015-06-16 | GM Global Technology Operations LLC | Navigation system and method of using vehicle state information for route modeling |
US8543328B2 (en) | 2011-01-11 | 2013-09-24 | Navteq B.V. | Method and system for calculating an energy efficient route |
US8504236B2 (en) | 2011-01-25 | 2013-08-06 | Continental Automotive Systems, Inc | Proactive low fuel warning system and method |
US8755993B2 (en) | 2011-03-08 | 2014-06-17 | Navteq B.V. | Energy consumption profiling |
US8554473B2 (en) | 2011-04-25 | 2013-10-08 | Navteq B.V. | Energy efficient routing using an impedance factor |
-
2011
- 2011-01-06 US US12/985,803 patent/US8849499B2/en active Active
-
2012
- 2012-01-05 CN CN201210012183.XA patent/CN102591272B/en active Active
- 2012-01-05 DE DE102012200130.1A patent/DE102012200130B4/en active Active
-
2013
- 2013-10-09 US US14/049,377 patent/US20140039726A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734099A (en) * | 1995-12-28 | 1998-03-31 | Yazaki Corporation | Potential travel distance estimation system for electric automobiles |
US7402978B2 (en) * | 2006-06-30 | 2008-07-22 | Gm Global Technology Operations, Inc. | System and method for optimizing grid charging of an electric/hybrid vehicle |
US20110282527A1 (en) * | 2010-05-17 | 2011-11-17 | General Motors Llc | Multifactor Charging for Electric Vehicles |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8725330B2 (en) | 2010-06-02 | 2014-05-13 | Bryan Marc Failing | Increasing vehicle security |
US8841881B2 (en) | 2010-06-02 | 2014-09-23 | Bryan Marc Failing | Energy transfer with vehicles |
US9114719B1 (en) | 2010-06-02 | 2015-08-25 | Bryan Marc Failing | Increasing vehicle security |
US9393878B1 (en) | 2010-06-02 | 2016-07-19 | Bryan Marc Failing | Energy transfer with vehicles |
US10124691B1 (en) | 2010-06-02 | 2018-11-13 | Bryan Marc Failing | Energy transfer with vehicles |
US11186192B1 (en) | 2010-06-02 | 2021-11-30 | Bryan Marc Failing | Improving energy transfer with vehicles |
US20150137753A1 (en) * | 2013-11-19 | 2015-05-21 | Hyundai Motor Company | Charging demand verification method of -eco-friendly vehicle and system used therein |
US10360576B1 (en) | 2014-10-09 | 2019-07-23 | Allstate Insurance Company | Interactive rewards system for rewarding drivers |
US11170446B1 (en) * | 2014-10-28 | 2021-11-09 | State Farm Mutual Automobile Insurance Company | Systems and methods for communicating with an electric vehicle |
US11748816B1 (en) | 2014-10-28 | 2023-09-05 | State Farm Mutual Automobile Insurance Company | Systems and methods for communicating with an electric vehicle |
US20230334581A1 (en) * | 2014-10-28 | 2023-10-19 | State Farm Mutual Automobile Insurance Company | Systems and methods for communicating with an electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN102591272B (en) | 2016-01-20 |
CN102591272A (en) | 2012-07-18 |
US8849499B2 (en) | 2014-09-30 |
US20110224841A1 (en) | 2011-09-15 |
DE102012200130A1 (en) | 2012-07-12 |
DE102012200130B4 (en) | 2024-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8849499B2 (en) | Methods and systems for monitoring a vehicle's energy source | |
US20110224852A1 (en) | Methods and system for selectively charging a vehicle | |
US11884181B2 (en) | Determining a minimum state of charge for an energy storage means of a vehicle | |
CN104044462B (en) | User interface system and method based on calendar event | |
US10281296B2 (en) | Method and apparatus for electric vehicle trip and recharge planning | |
US10889199B2 (en) | Determining a charging requirement for an energy storage means of a vehicle | |
US10161759B2 (en) | Electric vehicle charging network services | |
US20110225105A1 (en) | Method and system for monitoring an energy storage system for a vehicle for trip planning | |
US9529584B2 (en) | System and method for preparing vehicle for remote reflash event | |
CN102582627B (en) | Information display system | |
US8670877B2 (en) | Method and apparatus for analyzing and optimizing fuel/energy consumption | |
CN105083042A (en) | Electric vehicle operation to manage battery capacity | |
US8838385B2 (en) | Method and apparatus for vehicle routing | |
KR20150053859A (en) | Method method and apparatus for managing automobile insurance | |
KR20170077552A (en) | Management server for managing charge of electrical propulsion apparatus and method for managing charge of electrical propulsion apparatus thereby | |
CN107038598B (en) | Vehicle processor and method for tracking and reporting vehicle usage and associated fuel costs | |
JP2012139008A (en) | Electric vehicle charging device, electric vehicle charging system, electric vehicle charging method, program, and recording medium | |
CN115583153A (en) | Endurance mileage calculation method and device and computer equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |