US20140016268A1 - Electronic device and airflow adjustment member - Google Patents
Electronic device and airflow adjustment member Download PDFInfo
- Publication number
- US20140016268A1 US20140016268A1 US13/874,527 US201313874527A US2014016268A1 US 20140016268 A1 US20140016268 A1 US 20140016268A1 US 201313874527 A US201313874527 A US 201313874527A US 2014016268 A1 US2014016268 A1 US 2014016268A1
- Authority
- US
- United States
- Prior art keywords
- connector
- air
- board
- adjustment member
- airflow adjustment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000009423 ventilation Methods 0.000 description 7
- 238000009529 body temperature measurement Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/20709—Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
- H05K7/20718—Forced ventilation of a gaseous coolant
- H05K7/20727—Forced ventilation of a gaseous coolant within server blades for removing heat from heat source
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
Definitions
- the embodiments discussed herein are related to an electronic device and an airflow adjustment member.
- components such as a memory and a DDC (DC-DC converter) are modularized, and those modularized components are fitted to connectors on a motherboard according to an adopted device configuration. Modularized components are called module components hereinbelow.
- a server In a server, components such as a central processing unit (CPU) and a memory produce heat while the server is operated. When the temperature of a component such as the CPU or the memory exceeds an allowable upper limit temperature set for that component, malfunction or failure might occur. For this reason, in a general server, a cooling fan or the like causes cooling air (also called air below) to flow through a chassis of the server to cool the components therein and discharges heat inside the server to the outside of the chassis.
- cooling air also called air below
- Patent Document 1 Japanese Laid-open Utility Model Publication No. 07-42181
- the flow of the cooling air (called an airflow below) changes when the configuration of the module components mounted in the chassis changes. This might result in a poor cooling efficiency.
- an electronic device including: a board; a heat producing component mounted on the board; a connector mounted on the board and including a latch lever configured to allow a module component to be fitted to and removed from the connector; a chassis housing the board; an air blower configured to cause air to flow through the chassis; and an airflow adjustment member placed upstream, in a flow direction of the air, of the heat producing component and the connector, and including a guide portion configured to guide part of air flowing toward a region where the connector is placed to a region where the heat producing component is placed.
- the latch lever is located at such a position as to restrict at least part of a flow of the air toward the region where the connector is placed.
- FIG. 1 is a perspective view illustrating an example of a motherboard of a server
- FIG. 2 is a top view of the motherboard in FIG. 1 ;
- FIG. 3 is a perspective view of a server according to a first embodiment
- FIG. 4 is a perspective view illustrating a motherboard of the server in FIG. 3 ;
- FIG. 5A is a perspective view of an airflow adjustment member
- FIG. 5B is a perspective view illustrating a back side of the airflow adjustment member in FIG. 5A ;
- FIG. 6 is a schematic diagram illustrating the positions of guide portions of the airflow adjustment member
- FIG. 7 is a schematic diagram illustrating the flow of air blown by a cooling fan
- FIG. 8 is a schematic diagram illustrating the flow of air passing under the guide portion and entering a memory-mounted region
- FIGS. 9A to 9C are diagrams illustrating a memory board connector
- FIGS. 10A and 10B are diagrams illustrating a positional relation between the airflow adjustment member and the connector
- FIG. 11 is a diagram illustrating a positional relation between a latch lever and the guide portion
- FIG. 12 is a plan view illustrating the sizes of the portions of the airflow adjustment member
- FIG. 13 is a diagram illustrating temperature measurement positions
- FIG. 14 is a diagram illustrating temperature measurement results
- FIG. 15 is a plan view of a motherboard of a server according to a second embodiment.
- FIG. 16 is a perspective view illustrating a state in which memory boards and DDC boards are fitted onto the motherboard in FIG. 15 .
- FIG. 1 is a perspective view illustrating an example of a motherboard of a server
- FIG. 2 is a top view of the motherboard in FIG. 1 .
- X and Y in FIG. 2 are two orthogonal directions denoted by X and Y in FIG. 2 .
- CPUs and other components are mounted on a motherboard 10 . Since the CPUs produce a large amount of heat upon operation, a heat sink 11 formed of a metal or the like having excellent heat conductivity is attached above each of the CPUs. Heat produced by the CPU moves to the heat sink 11 and is then dissipated to the air through the heat sink 11 .
- a plurality of memory board connectors (memory slots) 13 are arranged on the motherboard 10 .
- Memory boards 12 are fitted to these connectors 13 according to an adopted device configuration.
- the memory boards 12 are an example of a module component.
- the plurality of connectors 13 are arranged at positions sandwiching each of the CPUs (the heat sinks 11 ).
- the connectors 13 are arranged side by side in the X direction with their longitudinal positions in the Y direction coinciding with each other.
- a CPU-mounted region refers to a region on the motherboard where the CPU and the heat sink 11 are placed
- a memory-mounted region refers to a region where the memory board is placed.
- a plurality of cooling fans 14 are arranged along one side of the motherboard 10 , the one side being in parallel with the X direction. These cooling fans 14 introduce air of a relatively low temperature into a chassis of the server to cool the heat sinks 11 and the memory boards 12 .
- the white arrows in FIG. 2 indicate a flow direction of the air.
- the number of mounted module components differs according to the device configuration. Hence, the airflow through the chassis changes depending on the number of mounted module components.
- the airflow is blocked due to ventilation resistance by the memory boards 12 . Consequently, the amount of air flowing into the memory-mounted regions decreases, so that a relatively large amount of air flows into the CPU-mounted regions.
- the rotation speed of the cooling fans 14 is controlled according to the temperatures of the CPUs so that the temperatures of the CPUs will not exceed an allowable upper limit. In this case, however, the rotation speed of the cooling fans 14 is increased when a small number of memory boards 12 is mounted; consequently, power consumption increases.
- a dummy component having almost the same shape as the memory board 12 may be fitted to an empty connector to prevent the change in the ventilation resistance.
- such a measure prefers fitting and unfitting of the dummy component when the device configuration is changed. This not only complicates work, but also increases cost for manufacturing and storage of the dummy component.
- an electronic device and an airflow adjustment member which may make a ventilation resistance substantially constant irrespective of the number of mounted module components and may efficiently cool heat-producing components without using dummy components.
- FIG. 3 is a perspective view of a server according to a first embodiment
- FIG. 4 is a perspective view illustrating a motherboard of the server in FIG. 3 .
- X and Y in FIGS. 3 and 4 are called an X direction and a Y direction, respectively.
- the upstream side and downstream side of a flow direction of air are called a front side and a rear side, respectively.
- the electronic device is a server
- the module component is a memory board.
- a server 20 has a chassis 21 and a motherboard 22 housed inside the chassis 21 .
- the chassis 21 is provided at its front side with a front panel 25 a and at its rear side with a rear panel 25 b. These panels 25 a and 25 b are each provided with vents.
- HDD cages 26 a and an operation panel unit 26 b are placed between the front panel 25 a and the motherboard 22 .
- a hard disk drive is to be placed inside each HDD cage 26 a.
- CPUs 30 and other electronic components are mounted on the motherboard 22 .
- a heat sink 31 formed of a metal having excellent heat conductivity is attached above each CPU 30 .
- the heat sink 31 is provided with many fins extending in the X direction, and air flowing between those fins discharges heat produced by the CPU 30 to the outside.
- a plurality of memory board connectors (memory slots) 33 are arranged on the mother board 22 .
- Memory boards 32 are fitted to the memory board connectors 33 according to an adopted device configuration.
- Each memory board 32 is a board on which one or a plurality of semiconductor memory devices (large-scale integrated memory (LSI)) are mounted.
- LSI large-scale integrated memory
- the plurality of memory board connectors 33 are arranged on both sides, in the X-direction, of each CPU (heat sink 31 ). These connectors 33 are arranged side by side in the X direction with their longitudinal positions in the Y direction coinciding with each other.
- FIGS. 3 and 4 illustrate a state where the memory boards 32 are fitted to all the connectors 33 .
- a plurality of cooling fans 34 are arranged along one side of the motherboard 22 which is at the front. These cooling fans 34 cause air to flow in the Y direction in FIGS. 3 and 4 to cool the CPUs 30 (heat sinks 31 ) and the memory boards 32 .
- the motherboard 22 has a sensor configured to detect the temperatures of the CPUs 30 and a controller configured to control the rotation speed of the cooling fans 34 according to an output of the sensor. When the temperatures of the CPUs 30 are high, the rotation speed of the cooling fans 34 is increased.
- a plurality of expansion card slots 36 are arranged at a rear portion of the motherboard 22 .
- Expansion cards 37 according to the device configuration are fitted to the expansion card slots 36 .
- communication connectors 38 and the like are provided at a rear portion of the motherboard 22 .
- the server 20 communicates with another electronic device via a communication cable attached to the communication connector 38 .
- the motherboard 22 is an example of a board
- the CPU 30 is an example of a heat producing component
- the cooling fan 34 is an example of an air blower.
- the CPU 30 produces more heat than the memory board 32 .
- an airflow adjustment member 40 is placed windward of the CPU-mounted regions and the memory-mounted regions.
- FIG. 5A is a perspective view of the airflow adjustment member 40
- FIG. 5B is a perspective view of a back side of the airflow adjustment member 40 in FIG. 5A .
- the airflow adjustment member 40 has a support portion 41 , guide portions 42 , and attachment portions 43 .
- the support portion 41 has a flat plate shape, and the guide portions 42 are triangular and arranged on the lower face of the support portion 41 .
- the attachment portions 43 are provided at both ends and the center portion, in the longitudinal direction, of the support portion 41 , and are used to fix the airflow adjustment member 40 to a predetermined position on the motherboard 22 .
- the airflow adjustment member 40 is formed of polycarbonate. Note, however, that the airflow adjustment member 40 may be formed by a material other than polycarbonate.
- the airflow adjustment member 40 is placed such that the triangle vertices of the guide portions face the cooling fans 34 .
- a rear end portion of the support portion 41 cover front end portions of the connectors 33 from above.
- FIG. 6 schematically illustrates, when seen from the windward, the guide portions 42 are located at positions corresponding to the memory-mounted regions 46 , and are not provided at positions corresponding to the CPU-mounted regions 45 .
- part of air blown by the cooling fans 34 and flowing toward the memory-mounted regions 46 travels along inclined surfaces of the guide portions 42 , merges with air blown by the cooling fans 34 and flowing toward the CPU-mounted regions 45 , and then travels to the CPU-mounted regions 45 .
- the airflow adjustment member 40 since the airflow adjustment member 40 is placed windward of the CPU-mounted regions 45 and the memory-mounted regions 46 as described above, the CPU-mounted regions 45 are supplied with the air preferentially over the memory-mounted regions 46 . Hence, the CPUs 30 may be sufficiently cooled even when the rotation speed of the cooling fans 34 is low, and therefore power consumed by the cooling fans 34 may be reduced.
- the front end portions of the memory board connectors 33 are obstacles for the air having flowed under the guide portions 42 .
- the states of the front end portions of the memory board connectors 33 largely influence the flow rate of the air supplied to the memory-mounted regions 46 .
- the ventilation resistance by the memory boards 32 is smaller than that by the connectors 33 , the flow rate of air does not change much no matter whether the memory board 32 is fitted to the connectors 33 or not.
- FIGS. 9A to 9C are diagrams illustrating the memory board connector 33 .
- FIG. 9A illustrates a state where the memory board 32 is fitted to the connector 33
- FIGS. 9B and 9C each illustrate a state where the memory board 32 is not fitted to the connector 33 .
- Both longitudinal ends of the connector 33 each have a column portion 33 b configured to support an end portion of the memory board 32 and a latch lever 33 a configured to open and close by rotating about a fulcrum provided to the column portion 33 b.
- the latch levers 33 a are closed to fix the memory board to the connector 33 as illustrated in FIG. 9A in order to prevent the memory board 32 from coming off by vibration or the like, or to prevent a contact failure and the like.
- the latch levers 33 a are generally kept open as illustrated in FIG. 9B .
- whether the latch levers 33 a are kept open or closed largely changes the flow rate of air flowing into the memory-mounted regions 46 , and also changes the flow rate of air flowing into the CPU-mounted regions 45 .
- FIGS. 10A and 10B are diagrams illustrating a positional relation between the airflow adjustment member 40 and the connector 33 .
- the airflow adjustment member 40 may be attached to the predetermined position when the latch levers 33 a are closed.
- the airflow adjustment member 40 comes into contact with the latch levers 33 a as illustrated in FIG. 10B , and the airflow adjustment member 40 is therefore not attached to the predetermined position. This allows prevention of forgetting to close the latch levers 33 a.
- the position of the lower end of the guide portion 42 is located lower than position A 2 of an upper end of the column portion 33 b of the connector 33 , the space between the guide portion 42 and the motherboard 22 is narrowed to decrease the flow rate of air supplied to the memory-mounted regions 46 .
- the position of the lower end of the guide portion 42 is preferably higher than position A 2 of the upper end of the column 33 b of the connector 33 when the airflow adjustment member 40 is attached to the predetermined position.
- the guide portions 42 function as a latch lever open-close state detector configured to detect whether the latch levers 33 a are open or closed.
- the airflow adjustment member 40 may be provided with a latch lever open-close state detector, separate from the guide portions 42 .
- the airflow adjustment member 40 is not placed at the predetermined position when the latch levers 33 a are open. Hence, the ventilation resistance against the air flowing under the guide portions 42 is almost constant, irrespective of whether the memory board 32 is fitted to the connector 33 or not. As a result, a ratio of air flowing into the CPU-mounted regions 45 to air flowing into the memory-mounted regions 46 is almost constant.
- the rear end portion of the airflow adjustment member 40 covers the end portion of the memory board 32 from above. Thereby, after flowing under the guide portions 42 , air travels in the longitudinal direction of the memory board 32 without spreading upward. This allows the memory boards 32 to be efficiently cooled as well.
- a server having a structure illustrated in FIG. 3 is prepared.
- the sizes of the portions of the airflow adjustment member 40 are as depicted in FIG. 12 .
- a server of a comparative example is also prepared.
- the server of the comparative example has the same airflow adjustment member 40 as that of the embodiment example except that it does not have the guide portions 42 .
- the temperatures of the CPUs and the temperatures of the memory boards in a case where the memory boards (DIMM) are fitted to all the connectors are measured, and the temperatures of the CPUs in a case where the memory boards are removed from all the connectors are measured.
- FIG. 13 depicts positions of the temperature measurements
- FIG. 14 depicts results of the temperature measurements.
- C 1 and C 2 are the positions where the temperatures of the CPUs are measured
- M 1 to M 4 are the positions where the temperatures of the memory boards are measured.
- temperatures under “fully mounted” are temperatures measured when the memory boards (DIMM) are fitted to all the connectors
- temperatures under “without DIMM” are temperatures measured when the memory boards are removed from all the connectors.
- the difference in the temperatures of the CPUs between when the memory boards are mounted and when the memory boards are not mounted is as small as 0.4° C. to 0.5° C.
- the difference in the temperatures of the CPUs between when the memory boards are mounted and when the memory boards are not mounted is as large as 2.1° C. to 2.5° C.
- the temperatures of the CPUs of the embodiment example when the memory boards are mounted are lower than those of the comparative example by 3.5° C. to 4.0° C., and the temperatures of the CPUs of the embodiment example when the memory boards are not mounted are lower than those of the comparative example by 5.5° C. to 5.7° C. Note that the temperatures of the memory boards are almost the same in the embodiment example and the comparative example.
- FIG. 15 is a plan view of a motherboard of a server according to a second embodiment
- FIG. 16 is a perspective view of the motherboard in FIG. 15 , to which memory boards and DDC (DC-DC converter) boards are fitted.
- This embodiment differs from the first embodiment in that the motherboard is provided with connectors to which the DDC boards are to be fitted, and other configurations of this embodiment are basically the same as those of the first embodiment, and are therefore not described again here.
- a motherboard 51 is provided with the memory board connectors 33 to which the memory boards 32 are to be fitted and DDC board connectors 53 to which DDC boards 52 are to be fitted.
- the memory board connectors 53 are located at DDC-mounted regions adjacent to the memory-mounted regions where the memory board connectors 33 are placed.
- the DDC board 52 is a board on which one or a plurality of DDCs are mounted.
- the DDC board connector 53 is provided at its both end portions with latch levers for fixing the DDC board 52 .
- the airflow adjustment member 40 is placed windward of the memory board connectors 33 and the DDC board connectors 53 .
- the airflow adjustment member 40 is provided with the guide portions 42 (see FIGS. 5A and 5B ).
- Part of air blown by the cooling fans 34 and flowing toward the memory-mounted regions and the DDC-mounted regions travels along the inclined surfaces of the guide portions 42 , merges with air blown by the cooling fans 34 and flowing toward the CPU-mounted regions, and then travels toward the CPU-mounted regions.
- the technique disclosed may be used even when module components other than the memory boards 32 are used as the module components.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
An electronic device has a board, a heat producing component mounted on the board, a connector mounted on the board and allowing a module component to be fitted thereto, a chassis housing the board, and an air blower configured to cause air to flow through the chassis. Additionally, an airflow adjustment member including a guide portion is placed upstream, in a flow direction of the air, of the heat producing component and the connector, the guide portion being configured to guide part of air flowing toward a region where the connector is placed to a region where the heat producing component is placed.
Description
- This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2012-156617, filed on Jul. 12, 2012, the entire contents of which are incorporated herein by reference.
- The embodiments discussed herein are related to an electronic device and an airflow adjustment member.
- In an electronic device such as a server, components such as a memory and a DDC (DC-DC converter) are modularized, and those modularized components are fitted to connectors on a motherboard according to an adopted device configuration. Modularized components are called module components hereinbelow.
- In a server, components such as a central processing unit (CPU) and a memory produce heat while the server is operated. When the temperature of a component such as the CPU or the memory exceeds an allowable upper limit temperature set for that component, malfunction or failure might occur. For this reason, in a general server, a cooling fan or the like causes cooling air (also called air below) to flow through a chassis of the server to cool the components therein and discharges heat inside the server to the outside of the chassis.
- In the server configured to cool its components in the chassis by use of the cooling fan or the like, the flow of the cooling air (called an airflow below) changes when the configuration of the module components mounted in the chassis changes. This might result in a poor cooling efficiency.
- According to an aspect of the technique disclosed, provided is an electronic device including: a board; a heat producing component mounted on the board; a connector mounted on the board and including a latch lever configured to allow a module component to be fitted to and removed from the connector; a chassis housing the board; an air blower configured to cause air to flow through the chassis; and an airflow adjustment member placed upstream, in a flow direction of the air, of the heat producing component and the connector, and including a guide portion configured to guide part of air flowing toward a region where the connector is placed to a region where the heat producing component is placed. The latch lever is located at such a position as to restrict at least part of a flow of the air toward the region where the connector is placed.
- The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention.
-
FIG. 1 is a perspective view illustrating an example of a motherboard of a server; -
FIG. 2 is a top view of the motherboard inFIG. 1 ; -
FIG. 3 is a perspective view of a server according to a first embodiment; -
FIG. 4 is a perspective view illustrating a motherboard of the server inFIG. 3 ; -
FIG. 5A is a perspective view of an airflow adjustment member, andFIG. 5B is a perspective view illustrating a back side of the airflow adjustment member inFIG. 5A ; -
FIG. 6 is a schematic diagram illustrating the positions of guide portions of the airflow adjustment member; -
FIG. 7 is a schematic diagram illustrating the flow of air blown by a cooling fan; -
FIG. 8 is a schematic diagram illustrating the flow of air passing under the guide portion and entering a memory-mounted region; -
FIGS. 9A to 9C are diagrams illustrating a memory board connector; -
FIGS. 10A and 10B are diagrams illustrating a positional relation between the airflow adjustment member and the connector; -
FIG. 11 is a diagram illustrating a positional relation between a latch lever and the guide portion; -
FIG. 12 is a plan view illustrating the sizes of the portions of the airflow adjustment member; -
FIG. 13 is a diagram illustrating temperature measurement positions; -
FIG. 14 is a diagram illustrating temperature measurement results; -
FIG. 15 is a plan view of a motherboard of a server according to a second embodiment; and -
FIG. 16 is a perspective view illustrating a state in which memory boards and DDC boards are fitted onto the motherboard inFIG. 15 . - Before embodiments are described, a prelude for facilitating an easy understanding of the embodiments is given below.
-
FIG. 1 is a perspective view illustrating an example of a motherboard of a server, andFIG. 2 is a top view of the motherboard inFIG. 1 . For convenience of description, two orthogonal directions denoted by X and Y inFIG. 2 are called an X direction and a Y direction, respectively. - CPUs and other components are mounted on a
motherboard 10. Since the CPUs produce a large amount of heat upon operation, aheat sink 11 formed of a metal or the like having excellent heat conductivity is attached above each of the CPUs. Heat produced by the CPU moves to theheat sink 11 and is then dissipated to the air through theheat sink 11. - A plurality of memory board connectors (memory slots) 13 are arranged on the
motherboard 10.Memory boards 12 are fitted to theseconnectors 13 according to an adopted device configuration. Thememory boards 12 are an example of a module component. - In the example illustrated in
FIGS. 1 and 2 , the plurality ofconnectors 13 are arranged at positions sandwiching each of the CPUs (the heat sinks 11). Theconnectors 13 are arranged side by side in the X direction with their longitudinal positions in the Y direction coinciding with each other. - Hereinbelow, a CPU-mounted region refers to a region on the motherboard where the CPU and the
heat sink 11 are placed, and a memory-mounted region refers to a region where the memory board is placed. - A plurality of
cooling fans 14 are arranged along one side of themotherboard 10, the one side being in parallel with the X direction. Thesecooling fans 14 introduce air of a relatively low temperature into a chassis of the server to cool theheat sinks 11 and thememory boards 12. The white arrows inFIG. 2 indicate a flow direction of the air. - As mentioned earlier, in an electronic device such as a server, the number of mounted module components differs according to the device configuration. Hence, the airflow through the chassis changes depending on the number of mounted module components.
- For example, if the
memory boards 12 are fitted to all of theconnectors 13 on themotherboard 10, the airflow is blocked due to ventilation resistance by thememory boards 12. Consequently, the amount of air flowing into the memory-mounted regions decreases, so that a relatively large amount of air flows into the CPU-mounted regions. - In contrast, if a
few memory boards 12 are mounted, the ventilation resistance by thememory boards 12 is low. This results in increasing the amount of air flowing into the memory-mounted regions, so that a relatively small amount of air flows into the - CPU-mounted regions. For this reason, the temperatures of the CPUs tend to be higher when a small number of
memory boards 12 is mounted than when a large number ofmemory boards 12 is mounted. - In a general server, the rotation speed of the
cooling fans 14 is controlled according to the temperatures of the CPUs so that the temperatures of the CPUs will not exceed an allowable upper limit. In this case, however, the rotation speed of the coolingfans 14 is increased when a small number ofmemory boards 12 is mounted; consequently, power consumption increases. - To avoid this, when a small number of
memory boards 12 are mounted, a dummy component having almost the same shape as thememory board 12 may be fitted to an empty connector to prevent the change in the ventilation resistance. However, such a measure prefers fitting and unfitting of the dummy component when the device configuration is changed. This not only complicates work, but also increases cost for manufacturing and storage of the dummy component. - In embodiment below, a description is given of an electronic device and an airflow adjustment member which may make a ventilation resistance substantially constant irrespective of the number of mounted module components and may efficiently cool heat-producing components without using dummy components.
-
FIG. 3 is a perspective view of a server according to a first embodiment, andFIG. 4 is a perspective view illustrating a motherboard of the server inFIG. 3 . - For convenience of description, two orthogonal directions denoted by X and Y in
FIGS. 3 and 4 are called an X direction and a Y direction, respectively. In addition, in this embodiment, in the server illustrated inFIG. 3 , the upstream side and downstream side of a flow direction of air are called a front side and a rear side, respectively. In this embodiment, the electronic device is a server, and the module component is a memory board. - As illustrated in
FIG. 3 , aserver 20 has achassis 21 and amotherboard 22 housed inside thechassis 21. Thechassis 21 is provided at its front side with afront panel 25 a and at its rear side with arear panel 25 b. Thesepanels HDD cages 26 a and anoperation panel unit 26 b are placed between thefront panel 25 a and themotherboard 22. A hard disk drive is to be placed inside eachHDD cage 26 a. -
CPUs 30 and other electronic components are mounted on themotherboard 22. Aheat sink 31 formed of a metal having excellent heat conductivity is attached above eachCPU 30. Theheat sink 31 is provided with many fins extending in the X direction, and air flowing between those fins discharges heat produced by theCPU 30 to the outside. - Moreover, a plurality of memory board connectors (memory slots) 33 are arranged on the
mother board 22.Memory boards 32 are fitted to thememory board connectors 33 according to an adopted device configuration. Eachmemory board 32 is a board on which one or a plurality of semiconductor memory devices (large-scale integrated memory (LSI)) are mounted. - In the example illustrated in
FIGS. 3 and 4 , the plurality ofmemory board connectors 33 are arranged on both sides, in the X-direction, of each CPU (heat sink 31). Theseconnectors 33 are arranged side by side in the X direction with their longitudinal positions in the Y direction coinciding with each other.FIGS. 3 and 4 illustrate a state where thememory boards 32 are fitted to all theconnectors 33. - A plurality of cooling fans 34 (four of them in
FIGS. 3 and 4 ) are arranged along one side of themotherboard 22 which is at the front. These coolingfans 34 cause air to flow in the Y direction inFIGS. 3 and 4 to cool the CPUs 30 (heat sinks 31) and thememory boards 32. For example, themotherboard 22 has a sensor configured to detect the temperatures of theCPUs 30 and a controller configured to control the rotation speed of the coolingfans 34 according to an output of the sensor. When the temperatures of theCPUs 30 are high, the rotation speed of the coolingfans 34 is increased. - A plurality of
expansion card slots 36 are arranged at a rear portion of themotherboard 22.Expansion cards 37 according to the device configuration are fitted to theexpansion card slots 36. In addition,communication connectors 38 and the like are provided at a rear portion of themotherboard 22. Theserver 20 communicates with another electronic device via a communication cable attached to thecommunication connector 38. - The
motherboard 22 is an example of a board, theCPU 30 is an example of a heat producing component, and the coolingfan 34 is an example of an air blower. - In general, the
CPU 30 produces more heat than thememory board 32. Thus, in order to accomplish reduction in power consumption by decreasing the rotation speed of the coolingfans 34, it is important to efficiently cool theCPU 30. Hence, in this embodiment, anairflow adjustment member 40 is placed windward of the CPU-mounted regions and the memory-mounted regions. -
FIG. 5A is a perspective view of theairflow adjustment member 40, andFIG. 5B is a perspective view of a back side of theairflow adjustment member 40 inFIG. 5A . - As illustrated in
FIGS. 5A and 5B , theairflow adjustment member 40 has asupport portion 41, guideportions 42, andattachment portions 43. Thesupport portion 41 has a flat plate shape, and theguide portions 42 are triangular and arranged on the lower face of thesupport portion 41. Theattachment portions 43 are provided at both ends and the center portion, in the longitudinal direction, of thesupport portion 41, and are used to fix theairflow adjustment member 40 to a predetermined position on themotherboard 22. - In this embodiment, the
airflow adjustment member 40 is formed of polycarbonate. Note, however, that theairflow adjustment member 40 may be formed by a material other than polycarbonate. - The
airflow adjustment member 40 is placed such that the triangle vertices of the guide portions face the coolingfans 34. When theairflow adjustment member 40 is placed at the predetermined position on themotherboard 22, a rear end portion of thesupport portion 41 cover front end portions of theconnectors 33 from above. - As
FIG. 6 schematically illustrates, when seen from the windward, theguide portions 42 are located at positions corresponding to the memory-mountedregions 46, and are not provided at positions corresponding to the CPU-mountedregions 45. Thus, as illustrated inFIG. 7 , part of air blown by the coolingfans 34 and flowing toward the memory-mountedregions 46 travels along inclined surfaces of theguide portions 42, merges with air blown by the coolingfans 34 and flowing toward the CPU-mountedregions 45, and then travels to the CPU-mountedregions 45. - As illustrated in
FIG. 6 , there is a space between theguide portions 42 and themotherboard 22. Thus, as illustrated inFIG. 8 , rest of the air blown by the coolingfans 34 and flowing toward the memory-mountedregions 46 travels under theguide portions 42 and enters the memory-mountedregions 46 to cool thememory boards 32. - In this embodiment, since the
airflow adjustment member 40 is placed windward of the CPU-mountedregions 45 and the memory-mountedregions 46 as described above, the CPU-mountedregions 45 are supplied with the air preferentially over the memory-mountedregions 46. Hence, theCPUs 30 may be sufficiently cooled even when the rotation speed of the coolingfans 34 is low, and therefore power consumed by the coolingfans 34 may be reduced. - Incidentally, as seen from
FIG. 8 , the front end portions of thememory board connectors 33 are obstacles for the air having flowed under theguide portions 42. Thus, in this embodiment, the states of the front end portions of thememory board connectors 33 largely influence the flow rate of the air supplied to the memory-mountedregions 46. On the other hand, since the ventilation resistance by thememory boards 32 is smaller than that by theconnectors 33, the flow rate of air does not change much no matter whether thememory board 32 is fitted to theconnectors 33 or not. -
FIGS. 9A to 9C are diagrams illustrating thememory board connector 33.FIG. 9A illustrates a state where thememory board 32 is fitted to theconnector 33, andFIGS. 9B and 9C each illustrate a state where thememory board 32 is not fitted to theconnector 33. - Both longitudinal ends of the
connector 33 each have acolumn portion 33 b configured to support an end portion of thememory board 32 and alatch lever 33 a configured to open and close by rotating about a fulcrum provided to thecolumn portion 33 b. When thememory board 32 is being fitted to theconnector 33, the latch levers 33 a are closed to fix the memory board to theconnector 33 as illustrated inFIG. 9A in order to prevent thememory board 32 from coming off by vibration or the like, or to prevent a contact failure and the like. - When the
memory board 32 is not fitted to theconnector 33, the latch levers 33 a are generally kept open as illustrated inFIG. 9B . However, in this embodiment, whether the latch levers 33 a are kept open or closed largely changes the flow rate of air flowing into the memory-mountedregions 46, and also changes the flow rate of air flowing into the CPU-mountedregions 45. - In this embodiment, even while the
memory board 32 is not fitted to theconnector 33, the latch levers 33 a are kept closed as illustrated inFIG. 9C . This allows the ventilation resistance by theconnector 33 to be always constant. -
FIGS. 10A and 10B are diagrams illustrating a positional relation between theairflow adjustment member 40 and theconnector 33. As illustrated inFIG. 10A , in this embodiment, theairflow adjustment member 40 may be attached to the predetermined position when the latch levers 33 a are closed. On the other hand, when the latch levers 33 a are open, theairflow adjustment member 40 comes into contact with the latch levers 33 a as illustrated inFIG. 10B , and theairflow adjustment member 40 is therefore not attached to the predetermined position. This allows prevention of forgetting to close the latch levers 33 a. - In order to attain the effect of preventing forgetting to close the latch levers 33 a, it is important that, as illustrated in
FIG. 11 , the position of a lower end of theguide portion 42 be located lower than position A1 of an upper end of theclosed latch lever 33 a when theairflow adjustment member 40 is attached to the predetermined position. - If the position of the lower end of the
guide portion 42 is located lower than position A2 of an upper end of thecolumn portion 33 b of theconnector 33, the space between theguide portion 42 and themotherboard 22 is narrowed to decrease the flow rate of air supplied to the memory-mountedregions 46. For this reason, the position of the lower end of theguide portion 42 is preferably higher than position A2 of the upper end of thecolumn 33 b of theconnector 33 when theairflow adjustment member 40 is attached to the predetermined position. - Further, in this embodiment, the
guide portions 42 function as a latch lever open-close state detector configured to detect whether the latch levers 33 a are open or closed. Alternatively, theairflow adjustment member 40 may be provided with a latch lever open-close state detector, separate from theguide portions 42. - As described above, in this embodiment, the
airflow adjustment member 40 is not placed at the predetermined position when the latch levers 33 a are open. Hence, the ventilation resistance against the air flowing under theguide portions 42 is almost constant, irrespective of whether thememory board 32 is fitted to theconnector 33 or not. As a result, a ratio of air flowing into the CPU-mountedregions 45 to air flowing into the memory-mountedregions 46 is almost constant. - Moreover, in this embodiment, as illustrated in
FIG. 8 , the rear end portion of theairflow adjustment member 40 covers the end portion of thememory board 32 from above. Thereby, after flowing under theguide portions 42, air travels in the longitudinal direction of thememory board 32 without spreading upward. This allows thememory boards 32 to be efficiently cooled as well. - A description is given below of results of examining a change in the temperatures of the CPUs when the memory boards are mounted and when the memory board are not mounted.
- As an embodiment example, a server having a structure illustrated in
FIG. 3 is prepared. The sizes of the portions of theairflow adjustment member 40 are as depicted inFIG. 12 . - A server of a comparative example is also prepared. The server of the comparative example has the same
airflow adjustment member 40 as that of the embodiment example except that it does not have theguide portions 42. - For each of the embodiment example and the comparative example, the temperatures of the CPUs and the temperatures of the memory boards in a case where the memory boards (DIMM) are fitted to all the connectors are measured, and the temperatures of the CPUs in a case where the memory boards are removed from all the connectors are measured.
FIG. 13 depicts positions of the temperature measurements, andFIG. 14 depicts results of the temperature measurements. - In
FIG. 13 , C1 and C2 are the positions where the temperatures of the CPUs are measured, and M1 to M4 are the positions where the temperatures of the memory boards are measured. Further, inFIG. 14 , temperatures under “fully mounted” are temperatures measured when the memory boards (DIMM) are fitted to all the connectors, and temperatures under “without DIMM” are temperatures measured when the memory boards are removed from all the connectors. - As seen from
FIG. 14 , in the embodiment example, the difference in the temperatures of the CPUs between when the memory boards are mounted and when the memory boards are not mounted is as small as 0.4° C. to 0.5° C. In contrast, in the comparative example, the difference in the temperatures of the CPUs between when the memory boards are mounted and when the memory boards are not mounted is as large as 2.1° C. to 2.5° C. - Further, the temperatures of the CPUs of the embodiment example when the memory boards are mounted are lower than those of the comparative example by 3.5° C. to 4.0° C., and the temperatures of the CPUs of the embodiment example when the memory boards are not mounted are lower than those of the comparative example by 5.5° C. to 5.7° C. Note that the temperatures of the memory boards are almost the same in the embodiment example and the comparative example.
- As seen from the above results of the temperature measurements, irrespective of whether the memory boards are mounted or not, the CPUs are cooled more efficiently in the server of the embodiment example than in the server of the comparative example.
-
FIG. 15 is a plan view of a motherboard of a server according to a second embodiment, andFIG. 16 is a perspective view of the motherboard inFIG. 15 , to which memory boards and DDC (DC-DC converter) boards are fitted. This embodiment differs from the first embodiment in that the motherboard is provided with connectors to which the DDC boards are to be fitted, and other configurations of this embodiment are basically the same as those of the first embodiment, and are therefore not described again here. - As illustrated in
FIG. 15 , amotherboard 51 is provided with thememory board connectors 33 to which thememory boards 32 are to be fitted andDDC board connectors 53 to whichDDC boards 52 are to be fitted. Thememory board connectors 53 are located at DDC-mounted regions adjacent to the memory-mounted regions where thememory board connectors 33 are placed. TheDDC board 52 is a board on which one or a plurality of DDCs are mounted. Like thememory board connector 33, theDDC board connector 53 is provided at its both end portions with latch levers for fixing theDDC board 52. - Similar to the first embodiment, the
airflow adjustment member 40 is placed windward of thememory board connectors 33 and theDDC board connectors 53. Theairflow adjustment member 40 is provided with the guide portions 42 (seeFIGS. 5A and 5B ). - Part of air blown by the cooling
fans 34 and flowing toward the memory-mounted regions and the DDC-mounted regions travels along the inclined surfaces of theguide portions 42, merges with air blown by the coolingfans 34 and flowing toward the CPU-mounted regions, and then travels toward the CPU-mounted regions. - Rest of the air blown by the cooling
fans 34 and flowing toward the memory-mounted regions and the DDC-mounted regions flows under theguide portions 42 and enters the memory-mounted regions and the DDC-mounted regions to cool thememory boards 32 and theDDC boards 52. - As described above, the technique disclosed may be used even when module components other than the
memory boards 32 are used as the module components. - All examples and conditional language recited herein are intended for the pedagogical purposes of aiding the reader in understanding the invention and the concepts contributed by the inventor to further the art, and are not to be construed as limitations to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although one or more embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Claims (9)
1. An electronic device comprising:
a board;
a heat producing component mounted on the board;
a connector mounted on the board and including a latch lever configured to allow a module component to be fitted to and removed from the connector;
a chassis housing the board;
an air blower configured to cause air to flow through the chassis; and
an airflow adjustment member placed upstream, in a flow direction of the air, of the heat producing component and the connector, and including a guide portion configured to guide part of air flowing toward a region where the connector is placed to a region where the heat producing component is placed, wherein
the latch lever is located at such a position as to restrict at least part of a flow of the air toward the region where the connector is placed.
2. The electronic device according to claim 1 , wherein
the latch lever opens and closes by rotating about a fulcrum provided to a column portion of the connector located at an end portion of the connector on the airflow adjustment member side, the latch lever being configured to allow the module component to be fitted to and removed from the connector when opened, and
the airflow adjustment member includes a latch lever open-close detector configured to come into contact with the latch lever when the latch lever is open, and thereby prevent the airflow adjustment member from being placed at a predetermined position.
3. The electronic device according to claim 2 , wherein
when the airflow adjustment member is at the predetermined position, the latch lever open-close detector is located at a position higher than the column portion of the connector.
4. The electronic device according to claim 1 , wherein
the heat producing component and the connector are arranged side by side in a direction intersecting the flow direction of the air sent from the air blower.
5. The electronic device according to claim 1 , wherein
a plurality of the connectors are arranged side by side.
6. The electronic device according to claim 1 , wherein
the heat producing component is a CPU, and
the module component is a memory board on which a semiconductor memory device is mounted.
7. The electronic device according to claim 1 , wherein
the heat producing component is a CPU, and
the module component is a DDC (DC-DC converter) board on which a DDC is mounted.
8. An airflow adjustment member placed inside a chassis of an electronic device, the airflow adjustment member comprising:
a support portion having a flat plate shape; and
a guide portion located on one of surfaces of the support portion and configured to guide part of air flowing along the one surface of the support portion in a direction intersecting a flow direction of the air.
9. A method of cooling a heat producing component in an electronic device having a board, a heat producing component mounted on the board, a connector mounted on the board and including a latch lever configured to allow a module component to be fitted to and removed from the connector, a chassis housing the board, an air blower configured to cause air to flow through the chassis, and an airflow adjustment member placed upstream, in a flow direction of the air, of the heat producing component and the connector, and configured to adjust a flow of the air sent from the air blower, the method comprising:
guiding part of air flowing toward a region where the connector is placed to a region where the heat producing component is placed, by the airflow adjustment member; and
restricting at least part of a flow of the air toward the region where the connector is placed, by the latch lever.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012156617A JP5920074B2 (en) | 2012-07-12 | 2012-07-12 | Cooling method of electronic equipment and heat generating parts |
JP2012-156617 | 2012-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140016268A1 true US20140016268A1 (en) | 2014-01-16 |
Family
ID=48326151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/874,527 Abandoned US20140016268A1 (en) | 2012-07-12 | 2013-05-01 | Electronic device and airflow adjustment member |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140016268A1 (en) |
EP (1) | EP2685799A2 (en) |
JP (1) | JP5920074B2 (en) |
KR (1) | KR20140009018A (en) |
CN (1) | CN103547119A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9696769B1 (en) * | 2015-12-31 | 2017-07-04 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Compute chassis having a lid that secures and removes air baffles |
US20170262029A1 (en) * | 2016-03-14 | 2017-09-14 | Intel Corporation | Data storage system with parallel array of dense memory cards and high airflow |
US20200012325A1 (en) * | 2018-07-06 | 2020-01-09 | Fujitsu Limited | Information processing apparatus and information processing method |
US10667423B2 (en) * | 2018-10-26 | 2020-05-26 | Dell Products L.P. | Connector cooling and status indicator system |
US10732681B2 (en) | 2018-07-26 | 2020-08-04 | Microsoft Technology Licensing, Llc | Adaptive airflow guides in an electronic device |
US10970207B2 (en) | 2017-09-29 | 2021-04-06 | Intel Corporation | Storage system with interconnected solid state disks |
US20210400841A1 (en) * | 2018-11-15 | 2021-12-23 | Nec Platforms, Ltd. | Electronic device |
US11317542B2 (en) * | 2017-12-30 | 2022-04-26 | Intel Corporation | Technologies for improving processor thermal design power |
US11385689B2 (en) | 2016-10-26 | 2022-07-12 | Intel Corporation | Integrated electronic card front EMI cage and latch for data storage system |
US20230112501A1 (en) * | 2021-10-07 | 2023-04-13 | Dell Products L.P. | Systems and methods for monitor and alert for pollutants in an environment of an information handling system |
US20230126639A1 (en) * | 2021-10-25 | 2023-04-27 | Dell Products L.P. | Removable memory device of a network switch for an information handling system |
US12022633B2 (en) * | 2020-03-17 | 2024-06-25 | Nvidia Corporation | Blower design for a graphics processing unit |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6304772B2 (en) | 2015-10-26 | 2018-04-04 | Necプラットフォームズ株式会社 | Electronic component, server, cover member, and support member |
CN109328487B (en) * | 2016-11-04 | 2020-06-05 | 株式会社东芝 | Electronic device |
JP2018074102A (en) * | 2016-11-04 | 2018-05-10 | 富士通株式会社 | Electronic apparatus |
JP7002339B2 (en) * | 2018-01-12 | 2022-01-20 | 株式会社三社電機製作所 | Electrical equipment |
CN108646894B (en) * | 2018-06-27 | 2023-09-26 | 郑州云海信息技术有限公司 | Device and method for improving heat dissipation efficiency of server |
WO2020034089A1 (en) * | 2018-08-14 | 2020-02-20 | Intel Corporation | Mechanism to direct coolant flow between circuit components |
US10925183B2 (en) * | 2019-02-21 | 2021-02-16 | Adlink Technology Inc. | 3D extended cooling mechanism for integrated server |
JP7298254B2 (en) * | 2019-04-10 | 2023-06-27 | 富士通株式会社 | Electronic equipment and electronic units |
US10653040B1 (en) * | 2019-05-21 | 2020-05-12 | Quanta Computer Inc. | Apparatus for changing airflow in a server |
TWI742942B (en) * | 2020-11-25 | 2021-10-11 | 微星科技股份有限公司 | Motherboard assembly and heat dissipation module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070091564A1 (en) * | 2005-10-25 | 2007-04-26 | Malone Christopher G | Air duct with airtight seal |
US20080117589A1 (en) * | 2006-11-22 | 2008-05-22 | Dell Products L.P. | Self Adjusting Air Directing Baffle |
US7408773B2 (en) * | 2006-11-27 | 2008-08-05 | Dell Products L.P. | Reinforced air shroud |
US7916479B2 (en) * | 2009-06-05 | 2011-03-29 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Heat dissipating system and connector thereof |
US20130250505A1 (en) * | 2012-03-26 | 2013-09-26 | Albert Vincent Makley | Memory cooling duct |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0742181U (en) | 1993-12-21 | 1995-07-21 | オリンパス光学工業株式会社 | Fan unit |
US7474528B1 (en) * | 2006-04-10 | 2009-01-06 | Sun Microsystems, Inc. | Configurable flow control air baffle |
US20070235168A1 (en) * | 2006-04-10 | 2007-10-11 | Super Micro Computer, Inc. | Air flow diversion device for dissipating heat from electronic components |
CN201563337U (en) * | 2009-11-27 | 2010-08-25 | 英业达股份有限公司 | radiator |
CN102122201B (en) * | 2010-01-08 | 2013-03-20 | 鸿富锦精密工业(深圳)有限公司 | Wind guide device |
CN201845289U (en) * | 2010-07-30 | 2011-05-25 | 英业达科技有限公司 | Radiating structure |
-
2012
- 2012-07-12 JP JP2012156617A patent/JP5920074B2/en active Active
-
2013
- 2013-05-01 US US13/874,527 patent/US20140016268A1/en not_active Abandoned
- 2013-05-07 EP EP13166784.2A patent/EP2685799A2/en not_active Withdrawn
- 2013-05-30 CN CN201310209450.7A patent/CN103547119A/en active Pending
- 2013-05-31 KR KR1020130062848A patent/KR20140009018A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070091564A1 (en) * | 2005-10-25 | 2007-04-26 | Malone Christopher G | Air duct with airtight seal |
US20080117589A1 (en) * | 2006-11-22 | 2008-05-22 | Dell Products L.P. | Self Adjusting Air Directing Baffle |
US7408773B2 (en) * | 2006-11-27 | 2008-08-05 | Dell Products L.P. | Reinforced air shroud |
US7916479B2 (en) * | 2009-06-05 | 2011-03-29 | Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. | Heat dissipating system and connector thereof |
US20130250505A1 (en) * | 2012-03-26 | 2013-09-26 | Albert Vincent Makley | Memory cooling duct |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9696769B1 (en) * | 2015-12-31 | 2017-07-04 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Compute chassis having a lid that secures and removes air baffles |
US20170262029A1 (en) * | 2016-03-14 | 2017-09-14 | Intel Corporation | Data storage system with parallel array of dense memory cards and high airflow |
US20200333859A1 (en) * | 2016-03-14 | 2020-10-22 | Intel Corporation | Data storage system with parallel array of dense memory cards and high airflow |
TWI744278B (en) * | 2016-03-14 | 2021-11-01 | 美商英特爾公司 | Data storage system with parallel array of dense memory cards and high airflow |
US11385689B2 (en) | 2016-10-26 | 2022-07-12 | Intel Corporation | Integrated electronic card front EMI cage and latch for data storage system |
US11573895B2 (en) | 2017-09-29 | 2023-02-07 | Intel Corporation | Storage system with interconnected solid state disks |
US10970207B2 (en) | 2017-09-29 | 2021-04-06 | Intel Corporation | Storage system with interconnected solid state disks |
US11317542B2 (en) * | 2017-12-30 | 2022-04-26 | Intel Corporation | Technologies for improving processor thermal design power |
US20200012325A1 (en) * | 2018-07-06 | 2020-01-09 | Fujitsu Limited | Information processing apparatus and information processing method |
US11550372B2 (en) * | 2018-07-06 | 2023-01-10 | Fujitsu Limited | Information processing apparatus having dust-proof bezel and information processing method using the same |
US10732681B2 (en) | 2018-07-26 | 2020-08-04 | Microsoft Technology Licensing, Llc | Adaptive airflow guides in an electronic device |
US10667423B2 (en) * | 2018-10-26 | 2020-05-26 | Dell Products L.P. | Connector cooling and status indicator system |
US20210400841A1 (en) * | 2018-11-15 | 2021-12-23 | Nec Platforms, Ltd. | Electronic device |
US11937397B2 (en) * | 2018-11-15 | 2024-03-19 | Nec Platforms, Ltd. | Electronic device for ensuring electronic part cooling performance despite temporal cooling airflow interruption |
US12022633B2 (en) * | 2020-03-17 | 2024-06-25 | Nvidia Corporation | Blower design for a graphics processing unit |
US20230112501A1 (en) * | 2021-10-07 | 2023-04-13 | Dell Products L.P. | Systems and methods for monitor and alert for pollutants in an environment of an information handling system |
US11789841B2 (en) * | 2021-10-07 | 2023-10-17 | Dell Products L.P. | Systems and methods for monitor and alert for pollutants in an environment of an information handling system |
US20230126639A1 (en) * | 2021-10-25 | 2023-04-27 | Dell Products L.P. | Removable memory device of a network switch for an information handling system |
US11822810B2 (en) * | 2021-10-25 | 2023-11-21 | Dell Products L.P. | Removable memory device of a network switch for an information handling system |
Also Published As
Publication number | Publication date |
---|---|
EP2685799A2 (en) | 2014-01-15 |
KR20140009018A (en) | 2014-01-22 |
JP2014022398A (en) | 2014-02-03 |
JP5920074B2 (en) | 2016-05-18 |
CN103547119A (en) | 2014-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140016268A1 (en) | Electronic device and airflow adjustment member | |
US7751191B2 (en) | Technique for cooling a device | |
US8395892B2 (en) | Air duct and computer system with the air duct | |
US8059403B2 (en) | Heat dissipation device | |
US9036344B2 (en) | Electronic device | |
US20120268890A1 (en) | Apparatus and method for cooling electrical components of a computer | |
US8638554B2 (en) | Air duct and electronic device having the same | |
US8817470B2 (en) | Electronic device and complex electronic device | |
US8448695B2 (en) | Heat dissipating apparatus | |
KR101827471B1 (en) | Heat dissipation module, display card assembly electronic device | |
CN109727937B (en) | Assemblies including heat dissipating elements and related systems and methods | |
US20090168330A1 (en) | Electronic device with airflow guiding duct | |
US8503172B2 (en) | Supplementary cooling system | |
US9317078B2 (en) | Storage device backplane with penetrating convection and computer framework | |
US8787021B2 (en) | Memory cooler | |
US9058158B2 (en) | Electronic device | |
US8684757B2 (en) | Memory module connector with air deflection system | |
US9915985B1 (en) | Chassis for providing distributed airflow | |
US20080024985A1 (en) | Computer casing with high heat dissipation efficiency | |
US8776833B2 (en) | Air duct for electronic device | |
US9501109B2 (en) | Detachable guiding mechanism and related electronic device | |
US9270050B2 (en) | Protective cover mechanism for protecting a socket of an electronic device and electronic device therewith | |
US20120298329A1 (en) | Heat sink device and air flow adjusting frame for the same | |
US20130155613A1 (en) | Electronic device with air duct | |
US20100193162A1 (en) | Heat dissipation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJITSU LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSUJIMURA, JIRO;SATO, YOICHI;REEL/FRAME:030325/0589 Effective date: 20130409 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |