US20130138531A1 - Social network-based recommendation - Google Patents
Social network-based recommendation Download PDFInfo
- Publication number
- US20130138531A1 US20130138531A1 US13/743,738 US201313743738A US2013138531A1 US 20130138531 A1 US20130138531 A1 US 20130138531A1 US 201313743738 A US201313743738 A US 201313743738A US 2013138531 A1 US2013138531 A1 US 2013138531A1
- Authority
- US
- United States
- Prior art keywords
- product
- feature
- features
- social network
- recommendation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 230000002547 anomalous effect Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000012913 prioritisation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 235000019640 taste Nutrition 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0631—Item recommendations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0282—Rating or review of business operators or products
Definitions
- Embodiments of the invention provide methods and program products for making a recommendation to a purchaser and/or member of a social network.
- Social networks provide a forum for individuals, typically connected by some sort of interdependency, to interact. Such interdependencies may include, for example, friendship, kinship, common interest(s), pursuit(s), or belief(s), financial exchange or relationship, etc.
- Some social networks include recommendation systems designed to compare characteristics of a member of the social network to reference characteristics and then predict a value for a recommendation to be made, i.e., a likelihood that the member would be interested in what is recommended.
- the recommendation may be almost anything in which the member may be interested, such as a product for purchase, an event the member might attend, an individual with whom the member might wish to connect or otherwise interact, etc.
- recommendation systems rely on something selected by the member (e.g., an item purchased) and then recommend to the member other selections made by other members of the social network who have also made the same selection as the member.
- These and other such recommendation systems consider a plurality of features or characteristics of the selected and unselected items together in calculating a value and determining which items will be recommended. Often, items most similar to those already selected by the member are then recommended to the member. As such, anomalous features or characteristic that may have great significance to a member may be overwhelmed by non-anomalous features, resulting in an item that would be of interest to the member not being included among those items recommended to the member.
- a first aspect of the invention provides a method of making a recommendation to a purchaser, the method comprising: determining a plurality of features of a first product selected by a purchaser; prioritizing the plurality of features of the first product; and making at least one recommendation to the purchaser, the at least one recommendation being selected from a group consisting of: a second product sharing at least one feature of the first product and a social network connection determined to have purchased another product sharing at least one feature of the first product.
- a second aspect of the invention provides a method of making a recommendation to a member of a social network, the method comprising: determining a plurality of features of a product selected by a member of a social network; prioritizing the plurality of features, including: calculating at least one correlation value between at least one of the plurality of features and at least one feature of at least one additional product selected by another member of the social network; and ranking the calculated correlation values, wherein a relatively low correlation value is deemed indicative of an anomalous feature having significance and is given a higher priority than a relatively high correlation value; and making at least one recommendation to the member of the social network, the at least one recommendation being selected from a group consisting of: a product sharing at least one feature of the product selected by the member of the social network and a member of the social network that has selected a product sharing at least one feature of the product selected by the member of the social network.
- a third aspect of the invention provides a program product stored on a computer-readable storage medium, which when executed, is operable to make a recommendation to a member of a social network by performing a method comprising: determining a plurality of features of a product selected by a member of a social network; prioritizing the plurality of features; and making at least one recommendation to the member of the social network, the at least one recommendation being selected from a group consisting of: a product sharing at least one feature of the product selected by the member of the social network and a member of the social network that has selected a product sharing at least one feature of the product selected by the member of the social network.
- a fourth aspect of the invention provides a system comprising: at least one computing device configured for making a recommendation to a purchaser by performing a method comprising: determining a plurality of features of a first product selected by a purchaser; prioritizing the plurality of features of the first product; and making at least one recommendation to the purchaser, the at least one recommendation being selected from a group consisting of: a second product sharing at least one feature of the first product and a social network connection determined to have purchased another product sharing at least one feature of the first product.
- FIG. 1 shows a flow diagram of a method according to an embodiment of the invention.
- FIG. 2 shows a detailed flow diagram of a portion of FIG. 1 .
- FIG. 3 shows a dendrogram constructed according to an embodiment of the invention.
- FIG. 4 shows a schematic of a system according to an embodiment of the invention.
- FIG. 1 shows a flow diagram of a method according to an embodiment of the invention.
- a plurality of features of that item are determined.
- the features determined will vary, of course, depending on the type of item selected, but may include, in addition to type-specific features, the brand or price of the item.
- type-specific features using, merely for illustrative purposes, the case where the selected item is a book, the plurality of features may include, for example, the author, the publisher, the retailer, the genre, and/or the format (hardcover, softcover, e-book).
- prioritizing the features of an item may include detecting one or more anomalies in the features of a selected item. For example, in the context of making a valuable recommendation to a purchaser, it may be of greater significance that a feature of a selected item is dissimilar to the features of items previously selected by the purchaser. Thus, in some embodiments of the invention, prioritizing the features of an item may include comparing one or more features of the selected item to one or more features of a product or products previously purchased by the purchaser. Additional details of the prioritization and comparison at S 2 are described below with reference to FIG. 2 .
- the previously-purchased products may be limited to those purchased within a predetermined period. This may be useful, for example, where it is desirable to account for longer-term changes in a purchaser's buying habits. For example, as a purchaser's habits or tastes change, it may be necessary or desirable to restrict from the comparison items purchased in the more distant past, which may necessarily possess features dissimilar from those of more recently purchased items. That is, by restricting the comparison to purchases made within a predetermined period, the likelihood of spuriously detected anomalies is reduced.
- the previously-purchased products may include products purchased by members of the purchaser's social network with whom the purchaser is somehow connected. For example, it may be desirable or useful to compare features of a selected item to the features of items purchased by others known to have similar interests, beliefs, etc. Again, it may be useful to limit such comparisons to those products purchased within a predetermined period, as the habits and tastes of groups of purchasers may change just as those of an individual purchaser may change.
- some embodiments of the invention include the calculation of a correlation score or value.
- a correlation score or value is a Pearson's correlation value, typically expressed as r. Pearson's correlation values range from +1.0 to ⁇ 1.0, representing, respectively, a perfect positive correlation and a perfect negative correlation.
- a feature having a negative correlation may be of greater significance than a feature having a positive correlation.
- weaker positive correlations are more indicative of anomalous features than are stronger positive correlations.
- the correlation value for this feature will likely be negative, indicating an anomaly.
- this may be of great significance, as it may indicate that the purchaser has recently acquired an electronic book reader (e-reader) and therefore may be more likely to respond favorably to items recommended in this format.
- the features of the selected item determined at S 1 may optionally be broadcasted to a social network to which a purchaser belongs.
- the plurality of features may be broadcasted after being prioritized at S 2 .
- a recommendation is made to a purchaser and/or member of a social network.
- the recommendation may include a product that shares at least one feature of the item selected by the purchaser/social network member.
- the recommendation may include another member of the social network with whom the purchaser/social network member is not yet connected, but who has selected or purchased an item sharing at least one feature of the item selected by the purchaser/social network member.
- it may be desirable to recommend to the purchaser/social network member an item (or member of the social network) sharing a highly-ranked feature, such as a feature indicative of an anomalous selection by the purchaser/social network member.
- FIG. 2 shows a flow diagram of the details of S 2 , according to some embodiments of the invention.
- prioritizing the plurality of features may include a number of optional sub-steps.
- a comparison is made to previously-purchased items.
- these may be items previously purchased by the purchaser/social network member, or they may be items previously purchased by other social network members with whom the purchaser/social network member is already affiliated.
- determining whether the previously-purchased item was purchased within a predetermined period may be performed before comparing its feature(s) to feature(s) of the selected item.
- the correlation values calculated at S 2 D may be ranked. As described above, it may be the case that a low positive or a negative correlation value may be of greater significance, in the context of making a recommendation to a purchaser/social network member, than would a high positive correlation value. That is, an anomalously selected item may indicated a change in a purchaser's buying habits or a social network member's interests or affiliations, the consequence of which may be a greater interest in items or people sharing features with that anomalously selected item.
- a dendrogram may be constructed to aid in making a recommendation to a purchaser/social network member at S 3 ( FIG. 1 ).
- Dendrograms are well known in the industry as a method of classifying or grouping items according to shared or similar characteristics. As such, the basics of their construction will not be described here. In the context of embodiments of the invention, however, it should be noted that dendrograms constructed at S 2 F may consider a single feature of a selected item at each level and include within that level only other items sharing that single feature.
- FIG. 3 shows an illustrative dendrogram 100 as may be constructed according to one embodiment of the invention.
- dendrogram 100 is shown in a very simple form. Actual dendrograms constructed according to embodiments of the invention may, in fact, be considerably more complex, as would be apparent to one skilled in the art.
- Dendrogram 100 is shown having three levels: 10 , 20 , 30 , each of which includes an item or items sharing a particular feature of a selected item.
- level 10 includes a single item 12 .
- Item 12 may, therefore, be another book by the same author in an electronic format.
- Level 20 includes two items, 22 and 24 .
- the authorship of the selected item is the second-highest ranked feature at S 2 E. That is, it may be that the author of the selected item represents an anomaly in the purchaser's buying history, although one not as anomalous as the electronic format of the selected item.
- item 22 may represent a hardcover book by the same author and item 24 may represent a softcover book by the same author.
- Level 30 includes four items, 32 , 34 , 36 , and 38 .
- the genre of the selected item is the third-highest ranked feature at S 2 E. That is, it may be that the genre of the selected item is a feature less anomalous than the electronic format and the author.
- items 32 and 34 may represent a hardcover books by different authors within the same genre as the selected item and items 36 and 38 may represent softcover books by different authors within the same genre as the selected item.
- FIG. 4 shows an illustrative environment 416 for making a recommendation to a purchaser/social network member.
- environment 416 includes a computer system 420 that can perform a process described herein in order to make a recommendation to a purchaser/social network member.
- computer system 420 is shown including a recommendation program 430 , which makes computer system 420 operable to make a recommendation to a purchaser/social network member by performing a process described herein.
- Computer system 420 is shown including a processing component 422 (e.g., one or more processors), a storage component 424 (e.g., a storage hierarchy), an input/output (I/O) component 426 (e.g., one or more I/O interfaces and/or devices), and a communications pathway 428 .
- processing component 422 executes program code, such as recommendation program 430 , which is at least partially fixed in storage component 424 . While executing program code, processing component 422 can process data, which can result in reading and/or writing transformed data from/to storage component 424 and/or I/O component 426 for further processing.
- Pathway 428 provides a communications link between each of the components in computer system 420 .
- I/O component 426 can comprise one or more human I/O devices, which enable a human user, such as user 418 , to interact with computer system 420 and/or one or more communications devices to enable a system user (e.g., another computer system used to interact with user 418 ) to communicate with computer system 420 using any type of communications link.
- recommendation program 430 can manage a set of interfaces (e.g., graphical user interface(s), application program interface, and/or the like) that enable human and/or system users to interact with recommendation program 430 . Further, recommendation program 430 can manage (e.g., store, retrieve, create, manipulate, organize, present, etc.) the data, such as item feature(s) data 440 , purchasing history data 442 , and social network data 444 using any solution.
- computer system 420 can comprise one or more general purpose computing articles of manufacture (e.g., computing devices) capable of executing program code, such as recommendation program 430 , installed thereon.
- program code means any collection of instructions, in any language, code or notation, that cause a computing device having an information processing capability to perform a particular action either directly or after any combination of the following: (a) conversion to another language, code or notation; (b) reproduction in a different material form; and/or (c) decompression.
- recommendation program 430 can be embodied as any combination of system software and/or application software.
- recommendation program 430 can be implemented using a set of modules 432 .
- a module 432 can enable computer system 420 to perform a set of tasks used by recommendation program 430 , and can be separately developed and/or implemented apart from other portions of recommendation program 430 .
- the term “component” means any configuration of hardware, with or without software, which implements the functionality described in conjunction therewith using any solution, while the term “module” means program code that enables a computer system 420 to implement the actions described in conjunction therewith using any solution.
- a module is a substantial portion of a component that implements the actions.
- each computing device can have only a portion of recommendation program 430 fixed thereon (e.g., one or more modules 432 ).
- computer system 420 and recommendation program 430 are only representative of various possible equivalent computer systems that may perform a process described herein.
- the functionality provided by computer system 420 and recommendation program 430 can be at least partially implemented by one or more computing devices that include any combination of general and/or specific purpose hardware with or without program code.
- the hardware and program code, if included, can be created using standard engineering and programming techniques, respectively.
- computer system 420 when computer system 420 includes multiple computing devices, the computing devices can communicate over any type of communications link. Further, while performing a process described herein, computer system 420 can communicate with one or more other computer systems using any type of communications link. In either case, the communications link can comprise any combination of various types of wired and/or wireless links; comprise any combination of one or more types of networks; and/or utilize any combination of various types of transmission techniques and protocols.
- recommendation program 430 enables computer system 420 to make a recommendation to a purchaser/social network member.
- computer system 420 can acquire and/or utilize information before, during, and after making a recommendation to a purchaser/social network member.
- computer system 420 can acquire and/or utilize item feature(s) data 440 corresponding to a selected item.
- the item feature(s) data 440 can comprise various information regarding a selected item.
- Computer system 420 also can acquire and/or utilize purchasing history data 442 , which can include various information regarding previously-purchased items. Similarly, computer system 420 also can acquire and/or utilize social network data 444 , which can include information regarding individuals or groups within a social network, including those with whom a purchaser may be affiliated.
- program code and “computer program code” are synonymous and mean any expression, in any language, code or notation, of a set of instructions intended to cause a computer system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and (b) reproduction in a different material form.
- program code can be embodied as one or more types of program products, such as an application/software program, component software/a library of functions, an operating system, a basic I/O system/driver for a particular computing and/or I/O device, and the like.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- General Business, Economics & Management (AREA)
- Economics (AREA)
- Marketing (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Development Economics (AREA)
- General Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- Primary Health Care (AREA)
- Human Resources & Organizations (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
- This application is a continuation of co-pending U.S. patent application Ser. No. 13/295,534 filed on Nov. 14, 2011, which is hereby incorporated herein in its entirety for all that it contains.
- Embodiments of the invention provide methods and program products for making a recommendation to a purchaser and/or member of a social network.
- Social networks provide a forum for individuals, typically connected by some sort of interdependency, to interact. Such interdependencies may include, for example, friendship, kinship, common interest(s), pursuit(s), or belief(s), financial exchange or relationship, etc. Some social networks include recommendation systems designed to compare characteristics of a member of the social network to reference characteristics and then predict a value for a recommendation to be made, i.e., a likelihood that the member would be interested in what is recommended. The recommendation may be almost anything in which the member may be interested, such as a product for purchase, an event the member might attend, an individual with whom the member might wish to connect or otherwise interact, etc.
- Many such recommendation systems rely on something selected by the member (e.g., an item purchased) and then recommend to the member other selections made by other members of the social network who have also made the same selection as the member. These and other such recommendation systems consider a plurality of features or characteristics of the selected and unselected items together in calculating a value and determining which items will be recommended. Often, items most similar to those already selected by the member are then recommended to the member. As such, anomalous features or characteristic that may have great significance to a member may be overwhelmed by non-anomalous features, resulting in an item that would be of interest to the member not being included among those items recommended to the member.
- A first aspect of the invention provides a method of making a recommendation to a purchaser, the method comprising: determining a plurality of features of a first product selected by a purchaser; prioritizing the plurality of features of the first product; and making at least one recommendation to the purchaser, the at least one recommendation being selected from a group consisting of: a second product sharing at least one feature of the first product and a social network connection determined to have purchased another product sharing at least one feature of the first product.
- A second aspect of the invention provides a method of making a recommendation to a member of a social network, the method comprising: determining a plurality of features of a product selected by a member of a social network; prioritizing the plurality of features, including: calculating at least one correlation value between at least one of the plurality of features and at least one feature of at least one additional product selected by another member of the social network; and ranking the calculated correlation values, wherein a relatively low correlation value is deemed indicative of an anomalous feature having significance and is given a higher priority than a relatively high correlation value; and making at least one recommendation to the member of the social network, the at least one recommendation being selected from a group consisting of: a product sharing at least one feature of the product selected by the member of the social network and a member of the social network that has selected a product sharing at least one feature of the product selected by the member of the social network.
- A third aspect of the invention provides a program product stored on a computer-readable storage medium, which when executed, is operable to make a recommendation to a member of a social network by performing a method comprising: determining a plurality of features of a product selected by a member of a social network; prioritizing the plurality of features; and making at least one recommendation to the member of the social network, the at least one recommendation being selected from a group consisting of: a product sharing at least one feature of the product selected by the member of the social network and a member of the social network that has selected a product sharing at least one feature of the product selected by the member of the social network.
- A fourth aspect of the invention provides a system comprising: at least one computing device configured for making a recommendation to a purchaser by performing a method comprising: determining a plurality of features of a first product selected by a purchaser; prioritizing the plurality of features of the first product; and making at least one recommendation to the purchaser, the at least one recommendation being selected from a group consisting of: a second product sharing at least one feature of the first product and a social network connection determined to have purchased another product sharing at least one feature of the first product.
- The illustrative aspects of the present invention are designed to solve the problems herein described and other problems not discussed, which are discoverable by a skilled artisan.
- These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:
-
FIG. 1 shows a flow diagram of a method according to an embodiment of the invention. -
FIG. 2 shows a detailed flow diagram of a portion ofFIG. 1 . -
FIG. 3 shows a dendrogram constructed according to an embodiment of the invention. -
FIG. 4 shows a schematic of a system according to an embodiment of the invention. - It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements among the drawings.
- Turning now to the drawings,
FIG. 1 shows a flow diagram of a method according to an embodiment of the invention. At 51, once a purchaser and/or a member of a social network has selected an item, a plurality of features of that item are determined. The features determined will vary, of course, depending on the type of item selected, but may include, in addition to type-specific features, the brand or price of the item. With respect to type-specific features, using, merely for illustrative purposes, the case where the selected item is a book, the plurality of features may include, for example, the author, the publisher, the retailer, the genre, and/or the format (hardcover, softcover, e-book). - At S2, the plurality of features determined at 51 are prioritized. In some embodiments of the invention, prioritizing the features of an item may include detecting one or more anomalies in the features of a selected item. For example, in the context of making a valuable recommendation to a purchaser, it may be of greater significance that a feature of a selected item is dissimilar to the features of items previously selected by the purchaser. Thus, in some embodiments of the invention, prioritizing the features of an item may include comparing one or more features of the selected item to one or more features of a product or products previously purchased by the purchaser. Additional details of the prioritization and comparison at S2 are described below with reference to
FIG. 2 . - In some embodiments of the invention, the previously-purchased products may be limited to those purchased within a predetermined period. This may be useful, for example, where it is desirable to account for longer-term changes in a purchaser's buying habits. For example, as a purchaser's habits or tastes change, it may be necessary or desirable to restrict from the comparison items purchased in the more distant past, which may necessarily possess features dissimilar from those of more recently purchased items. That is, by restricting the comparison to purchases made within a predetermined period, the likelihood of spuriously detected anomalies is reduced.
- In other embodiments of the invention, the previously-purchased products may include products purchased by members of the purchaser's social network with whom the purchaser is somehow connected. For example, it may be desirable or useful to compare features of a selected item to the features of items purchased by others known to have similar interests, beliefs, etc. Again, it may be useful to limit such comparisons to those products purchased within a predetermined period, as the habits and tastes of groups of purchasers may change just as those of an individual purchaser may change.
- In making a comparison between one or more feature of a selected item and features of a previously-purchased item or items, some embodiments of the invention include the calculation of a correlation score or value. One skilled in the art will recognize that there are any number of correlation scores or values that may be calculated. One such correlation value is a Pearson's correlation value, typically expressed as r. Pearson's correlation values range from +1.0 to −1.0, representing, respectively, a perfect positive correlation and a perfect negative correlation. In the context of feature prioritization, and more particularly anomaly detection, a feature having a negative correlation may be of greater significance than a feature having a positive correlation. Similarly, weaker positive correlations are more indicative of anomalous features than are stronger positive correlations.
- For example, continuing with the example above of a purchaser selecting a book, in comparing previous purchases of the same purchaser, if it is found that the format of the selected book is an electronic book (e-book) and previously-purchased books were in hardcover or softcover formats, the correlation value for this feature will likely be negative, indicating an anomaly. In terms of feature prioritization, this may be of great significance, as it may indicate that the purchaser has recently acquired an electronic book reader (e-reader) and therefore may be more likely to respond favorably to items recommended in this format.
- At S3, the features of the selected item determined at S1 may optionally be broadcasted to a social network to which a purchaser belongs. In some embodiments of the invention, the plurality of features may be broadcasted after being prioritized at S2.
- At S4, a recommendation is made to a purchaser and/or member of a social network. In some embodiments of the invention, the recommendation may include a product that shares at least one feature of the item selected by the purchaser/social network member. In other embodiments of the invention, the recommendation may include another member of the social network with whom the purchaser/social network member is not yet connected, but who has selected or purchased an item sharing at least one feature of the item selected by the purchaser/social network member. As described above, it may be desirable to recommend to the purchaser/social network member an item (or member of the social network) sharing a highly-ranked feature, such as a feature indicative of an anomalous selection by the purchaser/social network member.
-
FIG. 2 shows a flow diagram of the details of S2, according to some embodiments of the invention. As can be seen inFIG. 2 , prioritizing the plurality of features may include a number of optional sub-steps. For example, at S2A, a comparison is made to previously-purchased items. As noted above, these may be items previously purchased by the purchaser/social network member, or they may be items previously purchased by other social network members with whom the purchaser/social network member is already affiliated. - At S2B, it may be determined whether the previously-purchased item was purchased within a predetermined period. If so (i.e., Yes at S2B), the previously-purchased item may be included in a correlation value calculated at S2D. If not (i.e., No at S2B), the previously-purchased item may be excluded from the correlation values (S2C), with flow iteratively looped to S2A for comparison to other previously-purchased items, if desired. In other embodiments of the invention, determining whether the previously-purchased item was purchased within a predetermined period may be performed before comparing its feature(s) to feature(s) of the selected item.
- At S2E, the correlation values calculated at S2D may be ranked. As described above, it may be the case that a low positive or a negative correlation value may be of greater significance, in the context of making a recommendation to a purchaser/social network member, than would a high positive correlation value. That is, an anomalously selected item may indicated a change in a purchaser's buying habits or a social network member's interests or affiliations, the consequence of which may be a greater interest in items or people sharing features with that anomalously selected item.
- At S2F, a dendrogram may be constructed to aid in making a recommendation to a purchaser/social network member at S3 (
FIG. 1 ). Dendrograms are well known in the industry as a method of classifying or grouping items according to shared or similar characteristics. As such, the basics of their construction will not be described here. In the context of embodiments of the invention, however, it should be noted that dendrograms constructed at S2F may consider a single feature of a selected item at each level and include within that level only other items sharing that single feature. - For example,
FIG. 3 shows anillustrative dendrogram 100 as may be constructed according to one embodiment of the invention. For the sake of brevity and ease of explanation,dendrogram 100 is shown in a very simple form. Actual dendrograms constructed according to embodiments of the invention may, in fact, be considerably more complex, as would be apparent to one skilled in the art. -
Dendrogram 100 is shown having three levels: 10, 20, 30, each of which includes an item or items sharing a particular feature of a selected item. For example,level 10 includes asingle item 12. Continuing with the example above of a purchaser selecting an e-book, it may be that the electronic format of the selected item is highly anomalous in the purchaser's buying history and is, therefore, the feature given the highest ranking at S2E (FIG. 2 ).Item 12 may, therefore, be another book by the same author in an electronic format. -
Level 20 includes two items, 22 and 24. Again, continuing with the example above, it may have been determined that the authorship of the selected item is the second-highest ranked feature at S2E. That is, it may be that the author of the selected item represents an anomaly in the purchaser's buying history, although one not as anomalous as the electronic format of the selected item. As such,item 22 may represent a hardcover book by the same author anditem 24 may represent a softcover book by the same author. -
Level 30 includes four items, 32, 34, 36, and 38. Here, continuing with the example above, it may have been determined that the genre of the selected item is the third-highest ranked feature at S2E. That is, it may be that the genre of the selected item is a feature less anomalous than the electronic format and the author. As such,items items -
FIG. 4 shows anillustrative environment 416 for making a recommendation to a purchaser/social network member. To this extent,environment 416 includes acomputer system 420 that can perform a process described herein in order to make a recommendation to a purchaser/social network member. In particular,computer system 420 is shown including arecommendation program 430, which makescomputer system 420 operable to make a recommendation to a purchaser/social network member by performing a process described herein. -
Computer system 420 is shown including a processing component 422 (e.g., one or more processors), a storage component 424 (e.g., a storage hierarchy), an input/output (I/O) component 426 (e.g., one or more I/O interfaces and/or devices), and acommunications pathway 428. In general,processing component 422 executes program code, such asrecommendation program 430, which is at least partially fixed instorage component 424. While executing program code,processing component 422 can process data, which can result in reading and/or writing transformed data from/tostorage component 424 and/or I/O component 426 for further processing.Pathway 428 provides a communications link between each of the components incomputer system 420. I/O component 426 can comprise one or more human I/O devices, which enable a human user, such as user 418, to interact withcomputer system 420 and/or one or more communications devices to enable a system user (e.g., another computer system used to interact with user 418) to communicate withcomputer system 420 using any type of communications link. To this extent,recommendation program 430 can manage a set of interfaces (e.g., graphical user interface(s), application program interface, and/or the like) that enable human and/or system users to interact withrecommendation program 430. Further,recommendation program 430 can manage (e.g., store, retrieve, create, manipulate, organize, present, etc.) the data, such as item feature(s)data 440, purchasinghistory data 442, andsocial network data 444 using any solution. - In any event,
computer system 420 can comprise one or more general purpose computing articles of manufacture (e.g., computing devices) capable of executing program code, such asrecommendation program 430, installed thereon. As used herein, it is understood that “program code” means any collection of instructions, in any language, code or notation, that cause a computing device having an information processing capability to perform a particular action either directly or after any combination of the following: (a) conversion to another language, code or notation; (b) reproduction in a different material form; and/or (c) decompression. To this extent,recommendation program 430 can be embodied as any combination of system software and/or application software. - Further,
recommendation program 430 can be implemented using a set ofmodules 432. In this case, amodule 432 can enablecomputer system 420 to perform a set of tasks used byrecommendation program 430, and can be separately developed and/or implemented apart from other portions ofrecommendation program 430. As used herein, the term “component” means any configuration of hardware, with or without software, which implements the functionality described in conjunction therewith using any solution, while the term “module” means program code that enables acomputer system 420 to implement the actions described in conjunction therewith using any solution. When fixed in astorage component 424 of acomputer system 420 that includes aprocessing component 422, a module is a substantial portion of a component that implements the actions. Regardless, it is understood that two or more components, modules, and/or systems may share some/all of their respective hardware and/or software. Further, it is understood that some of the functionality discussed herein may not be implemented or additional functionality may be included as part ofcomputer system 420. - When
computer system 420 comprises multiple computing devices, each computing device can have only a portion ofrecommendation program 430 fixed thereon (e.g., one or more modules 432). However, it is understood thatcomputer system 420 andrecommendation program 430 are only representative of various possible equivalent computer systems that may perform a process described herein. To this extent, in other embodiments, the functionality provided bycomputer system 420 andrecommendation program 430 can be at least partially implemented by one or more computing devices that include any combination of general and/or specific purpose hardware with or without program code. In each embodiment, the hardware and program code, if included, can be created using standard engineering and programming techniques, respectively. - Regardless, when
computer system 420 includes multiple computing devices, the computing devices can communicate over any type of communications link. Further, while performing a process described herein,computer system 420 can communicate with one or more other computer systems using any type of communications link. In either case, the communications link can comprise any combination of various types of wired and/or wireless links; comprise any combination of one or more types of networks; and/or utilize any combination of various types of transmission techniques and protocols. - As discussed herein,
recommendation program 430 enablescomputer system 420 to make a recommendation to a purchaser/social network member. To this extent,computer system 420 can acquire and/or utilize information before, during, and after making a recommendation to a purchaser/social network member. - For example,
computer system 420 can acquire and/or utilize item feature(s)data 440 corresponding to a selected item. The item feature(s)data 440 can comprise various information regarding a selected item. -
Computer system 420 also can acquire and/or utilize purchasinghistory data 442, which can include various information regarding previously-purchased items. Similarly,computer system 420 also can acquire and/or utilizesocial network data 444, which can include information regarding individuals or groups within a social network, including those with whom a purchaser may be affiliated. - As used herein, it is understood that the terms “program code” and “computer program code” are synonymous and mean any expression, in any language, code or notation, of a set of instructions intended to cause a computer system having an information processing capability to perform a particular function either directly or after either or both of the following: (a) conversion to another language, code or notation; and (b) reproduction in a different material form. To this extent, program code can be embodied as one or more types of program products, such as an application/software program, component software/a library of functions, an operating system, a basic I/O system/driver for a particular computing and/or I/O device, and the like.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/743,738 US20130138531A1 (en) | 2011-11-14 | 2013-01-17 | Social network-based recommendation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/295,534 US8386329B1 (en) | 2011-11-14 | 2011-11-14 | Social network-based recommendation |
US13/743,738 US20130138531A1 (en) | 2011-11-14 | 2013-01-17 | Social network-based recommendation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/295,434 Continuation US8519087B2 (en) | 2011-05-27 | 2011-11-14 | Benzobis(thiadiazole)-based alternating copolymer and preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130138531A1 true US20130138531A1 (en) | 2013-05-30 |
Family
ID=47721303
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/295,534 Active US8386329B1 (en) | 2011-11-14 | 2011-11-14 | Social network-based recommendation |
US13/743,738 Abandoned US20130138531A1 (en) | 2011-11-14 | 2013-01-17 | Social network-based recommendation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/295,534 Active US8386329B1 (en) | 2011-11-14 | 2011-11-14 | Social network-based recommendation |
Country Status (3)
Country | Link |
---|---|
US (2) | US8386329B1 (en) |
CN (1) | CN103106599A (en) |
DE (1) | DE102012220698A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140006128A1 (en) * | 2012-06-28 | 2014-01-02 | Bank Of America Corporation | Systems and methods for presenting offers during a shopping experience |
US9292873B1 (en) * | 2006-09-29 | 2016-03-22 | Amazon Technologies, Inc. | Expedited acquisition of a digital item following a sample presentation of the item |
US9479591B1 (en) | 2007-05-21 | 2016-10-25 | Amazon Technologies, Inc. | Providing user-supplied items to a user device |
US9665529B1 (en) | 2007-03-29 | 2017-05-30 | Amazon Technologies, Inc. | Relative progress and event indicators |
US9672533B1 (en) | 2006-09-29 | 2017-06-06 | Amazon Technologies, Inc. | Acquisition of an item based on a catalog presentation of items |
US10853560B2 (en) | 2005-01-19 | 2020-12-01 | Amazon Technologies, Inc. | Providing annotations of a digital work |
US20230073633A1 (en) * | 2012-08-07 | 2023-03-09 | Paypal, Inc. | Social sharing system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8386329B1 (en) * | 2011-11-14 | 2013-02-26 | International Business Machines Corporation | Social network-based recommendation |
US9299099B1 (en) * | 2012-04-04 | 2016-03-29 | Google Inc. | Providing recommendations in a social shopping trip |
US20130297455A1 (en) * | 2012-05-02 | 2013-11-07 | Sears Brands, Llc | Social product promotion |
US10037582B2 (en) | 2013-08-08 | 2018-07-31 | Walmart Apollo, Llc | Personal merchandise cataloguing system with item tracking and social network functionality |
US9471939B1 (en) | 2015-05-29 | 2016-10-18 | International Business Machines Corporation | Product recommendations based on analysis of social experiences |
US9495694B1 (en) | 2016-02-29 | 2016-11-15 | International Business Machines Corporation | Product recommendations based on analysis of social experiences |
CN106411908B (en) * | 2016-10-13 | 2019-12-03 | 网易乐得科技有限公司 | A kind of recommended method and device |
US20180285956A1 (en) * | 2017-04-03 | 2018-10-04 | International Business Machines Corporation | Fabric comparison |
CN109710836A (en) * | 2018-11-29 | 2019-05-03 | 国政通科技有限公司 | A kind of big data intelligent recommendation system and method based on star fan trade council |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7082407B1 (en) * | 1999-04-09 | 2006-07-25 | Amazon.Com, Inc. | Purchase notification service for assisting users in selecting items from an electronic catalog |
US20090006216A1 (en) * | 2007-06-27 | 2009-01-01 | Michael Blumenthal | Method, Device, and System for Analyzing and Ranking Web-Accessable Data Targets |
US7555381B2 (en) * | 2006-08-07 | 2009-06-30 | Xanavi Informatics Corporation | Traffic information providing device, traffic information providing system, traffic information transmission method, and traffic information request method |
CN102411596A (en) * | 2010-09-21 | 2012-04-11 | 阿里巴巴集团控股有限公司 | Information recommendation method and system |
US8386329B1 (en) * | 2011-11-14 | 2013-02-26 | International Business Machines Corporation | Social network-based recommendation |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7680770B1 (en) | 2004-01-21 | 2010-03-16 | Google Inc. | Automatic generation and recommendation of communities in a social network |
GB2453753A (en) * | 2007-10-17 | 2009-04-22 | Motorola Inc | Method and system for generating recommendations of content items |
JP4596044B2 (en) * | 2008-06-03 | 2010-12-08 | ソニー株式会社 | Information processing system and information processing method |
CA2738421A1 (en) * | 2008-09-29 | 2010-04-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Double weighted correlation scheme |
WO2010048172A1 (en) | 2008-10-20 | 2010-04-29 | Cascaad Srl | Social graph based recommender |
US20190026812A9 (en) * | 2009-04-20 | 2019-01-24 | 4-Tell, Inc | Further Improvements in Recommendation Systems |
CN101908184A (en) * | 2009-06-04 | 2010-12-08 | 维鹏信息技术(上海)有限公司 | Control method and system for distributing information through multiple associated terminals |
CN102054256A (en) * | 2011-01-05 | 2011-05-11 | 北京凯铭风尚网络技术有限公司 | Method and device for displaying commodities based on network information |
-
2011
- 2011-11-14 US US13/295,534 patent/US8386329B1/en active Active
-
2012
- 2012-11-13 CN CN2012104528258A patent/CN103106599A/en active Pending
- 2012-11-13 DE DE102012220698A patent/DE102012220698A1/en not_active Ceased
-
2013
- 2013-01-17 US US13/743,738 patent/US20130138531A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7082407B1 (en) * | 1999-04-09 | 2006-07-25 | Amazon.Com, Inc. | Purchase notification service for assisting users in selecting items from an electronic catalog |
US7555381B2 (en) * | 2006-08-07 | 2009-06-30 | Xanavi Informatics Corporation | Traffic information providing device, traffic information providing system, traffic information transmission method, and traffic information request method |
US20090006216A1 (en) * | 2007-06-27 | 2009-01-01 | Michael Blumenthal | Method, Device, and System for Analyzing and Ranking Web-Accessable Data Targets |
US8073741B2 (en) * | 2007-06-27 | 2011-12-06 | Jemstep, Inc. | Method, device, and system for analyzing and ranking web-accessible data targets |
CN102411596A (en) * | 2010-09-21 | 2012-04-11 | 阿里巴巴集团控股有限公司 | Information recommendation method and system |
US8386329B1 (en) * | 2011-11-14 | 2013-02-26 | International Business Machines Corporation | Social network-based recommendation |
Non-Patent Citations (1)
Title |
---|
Chen, J., "Personalized Recommendation in Social Network Sites", dissertation at the University of Minnesota, September 2011 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10853560B2 (en) | 2005-01-19 | 2020-12-01 | Amazon Technologies, Inc. | Providing annotations of a digital work |
US9292873B1 (en) * | 2006-09-29 | 2016-03-22 | Amazon Technologies, Inc. | Expedited acquisition of a digital item following a sample presentation of the item |
US9672533B1 (en) | 2006-09-29 | 2017-06-06 | Amazon Technologies, Inc. | Acquisition of an item based on a catalog presentation of items |
US9665529B1 (en) | 2007-03-29 | 2017-05-30 | Amazon Technologies, Inc. | Relative progress and event indicators |
US9479591B1 (en) | 2007-05-21 | 2016-10-25 | Amazon Technologies, Inc. | Providing user-supplied items to a user device |
US9568984B1 (en) | 2007-05-21 | 2017-02-14 | Amazon Technologies, Inc. | Administrative tasks in a media consumption system |
US9888005B1 (en) | 2007-05-21 | 2018-02-06 | Amazon Technologies, Inc. | Delivery of items for consumption by a user device |
US20140006128A1 (en) * | 2012-06-28 | 2014-01-02 | Bank Of America Corporation | Systems and methods for presenting offers during a shopping experience |
US20230073633A1 (en) * | 2012-08-07 | 2023-03-09 | Paypal, Inc. | Social sharing system |
US11706268B2 (en) * | 2012-08-07 | 2023-07-18 | Paypal, Inc. | Social sharing system |
US20230362216A1 (en) * | 2012-08-07 | 2023-11-09 | Paypal, Inc. | Social sharing system |
US12132771B2 (en) * | 2012-08-07 | 2024-10-29 | Paypal, Inc. | Social sharing system |
Also Published As
Publication number | Publication date |
---|---|
CN103106599A (en) | 2013-05-15 |
US8386329B1 (en) | 2013-02-26 |
DE102012220698A1 (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8386329B1 (en) | Social network-based recommendation | |
CN109559208B (en) | Information recommendation method, server and computer readable medium | |
US20240062271A1 (en) | Recommendations Based Upon Explicit User Similarity | |
CN109241415B (en) | Project recommendation method and device, computer equipment and storage medium | |
US11429889B2 (en) | Evaluating unsupervised learning models | |
Guo et al. | Learning to recommend with social contextual information from implicit feedback | |
US9767204B1 (en) | Category predictions identifying a search frequency | |
US20170228810A1 (en) | Item recomendation | |
CN104346428A (en) | Information processing apparatus, information processing method, and program | |
US20160027049A1 (en) | Systems and methods for facilitating deals | |
KR20160118644A (en) | System and Method for recommending item, and device thereof | |
CN112801803B (en) | Financial product recommendation method and device | |
Alrawhani et al. | Real estate recommender system using case-based reasoning approach | |
Usha et al. | Data Mining Techniques used in the Recommendation of E-commerce services | |
Kovach et al. | Solving multiresponse optimization problems using quality function–based robust design | |
Anderson-Cook | Optimizing in a complex world: A statistician's role in decision making | |
Amin et al. | A maximum discrimination DEA method for ranking association rules in data mining | |
Kanaujia et al. | Recommendation system for financial analytics | |
Ebina et al. | Consumer confusion from price competition and excessive product attributes under the curse of dimensionality | |
US10440143B2 (en) | Contextual trust based recommendation graph | |
KR102398338B1 (en) | User Experience Based Medium-Small Enterprise Portal Service System | |
US10115148B1 (en) | Selection of tools | |
Smirnov et al. | Multicriteria context-driven recommender systems: Model and method | |
US20240338742A1 (en) | Machine learning platform for recommending prospective buyers and the automated pairing of prospective buyers and sellers | |
Roy et al. | A Comprehensive Analysis of Recommendation System for E-Commerce Mobile App using various Algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAUGHMAN, AARON K.;GRAHAM, BARRY M.;HAMILTON, RICK A., II;AND OTHERS;SIGNING DATES FROM 20121229 TO 20130116;REEL/FRAME:029770/0316 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
AS | Assignment |
Owner name: MAPLEBEAR INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:055155/0943 Effective date: 20210126 |