US20130067802A1 - Bio-energy conversion process - Google Patents
Bio-energy conversion process Download PDFInfo
- Publication number
- US20130067802A1 US20130067802A1 US13/234,003 US201113234003A US2013067802A1 US 20130067802 A1 US20130067802 A1 US 20130067802A1 US 201113234003 A US201113234003 A US 201113234003A US 2013067802 A1 US2013067802 A1 US 2013067802A1
- Authority
- US
- United States
- Prior art keywords
- pyrolysis
- pyrolysis reaction
- reaction chambers
- gases
- thermal oxidizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/04—Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10B—DESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
- C10B53/00—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
- C10B53/02—Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/006—General arrangement of incineration plant, e.g. flow sheets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
- F23G5/46—Recuperation of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
- F23G2201/30—Pyrolysing
- F23G2201/303—Burning pyrogases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2900/00—Special features of, or arrangements for incinerators
- F23G2900/50001—Combination of two or more furnaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/145—Feedstock the feedstock being materials of biological origin
Definitions
- the present invention relates to processes and systems that use renewable biomass or carbon based waste material for the generation of power in the form of electricity or heat, for producing liquid, gaseous, and solid value-added byproducts, and reducing environmental pollution.
- the Applicant is well aware that quite extensive research, development, and experimentation has been recently developed to convert biomass or waste material into biogases and biofuels.
- Most of the prior art teaches of gasification using a fluidized bed chamber or a plasma arc chamber.
- the applicant is using two types of chambers for separately controllable thermal chemical reactions to occur to form carbon byproducts, biofuels and useable energy in the form of heat and/or electricity.
- One type of chamber is a pyrolysis chamber and the other type is a thermal oxidation chamber.
- the combination of multiple modular chambers and a single or multiple thermal oxidation chamber establishes the invention as different from prior art.
- the invention is a bioenergy and/or waste-to-energy process.
- the invention is a process using controlled pyrolysis reactions to convert biomass and carbon based waste material into carbon byproducts, biofuels and useable energy in the form of heat and/or electricity.
- the invention proposes a process which is unique in four ways.
- the process may convert any carboneous material, such as biocrops, animal waste, used tires, into bioproducts and biofuels.
- the carbonization process is accomplished with no oxygen ( 02 ) or combustion in the carbonization chambers.
- the mobility of the process material containers allows easy loading, transport, and unloading of the process material; and greatly reduces material handling requirements.
- the process includes one or more pyrolysis reaction chambers and a thermal oxidizer.
- Hot, oxygen-free exhaust gases from the thermal oxidizer are modulated through the pyrolysis reaction chambers to sustain the pyrolysis reaction.
- oxygen-free signifies the absence of or negligible amounts of oxygen (O2).
- the exhaust gases along with the pyrolysis gases are drawn from the pyrolysis reaction chambers and routed to the thermal oxidizer.
- Combustion air is modulated into the thermal oxidizer through one or more ports to control combustion of the pyrolysis gases. After combustion, exhaust gases are recirculated to the pyrolysis reaction chambers to sustain the cycle.
- FIG. 1 a process flow diagram details the gasification process of this invention with the “Heat Injection” option.
- FIG. 2 a process flow diagram details the gasification process of this invention with the “Heat Transfer” option.
- a process and system for generating biopower and/or waste-to-energy power, producing solid, liquid, and gaseous carbon based byproducts using biomass or environmental wastes is described in detail herein with reference to FIG. 1 and FIG. 2 .
- the process has a potential impact on the agricultural, forestry, energy consumption, and the environment in the United States and the world.
- the system can be set up for one of two options for heat delivery. These options will be referred to as “Heat Injection” and “Heat Transfer”. With the “Heat Injection” option, heat is directly injected into the pyrolysis reaction chambers. The heat supply gases and the water vapor and pyrolysis gases are drawn out together. With the “Heat Transfer” option, heat is transferred through exchangers within the pyrolysis reaction chambers. The heat supply gases remain separated from the water vapor and pyrolysis gases.
- FIG. 1 a process flow diagram details the gasification process of this invention with the “Heat Injection” option.
- the biomass or carbon waste material is loaded one or more pyrolysis reaction chambers 106 .
- a pyrolysis reaction chamber 106 refers to an insulated container that encloses the material.
- the pyrolysis reaction chambers 106 may be mounted on a wheel base to allow mobility. Either free wheels, or a rail system may be used.
- the outer shell of each pyrolysis reaction chamber 106 has two penetrations and two mounted hookup couplings to allow gas flow through the shell and couplings.
- the pyrolysis reaction chambers 106 are designed to handle large volumes of biomass in large forms such as wood slabs or whole tires, etc.
- the material is top loaded into each pyrolysis reaction chamber 106 at a loading station.
- An insulated lid is placed to thermally and pneumatically seal the container.
- the pyrolysis reaction chambers 106 are towed individually or as trains into one or more lines of docking stations.
- the hookup couplings of the pyrolysis reaction chambers 106 are pneumatically connected by pipe or duct to the input duct 207 and output duct 208 of the docking stations.
- Control valves allow each input duct 207 to selectively draw from the heat supply duct 201 or the cooling supply duct 205 .
- Control valves allow each output duct 208 to selectively route to the vapor return duct 204 or the pyrolysis gas return duct 202 .
- the process starts by preheating the thermal oxidizer 101 with an auxiliary fuel burner. Once the thermal oxidizer 101 has reached the target temperature, hot, oxygen-free exhaust gases are circulated as heat supply gas through the heat supply duct 201 .
- heat supply gases from the heat supply duct 201 are routed through the input duct 207 A, and injected into the pyrolysis reaction chambers 106 A. These heat supply gases are modulated by control valves in the docking stations to maintain the chamber temperature at a sufficient level to cause evaporation of moisture from the material.
- the heat supply gases with the water vapor are drawn out of the chambers, through the output duct 208 A, into the vapor return duct 204 , and routed to a heat exchanger/condenser 103 .
- the gases are cooled, the water vapor is condensed and the heat is exchanged into the combustion air duct 205 . After cooling the gases may be vented or directed into the cooling supply duct 203 .
- heat supply gases from the heat supply duct 201 are routed through the input duct 207 B, and injected into the pyrolysis reaction chambers 106 B. These heat supply gases are modulated by control valves in the docking station to maintain the chamber temperature at a sufficient level to drive the pyrolysis reaction.
- the heat supply gases and the pyrolysis gases are drawn out of the chamber, through the output duct 208 B, and into the pyrolysis gas return duct 202 . Some of the gases can be condensed into liquid in the gas to liquid condenser 105 . The remaining gases are routed to the thermal oxidizer 101 .
- cool, oxygen-free gases from the cooling supply duct 203 are routed through the input duct 207 C, and injected into the pyrolysis reaction chambers 106 C.
- the cooling supply gases and residual heat are drawn out of the chambers, through the output duct 208 C, into the vapor return duct 204 , and routed to a heat exchanger/condenser 103 .
- the gases are cooled; and the heat is exchanged into the combustion air duct 205 .
- the gases may be vented or recirculated into the cooling supply duct 203 .
- Combustion air is modulated into the thermal oxidizer 101 to precisely control temperature and combustion ratios.
- the thermal oxidizer can be set up with multiple combustion air inlets at different points along the gas stream. These inlets can be modulated to control distinct temperature and combustion zones within the thermal oxidizer 101 . Multiple outlet ports may be included to draw out useful biofuels from the distinct combustion zones. Internal dividers and baffles may be included to separate and individually control gas streams.
- the combustion air can preheated by routing it through heat exchangers/condensers 103 and 102 to conserve waste heat and increase efficiency.
- FIG. 2 a process flow diagram details the gasification process of this invention with the “Heat Transfer” option.
- the biomass or carbon waste material is loaded one or more pyrolysis reaction chambers 106 .
- a pyrolysis reaction chamber 106 refers to an insulated container that encloses the material.
- the pyrolysis reaction chambers 106 may be mounted on a wheel base to allow mobility. Either free wheels, or a rail system may be used.
- the outer shell of each pyrolysis reaction chamber 106 has three penetrations and two mounted hookup couplings to allow gas flow through the shell and couplings.
- the pyrolysis reaction chambers 106 are designed to handle large volumes of biomass in large forms such as wood slabs or whole tires, etc.
- the material is top loaded into each pyrolysis reaction chamber 106 at a loading station.
- An insulated lid is placed to thermally and pneumatically seal the container.
- the pyrolysis reaction chambers 106 are towed individually or as trains into one or more lines of docking stations.
- the hookup couplings of the pyrolysis reaction chambers 106 are pneumatically connected by pipe or duct to the input duct 207 and output ducts 208 and 209 of the docking stations.
- Control valves allow each input duct 207 to selectively draw from the heat supply duct 201 or the cooling supply duct 205 .
- Control valves allow each output duct 208 and 209 to selectively route to the vapor return duct 204 or the pyrolysis gas return duct 202 .
- the process starts by preheating the thermal oxidizer 101 with an auxiliary fuel burner. Once the thermal oxidizer 101 has reached the target temperature, hot, oxygen-free exhaust gases are circulated as heat supply gas through the heat supply duct 201 .
- heat supply gases from the heat supply duct 201 are routed through the input duct 207 A, and drawn through heat exchangers in the pyrolysis reaction chambers 106 A. These heat supply gases are modulated by control valves in the docking stations to maintain the chamber temperature at a sufficient level to cause evaporation of moisture from the material.
- the heat supply gases are drawn out of the heat exchangers, through the output duct 208 A, into the vapor return duct 204 , and routed to a heat exchanger/condenser 103 .
- the water vapor is drawn out of the chambers, through the output duct 209 A, into the vapor return duct 204 , and routed to a heat exchanger/condenser 103 .
- the gases are cooled, the water vapor is condensed and the heat is exchanged into the combustion air duct 205 .
- the gases may be vented or directed into the cooling supply duct 203 .
- heat supply gases from the heat supply duct 201 are routed through the input duct 207 B, and drawn through heat exchangers in the pyrolysis reaction chambers 106 B. These heat supply gases are modulated by control valves in the docking station to maintain the chamber temperature at a sufficient level to drive the pyrolysis reaction. The heat supply gases are drawn out of the heat exchangers, through the output duct 208 B, and into the vapor return duct 204 .
- the pyrolysis gases are drawn out of the chamber, through the output duct 209 B, and into the pyrolysis gas return duct 202 .Some of the gases can be condensed into liquid in the gas to liquid condenser 105 . The remaining gases are routed to the thermal oxidizer 101 .
- cool, oxygen-free gases from the cooling supply duct 203 are routed through the input duct 207 C, and drawn through heat exchangers in the pyrolysis reaction chambers 106 C.
- the cooling supply gases and residual heat are drawn out of the chambers, through the output duct 208 C, into the vapor return duct 204 , and routed to a heat exchanger/condenser 103 .
- the gases are cooled; and the heat is exchanged into the combustion air duct 205 .
- the gases may be vented or recirculated into the cooling supply duct 203 .
- Combustion air is modulated into the thermal oxidizer 101 to precisely control temperature and combustion ratios.
- the thermal oxidizer can be set up with multiple combustion air inlets at different points along the gas stream. These inlets can be modulated to control distinct temperature and combustion zones within the thermal oxidizer 101 . Multiple outlet ports may be included to draw out useful biofuels from the distinct combustion zones. Internal dividers and baffles may be included to separate and individually control gas streams.
- the combustion air can preheated by routing it through heat exchangers/condensers 103 and 102 to conserve waste heat and increase efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
The invention is a bioenergy and/or waste-to-energy process. The invention is a process using controlled pyrolysis reactions to convert biomass and carbon based waste material into carbon byproducts, biofuels and useable energy in the form of heat and/or electricity. The process includes one or more pyrolysis reaction chambers and a thermal oxidizer. Hot, oxygen-free exhaust gases from the thermal oxidizer are modulated through the pyrolysis reaction chambers to sustain the pyrolysis reaction. The exhaust gases along with the pyrolysis gases are drawn from the pyrolysis reaction chambers and routed to the thermal oxidizer. Combustion air is modulated into the thermal oxidizer through one or more ports to control combustion of the pyrolysis gases. After combustion, exhaust gases are recirculated to the pyrolysis reaction chambers to sustain the cycle.
The invention proposes a process which is unique in four ways. Firstly, the process may convert any carboneous material, such as biocrops, animal waste, used tires, into bioproducts and biofuels.
Secondly, the carbonization process is accomplished with no oxygen or combustion in the carbonization chambers.
Thirdly, the modular arrangement of the process components allows easy adaptability to diverse process requirements.
Fourthly, the mobility of the process material containers allows easy loading, transport, and unloading of the process material; and greatly reduces material handling requirements.
Description
- U.S. Cl. 48/197 R; 585/240; 585/242; 585/603; 423/439; 423/566.2; 423/428.2
- There was no federally sponsored research and development of this herein disclosed invention.
- Not Applicable
- 1. Field of the Invention
- The present invention relates to processes and systems that use renewable biomass or carbon based waste material for the generation of power in the form of electricity or heat, for producing liquid, gaseous, and solid value-added byproducts, and reducing environmental pollution.
- 2. Description of the Related Art
- The Applicant is well aware that quite extensive research, development, and experimentation has been recently developed to convert biomass or waste material into biogases and biofuels. Most of the prior art teaches of gasification using a fluidized bed chamber or a plasma arc chamber. The applicant is using two types of chambers for separately controllable thermal chemical reactions to occur to form carbon byproducts, biofuels and useable energy in the form of heat and/or electricity. One type of chamber is a pyrolysis chamber and the other type is a thermal oxidation chamber. The combination of multiple modular chambers and a single or multiple thermal oxidation chamber establishes the invention as different from prior art.
- The invention is a bioenergy and/or waste-to-energy process. The invention is a process using controlled pyrolysis reactions to convert biomass and carbon based waste material into carbon byproducts, biofuels and useable energy in the form of heat and/or electricity. The invention proposes a process which is unique in four ways.
- Firstly, the process may convert any carboneous material, such as biocrops, animal waste, used tires, into bioproducts and biofuels.
- Secondly, the carbonization process is accomplished with no oxygen (02) or combustion in the carbonization chambers.
- Thirdly, the modular arrangement of the process components allow easy adaptability to diverse process requirements.
- Fourthly, the mobility of the process material containers allows easy loading, transport, and unloading of the process material; and greatly reduces material handling requirements.
- The process includes one or more pyrolysis reaction chambers and a thermal oxidizer. Hot, oxygen-free exhaust gases from the thermal oxidizer are modulated through the pyrolysis reaction chambers to sustain the pyrolysis reaction. In this document, the term oxygen-free signifies the absence of or negligible amounts of oxygen (O2). The exhaust gases along with the pyrolysis gases are drawn from the pyrolysis reaction chambers and routed to the thermal oxidizer. Combustion air is modulated into the thermal oxidizer through one or more ports to control combustion of the pyrolysis gases. After combustion, exhaust gases are recirculated to the pyrolysis reaction chambers to sustain the cycle.
- The present invention will become more clearly defined as the disclosure of the invention is made with reference to the accompanying drawings. The system can be set up for one of two options for heat delivery. These options will be referred to as “Heat Injection” and “Heat Transfer”. In the drawings:
- In
FIG. 1 , a process flow diagram details the gasification process of this invention with the “Heat Injection” option. - In
FIG. 2 , a process flow diagram details the gasification process of this invention with the “Heat Transfer” option. - A process and system for generating biopower and/or waste-to-energy power, producing solid, liquid, and gaseous carbon based byproducts using biomass or environmental wastes is described in detail herein with reference to
FIG. 1 andFIG. 2 . The process has a potential impact on the agricultural, forestry, energy consumption, and the environment in the United States and the world. - The art of carbonization of biomass and carbon waste material such as wood waste has been well established in history. Using fixed bed and firebox contained chambers or kilns for gasification of wood to produce charcoal is the primary example for this art. Prior to the petroleum and chemical revolution, the gasification and condensation of this gaseous produced marketable gases, tars, liquids, and charcoal for the world. This process will bring back the old art of producing byproducts and generating electricity from acetylene plus low BTU biogases. Storable calcium carbide fuel is one of the most value added products for fuel cell technologies.
- The system can be set up for one of two options for heat delivery. These options will be referred to as “Heat Injection” and “Heat Transfer”. With the “Heat Injection” option, heat is directly injected into the pyrolysis reaction chambers. The heat supply gases and the water vapor and pyrolysis gases are drawn out together. With the “Heat Transfer” option, heat is transferred through exchangers within the pyrolysis reaction chambers. The heat supply gases remain separated from the water vapor and pyrolysis gases.
- In
FIG. 1 , a process flow diagram details the gasification process of this invention with the “Heat Injection” option. The biomass or carbon waste material is loaded one or more pyrolysis reaction chambers 106. A pyrolysis reaction chamber 106 refers to an insulated container that encloses the material. The pyrolysis reaction chambers 106 may be mounted on a wheel base to allow mobility. Either free wheels, or a rail system may be used. The outer shell of each pyrolysis reaction chamber 106 has two penetrations and two mounted hookup couplings to allow gas flow through the shell and couplings. The pyrolysis reaction chambers 106 are designed to handle large volumes of biomass in large forms such as wood slabs or whole tires, etc. The material is top loaded into each pyrolysis reaction chamber 106 at a loading station. An insulated lid is placed to thermally and pneumatically seal the container. The pyrolysis reaction chambers 106 are towed individually or as trains into one or more lines of docking stations. The hookup couplings of the pyrolysis reaction chambers 106 are pneumatically connected by pipe or duct to the input duct 207 and output duct 208 of the docking stations. Control valves allow each input duct 207 to selectively draw from theheat supply duct 201 or thecooling supply duct 205. Control valves allow each output duct 208 to selectively route to thevapor return duct 204 or the pyrolysisgas return duct 202. - The process starts by preheating the
thermal oxidizer 101 with an auxiliary fuel burner. Once thethermal oxidizer 101 has reached the target temperature, hot, oxygen-free exhaust gases are circulated as heat supply gas through theheat supply duct 201. - When a chamber 106 or line of
chambers 106A is in the drying phase, heat supply gases from theheat supply duct 201 are routed through theinput duct 207A, and injected into thepyrolysis reaction chambers 106A. These heat supply gases are modulated by control valves in the docking stations to maintain the chamber temperature at a sufficient level to cause evaporation of moisture from the material. The heat supply gases with the water vapor are drawn out of the chambers, through theoutput duct 208A, into thevapor return duct 204, and routed to a heat exchanger/condenser 103. In the heat exchanger/condenser 103 the gases are cooled, the water vapor is condensed and the heat is exchanged into thecombustion air duct 205. After cooling the gases may be vented or directed into the coolingsupply duct 203. - When a chamber 106 or line of
chambers 106B is in the pyrolysis phase, heat supply gases from theheat supply duct 201 are routed through theinput duct 207B, and injected into thepyrolysis reaction chambers 106B. These heat supply gases are modulated by control valves in the docking station to maintain the chamber temperature at a sufficient level to drive the pyrolysis reaction. The heat supply gases and the pyrolysis gases are drawn out of the chamber, through theoutput duct 208B, and into the pyrolysisgas return duct 202. Some of the gases can be condensed into liquid in the gas toliquid condenser 105. The remaining gases are routed to thethermal oxidizer 101. - When a chamber 106 or line of
chambers 106C is in the cooling phase, cool, oxygen-free gases from the coolingsupply duct 203 are routed through theinput duct 207C, and injected into thepyrolysis reaction chambers 106C. The cooling supply gases and residual heat are drawn out of the chambers, through theoutput duct 208C, into thevapor return duct 204, and routed to a heat exchanger/condenser 103. In the heat exchanger/condenser 103 the gases are cooled; and the heat is exchanged into thecombustion air duct 205. After cooling, the gases may be vented or recirculated into the coolingsupply duct 203. - Combustion air is modulated into the
thermal oxidizer 101 to precisely control temperature and combustion ratios. The thermal oxidizer can be set up with multiple combustion air inlets at different points along the gas stream. These inlets can be modulated to control distinct temperature and combustion zones within thethermal oxidizer 101. Multiple outlet ports may be included to draw out useful biofuels from the distinct combustion zones. Internal dividers and baffles may be included to separate and individually control gas streams. The combustion air can preheated by routing it through heat exchangers/condensers - In
FIG. 2 , a process flow diagram details the gasification process of this invention with the “Heat Transfer” option. The biomass or carbon waste material is loaded one or more pyrolysis reaction chambers 106. A pyrolysis reaction chamber 106 refers to an insulated container that encloses the material. The pyrolysis reaction chambers 106 may be mounted on a wheel base to allow mobility. Either free wheels, or a rail system may be used. The outer shell of each pyrolysis reaction chamber 106 has three penetrations and two mounted hookup couplings to allow gas flow through the shell and couplings. The pyrolysis reaction chambers 106 are designed to handle large volumes of biomass in large forms such as wood slabs or whole tires, etc. The material is top loaded into each pyrolysis reaction chamber 106 at a loading station. An insulated lid is placed to thermally and pneumatically seal the container. The pyrolysis reaction chambers 106 are towed individually or as trains into one or more lines of docking stations. The hookup couplings of the pyrolysis reaction chambers 106 are pneumatically connected by pipe or duct to the input duct 207 and output ducts 208 and 209 of the docking stations. Control valves allow each input duct 207 to selectively draw from theheat supply duct 201 or the coolingsupply duct 205. Control valves allow each output duct 208 and 209 to selectively route to thevapor return duct 204 or the pyrolysisgas return duct 202. - The process starts by preheating the
thermal oxidizer 101 with an auxiliary fuel burner. Once thethermal oxidizer 101 has reached the target temperature, hot, oxygen-free exhaust gases are circulated as heat supply gas through theheat supply duct 201. - When a chamber 106 or line of
chambers 106A is in the drying phase, heat supply gases from theheat supply duct 201 are routed through theinput duct 207A, and drawn through heat exchangers in thepyrolysis reaction chambers 106A. These heat supply gases are modulated by control valves in the docking stations to maintain the chamber temperature at a sufficient level to cause evaporation of moisture from the material. The heat supply gases are drawn out of the heat exchangers, through theoutput duct 208A, into thevapor return duct 204, and routed to a heat exchanger/condenser 103. The water vapor is drawn out of the chambers, through theoutput duct 209A, into thevapor return duct 204, and routed to a heat exchanger/condenser 103. In the heat exchanger/condenser 103 the gases are cooled, the water vapor is condensed and the heat is exchanged into thecombustion air duct 205. After cooling the gases may be vented or directed into the coolingsupply duct 203. - When a chamber 106 or line of
chambers 106B is in the pyrolysis phase, heat supply gases from theheat supply duct 201 are routed through theinput duct 207B, and drawn through heat exchangers in thepyrolysis reaction chambers 106B. These heat supply gases are modulated by control valves in the docking station to maintain the chamber temperature at a sufficient level to drive the pyrolysis reaction. The heat supply gases are drawn out of the heat exchangers, through theoutput duct 208B, and into thevapor return duct 204. The pyrolysis gases are drawn out of the chamber, through theoutput duct 209B, and into the pyrolysis gas return duct 202.Some of the gases can be condensed into liquid in the gas toliquid condenser 105. The remaining gases are routed to thethermal oxidizer 101. - When a chamber 106 or line of
chambers 106C is in the cooling phase, cool, oxygen-free gases from the coolingsupply duct 203 are routed through theinput duct 207C, and drawn through heat exchangers in thepyrolysis reaction chambers 106C. The cooling supply gases and residual heat are drawn out of the chambers, through theoutput duct 208C, into thevapor return duct 204, and routed to a heat exchanger/condenser 103. In the heat exchanger/condenser 103 the gases are cooled; and the heat is exchanged into thecombustion air duct 205. After cooling, the gases may be vented or recirculated into the coolingsupply duct 203. - Combustion air is modulated into the
thermal oxidizer 101 to precisely control temperature and combustion ratios. The thermal oxidizer can be set up with multiple combustion air inlets at different points along the gas stream. These inlets can be modulated to control distinct temperature and combustion zones within thethermal oxidizer 101. Multiple outlet ports may be included to draw out useful biofuels from the distinct combustion zones. Internal dividers and baffles may be included to separate and individually control gas streams. The combustion air can preheated by routing it through heat exchangers/condensers
Claims (8)
1. The pyrolysis/gasification process which produces solid, liquid, gaseous fuels, carbon products and electricity from biomass and carbonaceous environmental waste materials, the process comprising:
a. feeding by loading, conveying, or pneumatic transfer of feedstock comprising solid biomass and carbonaceous environmental waste materials into the negative pressure, non-catalyst, non-plasma, non-Fischer-Tropsch pyrolysis reaction chambers;
b. gasifying the feedstock in pyrolysis reaction chambers where solid materials are thermally carbonized to form solid carbonized products and pyrolysis gases;
c. removing by dumping, conveying, or pneumatic transfer of solid carbonized products from the pyrolysis chambers;
d. delivering by piping and/or ducting an optional portion of the pyrolysis gases from the pyrolysis reaction chambers into a gas-to-liquid condenser;
e. condensing of the optional portion of the pyrolysis gases in the condenser into liquid or gaseous biofuels which may be stored, sold, or used to fuel or heat other processes;
f. delivering by piping/ducting the remaining portion of the pyrolysis gases to the thermal oxidizer;
g. delivering by piping/ducting a controlled amount of combustion air from the atmosphere to the thermal oxidizer;
h. combusting of the remaining portion of the pyrolysis gases with controlled combustion air feed in the thermal oxidizer;
i. venting a portion of the exhaust gases from the thermal oxidizer through a heat exchanger/condenser to atmosphere;
j. delivering by piping and/or ducting the remaining portion of the hot, oxygen-free exhaust gases, from the thermal oxidizer to the pyrolysis reaction chambers in the pyrolysis phase thereby supplying energy to sustain the pyrolysis reaction;
k. delivering by piping and/or ducting a portion of the hot, oxygen-free exhaust gases, from the thermal oxidizer to the pyrolysis reaction chambers in the drying phase thereby supplying energy to evaporate moisture from the feedstock;
l. delivering by piping and/or ducting the oxygen-free gases and evaporated moisture from the pyrolysis reaction chambers in the drying phase to a heat exchanger/condenser whereby the oxygen-free gases are cooled and the moisture is condensed and removed;
m. circulating by piping and/or ducting the cool, dry, oxygen-free gases from the heat exchanger/condenser though the pyrolysis reaction chambers in the cooling phase and back to the heat exchanger/condenser thereby cooling the pyrolysis reaction chambers;
n. exchanging of heat from water vapor stream and vented exhaust stream to preheat the combustion air stream.
2. The process according to claim 1 , wherein the solid, liquid, and gaseous byproducts include methane, ethane, di-methyl ether, acetylene, hydrogen, butanol, alcohols, ethanol, methanol, ethylene, acetone, mineral spirits, activated carbon, charcoal and calcium carbide.
3. The process according to claim 1 , wherein the process is a self-sustainable process after start-up that utilizes its own internal thermal heat from the combustion reactions to maintain the temperatures in the pyrolysis reaction chambers, thermal oxidizer, and piping/ducting.
4. The process according to claim 1 , wherein the pyrolysis reaction is accomplished in oxygen-free conditions with no combustion in the pyrolysis reaction chambers.
5. The process according to claim 1 , wherein rapid cooling is accomplished by circulating oxygen-free gases through the pyrolysis reaction chambers and a heat exchanger.
6. The process according to claim 1 , wherein the pyrolysis reactions can be accelerated, slowed, or stopped by controlling the heat supply to the pyrolysis reaction chambers.
7. The process according to claim 1 , wherein the pyrolysis reaction chambers are mounted on wheel bases for easy transport between loading, process, and unloading stations.
8. The process according to claim 1 , wherein the number of pyrolysis reaction chambers can be varied to meet production requirements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/234,003 US20130067802A1 (en) | 2011-09-15 | 2011-09-15 | Bio-energy conversion process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/234,003 US20130067802A1 (en) | 2011-09-15 | 2011-09-15 | Bio-energy conversion process |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130067802A1 true US20130067802A1 (en) | 2013-03-21 |
Family
ID=47879281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/234,003 Abandoned US20130067802A1 (en) | 2011-09-15 | 2011-09-15 | Bio-energy conversion process |
Country Status (1)
Country | Link |
---|---|
US (1) | US20130067802A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103881776A (en) * | 2014-04-09 | 2014-06-25 | 太原理工大学 | Method for producing liquefied natural gas by automatically supplementing carbon by using retort gas as raw material |
WO2014155058A1 (en) * | 2013-03-28 | 2014-10-02 | Carbon Gold Limited | A method and apparatus for producing biochar |
WO2015027644A1 (en) * | 2013-08-27 | 2015-03-05 | 北京化工大学 | Method and device for producing calcium carbide from biomass fuel |
GB2557310A (en) * | 2016-12-06 | 2018-06-20 | Dalgliesh John | Method of producing energy from animal waste |
CN108592046A (en) * | 2018-05-01 | 2018-09-28 | 聊城氟尔新材料科技有限公司 | A kind of dead catalyst disposal plant and its technique |
CN109097141A (en) * | 2018-09-21 | 2018-12-28 | 河南博顿生物科技有限公司 | A kind of preparation process of biomass granule fuel |
CN109153929A (en) * | 2016-03-25 | 2019-01-04 | 国际热化学恢复股份有限公司 | Three stage energy integrate product gas generating system and method |
CN109897672A (en) * | 2019-03-01 | 2019-06-18 | 上海柯来浦能源科技有限公司 | The device and method produced using circulation of tail gas coal gasification |
US20210041099A1 (en) * | 2019-08-07 | 2021-02-11 | Guangdong University Of Technology | Comprehensive utilization system for high-temperature gasification and low-nitrogen combustion of biomass |
KR20210096515A (en) * | 2020-01-28 | 2021-08-05 | 경국현 | Dual fluidized bed reacting system including terraced helical impeller |
WO2022089704A1 (en) * | 2020-11-02 | 2022-05-05 | Frichs Holding 2 Aps | Pyrolysis plant and method for thermal mineralization of biomass and production of combustible gases, liquids and biochar |
WO2023028679A1 (en) * | 2021-09-06 | 2023-03-09 | Eco Business Tratamento De Resíduos | Thermo-dehydration oven, carbonized powder production method, carbonized powder and electric energy production method |
WO2024045592A1 (en) * | 2022-09-01 | 2024-03-07 | 浙江宜可欧环保科技有限公司 | Wastewater reduction pyrolysis treatment method |
-
2011
- 2011-09-15 US US13/234,003 patent/US20130067802A1/en not_active Abandoned
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014155058A1 (en) * | 2013-03-28 | 2014-10-02 | Carbon Gold Limited | A method and apparatus for producing biochar |
WO2015027644A1 (en) * | 2013-08-27 | 2015-03-05 | 北京化工大学 | Method and device for producing calcium carbide from biomass fuel |
CN103881776A (en) * | 2014-04-09 | 2014-06-25 | 太原理工大学 | Method for producing liquefied natural gas by automatically supplementing carbon by using retort gas as raw material |
CN109153929A (en) * | 2016-03-25 | 2019-01-04 | 国际热化学恢复股份有限公司 | Three stage energy integrate product gas generating system and method |
GB2557310A (en) * | 2016-12-06 | 2018-06-20 | Dalgliesh John | Method of producing energy from animal waste |
CN108592046A (en) * | 2018-05-01 | 2018-09-28 | 聊城氟尔新材料科技有限公司 | A kind of dead catalyst disposal plant and its technique |
CN109097141A (en) * | 2018-09-21 | 2018-12-28 | 河南博顿生物科技有限公司 | A kind of preparation process of biomass granule fuel |
CN109897672A (en) * | 2019-03-01 | 2019-06-18 | 上海柯来浦能源科技有限公司 | The device and method produced using circulation of tail gas coal gasification |
US20210041099A1 (en) * | 2019-08-07 | 2021-02-11 | Guangdong University Of Technology | Comprehensive utilization system for high-temperature gasification and low-nitrogen combustion of biomass |
US11555610B2 (en) * | 2019-08-07 | 2023-01-17 | Guangdong University Of Technology | Comprehensive utilization system for high-temperature gasification and low-nitrogen combustion of biomass |
KR20210096515A (en) * | 2020-01-28 | 2021-08-05 | 경국현 | Dual fluidized bed reacting system including terraced helical impeller |
KR102323362B1 (en) * | 2020-01-28 | 2021-11-09 | 경국현 | Dual fluidized bed reacting system including terraced helical impeller |
WO2022089704A1 (en) * | 2020-11-02 | 2022-05-05 | Frichs Holding 2 Aps | Pyrolysis plant and method for thermal mineralization of biomass and production of combustible gases, liquids and biochar |
WO2023028679A1 (en) * | 2021-09-06 | 2023-03-09 | Eco Business Tratamento De Resíduos | Thermo-dehydration oven, carbonized powder production method, carbonized powder and electric energy production method |
WO2024045592A1 (en) * | 2022-09-01 | 2024-03-07 | 浙江宜可欧环保科技有限公司 | Wastewater reduction pyrolysis treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130067802A1 (en) | Bio-energy conversion process | |
KR101445205B1 (en) | Process and ststem for producing synthesis gas from biomass by pyrolysis | |
US7749291B2 (en) | Three-stage gasification—biomass-to-electricity process with an acetylene process | |
JP2012520166A (en) | Biomass utilization method and utilization system, and block-type thermoelectric power plant | |
CN101805628B (en) | Process method and device for transformation and quality improvement of low-rank coal | |
CN102766480B (en) | Device and method for pyrolyzing and gasifying solid organic fuel by two-stage serial fluidized bed | |
CN105199755A (en) | Energy-self-supplying thermal cracking machine | |
CN100467946C (en) | Combustion system for changing methanol into hydrogen fuel used in industrial furnace and thermal power plant. | |
CN105402709A (en) | Integrated multifunctional chimney-free low-carbon gas boiler | |
CN106635174B (en) | Heat accumulating type high-calorific-value synthesis gas gasification device and gasification production method based on same | |
US9650254B2 (en) | Method for preparation of active carbon by pyrolysis of organics | |
US10280377B1 (en) | Pyrolysis and steam cracking system | |
CN105295976A (en) | Coal pyrolysis reactor-coal powder boiler combination system and applications thereof | |
RU2346026C2 (en) | Method of sng and coal char obtaining by pyrolysis reaction of biomass | |
SE541605C2 (en) | Process and reactor for producing biochar from renewable material. | |
CN100340637C (en) | Mobile biomass liquefaction system | |
JP2009013027A (en) | System for producing hydrogen using biomass | |
WO2024012608A1 (en) | Biomass gasification and waste incineration integrated furnace | |
EP2522708A2 (en) | Gasifier | |
CN112126472A (en) | Biomass pyrolysis gasification rotary furnace equipment | |
US20120298921A1 (en) | Method and system for supplying thermal energy to a thermal processing system from the gasification of dry, carbon-containing raw materials, followed by oxidation, and installation for operating this system | |
CN106010610A (en) | Low-order pulverized coal hydrogenated and pressurized fast low-temperature carbonization process and device | |
RU2408820C1 (en) | Installation for multi-phase pyrolysis of organic raw material | |
CN104099119B (en) | Biomass fluidization pyrolysis liquefaction device | |
CN104119937B (en) | Biomass material is converted into biological energy sources unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |