US20130032886A1 - Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET - Google Patents
Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET Download PDFInfo
- Publication number
- US20130032886A1 US20130032886A1 US13/195,316 US201113195316A US2013032886A1 US 20130032886 A1 US20130032886 A1 US 20130032886A1 US 201113195316 A US201113195316 A US 201113195316A US 2013032886 A1 US2013032886 A1 US 2013032886A1
- Authority
- US
- United States
- Prior art keywords
- metal layer
- layer
- scavenging
- dielectric
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 248
- 239000002184 metal Substances 0.000 title claims abstract description 240
- 239000004065 semiconductor Substances 0.000 claims abstract description 134
- 230000002000 scavenging effect Effects 0.000 claims abstract description 105
- 239000000758 substrate Substances 0.000 claims abstract description 62
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims abstract description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000001301 oxygen Substances 0.000 claims abstract description 27
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 27
- 230000009467 reduction Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 43
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 33
- 230000005669 field effect Effects 0.000 claims description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 125000006850 spacer group Chemical group 0.000 claims description 10
- 229910052684 Cerium Inorganic materials 0.000 claims description 9
- 229910052790 beryllium Inorganic materials 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 229910052735 hafnium Inorganic materials 0.000 claims description 9
- 229910052746 lanthanum Inorganic materials 0.000 claims description 9
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052712 strontium Inorganic materials 0.000 claims description 9
- 229910052727 yttrium Inorganic materials 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- -1 HfOxNy Inorganic materials 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 3
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 3
- 229910002244 LaAlO3 Inorganic materials 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 229910002370 SrTiO3 Inorganic materials 0.000 claims description 2
- 229910010303 TiOxNy Inorganic materials 0.000 claims description 2
- 229910003134 ZrOx Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 description 31
- 125000004430 oxygen atom Chemical group O* 0.000 description 27
- 229910000765 intermetallic Inorganic materials 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 20
- 239000003989 dielectric material Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 229910052723 transition metal Inorganic materials 0.000 description 14
- 238000005229 chemical vapour deposition Methods 0.000 description 12
- 239000002019 doping agent Substances 0.000 description 12
- 238000000231 atomic layer deposition Methods 0.000 description 10
- 150000003624 transition metals Chemical class 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 229910021419 crystalline silicon Inorganic materials 0.000 description 6
- 238000001465 metallisation Methods 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910001339 C alloy Inorganic materials 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910000927 Ge alloy Inorganic materials 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910016287 MxOy Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000005360 phosphosilicate glass Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000004549 pulsed laser deposition Methods 0.000 description 2
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019599 ReO2 Inorganic materials 0.000 description 1
- 229910019603 Rh2O3 Inorganic materials 0.000 description 1
- 229910008310 Si—Ge Inorganic materials 0.000 description 1
- 229910003069 TeO2 Inorganic materials 0.000 description 1
- 229910004369 ThO2 Inorganic materials 0.000 description 1
- 229910009973 Ti2O3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910000411 antimony tetroxide Inorganic materials 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000421 cerium(III) oxide Inorganic materials 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(III) oxide Inorganic materials O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 1
- RSEIMSPAXMNYFJ-UHFFFAOYSA-N europium(III) oxide Inorganic materials O=[Eu]O[Eu]=O RSEIMSPAXMNYFJ-UHFFFAOYSA-N 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N iridium(IV) oxide Inorganic materials O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 1
- XMFOQHDPRMAJNU-UHFFFAOYSA-N lead(II,IV) oxide Inorganic materials O1[Pb]O[Pb]11O[Pb]O1 XMFOQHDPRMAJNU-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910003443 lutetium oxide Inorganic materials 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HFLAMWCKUFHSAZ-UHFFFAOYSA-N niobium dioxide Inorganic materials O=[Nb]=O HFLAMWCKUFHSAZ-UHFFFAOYSA-N 0.000 description 1
- XSXHWVKGUXMUQE-UHFFFAOYSA-N osmium dioxide Inorganic materials O=[Os]=O XSXHWVKGUXMUQE-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical group [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910021483 silicon-carbon alloy Inorganic materials 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- CVKJXWOUXWRRJT-UHFFFAOYSA-N technetium dioxide Chemical compound O=[Tc]=O CVKJXWOUXWRRJT-UHFFFAOYSA-N 0.000 description 1
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium (III) oxide Inorganic materials [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- GQUJEMVIKWQAEH-UHFFFAOYSA-N titanium(III) oxide Chemical compound O=[Ti]O[Ti]=O GQUJEMVIKWQAEH-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0922—Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4966—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
Definitions
- the present invention generally relates to semiconductor devices, and particularly to a metal gate stack included in an electrode over a high-k gate dielectric in a pMOSFET, and methods of manufacturing the pMOSFET.
- Scaling of the gate dielectric is a challenge in improving performance of advanced field effect transistors.
- FET field effect transistor
- the leakage current through the gate dielectric increases exponentially with the decrease in the thickness of the gate dielectric.
- Such devices typically become too leaky to provide high performance at or below the thickness of 1.1 nm for the silicon oxide gate dielectric.
- High-k gate dielectric provides a technique to scale down the thickness of the gate dielectric without an excessive increase in the gate leakage current.
- high-k gate dielectric materials are prone to a change in the equivalent oxide thickness (EOT) because high-k gate dielectric materials react with oxygen that diffuses through the gate electrode or gate spacers.
- EOT equivalent oxide thickness
- Regrowth of a silicon oxide interfacial layer between a silicon substrate and the high-k gate dielectric during high-temperature processing steps is a major obstacle to successful equivalent oxide thickness scaling.
- typical stacks of a high-k gate dielectric and a metal gate are known to be susceptible to anneals at various temperatures in an oxygen ambient. Such anneals in an oxygen ambient result in regrowth of the silicon oxide interfacial layer and/or instability of the threshold voltage of field effect transistors.
- inversion oxide thickness T inv and pFET threshold voltage (V t ) show a tradeoff relationship for a high-k/metal gate stack.
- Reference in this regard can be made to, for example, High-Performance High-k/Metal Gates for 45 nm CMOS and Beyond with Gate-First Processing M. Chudzik et al., VLSI symposium 2007, p. 194-195.
- An aspect of the embodiments of this invention includes a semiconductor substrate comprising a semiconductor material; a p-type field effect transistor (pFET) disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of SiGe formed upon or within a surface of the semiconductor substrate; a gate dielectric comprising an oxide layer overlying the semiconductor channel region comprised of SiGe and a high dielectric constant (high-k) dielectric layer overlying the oxide layer; and a gate electrode overlying the high-k dielectric layer and comprising a lower metal layer abutting the high-k dielectric layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer.
- pFET p-type field effect transistor
- the scavenging metal layer includes a metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive.
- the structure further comprises an n-type field effect transistor (nFET) also disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of Si, where the gate electrode of the nFET also comprises the scavenging metal layer.
- nFET n-type field effect transistor
- a method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a semiconductor material; forming a p-type field effect transistor (pFET) disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of SiGe formed upon or within a surface of the semiconductor substrate; forming a gate dielectric comprising an oxide layer overlying the semiconductor channel region comprised of SiGe and a high dielectric constant (high-k) dielectric layer overlying the oxide layer; and forming a gate electrode overlying the high-k dielectric layer and comprising a lower metal layer abutting the high-k dielectric layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer.
- pFET p-type field effect transistor
- the scavenging metal layer includes a metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive.
- the method further comprises forming an n-type field effect transistor (nFET) to be disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of Si, where the gate electrode of the nFET also comprises the scavenging metal layer.
- nFET n-type field effect transistor
- a structure that comprises a substrate; an n-type field effect transistor (nFET) disposed over the substrate and a p-type field effect transistor (pFET) disposed over the substrate.
- the nFET comprises a Si channel region, a gate dielectric having an oxide layer overlying the channel region, a high-k dielectric layer overlying the oxide layer, and a gate electrode overlying the gate dielectric.
- the gate electrode comprises a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer.
- the scavenging metal layer scavenges oxygen from an interface between the Si channel region and the oxide layer.
- the pFET comprises a SiGe channel region, a gate dielectric having an oxide layer overlying the channel region, a high-k dielectric layer overlying the oxide layer, and a gate electrode overlying the gate dielectric.
- the gate electrode comprises a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer.
- the scavenging metal layer scavenges oxygen from an interface between the SiGe channel region and the oxide layer.
- FIG. 1 is a vertical cross-sectional view of a first exemplary semiconductor structure after formation of a high-k dielectric layer, a lower metal layer, a scavenger metal layer, an upper metal layer, and a polycrystalline semiconductor layer.
- FIG. 2 is a vertical cross-sectional view of the first exemplary semiconductor structure after patterning of a gate dielectric and a gate electrode.
- FIG. 3 is a vertical cross-sectional view of the first exemplary semiconductor structure after formation of a gate spacer and source and drain extension regions.
- FIG. 4 is a vertical cross-sectional view of the first exemplary semiconductor structure after formation of silicide regions, a dielectric material layer, and contact vias.
- FIG. 5 is a graph showing the amount of change in Gibbs free energy during oxidation of various metals.
- FIG. 6 is a graph showing capacitance as a function of the gate voltage for four types of metal gate electrodes.
- FIGS. 7A and 7B are each a vertical cross-sectional view of the semiconductor structure after patterning of the gate dielectric and the gate electrode similar to FIG. 2 , and show an n-type FET (nFET, left) and a p-type FET (pFET, right), where the pFET is to be formed on an epitaxially formed island comprised of SiGe ( FIG. 7A ) or on a Ge implanted or diffused region within the Si substrate ( FIG. 7B ).
- FIGS. 8 and 9 are graphs showing accumulation CV and XPS on exposed high-k dielectric, respectively, and illustrate the effect of oxygen scavenging at a SiGe interface region between SiGe and overlying dielectric.
- FIGS. 10A and 10B are graphs depicting CMOS characteristics for an nFET, with a Si channel, and a pFET, with a SiGe channel, and show T inv scaling and V t lowering that are obtained for the pFET while changing by only a small amount the nFET V t .
- a SiGe channel is effective to lower pFET V t but is accompanied with an increase in T inv resulting in a T inv delta between an nFET and the pFET.
- Reference in this regard can be made, for example, to Band-Engineering Low PMOS Vt with High-k/Metal Gates Featured in a Dual Channel CMOS Integration Scheme, H. Rusty Harris et al., VLSI symposium 2007, p. 154-155.
- Metal-induced interfacial layer scavenging is effective for T inv scaling, however the impact on V t is basically negligible for a Si channel.
- the exemplary embodiments of this invention provide a technique that enables T in , scaling and V t lowering simultaneously for a pFET, while scaling T inv and maintaining V t for an nFET.
- An aspect of the embodiments of this invention deposits a metal doped TiN electrode on an nFET area with a Si channel and also on a pFET area with a SiGe channel.
- a further aspect of this invention deposits a Ti-rich TiN/M/TiN electrode on a high-k gate dielectric, where M: Metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive.
- M Metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive.
- the nFET active area contains a Si channel while the pFET active area contains a SiGe or a Ge channel.
- a conventional self-aligned gate-first process can then be performed after the metal doped TiN deposition process is completed.
- the metal M of the TiN/M/TiN electrode serves to scavenge oxygen from a SiGe interface with an overlying dielectric layer (e.g., SiO 2 ) resulting in an effective reduction in T inv and V t of the pFET.
- the embodiments of this invention can use to advantage a process disclosed in commonly assigned U.S. patent application Ser. No. 12/487,248, filed 18 Jun. 2009, entitled “Scavenging Metal Stack for a High-K Gate Dielectric”, Takashi Ando; Changhwan Choi; Martin M. Frank; and Vijay Narayanan (US Patent Publication 2010/00320547 A1).
- a description of this technique will be provided first with reference to FIGS. 1-6 , in which corresponding elements are referred to by like reference numerals. The Figures are not drawn to scale.
- a stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer.
- the scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive. 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer.
- the scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric.
- the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric.
- EOT equivalent oxide thickness
- an exemplary semiconductor structure comprises a semiconductor substrate 8 and a stack of material layers formed thereupon.
- the semiconductor substrate 8 contains a substrate semiconductor layer 10 and shallow trench isolation structures 12 .
- the substrate semiconductor layer 10 has a semiconductor material, which may be selected from, but is not limited to, silicon, silicon carbon alloy, gallium arsenide, indium arsenide, indium phosphide, III-V compound semiconductor materials, II-VI compound semiconductor materials, organic semiconductor materials, and other compound semiconductor materials.
- the semiconductor material of the substrate semiconductor layer 10 comprises silicon, and more typically, the semiconductor material of the substrate semiconductor layer 10 is silicon.
- the single crystalline silicon-containing semiconductor material is preferably selected from single crystalline silicon, a single crystalline silicon carbon alloy, a single crystalline silicon germanium alloy, and a single crystalline silicon germanium carbon alloy.
- the semiconductor material of the substrate semiconductor layer 10 may be appropriately doped either with p-type dopant atoms or with n-type dopant atoms.
- the dopant concentration of the substrate semiconductor layer 10 may be from 1.0 ⁇ 10 15 /cm 3 to 1.0 ⁇ 10 19 /cm 3 , and typically from 1.0 ⁇ 10 16 /cm 3 to 3.0 ⁇ 10 18 /cm 3 , although lesser and greater dopant concentrations are contemplated herein also.
- the substrate semiconductor layer 10 is single crystalline.
- the semiconductor substrate 8 may be a bulk substrate, a semiconductor-on-insulator (SOI) substrate, or a hybrid substrate.
- SOI semiconductor-on-insulator
- the shallow trench isolation structure 12 comprises a dielectric material such as silicon oxide or silicon nitride, and is formed by methods well known in the art.
- An unpatterned chemical oxide layer 20 may be formed on the exposed semiconductor surface of the substrate semiconductor layer 10 .
- An unpatterned high dielectric constant (high-k) dielectric layer 30 is formed directly on the top surface of the unpatterned chemical oxide layer 20 . Even in the case the unpatterned chemical oxide layer 20 is not formed, the deposition of the unpatterned high dielectric constant (high-k) dielectric layer 30 and subsequent thermal processes lead to the formation of pre-existing interfacial layer between the substrate semiconductor layer 10 and the unpatterned high dielectric constant (high-k) dielectric layer 30
- the unpatterned chemical oxide layer 20 may be fanned by treatment of exposed semiconductor surfaces with a chemical.
- the process step for this wet chemical oxidation may include treating a cleaned semiconductor surface (such as a semiconductor surface treated with hydrofluoric acid) with a mixture of ammonium hydroxide, hydrogen peroxide and water (in a 1:1:5 ratio) at a room temperature.
- the chemical oxide layer can also be formed by treating the HF-last semiconductor surface in ozonated aqueous solutions, with the ozone concentration usually varying from, but not limited to: 2 parts per million (ppm) to 40 ppm.
- the unpatterned chemical oxide layer 20 helps minimize mobility degradation in the substrate semiconductor layer 10 due to high-k dielectric material in the unpatterned high-k dielectric layer 30 .
- the thickness of the unpatterned chemical oxide layer 20 is thicker than necessary and increases the equivalent oxide thickness (EOT) of a composite dielectric stack, which includes the unpatterned chemical oxide layer 20 and the unpatterned high-k dielectric layer 30 .
- EOT equivalent oxide thickness
- the scalability of EOT is limited by the thickness of the unpatterned chemical oxide layer 20 .
- the substrate semiconductor layer is a silicon layer
- the unpatterned chemical oxide layer 20 is a silicon oxide layer.
- the thickness of the unpatterned chemical oxide layer 20 is from 0.1 nm to 0.4 nm, although lesser and greater thicknesses are also contemplated herein.
- a high dielectric constant (high-k) dielectric layer 30 is formed on a top surface of the semiconductor substrate 8 over the chemical oxide layer 20 .
- the unpatterned high-k dielectric layer 30 comprises a high dielectric constant (high-k) material comprising a dielectric metal oxide and having a dielectric constant that is greater than the dielectric constant of silicon nitride of 7.5.
- the unpatterned high-k dielectric layer 30 may be formed by methods well known in the art including, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), molecular beam deposition (MBD), pulsed laser deposition (PLD), liquid source misted chemical deposition (LSMCD), etc.
- the dielectric metal oxide comprises a metal and oxygen, and optionally nitrogen and/or silicon.
- Exemplary high-k dielectric materials include HfO 2 , ZrO 2 , La 2 O 3 , Al 2 O 3 , TiO 2 , SrTiO 3 , LaAlO 3 , Y 2 O 3 , HfO x N y , ZrO x N y , La 2 O x N y , Al 2 O x N y , TiO x N y , SrTiO x N y , LaAlO x N y , Y 2 O x N y , a silicate thereof, and an alloy thereof.
- the thickness of the unpatterned high-k dielectric layer 30 may be from 1 nm to 10 nm, and preferably from 1.5 nm to 3 nm.
- the unpatterned high-k dielectric layer 30 may have an effective oxide thickness (EOT) on the order of, or less than, 1 nm.
- An unpatterned lower metal layer 40 is deposited directly on the top surface of the unpatterned high-k dielectric layer 30 .
- the unpatterned lower metal layer 40 may be formed, for example, by chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
- the material of the unpatterned lower metal layer 40 is herein referred to as a “first metallic compound” which may be a conductive transition metal nitride or a conductive transition metal carbide.
- the first metallic compound is a compound of a first metallic element selected from transition metals and a non-metallic element. If the non-metallic element is nitrogen, the first metallic compound is a transition metal nitride. If the non-metallic element is carbon, the first metallic compound is a transition metal carbide.
- the first metallic compound may be selected from TiN, TiC, TaN, TaC, and a combination thereof.
- transition metals include elements from Group 3 B, 4 B, 5 B, 6 B, 7 B, 8 B, 1 B, and 2 B and Lanthanides and Actinides in the Periodic Table of the Elements.
- the thickness of the unpatterned lower metal layer 40 may be from 1 nm to 10 nm, and preferably from 3 nm to 10 nm, although lesser and greater thicknesses are also contemplated herein.
- An unpatterned scavenging metal layer 50 is deposited directly on the top surface of the unpatterned lower metal layer 40 .
- the unpatterned scavenging metal layer 50 may be formed, for example, by chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
- CVD chemical vapor deposition
- PVD physical vapor deposition
- ALD atomic layer deposition
- the first exemplary semiconductor structure is transferred from a processing chamber that deposits the unpatterned lower metal layer 40 to another processing chamber that deposits the unpatterned scavenging metal layer 50 without breaking vacuum to prevent formation of any interfacial layer by oxidation or introduction of oxygen into the unpatterned lower metal layer 40 .
- the material of the unpatterned scavenging metal layer 50 “scavenges” impurity oxygen from neighboring metallic layers during subsequent processing. For the unpatterned scavenging metal layer 50 to effectively scavenge impurity oxygen in subsequent processing steps, it is necessary that introduction of oxygen into the unpatterned scavenging metal layer 50 is suppressed during the formation step. Further, it is necessary to select the material for the unpatterned scavenging metal layer 50 so that the material of the unpatterned scavenging metal layer 50 effectively scavenges impurity oxygen atoms from the unpatterned lower metal layer 40 and an unpatterned upper metal layer 60 to be subsequently formed.
- the unpatterned scavenging metal layer 50 may include a metal in an elemental form. Typical elemental metals that may be selected for the unpatterned scavenging metal layer 50 include, but are not limited to, Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Dy, Lu, Er, Pr, and Ce. In one embodiment, the unpatterned scavenging metal layer 50 consists of at least one alkaline earth metal. In another embodiment, the unpatterned scavenging metal layer 50 consists of at least one transition metal. In yet another embodiment, the unpatterned scavenging metal layer 50 consists of a mixture of at least one alkaline earth metal and at least one transition metal. Preferably, the thickness of the unpatterned scavenging metal layer 50 may be from 0.1 nm to 3.0 nm, although lesser and greater thicknesses are also contemplated herein.
- An unpatterned upper metal layer 60 is deposited directly on the top surface of the unpatterned scavenging metal layer 50 .
- the unpatterned upper metal layer 60 may be formed, for example, by chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
- CVD chemical vapor deposition
- PVD physical vapor deposition
- ALD atomic layer deposition
- the first exemplary semiconductor structure is transferred from the processing chamber that deposits the unpatterned scavenging metal layer 50 to a processing chamber that deposits the unpatterned upper metal layer 60 without breaking vacuum to prevent formation of any interfacial layer by oxidation or introduction of oxygen into the unpatterned scavenging metal layer 50 .
- the material of the unpatterned upper metal layer 60 is herein referred to as a “second metallic compound” which may be a conductive transition metal nitride or a conductive transition metal carbide.
- the second metallic compound is a compound of a second metallic element selected from transition metals and a non-metallic element. If the non-metallic element is nitrogen, the second metallic compound is a transition metal nitride. If the non-metallic element is carbon, the second metallic compound is a transition metal carbide.
- the second metallic compound may be selected from TiN, TiC, TaN, TaC, and a combination thereof.
- the thickness of the unpatterned upper metal layer 60 may be from lower from 1 nm to 100 nm, and preferably from 3 nm to 10 nm, although lesser and greater thicknesses are also contemplated herein.
- first metallic compound and the second metallic compound are the same material. In another case, the first metal compound and the second metal compound are different materials.
- the material for the unpatterned scavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatterned scavenging metal layer 50 is equal to or more negative than Gibbs free energy per oxygen atom for formation of an oxide of the first elemental metal within the first metallic compound for the unpatterned lower metal layer 40 . Further, the material for the unpatterned scavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatterned scavenging metal layer 50 is equal to or more negative than Gibbs free energy per oxygen atom for formation of an oxide of the second elemental metal within the second metallic compound for the unpatterned upper metal layer 60 .
- the first and second metallic compounds may be selected from TiN, TiC, TaN, TaC, and a combination thereof.
- the unpatterned scavenging metal layer 50 includes at least one of Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Dy, Lu, Er, Pr, and Ce.
- the material for the unpatterned scavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatterned scavenging metal layer 50 is more negative than Gibbs free energy per oxygen atom for formation of an oxide of the first elemental metal within the first metallic compound for the unpatterned lower metal layer 40 . Further, the material for the unpatterned scavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatterned scavenging metal layer 50 is more negative than Gibbs free energy per oxygen atom for formation of an oxide of the second elemental metal within the second metallic compound for the unpatterned upper metal layer 60 .
- each of the first metallic compound and the second metallic compound may be selected from TaN, TaC, and a combination thereof.
- the unpatterned scavenging metal layer 50 may comprise a metal in an elemental form and selected from Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Dy, Lu, Er, Pr, and Ce in this illustrative example.
- At least one of the first metallic compound and the second metallic compound may be selected from TiN, TiC, and a combination thereof.
- the unpatterned scavenging metal layer 50 may include a metal in an elemental form and selected from Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce in this illustrative example.
- the first metallic compound of the unpatterned lower metal layer 40 and the second metallic compound of the unpatterned upper metal layer 60 are TiN and the unpatterned scavenging metal layer 50 is an aluminum layer including aluminum in elemental metal form.
- an unpatterned polycrystalline semiconductor layer 70 is deposited directly on the top surface of the unpatterned upper metal layer 60 , for example, by low pressure chemical vapor deposition (LPCVD), rapid thermal chemical vapor deposition (RTCVD), or plasma enhanced chemical vapor deposition (PECVD).
- the unpatterned polycrystalline semiconductor layer 70 may comprise polysilicon, a polycrystalline silicon germanium alloy, a polycrystalline silicon carbon alloy, or a polycrystalline silicon germanium carbon alloy.
- the unpatterned polycrystalline semiconductor layer 70 may be formed as a doped polycrystalline semiconductor layer through in-situ doping.
- the unpatterned polycrystalline semiconductor layer 70 may be doped by ion implantation of dopant atoms after deposition of the unpatterned polycrystalline semiconductor layer 70 and prior to patterning of a gate electrode. Yet alternately, implantation of dopant ions may be performed on a remaining portion of the unpatterned polycrystalline semiconductor layer 70 after patterning of the gate electrode.
- the thickness of the unpatterned polycrystalline semiconductor layer 70 may be from 10 nm to 300 nm, and typically from 50 nm to 100 nm, although lesser and greater thicknesses are also contemplated herein.
- Embodiments in which the unpatterned polycrystalline semiconductor layer 70 is not formed and the stack of the unpatterned lower metal layer 40 , unpatterned scavenging metal layer 50 , and unpatterned upper metal layer 60 constitute a gate electrode layer.
- a photoresist layer (not shown) is applied to the top surface of the unpatterned polycrystalline semiconductor layer 70 and lithographically patterned to form a photoresist portion 77 (See FIG. 2 ), which has the shape of a gate electrode to be subsequently formed.
- the pattern in the photoresist portion 77 is transferred into the stack of the unpatterned polycrystalline semiconductor layer 70 , the unpatterned upper metal layer 60 , the unpatterned scavenging metal layer 50 , the unpatterned lower metal layer 40 , the unpatterned high-k dielectric layer 30 , and the unpatterned chemical oxide layer 20 .
- the pattern transfer may be effected by an anisotropic etch that employs the photoresist portion 77 as an etch mask.
- the remaining portions of the unpatterned polycrystalline semiconductor layer 70 , the unpatterned upper metal layer 60 , the unpatterned scavenging metal layer 50 , the unpatterned lower metal layer 40 constitute a gate electrode, which include a polycrystalline semiconductor layer 70 , an upper metal layer 60 , a scavenging metal layer 50 , and lower metal layer 40 .
- the gate electrode ( 40 , 50 , 60 , 70 ) is typically patterned as a line having a width, which is the width of the lower metal layer 40 as shown in FIG. 2 and is referred to as a “gate length.”
- the gate length depends on the device characteristics and may be from the lithographically printable smallest dimension to 10 microns. Typically, the gate length is from 32 nm to 1 micron, although lesser and greater gate lengths are also contemplated herein.
- the remaining portion of the unpatterned high-k dielectric layer 30 is herein referred to as a high-k dielectric layer 30
- the remaining portion of the unpatterned chemical oxide layer 20 is herein referred to as a chemical oxide layer 20
- the high-k dielectric layer 30 and the chemical oxide layer 20 collectively constitute a gate dielectric ( 20 , 30 ).
- the gate dielectric ( 20 , 30 ) has an equivalent oxide thickness (EOT) less than 1.2 nm, and may have an EOT less than 1.0 nm.
- EOT equivalent oxide thickness
- the photoresist portion 77 is subsequently removed, for example, by ashing.
- the sidewalls of the gate electrode ( 40 , 50 , 60 , 70 ) and the gate dielectric ( 20 , 30 ) are typically substantially vertical, i.e., parallel to the surface normal of the exposed surface of the substrate semiconductor layer 10 . Further, the sidewalls of the gate electrode ( 40 , 50 , 60 , 70 ) and the gate dielectric ( 20 , 30 ) are typically substantially vertically coincident with each other.
- source and drain extension regions 18 are formed by ion implantation that employs the gate electrode ( 40 , 50 , 60 , 70 ) and the gate dielectric ( 20 , 30 ) as an implantation mask.
- the source and drain extension regions 18 have a doping of the opposite conductivity type of the doping of the substrate semiconductor layer 10 .
- the substrate semiconductor layer 10 has a p-type doping
- the source and drain extension regions 18 have an n-type doping, and vice versa.
- the dopant concentration of the source and drain extension regions 18 may be from 1.0 ⁇ 10 19 /cm 3 to 1.0 ⁇ 10 21 /cm 3 , although lesser and greater dopant concentrations are contemplated herein also.
- Each of the source and drain extension regions 18 abut peripheral portions of the gate dielectric ( 20 , 30 ).
- a halo implantation may be performed at this step to introduce dopants of the same conductivity type as the doping of the substrate semiconductor layer 10 to volumes of the substrate semiconductor layer 10 located underneath peripheral portions of the gate electrode ( 40 , 50 , 60 , 70 ) and the gate dielectric ( 20 , 30 ).
- a gate spacer 80 laterally abutting the sidewalls of the gate electrode ( 40 , 50 , 60 , 70 ) and the sidewalls of the gate dielectric ( 20 , 30 ) is formed, for example, by deposition of a conformal dielectric material layer followed by an anisotropic ion etching.
- the portion of the dielectric material layer that is formed directly on the sidewalls of the gate electrode ( 40 , 50 , 60 , 70 ) and the gate dielectric ( 20 , 30 ) remain after the anisotropic etch to constitute a gate spacer 80 that laterally surrounds the gate electrode ( 40 , 50 , 60 , 70 ) and the gate dielectric ( 20 , 30 ).
- the gate spacer 80 includes an oxygen-impermeable material such as silicon nitride.
- source and drain regions 19 are formed by ion implantation that employs the gate electrode ( 40 , 50 , 60 , 70 ) and the gate spacer 80 as an implantation mask.
- the source and drain regions 19 have a doping of the same conductivity type as the doping of the source and drain extension regions 18 .
- the dopant concentration of the source and drain regions 19 may be from 1.0 ⁇ 10 19 /cm 3 to 1.0 ⁇ 10 21 /cm 3 , although lesser and greater dopant concentrations are contemplated herein also.
- An activation anneal is thereafter performed to activate electrical dopants implanted within the source and drain extension regions 18 and the source and drain regions 19 .
- Such an activation anneal is typically performed in an oxidizing ambient during which the compositional integrity of the high-k dielectric layer may be compromised in prior art semiconductor structures.
- the thickening of the chemical oxide layer 20 if present, is prevented in the exemplary semiconductor structure in FIG. 4 because the scavenging metal layer 50 consumes oxygen that diffused downward from the polycrystalline semiconductor layer 70 .
- a chemical oxide layer 20 is absent in the exemplary structure of the present invention, formation of an interfacial semiconductor oxide layer between the substrate semiconductor layer 10 and the high-k dielectric layer 30 is prevented by the same mechanism. Therefore, the flat band voltage of the structure including the substrate semiconductor layer 10 , the gate dielectric ( 20 , 30 ), and the lower metal gate 40 is not affected during the activation anneal or in any other thermal processing step in an oxidizing ambient.
- a metal layer (not shown) is formed over the entire exposed top surfaces of the exemplary semiconductor structure and reacted with exposed semiconductor materials to form various metal semiconductor alloy regions.
- the metal layer comprises a metal that reacts with the semiconductor material in the source and drain regions 19 and the polycrystalline semiconductor layer 70 .
- Non-limiting exemplary materials for the metal layer include nickel, platinum, palladium, cobalt or a combination thereof.
- the formation of the metal layer may be effected by physical vapor deposition (PVD), chemical vapor deposition (CVD), or atomic layer deposition (ALD).
- PVD physical vapor deposition
- CVD chemical vapor deposition
- ALD atomic layer deposition
- the metal layer may be deposited in a conformal or non-conformal manner. Preferably, the metal deposition is substantially conformal.
- the exposed semiconductor surfaces in direct contact with the metal layer are metallized by reacting with the metal in the metal layer during a metallization anneal.
- the metallization is effected by an anneal at a temperature from 350° C. to 550° C., which is typically performed in an inert gas atmosphere, e.g., He, Ar, N 2 , or forming gas.
- the anneal is performed at a temperature from 400° C. to 500° C.
- a continuous heating at a constant temperature or various ramping in temperature may be employed.
- the metallization may further be effected by an additional anneal at a temperature from 400° C. to 750° C., and preferably from 500° C. to 700° C.
- etch which may be a wet etch.
- a typical etchant for such a wet etch employs aqua regia.
- the metallization forms source and drain metal semiconductor alloy regions 89 directly on each of the source and drain regions 19 . Further, a gate metal semiconductor alloy region 87 is formed directly on the top surface of the polycrystalline semiconductor layer 70 .
- a dielectric material layer 92 is deposited over the entirety of the top surfaces of the exemplary semiconductor structure.
- the dielectric material layer 60 comprises a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof.
- the dielectric material layer 60 includes a mobile ion barrier layer (not shown).
- the mobile ion barrier layer typically comprises an impervious dielectric material such as silicon nitride and directly contacts the various metal semiconductor alloy regions ( 89 , 87 ).
- the dielectric material layer 60 may additionally include, for example, a spin-on-glass and/or chemical vapor deposition (CVD) oxide such as undoped silicate glass (USG), borosilicate glass (BSG), phosphosilicate glass (PSG), fluorosilicate glass (FSG), borophosphosilicate glass (BPSG), or a combination thereof.
- CVD chemical vapor deposition
- the dielectric material layer 60 may comprise a low-k dielectric material having a dielectric constant less than 3.9 (the dielectric constant of silicon oxide), and preferably less than 2.5.
- exemplary low-k dielectric materials include organosilicate glass (OSG) and SiLKTM.
- the dielectric material layer 60 is subsequently planarized to form a substantially planar top surface.
- Source and drain contact vias 93 and a gate contact via 95 are formed through the dielectric material layer 60 to provide electrical contact to the source and drain regions 19 , respectively, and to the gate electrode ( 40 , 50 , 60 , 70 ).
- the exemplary semiconductor structure in FIG. 4 functions as a field effect transistor having a high-k gate dielectric and a metal gate.
- the presence of the scavenging metal layer 50 within the gate electrode ( 40 , 50 , 60 , 70 ) prevents oxygen atoms that diffuse down the polycrystalline semiconductor layer 70 from passing into the lower metal layer 40 because the oxygen atoms are scavenged by the scavenging metal layer 50 . Therefore, the field effect transistor provides a superior reliability against oxygen diffusion that may degrade or alter the device parameters of the field effect transistor.
- the amount of change in Gibbs free energy per oxygen atom during oxidation of various metals is shown within a temperature range from 300 K to 2,200 K.
- a reaction having a more negative change in Gibbs free energy per oxygen atom competes with another reaction having a less negative change in Gibbs free energy per oxygen atom for a limited supply of reactants, the reaction with the more negative change in Gibbs free energy dominates the reaction and consumes a prevailing majority of the available reactants.
- oxygen atoms or oxygen molecules that diffuse through the polycrystalline semiconductor layer 70 See FIG.
- elemental metals such as Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce have more negative changes in Gibbs free energy relative to typical transition metals such as Ti and Ta. Therefore, elemental metals such as Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce effectively function as the scavenging material for the scavenging metal layer 50 (See FIG. 4 ).
- a first curve 610 shows the capacitance for a reference gate electrode including an 7 nm thick TiN layer and a polycrystalline semiconductor layer formed directly thereupon according to the prior art.
- a second curve 620 shows the capacitance for an exemplary gate electrode according to the present invention that includes a stack, from bottom to top, of a 3.5 nm thick TiN layer as a lower metal layer, a 1.0 nm Ti layer as a scavenging metal layer, a 3.5 nm thick TiN layer an upper metal layer, and a polycrystalline semiconductor layer.
- a third curve 630 shows the capacitance for another exemplary gate electrode according to the present invention that includes a stack, from bottom to top, of a 3.5 nm thick TiN layer as a lower metal layer, a 1.0 nm Al layer as a scavenging metal layer, a 3.5 nm thick TiN layer an upper metal layer, and a polycrystalline semiconductor layer.
- a fourth curve 640 shows the capacitance for an counterexample gate electrode that was formed against the teaching of the instant invention by includes a stack, from bottom to top, of a 3.5 nm thick TiN layer as a lower metal layer, a 1.0 nm Ta layer as a scavenging metal layer, a 3.5 nm thick TiN layer an upper metal layer, and a polycrystalline semiconductor layer.
- Ta has less decrease in Gibbs free energy than Ti so that use of Ta as a scavenging material layer should be avoided if the lower metal layer and the upper metal layer include TiN according to the present invention.
- the structure of the counterexample gate electrode is not desirable.
- a HfO 2 layer was employed as a high-k dielectric layer, which was formed between a substrate semiconductor layer and each gate electrode. All four gate electrode structures were subjected to an activation anneal at a temperature about 1,000° C. in an oxidizing ambient.
- the effective capacitance achieved by the counterexample gate stacks is less than the capacitance achieved by the prior art gate stack, as demonstrated by the first curve 610 .
- the equivalent oxide thickness (EOT) achieved by the counterexample gate stack is greater than the EOT achieved by the prior art gate stack, providing worse performance.
- the scavenging metal layer 50 captures oxygen atoms from above and from below, i.e, the scavenging metal layer 50 captures oxygen atoms as the oxygen atoms diffuse through the polycrystalline semiconductor layer 70 and the upper metal layer 60 in the gate electrode toward the high-k gate dielectric 30 . Because the scavenging metal layer is more prone to oxide formation than the lower metal layer 40 and the upper metal layer 50 , the oxygen atoms are consumed within the scavenging metal layer 50 and the oxygen atoms do not reach the high-k gate dielectric 30 .
- the scavenging metal layer 50 actively reduces the thickness of the chemical oxide layer 20 underneath the high-k dielectric 30 as additional oxygen atoms migrate toward the chemical oxide layer 20 from below or from the side of the chemical oxide layer 20 .
- Such migrating oxygen atoms are captured by the scavenging metal layer 50 instead of being incorporated into the chemical oxide layer 20 .
- the thickness of the chemical oxide layer 20 is reduced as a significant portion of the oxygen atoms in the chemical oxide layer 20 is consumed by the scavenging metal layer 50 .
- the field effect transistor maintains a constant threshold voltage even after a high temperature anneal in oxygen ambient.
- the equivalent oxide thickness (EOT) of a composite gate dielectric stack is reduced, thereby enhancing the scalability of the composite gate dielectric stack and performance of the field effect transistor.
- FIGS. 7A and 7B are each a vertical cross-sectional view of the semiconductor structure after patterning of the gate dielectric and the gate electrode similar to FIG. 2 , and show an n-type FET (nFET 100 , left) and a p-type FET (pFET 200 , right), where the pFET 200 is to be formed on an epitaxially grown island 15 A comprised of SiGe ( FIG. 7A ) or on a Ge implanted or diffused region 15 B within the Si substrate 10 ( FIG. 7B ).
- the SiGe island 15 A and the SiGe region 15 B each function as the channel for the resulting pFET transistor after further processing in accordance with the process shown and described for FIGS. 3-6 above.
- the SiGe island 15 A and the SiGe region 15 B can each have a thickness of up to, for example, about 100 ⁇ .
- the ratio of Ge to Si in this region can be in a range of, for example, about slightly more than zero to about 40%.
- the SiGe channel region can be doped n-type with, for example, arsenic.
- FIG. 7 The structure of FIG. 7 is achieved by the selective growth of the SiGe channel in the pFET active area ( FIG. 7A ) over the Si substrate 10 , or by the selective introduction of Ge into the Si substrate 10 , such as by implantation or diffusion.
- the substrate 10 can be Si
- the layer 20 can be a chemical oxide layer such as SiO 2
- the layer 30 can be a high dielectric constant (high-k) dielectric layer formed directly on the top surface of the chemical oxide layer 20
- the layer 40 can be TiN (e.g., thickness in a range of about 20 ⁇ to about 100 ⁇ ) or TiC
- the layer 50 contains the scavenging metal M which can be Al (e.g., thickness in a range of about 1 ⁇ to about 20 ⁇ )
- the layer 60 can be TiN (e.g., thickness in a range of about 20 ⁇ to about 100 ⁇ ) or TiC
- the layer 70 can be a polycrystalline semiconductor layer having the photoresist portion 77 which has the shape of a gate electrode to be subsequently formed.
- An additional STI 12 can be location between the nFET 100 and the pFET 200 .
- the metal layer 50 can be an elemental metal layer comprised of Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce.
- the same metal gate stack, as described above, is used for both the nFET 100 and the pFET 200 .
- FIGS. 8 and 9 present graphs ( FIG. 8 , accumulation CV and FIG. 9 , XPS on exposed high-k dielectric) that show the effect of oxygen scavenging at the SiGe interface region between the SiGe region 15 A, 15 B and the overlying dielectric (e.g., SiO 2 ) layer 20 for an exemplary and non-limiting case of a Si—Ge ratio of 75-25.
- the equivalent oxide thickness (EOT) scaling (which correlates with T inv ) and positive flat band voltage (V th ) shift (i.e., pFET V t lowering) were obtained with the Aluminum-doped TiN electrode on the SiGe (Ge 25%) channel 15 A or 15 B.
- the electrical data correlate with a reduction of the Ge—O bond intensity due to scavenging by the M layer 50 .
- Note in FIG. 8 the approximately 200 mV shift in gate bias for a given value of capacitance between the TiN-only (without the SiGe layer present) and the Al-doped TiN gate electrode (with the SiGe layer present).
- the chart in FIG. 8 The chart in FIG.
- the SiGe channel can provide a roughly 350 mV shift, while an additional about 200 mV shift is obtained by the use of the SiGe channel with the Al-doped TiN gate electrode.
- FIGS. 10A and 10B are graphs depicting CMOS characteristics for the nFET 100 , with the Si channel, and the pFET 200 , with the SiGe channel, and show the T in , scaling and V t lowering that are obtained for the pFET 200 (as compared to a prior art) while changing by only a small amount the nFET V t (as compared to a prior art) by the use of the Al-doped TiN gate electrode.
- FIG. 10 clearly shows that the goal of making the Vt of the nFET 100 and the pFET 200 approximately equal is achieved by the use of the exemplary embodiments of this invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
A structure has a semiconductor substrate and an nFET and a pFET disposed upon the substrate. The pFET has a semiconductor SiGe channel region formed upon or within a surface of the semiconductor substrate and a gate dielectric having an oxide layer overlying the channel region and a high-k dielectric layer overlying the oxide layer. A gate electrode overlies the gate dielectric and has a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The metal layer scavenges oxygen from the substrate (nFET) and SiGe (pFET) interface with the oxide layer resulting in an effective reduction in Tinv and Vt of the pFET, while scaling Tiny and maintaining Vt for the nFET, resulting in the Vt of the pFET becoming closer to the Vt of a similarly constructed nFET with scaled Tinv values.
Description
- This patent application is related to commonly assigned U.S. patent application Ser. No. 12/487,248, filed 18 Jun. 2009, entitled “Scavenging Metal Stack for a High-K Gate Dielectric”, by Takashi Ando; Changhwan Choi; Martin M. Frank; and Vijay Narayanan.
- The present invention generally relates to semiconductor devices, and particularly to a metal gate stack included in an electrode over a high-k gate dielectric in a pMOSFET, and methods of manufacturing the pMOSFET.
- Scaling of the gate dielectric is a challenge in improving performance of advanced field effect transistors. In a field effect transistor (FET) employing a silicon oxide based gate dielectric, the leakage current through the gate dielectric increases exponentially with the decrease in the thickness of the gate dielectric. Such devices typically become too leaky to provide high performance at or below the thickness of 1.1 nm for the silicon oxide gate dielectric.
- High-k gate dielectric provides a technique to scale down the thickness of the gate dielectric without an excessive increase in the gate leakage current. However, high-k gate dielectric materials are prone to a change in the equivalent oxide thickness (EOT) because high-k gate dielectric materials react with oxygen that diffuses through the gate electrode or gate spacers. Regrowth of a silicon oxide interfacial layer between a silicon substrate and the high-k gate dielectric during high-temperature processing steps is a major obstacle to successful equivalent oxide thickness scaling. Particularly, typical stacks of a high-k gate dielectric and a metal gate are known to be susceptible to anneals at various temperatures in an oxygen ambient. Such anneals in an oxygen ambient result in regrowth of the silicon oxide interfacial layer and/or instability of the threshold voltage of field effect transistors.
- In addition, the inversion oxide thickness Tinv and pFET threshold voltage (Vt) show a tradeoff relationship for a high-k/metal gate stack. Reference in this regard can be made to, for example, High-Performance High-k/Metal Gates for 45 nm CMOS and Beyond with Gate-First Processing M. Chudzik et al., VLSI symposium 2007, p. 194-195.
- An aspect of the embodiments of this invention includes a semiconductor substrate comprising a semiconductor material; a p-type field effect transistor (pFET) disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of SiGe formed upon or within a surface of the semiconductor substrate; a gate dielectric comprising an oxide layer overlying the semiconductor channel region comprised of SiGe and a high dielectric constant (high-k) dielectric layer overlying the oxide layer; and a gate electrode overlying the high-k dielectric layer and comprising a lower metal layer abutting the high-k dielectric layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The scavenging metal layer includes a metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive. The structure further comprises an n-type field effect transistor (nFET) also disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of Si, where the gate electrode of the nFET also comprises the scavenging metal layer.
- According to a further aspect of the embodiments of this invention there is provided a method of forming a semiconductor structure. The method comprises providing a semiconductor substrate comprising a semiconductor material; forming a p-type field effect transistor (pFET) disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of SiGe formed upon or within a surface of the semiconductor substrate; forming a gate dielectric comprising an oxide layer overlying the semiconductor channel region comprised of SiGe and a high dielectric constant (high-k) dielectric layer overlying the oxide layer; and forming a gate electrode overlying the high-k dielectric layer and comprising a lower metal layer abutting the high-k dielectric layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The scavenging metal layer includes a metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive. The method further comprises forming an n-type field effect transistor (nFET) to be disposed upon the semiconductor substrate and comprising a semiconductor channel region comprised of Si, where the gate electrode of the nFET also comprises the scavenging metal layer.
- According to a still further aspect of the embodiments of this invention there is provided a structure that comprises a substrate; an n-type field effect transistor (nFET) disposed over the substrate and a p-type field effect transistor (pFET) disposed over the substrate. The nFET comprises a Si channel region, a gate dielectric having an oxide layer overlying the channel region, a high-k dielectric layer overlying the oxide layer, and a gate electrode overlying the gate dielectric. The gate electrode comprises a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The scavenging metal layer scavenges oxygen from an interface between the Si channel region and the oxide layer. The pFET comprises a SiGe channel region, a gate dielectric having an oxide layer overlying the channel region, a high-k dielectric layer overlying the oxide layer, and a gate electrode overlying the gate dielectric. The gate electrode comprises a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer. The scavenging metal layer scavenges oxygen from an interface between the SiGe channel region and the oxide layer.
-
FIG. 1 is a vertical cross-sectional view of a first exemplary semiconductor structure after formation of a high-k dielectric layer, a lower metal layer, a scavenger metal layer, an upper metal layer, and a polycrystalline semiconductor layer. -
FIG. 2 is a vertical cross-sectional view of the first exemplary semiconductor structure after patterning of a gate dielectric and a gate electrode. -
FIG. 3 is a vertical cross-sectional view of the first exemplary semiconductor structure after formation of a gate spacer and source and drain extension regions. -
FIG. 4 is a vertical cross-sectional view of the first exemplary semiconductor structure after formation of silicide regions, a dielectric material layer, and contact vias. -
FIG. 5 is a graph showing the amount of change in Gibbs free energy during oxidation of various metals. -
FIG. 6 is a graph showing capacitance as a function of the gate voltage for four types of metal gate electrodes. -
FIGS. 7A and 7B , collectively referred to asFIG. 7 , are each a vertical cross-sectional view of the semiconductor structure after patterning of the gate dielectric and the gate electrode similar toFIG. 2 , and show an n-type FET (nFET, left) and a p-type FET (pFET, right), where the pFET is to be formed on an epitaxially formed island comprised of SiGe (FIG. 7A ) or on a Ge implanted or diffused region within the Si substrate (FIG. 7B ). -
FIGS. 8 and 9 are graphs showing accumulation CV and XPS on exposed high-k dielectric, respectively, and illustrate the effect of oxygen scavenging at a SiGe interface region between SiGe and overlying dielectric. -
FIGS. 10A and 10B , collectively referred to asFIG. 10 , are graphs depicting CMOS characteristics for an nFET, with a Si channel, and a pFET, with a SiGe channel, and show Tinv scaling and Vt lowering that are obtained for the pFET while changing by only a small amount the nFET Vt. - A SiGe channel is effective to lower pFET Vt but is accompanied with an increase in Tinv resulting in a Tinv delta between an nFET and the pFET. Reference in this regard can be made, for example, to Band-Engineering Low PMOS Vt with High-k/Metal Gates Featured in a Dual Channel CMOS Integration Scheme, H. Rusty Harris et al., VLSI symposium 2007, p. 154-155.
- Metal-induced interfacial layer scavenging is effective for Tinv scaling, however the impact on Vt is basically negligible for a Si channel.
- The exemplary embodiments of this invention provide a technique that enables Tin, scaling and Vt lowering simultaneously for a pFET, while scaling Tinv and maintaining Vt for an nFET.
- An aspect of the embodiments of this invention deposits a metal doped TiN electrode on an nFET area with a Si channel and also on a pFET area with a SiGe channel. A further aspect of this invention deposits a Ti-rich TiN/M/TiN electrode on a high-k gate dielectric, where M: Metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive. In these embodiments the nFET active area contains a Si channel while the pFET active area contains a SiGe or a Ge channel. A conventional self-aligned gate-first process can then be performed after the metal doped TiN deposition process is completed. The metal M of the TiN/M/TiN electrode serves to scavenge oxygen from a SiGe interface with an overlying dielectric layer (e.g., SiO2) resulting in an effective reduction in Tinv and Vt of the pFET. This beneficially permits the Vt of the pFET to be made similar to the Vt of the nFET.
- The embodiments of this invention can use to advantage a process disclosed in commonly assigned U.S. patent application Ser. No. 12/487,248, filed 18 Jun. 2009, entitled “Scavenging Metal Stack for a High-K Gate Dielectric”, Takashi Ando; Changhwan Choi; Martin M. Frank; and Vijay Narayanan (US Patent Publication 2010/00320547 A1). A description of this technique will be provided first with reference to
FIGS. 1-6 , in which corresponding elements are referred to by like reference numerals. The Figures are not drawn to scale. - As is described in commonly assigned U.S. patent application Ser. No. 12/487,248, a stack of a high-k gate dielectric and a metal gate structure includes a lower metal layer, a scavenging metal layer, and an upper metal layer. The scavenging metal layer meets the following two criteria 1) a metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including the scavenging metal and oxygen to form the scavenging metal in elemental form and silicon dioxide, is positive. 2) a metal that has a more negative Gibbs free energy per oxygen atom for formation of oxide than the material of the lower metal layer and the material of the upper metal layer. The scavenging metal layer meeting these criteria captures oxygen atoms as the oxygen atoms diffuse through the gate electrode toward the high-k gate dielectric. In addition, the scavenging metal layer remotely reduces the thickness of a silicon oxide interfacial layer underneath the high-k dielectric. As a result, the equivalent oxide thickness (EOT) of the total gate dielectric is reduced and the field effect transistor formed on a Si channel maintains a constant threshold voltage even after high temperature processes during CMOS integration.
- Referring to
FIG. 1 , an exemplary semiconductor structure comprises asemiconductor substrate 8 and a stack of material layers formed thereupon. Thesemiconductor substrate 8 contains asubstrate semiconductor layer 10 and shallowtrench isolation structures 12. Thesubstrate semiconductor layer 10 has a semiconductor material, which may be selected from, but is not limited to, silicon, silicon carbon alloy, gallium arsenide, indium arsenide, indium phosphide, III-V compound semiconductor materials, II-VI compound semiconductor materials, organic semiconductor materials, and other compound semiconductor materials. Typically, the semiconductor material of thesubstrate semiconductor layer 10 comprises silicon, and more typically, the semiconductor material of thesubstrate semiconductor layer 10 is silicon. - In case the semiconductor material of the
substrate semiconductor layer 10 is a single crystalline silicon-containing semiconductor material, the single crystalline silicon-containing semiconductor material is preferably selected from single crystalline silicon, a single crystalline silicon carbon alloy, a single crystalline silicon germanium alloy, and a single crystalline silicon germanium carbon alloy. - The semiconductor material of the
substrate semiconductor layer 10 may be appropriately doped either with p-type dopant atoms or with n-type dopant atoms. The dopant concentration of thesubstrate semiconductor layer 10, and may be from 1.0×1015/cm3 to 1.0×1019/cm3, and typically from 1.0×1016/cm3 to 3.0×1018/cm3, although lesser and greater dopant concentrations are contemplated herein also. Preferably, thesubstrate semiconductor layer 10 is single crystalline. Thesemiconductor substrate 8 may be a bulk substrate, a semiconductor-on-insulator (SOI) substrate, or a hybrid substrate. Thesemiconductor substrate 8 may, or may not, have a built-in stress in thesubstrate semiconductor layer 10. While the process is described below with a bulk substrate, implementation of the process on an SOT substrate or on a hybrid substrate is explicitly contemplated herein. The shallowtrench isolation structure 12 comprises a dielectric material such as silicon oxide or silicon nitride, and is formed by methods well known in the art. - An unpatterned
chemical oxide layer 20 may be formed on the exposed semiconductor surface of thesubstrate semiconductor layer 10. An unpatterned high dielectric constant (high-k)dielectric layer 30 is formed directly on the top surface of the unpatternedchemical oxide layer 20. Even in the case the unpatternedchemical oxide layer 20 is not formed, the deposition of the unpatterned high dielectric constant (high-k)dielectric layer 30 and subsequent thermal processes lead to the formation of pre-existing interfacial layer between thesubstrate semiconductor layer 10 and the unpatterned high dielectric constant (high-k)dielectric layer 30 The unpatternedchemical oxide layer 20 may be fanned by treatment of exposed semiconductor surfaces with a chemical. For example, the process step for this wet chemical oxidation may include treating a cleaned semiconductor surface (such as a semiconductor surface treated with hydrofluoric acid) with a mixture of ammonium hydroxide, hydrogen peroxide and water (in a 1:1:5 ratio) at a room temperature. Alternately, the chemical oxide layer can also be formed by treating the HF-last semiconductor surface in ozonated aqueous solutions, with the ozone concentration usually varying from, but not limited to: 2 parts per million (ppm) to 40 ppm. The unpatternedchemical oxide layer 20 helps minimize mobility degradation in thesubstrate semiconductor layer 10 due to high-k dielectric material in the unpatterned high-k dielectric layer 30. However, the thickness of the unpatternedchemical oxide layer 20 is thicker than necessary and increases the equivalent oxide thickness (EOT) of a composite dielectric stack, which includes the unpatternedchemical oxide layer 20 and the unpatterned high-k dielectric layer 30. The scalability of EOT is limited by the thickness of the unpatternedchemical oxide layer 20. In case the substrate semiconductor layer is a silicon layer, the unpatternedchemical oxide layer 20 is a silicon oxide layer. Typically, the thickness of the unpatternedchemical oxide layer 20 is from 0.1 nm to 0.4 nm, although lesser and greater thicknesses are also contemplated herein. - A high dielectric constant (high-k)
dielectric layer 30 is formed on a top surface of thesemiconductor substrate 8 over thechemical oxide layer 20. The unpatterned high-k dielectric layer 30 comprises a high dielectric constant (high-k) material comprising a dielectric metal oxide and having a dielectric constant that is greater than the dielectric constant of silicon nitride of 7.5. The unpatterned high-k dielectric layer 30 may be formed by methods well known in the art including, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), molecular beam deposition (MBD), pulsed laser deposition (PLD), liquid source misted chemical deposition (LSMCD), etc. - The dielectric metal oxide comprises a metal and oxygen, and optionally nitrogen and/or silicon. Exemplary high-k dielectric materials include HfO2, ZrO2, La2O3, Al2O3, TiO2, SrTiO3, LaAlO3, Y2O3, HfOxNy, ZrOxNy, La2OxNy, Al2OxNy, TiOxNy, SrTiOxNy, LaAlOxNy, Y2OxNy, a silicate thereof, and an alloy thereof. Each value of x is independently from 0.5 to 3 and each value of y is independently from 0 to 2. The thickness of the unpatterned high-
k dielectric layer 30 may be from 1 nm to 10 nm, and preferably from 1.5 nm to 3 nm. The unpatterned high-k dielectric layer 30 may have an effective oxide thickness (EOT) on the order of, or less than, 1 nm. - An unpatterned
lower metal layer 40 is deposited directly on the top surface of the unpatterned high-k dielectric layer 30. The unpatternedlower metal layer 40 may be formed, for example, by chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD). - The material of the unpatterned
lower metal layer 40 is herein referred to as a “first metallic compound” which may be a conductive transition metal nitride or a conductive transition metal carbide. The first metallic compound is a compound of a first metallic element selected from transition metals and a non-metallic element. If the non-metallic element is nitrogen, the first metallic compound is a transition metal nitride. If the non-metallic element is carbon, the first metallic compound is a transition metal carbide. For example, the first metallic compound may be selected from TiN, TiC, TaN, TaC, and a combination thereof. As used herein, transition metals include elements from Group 3B, 4B, 5B, 6B, 7B, 8B, 1B, and 2B and Lanthanides and Actinides in the Periodic Table of the Elements. The thickness of the unpatternedlower metal layer 40 may be from 1 nm to 10 nm, and preferably from 3 nm to 10 nm, although lesser and greater thicknesses are also contemplated herein. - An unpatterned
scavenging metal layer 50 is deposited directly on the top surface of the unpatternedlower metal layer 40. The unpatternedscavenging metal layer 50 may be formed, for example, by chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD). Preferably, the first exemplary semiconductor structure is transferred from a processing chamber that deposits the unpatternedlower metal layer 40 to another processing chamber that deposits the unpatternedscavenging metal layer 50 without breaking vacuum to prevent formation of any interfacial layer by oxidation or introduction of oxygen into the unpatternedlower metal layer 40. - The material of the unpatterned
scavenging metal layer 50 “scavenges” impurity oxygen from neighboring metallic layers during subsequent processing. For the unpatternedscavenging metal layer 50 to effectively scavenge impurity oxygen in subsequent processing steps, it is necessary that introduction of oxygen into the unpatternedscavenging metal layer 50 is suppressed during the formation step. Further, it is necessary to select the material for the unpatternedscavenging metal layer 50 so that the material of the unpatternedscavenging metal layer 50 effectively scavenges impurity oxygen atoms from the unpatternedlower metal layer 40 and an unpatternedupper metal layer 60 to be subsequently formed. - The unpatterned
scavenging metal layer 50 may include a metal in an elemental form. Typical elemental metals that may be selected for the unpatternedscavenging metal layer 50 include, but are not limited to, Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Dy, Lu, Er, Pr, and Ce. In one embodiment, the unpatternedscavenging metal layer 50 consists of at least one alkaline earth metal. In another embodiment, the unpatternedscavenging metal layer 50 consists of at least one transition metal. In yet another embodiment, the unpatternedscavenging metal layer 50 consists of a mixture of at least one alkaline earth metal and at least one transition metal. Preferably, the thickness of the unpatternedscavenging metal layer 50 may be from 0.1 nm to 3.0 nm, although lesser and greater thicknesses are also contemplated herein. - An unpatterned
upper metal layer 60 is deposited directly on the top surface of the unpatternedscavenging metal layer 50. The unpatternedupper metal layer 60 may be formed, for example, by chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD). Preferably, the first exemplary semiconductor structure is transferred from the processing chamber that deposits the unpatternedscavenging metal layer 50 to a processing chamber that deposits the unpatternedupper metal layer 60 without breaking vacuum to prevent formation of any interfacial layer by oxidation or introduction of oxygen into the unpatternedscavenging metal layer 50. - The material of the unpatterned
upper metal layer 60 is herein referred to as a “second metallic compound” which may be a conductive transition metal nitride or a conductive transition metal carbide. The second metallic compound is a compound of a second metallic element selected from transition metals and a non-metallic element. If the non-metallic element is nitrogen, the second metallic compound is a transition metal nitride. If the non-metallic element is carbon, the second metallic compound is a transition metal carbide. For example, the second metallic compound may be selected from TiN, TiC, TaN, TaC, and a combination thereof. The thickness of the unpatternedupper metal layer 60 may be from lower from 1 nm to 100 nm, and preferably from 3 nm to 10 nm, although lesser and greater thicknesses are also contemplated herein. - In one case, the first metallic compound and the second metallic compound are the same material. In another case, the first metal compound and the second metal compound are different materials.
- In one embodiment, the material for the unpatterned
scavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatternedscavenging metal layer 50 is equal to or more negative than Gibbs free energy per oxygen atom for formation of an oxide of the first elemental metal within the first metallic compound for the unpatternedlower metal layer 40. Further, the material for the unpatternedscavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatternedscavenging metal layer 50 is equal to or more negative than Gibbs free energy per oxygen atom for formation of an oxide of the second elemental metal within the second metallic compound for the unpatternedupper metal layer 60. - For example, the first and second metallic compounds may be selected from TiN, TiC, TaN, TaC, and a combination thereof. The unpatterned
scavenging metal layer 50 includes at least one of Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Dy, Lu, Er, Pr, and Ce. - In another embodiment, the material for the unpatterned
scavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatternedscavenging metal layer 50 is more negative than Gibbs free energy per oxygen atom for formation of an oxide of the first elemental metal within the first metallic compound for the unpatternedlower metal layer 40. Further, the material for the unpatternedscavenging metal layer 50 is selected such that Gibbs free energy per oxygen atom for formation of an oxide for the unpatternedscavenging metal layer 50 is more negative than Gibbs free energy per oxygen atom for formation of an oxide of the second elemental metal within the second metallic compound for the unpatternedupper metal layer 60. - In one illustrative example according to this embodiment, each of the first metallic compound and the second metallic compound may be selected from TaN, TaC, and a combination thereof. Because titanium (Ti) has a more negative Gibbs free energy per oxygen atom for formation of an oxide than tantalum (Ta), the unpatterned
scavenging metal layer 50 may comprise a metal in an elemental form and selected from Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, Dy, Lu, Er, Pr, and Ce in this illustrative example. - In another illustrative example according to this embodiment, at least one of the first metallic compound and the second metallic compound may be selected from TiN, TiC, and a combination thereof. The unpatterned
scavenging metal layer 50 may include a metal in an elemental form and selected from Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce in this illustrative example. - In a preferred example, the first metallic compound of the unpatterned
lower metal layer 40 and the second metallic compound of the unpatternedupper metal layer 60 are TiN and the unpatternedscavenging metal layer 50 is an aluminum layer including aluminum in elemental metal form. - Not necessarily but preferably, an unpatterned
polycrystalline semiconductor layer 70 is deposited directly on the top surface of the unpatternedupper metal layer 60, for example, by low pressure chemical vapor deposition (LPCVD), rapid thermal chemical vapor deposition (RTCVD), or plasma enhanced chemical vapor deposition (PECVD). The unpatternedpolycrystalline semiconductor layer 70 may comprise polysilicon, a polycrystalline silicon germanium alloy, a polycrystalline silicon carbon alloy, or a polycrystalline silicon germanium carbon alloy. The unpatternedpolycrystalline semiconductor layer 70 may be formed as a doped polycrystalline semiconductor layer through in-situ doping. Alternately, the unpatternedpolycrystalline semiconductor layer 70 may be doped by ion implantation of dopant atoms after deposition of the unpatternedpolycrystalline semiconductor layer 70 and prior to patterning of a gate electrode. Yet alternately, implantation of dopant ions may be performed on a remaining portion of the unpatternedpolycrystalline semiconductor layer 70 after patterning of the gate electrode. The thickness of the unpatternedpolycrystalline semiconductor layer 70 may be from 10 nm to 300 nm, and typically from 50 nm to 100 nm, although lesser and greater thicknesses are also contemplated herein. Embodiments in which the unpatternedpolycrystalline semiconductor layer 70 is not formed and the stack of the unpatternedlower metal layer 40, unpatterned scavengingmetal layer 50, and unpatternedupper metal layer 60 constitute a gate electrode layer. - A photoresist layer (not shown) is applied to the top surface of the unpatterned
polycrystalline semiconductor layer 70 and lithographically patterned to form a photoresist portion 77 (SeeFIG. 2 ), which has the shape of a gate electrode to be subsequently formed. The pattern in thephotoresist portion 77 is transferred into the stack of the unpatternedpolycrystalline semiconductor layer 70, the unpatternedupper metal layer 60, the unpatternedscavenging metal layer 50, the unpatternedlower metal layer 40, the unpatterned high-k dielectric layer 30, and the unpatternedchemical oxide layer 20. The pattern transfer may be effected by an anisotropic etch that employs thephotoresist portion 77 as an etch mask. - Referring to
FIG. 2 , the remaining portions of the unpatternedpolycrystalline semiconductor layer 70, the unpatternedupper metal layer 60, the unpatternedscavenging metal layer 50, the unpatternedlower metal layer 40 constitute a gate electrode, which include apolycrystalline semiconductor layer 70, anupper metal layer 60, a scavengingmetal layer 50, andlower metal layer 40. The gate electrode (40, 50, 60, 70) is typically patterned as a line having a width, which is the width of thelower metal layer 40 as shown inFIG. 2 and is referred to as a “gate length.” The gate length depends on the device characteristics and may be from the lithographically printable smallest dimension to 10 microns. Typically, the gate length is from 32 nm to 1 micron, although lesser and greater gate lengths are also contemplated herein. - The remaining portion of the unpatterned high-
k dielectric layer 30 is herein referred to as a high-k dielectric layer 30, and the remaining portion of the unpatternedchemical oxide layer 20 is herein referred to as achemical oxide layer 20. The high-k dielectric layer 30 and thechemical oxide layer 20 collectively constitute a gate dielectric (20, 30). Typically, the gate dielectric (20, 30) has an equivalent oxide thickness (EOT) less than 1.2 nm, and may have an EOT less than 1.0 nm. Thephotoresist portion 77 is subsequently removed, for example, by ashing. - The sidewalls of the gate electrode (40, 50, 60, 70) and the gate dielectric (20, 30) are typically substantially vertical, i.e., parallel to the surface normal of the exposed surface of the
substrate semiconductor layer 10. Further, the sidewalls of the gate electrode (40, 50, 60, 70) and the gate dielectric (20, 30) are typically substantially vertically coincident with each other. - Referring to
FIG. 3 , source anddrain extension regions 18 are formed by ion implantation that employs the gate electrode (40, 50, 60, 70) and the gate dielectric (20, 30) as an implantation mask. The source anddrain extension regions 18 have a doping of the opposite conductivity type of the doping of thesubstrate semiconductor layer 10. For example, if thesubstrate semiconductor layer 10 has a p-type doping, the source anddrain extension regions 18 have an n-type doping, and vice versa. The dopant concentration of the source anddrain extension regions 18 may be from 1.0×1019/cm3 to 1.0×1021/cm3, although lesser and greater dopant concentrations are contemplated herein also. Each of the source anddrain extension regions 18 abut peripheral portions of the gate dielectric (20, 30). - Optionally, a halo implantation may be performed at this step to introduce dopants of the same conductivity type as the doping of the
substrate semiconductor layer 10 to volumes of thesubstrate semiconductor layer 10 located underneath peripheral portions of the gate electrode (40, 50, 60, 70) and the gate dielectric (20, 30). - A
gate spacer 80 laterally abutting the sidewalls of the gate electrode (40, 50, 60, 70) and the sidewalls of the gate dielectric (20, 30) is formed, for example, by deposition of a conformal dielectric material layer followed by an anisotropic ion etching. The portion of the dielectric material layer that is formed directly on the sidewalls of the gate electrode (40, 50, 60, 70) and the gate dielectric (20, 30) remain after the anisotropic etch to constitute agate spacer 80 that laterally surrounds the gate electrode (40, 50, 60, 70) and the gate dielectric (20, 30). Preferably, thegate spacer 80 includes an oxygen-impermeable material such as silicon nitride. - Referring to
FIG. 4 , source and drainregions 19 are formed by ion implantation that employs the gate electrode (40, 50, 60, 70) and thegate spacer 80 as an implantation mask. The source and drainregions 19 have a doping of the same conductivity type as the doping of the source anddrain extension regions 18. The dopant concentration of the source and drainregions 19 may be from 1.0×1019/cm3 to 1.0×1021/cm3, although lesser and greater dopant concentrations are contemplated herein also. - An activation anneal is thereafter performed to activate electrical dopants implanted within the source and
drain extension regions 18 and the source and drainregions 19. Such an activation anneal is typically performed in an oxidizing ambient during which the compositional integrity of the high-k dielectric layer may be compromised in prior art semiconductor structures. In the present invention, however, the thickening of thechemical oxide layer 20, if present, is prevented in the exemplary semiconductor structure inFIG. 4 because the scavengingmetal layer 50 consumes oxygen that diffused downward from thepolycrystalline semiconductor layer 70. In case achemical oxide layer 20 is absent in the exemplary structure of the present invention, formation of an interfacial semiconductor oxide layer between thesubstrate semiconductor layer 10 and the high-k dielectric layer 30 is prevented by the same mechanism. Therefore, the flat band voltage of the structure including thesubstrate semiconductor layer 10, the gate dielectric (20, 30), and thelower metal gate 40 is not affected during the activation anneal or in any other thermal processing step in an oxidizing ambient. - A metal layer (not shown) is formed over the entire exposed top surfaces of the exemplary semiconductor structure and reacted with exposed semiconductor materials to form various metal semiconductor alloy regions. The metal layer comprises a metal that reacts with the semiconductor material in the source and drain
regions 19 and thepolycrystalline semiconductor layer 70. Non-limiting exemplary materials for the metal layer include nickel, platinum, palladium, cobalt or a combination thereof. The formation of the metal layer may be effected by physical vapor deposition (PVD), chemical vapor deposition (CVD), or atomic layer deposition (ALD). The metal layer may be deposited in a conformal or non-conformal manner. Preferably, the metal deposition is substantially conformal. - The exposed semiconductor surfaces in direct contact with the metal layer are metallized by reacting with the metal in the metal layer during a metallization anneal. The metallization is effected by an anneal at a temperature from 350° C. to 550° C., which is typically performed in an inert gas atmosphere, e.g., He, Ar, N2, or forming gas. Preferably, the anneal is performed at a temperature from 400° C. to 500° C. A continuous heating at a constant temperature or various ramping in temperature may be employed. The metallization may further be effected by an additional anneal at a temperature from 400° C. to 750° C., and preferably from 500° C. to 700° C. After the metallization process, unreacted portions of the metal layer, which are present over dielectric surfaces such as the
gate spacer 80 and the shallowtrench isolation structures 12, are removed selective to various metal semiconductor alloy portions by an etch, which may be a wet etch. A typical etchant for such a wet etch employs aqua regia. - The metallization forms source and drain metal
semiconductor alloy regions 89 directly on each of the source and drainregions 19. Further, a gate metal semiconductor alloy region 87 is formed directly on the top surface of thepolycrystalline semiconductor layer 70. - A
dielectric material layer 92 is deposited over the entirety of the top surfaces of the exemplary semiconductor structure. Thedielectric material layer 60 comprises a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, or a combination thereof. - Preferably, the
dielectric material layer 60 includes a mobile ion barrier layer (not shown). The mobile ion barrier layer typically comprises an impervious dielectric material such as silicon nitride and directly contacts the various metal semiconductor alloy regions (89, 87). Thedielectric material layer 60 may additionally include, for example, a spin-on-glass and/or chemical vapor deposition (CVD) oxide such as undoped silicate glass (USG), borosilicate glass (BSG), phosphosilicate glass (PSG), fluorosilicate glass (FSG), borophosphosilicate glass (BPSG), or a combination thereof. Alternately, thedielectric material layer 60 may comprise a low-k dielectric material having a dielectric constant less than 3.9 (the dielectric constant of silicon oxide), and preferably less than 2.5. Exemplary low-k dielectric materials include organosilicate glass (OSG) and SiLK™. - The
dielectric material layer 60 is subsequently planarized to form a substantially planar top surface. Source anddrain contact vias 93 and a gate contact via 95 are formed through thedielectric material layer 60 to provide electrical contact to the source and drainregions 19, respectively, and to the gate electrode (40, 50, 60, 70). - The exemplary semiconductor structure in
FIG. 4 functions as a field effect transistor having a high-k gate dielectric and a metal gate. The presence of the scavengingmetal layer 50 within the gate electrode (40, 50, 60, 70) prevents oxygen atoms that diffuse down thepolycrystalline semiconductor layer 70 from passing into thelower metal layer 40 because the oxygen atoms are scavenged by the scavengingmetal layer 50. Therefore, the field effect transistor provides a superior reliability against oxygen diffusion that may degrade or alter the device parameters of the field effect transistor. - Referring to
FIG. 5 , the amount of change in Gibbs free energy per oxygen atom during oxidation of various metals is shown within a temperature range from 300 K to 2,200 K. When a reaction having a more negative change in Gibbs free energy per oxygen atom competes with another reaction having a less negative change in Gibbs free energy per oxygen atom for a limited supply of reactants, the reaction with the more negative change in Gibbs free energy dominates the reaction and consumes a prevailing majority of the available reactants. In the case of oxidation reactions within the gate electrode (40, 50, 60, 70; SeeFIG. 4 ) during a high temperature anneal in an oxidizing ambient, oxygen atoms or oxygen molecules that diffuse through the polycrystalline semiconductor layer 70 (SeeFIG. 4 ) and the upper metal layer 60 (SeeFIG. 4 ) are the reactants that are supplied in a limited quantity. Within the temperature range of the activation anneal, which is typically performed at about 1,000° C., or about 1,300 K, elemental metals such as Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce have more negative changes in Gibbs free energy relative to typical transition metals such as Ti and Ta. Therefore, elemental metals such as Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce effectively function as the scavenging material for the scavenging metal layer 50 (SeeFIG. 4 ). - The Gibbs free energy changes for some selected elemental metal atoms by reaction Si+2/y MxOy→2x/y M+SiO2 are given in Table 1.
-
TABLE 1 The Gibbs free energy change at 1000K for the reaction Si + 2/y MxOy → 2x/y M + SiO2, wherein M is the elemental metal. Oxide Li2O Na2O K2O BeO MgO CaO SrO BaO ΔG +24.298 −20.061 −33.749 +32.405 +30.572 +39.914 +30.821 +21.338 Oxide Sc2O3 Y2O3 La2O3 Ce2O3 CeO2 Pr2O3 PrO2 Nd2O3 ΔG +123.11 +116.82 +98.470 +104.95 +36.209 +105.76 +13.559 +101.69 Oxide Sm2O3 EuO Eu2O3 Gd2O3 Tb2O3 TbO1.72 Dy2O3 Ho2O3 ΔG +103.94 +33.238 +61.901 +101.55 +114.76 +38.273 +112.44 +118.45 Oxide Er2O3 Tm2O3 Yb2O3 Lu2O3 ThO2 UO2 TiO Ti2O3 ΔG +112.03 +116.65 +103.83 +116.97 +75.513 +43.670 +17.749 +35.432 Oxide TiO2 ZrO2 HfO2 VO V2O3 VO2 NbO NbO2 ΔG +7.527 +42.326 +47.648 −5.314 −30.197 −43.280 −10.132 −13.872 Oxide Nb2O5 Ta2O5 Cr2O3 MoO2 MoO3 WO2 WO2.72 WO3 ΔG −86.228 −52.533 −55.275 −76.902 −143.78 −77.126 −107.20 −121.81 Oxide MnO Mn3O4 Mn2O3 TcO2 ReO2 FeO Fe3O4 Fe2O3 ΔG −12.752 −100.60 −94.689 −112.91 −126.66 −37.774 −160.08 −127.47 Oxide RuO2 OsO2 CoO Rh2O3 IrO2 NiO PdO Cu2O ΔG −142.27 −147.25 −48.041 −235.15 −159.47 −51.377 −86.066 −64.284 Oxide CuO ZnO CdO Al2O3 Ga2O3 In2O3 GeO2 SnO ΔG −71.375 −28.461 −49.433 +63.399 −79.411 −117.72 −82.124 −43.514 Oxide SnO2 PbO Pb3O4 PbO2 SbO2 Bi2O3 TeO2 ΔG −84.977 −59.249 −269.62 −155.79 −110.52 −191.85 −140.95 - Referring to
FIG. 6 , test data for capacitance as a function of the gate voltage is shown for three types of metal gate electrodes. Afirst curve 610 shows the capacitance for a reference gate electrode including an 7 nm thick TiN layer and a polycrystalline semiconductor layer formed directly thereupon according to the prior art. Asecond curve 620 shows the capacitance for an exemplary gate electrode according to the present invention that includes a stack, from bottom to top, of a 3.5 nm thick TiN layer as a lower metal layer, a 1.0 nm Ti layer as a scavenging metal layer, a 3.5 nm thick TiN layer an upper metal layer, and a polycrystalline semiconductor layer. Athird curve 630 shows the capacitance for another exemplary gate electrode according to the present invention that includes a stack, from bottom to top, of a 3.5 nm thick TiN layer as a lower metal layer, a 1.0 nm Al layer as a scavenging metal layer, a 3.5 nm thick TiN layer an upper metal layer, and a polycrystalline semiconductor layer. Afourth curve 640 shows the capacitance for an counterexample gate electrode that was formed against the teaching of the instant invention by includes a stack, from bottom to top, of a 3.5 nm thick TiN layer as a lower metal layer, a 1.0 nm Ta layer as a scavenging metal layer, a 3.5 nm thick TiN layer an upper metal layer, and a polycrystalline semiconductor layer. Ta has less decrease in Gibbs free energy than Ti so that use of Ta as a scavenging material layer should be avoided if the lower metal layer and the upper metal layer include TiN according to the present invention. Thus, the structure of the counterexample gate electrode is not desirable. A HfO2 layer was employed as a high-k dielectric layer, which was formed between a substrate semiconductor layer and each gate electrode. All four gate electrode structures were subjected to an activation anneal at a temperature about 1,000° C. in an oxidizing ambient. - Comparison of the four curves (610, 620, 630) show that the effective capacitance achieved by the gate stacks as described in commonly assigned U.S. patent application Ser. No. 12/487,248, as demonstrated by the second and third curves (620, 630), is greater than the capacitance achieved by the reference gate stack, as demonstrated by the
first curve 610. Thus, the equivalent oxide thickness (EOT) achieved by the gate stacks of the invention described in commonly assigned U.S. patent application Ser. No. 12/487,248 is less than the EOT achieved by the reference gate stack, providing enhanced performance. In other words, use of the gate electrode of the invention described in commonly assigned U.S. patent application Ser. No. 12/487,248, which includes a lower metal layer, a scavenging layer, and an upper metal layer, resulted in reduction of EOT compared with a prior art reference structure that employs a single metal layer instead. - In contrast, the effective capacitance achieved by the counterexample gate stacks, as demonstrated by the
fourth curve 640, is less than the capacitance achieved by the prior art gate stack, as demonstrated by thefirst curve 610. Thus, the equivalent oxide thickness (EOT) achieved by the counterexample gate stack is greater than the EOT achieved by the prior art gate stack, providing worse performance. Thus, the importance of the selection of the material for the scavenging metal layer is underscored by the counterexample. - The scavenging
metal layer 50 captures oxygen atoms from above and from below, i.e, the scavengingmetal layer 50 captures oxygen atoms as the oxygen atoms diffuse through thepolycrystalline semiconductor layer 70 and theupper metal layer 60 in the gate electrode toward the high-k gate dielectric 30. Because the scavenging metal layer is more prone to oxide formation than thelower metal layer 40 and theupper metal layer 50, the oxygen atoms are consumed within the scavengingmetal layer 50 and the oxygen atoms do not reach the high-k gate dielectric 30. In addition, the scavengingmetal layer 50 actively reduces the thickness of thechemical oxide layer 20 underneath the high-k dielectric 30 as additional oxygen atoms migrate toward thechemical oxide layer 20 from below or from the side of thechemical oxide layer 20. Such migrating oxygen atoms are captured by the scavengingmetal layer 50 instead of being incorporated into thechemical oxide layer 20. Not only growth of thechemical oxide layer 20 underneath the high-k gate dielectric 30 is prevented, but the thickness of thechemical oxide layer 20 is reduced as a significant portion of the oxygen atoms in thechemical oxide layer 20 is consumed by the scavengingmetal layer 50. Thus, the field effect transistor maintains a constant threshold voltage even after a high temperature anneal in oxygen ambient. By reducing and limiting the thickness of the thickness of thechemical oxide layer 20 than what is normally obtainable by conventional processing, the equivalent oxide thickness (EOT) of a composite gate dielectric stack, which includes thechemical oxide layer 20 and the high-k dielectric 30, is reduced, thereby enhancing the scalability of the composite gate dielectric stack and performance of the field effect transistor. -
FIGS. 7A and 7B , collectively referred to asFIG. 7 , are each a vertical cross-sectional view of the semiconductor structure after patterning of the gate dielectric and the gate electrode similar toFIG. 2 , and show an n-type FET (nFET 100, left) and a p-type FET (pFET 200, right), where thepFET 200 is to be formed on an epitaxially grownisland 15A comprised of SiGe (FIG. 7A ) or on a Ge implanted or diffused region 15B within the Si substrate 10 (FIG. 7B ). TheSiGe island 15A and the SiGe region 15B each function as the channel for the resulting pFET transistor after further processing in accordance with the process shown and described forFIGS. 3-6 above. TheSiGe island 15A and the SiGe region 15B can each have a thickness of up to, for example, about 100 Å. The ratio of Ge to Si in this region can be in a range of, for example, about slightly more than zero to about 40%. There is a Ge—O bond formed in an SiGe interface region between theSiGe region 15A, 15B and the overlying dielectric (e.g., SiO2)layer 20. The SiGe channel region can be doped n-type with, for example, arsenic. - The structure of
FIG. 7 is achieved by the selective growth of the SiGe channel in the pFET active area (FIG. 7A ) over theSi substrate 10, or by the selective introduction of Ge into theSi substrate 10, such as by implantation or diffusion. - In the illustrated structure of
FIG. 7 , and in accordance with the examples given above, thesubstrate 10 can be Si, thelayer 20 can be a chemical oxide layer such as SiO2, thelayer 30 can be a high dielectric constant (high-k) dielectric layer formed directly on the top surface of thechemical oxide layer 20, thelayer 40 can be TiN (e.g., thickness in a range of about 20 Å to about 100 Å) or TiC, thelayer 50 contains the scavenging metal M which can be Al (e.g., thickness in a range of about 1 Å to about 20 Å), thelayer 60 can be TiN (e.g., thickness in a range of about 20 Å to about 100 Å) or TiC, and thelayer 70 can be a polycrystalline semiconductor layer having thephotoresist portion 77 which has the shape of a gate electrode to be subsequently formed. Anadditional STI 12 can be location between thenFET 100 and thepFET 200. In general themetal layer 50 can be an elemental metal layer comprised of Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce. - As can be seen the same metal gate stack, as described above, is used for both the
nFET 100 and thepFET 200. -
FIGS. 8 and 9 present graphs (FIG. 8 , accumulation CV andFIG. 9 , XPS on exposed high-k dielectric) that show the effect of oxygen scavenging at the SiGe interface region between theSiGe region 15A, 15B and the overlying dielectric (e.g., SiO2)layer 20 for an exemplary and non-limiting case of a Si—Ge ratio of 75-25. The equivalent oxide thickness (EOT) scaling (which correlates with Tinv) and positive flat band voltage (Vth) shift (i.e., pFET Vt lowering) were obtained with the Aluminum-doped TiN electrode on the SiGe (Ge 25%)channel 15A or 15B. The electrical data correlate with a reduction of the Ge—O bond intensity due to scavenging by theM layer 50. Note inFIG. 8 the approximately 200 mV shift in gate bias for a given value of capacitance between the TiN-only (without the SiGe layer present) and the Al-doped TiN gate electrode (with the SiGe layer present). The chart inFIG. 9 shows the reduction in the GeO2/Ge ratio in the SiGe interface region between theSiGe region 15A, 15B and the overlying dielectric (e.g., SiO2)layer 20 for the case of a conventional TiN electrode (ratio is 2.43) versus the enhanced TiN/M/TiN (doped TiN) electrode (ratio is 1.39) that is disclosed in the commonly assigned U.S. patent application Ser. No. 12/487,248. - The SiGe channel can provide a roughly 350 mV shift, while an additional about 200 mV shift is obtained by the use of the SiGe channel with the Al-doped TiN gate electrode.
-
FIGS. 10A and 10B are graphs depicting CMOS characteristics for thenFET 100, with the Si channel, and thepFET 200, with the SiGe channel, and show the Tin, scaling and Vt lowering that are obtained for the pFET 200 (as compared to a prior art) while changing by only a small amount the nFET Vt (as compared to a prior art) by the use of the Al-doped TiN gate electrode.FIG. 10 clearly shows that the goal of making the Vt of thenFET 100 and thepFET 200 approximately equal is achieved by the use of the exemplary embodiments of this invention. - While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.
Claims (16)
1. A semiconductor structure comprising:
a semiconductor substrate comprising a semiconductor material;
a p-type field effect transistor (pFET) disposed upon said semiconductor substrate and comprising a semiconductor channel region comprised of SiGe formed upon or within a surface of said semiconductor substrate;
a gate dielectric comprising an oxide layer overlying said semiconductor channel region comprised of SiGe and a high dielectric constant (high-k) dielectric layer overlying said oxide layer; and
a gate electrode overlying said high-k dielectric layer and comprising a lower metal layer abutting said high-k dielectric layer, a scavenging metal layer abutting said lower metal layer, and an upper metal layer abutting said scavenging metal layer, wherein said scavenging metal layer includes a metal (M) for which the Gibbs free energy change of the chemical reaction, in which a silicon atom combines with a metal oxide material including said scavenging metal and oxygen to form said scavenging metal in elemental form and silicon dioxide, is positive; and
an n-type field effect transistor (nFET) also disposed upon said semiconductor substrate and comprising a semiconductor channel region comprised of Si, where the gate electrode of said nFET also comprises said scavenging metal layer.
2. The semiconductor structure of claim 1 , where said lower metal layer is comprised of TiN and has a thickness in a range of about 20 Å to about 100 Å and said scavenging metal layer is comprised of Al and has a thickness in a range of about 1 Å to about 20 Å.
3. The semiconductor structure of claim 2 , where said upper metal layer is comprised of TiN and has a thickness in a range of about 20 Å to about 100 Å.
4. The semiconductor structure of claim 2 , where said semiconductor channel region has a thickness of up to about 100 Å and has a ratio of Ge to Si in a range of about slightly more than zero to about 40%.
5. The semiconductor structure of claim 1 , where said lower metal layer and said upper metal layer are comprised of the same material.
6. The semiconductor structure of claim 1 , where said scavenging metal layer is comprised of a metal in an elemental form.
7. The semiconductor structure of claim 1 , where said lower metal layer and said upper metal layer are comprised of TiN or TiC, or a combination thereof, and wherein said scavenging metal layer includes a metal in an elemental form and is selected from Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce.
8. The semiconductor structure of claim 1 , where said high-k dielectric layer comprises one of HfO2, ZrO2, La2O3, Al2O3, TiO2, SrTiO3, LaAlO3, Y2O3, HfOxNy, ZrOxNy, La2OxNy, Al2OxNy, TiOxNy, SrTiOxNy, LaAlOxNy, Y2OxNy, a silicate thereof, an alloy thereof, and non-stoichiometric variants thereof, wherein each value of x is independently from 0.5 to 3 and each value of y is independently from 0 to 2.
9. The semiconductor structure of claim 1 , where said gate electrode further comprises a doped polycrystalline semiconductor layer vertically abutting said upper metal layer.
10. The semiconductor structure of claim 1 , further comprising a dielectric spacer laterally abutting and surrounding said gate electrode and comprising an oxygen-impermeable material; a source region located in said semiconductor substrate and abutting a peripheral portion of said gate spacer; and a drain region located in said semiconductor substrate and abutting another peripheral portion of said gate spacer.
11. The semiconductor structure of claim 1 , where the metal (M) scavenges oxygen from a SiGe interface with said overlying oxide layer resulting in an effective reduction in Tinv and Vt of the pFET.
12-21. (canceled)
22. A structure, comprising:
a substrate;
an n-type field effect transistor (nFET) disposed over the substrate, the nFET comprising a Si channel region, a gate dielectric having an oxide layer overlying the channel region, a high-k dielectric layer overlying the oxide layer, and a gate electrode overlying the gate dielectric, said gate electrode comprising a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer, the scavenging metal layer scavenging oxygen from an interface between the Si channel region and the oxide layer; and
a p-type field effect transistor (pFET) disposed over the substrate, the pFET comprising a SiGe channel region, a gate dielectric having an oxide layer overlying the channel region, a high-k dielectric layer overlying the oxide layer, and a gate electrode overlying the gate dielectric, said gate electrode comprising a lower metal layer abutting the high-k layer, a scavenging metal layer abutting the lower metal layer, and an upper metal layer abutting the scavenging metal layer, the scavenging metal layer scavenging oxygen from an interface between the SiGe channel region and the oxide layer.
23. The structure of claim 22 , where said lower metal layer and said upper metal layer of each of said nFET and pFET are comprised of TiN or TiC, or a combination thereof, and wherein said scavenging metal layer of each of said nFET and pFET includes a metal in an elemental form and is selected from Al, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Zr, Hf, Dy, Lu, Er, Pr, and Ce.
24. The structure of claim 22 , where said lower metal layer of each of said nFET and pFET is comprised of TiN and has a thickness in a range of about 20 Å to about 100 Å, said scavenging metal layer of each of said nFET and pFET is comprised of Al and has a thickness in a range of about 1 Å to about 20 Å, and said upper metal layer of each of said nFET and pFET is comprised of TiN and has a thickness in a range of about 20 Å to about 100 Å.
25. The structure of claim 22 , where said SiGe channel region has a thickness of up to about 100 Å and has a ratio of Ge to Si in a range of about slightly more than zero to about 40%.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/195,316 US20130032886A1 (en) | 2011-08-01 | 2011-08-01 | Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET |
DE112012002543.1T DE112012002543T5 (en) | 2011-08-01 | 2012-07-30 | Low threshold voltage and scaling of inversion oxide thickness for a high-K metal gate P-type MOSFET |
CN201280037577.9A CN103718295A (en) | 2011-08-01 | 2012-07-30 | Low threshold voltage and inversion oxide thickness scaling for a high-k metal gate p-type mosfet |
PCT/US2012/048764 WO2013019696A1 (en) | 2011-08-01 | 2012-07-30 | Low threshold voltage and inversion oxide thickness scaling for a high-k metal gate p-type mosfet |
US13/630,235 US9105745B2 (en) | 2009-06-18 | 2012-09-28 | Fabrication of low threshold voltage and inversion oxide thickness scaling for a high-k metal gate p-type MOSFET |
US14/699,264 US20150243662A1 (en) | 2009-06-18 | 2015-04-29 | Low Threshold Voltage and Inversion Oxide Thickness Scaling for a High-K Metal Gate P-Type MOSFET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/195,316 US20130032886A1 (en) | 2011-08-01 | 2011-08-01 | Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/630,235 Continuation US9105745B2 (en) | 2009-06-18 | 2012-09-28 | Fabrication of low threshold voltage and inversion oxide thickness scaling for a high-k metal gate p-type MOSFET |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130032886A1 true US20130032886A1 (en) | 2013-02-07 |
Family
ID=47626444
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/195,316 Abandoned US20130032886A1 (en) | 2009-06-18 | 2011-08-01 | Low Threshold Voltage And Inversion Oxide Thickness Scaling For A High-K Metal Gate P-Type MOSFET |
US13/630,235 Active 2032-08-31 US9105745B2 (en) | 2009-06-18 | 2012-09-28 | Fabrication of low threshold voltage and inversion oxide thickness scaling for a high-k metal gate p-type MOSFET |
US14/699,264 Abandoned US20150243662A1 (en) | 2009-06-18 | 2015-04-29 | Low Threshold Voltage and Inversion Oxide Thickness Scaling for a High-K Metal Gate P-Type MOSFET |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/630,235 Active 2032-08-31 US9105745B2 (en) | 2009-06-18 | 2012-09-28 | Fabrication of low threshold voltage and inversion oxide thickness scaling for a high-k metal gate p-type MOSFET |
US14/699,264 Abandoned US20150243662A1 (en) | 2009-06-18 | 2015-04-29 | Low Threshold Voltage and Inversion Oxide Thickness Scaling for a High-K Metal Gate P-Type MOSFET |
Country Status (4)
Country | Link |
---|---|
US (3) | US20130032886A1 (en) |
CN (1) | CN103718295A (en) |
DE (1) | DE112012002543T5 (en) |
WO (1) | WO2013019696A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130075833A1 (en) * | 2011-09-22 | 2013-03-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer scavenging metal gate stack for ultra-thin interfacial dielctric layer |
US8853751B2 (en) * | 2012-06-28 | 2014-10-07 | International Business Machines Corporation | Reducing the inversion oxide thickness of a high-K stack fabricated on high mobility semiconductor material |
US20150129972A1 (en) * | 2013-11-14 | 2015-05-14 | GlobalFoundries, Inc. | Methods of scaling thickness of a gate dielectric structure, methods of forming an integrated circuit, and integrated circuits |
US20160099326A1 (en) * | 2013-09-27 | 2016-04-07 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for making an integrated circuit |
US9484267B1 (en) | 2016-02-04 | 2016-11-01 | International Business Machines Corporation | Stacked nanowire devices |
US20160343806A1 (en) * | 2015-05-21 | 2016-11-24 | Globalfoundries Inc. | Interface passivation layers and methods of fabricating |
US9653462B2 (en) | 2014-12-26 | 2017-05-16 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
WO2017122066A1 (en) * | 2016-01-15 | 2017-07-20 | International Business Machines Corporation | Field effect transistor stack with tunable work function |
US9716086B1 (en) | 2016-06-16 | 2017-07-25 | International Business Machines Corporation | Method and structure for forming buried ESD with FinFETs |
CN110349853A (en) * | 2018-04-04 | 2019-10-18 | 英飞凌科技股份有限公司 | Wide bandgap semiconductor device and the method for being used to form wide bandgap semiconductor device |
US10535517B2 (en) | 2018-03-23 | 2020-01-14 | International Business Machines Corporation | Gate stack designs for analog and logic devices in dual channel Si/SiGe CMOS |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103854983B (en) * | 2012-11-30 | 2018-05-22 | 中国科学院微电子研究所 | Manufacturing method of P-type MOSFET |
KR102084657B1 (en) * | 2013-11-04 | 2020-03-04 | 에스케이하이닉스 주식회사 | Method and gate ructure for threshold voltage modulation in transistors |
US9595449B1 (en) | 2015-12-21 | 2017-03-14 | International Business Machines Corporation | Silicon-germanium semiconductor devices and method of making |
US9818746B2 (en) | 2016-01-13 | 2017-11-14 | International Business Machines Corporation | Structure and method to suppress work function effect by patterning boundary proximity in replacement metal gate |
US9653537B1 (en) * | 2016-09-26 | 2017-05-16 | International Business Machines Corporation | Controlling threshold voltage in nanosheet transistors |
US10256159B2 (en) | 2017-01-23 | 2019-04-09 | International Business Machines Corporation | Formation of common interfacial layer on Si/SiGe dual channel complementary metal oxide semiconductor device |
US10361130B2 (en) | 2017-04-26 | 2019-07-23 | International Business Machines Corporation | Dual channel silicon/silicon germanium complementary metal oxide semiconductor performance with interface engineering |
KR20190034822A (en) * | 2017-09-25 | 2019-04-03 | 삼성전자주식회사 | Semiconductor device |
KR102418061B1 (en) | 2018-01-09 | 2022-07-06 | 삼성전자주식회사 | Semiconductor device |
US11329136B2 (en) | 2018-06-01 | 2022-05-10 | International Business Machines Corporation | Enabling anneal for reliability improvement and multi-Vt with interfacial layer regrowth suppression |
US11908743B2 (en) | 2021-09-27 | 2024-02-20 | International Business Machines Corporation | Planar devices with consistent base dielectric |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070287199A1 (en) * | 2006-06-09 | 2007-12-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Base oxide engineering for high-K gate stacks |
US20100187610A1 (en) * | 2009-01-26 | 2010-07-29 | International Business Machines Corporation | Semiconductor device having dual metal gates and method of manufacture |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6797525B2 (en) * | 2002-05-22 | 2004-09-28 | Agere Systems Inc. | Fabrication process for a semiconductor device having a metal oxide dielectric material with a high dielectric constant, annealed with a buffered anneal process |
US6946696B2 (en) * | 2002-12-23 | 2005-09-20 | International Business Machines Corporation | Self-aligned isolation double-gate FET |
EP1592735A1 (en) | 2003-01-31 | 2005-11-09 | M & G Polimeri Italia S.P.A. | Oxygen-scavenging articles devoid of visual spots upon oxidation and a method of their preparation |
US6890807B2 (en) | 2003-05-06 | 2005-05-10 | Intel Corporation | Method for making a semiconductor device having a metal gate electrode |
US6974779B2 (en) * | 2003-09-16 | 2005-12-13 | Tokyo Electron Limited | Interfacial oxidation process for high-k gate dielectric process integration |
US20070090416A1 (en) * | 2005-09-28 | 2007-04-26 | Doyle Brian S | CMOS devices with a single work function gate electrode and method of fabrication |
US7425497B2 (en) | 2006-01-20 | 2008-09-16 | International Business Machines Corporation | Introduction of metal impurity to change workfunction of conductive electrodes |
US7378713B2 (en) * | 2006-10-25 | 2008-05-27 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor devices with dual-metal gate structures and fabrication methods thereof |
US7625791B2 (en) * | 2007-10-29 | 2009-12-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | High-k dielectric metal gate device structure and method for forming the same |
US7718496B2 (en) | 2007-10-30 | 2010-05-18 | International Business Machines Corporation | Techniques for enabling multiple Vt devices using high-K metal gate stacks |
US7867839B2 (en) | 2008-07-21 | 2011-01-11 | International Business Machines Corporation | Method to reduce threshold voltage (Vt) in silicon germanium (SiGe), high-k dielectric-metal gate, p-type metal oxide semiconductor field effect transistors |
JP5286052B2 (en) * | 2008-11-28 | 2013-09-11 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
US7754594B1 (en) | 2009-01-26 | 2010-07-13 | International Business Machines Corporation | Method for tuning the threshold voltage of a metal gate and high-k device |
US7989902B2 (en) * | 2009-06-18 | 2011-08-02 | International Business Machines Corporation | Scavenging metal stack for a high-k gate dielectric |
-
2011
- 2011-08-01 US US13/195,316 patent/US20130032886A1/en not_active Abandoned
-
2012
- 2012-07-30 DE DE112012002543.1T patent/DE112012002543T5/en not_active Ceased
- 2012-07-30 CN CN201280037577.9A patent/CN103718295A/en active Pending
- 2012-07-30 WO PCT/US2012/048764 patent/WO2013019696A1/en active Application Filing
- 2012-09-28 US US13/630,235 patent/US9105745B2/en active Active
-
2015
- 2015-04-29 US US14/699,264 patent/US20150243662A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070287199A1 (en) * | 2006-06-09 | 2007-12-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Base oxide engineering for high-K gate stacks |
US20100187610A1 (en) * | 2009-01-26 | 2010-07-29 | International Business Machines Corporation | Semiconductor device having dual metal gates and method of manufacture |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130075833A1 (en) * | 2011-09-22 | 2013-03-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer scavenging metal gate stack for ultra-thin interfacial dielctric layer |
US8766379B2 (en) * | 2011-09-22 | 2014-07-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer scavenging metal gate stack for ultra-thin interfacial dielectric layer |
US9257349B2 (en) | 2011-09-22 | 2016-02-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of scavenging impurities in forming a gate stack having an interfacial layer |
US8853751B2 (en) * | 2012-06-28 | 2014-10-07 | International Business Machines Corporation | Reducing the inversion oxide thickness of a high-K stack fabricated on high mobility semiconductor material |
US8865551B2 (en) * | 2012-06-28 | 2014-10-21 | International Business Machines Corporation | Reducing the inversion oxide thickness of a high-k stack fabricated on high mobility semiconductor material |
US20160099326A1 (en) * | 2013-09-27 | 2016-04-07 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for making an integrated circuit |
US20150129972A1 (en) * | 2013-11-14 | 2015-05-14 | GlobalFoundries, Inc. | Methods of scaling thickness of a gate dielectric structure, methods of forming an integrated circuit, and integrated circuits |
US9349823B2 (en) * | 2013-11-14 | 2016-05-24 | GlobalFoundries, Inc. | Methods of scaling thickness of a gate dielectric structure, methods of forming an integrated circuit, and integrated circuits |
US9653462B2 (en) | 2014-12-26 | 2017-05-16 | Samsung Electronics Co., Ltd. | Semiconductor device and method for fabricating the same |
US20160343806A1 (en) * | 2015-05-21 | 2016-11-24 | Globalfoundries Inc. | Interface passivation layers and methods of fabricating |
WO2017122066A1 (en) * | 2016-01-15 | 2017-07-20 | International Business Machines Corporation | Field effect transistor stack with tunable work function |
US9859169B2 (en) | 2016-01-15 | 2018-01-02 | International Business Machines Corporation | Field effect transistor stack with tunable work function |
GB2562945A (en) * | 2016-01-15 | 2018-11-28 | Ibm | Field effect transistor stack with tunable work function |
GB2562945B (en) * | 2016-01-15 | 2020-08-12 | Ibm | Field effect transistor stack with tunable work function |
US9484267B1 (en) | 2016-02-04 | 2016-11-01 | International Business Machines Corporation | Stacked nanowire devices |
US9716086B1 (en) | 2016-06-16 | 2017-07-25 | International Business Machines Corporation | Method and structure for forming buried ESD with FinFETs |
US9865587B1 (en) | 2016-06-16 | 2018-01-09 | International Business Machines Corporation | Method and structure for forming buried ESD with FinFETs |
US10535517B2 (en) | 2018-03-23 | 2020-01-14 | International Business Machines Corporation | Gate stack designs for analog and logic devices in dual channel Si/SiGe CMOS |
US10937648B2 (en) | 2018-03-23 | 2021-03-02 | International Business Machines Corporation | Gate stack designs for analog and logic devices in dual channel Si/SiGe CMOS |
CN110349853A (en) * | 2018-04-04 | 2019-10-18 | 英飞凌科技股份有限公司 | Wide bandgap semiconductor device and the method for being used to form wide bandgap semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
WO2013019696A1 (en) | 2013-02-07 |
US20130034940A1 (en) | 2013-02-07 |
US9105745B2 (en) | 2015-08-11 |
CN103718295A (en) | 2014-04-09 |
DE112012002543T5 (en) | 2014-05-22 |
US20150243662A1 (en) | 2015-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9105745B2 (en) | Fabrication of low threshold voltage and inversion oxide thickness scaling for a high-k metal gate p-type MOSFET | |
US8367496B2 (en) | Scavanging metal stack for a high-k gate dielectric | |
US8304836B2 (en) | Structure and method to obtain EOT scaled dielectric stacks | |
US8716088B2 (en) | Scavenging metal stack for a high-K gate dielectric | |
JP4791332B2 (en) | Semiconductor structure including double metal gate and manufacturing method thereof (self-alignment integration of double metal gate) | |
US8778759B1 (en) | Gate electrode optimized for low voltage operation | |
US7682917B2 (en) | Disposable metallic or semiconductor gate spacer | |
US7952118B2 (en) | Semiconductor device having different metal gate structures | |
US7355235B2 (en) | Semiconductor device and method for high-k gate dielectrics | |
US20090108294A1 (en) | Scalable high-k dielectric gate stack | |
US20120326245A1 (en) | Inversion thickness reduction in high-k gate stacks formed by replacement gate processes | |
US20130178056A1 (en) | Field effect transistor having an asymmetric gate electrode | |
US8716118B2 (en) | Replacement gate structure for transistor with a high-K gate stack | |
US20130032897A1 (en) | Mosfet gate electrode employing arsenic-doped silicon-germanium alloy layer | |
US8853751B2 (en) | Reducing the inversion oxide thickness of a high-K stack fabricated on high mobility semiconductor material | |
JP2006086511A (en) | Semiconductor device | |
KR100843223B1 (en) | Semiconductor device having different gate structures according to its channel type and method for manufacturing the same | |
KR100843230B1 (en) | Semiconductor device having gate electrode including metal layer and method for manufacturing the same | |
KR20080018711A (en) | Semiconductor device and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDO, TAKASHI;CHOI, CHANGHWAN;FRANK, MARTIN M.;AND OTHERS;SIGNING DATES FROM 20110803 TO 20110815;REEL/FRAME:026900/0523 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |