[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20130009740A1 - Common mode filter and method of manufacturing the same - Google Patents

Common mode filter and method of manufacturing the same Download PDF

Info

Publication number
US20130009740A1
US20130009740A1 US13/429,864 US201213429864A US2013009740A1 US 20130009740 A1 US20130009740 A1 US 20130009740A1 US 201213429864 A US201213429864 A US 201213429864A US 2013009740 A1 US2013009740 A1 US 2013009740A1
Authority
US
United States
Prior art keywords
layer
coil
magnetic
common mode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/429,864
Inventor
Yu Chia Chang
Chi Long Lin
Huai Luh Chang
Cheng Yi Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inpaq Technology Co Ltd
Original Assignee
Inpaq Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inpaq Technology Co Ltd filed Critical Inpaq Technology Co Ltd
Assigned to INPAQ TECHNOLOGY CO., LTD. reassignment INPAQ TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, HUAI LUH, CHANG, YU CHIA, LIN, CHI LONG, WANG, CHENG YI
Publication of US20130009740A1 publication Critical patent/US20130009740A1/en
Priority to US14/200,291 priority Critical patent/US9251953B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks
    • H03H7/427Common-mode filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0073Printed inductances with a special conductive pattern, e.g. flat spiral
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49069Data storage inductor or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49078Laminated

Definitions

  • Taiwan Patent Application Serial Number 100123985 filed Jul. 7, 2011, the disclosure of which is hereby incorporated in its entirety by reference herein.
  • the present invention relates to a common mode filter and a manufacturing method thereof.
  • Noise can be classified into two types according to the conduction mode.
  • the first type is differential mode noise, which is conducted on a signal line and a ground line in opposite directions.
  • the second type is common mode noise, which is conducted on all lines in the same direction.
  • Common mode filters can be used to suppress common mode noise on any line on which such noise is conducted.
  • a common mode filter is comprised of components including an iron core and two coils wound around the iron core with the same winding number. When common mode current flows through the common mode filter, the two coils generate magnetic flux in the same direction such that the common mode filter exhibits high impedance and can suppress common mode noise.
  • U.S. Pat. No. 7,145,427 B2 discloses one type of thin film common mode filter, which includes two coil conductor layers, two lead-out electrode layers, a plurality of insulation layers, and two magnetic layers.
  • Each coil conductor layer includes a coil
  • the two lead-out electrode layers are used to extend the inner ends of the two coils to an edge of the thin film common mode filter for external electrical connection.
  • the insulation layers are used for electrically insulating the coil conductor layers and the lead-out electrode layers.
  • the coil conductor layers, the lead-out electrode layers, and the insulation layers are disposed between two magnetic layers.
  • U.S. Pat. No. 6,356,181 B1 and U.S. Pat. No. 6,618,929 B2 respectively disclose a laminated common mode choke, which includes a pair of magnetic substrates and a plurality of insulting layers between the pair of magnetic substrates.
  • U.S. Pat. No. 7,453,343 B2 discloses another thin film type common mode filter, which comprises two coil conductor layers, two lead-out electrode layers, a plurality of insulation layers, a magnetic layer, and two magnetic substrates.
  • Each coil conductor layer includes a coil
  • each lead-out electrode layer is configured to extend the inner end of the corresponding coil.
  • the insulation layer is configured to electrically insulate the coil conductor layer and the lead-out electrode layer.
  • the coil conductor layers, the lead-out electrode layers, and the insulation layers are disposed between the two magnetic substrates.
  • the magnetic layer is disposed between the two magnetic substrates and attached to one magnetic substrate by a glue layer.
  • the patent discloses that when the coil conductor width is reduced to 36 micrometers or less, the cutoff frequency of a transmission signal can be effectively increased to at least 2.4 GHz (800 MHz transmission ⁇ 3).
  • the coil conductor is narrow, the coil has high resistance such that the coil conductor cannot be formed thin.
  • the thin film type common mode filter has a significant thickness.
  • the thin film type common mode filter utilizes the magnetic substrates and the magnetic layer to concentrate magnetic fields and reduce the dimension of the thin film type common mode filter.
  • the magnetic substrates and the magnetic layer can easily cause energy loss, consequently causing the common mode filter to have a low quality factor.
  • the common mode filter when used in a radio frequency circuit, the energy loss becomes more significant.
  • the common mode filter using magnetic substrates and a magnetic layer may have insertion loss of greater than ⁇ 20 dB.
  • U.S. Pat. No. 7,821,368 B1 discloses a thin film type common mode noise filter and a fabrication method.
  • the fabrication method forms a structure including several electric insulation layers, coil lead layers and main coil layers on an insulation substrate by lithography processes, physical vapor deposition, etching processes or other chemical processes, and subsequently covers the structure with an electric insulation gluing layer and a magnetic material layer.
  • Such design of thin film type common mode noise filter can be formed at low production cost and has improved filtering characteristics.
  • the thin film type common mode noise filter can have better filtering characteristics, the thin film type common mode noise filter has a filter bandwidth narrower than that of the common mode filtering adopting magnetic substrates.
  • One embodiment of the present invention proposes a common mode filter comprising heterogeneous laminates that is a combination of an insulating substrate and magnetic material, and a method of manufacturing the same.
  • the processes of the manufacturing method of the embodiment of the present invention are simpler, less expensive, and suitable for mass production.
  • the proposed common mode filter can have characteristics of more effective noise suppression and a wide rejection bandwidth.
  • One embodiment of the present invention provides a common mode filter having a high quality factor such that the common mode filter can be used in high frequency applications.
  • One embodiment of the present invention provides a common mode filter that may concentrate magnetic fields, reduce magnetic flux leakage, and increase the bandwidth of common mode noise attenuation.
  • a common mode filter having heterogeneous laminates comprises a first magnetic layer, a nonmagnetic insulating substrate, a second magnetic layer, a first coil layer, and a second coil layer.
  • the second magnetic layer is formed on the nonmagnetic insulating substrate, and between the first magnetic layer and the nonmagnetic insulating substrate.
  • the first coil layer is disposed between the first magnetic layer and the second magnetic layer, wherein the first coil layer comprises a first coil.
  • the second coil layer is disposed between the first magnetic layer and the second magnetic layer, and comprises a second coil, wherein the first and second coil layers are separated from each other, and the first and second coils are magnetically coupled to each other.
  • a method of manufacturing a common mode filter having heterogeneous laminates comprises providing a nonmagnetic insulating substrate comprising a major surface; forming a magnetic layer on all or part of the major surface; forming a first lead on the magnetic layer; forming a first insulating layer covering the first lead; forming a first through hole penetrating through the first insulating layer; forming a first coil on the first insulating layer, wherein the first coil electrically connects to the first lead via the first through hole; forming a second insulating layer covering the first coil; forming a second coil on the second insulating layer; forming a third insulating layer covering the second coil; forming a second through hole penetrating through the third insulating layer; forming a second lead on the third insulating layer, wherein the second lead electrically connects to the second coil via the second through hole; forming a fourth insulating layer covering the second lead; and depositing a first magnetic material on the
  • FIG. 1 is an exploded view showing a common mode filter having heterogeneous laminates according to one embodiment of the present invention
  • FIG. 2 is an exploded view showing a common mode filter according to another embodiment of the present invention.
  • FIG. 3 is a diagram showing insertion loss of a conventional common mode filter and the common mode filter of an embodiment of the present invention versus frequency;
  • FIGS. 4A to 4J are cross-sectional views schematically demonstrating the steps of a method of manufacturing a common mode filter according to one embodiment of the present invention.
  • FIGS. 5A and 5B are cross-sectional views showing the steps of a method for forming a second magnetic layer on a nonmagnetic insulating substrate according to one embodiment of the present invention
  • FIGS. 6A and 6B are cross-sectional views showing the steps of a method for forming a second magnetic layer on a nonmagnetic insulating substrate according to another embodiment of the present invention.
  • FIGS. 7A and 7B are cross-sectional views showing the steps of a method for forming a second magnetic layer on a nonmagnetic insulating substrate according to another embodiment of the present invention.
  • FIG. 8 is a view schematically showing a second magnetic layer according to one embodiment of the present invention.
  • FIG. 9 is a view schematically showing a second magnetic layer according to another embodiment of the present invention.
  • FIG. 10 is a view schematically showing a second magnetic layer according to another embodiment of the present invention.
  • FIG. 11 is a view schematically showing a second magnetic layer according to one embodiment of the present invention.
  • FIG. 1 is an exploded view showing a common mode filter 100 having heterogeneous laminates according to one embodiment of the present invention.
  • the common mode filter 100 having heterogeneous laminates comprises a first magnetic layer 10 , a nonmagnetic insulating substrate 111 , a second magnetic layer 112 , a first coil layer 4 , and a second coil layer 6 .
  • the second magnetic layer 112 is formed on the nonmagnetic insulating substrate 111 , and between the first magnetic layer 10 and the nonmagnetic insulating substrate 111 .
  • the first coil layer 4 is disposed between the first magnetic layer 10 and the second magnetic layer 112 , and comprises a first coil 53 .
  • the second coil layer 6 is disposed between the first magnetic layer 10 and the second magnetic layer 112 , and comprises a second coil 73 .
  • the first coil 53 and the second coil 73 are separated from each other so that the first and second coils 53 and 73 are electrically insulated from each other. Furthermore, the first coil 53 and the second coil 73 are arranged to be magnetically coupled with each other so that when common mode current flows through the first coil 53 and the second coil 73 , magnetic flux is accumulated and common mode current can be suppressed.
  • the common mode filter 100 may further comprise a flattening insulation layer 11 , which is configured to cover the second magnetic layer 112 before the next process is performed if the surface of the second magnetic layer 112 is not sufficiently flat.
  • the flattening insulation layer 11 may comprise polyimide, epoxy, or benzocyclobutene (BCB).
  • the flattening insulation layer 11 may be formed from a wet film, which may be obtained by a spin coating or screen printing technique. Alternatively, the flattening insulation layer 11 may be formed from a dry film, which may be obtained by a lamination technique.
  • the nonmagnetic insulating substrate 111 and the second magnetic layer 112 may form heterogeneous laminates 1 , in which the nonmagnetic insulating substrate 111 and the second magnetic layer 112 may be combined by co-firing or glue bonding.
  • the nonmagnetic insulating substrate 111 allows the common mode filter 100 to have a high quality factor so that the common mode filter 100 can be used in high frequency applications.
  • the first magnetic layer 10 and the second magnetic layer 112 can concentrate magnetic fields, reducing magnetic flux leakage and increasing the rejection bandwidth.
  • the nonmagnetic insulating substrate 111 comprises a major surface 1111 , and the second magnetic layer 112 is formed on a portion of the major surface 1111 .
  • the nonmagnetic insulating substrate 111 and the second magnetic layer 112 are bonded together.
  • the nonmagnetic insulating substrate 111 can reduce energy loss and allow the common mode filter 100 to have a high quality factor, but cannot concentrate magnetic fields or reduce magnetic flux leakage.
  • the second magnetic layer 112 is formed on a portion of the major surface 1111 of the insulating substrate 111 , magnetic fields can be concentrated, reducing magnetic flux leakage, increasing the rejection bandwidth, and allowing the common mode filter 100 to have a high quality factor.
  • the second magnetic layer 112 is formed on the entire major surface 1111 of the nonmagnetic insulating substrate 111 .
  • the nonmagnetic insulating substrate 111 can be made of any insulating material suitable for a common mode filter.
  • the nonmagnetic insulating substrate 111 may cause the common mode filter 100 to have reduced energy loss, especially when the common mode filter 100 is used in a radio frequency circuit or a high frequency circuit.
  • the nonmagnetic insulating substrate 111 may comprise aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), glass, or quartz crystal.
  • the second magnetic layer 112 may have high permeability, which may comprise ferrites.
  • the second magnetic layer 112 may comprise nickel zinc ferrite material (NiZn ferrite material) or manganese zinc ferrite material (MnZn ferrite material).
  • the second magnetic layer 112 may comprise a mixture of a polymer and magnetic powder.
  • the polymer may comprise polyimide or epoxy, and the magnetic powder may comprise ferrites.
  • the magnetic powder may comprise nickel zinc ferrite material or manganese zinc ferrite material.
  • the first magnetic layer 10 may comprise a magnetic material, especially a magnetic material including polymer.
  • the first magnetic layer 10 may be made from a mixture of polymer and magnetic powder.
  • the magnetic powder may comprise ferrites.
  • the magnetic powder may comprise nickel zinc ferrite material or manganese zinc ferrite material, and the polymer may comprise polyimide, epoxy, or benzocyclobutene.
  • the common mode filter 100 may further comprise a first lead layer 2 , a first insulating layer 3 , a second insulating layer 5 , a third insulating layer 7 , a second lead layer 8 , and a fourth insulating layer 9 , all of which are sequentially formed on the flattening insulation layer 11 , constituting a laminated structure.
  • the first lead layer 2 is formed on the flattening insulation layer 11 and may comprise a first electrode 31 , a lead 32 , and a second electrode 33 .
  • One end of the lead 32 connects with the first electrode 31
  • another end of the lead 32 extends adjacent to an edge of the flattening insulation layer 11 , connecting with the second electrode 33 disposed adjacent to the afore-mentioned edge of the flattening insulation layer 11 .
  • the first insulating layer 3 is formed between the first lead layer 2 and the first coil layer 4 to electrically insulate the first lead layer 2 and the first coil layer 4 .
  • the first insulating layer 3 may comprise a first through hole 41 , which penetrates the first insulating layer 3 .
  • the first electrode 31 may protrude into the first through hole 41 .
  • the material of the first insulating layer 3 may comprise polyimide, epoxy, or benzocyclobutene.
  • the first coil layer 4 may further comprise a first electrode 51 and a second electrode 52 .
  • the first coil 53 may be a flat spiral coil, which may comprise an inner end and an outer end.
  • the first electrode 51 may be coupled with the inner end of the first coil 53 , protruding into the first through hole 41 of the first insulating layer 3 and connecting with the first electrode 31 of the first lead layer 2 so that the inner end of the first coil 53 is available for external electrical connection.
  • the outer end of the first coil 53 may extend adjacent to an edge of the first insulating layer 3 , coupled with the second electrode 52 adjacent to the same edge of the first insulating layer 3 .
  • the first electrode 51 , the second electrode 52 , and the first coil 53 can be made of metal, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • the second insulating layer 5 may be formed between the first coil layer 4 and the second coil layer 6 to electrically insulate the first coil layer 4 and the second coil layer 6 .
  • the second insulating layer 5 may comprise polyimide, epoxy, or benzocyclobutene.
  • the second coil layer 6 may further comprise a first electrode 71 and a second electrode 72 .
  • the second coil 73 may be a flat spiral coil, and may comprise an inner end and an outer end.
  • the first electrode 71 is coupled with the inner end of the second coil 73 .
  • the outer end of the second coil 73 extends adjacent to an edge of the second insulating layer 5 , electrically connecting with the second electrode 72 disposed adjacent to the edge of the second insulating layer 5 .
  • the first electrode 71 , the second electrode 72 and the second coil 73 can be made of a material such as silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • the third insulating layer 7 may be formed on the second coil layer 6 , covering the first electrode 71 , the second electrode 72 and the second coil 73 so as to electrically insulate the second coil layer 6 .
  • the material of the third insulating layer 7 may comprise polyimide, epoxy, or benzocyclobutene.
  • the third insulating layer 7 may comprise a second through hole 42 , which penetrates through the third insulating layer 7 .
  • the second lead layer 8 is formed on the third insulating layer 7 and comprises a first electrode 91 , a lead 92 and a second electrode 93 , wherein one end of the lead 92 connects with the first electrode 91 , and another end of the lead 92 extends adjacent to an edge of the third insulating layer 7 , connecting with the second electrode 93 disposed adjacent to the edge of the third insulating layer 7 .
  • the first electrode 71 of the second coil layer 6 and the first electrode 91 on the third insulating layer 7 protrude into the through hole 42 and are coupled with each other. As such, the inner end of the second coil 73 of the second coil layer 6 is available for an external electrical connection.
  • the first electrode 91 , the lead 92 and the second electrode 93 can be made of a material, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • the fourth insulating layer 9 is formed between the second lead layer 8 and the first magnetic layer 10 to electrically insulate the second lead layer 8 and the first magnetic layer 10 .
  • the fourth insulating layer 9 may be made of a material comprising polyimide, epoxy, or benzocyclobutene.
  • FIG. 2 is an exploded view showing a common mode filter 200 according to another embodiment of the present invention.
  • the common mode filter 200 comprises a laminated structure and material compositions similar to those of the common mode filter 100 of the embodiment of FIG. 1 except that the first coil layer 14 of the common mode filter 200 comprises two first coils 53 , and the second coil layer 16 of the common mode filter 200 comprises two second coils 73 .
  • Each first coil 53 connects with a first electrode 51 located inside the first coil 53 and connects with a second electrode 52 disposed adjacent to an edge of the common mode filter 200 .
  • Each second coil 73 connects with a first electrode 71 located inside the second coil 73 and connects with a second electrode 72 disposed adjacent to an edge of the common mode filter 200 .
  • the common mode filter 200 may comprise a nonmagnetic insulating substrate 111 and a second magnetic layer 112 ′, two of which may be combined by co-firing or glue bonding to form heterogeneous laminates 1 ′.
  • the nonmagnetic insulating substrate 111 may make the common mode filter 200 have a high quality factor so that the common mode filter 200 can be used in high frequency applications.
  • the second magnetic layer 112 ′ and the first magnetic layer 10 can concentrate magnetic fields, reducing magnetic flux leakage and increasing the rejection bandwidth.
  • the second magnetic layer 112 ′ comprises a plurality of magnetic material pieces as shown in FIG. 2 , in which the plurality of magnetic material pieces are separated from each other.
  • the second magnetic layer 112 ′ may comprise two magnetic material pieces, wherein the two magnetic material pieces are disposed with respect to the two first coils 53 or the two second coils 73 .
  • the common mode filter 200 may further comprise a flattening insulation layer 11 , which is formed on the second magnetic layer 112 ′.
  • the first lead layer 12 is formed on the flattening insulation layer 11 and comprises two lead sets 30 a and 30 b.
  • Each lead set 30 a or 30 b comprises a first electrode 31 , a lead 32 and a second electrode 33 .
  • the two lead sets 30 a and 30 b correspond to the two first coils 53 of the first coil layer 14 or the two second coils 73 of the second coil layer 16 .
  • the first insulating layer 13 is formed to electrically insulate the first lead layer 12 and the first coil layer 14 .
  • the first insulating layer 13 comprises two first through holes 41 , in which the two first electrodes 31 of the first lead layer 12 and the two first electrodes 51 of the first coil layer 14 are respectively coupled. As such, the two first electrodes 51 of the first coil layer 14 are available for external electrical connection.
  • the second insulating layer 15 may electrically insulate the first coil layer 14 and the second coil layer 16 .
  • the first coils 53 of the first coil layer 14 correspond to the two second coils 73 of the second coil layer 16 , wherein each first coil 53 is magnetically coupled with the respective second coil 73 .
  • the third insulating layer 17 is formed on the second coil layer 16 and comprises two second through holes 42 , which are disposed corresponding to the first electrodes 71 of the two second coils 73 .
  • the second lead layer 18 is formed on the third insulating layer 17 and comprises two lead sets 90 a and 90 b, each of which comprises a first electrode 91 , a lead 92 and a second electrode 93 .
  • the lead sets 90 a and 90 b are disposed with respect to the two second coils 73 of the second coil layer 16 .
  • the first electrodes 91 of the two lead sets 90 a and 90 b and the two first electrodes 71 of the second coil layer 16 are respectively coupled with each other in the two second through holes 42 so that the inner ends of the two second coils 73 are available for external electrical connection.
  • the fourth insulating layer 9 is formed on the second lead layer 18 , and subsequently, a first magnetic layer 10 is disposed on the fourth insulating layer 9 . As a result, the laminated structure of the common mode filter 200 is completed.
  • FIG. 3 is a diagram showing insertion loss of a conventional common mode filter and the common mode filter of an embodiment of the present invention versus frequency.
  • tests are performed on a common mode filter including homogeneous magnetic substrates, a common mode filter including homogeneous insulating substrates, and a common mode filter including heterogeneous laminates in accordance with one embodiment of the present invention.
  • the common mode filter including homogeneous magnetic substrates can have a wider rejection bandwidth (as shown by curve 300 ) because it includes the magnetic substrates that can concentrate magnetic fields in comparison to other common mode filters.
  • the common mode filter including homogeneous insulating substrates can have a higher quality factor so that it can more effectively suppress noise (as shown by curve 400 ) because of insulating substrates.
  • the heterogeneous laminates of one embodiment of the present invention can simultaneously have the above characteristics of the homogeneous magnetic substrate and the homogeneous insulating substrate, the common mode filter of one embodiment of the present invention can simultaneously have both better noise suppression effectiveness and a wide rejection bandwidth (as shown by curve 500 ).
  • FIGS. 4A to 4J are cross-sectional views schematically demonstrating the steps of a method of manufacturing a common mode filter according to one embodiment of the present invention.
  • a nonmagnetic insulating substrate 111 is provided.
  • a second magnetic layer 112 is formed on at least a portion of a major surface of the nonmagnetic insulating substrate 111 to obtain heterogeneous laminates 1 .
  • the nonmagnetic insulating substrate 111 may comprise aluminum oxide, aluminum nitride, glass, or quartz crystal.
  • the second magnetic layer 112 may comprise nickel zinc ferrite material or manganese zinc ferrite material.
  • the second magnetic layer 112 may cover part or all of the nonmagnetic insulating substrate 111 .
  • the first lead layer 2 may comprise a material comprising silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • the first lead layer 2 may comprise a first electrode 31 , a lead 32 and a second electrode 33 , wherein the lead 32 has one end that connects with the first electrode 31 and another end that connects with the second electrode 33 .
  • a flattening insulation layer 11 as shown in FIG. 1 can be formed between the first lead layer 2 and the second magnetic layer 112 .
  • the flattening insulation layer 11 can be formed by a spin coating or screen printing technique and covers the second magnetic layer 112 , or by a lamination technique to cover the second magnetic layer 112 .
  • a first insulating layer 3 is formed on the first lead layer 2 . Thereafter, lithography and etch processes are applied to form a first through hole 41 on the first insulating layer 3 , at the location of the first electrode 31 of the first lead layer 2 .
  • the first electrode 31 of the first lead layer 2 may protrude into the first through hole 41 .
  • the material of the first insulating layer 3 may comprise polyimide, epoxy, or benzocyclobutene.
  • the first coil layer 4 may comprise a first electrode 51 , a second electrode 52 and a first coil 53 .
  • the first coil 53 may be spiral.
  • the first electrode 51 is coupled with an inner end of the first coil 53 , protrudes into the first through hole 41 of the first insulating layer 3 , and connects with the first electrode 31 of the first lead layer 2 .
  • the first coil layer 4 may be made of metal, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • a second insulating layer 5 is deposited on the first coil layer 4 .
  • the material of the second insulating layer 5 may comprise polyimide, epoxy, or benzocyclobutene.
  • the second coil layer 6 comprises a first electrode 71 , a second electrode 72 and a second coil 73 .
  • the second coil 73 may be spiral.
  • the first electrode 71 is coupled with an inner end of the second coil 73
  • the second electrode 72 is coupled with an outer end of the second coil 73 .
  • the second coil layer 6 may be made of metal, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • a third insulating layer 7 is deposited on the second coil layer 6 .
  • lithography and etch processes are used to form a second through hole 42 on the third insulating layer 7 , at the location of the first electrode 71 of the second coil layer 6 .
  • the first electrode 71 of the second coil layer 6 may protrude into the second through hole 42 .
  • the material of the third insulating layer 7 may comprise polyimide, epoxy, or benzocyclobutene.
  • the second lead layer 8 comprises a first electrode 91 , a lead 92 , and a second electrode 93 , wherein the lead 92 has one end connecting with the first electrode 91 and another end connecting with the second electrode 93 .
  • the first electrode 91 of the second lead layer 8 protrudes into the second through hole 42 of the third insulating layer 7 , coupled with the first electrode 71 of the second coil layer 6 residing in the second through hole 42 .
  • an insulating material is deposited on the second lead layer 8 to form a fourth insulating layer 9 .
  • the material of the fourth insulating layer 9 may comprise polyimide, epoxy, or benzocyclobutene.
  • a first magnetic layer 10 is disposed on the fourth insulating layer 9 .
  • the first magnetic layer 10 may be used as an upper cover of the common mode filter.
  • the first magnetic layer 10 can be directly bonded to the fourth insulating layer 9 by glue.
  • the first magnetic layer 10 may comprise ferrites, preferably nickel zinc ferrite material or manganese zinc ferrite material.
  • the first magnetic layer 10 may be formed by screen printing or coating a mixture of magnetic powder and a polymer onto the fourth insulating layer 9 .
  • the magnetic powder may comprise ferrites, preferably nickel zinc ferrite material or manganese zinc ferrite material.
  • the polymer may comprise polyimide, epoxy, or benzocyclobutene.
  • FIGS. 5A and 5B are cross-sectional views showing the steps of a method for forming a second magnetic layer 112 on a nonmagnetic insulating substrate 111 according to one embodiment of the present invention.
  • a second magnetic layer 112 and a nonmagnetic insulating substrate 111 are initially provided.
  • an adhesive 113 is applied to form an adhesive layer on the nonmagnetic insulating substrate 111 .
  • the second magnetic layer 112 is attached to the adhesive 113 .
  • FIGS. 6A and 6B are cross-sectional views showing the steps of a method for forming a second magnetic layer 112 on a nonmagnetic insulating substrate 111 according to another embodiment of the present invention.
  • a nonmagnetic insulating substrate 111 is introduced.
  • a second magnetic layer 112 is applied to cover the nonmagnetic insulating substrate 111 .
  • the second magnetic layer 112 can be formed by coating a magnetic material on the nonmagnetic insulating substrate 111 .
  • the second magnetic layer 112 may also be a magnetic substrate, and may be temporarily attached to the nonmagnetic insulating substrate 111 .
  • the nonmagnetic insulating substrate 111 and the second magnetic layer 112 are co-fired such that the nonmagnetic insulating substrate 111 and the second magnetic layer 112 are diffusion bonded.
  • FIGS. 7A and 7B are cross-sectional views showing the steps of a method for forming a second magnetic layer 112 on a nonmagnetic insulating substrate 111 according to another embodiment of the present invention.
  • a mixture 114 is obtained by mixing magnetic powder and a polymer.
  • the mixture 114 is deposited on the nonmagnetic insulating substrate 111 by a screen-printing or coating technique to obtain a second magnetic layer 112 on the nonmagnetic insulating substrate 111 .
  • FIG. 8 is a view schematically showing a second magnetic layer 112 according to one embodiment of the present invention.
  • the second magnetic layer 112 is formed on a major surface of a nonmagnetic insulating substrate 111 and corresponds to the first coil 53 and the second coil 73 such that the first coil 53 and the second coil 73 are located between the second magnetic layer 112 and the first magnetic layer 10 .
  • the second magnetic layer 112 can have an area greater than that occupied by the first coil 53 or the second coil 73 , but smaller than that of the major surface.
  • FIG. 9 is a view schematically showing a second magnetic layer 112 ′ according to another embodiment of the present invention.
  • the second magnetic layer 112 ′ may comprise a plurality of magnetic material pieces 1121 , each corresponding to a group of the first and second coils 53 and 73 and formed on a major surface of a nonmagnetic insulating substrate 111 .
  • FIG. 10 is a view schematically showing a second magnetic layer 112 ′′ according to another embodiment of the present invention.
  • the second magnetic layer 112 ′′ may comprise a plurality of strip-like magnetic material pieces 1121 ′, which may be arranged in order on a major surface of a nonmagnetic insulating substrate 111 .
  • FIG. 11 is a view schematically showing a second magnetic layer 112 ′′′ according to one embodiment of the present invention.
  • the second magnetic layer 112 ′′′ may comprise a plurality of rectangular magnetic material pieces 1121 ′′, which may be arrayed on a major surface of a nonmagnetic insulating substrate 111 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A common mode filter having heterogeneous laminates includes a first magnetic layer, a nonmagnetic insulating substrate, a second magnetic layer, a first coil layer, and a second coil layer. The second magnetic layer is formed on the nonmagnetic insulating substrate, between the nonmagnetic insulating substrate and the first magnetic layer. The first coil layer is disposed between the first magnetic layer and the second magnetic layer, and includes a first coil. The second coil layer is disposed between the first magnetic layer and the second magnetic layer, and includes a second coil. The first and second coil layers are separated from each other, and the first and second coils are magnetically coupled to each other.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is based on, and claims priority from, Taiwan Patent Application Serial Number 100123985, filed Jul. 7, 2011, the disclosure of which is hereby incorporated in its entirety by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The present invention relates to a common mode filter and a manufacturing method thereof.
  • 2. Background
  • Noise can be classified into two types according to the conduction mode. The first type is differential mode noise, which is conducted on a signal line and a ground line in opposite directions. The second type is common mode noise, which is conducted on all lines in the same direction.
  • Common mode filters can be used to suppress common mode noise on any line on which such noise is conducted. Traditionally, a common mode filter is comprised of components including an iron core and two coils wound around the iron core with the same winding number. When common mode current flows through the common mode filter, the two coils generate magnetic flux in the same direction such that the common mode filter exhibits high impedance and can suppress common mode noise.
  • To address the requirement of portable electronic apparatuses, thin film common mode filters have been developed. U.S. Pat. No. 7,145,427 B2 discloses one type of thin film common mode filter, which includes two coil conductor layers, two lead-out electrode layers, a plurality of insulation layers, and two magnetic layers. Each coil conductor layer includes a coil, and the two lead-out electrode layers are used to extend the inner ends of the two coils to an edge of the thin film common mode filter for external electrical connection. The insulation layers are used for electrically insulating the coil conductor layers and the lead-out electrode layers. The coil conductor layers, the lead-out electrode layers, and the insulation layers are disposed between two magnetic layers.
  • U.S. Pat. No. 6,356,181 B1 and U.S. Pat. No. 6,618,929 B2 respectively disclose a laminated common mode choke, which includes a pair of magnetic substrates and a plurality of insulting layers between the pair of magnetic substrates.
  • U.S. Pat. No. 7,453,343 B2 discloses another thin film type common mode filter, which comprises two coil conductor layers, two lead-out electrode layers, a plurality of insulation layers, a magnetic layer, and two magnetic substrates. Each coil conductor layer includes a coil, and each lead-out electrode layer is configured to extend the inner end of the corresponding coil. The insulation layer is configured to electrically insulate the coil conductor layer and the lead-out electrode layer. The coil conductor layers, the lead-out electrode layers, and the insulation layers are disposed between the two magnetic substrates. The magnetic layer is disposed between the two magnetic substrates and attached to one magnetic substrate by a glue layer. The patent discloses that when the coil conductor width is reduced to 36 micrometers or less, the cutoff frequency of a transmission signal can be effectively increased to at least 2.4 GHz (800 MHz transmission×3). However, because the coil conductor is narrow, the coil has high resistance such that the coil conductor cannot be formed thin. As a result, the thin film type common mode filter has a significant thickness.
  • The thin film type common mode filter utilizes the magnetic substrates and the magnetic layer to concentrate magnetic fields and reduce the dimension of the thin film type common mode filter. However, the magnetic substrates and the magnetic layer can easily cause energy loss, consequently causing the common mode filter to have a low quality factor. In particular, when the common mode filter is used in a radio frequency circuit, the energy loss becomes more significant. In addition, the common mode filter using magnetic substrates and a magnetic layer may have insertion loss of greater than −20 dB.
  • In order to reduce the shortcomings of the common mode filter using magnetic substrates and a magnetic layer, U.S. Pat. No. 7,821,368 B1 discloses a thin film type common mode noise filter and a fabrication method. The fabrication method forms a structure including several electric insulation layers, coil lead layers and main coil layers on an insulation substrate by lithography processes, physical vapor deposition, etching processes or other chemical processes, and subsequently covers the structure with an electric insulation gluing layer and a magnetic material layer. Such design of thin film type common mode noise filter can be formed at low production cost and has improved filtering characteristics. Although the thin film type common mode noise filter can have better filtering characteristics, the thin film type common mode noise filter has a filter bandwidth narrower than that of the common mode filtering adopting magnetic substrates.
  • Therefore, conventional thin film common mode filters cannot simultaneously have improved noise suppression effectiveness and a wide rejection bandwidth.
  • SUMMARY
  • One embodiment of the present invention proposes a common mode filter comprising heterogeneous laminates that is a combination of an insulating substrate and magnetic material, and a method of manufacturing the same. Compared to conventional technologies for common mode filters, the processes of the manufacturing method of the embodiment of the present invention are simpler, less expensive, and suitable for mass production. The proposed common mode filter can have characteristics of more effective noise suppression and a wide rejection bandwidth.
  • One embodiment of the present invention provides a common mode filter having a high quality factor such that the common mode filter can be used in high frequency applications.
  • One embodiment of the present invention provides a common mode filter that may concentrate magnetic fields, reduce magnetic flux leakage, and increase the bandwidth of common mode noise attenuation.
  • According to one embodiment of the present invention, a common mode filter having heterogeneous laminates comprises a first magnetic layer, a nonmagnetic insulating substrate, a second magnetic layer, a first coil layer, and a second coil layer. The second magnetic layer is formed on the nonmagnetic insulating substrate, and between the first magnetic layer and the nonmagnetic insulating substrate. The first coil layer is disposed between the first magnetic layer and the second magnetic layer, wherein the first coil layer comprises a first coil. The second coil layer is disposed between the first magnetic layer and the second magnetic layer, and comprises a second coil, wherein the first and second coil layers are separated from each other, and the first and second coils are magnetically coupled to each other.
  • According to one embodiment of the present invention, a method of manufacturing a common mode filter having heterogeneous laminates comprises providing a nonmagnetic insulating substrate comprising a major surface; forming a magnetic layer on all or part of the major surface; forming a first lead on the magnetic layer; forming a first insulating layer covering the first lead; forming a first through hole penetrating through the first insulating layer; forming a first coil on the first insulating layer, wherein the first coil electrically connects to the first lead via the first through hole; forming a second insulating layer covering the first coil; forming a second coil on the second insulating layer; forming a third insulating layer covering the second coil; forming a second through hole penetrating through the third insulating layer; forming a second lead on the third insulating layer, wherein the second lead electrically connects to the second coil via the second through hole; forming a fourth insulating layer covering the second lead; and depositing a first magnetic material on the fourth insulating layer.
  • The foregoing has outlined rather broadly the features of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features of the invention will be described hereinafter, and form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The objectives of the present invention will become apparent upon reading the following description and upon reference to the accompanying drawings in which:
  • FIG. 1 is an exploded view showing a common mode filter having heterogeneous laminates according to one embodiment of the present invention;
  • FIG. 2 is an exploded view showing a common mode filter according to another embodiment of the present invention;
  • FIG. 3 is a diagram showing insertion loss of a conventional common mode filter and the common mode filter of an embodiment of the present invention versus frequency;
  • FIGS. 4A to 4J are cross-sectional views schematically demonstrating the steps of a method of manufacturing a common mode filter according to one embodiment of the present invention;
  • FIGS. 5A and 5B are cross-sectional views showing the steps of a method for forming a second magnetic layer on a nonmagnetic insulating substrate according to one embodiment of the present invention;
  • FIGS. 6A and 6B are cross-sectional views showing the steps of a method for forming a second magnetic layer on a nonmagnetic insulating substrate according to another embodiment of the present invention;
  • FIGS. 7A and 7B are cross-sectional views showing the steps of a method for forming a second magnetic layer on a nonmagnetic insulating substrate according to another embodiment of the present invention;
  • FIG. 8 is a view schematically showing a second magnetic layer according to one embodiment of the present invention;
  • FIG. 9 is a view schematically showing a second magnetic layer according to another embodiment of the present invention;
  • FIG. 10 is a view schematically showing a second magnetic layer according to another embodiment of the present invention; and
  • FIG. 11 is a view schematically showing a second magnetic layer according to one embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is an exploded view showing a common mode filter 100 having heterogeneous laminates according to one embodiment of the present invention. Referring to FIG. 1, the common mode filter 100 having heterogeneous laminates comprises a first magnetic layer 10, a nonmagnetic insulating substrate 111, a second magnetic layer 112, a first coil layer 4, and a second coil layer 6. The second magnetic layer 112 is formed on the nonmagnetic insulating substrate 111, and between the first magnetic layer 10 and the nonmagnetic insulating substrate 111. The first coil layer 4 is disposed between the first magnetic layer 10 and the second magnetic layer 112, and comprises a first coil 53. The second coil layer 6 is disposed between the first magnetic layer 10 and the second magnetic layer 112, and comprises a second coil 73. The first coil 53 and the second coil 73 are separated from each other so that the first and second coils 53 and 73 are electrically insulated from each other. Furthermore, the first coil 53 and the second coil 73 are arranged to be magnetically coupled with each other so that when common mode current flows through the first coil 53 and the second coil 73, magnetic flux is accumulated and common mode current can be suppressed.
  • In one embodiment, the common mode filter 100 may further comprise a flattening insulation layer 11, which is configured to cover the second magnetic layer 112 before the next process is performed if the surface of the second magnetic layer 112 is not sufficiently flat. The flattening insulation layer 11 may comprise polyimide, epoxy, or benzocyclobutene (BCB). The flattening insulation layer 11 may be formed from a wet film, which may be obtained by a spin coating or screen printing technique. Alternatively, the flattening insulation layer 11 may be formed from a dry film, which may be obtained by a lamination technique.
  • In one embodiment, the nonmagnetic insulating substrate 111 and the second magnetic layer 112 may form heterogeneous laminates 1, in which the nonmagnetic insulating substrate 111 and the second magnetic layer 112 may be combined by co-firing or glue bonding. The nonmagnetic insulating substrate 111 allows the common mode filter 100 to have a high quality factor so that the common mode filter 100 can be used in high frequency applications. Moreover, the first magnetic layer 10 and the second magnetic layer 112 can concentrate magnetic fields, reducing magnetic flux leakage and increasing the rejection bandwidth.
  • In one embodiment of the present invention, the nonmagnetic insulating substrate 111 comprises a major surface 1111, and the second magnetic layer 112 is formed on a portion of the major surface 1111. The nonmagnetic insulating substrate 111 and the second magnetic layer 112 are bonded together. The nonmagnetic insulating substrate 111 can reduce energy loss and allow the common mode filter 100 to have a high quality factor, but cannot concentrate magnetic fields or reduce magnetic flux leakage. In contrast, because the second magnetic layer 112 is formed on a portion of the major surface 1111 of the insulating substrate 111, magnetic fields can be concentrated, reducing magnetic flux leakage, increasing the rejection bandwidth, and allowing the common mode filter 100 to have a high quality factor. In one embodiment of the present invention, the second magnetic layer 112 is formed on the entire major surface 1111 of the nonmagnetic insulating substrate 111.
  • The nonmagnetic insulating substrate 111 can be made of any insulating material suitable for a common mode filter. The nonmagnetic insulating substrate 111 may cause the common mode filter 100 to have reduced energy loss, especially when the common mode filter 100 is used in a radio frequency circuit or a high frequency circuit. Preferably, the nonmagnetic insulating substrate 111 may comprise aluminum oxide (Al2O3), aluminum nitride (AlN), glass, or quartz crystal.
  • The second magnetic layer 112 may have high permeability, which may comprise ferrites. Preferably, the second magnetic layer 112 may comprise nickel zinc ferrite material (NiZn ferrite material) or manganese zinc ferrite material (MnZn ferrite material). In addition, the second magnetic layer 112 may comprise a mixture of a polymer and magnetic powder. The polymer may comprise polyimide or epoxy, and the magnetic powder may comprise ferrites. Preferably, the magnetic powder may comprise nickel zinc ferrite material or manganese zinc ferrite material.
  • The first magnetic layer 10 may comprise a magnetic material, especially a magnetic material including polymer. Alternatively, the first magnetic layer 10 may be made from a mixture of polymer and magnetic powder. The magnetic powder may comprise ferrites. Preferably, the magnetic powder may comprise nickel zinc ferrite material or manganese zinc ferrite material, and the polymer may comprise polyimide, epoxy, or benzocyclobutene.
  • Referring again to FIG. 1, the common mode filter 100 may further comprise a first lead layer 2, a first insulating layer 3, a second insulating layer 5, a third insulating layer 7, a second lead layer 8, and a fourth insulating layer 9, all of which are sequentially formed on the flattening insulation layer 11, constituting a laminated structure.
  • In particular, the first lead layer 2 is formed on the flattening insulation layer 11 and may comprise a first electrode 31, a lead 32, and a second electrode 33. One end of the lead 32 connects with the first electrode 31, and another end of the lead 32 extends adjacent to an edge of the flattening insulation layer 11, connecting with the second electrode 33 disposed adjacent to the afore-mentioned edge of the flattening insulation layer 11.
  • The first insulating layer 3 is formed between the first lead layer 2 and the first coil layer 4 to electrically insulate the first lead layer 2 and the first coil layer 4. The first insulating layer 3 may comprise a first through hole 41, which penetrates the first insulating layer 3. The first electrode 31 may protrude into the first through hole 41. In one embodiment of the present invention, the material of the first insulating layer 3 may comprise polyimide, epoxy, or benzocyclobutene.
  • The first coil layer 4 may further comprise a first electrode 51 and a second electrode 52. The first coil 53 may be a flat spiral coil, which may comprise an inner end and an outer end. The first electrode 51 may be coupled with the inner end of the first coil 53, protruding into the first through hole 41 of the first insulating layer 3 and connecting with the first electrode 31 of the first lead layer 2 so that the inner end of the first coil 53 is available for external electrical connection. The outer end of the first coil 53 may extend adjacent to an edge of the first insulating layer 3, coupled with the second electrode 52 adjacent to the same edge of the first insulating layer 3. The first electrode 51, the second electrode 52, and the first coil 53 can be made of metal, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • The second insulating layer 5 may be formed between the first coil layer 4 and the second coil layer 6 to electrically insulate the first coil layer 4 and the second coil layer 6. In one embodiment of the present invention, the second insulating layer 5 may comprise polyimide, epoxy, or benzocyclobutene.
  • Similarly, the second coil layer 6 may further comprise a first electrode 71 and a second electrode 72. The second coil 73 may be a flat spiral coil, and may comprise an inner end and an outer end. The first electrode 71 is coupled with the inner end of the second coil 73. The outer end of the second coil 73 extends adjacent to an edge of the second insulating layer 5, electrically connecting with the second electrode 72 disposed adjacent to the edge of the second insulating layer 5. The first electrode 71, the second electrode 72 and the second coil 73 can be made of a material such as silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • The third insulating layer 7 may be formed on the second coil layer 6, covering the first electrode 71, the second electrode 72 and the second coil 73 so as to electrically insulate the second coil layer 6. In one embodiment of the present invention, the material of the third insulating layer 7 may comprise polyimide, epoxy, or benzocyclobutene. The third insulating layer 7 may comprise a second through hole 42, which penetrates through the third insulating layer 7.
  • The second lead layer 8 is formed on the third insulating layer 7 and comprises a first electrode 91, a lead 92 and a second electrode 93, wherein one end of the lead 92 connects with the first electrode 91, and another end of the lead 92 extends adjacent to an edge of the third insulating layer 7, connecting with the second electrode 93 disposed adjacent to the edge of the third insulating layer 7. The first electrode 71 of the second coil layer 6 and the first electrode 91 on the third insulating layer 7 protrude into the through hole 42 and are coupled with each other. As such, the inner end of the second coil 73 of the second coil layer 6 is available for an external electrical connection. The first electrode 91, the lead 92 and the second electrode 93 can be made of a material, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • The fourth insulating layer 9 is formed between the second lead layer 8 and the first magnetic layer 10 to electrically insulate the second lead layer 8 and the first magnetic layer 10. The fourth insulating layer 9 may be made of a material comprising polyimide, epoxy, or benzocyclobutene.
  • FIG. 2 is an exploded view showing a common mode filter 200 according to another embodiment of the present invention. Referring to FIG. 2, the common mode filter 200 comprises a laminated structure and material compositions similar to those of the common mode filter 100 of the embodiment of FIG. 1 except that the first coil layer 14 of the common mode filter 200 comprises two first coils 53, and the second coil layer 16 of the common mode filter 200 comprises two second coils 73. Each first coil 53 connects with a first electrode 51 located inside the first coil 53 and connects with a second electrode 52 disposed adjacent to an edge of the common mode filter 200. Each second coil 73 connects with a first electrode 71 located inside the second coil 73 and connects with a second electrode 72 disposed adjacent to an edge of the common mode filter 200.
  • The common mode filter 200 may comprise a nonmagnetic insulating substrate 111 and a second magnetic layer 112′, two of which may be combined by co-firing or glue bonding to form heterogeneous laminates 1′. The nonmagnetic insulating substrate 111 may make the common mode filter 200 have a high quality factor so that the common mode filter 200 can be used in high frequency applications. Furthermore, the second magnetic layer 112′ and the first magnetic layer 10 can concentrate magnetic fields, reducing magnetic flux leakage and increasing the rejection bandwidth.
  • In one embodiment of the present invention, the second magnetic layer 112′ comprises a plurality of magnetic material pieces as shown in FIG. 2, in which the plurality of magnetic material pieces are separated from each other. In one embodiment of the present invention, the second magnetic layer 112′ may comprise two magnetic material pieces, wherein the two magnetic material pieces are disposed with respect to the two first coils 53 or the two second coils 73.
  • In one embodiment, when the second magnetic layer 112′ cannot provide a sufficiently flat surface for the next stacking layer, the common mode filter 200 may further comprise a flattening insulation layer 11, which is formed on the second magnetic layer 112′.
  • The first lead layer 12 is formed on the flattening insulation layer 11 and comprises two lead sets 30 a and 30 b. Each lead set 30 a or 30 b comprises a first electrode 31, a lead 32 and a second electrode 33. The two lead sets 30 a and 30 b correspond to the two first coils 53 of the first coil layer 14 or the two second coils 73 of the second coil layer 16.
  • The first insulating layer 13 is formed to electrically insulate the first lead layer 12 and the first coil layer 14. The first insulating layer 13 comprises two first through holes 41, in which the two first electrodes 31 of the first lead layer 12 and the two first electrodes 51 of the first coil layer 14 are respectively coupled. As such, the two first electrodes 51 of the first coil layer 14 are available for external electrical connection.
  • The second insulating layer 15 may electrically insulate the first coil layer 14 and the second coil layer 16. The first coils 53 of the first coil layer 14 correspond to the two second coils 73 of the second coil layer 16, wherein each first coil 53 is magnetically coupled with the respective second coil 73.
  • The third insulating layer 17 is formed on the second coil layer 16 and comprises two second through holes 42, which are disposed corresponding to the first electrodes 71 of the two second coils 73.
  • The second lead layer 18 is formed on the third insulating layer 17 and comprises two lead sets 90 a and 90 b, each of which comprises a first electrode 91, a lead 92 and a second electrode 93. The lead sets 90 a and 90 b are disposed with respect to the two second coils 73 of the second coil layer 16. The first electrodes 91 of the two lead sets 90 a and 90 b and the two first electrodes 71 of the second coil layer 16 are respectively coupled with each other in the two second through holes 42 so that the inner ends of the two second coils 73 are available for external electrical connection.
  • The fourth insulating layer 9 is formed on the second lead layer 18, and subsequently, a first magnetic layer 10 is disposed on the fourth insulating layer 9. As a result, the laminated structure of the common mode filter 200 is completed.
  • FIG. 3 is a diagram showing insertion loss of a conventional common mode filter and the common mode filter of an embodiment of the present invention versus frequency. As shown in FIG. 3, tests are performed on a common mode filter including homogeneous magnetic substrates, a common mode filter including homogeneous insulating substrates, and a common mode filter including heterogeneous laminates in accordance with one embodiment of the present invention. It can be found that the common mode filter including homogeneous magnetic substrates can have a wider rejection bandwidth (as shown by curve 300) because it includes the magnetic substrates that can concentrate magnetic fields in comparison to other common mode filters. The common mode filter including homogeneous insulating substrates can have a higher quality factor so that it can more effectively suppress noise (as shown by curve 400) because of insulating substrates. In comparison, because the heterogeneous laminates of one embodiment of the present invention can simultaneously have the above characteristics of the homogeneous magnetic substrate and the homogeneous insulating substrate, the common mode filter of one embodiment of the present invention can simultaneously have both better noise suppression effectiveness and a wide rejection bandwidth (as shown by curve 500).
  • FIGS. 4A to 4J are cross-sectional views schematically demonstrating the steps of a method of manufacturing a common mode filter according to one embodiment of the present invention. As shown in FIG. 4A, a nonmagnetic insulating substrate 111 is provided. Next, a second magnetic layer 112 is formed on at least a portion of a major surface of the nonmagnetic insulating substrate 111 to obtain heterogeneous laminates 1. The nonmagnetic insulating substrate 111 may comprise aluminum oxide, aluminum nitride, glass, or quartz crystal. The second magnetic layer 112 may comprise nickel zinc ferrite material or manganese zinc ferrite material. The second magnetic layer 112 may cover part or all of the nonmagnetic insulating substrate 111.
  • Referring to FIG. 4B, thin film deposition, lithography and electroplating processes are applied to form a first lead layer 2. The first lead layer 2 may comprise a material comprising silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof. As shown in FIG. 1, the first lead layer 2 may comprise a first electrode 31, a lead 32 and a second electrode 33, wherein the lead 32 has one end that connects with the first electrode 31 and another end that connects with the second electrode 33.
  • In one embodiment, a flattening insulation layer 11 as shown in FIG. 1 can be formed between the first lead layer 2 and the second magnetic layer 112. The flattening insulation layer 11 can be formed by a spin coating or screen printing technique and covers the second magnetic layer 112, or by a lamination technique to cover the second magnetic layer 112.
  • As shown in FIG. 4C, a first insulating layer 3 is formed on the first lead layer 2. Thereafter, lithography and etch processes are applied to form a first through hole 41 on the first insulating layer 3, at the location of the first electrode 31 of the first lead layer 2. The first electrode 31 of the first lead layer 2 may protrude into the first through hole 41. The material of the first insulating layer 3 may comprise polyimide, epoxy, or benzocyclobutene.
  • Referring to FIG. 4D, thin film deposition, lithography and electroplating processes are utilized to form a first coil layer 4 on the first insulating layer 3. As illustrated in FIG. 1, the first coil layer 4 may comprise a first electrode 51, a second electrode 52 and a first coil 53. The first coil 53 may be spiral. The first electrode 51 is coupled with an inner end of the first coil 53, protrudes into the first through hole 41 of the first insulating layer 3, and connects with the first electrode 31 of the first lead layer 2. The first coil layer 4 may be made of metal, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • Referring to FIG. 4E, a second insulating layer 5 is deposited on the first coil layer 4. The material of the second insulating layer 5 may comprise polyimide, epoxy, or benzocyclobutene.
  • As shown in FIG. 4F, thin film deposition, lithography and electroplating processes are applied to form a second coil layer 6 on the second insulating layer 5. The second coil layer 6 comprises a first electrode 71, a second electrode 72 and a second coil 73. As shown in FIG. 1, the second coil 73 may be spiral. The first electrode 71 is coupled with an inner end of the second coil 73, and the second electrode 72 is coupled with an outer end of the second coil 73. The second coil layer 6 may be made of metal, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
  • As shown in FIG. 4G, a third insulating layer 7 is deposited on the second coil layer 6. Next, lithography and etch processes are used to form a second through hole 42 on the third insulating layer 7, at the location of the first electrode 71 of the second coil layer 6. The first electrode 71 of the second coil layer 6 may protrude into the second through hole 42. The material of the third insulating layer 7 may comprise polyimide, epoxy, or benzocyclobutene.
  • As shown in FIG. 4H, thin film deposition, lithography and electroplating processes are applied to form a second lead layer 8 on the third insulating layer 7. The material of the second lead layer 8 may comprise metal, which may comprise silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof. As illustrated in FIG. 1, the second lead layer 8 comprises a first electrode 91, a lead 92, and a second electrode 93, wherein the lead 92 has one end connecting with the first electrode 91 and another end connecting with the second electrode 93. The first electrode 91 of the second lead layer 8 protrudes into the second through hole 42 of the third insulating layer 7, coupled with the first electrode 71 of the second coil layer 6 residing in the second through hole 42.
  • Referring to FIG. 41, an insulating material is deposited on the second lead layer 8 to form a fourth insulating layer 9. The material of the fourth insulating layer 9 may comprise polyimide, epoxy, or benzocyclobutene.
  • As shown in FIG. 4J, a first magnetic layer 10 is disposed on the fourth insulating layer 9. The first magnetic layer 10 may be used as an upper cover of the common mode filter. The first magnetic layer 10 can be directly bonded to the fourth insulating layer 9 by glue. The first magnetic layer 10 may comprise ferrites, preferably nickel zinc ferrite material or manganese zinc ferrite material. The first magnetic layer 10 may be formed by screen printing or coating a mixture of magnetic powder and a polymer onto the fourth insulating layer 9. The magnetic powder may comprise ferrites, preferably nickel zinc ferrite material or manganese zinc ferrite material. The polymer may comprise polyimide, epoxy, or benzocyclobutene.
  • FIGS. 5A and 5B are cross-sectional views showing the steps of a method for forming a second magnetic layer 112 on a nonmagnetic insulating substrate 111 according to one embodiment of the present invention. Referring to FIGS. 5A and 5B, a second magnetic layer 112 and a nonmagnetic insulating substrate 111 are initially provided. Thereafter, an adhesive 113 is applied to form an adhesive layer on the nonmagnetic insulating substrate 111. Finally, the second magnetic layer 112 is attached to the adhesive 113.
  • FIGS. 6A and 6B are cross-sectional views showing the steps of a method for forming a second magnetic layer 112 on a nonmagnetic insulating substrate 111 according to another embodiment of the present invention. Referring to FIG. 6A, a nonmagnetic insulating substrate 111 is introduced. As shown in FIG. 6B, a second magnetic layer 112 is applied to cover the nonmagnetic insulating substrate 111. The second magnetic layer 112 can be formed by coating a magnetic material on the nonmagnetic insulating substrate 111. The second magnetic layer 112 may also be a magnetic substrate, and may be temporarily attached to the nonmagnetic insulating substrate 111. Next, the nonmagnetic insulating substrate 111 and the second magnetic layer 112 are co-fired such that the nonmagnetic insulating substrate 111 and the second magnetic layer 112 are diffusion bonded.
  • FIGS. 7A and 7B are cross-sectional views showing the steps of a method for forming a second magnetic layer 112 on a nonmagnetic insulating substrate 111 according to another embodiment of the present invention. Referring to FIGS. 7A and 7B, a mixture 114 is obtained by mixing magnetic powder and a polymer. Next, the mixture 114 is deposited on the nonmagnetic insulating substrate 111 by a screen-printing or coating technique to obtain a second magnetic layer 112 on the nonmagnetic insulating substrate 111.
  • FIG. 8 is a view schematically showing a second magnetic layer 112 according to one embodiment of the present invention. Referring to FIGS. 1 and 8, the second magnetic layer 112 is formed on a major surface of a nonmagnetic insulating substrate 111 and corresponds to the first coil 53 and the second coil 73 such that the first coil 53 and the second coil 73 are located between the second magnetic layer 112 and the first magnetic layer 10. In one embodiment, the second magnetic layer 112 can have an area greater than that occupied by the first coil 53 or the second coil 73, but smaller than that of the major surface.
  • FIG. 9 is a view schematically showing a second magnetic layer 112′ according to another embodiment of the present invention. Referring to FIGS. 2 and 9, the second magnetic layer 112′ may comprise a plurality of magnetic material pieces 1121, each corresponding to a group of the first and second coils 53 and 73 and formed on a major surface of a nonmagnetic insulating substrate 111.
  • FIG. 10 is a view schematically showing a second magnetic layer 112″ according to another embodiment of the present invention. Referring to FIG. 10, the second magnetic layer 112″ may comprise a plurality of strip-like magnetic material pieces 1121′, which may be arranged in order on a major surface of a nonmagnetic insulating substrate 111.
  • FIG. 11 is a view schematically showing a second magnetic layer 112′″ according to one embodiment of the present invention. Referring to FIG. 11, the second magnetic layer 112′″ may comprise a plurality of rectangular magnetic material pieces 1121″, which may be arrayed on a major surface of a nonmagnetic insulating substrate 111.
  • Although the present invention and its objectives have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
  • Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (21)

1. A common mode filter having heterogeneous laminates, comprising:
a first magnetic layer;
a nonmagnetic insulating substrate;
a second magnetic layer formed on the nonmagnetic insulating substrate, between the first magnetic layer and the nonmagnetic insulating substrate;
a first coil layer disposed between the first magnetic layer and the second magnetic layer, comprising a first coil; and
a second coil layer disposed between the first magnetic layer and the second magnetic layer, comprising a second coil, wherein the first and second coil layers are separated from each other, and the first and second coils are magnetically coupled to each other.
2. The common mode filter of claim 1, further comprising a flattening insulation layer covering the second magnetic layer.
3. The common mode filter of claim 2, wherein the flattening insulation layer comprises polyimide, epoxy, or benzocyclobutene.
4. The common mode filter of claim 1, wherein the second magnetic layer partially or entirely covers the nonmagnetic insulating substrate.
5. The common mode filter of claim 1, wherein the second magnetic layer comprises a plurality of magnetic material pieces separated from each other.
6. The common mode filter of claim 1, further comprising an adhesive configured to bond the second magnetic layer to the nonmagnetic insulating substrate.
7. The common mode filter of claim 1, wherein the second magnetic layer and the nonmagnetic insulating substrate are diffusion bonded.
8. The common mode filter of claim 1, wherein the nonmagnetic insulating substrate comprises aluminum oxide, aluminum nitride, glass, or quartz crystal.
9. The common mode filter of claim 1, wherein the second magnetic layer comprises nickel zinc ferrite material or manganese zinc ferrite material.
10. The common mode filter of claim 1, wherein the second magnetic layer comprises polymer.
11. The common mode filter of claim 10, wherein the polymer comprises polyimide or epoxy.
12. The common mode filter of claim 1, wherein the first magnetic layer comprises magnetic powder and a polymer, wherein the magnetic powder comprises nickel zinc ferrite or manganese zinc ferrite, and the polymer comprises polyimide, epoxy, or benzocyclobutene.
13. The common mode filter of claim 1, comprising:
a first lead layer formed on the second magnetic layer, comprising a first lead;
a first insulating layer formed between the first lead layer and the first coil layer, comprising a first through hole formed through the first insulating layer, wherein one end of the first lead electrically connects to the first coil via the first through hole, and another end of the first lead extends adjacent to an edge of the insulating layer;
a second insulating layer formed between the first coil layer and the second coil layer;
a third insulating layer formed on the second coil layer, comprising a second through hole;
a second lead layer formed on the third insulating layer, comprising a second lead, which comprises one end electrically connecting to the second coil via the second through hole and another end extending adjacent to an edge of the third insulating layer; and
a fourth insulating layer formed between the second lead layer and the first magnetic layer.
14. The common mode filter of claim 13, wherein one of the first, second, third, and fourth insulating layers comprises polyimide, epoxy, or benzocyclobutene.
15. The common mode filter of claim 13, wherein one of the first coil, the second coil, the first lead, and the second lead comprises silver, palladium, aluminum, chromium, nickel, titanium, gold, copper, platinum, or an alloy thereof.
16. A method of manufacturing a common mode filter having heterogeneous laminates, the method comprising the steps of:
providing a nonmagnetic insulating substrate comprising a major surface;
forming a magnetic layer on part or all of the major surface;
forming a first lead on the magnetic layer;
forming a first insulating layer covering the first lead;
forming a first through hole penetrating through the first insulating layer;
forming a first coil on the first insulating layer, wherein the first coil electrically connects to the first lead via the first through hole;
forming a second insulating layer covering the first coil;
forming a second coil on the second insulating layer;
forming a third insulating layer covering the second coil;
forming a second through hole penetrating through the third insulating layer;
forming a second lead on the third insulating layer, wherein the second lead electrically connects to the second coil via the second through hole;
forming a fourth insulating layer covering the second lead; and
depositing a first magnetic material on the fourth insulating layer.
17. The method of claim 16, wherein the step of forming a magnetic layer on part or all of the major surface comprises a step of bonding the magnetic layer to the nonmagnetic insulating substrate by an adhesive.
18. The method of claim 16, wherein the step of forming a magnetic layer on part or all of the major surface comprises the steps of:
depositing a second magnetic material on the nonmagnetic insulating substrate; and
co-firing the second magnetic material and the nonmagnetic insulating substrate.
19. The method of claim 16, wherein the step of forming a magnetic layer on part or all of the major surface comprises the steps of:
mixing magnetic powder and a polymer to obtain a mixture; and
depositing the mixture on the nonmagnetic insulating substrate.
20. The method of claim 19, wherein the magnetic powder comprises nickel zinc ferrite or manganese zinc ferrite, and the polymer comprises polyimide, epoxy, or benzocyclobutene.
21. The method of claim 16, further comprising a step of forming a flattening insulation layer on the magnetic layer.
US13/429,864 2011-07-07 2012-03-26 Common mode filter and method of manufacturing the same Abandoned US20130009740A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/200,291 US9251953B2 (en) 2011-07-07 2014-03-07 Method of manufacturing a common mode filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100123985A TWI447753B (en) 2011-07-07 2011-07-07 Common mode filter having heterogeneous laminates and method of manufacturing the same
TW100123985 2011-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/200,291 Division US9251953B2 (en) 2011-07-07 2014-03-07 Method of manufacturing a common mode filter

Publications (1)

Publication Number Publication Date
US20130009740A1 true US20130009740A1 (en) 2013-01-10

Family

ID=47438310

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/429,864 Abandoned US20130009740A1 (en) 2011-07-07 2012-03-26 Common mode filter and method of manufacturing the same
US14/200,291 Active 2032-07-02 US9251953B2 (en) 2011-07-07 2014-03-07 Method of manufacturing a common mode filter

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/200,291 Active 2032-07-02 US9251953B2 (en) 2011-07-07 2014-03-07 Method of manufacturing a common mode filter

Country Status (2)

Country Link
US (2) US20130009740A1 (en)
TW (1) TWI447753B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135220A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Chip inductor and method for manufacturing the same
US20130342477A1 (en) * 2012-06-22 2013-12-26 Samsung Electro-Mechanics Co., Ltd. Sensor for digitizer and method for manufacturing the same
US20130342193A1 (en) * 2012-06-22 2013-12-26 Samsung Electro-Mechanics Co., Ltd. Sensor for digitizer and method of manufacturing the same
US20140035841A1 (en) * 2012-08-03 2014-02-06 Samsung Electro-Mechanics Co., Ltd. Sensor for digitizer and method for manufacturing the same
US20140133107A1 (en) * 2012-11-13 2014-05-15 Samsung Electro-Mechanics Co., Ltd. Thin film type chip device and method for manufacturing the same
JP2015035463A (en) * 2013-08-08 2015-02-19 Tdk株式会社 Laminated common mode filter
US20160225513A1 (en) * 2015-01-27 2016-08-04 Samsung Electro-Mechanics Co., Ltd. Coil component
US20180012698A1 (en) * 2016-07-06 2018-01-11 Murata Manufacturing Co., Ltd. Electronic component
US20180218824A1 (en) * 2017-01-30 2018-08-02 International Business Machines Corporation Inductors in beol with particulate magnetic cores
US11071239B2 (en) 2018-09-18 2021-07-20 Avx Corporation High power surface mount filter
US11146092B2 (en) * 2014-09-29 2021-10-12 Scramoge Technology Limited Wireless power transmitting apparatus and wireless power receiving apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462127B (en) * 2013-02-25 2014-11-21 Inpaq Technology Co Ltd Common mode filter with multi spiral layer structure
JP7021599B2 (en) * 2018-04-18 2022-02-17 株式会社村田製作所 Common mode choke coil
CN109524215A (en) * 2018-12-29 2019-03-26 矽力杰半导体技术(杭州)有限公司 Transformer and its manufacturing method is laminated

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020093415A1 (en) * 1996-03-29 2002-07-18 Hidekazu Kitamura Laminated common-mode choke coil
US7119649B2 (en) * 2004-05-28 2006-10-10 Matsushita Electric Industrial Co., Ltd. Common mode noise filter
US20070033798A1 (en) * 2003-07-28 2007-02-15 Tdk Corporation Coil component and method of manufacturing the same
US7283028B2 (en) * 2003-08-07 2007-10-16 Tdk Corporation Coil component
US20080100409A1 (en) * 2006-11-01 2008-05-01 Tdk Corporation Coil component
US20090003191A1 (en) * 2005-05-11 2009-01-01 Matsushita Electric Industrial Co., Ltd. Common Mode Noise Filter
US7821368B1 (en) * 2009-05-27 2010-10-26 Inpaq Technology Co., Ltd. Thin film type common mode noise filter and fabrication method of the same
US20110025442A1 (en) * 2009-08-03 2011-02-03 Inpaq Technology Co., Ltd. Common mode filter and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266411A (en) * 1992-03-18 1993-10-15 Sony Corp Magnetic head
JP2000173824A (en) * 1998-12-02 2000-06-23 Tokin Corp Electronic component
US6768409B2 (en) * 2001-08-29 2004-07-27 Matsushita Electric Industrial Co., Ltd. Magnetic device, method for manufacturing the same, and power supply module equipped with the same
US7091816B1 (en) * 2005-03-18 2006-08-15 Tdk Corporation Common-mode choke coil
JP2007250924A (en) * 2006-03-17 2007-09-27 Sony Corp Inductor element and its manufacturing method, and semiconductor module using inductor element
JP4404088B2 (en) * 2006-11-30 2010-01-27 Tdk株式会社 Coil parts
JP2009094149A (en) * 2007-10-04 2009-04-30 Hitachi Metals Ltd Multilayered inductor
TW200923980A (en) * 2007-11-16 2009-06-01 Delta Electronics Inc Filter and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020093415A1 (en) * 1996-03-29 2002-07-18 Hidekazu Kitamura Laminated common-mode choke coil
US20070033798A1 (en) * 2003-07-28 2007-02-15 Tdk Corporation Coil component and method of manufacturing the same
US7283028B2 (en) * 2003-08-07 2007-10-16 Tdk Corporation Coil component
US7119649B2 (en) * 2004-05-28 2006-10-10 Matsushita Electric Industrial Co., Ltd. Common mode noise filter
US20090003191A1 (en) * 2005-05-11 2009-01-01 Matsushita Electric Industrial Co., Ltd. Common Mode Noise Filter
US20080100409A1 (en) * 2006-11-01 2008-05-01 Tdk Corporation Coil component
US7821368B1 (en) * 2009-05-27 2010-10-26 Inpaq Technology Co., Ltd. Thin film type common mode noise filter and fabrication method of the same
US20110025442A1 (en) * 2009-08-03 2011-02-03 Inpaq Technology Co., Ltd. Common mode filter and method for manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135220A (en) * 2011-12-22 2013-07-08 Samsung Electro-Mechanics Co Ltd Chip inductor and method for manufacturing the same
US20130342477A1 (en) * 2012-06-22 2013-12-26 Samsung Electro-Mechanics Co., Ltd. Sensor for digitizer and method for manufacturing the same
US20130342193A1 (en) * 2012-06-22 2013-12-26 Samsung Electro-Mechanics Co., Ltd. Sensor for digitizer and method of manufacturing the same
US20140035841A1 (en) * 2012-08-03 2014-02-06 Samsung Electro-Mechanics Co., Ltd. Sensor for digitizer and method for manufacturing the same
US20140133107A1 (en) * 2012-11-13 2014-05-15 Samsung Electro-Mechanics Co., Ltd. Thin film type chip device and method for manufacturing the same
US9042106B2 (en) * 2012-11-13 2015-05-26 Samsung Electro-Mechanics Co., Ltd. Thin film type chip device and method for manufacturing the same
JP2015035463A (en) * 2013-08-08 2015-02-19 Tdk株式会社 Laminated common mode filter
US11146092B2 (en) * 2014-09-29 2021-10-12 Scramoge Technology Limited Wireless power transmitting apparatus and wireless power receiving apparatus
US20160225513A1 (en) * 2015-01-27 2016-08-04 Samsung Electro-Mechanics Co., Ltd. Coil component
US9972430B2 (en) * 2015-01-27 2018-05-15 Samsung Electro-Mechanics Co., Ltd. Coil component
US20180012698A1 (en) * 2016-07-06 2018-01-11 Murata Manufacturing Co., Ltd. Electronic component
US10714254B2 (en) * 2016-07-06 2020-07-14 Murata Manufacturing Co., Ltd. Electronic component
US10741327B2 (en) 2017-01-30 2020-08-11 International Business Machines Corporation Inductors in BEOL with particulate magnetic cores
US10984948B2 (en) * 2017-01-30 2021-04-20 International Business Machines Corporation Method of manufacturing inductors in BEOL with particulate magnetic cores
US20180218824A1 (en) * 2017-01-30 2018-08-02 International Business Machines Corporation Inductors in beol with particulate magnetic cores
US11071239B2 (en) 2018-09-18 2021-07-20 Avx Corporation High power surface mount filter
US12058845B2 (en) 2018-09-18 2024-08-06 KYOCERA AVX Components Corporation High power surface mount filter

Also Published As

Publication number Publication date
TWI447753B (en) 2014-08-01
US9251953B2 (en) 2016-02-02
TW201303919A (en) 2013-01-16
US20140186526A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US9251953B2 (en) Method of manufacturing a common mode filter
JP3615024B2 (en) Coil parts
JP5673359B2 (en) Coil component and manufacturing method thereof
US8988181B2 (en) Common mode filter with multi-spiral layer structure and method of manufacturing the same
US20130113593A1 (en) Multilayer type inductor and method of manufacturing the same
JP2013187540A (en) Thin film type common mode filter
JP5617635B2 (en) Multilayer electronic components
JP2013191846A (en) Common mode filter and fabrication method thereof
KR20040029592A (en) Stacked coil device and fabrication method therof
JP2010080550A (en) Common mode choke coil
US20120056705A1 (en) Layered inductor and manufacturing method thereof
JP2011091097A (en) Coil component
KR20190021686A (en) Coil component and method of manufacturing the same
JP4831101B2 (en) Multilayer transformer component and manufacturing method thereof
JP2006210541A (en) Inductor
JP2007214448A (en) Common mode choke coil
US9007149B2 (en) Common mode filter with multi spiral layer structure and method of manufacturing the same
CN103137286B (en) Common-mode filter of multi layer spiral structure and preparation method thereof
JP2008277695A (en) Common mode choke coil
JP2013251378A (en) Laminated common-mode choke coil
JP5600094B2 (en) Multi-layer spiral structure common mode filter and manufacturing method thereof
JP5600095B2 (en) Multi-layer spiral structure common mode filter and manufacturing method thereof
CN103123846B (en) Common-mode filter of multi layer spiral structure and preparation method thereof
JP2005116647A (en) Common mode choke coil, manufacturing method thereof, and common mode choke coil array
US9231551B2 (en) Common mode filter with multi-spiral layer structure and method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: INPAQ TECHNOLOGY CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, YU CHIA;LIN, CHI LONG;CHANG, HUAI LUH;AND OTHERS;REEL/FRAME:027926/0810

Effective date: 20120321

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION