US20120264877A1 - Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use - Google Patents
Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use Download PDFInfo
- Publication number
- US20120264877A1 US20120264877A1 US13/494,082 US201213494082A US2012264877A1 US 20120264877 A1 US20120264877 A1 US 20120264877A1 US 201213494082 A US201213494082 A US 201213494082A US 2012264877 A1 US2012264877 A1 US 2012264877A1
- Authority
- US
- United States
- Prior art keywords
- polyamide
- suspension
- powders
- inorganic particles
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/128—Polymer particles coated by inorganic and non-macromolecular organic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/14—Powdering or granulating by precipitation from solutions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D177/00—Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S524/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S524/904—Powder coating compositions
Definitions
- the present invention is in the field of fine polyamide powder.
- the invention relates to a process for preparing ultrafine powders based on polyamides by contacting polyamides having a relative solution viscosity ⁇ rel in the range from 1.5 to 2.0, measured in 0.5% m-cresol solution at 25° C., with an alcoholic medium in the presence of inorganic particles under the action of pressure and/or temperature to generate an at least partial solution, and then precipitating the polyamide from the at least partial solution.
- the invention also includes fine polyamide powders which have a high BET surface area and an apparent density which is within the range of standard precipitated polyamide powders, and also the use of the fine polyamide powders.
- the fine polyamide powders should ideally satisfy a whole series of requirements. For instance, it would be desirable to amalgamate a high BET surface area with a large apparent density combined with sufficient fineness of the powders.
- a high BET surface area would be desirable in many cases in order to improve the adhesion of the powder with respect to surfaces to be coated, or in order thus to lead to improved incorporation of pigments or additives of all types.
- DE-A 3510690 discloses polyamide powders which are obtained by a precipitation process from ethanol, according to the examples of said DE-A 3510690, inter alia, in the presence of white pigment (particulate titanium dioxide).
- white pigment particulate titanium dioxide
- measurements show that powders obtained according to this example have either relatively good apparent densities in conjunction with very low BET surface area, or sufficient BET surface area but at the expense of a no longer sufficiently high apparent density.
- a fine polyamide powder having a combination of high BET surface area and an apparent density between 250 and 1000 g/l is not made obtainable by DE-A 3510690.
- the fine powders based on polyamide should, by simple known processes, make available components and mouldings which possess increased strength values such as modulus of elasticity or tensile strength, but also very good impact resistance properties.
- processible fine polyamide powders with high apparent density and high BET surface area can be obtained by performing the polyamide precipitation (reprecipitation of the polyamide) in an alcoholic suspension which contained inorganic particles.
- a precipitation was also performed in the presence of particles (white pigment)
- a suspension of the particles is generated in the process according to the invention and the reprecipitation of the polyamide is performed in the presence of this suspension of the particles.
- a surprising result obtained here is an optimally processible fine polyamide powder having the desired properties with regard to BET surface area and apparent density.
- the inventive procedure results in fine polyamide powders in combination with inorganic particles.
- inorganic particles which are present in suspension in an alcoholic medium is of particular significance for the process of the invention.
- the process is characterized in that a suspension is used which comprises inorganic particles having a mean particle size d 50 in the range from 0.001 to 0.8 ⁇ m, measured in suspension in the alcoholic medium as the volume-weighted median value of the peak analysis by means of static or dynamic light scattering, suspended in the alcoholic medium.
- suspensions of inorganic particles are used, the particles having a size d 50 in the range from 0.005 to 0.5 ⁇ m and most preferably in the range from 0.01 to 0.3 ⁇ m.
- the particle size as specified is determined by known measurement methods by means of static or dynamic light scattering in the suspension.
- the values obtained via light scattering processes may be isolated particles or else agglomerates of primary particles in the suspension. What is important for the invention is that the particles actually present in the suspension, whether they be primary particles or agglomerates, have a d 50 value within the range specified.
- the particle size can be measured, for example, with a Zetasizer 3000 Hsa (Malvern Instruments, UK). When the particle size is above a d 50 value of 0.8 ⁇ m, the risk that no fine powders result is great. In the reprecipitation, the result under some circumstances might then be excessively large polyamide powder particles.
- a suspension which comprises inorganic particles selected from the group consisting of Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , ZnO, Bi 2 O 3 , CeO 2 , ITO (indium oxide doped with tin(IV) oxide), ATO (tin(IV) oxide doped with antimony oxide), IZO (indium oxide doped with zinc oxide), boron nitride, boron carbide, mixed oxides and spinels, suspended in the alcoholic medium. Particular preference is given to the use of aluminium oxide (Al 2 O 3 ).
- the aluminium oxide may preferably be of pyrogenic origin.
- Pyrogenic means that corresponding aluminium oxide powder is obtained by reacting a suitable starting material in a flame. Pyrogenic processes include flame oxidation and flame hydrolysis.
- a particular process used for the industrial scale preparation of aluminium oxide is the flame hydrolysis of aluminium chloride in a hydrogen/oxygen flame.
- the aluminium oxide particles prepared in this way are present in the form of aggregated primary particles, the primary particles being free of pores and bearing hydroxyl groups on their surface.
- hydrochloric acid which adheres to the aluminium oxide particles. Commonly, a majority of the hydrochloric acid is removed from the particles by a treatment with steam.
- Aluminium oxide powders particularly suitable for the invention include: AEROXIDE® Alu C, AEROXIDE® Alu 65, AEROXIDE®Alu 130, all Degussa AG, SpectrAlTM 100 Fumed Alumina, SpectrAlTM 51 Fumed Alumina, SpectrAlTM 81 Fumed Alumina, all Cabot Corp.
- An appropriate process variant envisages the use of a suspension which is obtainable by suspending inorganic particles having a specific surface area in the range from 5 to 200 m 2 /g in the alcoholic medium.
- the inorganic particles are used in the form of a suspension in alcoholic medium.
- the particles are distributed finely in the alcoholic medium. This is done by processes known per se. Particular preference is given to processes which enable a high energy input. Such processes are described, for example, in German Patent Application 103 60 766 or German Patent Application 10 2005 032 427.4.
- the process of the invention is characterized in that a suspension is used which is obtainable by suspending the inorganic particles in the alcoholic medium with introduction of an energy input of greater than 1000 kJ/m 3 .
- a suspension is used which is obtainable by suspending the inorganic particles in the alcoholic medium with introduction of an energy input of greater than 1000 kJ/m 3 .
- the energy input addressed can be accomplished by known units. Suitable units may be: planetary kneaders, rotor-stator machines, stirred ball mills, roll mills and the like.
- a particularly suitable procedure has been found to be one in which the suspension is first prepared with an energy input of less than 1000 kJ/m 3 to form a presuspension, the presuspension is divided into at least two substreams, these substreams are placed under a pressure of at least 500 bar in a high-energy mill, decompressed through a nozzle and allowed to meet one another in a gas- or liquid-filled reaction chamber, and the high-energy grinding is optionally repeated once or more than once.
- the amount of inorganic particles in the suspension can vary over a wide range. Depending on the particle type, size of the inorganic particles and specific nature of the alcoholic medium, relatively small or relatively large solids contents may be advisable. In general, it will, however, be appropriate to use very solids-rich suspensions for the purposes of the invention.
- a suspension is used which has a content of particles in the range from 10 to 60% by weight based on the total weight of the suspension.
- the suspensions of inorganic particles in alcoholic media involved in the process according to the invention should be highly stable.
- particularly stable is understood to mean the stability of the suspension against sedimentation and reagglomeration within a period of one month, generally of at least six months.
- Such additives are, for example, phosphoric acid and its mono- or dibasic phosphates, phosphoric esters, phosphonic acids, organically modified phosphonic acid, sulphuric acid and derivatives thereof, nitric acid, genrerally organic mineral acids.
- organic compounds having acidic protons for example carboxylic acids or phenols.
- Basic organic compounds for example based on amines, are also suitable.
- the suspensions utilizable for the invention are generated in an alcoholic medium.
- This may be a pure alcohol, a mixture of a plurality of alcohols or else alcohols having a content of water or other substances which essentially do not disadvantageously influence the desired reprecipitation of the polyamides.
- the alcoholic medium of the inventive suspensions preferably has a content of less than 50% by weight of nonalcoholic substances (preferably water), more preferably less than 10% by weight and particularly appropriately less than 1% by weight of extraneous, nonalcoholic substances.
- Useful substances for the invention are generally all types of alcohols or mixtures thereof which permit reprecipitation of the polyamides under the desired conditions (pressure and temperature). In the individual case, it is possible for the person skilled in the art to adjust the system to specific requirements without any great complication.
- the alcoholic medium used for the reprecipitation of the polyamide and/or the suspension of the inorganic particles is preferably one or more alcohols which have a numerical ratio of oxygen atoms to carbon atoms in the range from 1:1 to 1:5.
- Typical alcohols for preparing the suspension of the inorganic particles are those having a ratio of oxygen to carbon of 1:1, 1:2, 1:3, 1:4 and 1:5, preferably those having an oxygen to carbon ratio of 1:2 and 1:3, more preferably having an oxygen to carbon ratio of 1:2.
- ethanol is used in the preparation of a suspension of the inorganic particles, and in the reprecipitation of the polyamides.
- polyamides reprecipitable in accordance with the invention are the entire range of known and available substances.
- Polyamides usable with preference as the starting material for the process of the invention include nylon-11, nylon-12 and polyamides having more than 12 aliphatically bonded carbon atoms per carboxamide group, preferably nylon-12. It is also possible to use the corresponding copolyamides or mixtures of homo- and copolyamides which contain at least 70 percent by weight of the units mentioned.
- comonomers may accordingly contain from 0 to 30 percent by weight of one or more comonomers, such as caprolactam, hexamethylenediamine, 2-methylpentane-1,5-diamine, octamethylene-1,8-diamine, dodeca-methylenediamine, isophoronediamine, trimethylhexa-methylenediamine, adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, aminoundecanoic acid.
- comonomers such as caprolactam, hexamethylenediamine, 2-methylpentane-1,5-diamine, octamethylene-1,8-diamine, dodeca-methylenediamine, isophoronediamine, trimethylhexa-methylenediamine, adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, aminoundecano
- the solution of the polyamides for reprecipitation can be prepared in all known ways. What is advantageous is substantially complete dissolution of the polyamide in the alcoholic medium in the presence of the suspension of inorganic particles.
- the dissolution can be promoted by use of pressure and/or temperature. The procedure is appropriately to initially charge the polyamide in the alcoholic medium and to dissolve it over the time needed under the action of elevated temperature.
- the suspension of the inorganic particles can be added before, during or after the dissolution of the polyamide. Appropriately, the suspension of the inorganic particles is initially charged at the same time as the polyamide.
- the dissolution operation is favourably promoted by the use of appropriate stirrer units.
- the precipitation of the polyamide can likewise be supported by use of pressure and/or temperature.
- the invention also provides an ultrafine powder based on polyamides, obtainable by contacting polyamides having a relative solution viscosity ⁇ rel in the range from 1.5 to 2.0, measured in 0.5% m-cresol solution at 25° C., with a suspension of inorganic particles in an alcoholic medium under the action of pressure and/or temperature to generate an at least partial solution, and then precipitating the polyamide from the at least partial solution, the polyamide powder being characterized by a specific BET surface area in the range of 5-100 m 2 /g, preferably 10-25 m 2 /g; a fineness d 50 of less than 70 ⁇ m; an apparent density AD in the range from 250 to 1000 g/l; and a particle content of 0.1 to 80% by weight, preferably from 1 to 60% by weight, of inorganic particles based on the total weight of the polyamide powder.
- the BET surface area is determined to DIN 66131 by absorption of nitrogen according to Brunauer-Emmett-Teller.
- the fineness d 50 is determined by light scattering in a laser beam with a Malvern Mastersizer S Version 2.18.
- the apparent density is determined to DIN 53644.
- the particle content is determined by an ash/ignition residue determination to DIN EN ISO 3451 Part 1 and Part 4.
- the solution viscosity was determined in 0.5% meta-cresol solution to DIN 307.
- Preferred precipitated powders have apparent densities in the range from 250 to 800 g/l and more preferably between 300 and 500 g/l. Within these ranges, there is optimal processibility.
- the fine polyamide powders of the invention feature a unique combination of properties. In addition to the properties mentioned, they also possess a relatively narrow particle size distribution, which is evident from the examples. Owing to their outstanding properties, the powders are suitable for a whole series of applications.
- ultrafine powder based on polyamides comprises the use as a coating composition.
- the powders give rise to ongoing coatings by all known and suitable coating processes. It is possible to produce either fluidized-bed sintering powders or electrostatic powders. Thus, even in the coating of difficult metal parts, the precipitated powders exhibit excellent properties with regard to stretchability and edge coatings, and also stability toward alkaline aqueous solutions. The mechanical strength of the coatings is at an excellent level.
- the precipitated powders of the invention are equally outstandingly suitable for the production of mouldings and components.
- Materials made from inventive fine polyamide powders otherwise also have outstanding mechanical properties.
- the inventive fine powders exhibit not only increased strength values such as modulus of elasticity or tensile strength, but also very good impact strength properties.
- the invention therefore also encompasses the use of the ultrafine powder based on polyamides to produce mouldings and/or components of various shapes and structures.
- one possibility is to proceed from the powder itself and to produce the mouldings or components directly by known deformation processes, preferably by injection moulding, extrusion or blow moulding.
- the powders can also first be granulated and then processed thermoplastically, again by processes known per se, i.e. essentially by means of injection moulding, extrusion or blow moulding.
- a 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of AEROXIDE® Alu C (BET 100 m 2 /g) from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- a mean particle size d 50 of 0.18 ⁇ m was determined by dynamic light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- a 100 1 stainless steel batch vessel is initially charged with 44 kg of ethanol and 1.00 kg of H 3 PO 4 (85%). Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 21 kg of AEROXIDE® Alu C (BET 100 m 2 /g) from Degussa are introduced into the batch vessel. Once approx. 18 kg of AEROXIDE® Alu C had been added, a further 0.13 kg of H 3 PO 4 (85%) was added, in order again to achieve a low viscosity. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min. At shear time 25 min, a further 1.2 kg of H 3 PO 4 (85%) are added, so that a concentration of 11% H 3 PO 4 (85%) based on the Al 2 O 3 is achieved.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- a particle size d 50 of 0.14 ⁇ m was determined by dynamic light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- a 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of AEROXIDE® Alu C (BET 100 m 2 /g) from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- Cublen P 50 (a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water) was added in such an amount that a concentration of 2% by weight of Cublen P 50 based on the amount of Al 2 O 3 is achieved.
- a particle size d 50 of 0.13 ⁇ m was determined by static light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- a 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of AEROXIDE® Alu C (BET 100 m 2 /g) from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- 85% phosphoric acid is now added with intensive mixing to the suspension obtained, so that a concentration of 2% pure H 3 PO 4 , based on the amount of Al 2 O 3 , is achieved, and Cublen P 50 (a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water) is added in such an amount that a concentration of 2% by weight of Cublen P 50 based on the amount of Al 2 O 3 is achieved.
- Cublen P 50 a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water
- a particle size d 50 of 0.06 ⁇ m was determined by static light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- a 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of VP zirconium oxide PH from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- the phosphoric acid was again added during the suspension in the dissolver, while the amount of 2% by weight of Cublen P 50 (a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water), based on the overall suspension, is added for subsequent stabilization.
- Cublen P 50 a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water
- a particle size d 50 of 0.08 ⁇ m was determined by static light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- the jacket temperature is kept 2 K-3 K below the internal temperature at the same cooling rate.
- the internal temperature is brought to 117° C. with the same cooling rate and then kept constant for 60 minutes.
- distillative removal is continued at a cooling rate of 40 K/h and the internal temperature is thus brought to 111° C.
- the distillation rate is increased to such an extent that the internal temperature does not rise above 111.3° C.
- the internal temperature falls, which indicates the end of precipitation.
- Further distillative removal and cooling via the jacket brings the temperature of the suspension to 45° C., and the suspension is then transferred to a paddle dryer.
- the ethanol is distilled off at 70° C./400 mbar, and the residue is then dried at 20 mbar/86° C. for 3 hours.
- Example A The precipitation conditions are altered compared to Example A as follows:
- Dissolution temperature 155° C.
- nucleation temperature/time 128° C./60 min
- Precipitation temperature 120° C.
- precipitation time 1 hour
- stirrer speed 90 rpm
- Example A The precipitation conditions are altered compared to Example A as follows:
- Dissolution temperature 155° C.
- nucleation temperature 123° C.
- nucleation time 60 min
- Precipitation temperature 117° C.
- precipitation time 60 minutes
- stirrer speed 110 rpm
- the internal temperature is brought to 125° C. with a cooling rate of 25 K/h at the same stirrer speed.
- the jacket temperature is kept 2 K-3 K below the internal temperature at the same cooling rate until, at 108° C., precipitation, recognizable by the evolution of heat, sets in.
- the distillation rate is increased to such an extent that the internal temperature does not rise above 109.7° C. After 20 minutes, the internal temperature declines, which indicates the end of the precipitation. Further distillative removal and cooling via the jacket brings the temperature of the suspension to 45° C., and the suspension is then transferred to a paddle dryer.
- the ethanol is distilled off at 70° C./500 mbar, and the residue is then dried at 20 mbar/86° C. for 3 hours.
- the jacket temperature is kept 2 K-3 K below the internal temperature at the same cooling rate until, at 109° C., precipitation, recognizable by the evolution of heat, sets in.
- the distillation rate is increased to such an extent that the internal temperature does not rise above 109.3° C. After 20 minutes, the internal temperature declines, which indicates the end of the precipitation. Further distillative removal and cooling via the jacket brings the temperature of the suspension to 45° C., and the suspension is then transferred to a paddle dryer.
- the ethanol is distilled off at 70° C./500 mbar, and the residue is then dried at 20 mbar/86° C. for 3 hours.
- Example 2 The procedure was analogous to Example 1. 34.8 kg of suspension S2 were used. The amount of ethanol in the batch was reduced from 290 1 to 275 1.
- Example 2 The procedure was analogous to Example 1. 34.8 kg of suspension S3 were used. The amount of ethanol in the batch was reduced from 290 1 to 275 1.
- Dissolution temperature 155° C.
- precipitation temperature 123° C.
- precipitation time 40 minutes
- stirrer speed 110 rpm
- Dissolution temperature 155° C.
- precipitation temperature 117° C.
- precipitation time 60 minutes
- stirrer speed 110 rpm
- Example 1 Example 2
- Tensile strength 51 49 46 at the yield point N/mm 2 Yield stress % 4.5 4.9 5.2
- Elongation at 150 210 210 break % Impact resistance 9 x 10 x 8 x 23° C. kJ/m 2 no break no break no break
- Modulus of elasticity, tensile strength, breaking strength, yield stress and elongation at break were determined in the tensile test to ISO 527.
- Impact resistance was determined to ISO 179 le/U.
- specimens obtained with polyamide powders prepared in accordance with the invention possess a higher modulus of elasticity and also higher tensile strength values.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyamides (AREA)
- Paints Or Removers (AREA)
Abstract
Process for preparing ultrafine powders based on polyamides by contacting polyamides having a relative solution viscosity ηrel in the range from 1.5 to 2.0, measured in 0.5% m-cresol solution at 25° C., with an alcoholic medium in the presence of inorganic particles suspended therein under the action of pressure and/or temperature to generate an at least partial solution, and then precipitating the polyamide from the at least partial solution; the resulting ultrafine polyamide powders have a specific BET surface area of 5-100 m2/g; a fineness d50 of less than 70 μm; an apparent density AD from 250 to 1000 g/l; and a particle content of 0.1 to 80% by weight of inorganic particles based on the total weight of the polyamide powder; which powders are equally suitable for coatings and for mouldings and components with improved mechanical properties.
Description
- This is a divisional application of U.S. application Ser. No. 12/089,998, filed Apr. 11, 2008, which is a 371 of PCT/EP06/067308 filed on Oct. 12, 2006.
- The present invention is in the field of fine polyamide powder.
- In particular, the invention relates to a process for preparing ultrafine powders based on polyamides by contacting polyamides having a relative solution viscosity ηrel in the range from 1.5 to 2.0, measured in 0.5% m-cresol solution at 25° C., with an alcoholic medium in the presence of inorganic particles under the action of pressure and/or temperature to generate an at least partial solution, and then precipitating the polyamide from the at least partial solution. The invention also includes fine polyamide powders which have a high BET surface area and an apparent density which is within the range of standard precipitated polyamide powders, and also the use of the fine polyamide powders.
- Powders based on polyamide, for example for coatings or for obtaining mouldings, are notable for their high chemical resistance and very good mechanical properties. Powders which are obtained by reprecipitation from ethanolic solution, for example according to DE-A 2905547, are superior with regard to their processing performance to those products which are obtained from a grinding process, for example according to DE-A 1570392, since the precipitation leads to rounder and hence better fluidizable particles. Moreover, ground powders as obtained, for particles. Moreover, ground powders as obtained, for example, also according to DE-C 2855920 have a broad particle size distribution, which in turn causes a high level of classifying complexity. A further advantage of the precipitated powders is the wide range of variation in the molecular weight (ηrel=1.5-2.0), while ground powders are producible in an economically viable manner only at an ηrel<1.7.
- The fine polyamide powders should ideally satisfy a whole series of requirements. For instance, it would be desirable to amalgamate a high BET surface area with a large apparent density combined with sufficient fineness of the powders.
- For example, a high BET surface area would be desirable in many cases in order to improve the adhesion of the powder with respect to surfaces to be coated, or in order thus to lead to improved incorporation of pigments or additives of all types.
- In the so-called laser sintering process for producing components from fine polyamide powders too, a high BET surface area is advantageous, since the possibility of adhesion between the powder particles can thus be increased.
- Unfortunately, however, the advantages of a high BET surface area have to date necessarily been associated with an apparent density which complicates frictionless processing in existing processes. Normally, high apparent density and high BET surface area are two contradictory requirements. Powders based on polyamide which satisfy both requirements cannot be prepared according to the current state of the art. Although DE-A 19708956 describes fine polyamide powders with high apparent density which have been obtained by a two-stage precipitation process, these powders still have a low BET surface area.
- Although combinations of polyamide powders with inorganic pigments (e.g. titanium dioxide) have a high apparent density, they are neither fine powders nor exhibit a high BET surface area.
- The mere presence of particulate substances during the reprecipitation of polyamides is just as unlikely to lead to the desired combination of properties. Thus, DE-A 3510690 discloses polyamide powders which are obtained by a precipitation process from ethanol, according to the examples of said DE-A 3510690, inter alia, in the presence of white pigment (particulate titanium dioxide). However, measurements show that powders obtained according to this example have either relatively good apparent densities in conjunction with very low BET surface area, or sufficient BET surface area but at the expense of a no longer sufficiently high apparent density. A fine polyamide powder having a combination of high BET surface area and an apparent density between 250 and 1000 g/l is not made obtainable by DE-A 3510690.
- In view of the prior art detailed, it is an object of the invention to specify a process for preparing fine powders based on polyamide which, with sufficient fineness, couple a high BET surface area with sufficiently good processibility, i.e. an apparent density within the desired range.
- It is a further object to provide fine polyamide powders having a high BET surface area in combination with sufficiently high apparent density.
- It is another object to specify possible uses of the inventive fine polyamide powders. Thus, the fine powders based on polyamide should, by simple known processes, make available components and mouldings which possess increased strength values such as modulus of elasticity or tensile strength, but also very good impact resistance properties.
- These objects, and further objects which are not specified in detail but which are immediately evident from the discussion of the prior art, are solved by a process having the features of Claim 1. With regard to the product, the independent claim of the appropriate category specifies a solution to the object of the invention. With regard to the possible uses, solutions are disclosed by the appropriate claims.
- By using, in a process for preparing ultrafine powders based on polyamides by contacting polyamides having a relative solution viscosity ηrel in the range from 1.5 to 2.0, measured in 0.5% m-cresol solution at 25° C., with an alcoholic medium in the presence of inorganic particles under the action of pressure and/or temperature to generate an at least partial solution, and then precipitating the polyamide from the at least partial solution, a suspension of the inorganic particles in the alcoholic medium, it is possible in a manner which is not directly foreseeable to make available for the first time fine powders based on polyamide which satisfy the property profile discussed at the outset.
- In the context of the invention, processible fine polyamide powders with high apparent density and high BET surface area can be obtained by performing the polyamide precipitation (reprecipitation of the polyamide) in an alcoholic suspension which contained inorganic particles. In contrast to DE-A 3510690, in which, for example, a precipitation was also performed in the presence of particles (white pigment), a suspension of the particles is generated in the process according to the invention and the reprecipitation of the polyamide is performed in the presence of this suspension of the particles. A surprising result obtained here is an optimally processible fine polyamide powder having the desired properties with regard to BET surface area and apparent density.
- The inventive procedure results in fine polyamide powders in combination with inorganic particles.
- The use of inorganic particles which are present in suspension in an alcoholic medium is of particular significance for the process of the invention. In a preferred process variant, the process is characterized in that a suspension is used which comprises inorganic particles having a mean particle size d50 in the range from 0.001 to 0.8 μm, measured in suspension in the alcoholic medium as the volume-weighted median value of the peak analysis by means of static or dynamic light scattering, suspended in the alcoholic medium. Even more preferably, suspensions of inorganic particles are used, the particles having a size d50 in the range from 0.005 to 0.5 μm and most preferably in the range from 0.01 to 0.3 μm. The particle size as specified is determined by known measurement methods by means of static or dynamic light scattering in the suspension. The values obtained via light scattering processes may be isolated particles or else agglomerates of primary particles in the suspension. What is important for the invention is that the particles actually present in the suspension, whether they be primary particles or agglomerates, have a d50 value within the range specified. The particle size can be measured, for example, with a Zetasizer 3000 Hsa (Malvern Instruments, UK). When the particle size is above a d50 value of 0.8 μm, the risk that no fine powders result is great. In the reprecipitation, the result under some circumstances might then be excessively large polyamide powder particles.
- The nature of the compounds usable as inorganic particles in the context of the invention can vary over a wide range. Processes of great interest are those in which a suspension is used which comprises inorganic particles selected from the group consisting of Al2O3, TiO2, ZrO2, SiO2, ZnO, Bi2O3, CeO2, ITO (indium oxide doped with tin(IV) oxide), ATO (tin(IV) oxide doped with antimony oxide), IZO (indium oxide doped with zinc oxide), boron nitride, boron carbide, mixed oxides and spinels, suspended in the alcoholic medium. Particular preference is given to the use of aluminium oxide (Al2O3).
- In this connection, the aluminium oxide may preferably be of pyrogenic origin. Pyrogenic means that corresponding aluminium oxide powder is obtained by reacting a suitable starting material in a flame. Pyrogenic processes include flame oxidation and flame hydrolysis. A particular process used for the industrial scale preparation of aluminium oxide is the flame hydrolysis of aluminium chloride in a hydrogen/oxygen flame. In general, the aluminium oxide particles prepared in this way are present in the form of aggregated primary particles, the primary particles being free of pores and bearing hydroxyl groups on their surface. In the reaction of aluminium chloride to give aluminium oxide, a by-product formed is hydrochloric acid which adheres to the aluminium oxide particles. Commonly, a majority of the hydrochloric acid is removed from the particles by a treatment with steam.
- Aluminium oxide powders particularly suitable for the invention include: AEROXIDE® Alu C, AEROXIDE® Alu 65, AEROXIDE®Alu 130, all Degussa AG, SpectrAl™ 100 Fumed Alumina, SpectrAl™ 51 Fumed Alumina, SpectrAl™ 81 Fumed Alumina, all Cabot Corp.
- An appropriate process variant envisages the use of a suspension which is obtainable by suspending inorganic particles having a specific surface area in the range from 5 to 200 m2/g in the alcoholic medium.
- The inorganic particles are used in the form of a suspension in alcoholic medium. To obtain a suspension, the particles are distributed finely in the alcoholic medium. This is done by processes known per se. Particular preference is given to processes which enable a high energy input. Such processes are described, for example, in German Patent Application 103 60 766 or German Patent Application 10 2005 032 427.4.
- In a preferred embodiment, the process of the invention is characterized in that a suspension is used which is obtainable by suspending the inorganic particles in the alcoholic medium with introduction of an energy input of greater than 1000 kJ/m3. This generally gives rise to very usable suspensions of the particles in the alcohol. The energy input addressed can be accomplished by known units. Suitable units may be: planetary kneaders, rotor-stator machines, stirred ball mills, roll mills and the like.
- A particularly suitable procedure has been found to be one in which the suspension is first prepared with an energy input of less than 1000 kJ/m3 to form a presuspension, the presuspension is divided into at least two substreams, these substreams are placed under a pressure of at least 500 bar in a high-energy mill, decompressed through a nozzle and allowed to meet one another in a gas- or liquid-filled reaction chamber, and the high-energy grinding is optionally repeated once or more than once.
- The amount of inorganic particles in the suspension can vary over a wide range. Depending on the particle type, size of the inorganic particles and specific nature of the alcoholic medium, relatively small or relatively large solids contents may be advisable. In general, it will, however, be appropriate to use very solids-rich suspensions for the purposes of the invention. In an advantageous process modification, a suspension is used which has a content of particles in the range from 10 to 60% by weight based on the total weight of the suspension. Suspensions which are usable particularly favourably include those having a solids content of from 15 to 50% by weight, even more appropriately from 20 to 50% by weight.
- The suspensions of inorganic particles in alcoholic media involved in the process according to the invention should be highly stable. In the context of the invention, particularly stable is understood to mean the stability of the suspension against sedimentation and reagglomeration within a period of one month, generally of at least six months.
- To achieve particularly stable suspensions, it has also been found to be particularly advantageous when, in the distribution of the inorganic particles in the alcoholic medium, additives are present which can stabilize the suspension.
- Such additives are, for example, phosphoric acid and its mono- or dibasic phosphates, phosphoric esters, phosphonic acids, organically modified phosphonic acid, sulphuric acid and derivatives thereof, nitric acid, genrerally organic mineral acids. In addition, it is also possible to use organic compounds having acidic protons, for example carboxylic acids or phenols. Basic organic compounds, for example based on amines, are also suitable.
- The suspensions utilizable for the invention are generated in an alcoholic medium. This may be a pure alcohol, a mixture of a plurality of alcohols or else alcohols having a content of water or other substances which essentially do not disadvantageously influence the desired reprecipitation of the polyamides. The alcoholic medium of the inventive suspensions preferably has a content of less than 50% by weight of nonalcoholic substances (preferably water), more preferably less than 10% by weight and particularly appropriately less than 1% by weight of extraneous, nonalcoholic substances. Useful substances for the invention are generally all types of alcohols or mixtures thereof which permit reprecipitation of the polyamides under the desired conditions (pressure and temperature). In the individual case, it is possible for the person skilled in the art to adjust the system to specific requirements without any great complication. For the process of the invention, the alcoholic medium used for the reprecipitation of the polyamide and/or the suspension of the inorganic particles is preferably one or more alcohols which have a numerical ratio of oxygen atoms to carbon atoms in the range from 1:1 to 1:5.
- Typical alcohols for preparing the suspension of the inorganic particles are those having a ratio of oxygen to carbon of 1:1, 1:2, 1:3, 1:4 and 1:5, preferably those having an oxygen to carbon ratio of 1:2 and 1:3, more preferably having an oxygen to carbon ratio of 1:2. Very particularly appropriately, ethanol is used in the preparation of a suspension of the inorganic particles, and in the reprecipitation of the polyamides.
- The polyamides reprecipitable in accordance with the invention (i.e., therefore, compounds usable as starting materials) are the entire range of known and available substances. Polyamides usable with preference as the starting material for the process of the invention include nylon-11, nylon-12 and polyamides having more than 12 aliphatically bonded carbon atoms per carboxamide group, preferably nylon-12. It is also possible to use the corresponding copolyamides or mixtures of homo- and copolyamides which contain at least 70 percent by weight of the units mentioned. As comonomers, they may accordingly contain from 0 to 30 percent by weight of one or more comonomers, such as caprolactam, hexamethylenediamine, 2-methylpentane-1,5-diamine, octamethylene-1,8-diamine, dodeca-methylenediamine, isophoronediamine, trimethylhexa-methylenediamine, adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, aminoundecanoic acid. The homo- and copolyamides referred to hereinafter as polyamides are used in the form of granules or pellets, which possess a relative solution viscosity between 1.5 and 2.0 (measured in 0.5% m-cresol solution at 25° C. to DIN 53 727), preferably between 1.70 and 1.95. They can be prepared by polycondensation, hydrolytic or acidolytic or activated anionic polymerization by known processes. Preference is given to using unregulated polyamides with NH2/COOH end group ratios=from 40/60 to 60/40. The use polyamide may contain not more than 0.2 percent by weight of H3PO4. Preference is given to using H3PO4-free polyamides. However, it may also be appropriate to use regulated polyamides, preferably those in which the NH2/COOH end group ratio of 90:10 and 80:20 or 10:90 and 20:80 is present.
- The solution of the polyamides for reprecipitation can be prepared in all known ways. What is advantageous is substantially complete dissolution of the polyamide in the alcoholic medium in the presence of the suspension of inorganic particles. The dissolution can be promoted by use of pressure and/or temperature. The procedure is appropriately to initially charge the polyamide in the alcoholic medium and to dissolve it over the time needed under the action of elevated temperature. The suspension of the inorganic particles can be added before, during or after the dissolution of the polyamide. Appropriately, the suspension of the inorganic particles is initially charged at the same time as the polyamide. The dissolution operation is favourably promoted by the use of appropriate stirrer units. The precipitation of the polyamide can likewise be supported by use of pressure and/or temperature. For instance, a lowering of the temperature and/or distillative removal (preferably under reduced pressure) of the solvent, i.e. of the alcoholic medium, lead to the precipitation of the polyamide. However, it is also possible to support the precipitation by addition of an antisolvent (precipitant).
- The invention also provides an ultrafine powder based on polyamides, obtainable by contacting polyamides having a relative solution viscosity ηrel in the range from 1.5 to 2.0, measured in 0.5% m-cresol solution at 25° C., with a suspension of inorganic particles in an alcoholic medium under the action of pressure and/or temperature to generate an at least partial solution, and then precipitating the polyamide from the at least partial solution, the polyamide powder being characterized by a specific BET surface area in the range of 5-100 m2/g, preferably 10-25 m2/g; a fineness d50 of less than 70 μm; an apparent density AD in the range from 250 to 1000 g/l; and a particle content of 0.1 to 80% by weight, preferably from 1 to 60% by weight, of inorganic particles based on the total weight of the polyamide powder.
- The BET surface area is determined to DIN 66131 by absorption of nitrogen according to Brunauer-Emmett-Teller.
- The fineness d50 is determined by light scattering in a laser beam with a Malvern Mastersizer S Version 2.18.
- The apparent density is determined to DIN 53644.
- The particle content is determined by an ash/ignition residue determination to DIN EN ISO 3451 Part 1 and Part 4.
- The solution viscosity was determined in 0.5% meta-cresol solution to DIN 307.
- Preferred precipitated powders have apparent densities in the range from 250 to 800 g/l and more preferably between 300 and 500 g/l. Within these ranges, there is optimal processibility.
- The fine polyamide powders of the invention feature a unique combination of properties. In addition to the properties mentioned, they also possess a relatively narrow particle size distribution, which is evident from the examples. Owing to their outstanding properties, the powders are suitable for a whole series of applications.
- One preferred use of the ultrafine powder based on polyamides comprises the use as a coating composition. The powders give rise to impeccable coatings by all known and suitable coating processes. It is possible to produce either fluidized-bed sintering powders or electrostatic powders. Thus, even in the coating of difficult metal parts, the precipitated powders exhibit excellent properties with regard to stretchability and edge coatings, and also stability toward alkaline aqueous solutions. The mechanical strength of the coatings is at an excellent level.
- The precipitated powders of the invention are equally outstandingly suitable for the production of mouldings and components. Materials made from inventive fine polyamide powders otherwise also have outstanding mechanical properties. For instance, the inventive fine powders exhibit not only increased strength values such as modulus of elasticity or tensile strength, but also very good impact strength properties.
- The invention therefore also encompasses the use of the ultrafine powder based on polyamides to produce mouldings and/or components of various shapes and structures. In this case, one possibility is to proceed from the powder itself and to produce the mouldings or components directly by known deformation processes, preferably by injection moulding, extrusion or blow moulding.
- Alternatively, the powders can also first be granulated and then processed thermoplastically, again by processes known per se, i.e. essentially by means of injection moulding, extrusion or blow moulding.
- The invention will be illustrated in detail below with reference to examples and comparative examples.
- Tests
- Preparation of suspensions of the inorganic particles in alcoholic medium (ethanol) to be used in the process of the invention
- Suspension 1 (S1):
- A 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of AEROXIDE® Alu C (BET 100 m2/g) from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- The addition of 85% phosphoric acid, so as to attain a concentration of 2% pure H3PO4 based on the Al2O3, was effected during the preparation of the presuspension in the dissolver.
- After the suspension, a mean particle size d50 of 0.18 μm was determined by dynamic light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- Suspension 2 (S2):
- A 100 1 stainless steel batch vessel is initially charged with 44 kg of ethanol and 1.00 kg of H3PO4 (85%). Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 21 kg of AEROXIDE® Alu C (BET 100 m2/g) from Degussa are introduced into the batch vessel. Once approx. 18 kg of AEROXIDE® Alu C had been added, a further 0.13 kg of H3PO4 (85%) was added, in order again to achieve a low viscosity. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min. At shear time 25 min, a further 1.2 kg of H3PO4 (85%) are added, so that a concentration of 11% H3PO4 (85%) based on the Al2O3 is achieved.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- After the suspension, a particle size d50 of 0.14 μm was determined by dynamic light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- Suspension 3 (S3):
- A 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of AEROXIDE® Alu C (BET 100 m2/g) from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- The phosphoric acid was added during the preparation of the suspension in the dissolver. After passage through the high-energy mill, for further stabilization, Cublen P 50 (a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water) was added in such an amount that a concentration of 2% by weight of Cublen P 50 based on the amount of Al2O3 is achieved.
- After the suspension, a particle size d50 of 0.13 μm was determined by static light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- Suspension 4 (S4):
- A 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of AEROXIDE® Alu C (BET 100 m2/g) from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- For stabilization, 85% phosphoric acid is now added with intensive mixing to the suspension obtained, so that a concentration of 2% pure H3PO4, based on the amount of Al2O3, is achieved, and Cublen P 50 (a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water) is added in such an amount that a concentration of 2% by weight of Cublen P 50 based on the amount of Al2O3 is achieved.
- After the suspension, a particle size d50 of 0.06 μm was determined by static light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- Suspension 5 (S5):
- A 100 1 stainless steel batch vessel is initially charged with 77 kg of ethanol. Subsequently, with running Ystral Conti-TDS 3 (stator slot: 4 mm ring and 1 mm ring, rotor/stator distance approx. 1 mm) under shear conditions, 23 kg of VP zirconium oxide PH from Degussa are introduced into the batch vessel. Once the addition has ended, shearing is continued at 3000 rpm for another 30 min.
- This presuspension is conducted in two passes through the Sugino Ultimaizer HJP-25050 high-energy mill at a pressure of 2500 bar and diamond dies of diameter 0.25 mm and thereby intensively ground further.
- The phosphoric acid was again added during the suspension in the dissolver, while the amount of 2% by weight of Cublen P 50 (a commercial product from Schwarz and Zschimmer GmbH, a 50% solution of 2-phosphonobutane-1,2,4-tricarboxylic acid in water), based on the overall suspension, is added for subsequent stabilization.
- After the suspension, a particle size d50 of 0.08 μm was determined by static light scattering (Zetasizer 3000 Hsa from Malvern Instruments, UK). The volume-weighted median value of the peak analysis is reported.
- Preparation of fine polyamide powders with high apparent density and low BET surface area (noninventive comparative example A-D).
- 50 kg of unregulated PA 12 prepared by hydrolytic polymerization and having a relative solution viscosity of 1.62 and an end group content of 75 mmol/kg of COOH and 69 mmol/kg of NH2 are brought to 145° C. in a 0.8 m3 stirred tank together with 310 1 of ethanol, denatured with 2-butanone and water content 1%, within 5 hours, and left at this temperature for 1 hour with stirring (paddle stirrer, d=80 cm, speed=49 rpm). Subsequently, the jacket temperature is reduced to 124° C. and, while continuously distilling off the ethanol, the internal temperature is brought to 125° C. with the same stirrer speed at a cooling rate of 25 K/h. From now on, the jacket temperature is kept 2 K-3 K below the internal temperature at the same cooling rate. The internal temperature is brought to 117° C. with the same cooling rate and then kept constant for 60 minutes. Thereafter, distillative removal is continued at a cooling rate of 40 K/h and the internal temperature is thus brought to 111° C. At this temperature, precipitation sets in, noticeable by the evolution of heat. The distillation rate is increased to such an extent that the internal temperature does not rise above 111.3° C. After 25 minutes, the internal temperature falls, which indicates the end of precipitation. Further distillative removal and cooling via the jacket brings the temperature of the suspension to 45° C., and the suspension is then transferred to a paddle dryer.
- The ethanol is distilled off at 70° C./400 mbar, and the residue is then dried at 20 mbar/86° C. for 3 hours.
- In accordance with Example A, 50 kg of a PA 1010 specimen which has been obtained by polycondensation of 1,10-decanediamine and sebacic acid and has the following data is reprecipitated: ηrel=1.84, [COOH]=62 mmol/kg, [NH2]=55 mmol/kg.
- The precipitation conditions are altered compared to Example A as follows:
- Dissolution temperature: 155° C., nucleation temperature/time: 128° C./60 min
- Precipitation temperature: 120° C., precipitation time: 1 hour, stirrer speed: 90 rpm
- In accordance with Example A, 50 kg of a PA 1212 granule specimen which has been obtained by polycondensation of 1,10-decanediamine and dodecanedioic acid and has the following data is reprecipitated: ηrel=1.80, [COOH]=3 mmol/kg, [NH2]=107 mmol/kg.
- The precipitation conditions are altered compared to Example A as follows:
- Dissolution temperature: 155° C., nucleation temperature: 123° C., nucleation time: 60 min
- Precipitation temperature: 117° C., precipitation time: 60 minutes, stirrer speed: 110 rpm
- 50 kg of unregulated PA 12 prepared by a hydrolytic polymerization and having a relative solution viscosity of 1.62 and an end group content of 75 mmol/kg of COOH and 69 mmol/kg of NH2, and also 3 kg of titanium dioxide pigment (Kerr-McGee R-FK 3), together with 310 1 of ethanol denatured with 2-butanone and water content 1%, are brought to 152° C. in a 3 m3 stirred tank (d=160 cm) within 5 hours and left at this temperature with stirring (paddle stirrer, d=80 cm, speed=80 rpm) for 1 hour. The jacket temperature is then reduced to 124° C. and, while continuously distilling off the ethanol, the internal temperature is brought to 125° C. with a cooling rate of 25 K/h at the same stirrer speed. From now on, the jacket temperature is kept 2 K-3 K below the internal temperature at the same cooling rate until, at 108° C., precipitation, recognizable by the evolution of heat, sets in. The distillation rate is increased to such an extent that the internal temperature does not rise above 109.7° C. After 20 minutes, the internal temperature declines, which indicates the end of the precipitation. Further distillative removal and cooling via the jacket brings the temperature of the suspension to 45° C., and the suspension is then transferred to a paddle dryer.
- The ethanol is distilled off at 70° C./500 mbar, and the residue is then dried at 20 mbar/86° C. for 3 hours.
- The preparation of fine polyamide powders with high apparent density and high BET surface area is illustrated hereinafter with reference to examples. The results are compiled in Table 1.
- 50 kg of unregulated PA 12 prepared by a hydrolytic polymerization and having a relative solution viscosity of 1.62 and an end group content of 75 mmol/kg of COOH and 69 mmol/kg of NH2, together with 290 1 of ethanol denatured with 2-butanone and water content 1% and 17.4 kg of S1, are brought to 145° C. in a 0.8 m3 stirred tank within 5 hours and left at this temperature with stirring (paddle stirrer, d=80 cm, speed=85 rpm) for 1 hour. The jacket temperature is then reduced to 124° C. and, while continuously distilling off the ethanol, the internal temperature is brought to 125° C. with a cooling rate of 25 K/h at the same stirrer speed. From now on, the jacket temperature is kept 2 K-3 K below the internal temperature at the same cooling rate until, at 109° C., precipitation, recognizable by the evolution of heat, sets in. The distillation rate is increased to such an extent that the internal temperature does not rise above 109.3° C. After 20 minutes, the internal temperature declines, which indicates the end of the precipitation. Further distillative removal and cooling via the jacket brings the temperature of the suspension to 45° C., and the suspension is then transferred to a paddle dryer. The ethanol is distilled off at 70° C./500 mbar, and the residue is then dried at 20 mbar/86° C. for 3 hours.
- The procedure was analogous to Example 1. 17.4 kg of suspension S2 were used.
- The procedure was analogous to Example 1. 34.8 kg of suspension S2 were used. The amount of ethanol in the batch was reduced from 290 1 to 275 1.
- The procedure was analogous to Example 1. 17.4 kg of suspension S3 were used.
- The procedure was analogous to Example 1. 34.8 kg of suspension S3 were used. The amount of ethanol in the batch was reduced from 290 1 to 275 1.
- The procedure was analogous to Example 1. 17.4 kg of suspension S4 were used.
- The procedure was analogous to Example 1. 17.4 kg of suspension S5 were used.
- In accordance with Example 1, 50 kg of a PA 1010 specimen obtained by polycondensation of 1,10-decanediamine and sebacic acid and having the following characteristic data are reprecipitated: ηrel=1.84, [COOH]=62 mmol/kg, [NH2]=55 mmol/kg.
- Compared to Example 1, the precipitation conditions were modified as follows:
- Precipitation temperature: 120° C., precipitation time: 2 hours, stirrer speed: 90 rpm
- 17.4 kg of suspension S2 were used.
- In accordance with Example 1, 50 kg of a PA 1012 granule specimen obtained by polycondensation of 1,10-decanediamine and dodecanedioic acid and having the following characteristic data are reprecipitated: ηrel=1.76, [COOH]=46 mmol/kg, [NH2]=65 mmol/kg.
- Compared to Example 1, the precipitation conditions were modified as follows:
- Dissolution temperature: 155° C., precipitation temperature: 123° C., precipitation time: 40 minutes, stirrer speed: 110 rpm
- 17.4 kg of suspension S2 were used.
- In accordance with Example 1, 400 kg of a PA 1012 granule specimen obtained by polycondensation of 1,10-decanediamine and dodecanedioic acid and having the following characteristic data are reprecipitated: ηrel=1.80, [COOH]=3 mmol/kg, [NH2]=107 mmol/kg.
- Compared to Example 1, the precipitation conditions were modified as follows:
- Dissolution temperature: 155° C., precipitation temperature: 117° C., precipitation time: 60 minutes, stirrer speed: 110 rpm
- 17.4 kg of suspension S2 were used.
-
TABLE 1 BET AD η-rel (m2/g) <10% <50% <90% g/l Example 1 1.69 12.3 16 33 55 383 Example 2 1.67 16.3 15 28 51 344 Example 3 1.70 19.70 12 36 70 431 Example 4 1.68 15.3 12 29 52 382 Example 5 1.68 19.3 17 41 80 320 Example 6 1.64 20.3 17 42 74 310 Example 7 1.68 15.3 14 29 53 380 Example 8 1.82 15.7 21 36 75 381 Example 9 1.75 17.1 19 34 76 379 Example 1.79 16.5 23 42 73 370 10 Comp. 1.60 2.60 78 137 211 432 Ex. A Comp. 1.81 2.1 50 78 120 440 Ex. B Comp. 1.79 2.5 50 96 210 480 Ex. C Comp. 1.61 2.8 32 71 101 493 Ex. D ηrel = specific viscosity as a measure of the molecular weight; BET = surface area of the polyamide powder in m2/g; <10% = integral particle size distribution at which 10% is below the diameter specified; <50% = integral particle size distribution at which 50% is below the diameter specified; <90% = integral particle size distribution at which 90% is below the diameter specified; AD = apparent density of the polyamide powder in g/l - Preparation and Characterization of Granule
- The powders from Examples 1 and 3 and Comparative Example A were melted, extruded and granulated in a Coperion ZSK 25 twin-screw extruder at 220° C. and a throughput of 8 kg/h.
- Subsequently, standard specimens were produced by injection moulding and the tensile test to ISO 527 and the impact resistance to ISO 179 le/U at 23° C. and −40° C. were determined.
- The results are summarized in Table 2.
-
TABLE 2 Characteristic value Example 1 Example 2 Example A Modulus of 1821 1790 1471 elasticity MPa Tensile strength 51 49 46 at the yield point N/mm2 Yield stress % 4.5 4.9 5.2 Breaking strength 37 38 36 N/mm2 Elongation at 150 210 210 break % Impact resistance 9 x 10 x 8 x 23° C. kJ/m2 no break no break no break Impact resistance 8 x 8 x 4 x −40° C. kJ/m2 no break no break no break - Modulus of elasticity, tensile strength, breaking strength, yield stress and elongation at break were determined in the tensile test to ISO 527.
- Impact resistance was determined to ISO 179 le/U.
- It is evident that specimens obtained with polyamide powders prepared in accordance with the invention possess a higher modulus of elasticity and also higher tensile strength values.
Claims (11)
1. An ultrafine powder based on a polyamide, obtainable by contacting the polyamide having a relative solution viscosity ηrel in a range from 1.5 to 2.0, measured in a 0.5% m-cresol solution at 25° C., with a suspension of inorganic particles in an alcoholic medium under the action of pressure and/or temperature to generate an at least partial solution, and then precipitating the polyamide from the at least partial solution, wherein a specific BET surface area is in a range of 5-100 m2/g; a fineness d50 is less than 70 μm; an apparent density AD is in a range from 250 to 1000 g/l; and a particle content is from 0.1 to 80% by weight of the inorganic particles based on the total weight of the polyamide powder.
2. A coating composition comprising the ultrafine powder based on the polyamides according to claim 1 .
3. A moulding comprising the ultrafine powder based on the polyamides according to claim 1 .
4. A method for producing the moulding of claim 3 , comprising an injection extrusion or blow of the moulding.
5. A method for producing the moulding of claim 3 , comprising producing a granule and subsequent thermoplastic, and further injecting, extruding or blowing the moulding.
6. The ultrafine powder according to claim 1 , wherein the suspension of the inorganic particles is at least one selected from the group consisting of Al2O3, TiO2, ZrO2, SiO2, ZnO, Bi2O3, CeO2, ITO, ATO, IZO, boron nitride, boron carbide, mixed oxides and spinels, suspended in the alcoholic medium.
7. The ultrafine powder according to claim 1 , wherein the suspension of the inorganic particles is at least one of Al2O3.
8. The ultrafine powder according to claim 1 , wherein the specific BET surface area in a range of 10-25 m2/g.
9. The ultrafine powder according to claim 1 , wherein the apparent density AD in a range from 250 to 800 g/l.
10. The ultrafine powder according to claim 1 , wherein the particle content is from 1 to 60% by weight of the inorganic particles based on the total weight of the polyamide powder.
11. The process according to claim 1 , wherein the apparent density AD in a range from 300 to 500 g/l.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/494,082 US20120264877A1 (en) | 2005-11-04 | 2012-06-12 | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005053071.0-43 | 2005-11-04 | ||
DE102005053071A DE102005053071A1 (en) | 2005-11-04 | 2005-11-04 | Process for the preparation of ultrafine powders based on polymaiden, ultrafine polyamide powder and their use |
PCT/EP2006/067308 WO2007051691A1 (en) | 2005-11-04 | 2006-10-12 | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
US8999808A | 2008-04-11 | 2008-04-11 | |
US13/494,082 US20120264877A1 (en) | 2005-11-04 | 2012-06-12 | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/067308 Division WO2007051691A1 (en) | 2005-11-04 | 2006-10-12 | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
US8999808A Division | 2005-11-04 | 2008-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120264877A1 true US20120264877A1 (en) | 2012-10-18 |
Family
ID=37603100
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/089,998 Active 2027-10-17 US8232333B2 (en) | 2005-11-04 | 2006-10-12 | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
US13/494,082 Abandoned US20120264877A1 (en) | 2005-11-04 | 2012-06-12 | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/089,998 Active 2027-10-17 US8232333B2 (en) | 2005-11-04 | 2006-10-12 | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use |
Country Status (11)
Country | Link |
---|---|
US (2) | US8232333B2 (en) |
EP (1) | EP1943296B1 (en) |
JP (1) | JP5328360B2 (en) |
CN (1) | CN101300292B (en) |
AT (1) | ATE458775T1 (en) |
CA (1) | CA2628459A1 (en) |
DE (2) | DE102005053071A1 (en) |
ES (1) | ES2341487T3 (en) |
NO (1) | NO20082480L (en) |
TW (1) | TWI400280B (en) |
WO (1) | WO2007051691A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9248627B2 (en) | 2011-10-14 | 2016-02-02 | Evonik Degussa Gmbh | Multilayer film having polyamide and polypropylene layers |
US9312043B2 (en) | 2012-03-16 | 2016-04-12 | Evonik Degussa Gmbh | Polyamide composition containing electrically conductive carbon |
US9418773B2 (en) | 2010-11-05 | 2016-08-16 | Evonik Degussa Gmbh | Composition of polyamides with low concentration of carboxamide groups and electrically conductive carbon |
US9524807B2 (en) | 2010-11-05 | 2016-12-20 | Evonik Degussa Gmbh | Polyamide 12 composition containing carbon nanotubes |
US9580732B2 (en) | 2011-07-20 | 2017-02-28 | Evonik Degussa Gmbh | Oxidation and amination of primary alcohols |
US9611489B2 (en) | 2012-03-12 | 2017-04-04 | Evonik Degussa Gmbh | Enzymatic omega-oxidation and omega-amination of fatty acids |
US9719117B2 (en) | 2012-12-21 | 2017-08-01 | Evonik Degussa | Production of omega-amino fatty acids |
US9725746B2 (en) | 2012-12-21 | 2017-08-08 | Evonik Degussa Gmbh | Producing amines and diamines from a carboxylic acid or dicarboxylic acid or a monoester thereof |
US9765370B2 (en) | 2012-04-02 | 2017-09-19 | Evonik Degussa Gmbh | Method for aerobically producing alanine or a compound produced using alanine |
US10174349B2 (en) | 2008-06-27 | 2019-01-08 | Evonik Roehm Gmbh | Recombinant cell producing 2-hydroxyisobutyric acid |
US10350865B2 (en) | 2011-10-14 | 2019-07-16 | Evonik Degussa Gmbh | Multilayer film with polyamide and polyester layers for the production of photovoltaic modules |
US20200010627A1 (en) * | 2017-02-01 | 2020-01-09 | Basf Se | Process for producing a polyamide powder by precipitation |
US10745721B2 (en) | 2012-11-12 | 2020-08-18 | Evonik Operations Gmbh | Process for reacting a carboxylic acid ester |
US10889694B2 (en) | 2018-07-06 | 2021-01-12 | Taiwan Green Point Enterprises Co., Ltd. | Method and composition for preparing polyamide powders |
US11117837B2 (en) | 2016-09-30 | 2021-09-14 | Evonik Operations GbmH | Polyamide powder for selective sintering methods |
WO2022238171A1 (en) * | 2021-05-14 | 2022-11-17 | Evonik Operations Gmbh | Fumed alumina powder with reduced moisture content |
Families Citing this family (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2299649T3 (en) * | 2002-09-21 | 2008-06-01 | Evonik Degussa Gmbh | PROCEDURE FOR THE PRODUCTION OF A THREE-DIMENSIONAL OBJECT. |
EP1459871B1 (en) * | 2003-03-15 | 2011-04-06 | Evonik Degussa GmbH | Method and apparatus for manufacturing three dimensional objects using microwave radiation and shaped body produced according to this method |
DE10334496A1 (en) * | 2003-07-29 | 2005-02-24 | Degussa Ag | Laser sintering powder with a metal salt and a fatty acid derivative, process for the production thereof and moldings produced from this laser sinter powder |
DE102004010162A1 (en) * | 2004-02-27 | 2005-09-15 | Degussa Ag | Polymer powder with copolymer, use in a shaping process with unfocused energy input and molding, made from this polymer powder |
DE102004012682A1 (en) * | 2004-03-16 | 2005-10-06 | Degussa Ag | Process for the production of three-dimensional objects by means of laser technology and application of an absorber by inkjet method |
DE102004020453A1 (en) * | 2004-04-27 | 2005-11-24 | Degussa Ag | Polymer powder with polyamide, use in a molding process and molding, made from this polymer powder |
DE102004020452A1 (en) * | 2004-04-27 | 2005-12-01 | Degussa Ag | Method for producing three-dimensional objects by means of electromagnetic radiation and applying an absorber by inkjet method |
DE102004024440B4 (en) * | 2004-05-14 | 2020-06-25 | Evonik Operations Gmbh | Polymer powder with polyamide, use in a shaping process and molded body made from this polymer powder |
DE102004029217A1 (en) * | 2004-06-16 | 2006-01-05 | Degussa Ag | Multilayer film |
DE102004031785A1 (en) * | 2004-07-01 | 2006-01-26 | Degussa Ag | Polyol-containing silica dispersion |
DE102004037044A1 (en) | 2004-07-29 | 2006-03-23 | Degussa Ag | Agent for equipping cellulose-based and / or starch-based substrates with water-repellent and, at the same time, fungus, bacteria, insect and algae-deficient properties |
DE102004037045A1 (en) | 2004-07-29 | 2006-04-27 | Degussa Ag | Aqueous silane nanocomposites |
DE102004047876A1 (en) * | 2004-10-01 | 2006-04-06 | Degussa Ag | Powder with improved recycling properties, process for its preparation and use of the powder in a process for producing three-dimensional objects |
DE102004049427A1 (en) | 2004-10-08 | 2006-04-13 | Degussa Ag | Polyether-functional siloxanes, polyethersiloxane-containing compositions, processes for their preparation and their use |
DE102004062761A1 (en) * | 2004-12-21 | 2006-06-22 | Degussa Ag | Use of polyarylene ether ketone powder in a three-dimensional powder-based tool-less production process, and moldings produced therefrom |
DE102004063220A1 (en) * | 2004-12-29 | 2006-07-13 | Degussa Ag | Transparent molding compounds |
DE102005002930A1 (en) * | 2005-01-21 | 2006-07-27 | Degussa Ag | Polymer powder with polyamide, use in a molding process and molding, made from this polymer powder |
CA2594837A1 (en) * | 2005-01-27 | 2006-08-03 | Altana Pharma Ag | Novel indolopyridines, benzofuranopyridines and benzothienopyridines |
WO2006079644A1 (en) * | 2005-01-28 | 2006-08-03 | Nycomed Gmbh | Indolopyridines, benzofuranopyridines and benzothienopyridines |
DE102005004872A1 (en) | 2005-02-03 | 2006-08-10 | Degussa Ag | Aqueous emulsions of functional alkoxysilanes and their condensed oligomers, their preparation and use for surface treatment |
DE102005007665A1 (en) | 2005-02-19 | 2006-08-31 | Degussa Ag | Foil based on a polyamide blend |
DE102005007663A1 (en) | 2005-02-19 | 2006-08-24 | Degussa Ag | Transparent, decorable multilayer film |
DE102005007664A1 (en) * | 2005-02-19 | 2006-08-31 | Degussa Ag | Transparent molding compound |
DE102005026264A1 (en) * | 2005-06-08 | 2006-12-14 | Degussa Ag | Transparent molding compound |
DE102005032427A1 (en) * | 2005-07-12 | 2007-01-18 | Degussa Ag | Aluminum oxide dispersion |
DE102005033379A1 (en) * | 2005-07-16 | 2007-01-18 | Degussa Ag | Use of cyclic oligomers in a molding process and molding made by this process |
DE102006006655A1 (en) * | 2005-08-26 | 2007-03-01 | Degussa Ag | Cellulose- or lignocellulose-containing composites based on a silane-based composite as binder |
DE102006006656A1 (en) | 2005-08-26 | 2007-03-01 | Degussa Ag | Silane-containing binder for composites |
DE102005049718A1 (en) * | 2005-10-14 | 2007-04-19 | Degussa Gmbh | By welding in electromagnetic alternating field available plastic composite molding |
DE102005053071A1 (en) | 2005-11-04 | 2007-05-16 | Degussa | Process for the preparation of ultrafine powders based on polymaiden, ultrafine polyamide powder and their use |
DE102005054723A1 (en) * | 2005-11-17 | 2007-05-24 | Degussa Gmbh | Use of polyester powder in a molding process and molding made from this polyester powder |
DE102006003956A1 (en) * | 2006-01-26 | 2007-08-02 | Degussa Gmbh | Production of a corrosion protection layer on a metal surface e.g. vehicle structure comprises applying a sol-gel composition to the metal surface, drying and/or hardening and applying a further layer and drying and/or hardening |
DE102006005500A1 (en) * | 2006-02-07 | 2007-08-09 | Degussa Gmbh | Use of polymer powder, prepared from a dispersion, in a molding process and molding, made from this polymer powder |
DE102006013090A1 (en) * | 2006-03-20 | 2007-09-27 | Georg-August-Universität Göttingen | Composite material made of wood and thermoplastic material |
DE102006015791A1 (en) * | 2006-04-01 | 2007-10-04 | Degussa Gmbh | Polymer powder, process for the preparation and use of such a powder and molded articles thereof |
DE102006017701A1 (en) * | 2006-04-15 | 2007-10-25 | Degussa Gmbh | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite produced therefrom |
DE102006039269A1 (en) * | 2006-08-22 | 2008-02-28 | Evonik Degussa Gmbh | Dispersion of alumina, coating composition and ink receiving medium |
US8155674B2 (en) * | 2006-08-22 | 2012-04-10 | Research In Motion Limited | Apparatus, and associated method, for dynamically configuring a page message used to page an access terminal in a radio communication system |
DE102007019133A1 (en) * | 2007-04-20 | 2008-10-23 | Evonik Degussa Gmbh | Composite powder, use in a molding process and molding made from this powder |
EP1982964B1 (en) * | 2007-04-20 | 2019-02-27 | Evonik Degussa GmbH | Preparation containing organosilicium compound and its use |
DE102007038314A1 (en) | 2007-08-14 | 2009-04-16 | Evonik Degussa Gmbh | Process for the controlled hydrolysis and condensation of epoxy-functional organosilanes and their condensation with further organofunctional alkoxysilanes |
DE102007040246A1 (en) * | 2007-08-25 | 2009-02-26 | Evonik Degussa Gmbh | Radiation-curable formulations |
DE102008007261A1 (en) | 2007-08-28 | 2009-03-05 | Evonik Degussa Gmbh | Aqueous silane systems based on bis (trialkoxysilylalkyl) amines |
DE102007049743A1 (en) * | 2007-10-16 | 2009-04-23 | Evonik Degussa Gmbh | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite produced therefrom |
FR2930555B1 (en) * | 2008-04-29 | 2012-08-24 | Arkema France | PROCESS FOR INCREASING THE DISTANCE BETWEEN THE FUSION TEMPERATURE AND THE CRYSTALLIZATION TEMPERATURE OF A POLYAMIDE POWDER |
DE102009002499A1 (en) | 2009-04-20 | 2010-10-21 | Evonik Degussa Gmbh | Dispersion comprising surface-modified silica particles with quaternary, amino-functional organosilicon compounds |
DE102009002477A1 (en) | 2009-04-20 | 2010-10-21 | Evonik Degussa Gmbh | Quaternary amino functional, organosilicon compounds containing composition and their preparation and use |
EP2368696B2 (en) * | 2010-03-25 | 2018-07-18 | EOS GmbH Electro Optical Systems | Refreshening-optimised PA 12 powder for use in a generative layer construction procedure |
PL2374835T3 (en) | 2010-04-07 | 2014-05-30 | Evonik Degussa Gmbh | Polyamide 1010 powder and its use in personal care products |
WO2012092104A1 (en) | 2010-12-30 | 2012-07-05 | Ticona Llc | Powder containing a polyoxymethylene polymer for coating metallic substrates |
DE102011078719A1 (en) | 2011-07-06 | 2013-01-10 | Evonik Degussa Gmbh | Powder containing polymer-coated particles |
DE102011078722A1 (en) | 2011-07-06 | 2013-01-10 | Evonik Degussa Gmbh | Powder containing polymer-coated inorganic particles |
DE102011078720A1 (en) | 2011-07-06 | 2013-01-10 | Evonik Degussa Gmbh | Powder comprising polymer-coated core particles containing metals, metal oxides, metal or metalloid nitrides |
DE102011078721A1 (en) | 2011-07-06 | 2013-01-10 | Evonik Degussa Gmbh | Powder containing polymer-coated polymeric core particles |
JP5541586B2 (en) * | 2011-09-27 | 2014-07-09 | 東レ株式会社 | Polyamide 1010 resin particles and production method thereof |
CN102399371B (en) * | 2011-10-17 | 2015-11-04 | 湖南华曙高科技有限责任公司 | A kind of polyamide powder preparation method for selective laser sintering |
DE102012205908A1 (en) * | 2012-04-11 | 2013-10-17 | Evonik Industries Ag | Polymer powder with adapted melting behavior |
WO2015108544A1 (en) | 2014-01-16 | 2015-07-23 | Hewlett-Packard Development Company, L.P. | Polymeric powder composition for three-dimensional (3d) printing |
JP6680887B2 (en) | 2016-04-15 | 2020-04-15 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | Composite granular building material |
EP3301124B1 (en) | 2016-09-30 | 2023-04-26 | Evonik Operations GmbH | Polyamide powder for selective sintering method |
RU2637962C1 (en) * | 2016-11-10 | 2017-12-08 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") | Powder polymer composition and method of its production |
EP3573816B1 (en) * | 2017-01-24 | 2024-10-16 | Jabil Inc. | Multi jet fusion three dimensional printing using nylon 5 |
CN110229328A (en) * | 2019-06-06 | 2019-09-13 | 南京工程学院 | A kind of preparation method and application of nylon powder |
DE202022000644U1 (en) | 2022-03-15 | 2022-04-21 | Evonik Operations Gmbh | Powder for processing in a layer-by-layer process with visible and near-infrared lasers |
EP4245506A1 (en) | 2022-03-15 | 2023-09-20 | Evonik Operations GmbH | Powder for processing in a layer-by-layer method with lasers in the visible and near infrared range |
EP4438654A1 (en) | 2023-03-29 | 2024-10-02 | Ems-Chemie Ag | Materials for powder bed fusion technologies and using such materials in a layer-by-layer process |
Family Cites Families (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4892449A (en) * | 1972-03-10 | 1973-11-30 | ||
DE2754576C2 (en) * | 1977-12-08 | 1987-03-26 | Henkel KGaA, 4000 Düsseldorf | Use of β-hydroxyalkyl ethers to improve the dispersibility of pigments and fillers |
DE2906647C2 (en) * | 1979-02-21 | 1980-12-11 | Chemische Werke Huels Ag, 4370 Marl | Process for the production of powdery coating agents !! based on polyamides with at least 10 aliphatically bonded carbon atoms per carbonamide group |
JPS62121731A (en) * | 1985-02-15 | 1987-06-03 | Teijin Ltd | Aromatic polyamide particle for compression molding |
DE3510687A1 (en) * | 1985-03-23 | 1986-09-25 | Hüls AG, 4370 Marl | METHOD FOR PRODUCING POWDER-SHAPED COATING AGENTS PIGMENTED WITH TITANIUM DIOXIDE ON THE BASIS OF POLYAMIDES WITH AT LEAST TEN ALIPHATIALLY BONDED CARBON ATOMAS PER CARBONAMIDE GROUP |
DE3510690A1 (en) * | 1985-03-23 | 1986-09-25 | Hüls AG, 4370 Marl | METHOD FOR PRODUCING RE-CONDENSIBLE, HIGH-MOLECULAR COATING AGENTS BASED ON POLYAMIDES AFTER THE FELLING PROCESS |
JPS63243180A (en) * | 1987-03-30 | 1988-10-11 | Pentel Kk | Water-based white ink |
JP3337232B2 (en) | 1991-12-26 | 2002-10-21 | 東レ・ダウコーニング・シリコーン株式会社 | Method for producing powder mixture comprising cured silicone fine particles and inorganic fine particles |
US5447791A (en) * | 1994-10-26 | 1995-09-05 | Xerox Corporation | Conductive powder coating materials and process for the preparation thereof |
FR2729964B1 (en) * | 1995-01-31 | 2003-02-28 | Omya Sa | MINERAL LOADS PROCESSED. SUSPENSIONS OF THESE FILLERS IN POLYOLS AND THEIR USES IN POLYURETHANE FOAMS |
DE19708946A1 (en) * | 1997-03-05 | 1998-09-10 | Huels Chemische Werke Ag | Production of polyamide powder with narrow particle size distribution and low porosity |
US6410616B1 (en) * | 1998-04-09 | 2002-06-25 | Nippon Shokubai Co., Ltd | Crosslinked polymer particle and its production process and use |
JP2002080629A (en) * | 2000-06-14 | 2002-03-19 | Ube Ind Ltd | Polyamide porous spherical particle and process for preparing it |
FR2810989A1 (en) * | 2000-06-30 | 2002-01-04 | Rhodia Chimie Sa | AQUEOUS DISPERSION BASED ON VISCOUS SILICONE OILS CROSS-LINKABLE BY CONDENSATION INTO AN ELASTOMER, ADHERENT USABLE IN PARTICULAR AS SEALANTS OR PAINTS, METHOD FOR PREPARATION |
DE50016060D1 (en) * | 2000-09-26 | 2011-03-03 | Evonik Degussa Gmbh | Iron oxide and silica-titanium dioxide mixture |
DE10049153A1 (en) * | 2000-09-27 | 2002-04-11 | Degussa | Paint, varnish, pollutants, bioorganisms, oil, water, and / or dirt-repellent coating |
DE10054345A1 (en) | 2000-11-02 | 2002-05-08 | Degussa | Aqueous dispersion, process for its preparation and use |
DE10065027A1 (en) * | 2000-12-23 | 2002-07-04 | Degussa | Aqueous dispersion, process for its preparation and use |
DE10126163A1 (en) * | 2001-05-30 | 2002-12-05 | Degussa | Solid, semi-solid or liquid pharmaceutical or cosmetic preparations, containing pyrogenic silicon dioxide of high tamped density as auxiliary to provide good flow properties |
DE50104223D1 (en) * | 2001-08-08 | 2004-11-25 | Degussa | Metal oxide particles coated with silicon dioxide |
DE10149130A1 (en) | 2001-10-05 | 2003-04-10 | Degussa | Flame hydrolytic alumina doped with divalent metal oxide is used in aqueous dispersion for chemical-mechanical polishing of metallic and nonmetallic surfaces, coating paper or producing special glass |
DE10152745A1 (en) * | 2001-10-25 | 2003-05-15 | Degussa | Alumina dispersion |
US20030108580A1 (en) * | 2001-10-30 | 2003-06-12 | Steffen Hasenzahl | Use of granulates based on pyrogenically - produced silicon dioxide in cosmetic compositions |
US7815936B2 (en) * | 2001-10-30 | 2010-10-19 | Evonik Degussa Gmbh | Use of granular materials based on pyrogenically produced silicon dioxide in pharmaceutical compositions |
DE10163938A1 (en) * | 2001-12-22 | 2003-07-10 | Degussa | Flame-hydrolytically produced silicon-titanium mixed oxide powder with surface-enriched silicon dioxide, its production and use |
DE10203047A1 (en) * | 2002-01-26 | 2003-08-07 | Degussa | Cationic mixed oxide dispersion, coating color and ink-absorbing medium |
DE10204471C1 (en) * | 2002-02-05 | 2003-07-03 | Degussa | Aqueous dispersion of cerium oxide-coated doped silica powder, used for chemical-mechanical polishing of semiconductor substrate or coating or in shallow trench insulation, is obtained by mixing doped silica core with cerium salt solution |
DE10204470C1 (en) * | 2002-02-05 | 2003-08-14 | Degussa | Production of finely divided stable dispersion of solids comprises injecting streams of pre-dispersion via high pressure pumps through nozzle into reactor chamber, introducing water vapor, and removing dispersion and vapor |
DE10205280C1 (en) * | 2002-02-07 | 2003-07-03 | Degussa | Aqueous dispersion used for chemical-mechanical polishing of oxide surface, preferably silica, contains pyrogenic silica powder doped with alumina from aerosol with specified particle size |
DE50300055D1 (en) * | 2002-03-22 | 2004-09-23 | Degussa | Dispersion, coating color and recording medium |
DE10225123A1 (en) * | 2002-06-06 | 2003-12-18 | Goldschmidt Ag Th | Highly concentrated aqueous dispersion containing hydrophilic microfine metal oxide particles and dispersing agents |
DE10225122A1 (en) * | 2002-06-06 | 2003-12-18 | Goldschmidt Ag Th | Highly concentrated aqueous dispersions containing hydrophobic microfine metal oxide particles and dispersing agents |
DE10225125A1 (en) | 2002-06-06 | 2003-12-18 | Goldschmidt Ag Th | Aqueous dispersion containing pyrogenic titanium, zinc, iron or cerium oxide particles, useful for preparing cosmetic formulations, includes a phosphate ester or maleic copolymer dispersant |
DE10229761B4 (en) * | 2002-07-03 | 2004-08-05 | Degussa Ag | Aqueous dispersion containing pyrogenically produced metal oxide particles and phosphates, process for their preparation and their use |
US7374787B2 (en) * | 2002-08-22 | 2008-05-20 | Dequssa Ag | Stabilized, aqueous silicon dioxide dispersion |
ES2299649T3 (en) * | 2002-09-21 | 2008-06-01 | Evonik Degussa Gmbh | PROCEDURE FOR THE PRODUCTION OF A THREE-DIMENSIONAL OBJECT. |
DE10248406A1 (en) | 2002-10-17 | 2004-04-29 | Degussa Ag | Laser sinter powder with titanium dioxide particles, process for its production and moldings made from this laser sinter powder |
EP1413594A2 (en) * | 2002-10-17 | 2004-04-28 | Degussa AG | Laser-sintering powder with better recycling properties, process for its preparation and use thereof. |
DE10250711A1 (en) | 2002-10-31 | 2004-05-19 | Degussa Ag | Pharmaceutical and cosmetic preparations |
DE10250712A1 (en) * | 2002-10-31 | 2004-05-19 | Degussa Ag | Powdery substances |
DE50302649D1 (en) * | 2002-11-28 | 2006-05-11 | Degussa | Laser sintering powder with metal soaps, process for its preparation and molded articles made from this laser-sintered powder |
DE10256267A1 (en) * | 2002-12-03 | 2004-06-24 | Degussa Ag | Dispersion, coating color and recording medium |
DE10259860A1 (en) * | 2002-12-20 | 2004-07-08 | Degussa Ag | Powder mixture consisting of titanium dioxide, zinc oxide and zinc-titanium mixed oxide |
DE10260718A1 (en) * | 2002-12-23 | 2004-07-08 | Degussa Ag | Titanium dioxide coated with silicon dioxide |
JP2004277726A (en) * | 2003-02-27 | 2004-10-07 | Sumitomo Bakelite Co Ltd | Resin composition and method for manufacturing the same |
EP1459871B1 (en) * | 2003-03-15 | 2011-04-06 | Evonik Degussa GmbH | Method and apparatus for manufacturing three dimensional objects using microwave radiation and shaped body produced according to this method |
DE10311437A1 (en) * | 2003-03-15 | 2004-09-23 | Degussa Ag | Laser sinter powder with PMMI, PMMA and / or PMMI-PMMA copolymers, process for its production and moldings made from this laser sinter powder |
DE10316661A1 (en) * | 2003-04-11 | 2004-11-04 | Degussa Ag | Aqueous dispersion of hydrophobized silicon dioxide powder containing dispersants |
DE10317066A1 (en) * | 2003-04-14 | 2004-11-11 | Degussa Ag | Process for the preparation of metal oxide and metalloid oxide dispersions |
JP2005015589A (en) * | 2003-06-25 | 2005-01-20 | Ricoh Co Ltd | Manufacturing process of crystalline polyester dispersion liquid, dispersion liquid, imaging toner, developer and method of imaging |
DE10330020A1 (en) * | 2003-07-03 | 2005-01-20 | Degussa Ag | Highly filled silane preparation |
DE102004001324A1 (en) * | 2003-07-25 | 2005-02-10 | Degussa Ag | Powder composition used in the layerwise buildup of three-dimensional articles comprises a polymer and an ammonium polyphosphate flame retardant |
DE10334496A1 (en) * | 2003-07-29 | 2005-02-24 | Degussa Ag | Laser sintering powder with a metal salt and a fatty acid derivative, process for the production thereof and moldings produced from this laser sinter powder |
DE10334497A1 (en) * | 2003-07-29 | 2005-02-24 | Degussa Ag | Polymer powder with phosphonate-based flame retardant, process for its preparation and moldings, made from this polymer powder |
DE10337198A1 (en) * | 2003-08-13 | 2005-03-17 | Degussa Ag | Carriers based on granules produced from pyrogenically prepared silicon dioxides |
DE10360087A1 (en) * | 2003-12-20 | 2005-07-21 | Degussa Ag | Flame hydrolysis produced, hochoberflächiges alumina powder |
DE10360766A1 (en) * | 2003-12-23 | 2005-07-28 | Degussa Ag | Process and apparatus for the preparation of dispersions |
DE102004004147A1 (en) * | 2004-01-28 | 2005-08-18 | Degussa Ag | Surface-modified silica-sheathed metalloid / metal oxides |
JP2005225735A (en) * | 2004-02-16 | 2005-08-25 | Tdk Corp | Production method for dielectric porcelain composition |
DE102004010162A1 (en) * | 2004-02-27 | 2005-09-15 | Degussa Ag | Polymer powder with copolymer, use in a shaping process with unfocused energy input and molding, made from this polymer powder |
DE102004012682A1 (en) * | 2004-03-16 | 2005-10-06 | Degussa Ag | Process for the production of three-dimensional objects by means of laser technology and application of an absorber by inkjet method |
DE102004020452A1 (en) * | 2004-04-27 | 2005-12-01 | Degussa Ag | Method for producing three-dimensional objects by means of electromagnetic radiation and applying an absorber by inkjet method |
DE102004020453A1 (en) * | 2004-04-27 | 2005-11-24 | Degussa Ag | Polymer powder with polyamide, use in a molding process and molding, made from this polymer powder |
DE102004021092A1 (en) * | 2004-04-29 | 2005-11-24 | Degussa Ag | Use of a cationic silica dispersion as a textile finishing agent |
DE102004024440B4 (en) * | 2004-05-14 | 2020-06-25 | Evonik Operations Gmbh | Polymer powder with polyamide, use in a shaping process and molded body made from this polymer powder |
DE102004025143A1 (en) * | 2004-05-21 | 2005-12-08 | Degussa Ag | Ternary metal mixed oxide powder |
DE102004025767A1 (en) * | 2004-05-26 | 2005-12-22 | Degussa Ag | Stable solutions of N-substituted aminopolysiloxanes, their preparation and use |
DE102004029217A1 (en) * | 2004-06-16 | 2006-01-05 | Degussa Ag | Multilayer film |
DE102004031785A1 (en) * | 2004-07-01 | 2006-01-26 | Degussa Ag | Polyol-containing silica dispersion |
DE102004037044A1 (en) * | 2004-07-29 | 2006-03-23 | Degussa Ag | Agent for equipping cellulose-based and / or starch-based substrates with water-repellent and, at the same time, fungus, bacteria, insect and algae-deficient properties |
DE102004037043A1 (en) * | 2004-07-29 | 2006-03-23 | Degussa Ag | Block condensates of organofunctional siloxanes, their preparation, use and their properties |
DE102004037045A1 (en) * | 2004-07-29 | 2006-04-27 | Degussa Ag | Aqueous silane nanocomposites |
DE102004037118A1 (en) * | 2004-07-30 | 2006-03-23 | Degussa Ag | Titanium dioxide-containing dispersion |
EP1624349A3 (en) * | 2004-08-02 | 2006-04-05 | Ricoh Company, Ltd. | Toner, fixer and image forming apparatus |
JP4151633B2 (en) * | 2004-09-17 | 2008-09-17 | コニカミノルタビジネステクノロジーズ株式会社 | Organic photoreceptor, process cartridge, and image forming apparatus |
DE102004046093A1 (en) | 2004-09-23 | 2006-03-30 | Degussa Ag | Surface-modified zinc-titanium mixed oxides |
DE102004047876A1 (en) * | 2004-10-01 | 2006-04-06 | Degussa Ag | Powder with improved recycling properties, process for its preparation and use of the powder in a process for producing three-dimensional objects |
DE102004049427A1 (en) * | 2004-10-08 | 2006-04-13 | Degussa Ag | Polyether-functional siloxanes, polyethersiloxane-containing compositions, processes for their preparation and their use |
DE102004053384A1 (en) * | 2004-11-02 | 2006-05-04 | Degussa Ag | Liquid, viscous agent based on an organofunctional silane system for the production of weather-resistant protective coatings to prevent contamination of surfaces |
DE102004056862A1 (en) * | 2004-11-25 | 2006-06-14 | Degussa Ag | Powdered, high water content cosmetic preparation |
DE102004062761A1 (en) * | 2004-12-21 | 2006-06-22 | Degussa Ag | Use of polyarylene ether ketone powder in a three-dimensional powder-based tool-less production process, and moldings produced therefrom |
EP1700825A1 (en) * | 2004-12-23 | 2006-09-13 | Degussa AG | Surface and structure modified titanium dioxide |
EP1674427A1 (en) * | 2004-12-23 | 2006-06-28 | Degussa AG | Structure modified titanium dioxides |
ES2299790T3 (en) * | 2004-12-23 | 2008-06-01 | Evonik Degussa Gmbh | TITANIUM DIOXIDES PRODUCED BY VIA PIROGENA AND SUPERFICIALLY MODIFIED. |
DE502004011784D1 (en) * | 2004-12-23 | 2010-11-25 | Evonik Degussa Gmbh | Surface-modified silica-titanium dioxide mixed oxides |
DE102005055226A1 (en) * | 2004-12-24 | 2006-07-13 | Degussa Ag | Storage of powdery substances with a high water content |
DE102004063220A1 (en) * | 2004-12-29 | 2006-07-13 | Degussa Ag | Transparent molding compounds |
DE102005002930A1 (en) * | 2005-01-21 | 2006-07-27 | Degussa Ag | Polymer powder with polyamide, use in a molding process and molding, made from this polymer powder |
DE102005004871A1 (en) * | 2005-02-03 | 2006-08-10 | Degussa Ag | Highly viscous aqueous emulsions of functional alkoxysilanes, their condensed oligomers, organopolysiloxanes, their preparation and their use for the surface treatment of inorganic materials |
DE102005004872A1 (en) * | 2005-02-03 | 2006-08-10 | Degussa Ag | Aqueous emulsions of functional alkoxysilanes and their condensed oligomers, their preparation and use for surface treatment |
DE102005007663A1 (en) * | 2005-02-19 | 2006-08-24 | Degussa Ag | Transparent, decorable multilayer film |
DE202005021503U1 (en) * | 2005-02-19 | 2008-07-24 | Evonik Degussa Gmbh | Polymer powder with Blockpolyetheramid, use in a molding process and molding, made from this polymer powder |
DE102005007664A1 (en) * | 2005-02-19 | 2006-08-31 | Degussa Ag | Transparent molding compound |
DE102005026264A1 (en) | 2005-06-08 | 2006-12-14 | Degussa Ag | Transparent molding compound |
DE102005032427A1 (en) * | 2005-07-12 | 2007-01-18 | Degussa Ag | Aluminum oxide dispersion |
DE102005033379A1 (en) * | 2005-07-16 | 2007-01-18 | Degussa Ag | Use of cyclic oligomers in a molding process and molding made by this process |
DE102006006654A1 (en) * | 2005-08-26 | 2007-03-01 | Degussa Ag | Composite materials based on wood or other plant materials, e.g. chipboard, fibreboard, plywood or plant pots, made by using special aminoalkyl-alkoxy-silane compounds or their cocondensates as binders |
DE102006006656A1 (en) * | 2005-08-26 | 2007-03-01 | Degussa Ag | Silane-containing binder for composites |
DE102006006655A1 (en) * | 2005-08-26 | 2007-03-01 | Degussa Ag | Cellulose- or lignocellulose-containing composites based on a silane-based composite as binder |
DE102005051126A1 (en) * | 2005-10-26 | 2007-05-03 | Degussa Gmbh | Decorative foil, useful as e.g. a protection foil against e.g. chemicals, comprises a coating layer comprising polyamide composition |
DE102005053071A1 (en) | 2005-11-04 | 2007-05-16 | Degussa | Process for the preparation of ultrafine powders based on polymaiden, ultrafine polyamide powder and their use |
DE102005054723A1 (en) * | 2005-11-17 | 2007-05-24 | Degussa Gmbh | Use of polyester powder in a molding process and molding made from this polyester powder |
DE102005056286A1 (en) * | 2005-11-24 | 2007-05-31 | Degussa Gmbh | Producing a composite part from plastic parts that cannot be directly welded together comprises using an intermediate film with surfaces compatible with each part |
DE102005059960A1 (en) * | 2005-12-15 | 2007-06-28 | Degussa Gmbh | Highly filled transition alumina-containing dispersion |
DE102006003957A1 (en) * | 2006-01-26 | 2007-08-02 | Degussa Gmbh | Water-dilutable sol-gel for coating paper, cardboard, wood, presspahn, plastics, lacquer, stone, ceramics, metal or alloy or as primer is obtained by reacting glycidyloxypropylalkoxysilane, aqueous silica sol, organic acid and crosslinker |
DE102006003956A1 (en) * | 2006-01-26 | 2007-08-02 | Degussa Gmbh | Production of a corrosion protection layer on a metal surface e.g. vehicle structure comprises applying a sol-gel composition to the metal surface, drying and/or hardening and applying a further layer and drying and/or hardening |
DE102006005500A1 (en) * | 2006-02-07 | 2007-08-09 | Degussa Gmbh | Use of polymer powder, prepared from a dispersion, in a molding process and molding, made from this polymer powder |
DE102006013090A1 (en) * | 2006-03-20 | 2007-09-27 | Georg-August-Universität Göttingen | Composite material made of wood and thermoplastic material |
DE102006015791A1 (en) * | 2006-04-01 | 2007-10-04 | Degussa Gmbh | Polymer powder, process for the preparation and use of such a powder and molded articles thereof |
DE102006017701A1 (en) * | 2006-04-15 | 2007-10-25 | Degussa Gmbh | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite produced therefrom |
DE102006039269A1 (en) * | 2006-08-22 | 2008-02-28 | Evonik Degussa Gmbh | Dispersion of alumina, coating composition and ink receiving medium |
EP1982964B1 (en) * | 2007-04-20 | 2019-02-27 | Evonik Degussa GmbH | Preparation containing organosilicium compound and its use |
DE102007038314A1 (en) * | 2007-08-14 | 2009-04-16 | Evonik Degussa Gmbh | Process for the controlled hydrolysis and condensation of epoxy-functional organosilanes and their condensation with further organofunctional alkoxysilanes |
DE102007040246A1 (en) * | 2007-08-25 | 2009-02-26 | Evonik Degussa Gmbh | Radiation-curable formulations |
DE102008007261A1 (en) * | 2007-08-28 | 2009-03-05 | Evonik Degussa Gmbh | Aqueous silane systems based on bis (trialkoxysilylalkyl) amines |
DE102007040802A1 (en) * | 2007-08-28 | 2009-03-05 | Evonik Degussa Gmbh | Composition containing low VOC aminoalkyl-functional silicon compounds for coating paper or film |
DE102007045186A1 (en) * | 2007-09-21 | 2009-04-09 | Continental Teves Ag & Co. Ohg | Residue-free, layer-forming, aqueous sealing system for metallic silane-based surfaces |
DE102007049743A1 (en) * | 2007-10-16 | 2009-04-23 | Evonik Degussa Gmbh | Silicon-titanium mixed oxide powder, dispersion thereof and titanium-containing zeolite produced therefrom |
-
2005
- 2005-11-04 DE DE102005053071A patent/DE102005053071A1/en not_active Ceased
-
2006
- 2006-10-12 CN CN2006800412170A patent/CN101300292B/en active Active
- 2006-10-12 JP JP2008538318A patent/JP5328360B2/en active Active
- 2006-10-12 WO PCT/EP2006/067308 patent/WO2007051691A1/en active Application Filing
- 2006-10-12 US US12/089,998 patent/US8232333B2/en active Active
- 2006-10-12 ES ES06807176T patent/ES2341487T3/en active Active
- 2006-10-12 DE DE502006006276T patent/DE502006006276D1/en active Active
- 2006-10-12 AT AT06807176T patent/ATE458775T1/en active
- 2006-10-12 CA CA002628459A patent/CA2628459A1/en not_active Abandoned
- 2006-10-12 EP EP06807176A patent/EP1943296B1/en active Active
- 2006-11-01 TW TW095140425A patent/TWI400280B/en active
-
2008
- 2008-06-02 NO NO20082480A patent/NO20082480L/en not_active Application Discontinuation
-
2012
- 2012-06-12 US US13/494,082 patent/US20120264877A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
Data Sheet for KRONOS 2310,Titanium dioxide pigment, 2 pages, 8/8/2000, KRONOS, Inc * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10174349B2 (en) | 2008-06-27 | 2019-01-08 | Evonik Roehm Gmbh | Recombinant cell producing 2-hydroxyisobutyric acid |
US9418773B2 (en) | 2010-11-05 | 2016-08-16 | Evonik Degussa Gmbh | Composition of polyamides with low concentration of carboxamide groups and electrically conductive carbon |
US9524807B2 (en) | 2010-11-05 | 2016-12-20 | Evonik Degussa Gmbh | Polyamide 12 composition containing carbon nanotubes |
US9580732B2 (en) | 2011-07-20 | 2017-02-28 | Evonik Degussa Gmbh | Oxidation and amination of primary alcohols |
US9248627B2 (en) | 2011-10-14 | 2016-02-02 | Evonik Degussa Gmbh | Multilayer film having polyamide and polypropylene layers |
US10350865B2 (en) | 2011-10-14 | 2019-07-16 | Evonik Degussa Gmbh | Multilayer film with polyamide and polyester layers for the production of photovoltaic modules |
US9611489B2 (en) | 2012-03-12 | 2017-04-04 | Evonik Degussa Gmbh | Enzymatic omega-oxidation and omega-amination of fatty acids |
US9312043B2 (en) | 2012-03-16 | 2016-04-12 | Evonik Degussa Gmbh | Polyamide composition containing electrically conductive carbon |
US9765370B2 (en) | 2012-04-02 | 2017-09-19 | Evonik Degussa Gmbh | Method for aerobically producing alanine or a compound produced using alanine |
US10745721B2 (en) | 2012-11-12 | 2020-08-18 | Evonik Operations Gmbh | Process for reacting a carboxylic acid ester |
US9725746B2 (en) | 2012-12-21 | 2017-08-08 | Evonik Degussa Gmbh | Producing amines and diamines from a carboxylic acid or dicarboxylic acid or a monoester thereof |
US9719117B2 (en) | 2012-12-21 | 2017-08-01 | Evonik Degussa | Production of omega-amino fatty acids |
US11117837B2 (en) | 2016-09-30 | 2021-09-14 | Evonik Operations GbmH | Polyamide powder for selective sintering methods |
US12129212B2 (en) | 2016-09-30 | 2024-10-29 | Evonik Operations Gmbh | Polyamide powder for selective sintering methods |
US20200010627A1 (en) * | 2017-02-01 | 2020-01-09 | Basf Se | Process for producing a polyamide powder by precipitation |
US11697716B2 (en) * | 2017-02-01 | 2023-07-11 | BASF SE (Ellwanger & Baier Patentanwälte) | Process for producing a polyamide powder by precipitation |
US10889694B2 (en) | 2018-07-06 | 2021-01-12 | Taiwan Green Point Enterprises Co., Ltd. | Method and composition for preparing polyamide powders |
WO2022238171A1 (en) * | 2021-05-14 | 2022-11-17 | Evonik Operations Gmbh | Fumed alumina powder with reduced moisture content |
Also Published As
Publication number | Publication date |
---|---|
US8232333B2 (en) | 2012-07-31 |
US20080249237A1 (en) | 2008-10-09 |
TWI400280B (en) | 2013-07-01 |
EP1943296A1 (en) | 2008-07-16 |
DE102005053071A1 (en) | 2007-05-16 |
CN101300292B (en) | 2012-07-18 |
EP1943296B1 (en) | 2010-02-24 |
ES2341487T3 (en) | 2010-06-21 |
CN101300292A (en) | 2008-11-05 |
WO2007051691A1 (en) | 2007-05-10 |
JP5328360B2 (en) | 2013-10-30 |
JP2009514998A (en) | 2009-04-09 |
CA2628459A1 (en) | 2007-05-10 |
DE502006006276D1 (en) | 2010-04-08 |
TW200732385A (en) | 2007-09-01 |
ATE458775T1 (en) | 2010-03-15 |
NO20082480L (en) | 2008-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8232333B2 (en) | Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use | |
CA2481475C (en) | Novel boehmite particles and polymer materials incorporating same | |
KR100912583B1 (en) | Slurries Containing Microfiber and Micropowder, and Methods for Using and Making Same | |
US4102846A (en) | Stable dispersions of polymer particles containing sub-particles of a solid modifying agent and process for making same | |
TWI281932B (en) | Method for the production of coated, fine-particle, inorganic solids and use thereof | |
EP0568488A2 (en) | Particulate magnesium hydroxide | |
GB2176492A (en) | Masterbatches for delustering polyamides and their preparation | |
TW201534637A (en) | Polyimide powder having high thermooxidative stability | |
WO1999023162A1 (en) | Polyester resin compositions and processes for the preparation thereof | |
JP6200426B2 (en) | Calcium carbonate filler for resin and resin composition containing the filler | |
US6635694B1 (en) | Preparation agents | |
US4687837A (en) | Process for preparing pulverulent coating composition of practically uniform grain sizes and based on polyamide having at least 10 aliphatically bound carbon atoms per carbonamide group | |
EP1484364B1 (en) | Process for production of titanium dioxide pigment and resin compositions containing the pigment | |
US20030055207A1 (en) | Surface-modified Ca(CO3) and polymers containing same | |
JP3759155B2 (en) | Method for producing biodegradable spherical single powder | |
JPS61221274A (en) | Production of condensible polymer coating material based on polyamiide by precipitation method | |
US12043755B2 (en) | Compositions, methods, and articles relating to in-situ crosslinking of polyamides during additive manufacturing | |
JP3675733B2 (en) | Method for producing biodegradable spherical composite powder | |
CN101835851A (en) | Additive for polymers and process for preparation thereof | |
KR100190544B1 (en) | The inorganic substance slurry for the nylon-6 manufacture | |
CN116715901A (en) | Preparation method of ammonium polyphosphate flame retardant based on epoxy resin microencapsulation coating | |
JP2000313616A (en) | Aluminum borate whisker having modified surface, its production and resin composition using the same | |
JP2001002906A (en) | Stabilized polycarbonate resin composition | |
JP2002332405A (en) | Titanium oxide particle-containing polyamide and method for producing the same | |
IES58691B2 (en) | Particulate magnesium hydroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |