US20120222348A1 - Medium-chain alkanols in additive concentrates for improving foam reduction in fuel oils - Google Patents
Medium-chain alkanols in additive concentrates for improving foam reduction in fuel oils Download PDFInfo
- Publication number
- US20120222348A1 US20120222348A1 US13/407,422 US201213407422A US2012222348A1 US 20120222348 A1 US20120222348 A1 US 20120222348A1 US 201213407422 A US201213407422 A US 201213407422A US 2012222348 A1 US2012222348 A1 US 2012222348A1
- Authority
- US
- United States
- Prior art keywords
- weight
- silicon
- additive
- alkanol
- action
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000654 additive Substances 0.000 title claims abstract description 49
- 230000000996 additive effect Effects 0.000 title claims abstract description 42
- 239000000295 fuel oil Substances 0.000 title claims abstract description 36
- 239000012141 concentrate Substances 0.000 title claims abstract description 20
- 239000006260 foam Substances 0.000 title claims description 22
- 230000009467 reduction Effects 0.000 title claims description 8
- -1 C12-alkyl nitrates Chemical class 0.000 claims abstract description 37
- 230000009471 action Effects 0.000 claims abstract description 37
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- 239000003599 detergent Substances 0.000 claims abstract description 24
- 239000002518 antifoaming agent Substances 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 239000003921 oil Substances 0.000 claims abstract description 19
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 13
- 239000013530 defoamer Substances 0.000 claims abstract description 12
- 239000002551 biofuel Substances 0.000 claims abstract description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 8
- 238000009835 boiling Methods 0.000 claims abstract description 6
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 claims description 14
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 13
- 239000000194 fatty acid Substances 0.000 claims description 13
- 229930195729 fatty acid Natural products 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 9
- 235000013311 vegetables Nutrition 0.000 claims description 9
- 241001465754 Metazoa Species 0.000 claims description 8
- 229920001296 polysiloxane Polymers 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 125000003368 amide group Chemical group 0.000 claims description 6
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 claims description 6
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 claims description 6
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 claims description 6
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 claims description 6
- 229940014800 succinic anhydride Drugs 0.000 claims description 6
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 claims description 6
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 5
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 claims description 3
- XUJLWPFSUCHPQL-UHFFFAOYSA-N 11-methyldodecan-1-ol Chemical compound CC(C)CCCCCCCCCCO XUJLWPFSUCHPQL-UHFFFAOYSA-N 0.000 claims description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 3
- YLQLIQIAXYRMDL-UHFFFAOYSA-N propylheptyl alcohol Chemical compound CCCCCC(CO)CCC YLQLIQIAXYRMDL-UHFFFAOYSA-N 0.000 claims description 3
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- 235000019198 oils Nutrition 0.000 description 16
- 239000000446 fuel Substances 0.000 description 13
- 239000003225 biodiesel Substances 0.000 description 11
- 239000002283 diesel fuel Substances 0.000 description 11
- 125000005907 alkyl ester group Chemical group 0.000 description 9
- 150000008064 anhydrides Chemical class 0.000 description 7
- 239000003925 fat Substances 0.000 description 7
- 235000019197 fats Nutrition 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000008158 vegetable oil Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- NKRVGWFEFKCZAP-UHFFFAOYSA-N 2-ethylhexyl nitrate Chemical compound CCCCC(CC)CO[N+]([O-])=O NKRVGWFEFKCZAP-UHFFFAOYSA-N 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 229920000768 polyamine Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000010775 animal oil Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 150000004702 methyl esters Chemical class 0.000 description 4
- 150000002823 nitrates Chemical class 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000006078 metal deactivator Substances 0.000 description 3
- 229910017464 nitrogen compound Inorganic materials 0.000 description 3
- 150000002830 nitrogen compounds Chemical class 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 238000005956 quaternization reaction Methods 0.000 description 3
- 229960002317 succinimide Drugs 0.000 description 3
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 208000016444 Benign adult familial myoclonic epilepsy Diseases 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- UEFBRXQBUTYIJI-UHFFFAOYSA-N decyl nitrate Chemical compound CCCCCCCCCCO[N+]([O-])=O UEFBRXQBUTYIJI-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 2
- 208000016427 familial adult myoclonic epilepsy Diseases 0.000 description 2
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 2
- ZGNITFSDLCMLGI-UHFFFAOYSA-N flubendiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(I)=C1C(=O)NC(C)(C)CS(C)(=O)=O ZGNITFSDLCMLGI-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 150000003949 imides Chemical group 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 150000003443 succinic acid derivatives Chemical class 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- PSTVZBXGCKLSQA-UHFFFAOYSA-N (1-methylcyclohexyl) nitrate Chemical compound [O-][N+](=O)OC1(C)CCCCC1 PSTVZBXGCKLSQA-UHFFFAOYSA-N 0.000 description 1
- OLJOBIJKBAHJBG-UHFFFAOYSA-N (1-propan-2-ylcyclohexyl) nitrate Chemical compound [O-][N+](=O)OC1(C(C)C)CCCCC1 OLJOBIJKBAHJBG-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- HWXGQQXFKHZCRY-UHFFFAOYSA-N 1-methoxypropyl nitrate Chemical compound CCC(OC)O[N+]([O-])=O HWXGQQXFKHZCRY-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- UHZLTTPUIQXNPO-UHFFFAOYSA-N 2,6-ditert-butyl-3-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1C(C)(C)C UHZLTTPUIQXNPO-UHFFFAOYSA-N 0.000 description 1
- OZUCSFZQPDHULO-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl nitrate Chemical compound CCOCCOCCO[N+]([O-])=O OZUCSFZQPDHULO-UHFFFAOYSA-N 0.000 description 1
- BGRKGHSKCFAPCL-UHFFFAOYSA-N 2-(2-methylbutan-2-yl)phenol Chemical compound CCC(C)(C)C1=CC=CC=C1O BGRKGHSKCFAPCL-UHFFFAOYSA-N 0.000 description 1
- RURPJGZXBHYNEM-UHFFFAOYSA-N 2-[2-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound C=1C=CC=C(O)C=1C=NC(C)CN=CC1=CC=CC=C1O RURPJGZXBHYNEM-UHFFFAOYSA-N 0.000 description 1
- GDNQXPDYGNUKII-UHFFFAOYSA-N 2-ethoxyethyl nitrate Chemical compound CCOCCO[N+]([O-])=O GDNQXPDYGNUKII-UHFFFAOYSA-N 0.000 description 1
- UENFRVTUGZKXNH-UHFFFAOYSA-N 2-methylbutan-2-yl nitrate Chemical compound CCC(C)(C)O[N+]([O-])=O UENFRVTUGZKXNH-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- NTHGIYFSMNNHSC-UHFFFAOYSA-N 3-methylbutyl nitrate Chemical compound CC(C)CCO[N+]([O-])=O NTHGIYFSMNNHSC-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- YQNKVTMFGIWGMI-UHFFFAOYSA-N 4-ethoxybutyl nitrate Chemical compound CCOCCCCO[N+]([O-])=O YQNKVTMFGIWGMI-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 235000003911 Arachis Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- HNUALPPJLMYHDK-UHFFFAOYSA-N C[CH]C Chemical compound C[CH]C HNUALPPJLMYHDK-UHFFFAOYSA-N 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 241000221089 Jatropha Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- ZOJBYZNEUISWFT-UHFFFAOYSA-N allyl isothiocyanate Chemical compound C=CCN=C=S ZOJBYZNEUISWFT-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- HSNWZBCBUUSSQD-UHFFFAOYSA-N amyl nitrate Chemical compound CCCCCO[N+]([O-])=O HSNWZBCBUUSSQD-UHFFFAOYSA-N 0.000 description 1
- 229940053200 antiepileptics fatty acid derivative Drugs 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- HLYOOCIMLHNMOG-UHFFFAOYSA-N cyclohexyl nitrate Chemical compound [O-][N+](=O)OC1CCCCC1 HLYOOCIMLHNMOG-UHFFFAOYSA-N 0.000 description 1
- DDBCVXXAMXPHKF-UHFFFAOYSA-N cyclopentyl nitrate Chemical compound [O-][N+](=O)OC1CCCC1 DDBCVXXAMXPHKF-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000006280 diesel fuel additive Substances 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- HFJRKMMYBMWEAD-UHFFFAOYSA-N dodecanal Chemical compound CCCCCCCCCCCC=O HFJRKMMYBMWEAD-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- HHXLSUKHLTZWKR-UHFFFAOYSA-N heptan-2-yl nitrate Chemical compound CCCCCC(C)O[N+]([O-])=O HHXLSUKHLTZWKR-UHFFFAOYSA-N 0.000 description 1
- JYMDZTRYDIQILZ-UHFFFAOYSA-N heptyl nitrate Chemical compound CCCCCCCO[N+]([O-])=O JYMDZTRYDIQILZ-UHFFFAOYSA-N 0.000 description 1
- AGDYNDJUZRMYRG-UHFFFAOYSA-N hexyl nitrate Chemical compound CCCCCCO[N+]([O-])=O AGDYNDJUZRMYRG-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000008164 mustard oil Substances 0.000 description 1
- FSWDLYNGJBGFJH-UHFFFAOYSA-N n,n'-di-2-butyl-1,4-phenylenediamine Chemical compound CCC(C)NC1=CC=C(NC(C)CC)C=C1 FSWDLYNGJBGFJH-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- CMNNRVWVNGXINV-UHFFFAOYSA-N nonyl nitrate Chemical compound CCCCCCCCCO[N+]([O-])=O CMNNRVWVNGXINV-UHFFFAOYSA-N 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- QCOKASLKYUXYJH-UHFFFAOYSA-N octan-2-yl nitrate Chemical compound CCCCCCC(C)O[N+]([O-])=O QCOKASLKYUXYJH-UHFFFAOYSA-N 0.000 description 1
- TXQBMQNFXYOIPT-UHFFFAOYSA-N octyl nitrate Chemical compound CCCCCCCCO[N+]([O-])=O TXQBMQNFXYOIPT-UHFFFAOYSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 229940058287 salicylic acid derivative anticestodals Drugs 0.000 description 1
- 150000003872 salicylic acid derivatives Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1616—Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/182—Organic compounds containing oxygen containing hydroxy groups; Salts thereof
- C10L1/183—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
- C10L1/1832—Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom mono-hydroxy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/23—Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
- C10L1/231—Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites nitro compounds; nitrates; nitrites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/28—Organic compounds containing silicon
- C10L1/285—Organic compounds containing silicon macromolecular compounds
Definitions
- the present invention relates to the use of medium-chain alkanols for improving the defoamer action of a silicon-containing antifoam in fuel oils which comprise at least one additive with detergent action.
- the present invention further relates to an additive concentrate and to the use thereof for improving foam reduction in fuel oils, said additive concentrate comprising medium-chain alkanols, aromatic hydrocarbons or hydrocarbon mixtures and/or alkyl nitrates, silicon-containing antifoams and additives with detergent action.
- the present application further provides a corresponding additized fuel oil.
- Fuel oils generally comprise antifoams which are intended to prevent, or reduce to a tolerable degree, the foaming of the fuel oil in the course of movement or mechanical stress, for example when transferred or introduced into storage vessels or tanks. Foaming over, reduced fill levels, longer fill times and hence lower efficiency of gas stations are the main reasons why antifoams (also called defoamers) are now one of the standard components in modern multifunctional diesel additive packages. In this context, usually silicon-containing antifoams based on organosilicone chemistry, such as polysiloxanes or silicone oils, are customary.
- the weight ratio of 2-ethylhexyl nitrate to 2-ethylhexanol is never above 3:1.
- US 2010/0107479 A1 (2) discloses a diesel fuel additive package which, according to table 1 therein, comprises 42 mg/kg of the reaction product of polyisobutenylsuccinic anhydride with tetraethylenepentamine in a molar ratio of 1:1 as an additive with detergent action, 20 mg/kg of 2-ethylhexyl nitrate as a solvent, 132 mg/kg of an aromatic hydrocarbon mixture as a further solvent, and 8 mg/kg of a conventional siloxane antifoam.
- EP 0 681 023 A1 (3) describes fuel oils, such as diesel fuels, kerosene, turbine fuels, heating oils and, among other substances, also biofuel oils comprising vegetable oils, which comprise metallic detergents such as alkali metal or alkaline earth metal salts of acids or phenols, antifoams such as water-soluble polyether-polysiloxane copolymers and ashless dispersants such as polyisobutenylsuccinimides, and may optionally have further components such as solvents, for example aromatic hydrocarbons, oil-soluble alcohols, demulsifiers, corrosion inhibitors, carrier liquids, antioxidants, metal deactivators, cold flow improvers or wax inhibitors.
- solvents for example aromatic hydrocarbons, oil-soluble alcohols, demulsifiers, corrosion inhibitors, carrier liquids, antioxidants, metal deactivators, cold flow improvers or wax inhibitors.
- both criteria ( ⁇ ) and ( ⁇ ) are met.
- the present invention owes the improved action to the use of particular medium-chain alkanols and in particular to the precisely balanced ratio of components (A), (B), (C) and (D).
- the inventive use of the median-chain alkanols mentioned has an advantageous effect on the foaming characteristics especially in fuel oils which comprise biofuel oils or consist thereof.
- Medium-chain alkanols which constitute component (A) in the inventive additive concentrate, are understood to mean C 5 - to C 15 -alkanols, especially C 6 - to C 13 -alkanols, in particular C 8 - to C 11 -alkanols, which are linear or preferably branched.
- n-octanol, 2-ethylhexanol, n-nonanol, 2-propylheptanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol or isotridecanol is used. It is also possible to use a mixture of the alkanols mentioned. Very particular preference is given to 2-ethylhexanol.
- Silicon-containing antifoams of component (C) are understood here to mean all known antifoams which are customary in the mineral oils sector, are of organic structure and comprise one or more silicon atoms incorporated within the molecule. They may, for example, be polysiloxanes or silicone oils. In a preferred embodiment, in both aspects of the present invention, polyether-modified polysiloxanes are used. These may have, for example, the structure of a polyether-polysiloxane copolymer.
- Additives with detergent action in component (D) refer in the context of the present invention to those compounds whose action in an internal combustion engine, especially a diesel engine, consists predominantly or at least essentially of eliminating and/or preventing deposits.
- the detergents are preferably amphiphilic substances which have at least one hydrophobic hydrocarbyl radical having a number-average molecular weight (M n ) of 85 to 20 000, especially of 300 to 5000, in particular of 500 to 2500, and at least one polar moiety.
- the additives with detergent action are preferably selected from:
- derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine.
- the moieties with hydroxyl and/or amino and/or amido and/or imido groups are, for example, carboxylic acid groups, acid amides, acid amides of di- or polyamines, which also have free amine groups in addition to their amide function, succinic acid derivatives with an acid and an imide function, carboximides with monoamines, carboximides with di- or polyamines, which also have free amine groups in addition to the imide function, and diimides which are formed by the reaction of di- or polyamines with two succinic acid derivatives.
- Such fuel additives are described especially in U.S. Pat. No. 4,849,572.
- Nitrogen compounds with acid-free quaternization according to the above group (ii), which are obtainable by addition of a compound which comprises at least one oxygen- or nitrogen-containing group reactive with an anhydride and additionally at least one quaternizable amino group onto a polycarboxylic anhydride compound and subsequent quaternization, especially with an epoxide in the absence of free acid, are described in EP patent application 10 168 622.8.
- Suitable compounds having at least one oxygen- or nitrogen-containing group reactive with an anhydride and additionally at least one quaternizable amino group are especially polyamines with at least one primary or secondary amino group and at least one tertiary amino group.
- Useful polycarboxylic anhydrides are especially dicarboxylic acids such as succinic acid with a relatively long-chain hydrocarbyl substituent, preferably with a number-average molecular weight M n for the hydrocarbyl substituent of 200 to 10 000, in particular of 350 to 5000.
- Such a quaternized nitrogen compound is, for example, the reaction product, obtained at 40° C., of polyisobutenylsuccinic anhydride in which the polyisobutenyl radical typically has an M n of 1000 with 3-(dimethylamino)propylamine, which is a polyisobutenylsuccinic monoamide and which is subsequently quaternized with styrene oxide in the absence of free acid at 70° C.
- polytetrahydrobenzoxazines and bistetrahydrobenzoxazines according to the above group (iii) are described in EP patent application 10 194 307.4.
- Such polytetrahydrobenzoxazines and bistetrahydrobenzoxazines are obtainable by successively reacting, in a first reaction step a C 1 - to C 20 -alkylenediamine having two primary amino functions, for example 1,2-ethylenediamine, with a C 1 - to C 12 -aldehyde, e.g. formaldehyde, and a C 1 - to C 8 -alkanol at a temperature of 20 to 80° C.
- the at least one additive with detergent action in both aspects of the present invention, to a compound having moieties which are derived from succinic anhydride and have hydroxyl and/or amino and/or amido and/or imido groups, but especially a compound from group (i) which is a polyisobutenyl-substituted succinimide.
- Fuel oils shall be understood in the context of the present invention to mean especially middle distillate fuels, especially diesel fuels. However, use of the present invention in heating oil or kerosene is also possible. Diesel fuels or middle distillate fuels are typically mineral oil raffinates which generally have a boiling range from 100 to 400° C. These are usually distillates with a 95% point up to 360° C. or even higher. However, they may also be what is called “ultra low sulfur diesel” or “city diesel”, characterized by a 95% point of, for example, not more than 345° C. and a sulfur content of not more than 0.005% by weight, or by a 95% point of, for example, 285° C. and a sulfur content of not more than 0.001% by weight.
- diesel fuels obtainable by refining, the main constituents of which are relatively long-chain paraffins, those obtainable by coal gasification or gas liquefaction [“gas to liquid” (GTL) fuels] are suitable.
- GTL gas to liquid
- mixtures of the aforementioned diesel fuels with renewable fuels (biofuel oils) such as biodiesel or bioethanol.
- diesel fuels with a low sulfur content i.e. with a sulfur content of less than 0.05% by weight, preferably of less than 0.02% by weight, particularly of less than 0.005% by weight and especially of less than 0.001% by weight of sulfur.
- Diesel fuels may also comprise water, for example in an amount up to 20% by weight, for example in the form of diesel-water microemulsions, or in the form of what is called “white diesel”.
- the C 5 - to C 15 -alkanols or the inventive additive concentrate in the context of the present invention, is used in fuel oils which consist
- the fuel oils may of course also consist to an extent of 100% by weight of at least one biofuel oil (a) based on fatty acid esters.
- the fuel oil component (a) is usually also referred to as “biodiesel”.
- This preferably comprises essentially alkyl esters of fatty acids which derive from vegetable and/or animal oils and/or fats.
- Alkyl esters are typically understood to mean lower alkyl esters, especially C 1 - to C 4 -alkyl esters, which are obtainable by transesterifying the glycerides, especially triglycerides, which occur in vegetable and/or animal oils and/or fats by means of lower alcohols, for example ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol or especially methanol (“FAME”).
- FAME methanol
- oils which can be converted to corresponding alkyl esters and can thus serve as a basis for biodiesel are castor oil, olive oil, peanut oil, palm kernel oil, coconut oil, mustard oil, cottonseed oil, and especially sunflower oil, palm oil, soybean oil and rapeseed oil.
- Vegetable fats are likewise usable in principle as a source for biodiesel, but play a minor role.
- animal fats and oils which are converted to corresponding alkyl esters and can thus serve as a basis for biodiesel are fish oil, bovine tallow, porcine tallow and similar fats and oils which are obtained as wastes in the slaughter or utilization of farm animals or wild animals.
- the parent saturated or unsaturated fatty acids of the vegetable and/or animal oils and/or fats mentioned which usually have 12 to 22 carbon atoms and may bear additional functional groups such as hydroxyl groups, and occur in the alkyl esters, are especially lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, erucic acid and/or ricinoleic acid.
- Typical lower alkyl esters based on vegetable and/or animal oils and/or fats which find use as biodiesel or biodiesel components, are, for example, sunflower methyl ester, palm oil methyl ester (“PME”), soybean oil methyl ester (“SME”) and especially rapeseed oil methyl ester (“RME”).
- the fuel oil component (b) shall be understood in the context of the present invention to mean the abovementioned middle distillate fuels, especially diesel fuels, particularly those which boil within the range from 120 to 450° C.
- the C 5 - to C 15 -alkanols or the inventive additive concentrate is used in the context of the present invention to improve the defoamer action of the silicon-containing antifoam in fuels in such a way that the improvement is to such a degree that at least one of the following criteria is met:
- both criteria ( ⁇ ) and ( ⁇ ) are met.
- the BNPe NF-M 07-075 foam test is a standard test method for determining the foam volume and the foam collapse time of fuel oil samples.
- a test apparatus standardized according to this standard is used.
- the inventive additive concentrate comprises, as component (B), in the function as an essentially nonpolar solvent which displays the desired defoamer action in interplay with component (A) as a polar solvent, as a first alternative (i) one or more aromatic hydrocarbons, for example toluene, xylenes or homologous mono- or dialkylbenzenes, and technical solvent mixtures which consist of aromatic hydrocarbons or comprise aromatic hydrocarbons as main components and are named Shellsol® (manufacturer: Royal Dutch/Shell Group), Exxsol® or Solvesso® (manufacturer: ExxonMobil) or Solvent Naphtha.
- aromatic hydrocarbons for example toluene, xylenes or homologous mono- or dialkylbenzenes
- technical solvent mixtures which consist of aromatic hydrocarbons or comprise aromatic hydrocarbons as main components and are named Shellsol® (manufacturer: Royal Dutch/Shell Group), Exxsol® or Solvesso® (manufactur
- a second alternative (ii) for component (B) is that of C 5 - to C 12 -alkyl nitrates, which are intended to function as a cetane number improver or ignition accelerator in the fuel oil.
- alkyl nitrates are especially nitrate esters of unsubstituted or substituted aliphatic or else cycloaliphatic alcohols, usually having 5 to 10 carbon atoms.
- the alkyl group in these nitrate esters may be linear or branched, saturated or else unsaturated.
- nitrate esters are n-amyl nitrate, isoamyl nitrate, 2-amyl nitrate, 3-amyl nitrate, tert-amyl nitrate, n-hexyl nitrate, n-heptyl nitrate, sec-heptyl nitrate, n-octyl nitrate, 2-ethylhexyl nitrate, sec-octyl nitrate, n-nonyl nitrate, n-decyl nitrate, cyclopentyl nitrate, cyclohexyl nitrate, methylcyclohexyl nitrate and isopropylcyclohexyl nitrate, and also branched decyl nitrates with an n-propyl or isopropyl radical in the 2 position of the alkyl chain, as described
- nitrate esters of alkoxy-substituted aliphatic alcohols such as 2-ethoxyethyl nitrate, 2-(2-ethoxyethoxy)ethyl nitrate, 1-methoxypropyl nitrate or 4-ethoxybutyl nitrate.
- diol nitrates such as 1,6-hexamethylene dinitrate.
- alkyl nitrates mentioned 2-ethylhexyl nitrate is the most commonly used cetane number improver and is also preferred for the present invention.
- Another, third alternative (iii) for component (B) is that of mixtures of (i) and (iii), for example mixtures of 1 to 99 parts by weight of (i) and 99 to 1 parts by weight of (ii), especially of 10 to 90 parts by weight of (i) and 90 to 10 parts by weight of (ii), in particular of 25 to 75 parts by weight of (i) and 75 to 25 parts by weight of (ii), where the aromatic hydrocarbons (i) and the alkyl nitrates (ii) together add up to the amounts mentioned in the inventive additive concentrate.
- Dehazers suitable as coadditives of component (E) are, for example, alkoxylated phenol-formaldehyde condensates.
- the inventive additive concentrate is typically added to the fuel oil in such an amount that the additive with detergent action of component (D) or a mixture of a plurality of such additives with detergent action is present in the fuel oil in an amount of 10 to 2000 ppm by weight, especially of 20 to 1000 ppm by weight, in particular of 30 to 500 ppm by weight.
- the inventive additive concentrate or the fuel oil additized therewith may further comprise other customary coadditives, especially cold flow improvers, corrosion inhibitors, demulsifiers, antioxidants and stabilizers, metal deactivators, antistats, lubricity improvers, dyes (markers) and/or further solvents and diluents.
- customary coadditives especially cold flow improvers, corrosion inhibitors, demulsifiers, antioxidants and stabilizers, metal deactivators, antistats, lubricity improvers, dyes (markers) and/or further solvents and diluents.
- Cold flow improvers suitable as further coadditives are, for example, copolymers of ethylene with at least one further unsaturated monomer, in particular ethylene-vinyl acetate copolymers.
- Corrosion inhibitors suitable as further coadditives are, for example, succinic esters, in particular with polyols, fatty acid derivatives, e.g. oleic esters, oligomerized fatty acids and substituted ethanolamines.
- Demulsifiers suitable as further coadditives are, for example, the alkali metal and alkaline earth metal salts of alkyl-substituted phenol- and naphthalenesulfonates and the alkali metal and alkaline earth metal salts of fatty acid, and additionally alcohol alkoxylates, e.g. alcohol ethoxylates, phenol alkoxylates, e.g. tert-butylphenol ethoxylates or tert-pentylphenol ethoxylates, fatty acid, alkylphenols, condensation products of ethylene oxide and propylene oxide, e.g. ethylene oxide-propylene oxide block copolymers, polyethyleneimines and polysiloxanes.
- alcohol alkoxylates e.g. alcohol ethoxylates
- phenol alkoxylates e.g. tert-butylphenol ethoxylates or tert-pentylphenol eth
- Antioxidants suitable as further coadditives are, for example, substituted phenols, e.g. 2,6-di-tert-butylphenol and 2,6-di-tert-butyl-3-methylphenol, and also phenylenediamines, e.g. N,N′-di-sec-butyl-p-phenylenediamine.
- Metal deactivators suitable as further coadditives are, for example, salicylic acid derivatives, e.g. N,N′-disalicylidene-1,2-propanediamine.
- a lubricity improver suitable as a further coadditive is, for example, glyceryl monooleate.
- the present invention also provides an additized fuel oil which comprises a major amount of base fuel oil which consists
- AF A An additive formulation (“AF A”, for comparison) composed of 25% by weight of a commercial polyisobutenyl-substituted succinimide (Kerocom® PIBSI from BASF SE) as an additive with detergent action, 72% by weight of Solvesso® 150 as an aromatic hydrocarbon mixture, 1% by weight of a commercial silicon-containing antifoam and 2% by weight of a commercial dehazer were added in a dosage of 200 mg/kg to the abovementioned fuel DF 1. The foam volume and the foam collapse time of the fuel additized with AF A were determined.
- a further additive formulation (“AF B”, according to the present invention) composed of 25% by weight of a commercial polyisobutenyl-substituted succinimide (Kerocom® PIBSI from BASF SE) as an additive with detergent action, 67% by weight of Solvesso® 150 as an aromatic hydrocarbon mixture, 5% by weight of 2-ethylhexanol, 1% by weight of a commercial silicon-containing antifoam and 2% by weight of a commercial dehazer were added in a dosage of 200 mg/kg to the abovementioned fuel DF 1.
- the foam volume and the foam collapse time of the fuel additized with AF A were determined.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
C5- to C15-alkanols are suitable for improving the defoamer action of a silicon-containing anti-foam in fuel oils, especially in biofuel oils, which comprise at least one additive with detergent action. Such alkanols are used in additive concentrates which also comprise aromatic hydrocarbons or hydrocarbon mixtures having a boiling point of 100 to 250° C. or C5- to C12-alkyl nitrates, and also silicon-containing antifoams, additives with detergent action and optionally commercial dehazers.
Description
- The present invention relates to the use of medium-chain alkanols for improving the defoamer action of a silicon-containing antifoam in fuel oils which comprise at least one additive with detergent action. The present invention further relates to an additive concentrate and to the use thereof for improving foam reduction in fuel oils, said additive concentrate comprising medium-chain alkanols, aromatic hydrocarbons or hydrocarbon mixtures and/or alkyl nitrates, silicon-containing antifoams and additives with detergent action. The present application further provides a corresponding additized fuel oil.
- Fuel oils generally comprise antifoams which are intended to prevent, or reduce to a tolerable degree, the foaming of the fuel oil in the course of movement or mechanical stress, for example when transferred or introduced into storage vessels or tanks. Foaming over, reduced fill levels, longer fill times and hence lower efficiency of gas stations are the main reasons why antifoams (also called defoamers) are now one of the standard components in modern multifunctional diesel additive packages. In this context, usually silicon-containing antifoams based on organosilicone chemistry, such as polysiloxanes or silicone oils, are customary.
- For instance, WO 00/39254 (1) describes additive packages which are usable in fuel oils and which comprise, as an additive with detergent action, the reaction product of polyisobutenyl-succinic anhydride (with a polyisobutenyl chain with Mn=950) with tetraethylenepentamine, 2-ethylhexyl nitrate as a cetane number improver and 2-ethylhexanol as a solvent, in combination with a conventional organosilicone antifoam. The weight ratio of 2-ethylhexyl nitrate to 2-ethylhexanol is never above 3:1.
- US 2010/0107479 A1 (2) discloses a diesel fuel additive package which, according to table 1 therein, comprises 42 mg/kg of the reaction product of polyisobutenylsuccinic anhydride with tetraethylenepentamine in a molar ratio of 1:1 as an additive with detergent action, 20 mg/kg of 2-ethylhexyl nitrate as a solvent, 132 mg/kg of an aromatic hydrocarbon mixture as a further solvent, and 8 mg/kg of a conventional siloxane antifoam.
- EP 0 681 023 A1 (3) describes fuel oils, such as diesel fuels, kerosene, turbine fuels, heating oils and, among other substances, also biofuel oils comprising vegetable oils, which comprise metallic detergents such as alkali metal or alkaline earth metal salts of acids or phenols, antifoams such as water-soluble polyether-polysiloxane copolymers and ashless dispersants such as polyisobutenylsuccinimides, and may optionally have further components such as solvents, for example aromatic hydrocarbons, oil-soluble alcohols, demulsifiers, corrosion inhibitors, carrier liquids, antioxidants, metal deactivators, cold flow improvers or wax inhibitors.
- However, the action of antifoams in fuel oils is still in need of improvement, especially when they are supplied to the fuel oils or diesel fuels in mixed form, in multifunctional diesel additive packages which comprise, as the main active components, ashless additives with detergent action. It was an object of the present invention to improve the defoamer action of the known antifoams, especially of the silicon-containing antifoams, and to provide a corresponding additive concentrate for use as an additive package in fuel oils, which improves foam reduction in fuel oils.
- Accordingly, in a first aspect of the present invention, the use of a C5- to C15-alkanol for improving the defoamer action of a silicon-containing antifoam in fuel oils which comprise at least one additive with detergent action has been found.
- In addition, in a second aspect of the present invention, an additive concentrate has been found, which comprises
-
- (A) 0.1 to 10% by weight, especially 1 to 8% by weight, in particular 3 to 6% by weight, of at least one C5- to C15-alkanol,
- (B) 0.5 to 80% by weight, especially 5 to 75% by weight, in particular 15 to 70% by weight, of either (i) at least one aromatic hydrocarbon or hydrocarbon mixture having a boiling point or a predominant boiling range within the temperature range from 100° C. to 250° C. or (ii) at least one C5- to C12-alkyl nitrate or (iii) a mixture of (i) and (ii), with the proviso that the amount of component (B) is at least five times the amount of the C5- to C15-alkanol of component (A),
- (C) 0.01 to 2% by weight, especially 0.1 to 1.5% by weight, in particular 0.4 to 1.3% by weight, of at least one silicon-containing antifoam,
- (D) 1 to 30% by weight, especially 7 to 29% by weight, in particular 15 to 28% by weight, of at least one additive with detergent action and
- (E) 0 to 5% by weight, especially 0.1 to 5% by weight, in particular 1 to 3.5% by weight, of at least one commercial dehazer,
where the sum of components (A) to (E) is 100% by weight in each case, and with the proviso that at least one of the following criteria is additionally met: - (γ) the amount of the additive with detergent action in component (D) is at least ten times, especially at least fifteen times, the amount of the silicon-containing antifoam in component (C);
- (δ) the amount of the C5- to C15-alkanol of component (A) is at least three times, especially at least four times, the amount of the silicon-containing antifoam of component (C).
- Preferably, both criteria (γ) and (δ) are met.
- The present invention owes the improved action to the use of particular medium-chain alkanols and in particular to the precisely balanced ratio of components (A), (B), (C) and (D). The inventive use of the median-chain alkanols mentioned has an advantageous effect on the foaming characteristics especially in fuel oils which comprise biofuel oils or consist thereof.
- Medium-chain alkanols, which constitute component (A) in the inventive additive concentrate, are understood to mean C5- to C15-alkanols, especially C6- to C13-alkanols, in particular C8- to C11-alkanols, which are linear or preferably branched. In a preferred embodiment, in both aspects of the present invention, n-octanol, 2-ethylhexanol, n-nonanol, 2-propylheptanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol or isotridecanol is used. It is also possible to use a mixture of the alkanols mentioned. Very particular preference is given to 2-ethylhexanol.
- Silicon-containing antifoams of component (C) are understood here to mean all known antifoams which are customary in the mineral oils sector, are of organic structure and comprise one or more silicon atoms incorporated within the molecule. They may, for example, be polysiloxanes or silicone oils. In a preferred embodiment, in both aspects of the present invention, polyether-modified polysiloxanes are used. These may have, for example, the structure of a polyether-polysiloxane copolymer.
- Additives with detergent action in component (D) refer in the context of the present invention to those compounds whose action in an internal combustion engine, especially a diesel engine, consists predominantly or at least essentially of eliminating and/or preventing deposits. The detergents are preferably amphiphilic substances which have at least one hydrophobic hydrocarbyl radical having a number-average molecular weight (Mn) of 85 to 20 000, especially of 300 to 5000, in particular of 500 to 2500, and at least one polar moiety.
- The additives with detergent action here are preferably selected from:
-
- (i) compounds with moieties which are derived from succinic anhydride and have hydroxyl and/or amino and/or amido and/or imido groups;
- (ii) nitrogen compounds with acid-free quaternization, obtainable by addition of a compound which comprises at least one oxygen- or nitrogen-containing group reactive with an anhydride and additionally at least one quaternizable amino group onto a polycarboxylic anhydride compound and then quaternizing;
- (iii) polytetrahydrobenzoxazines and bistetrahydrobenzoxazines
- Additives comprising moieties which are derived from succinic anhydride and have hydroxyl and/or amino and/or amido and/or imido groups according to the above group (i) are preferably corresponding derivatives of polyisobutenylsuccinic anhydride, which are obtainable by reaction of conventional or high-reactivity polyisobutene with Mn=300 to 5000, in particular with Mn=500 to 2500, with maleic anhydride by the thermal route or via the chlorinated polyisobutene. Of particular interest in this context are derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine. The moieties with hydroxyl and/or amino and/or amido and/or imido groups are, for example, carboxylic acid groups, acid amides, acid amides of di- or polyamines, which also have free amine groups in addition to their amide function, succinic acid derivatives with an acid and an imide function, carboximides with monoamines, carboximides with di- or polyamines, which also have free amine groups in addition to the imide function, and diimides which are formed by the reaction of di- or polyamines with two succinic acid derivatives. Such fuel additives are described especially in U.S. Pat. No. 4,849,572.
- Nitrogen compounds with acid-free quaternization according to the above group (ii), which are obtainable by addition of a compound which comprises at least one oxygen- or nitrogen-containing group reactive with an anhydride and additionally at least one quaternizable amino group onto a polycarboxylic anhydride compound and subsequent quaternization, especially with an epoxide in the absence of free acid, are described in EP patent application 10 168 622.8. Suitable compounds having at least one oxygen- or nitrogen-containing group reactive with an anhydride and additionally at least one quaternizable amino group are especially polyamines with at least one primary or secondary amino group and at least one tertiary amino group. Useful polycarboxylic anhydrides are especially dicarboxylic acids such as succinic acid with a relatively long-chain hydrocarbyl substituent, preferably with a number-average molecular weight Mn for the hydrocarbyl substituent of 200 to 10 000, in particular of 350 to 5000. Such a quaternized nitrogen compound is, for example, the reaction product, obtained at 40° C., of polyisobutenylsuccinic anhydride in which the polyisobutenyl radical typically has an Mn of 1000 with 3-(dimethylamino)propylamine, which is a polyisobutenylsuccinic monoamide and which is subsequently quaternized with styrene oxide in the absence of free acid at 70° C.
- Polytetrahydrobenzoxazines and bistetrahydrobenzoxazines according to the above group (iii) are described in EP patent application 10 194 307.4. Such polytetrahydrobenzoxazines and bistetrahydrobenzoxazines are obtainable by successively reacting, in a first reaction step a C1- to C20-alkylenediamine having two primary amino functions, for example 1,2-ethylenediamine, with a C1- to C12-aldehyde, e.g. formaldehyde, and a C1- to C8-alkanol at a temperature of 20 to 80° C. while eliminating and removing water, both the aldehyde and the alcohol being used in more than twice the molar amount, especially both in four times the molar amount, compared to the diamine, in a second reaction step reacting the condensation product thus obtained with a phenol which bears at least one long-chain substituent having 6 to 3000 carbon atoms, for example a tert-octyl, n-nonyl, n-dodecyl or polyisobutyl radical with an Mn of 1000, in a stoichiometric ratio to the originally used alkylenediamine of 1.2:1 to 3:1 at a temperature of 30 to 120° C., and optionally in a third reaction step heating the bistetrahydrobenzoxazine thus obtained to a temperature of 125 to 280° C. for at least 10 minutes.
- Particular preference is given as the at least one additive with detergent action, in both aspects of the present invention, to a compound having moieties which are derived from succinic anhydride and have hydroxyl and/or amino and/or amido and/or imido groups, but especially a compound from group (i) which is a polyisobutenyl-substituted succinimide.
- Fuel oils shall be understood in the context of the present invention to mean especially middle distillate fuels, especially diesel fuels. However, use of the present invention in heating oil or kerosene is also possible. Diesel fuels or middle distillate fuels are typically mineral oil raffinates which generally have a boiling range from 100 to 400° C. These are usually distillates with a 95% point up to 360° C. or even higher. However, they may also be what is called “ultra low sulfur diesel” or “city diesel”, characterized by a 95% point of, for example, not more than 345° C. and a sulfur content of not more than 0.005% by weight, or by a 95% point of, for example, 285° C. and a sulfur content of not more than 0.001% by weight. In addition to the diesel fuels obtainable by refining, the main constituents of which are relatively long-chain paraffins, those obtainable by coal gasification or gas liquefaction [“gas to liquid” (GTL) fuels] are suitable. Also suitable are mixtures of the aforementioned diesel fuels with renewable fuels (biofuel oils) such as biodiesel or bioethanol. Of particular interest at present are diesel fuels with a low sulfur content, i.e. with a sulfur content of less than 0.05% by weight, preferably of less than 0.02% by weight, particularly of less than 0.005% by weight and especially of less than 0.001% by weight of sulfur. Diesel fuels may also comprise water, for example in an amount up to 20% by weight, for example in the form of diesel-water microemulsions, or in the form of what is called “white diesel”.
- In a preferred embodiment, the C5- to C15-alkanols or the inventive additive concentrate, in the context of the present invention, is used in fuel oils which consist
-
- (a) to an extent of 0.1 to 100%, preferably to an extent of 0.1 to less than 100% by weight, especially to an extent of 10 to 95% by weight, in particular to an extent of 30 to 90% by weight, of at least one biofuel oil based on fatty acid esters, and
- (b) to an extent of 0 to 99.9% by weight, preferably to an extent of more than 0 to 99.9% by weight, especially to an extent of 5 to 90% by weight, in particular to an extent of 10 to 70%, of middle distillates of fossil origin and/or of vegetable and/or animal origin, which are essentially hydrocarbon mixtures and are free of fatty acid esters.
- The fuel oils may of course also consist to an extent of 100% by weight of at least one biofuel oil (a) based on fatty acid esters.
- The fuel oil component (a) is usually also referred to as “biodiesel”. This preferably comprises essentially alkyl esters of fatty acids which derive from vegetable and/or animal oils and/or fats. Alkyl esters are typically understood to mean lower alkyl esters, especially C1- to C4-alkyl esters, which are obtainable by transesterifying the glycerides, especially triglycerides, which occur in vegetable and/or animal oils and/or fats by means of lower alcohols, for example ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol or especially methanol (“FAME”).
- Examples of vegetable oils which can be converted to corresponding alkyl esters and can thus serve as a basis for biodiesel are castor oil, olive oil, peanut oil, palm kernel oil, coconut oil, mustard oil, cottonseed oil, and especially sunflower oil, palm oil, soybean oil and rapeseed oil. Further examples include oils which can be obtained from wheat, jute, sesame and the shea tree nut; additionally useable are also arachis oil, jatropha oil and linseed oil. The extraction of these oils and the conversion thereof to the alkyl esters are known or can be inferred from the prior art.
- It is also possible to convert vegetable oils which have already been used, for example used deep fat frier oil, optionally after an appropriate purification, to alkyl esters, and for them thus to serve as a basis for biodiesel.
- Vegetable fats are likewise usable in principle as a source for biodiesel, but play a minor role.
- Examples of animal fats and oils which are converted to corresponding alkyl esters and can thus serve as a basis for biodiesel are fish oil, bovine tallow, porcine tallow and similar fats and oils which are obtained as wastes in the slaughter or utilization of farm animals or wild animals.
- The parent saturated or unsaturated fatty acids of the vegetable and/or animal oils and/or fats mentioned, which usually have 12 to 22 carbon atoms and may bear additional functional groups such as hydroxyl groups, and occur in the alkyl esters, are especially lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, erucic acid and/or ricinoleic acid.
- Typical lower alkyl esters based on vegetable and/or animal oils and/or fats, which find use as biodiesel or biodiesel components, are, for example, sunflower methyl ester, palm oil methyl ester (“PME”), soybean oil methyl ester (“SME”) and especially rapeseed oil methyl ester (“RME”).
- However, it is also possible to use the monoglycerides, diglycerides and especially triglycerides themselves, for example castor oil, or mixtures of such glycerides, as biodiesel or components for biodiesel.
- The fuel oil component (b) shall be understood in the context of the present invention to mean the abovementioned middle distillate fuels, especially diesel fuels, particularly those which boil within the range from 120 to 450° C.
- In a preferred embodiment, the C5- to C15-alkanols or the inventive additive concentrate is used in the context of the present invention to improve the defoamer action of the silicon-containing antifoam in fuels in such a way that the improvement is to such a degree that at least one of the following criteria is met:
-
- (α) reduction in the foam volume with respect to the defoamer action of the same silicon-containing antifoam in the same fuel oil in the absence of a C5- to C15-alkanol by at least 10%, especially by at least 14%, determined by the BNPe NF-M 07-075 foam test;
- (β) reduction in the foam collapse time with respect to the defoamer action of the same silicon-containing antifoam in the same fuel oil in the absence of a C5- to C15-alkanol by at least 20%, especially by at least 35%, determined by the BNPe NF-M 07-075 foam test.
- Preferably, both criteria (α) and (β) are met.
- The BNPe NF-M 07-075 foam test is a standard test method for determining the foam volume and the foam collapse time of fuel oil samples. For this purpose, a test apparatus standardized according to this standard is used.
- The inventive additive concentrate comprises, as component (B), in the function as an essentially nonpolar solvent which displays the desired defoamer action in interplay with component (A) as a polar solvent, as a first alternative (i) one or more aromatic hydrocarbons, for example toluene, xylenes or homologous mono- or dialkylbenzenes, and technical solvent mixtures which consist of aromatic hydrocarbons or comprise aromatic hydrocarbons as main components and are named Shellsol® (manufacturer: Royal Dutch/Shell Group), Exxsol® or Solvesso® (manufacturer: ExxonMobil) or Solvent Naphtha.
- A second alternative (ii) for component (B) is that of C5- to C12-alkyl nitrates, which are intended to function as a cetane number improver or ignition accelerator in the fuel oil. Such alkyl nitrates are especially nitrate esters of unsubstituted or substituted aliphatic or else cycloaliphatic alcohols, usually having 5 to 10 carbon atoms. The alkyl group in these nitrate esters may be linear or branched, saturated or else unsaturated. Typical examples of such nitrate esters are n-amyl nitrate, isoamyl nitrate, 2-amyl nitrate, 3-amyl nitrate, tert-amyl nitrate, n-hexyl nitrate, n-heptyl nitrate, sec-heptyl nitrate, n-octyl nitrate, 2-ethylhexyl nitrate, sec-octyl nitrate, n-nonyl nitrate, n-decyl nitrate, cyclopentyl nitrate, cyclohexyl nitrate, methylcyclohexyl nitrate and isopropylcyclohexyl nitrate, and also branched decyl nitrates with an n-propyl or isopropyl radical in the 2 position of the alkyl chain, as described in WO 2008/092809. Additionally suitable are also, for example, nitrate esters of alkoxy-substituted aliphatic alcohols, such as 2-ethoxyethyl nitrate, 2-(2-ethoxyethoxy)ethyl nitrate, 1-methoxypropyl nitrate or 4-ethoxybutyl nitrate. Additionally suitable are also diol nitrates such as 1,6-hexamethylene dinitrate. Among the alkyl nitrates mentioned, 2-ethylhexyl nitrate is the most commonly used cetane number improver and is also preferred for the present invention.
- Another, third alternative (iii) for component (B) is that of mixtures of (i) and (iii), for example mixtures of 1 to 99 parts by weight of (i) and 99 to 1 parts by weight of (ii), especially of 10 to 90 parts by weight of (i) and 90 to 10 parts by weight of (ii), in particular of 25 to 75 parts by weight of (i) and 75 to 25 parts by weight of (ii), where the aromatic hydrocarbons (i) and the alkyl nitrates (ii) together add up to the amounts mentioned in the inventive additive concentrate.
- Dehazers suitable as coadditives of component (E) are, for example, alkoxylated phenol-formaldehyde condensates.
- The inventive additive concentrate is typically added to the fuel oil in such an amount that the additive with detergent action of component (D) or a mixture of a plurality of such additives with detergent action is present in the fuel oil in an amount of 10 to 2000 ppm by weight, especially of 20 to 1000 ppm by weight, in particular of 30 to 500 ppm by weight.
- The inventive additive concentrate or the fuel oil additized therewith, i.e. corresponding diesel fuels or middle distillate fuels or the mixtures of biofuel oils and middle distillates of fossil, vegetable or animal origin mentioned, may further comprise other customary coadditives, especially cold flow improvers, corrosion inhibitors, demulsifiers, antioxidants and stabilizers, metal deactivators, antistats, lubricity improvers, dyes (markers) and/or further solvents and diluents.
- Cold flow improvers suitable as further coadditives are, for example, copolymers of ethylene with at least one further unsaturated monomer, in particular ethylene-vinyl acetate copolymers.
- Corrosion inhibitors suitable as further coadditives are, for example, succinic esters, in particular with polyols, fatty acid derivatives, e.g. oleic esters, oligomerized fatty acids and substituted ethanolamines.
- Demulsifiers suitable as further coadditives are, for example, the alkali metal and alkaline earth metal salts of alkyl-substituted phenol- and naphthalenesulfonates and the alkali metal and alkaline earth metal salts of fatty acid, and additionally alcohol alkoxylates, e.g. alcohol ethoxylates, phenol alkoxylates, e.g. tert-butylphenol ethoxylates or tert-pentylphenol ethoxylates, fatty acid, alkylphenols, condensation products of ethylene oxide and propylene oxide, e.g. ethylene oxide-propylene oxide block copolymers, polyethyleneimines and polysiloxanes.
- Antioxidants suitable as further coadditives are, for example, substituted phenols, e.g. 2,6-di-tert-butylphenol and 2,6-di-tert-butyl-3-methylphenol, and also phenylenediamines, e.g. N,N′-di-sec-butyl-p-phenylenediamine.
- Metal deactivators suitable as further coadditives are, for example, salicylic acid derivatives, e.g. N,N′-disalicylidene-1,2-propanediamine.
- A lubricity improver suitable as a further coadditive is, for example, glyceryl monooleate.
- When the coadditives mentioned and/or further solvents or diluents are additionally used, they are used in the amounts customary therefor.
- The present invention also provides an additized fuel oil which comprises a major amount of base fuel oil which consists
-
- (a) to an extent of 0.1 to 100% by weight of at least one biofuel oil based on fatty acid esters, and
- (b) to an extent of 0 to 99.9% by weight of middle distillates of fossil origin and/or of vegetable and/or animal origin, which are essentially hydrocarbon mixtures and are free of fatty acid esters,
and a minor amount of the inventive additive concentrate.
- The examples which follow are intended to illustrate the present invention without restricting it.
- In a diesel fuel (“DF 1”) which was typical of the European market, conformed to the standard EN 590 and comprised a proportion of 7% by weight of biodiesel (FAME), the foaming characteristics were determined by the BNPe NF-M 07-075 foam test:
- An additive formulation (“AF A”, for comparison) composed of 25% by weight of a commercial polyisobutenyl-substituted succinimide (Kerocom® PIBSI from BASF SE) as an additive with detergent action, 72% by weight of Solvesso® 150 as an aromatic hydrocarbon mixture, 1% by weight of a commercial silicon-containing antifoam and 2% by weight of a commercial dehazer were added in a dosage of 200 mg/kg to the abovementioned fuel DF 1. The foam volume and the foam collapse time of the fuel additized with AF A were determined.
- A further additive formulation (“AF B”, according to the present invention) composed of 25% by weight of a commercial polyisobutenyl-substituted succinimide (Kerocom® PIBSI from BASF SE) as an additive with detergent action, 67% by weight of Solvesso® 150 as an aromatic hydrocarbon mixture, 5% by weight of 2-ethylhexanol, 1% by weight of a commercial silicon-containing antifoam and 2% by weight of a commercial dehazer were added in a dosage of 200 mg/kg to the abovementioned fuel DF 1. The foam volume and the foam collapse time of the fuel additized with AF A were determined.
- The following table shows the results of the determinations:
-
Fuel Foam volume Foam collapse time Unadditized DF 1 95 ml 35 sec AF A (for comparison) 35 ml 10 sec AF B (inventive) 30 ml 6 sec
Claims (12)
1. The use of a C5- to C15-alkanol for improving the defoamer action of a silicon-containing antifoam in fuel oils which comprise at least one additive with detergent action.
2. The use according to claim 1 in fuel oils which consist
(a) to an extent of 0.1 to less than 100% by weight of at least one biofuel oil based on fatty acid esters, and
(b) to an extent of more than 0 to 99.9% by weight of middle distillates of fossil origin and/or of vegetable and/or animal origin, which are essentially hydrocarbon mixtures and are free of fatty acid esters.
3. The use according to claim 1 or 2 , wherein the defoamer action of the silicon-containing antifoam is improved to such an extent that at least one of the following criteria is met:
(α) reduction in the foam volume with respect to the defoamer action of the same silicon-containing antifoam in the same fuel oil in the absence of a C5- to C15-alkanol by at least 10%, determined by the BNPe NF-M 07-075 foam test;
(β) reduction in the foam collapse time with respect to the defoamer action of the same silicon-containing antifoam in the same fuel oil in the absence of a C5- to C15-alkanol by at least 20%, determined by the BNPe NF-M 07-075 foam test.
4. The use according to claims 1 to 3 , wherein the C5- to C15-alkanol is n-octanol, 2-ethylhexanol, n-nonanol, 2-propylheptanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol or isotridecanol.
5. The use according to claims 1 to 4 , wherein the silicon-containing antifoam is a polyether-modified polysiloxane.
6. The use according to claims 1 to 5 , wherein the additive with detergent action is a compound with moieties which are derived from succinic anhydride and have hydroxyl and/or amino and/or amido and/or imido groups.
7. An additive concentrate comprising
(A) 0.1 to 10% by weight of at least one C5- to C15-alkanol,
(B) 0.5 to 80% by weight of either (i) at least one aromatic hydrocarbon or hydrocarbon mixture having a boiling point or a predominant boiling range within the temperature range from 100° C. to 250° C. or (ii) at least one C5- to C12-alkyl nitrate or (iii) a mixture of (i) and (ii), with the proviso that the amount of component (B) is at least five times the amount of the C5- to C15-alkanol of component (A),
(C) 0.01 to 2% by weight of at least one silicon-containing antifoam,
(D) 1 to 30% by weight of at least one additive with detergent action and
(E) 0 to 5% by weight of at least one commercial dehazer,
where the sum of components (A) to (E) is 100% by weight in each case, and with the proviso that at least one of the following criteria is additionally met:
(γ) the amount of the additive with detergent action in component (D) is at least ten times the amount of the silicon-containing antifoam in component (C);
(δ) the amount of the C5- to C15-alkanol of component (A) is at least three times the amount of the silicon-containing antifoam of component (C).
8. The additive concentrate according to claim 7 , wherein the C5- to C15-alkanol is n-octanol, 2-ethylhexanol, n-nonanol, 2-propylheptanol, n-decanol, n-undecanol, n-dodecanol, n-tridecanol or isotridecanol.
9. The additive concentrate according to claim 7 or 8 , wherein the silicon-containing antifoam is a polyether-modified polysiloxane.
10. The additive concentrate according to claims 7 to 9 , wherein the additive with detergent action is a compound with moieties which are derived from succinic anhydride and have hydroxyl and/or amino and/or amido and/or imido groups.
11. The use of the additive concentrate according to claims 7 to 10 for improving foam reduction in fuel oils.
12. An additized fuel oil comprising a major amount of base fuel oil which consists
(a) to an extent of 0.1 to 100% by weight of at least one biofuel oil based on fatty acid esters, and
(b) to an extent of 0 to 99.9% by weight of middle distillates of fossil origin and/or of vegetable and/or animal origin, which are essentially hydrocarbon mixtures and are free of fatty acid esters, and a minor amount of the additive concentrate according to claims 7 to 10 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/407,422 US20120222348A1 (en) | 2011-03-01 | 2012-02-28 | Medium-chain alkanols in additive concentrates for improving foam reduction in fuel oils |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161447718P | 2011-03-01 | 2011-03-01 | |
US13/407,422 US20120222348A1 (en) | 2011-03-01 | 2012-02-28 | Medium-chain alkanols in additive concentrates for improving foam reduction in fuel oils |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120222348A1 true US20120222348A1 (en) | 2012-09-06 |
Family
ID=46752398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/407,422 Abandoned US20120222348A1 (en) | 2011-03-01 | 2012-02-28 | Medium-chain alkanols in additive concentrates for improving foam reduction in fuel oils |
Country Status (1)
Country | Link |
---|---|
US (1) | US20120222348A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9039791B2 (en) | 2012-05-25 | 2015-05-26 | Basf Se | Use of a reaction product of carboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils |
US9951285B2 (en) | 2011-06-28 | 2018-04-24 | Basf Se | Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants |
EP3399013A1 (en) | 2017-05-05 | 2018-11-07 | The Procter & Gamble Company | Laundry detergent compositions with improved grease removal |
EP3399012A1 (en) | 2017-05-05 | 2018-11-07 | The Procter & Gamble Company | Liquid detergent compositions with improved rheology |
US10173963B2 (en) | 2012-10-23 | 2019-01-08 | Basf Se | Quaternized ammonium salts of hydrocarbyl epoxides and use thereof as additives in fuels and lubricants |
WO2019094412A1 (en) | 2017-11-10 | 2019-05-16 | Momentive Performance Materials Inc. | Organomodified silicone fuel additive, compositions, and methods of using the same |
WO2022087765A1 (en) * | 2020-10-26 | 2022-05-05 | Dow Global Technologies Llc | Industrial and institutional cleaning foam control agent |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0681023A1 (en) * | 1994-05-04 | 1995-11-08 | Ethyl Petroleum Additives Limited | Compatible fuel additive concentrates |
EP0859040A1 (en) * | 1997-02-17 | 1998-08-19 | Ethyl Petroleum Additives Limited | The use of lubricity additives for reducing foam in fuels |
US20060162238A1 (en) * | 2002-11-04 | 2006-07-27 | Peter Schwab | Improver containing fuel |
-
2012
- 2012-02-28 US US13/407,422 patent/US20120222348A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0681023A1 (en) * | 1994-05-04 | 1995-11-08 | Ethyl Petroleum Additives Limited | Compatible fuel additive concentrates |
EP0859040A1 (en) * | 1997-02-17 | 1998-08-19 | Ethyl Petroleum Additives Limited | The use of lubricity additives for reducing foam in fuels |
US20060162238A1 (en) * | 2002-11-04 | 2006-07-27 | Peter Schwab | Improver containing fuel |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9951285B2 (en) | 2011-06-28 | 2018-04-24 | Basf Se | Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants |
US10119085B2 (en) | 2011-06-28 | 2018-11-06 | Basf Se | Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants |
US10550346B2 (en) | 2011-06-28 | 2020-02-04 | Basf Se | Quaternized nitrogen compounds and use thereof as additives in fuels and lubricants |
US9039791B2 (en) | 2012-05-25 | 2015-05-26 | Basf Se | Use of a reaction product of carboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils |
US10173963B2 (en) | 2012-10-23 | 2019-01-08 | Basf Se | Quaternized ammonium salts of hydrocarbyl epoxides and use thereof as additives in fuels and lubricants |
US10689326B2 (en) | 2012-10-23 | 2020-06-23 | Basf Se | Quaternized ammonium salts of hydrocarbyl epoxides and use thereof as additives in fuels and lubricants |
US11634662B2 (en) | 2017-05-05 | 2023-04-25 | The Procter & Gamble Company | Liquid detergent compositions with improved rheology |
EP3399013A1 (en) | 2017-05-05 | 2018-11-07 | The Procter & Gamble Company | Laundry detergent compositions with improved grease removal |
EP3399012A1 (en) | 2017-05-05 | 2018-11-07 | The Procter & Gamble Company | Liquid detergent compositions with improved rheology |
WO2018204559A1 (en) | 2017-05-05 | 2018-11-08 | The Procter & Gamble Company | Laundry detergent compositions with improved grease removal |
WO2018204560A1 (en) | 2017-05-05 | 2018-11-08 | The Procter & Gamble Company | Liquid detergent compositions with improved rheology |
US11634661B2 (en) | 2017-05-05 | 2023-04-25 | The Procter & Gamble Company | Laundry detergent compositions with improved grease removal |
WO2019094412A1 (en) | 2017-11-10 | 2019-05-16 | Momentive Performance Materials Inc. | Organomodified silicone fuel additive, compositions, and methods of using the same |
US10858605B2 (en) | 2017-11-10 | 2020-12-08 | Momentive Performance Materials Inc. | Organomodified silicone fuel additive, compositions, and methods of using the same |
WO2022087765A1 (en) * | 2020-10-26 | 2022-05-05 | Dow Global Technologies Llc | Industrial and institutional cleaning foam control agent |
EP4232538A4 (en) * | 2020-10-26 | 2024-07-17 | Dow Global Technologies Llc | Industrial and institutional cleaning foam control agent |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9039791B2 (en) | Use of a reaction product of carboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils | |
US10858608B2 (en) | Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils and gasoline fuels | |
US20120222348A1 (en) | Medium-chain alkanols in additive concentrates for improving foam reduction in fuel oils | |
AU2017202811B2 (en) | Use of quaternised alkyl amines as additives in fuels and lubricants | |
US8790426B2 (en) | Quaternized terpolymer | |
ES2579852T3 (en) | Quaternized nitrogen compounds and their use as additives in fuels and lubricants | |
CA2854421A1 (en) | Quaternized polyetheramines and use thereof as additives in fuels and lubricants | |
US20160108331A1 (en) | Betaine compounds as additives for fuels | |
WO2013174631A1 (en) | Use of a reaction product of carboxylic acids with aliphatic polyamines for improving or boosting the separation of water from fuel oils | |
US20120144731A1 (en) | Use of mixtures of monocarboxylic acids and polycyclic hydrocarbon compounds for increasing the cetane number of fuel oils | |
US9587193B2 (en) | Additives for improving the resistance to wear and to lacquering of diesel or biodiesel fuels | |
US20100064576A1 (en) | Oligo- or polyamines as oxidation stabilizers for biofuel oils | |
CN101899330A (en) | Diesel composition and method for improving oxidation stability of biodiesel | |
EP2976411A1 (en) | Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils which comprises detergent additive | |
US20130276362A1 (en) | Use of additives with detergent action for further increasing the cetane number of fuel oils | |
WO2013160294A1 (en) | Use of additives with detergent action for further increasing the cetane number of fuel oils | |
AU2011344323A1 (en) | Use of mixtures of monocarboxylic acids and polycyclic hydrocarbon compounds for increasing the cetane number of fuel oils | |
WO2012117004A2 (en) | Medium chain alkanols in additive concentrates for improving the reduction of foam in fuel oils | |
CN112442398B (en) | Biodiesel antioxidant and preparation method and application thereof | |
US20110035994A1 (en) | Low-Temperature Fluidity Improver for Biodiesel Fuel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF SE, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOEHNKE, HARALD;REEL/FRAME:027777/0648 Effective date: 20120124 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |