[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20120093129A1 - Mechanism for 3rd Generation Partnership Project Multiple Inter-Network Quality of Service Continuity - Google Patents

Mechanism for 3rd Generation Partnership Project Multiple Inter-Network Quality of Service Continuity Download PDF

Info

Publication number
US20120093129A1
US20120093129A1 US13/336,978 US201113336978A US2012093129A1 US 20120093129 A1 US20120093129 A1 US 20120093129A1 US 201113336978 A US201113336978 A US 201113336978A US 2012093129 A1 US2012093129 A1 US 2012093129A1
Authority
US
United States
Prior art keywords
ran
apn
ambr
target
radio access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/336,978
Inventor
Xiaoming Zhao
Wei Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Malikie Innovations Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/336,978 priority Critical patent/US20120093129A1/en
Assigned to RESEARCH IN MOTION LIMITED reassignment RESEARCH IN MOTION LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RESEARCH IN MOTION CORPORATION
Assigned to RESEARCH IN MOTION CORPORATION reassignment RESEARCH IN MOTION CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHAO, XIAOMING, WU, WEI
Publication of US20120093129A1 publication Critical patent/US20120093129A1/en
Assigned to BLACKBERRY LIMITED reassignment BLACKBERRY LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: RESEARCH IN MOTION LIMITED
Assigned to MALIKIE INNOVATIONS LIMITED reassignment MALIKIE INNOVATIONS LIMITED NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: OT PATENT ESCROW, LLC
Assigned to OT PATENT ESCROW, LLC reassignment OT PATENT ESCROW, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLACKBERRY LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • H04W36/144Reselecting a network or an air interface over a different radio air interface technology
    • H04W36/1443Reselecting a network or an air interface over a different radio air interface technology between licensed networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information

Definitions

  • the terms “user agent” and “UA” can refer to mobile devices such as mobile telephones, personal digital assistants, handheld or laptop computers, and similar devices that have telecommunications capabilities. Such a UA might consist of a wireless device and its associated Universal Integrated Circuit Card (UICC) that includes a Subscriber Identity Module (SIM) application, a Universal Subscriber Identity Module (USIM) application, or a Removable User Identity Module (R-UIM) application or might consist of the device itself without such a card.
  • UICC Universal Integrated Circuit Card
  • SIM Subscriber Identity Module
  • USIM Universal Subscriber Identity Module
  • R-UIM Removable User Identity Module
  • the term “UA” may also refer to devices that have similar capabilities but that are not transportable, such as fixed line telephones, desktop computers, set-top boxes, or network nodes and therefore may also be referred to as user equipment “UE”.
  • a UA When a UA is a network node, the network node could act on behalf of another function such as a wireless device or a fixed line device and simulate or emulate the wireless device or fixed line device.
  • a wireless device For example, for some wireless devices, the IP (Internet Protocol) Multimedia Subsystem (IMS) Session Initiation Protocol (SIP) client that would typically reside on the device actually resides in the network and relays SIP message information to the device using optimized protocols.
  • IMS Internet Protocol Multimedia Subsystem
  • SIP Session Initiation Protocol
  • some functions that were traditionally carried out by a wireless device can be distributed in the form of a remote UA, where the remote UA represents the wireless device in the network.
  • the term “UA” can also refer to any hardware or software component that can terminate a SIP session.
  • LTE long-term evolution
  • EPS evolved packet system
  • the term “access device” will refer to any component, such as a traditional base station or an LTE ENB that can provide a UA with access to other components in a telecommunications system.
  • the signal that carries data between a UA and an access device can have a specific set of frequency, time, and coding parameters and other characteristics that might be specified by the access device.
  • a connection between a UA and an access device that has a specific set of such characteristics can be referred to as a resource.
  • An access device typically establishes a different resource for each UA with which it is communicating at any particular time.
  • FIG. 1 is an illustration of a wireless telecommunications system according to an embodiment of the disclosure.
  • FIG. 2 is a flow diagram according to an embodiment of the disclosure.
  • FIG. 3 is a flow diagram according to an embodiment of the disclosure.
  • FIG. 4 is another flow diagram according to an embodiment of the disclosure.
  • FIG. 5 is another flow diagram according to an embodiment of the disclosure.
  • FIG. 6 is a diagram of a wireless communications system including a user agent operable for some of the various embodiments of the disclosure.
  • FIG. 7 is a block diagram of a user agent operable for some of the various embodiments of the disclosure.
  • FIG. 8 is a diagram of a software environment that may be implemented on a user equipment operable for some of the various embodiments of the disclosure.
  • FIG. 9 illustrates an exemplary general-purpose computer system suitable for implementing the several embodiments of the present disclosure.
  • a system to promote connectivity for inter-radio access technology (RAT) handover from a first radio access network (RAN) to a second radio access network (RAN) includes a component configured such that for each access point name (APN), which may be the APN of that packet data network PDN, in communication with the first radio access network (RAN), the maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the second radio access network (RAN) is determined based on each respective access point name's (APN's) used aggregate maximum bit rate (AMBR) and the number of active non-guaranteed bit rate(s) (non-GBRs) for the respective access point name (APN) of the PDN.
  • APN access point name
  • APN access point name
  • ABR aggregate maximum bit rate
  • ABR active non-guaranteed bit rate
  • a method for inter-radio access technology (RAT) connectivity during a handover from a first radio access network (RAN) to a second radio access network (RAN) includes for each access point name (APN)), which may be the APN of that packet data network PDN, in communication with the first radio access network (RAN), determining the maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the second RAN based on each respective access point name's (APN's) used aggregate maximum bit rate (AMBR) and the number of active non-guaranteed bit rate(s) (non-GBR)s for the respective access point name (APN) of the PDN.
  • APN access point name
  • APN active non-guaranteed bit rate
  • a method for inter-radio access technology (RAT) connectivity during a handover from a first radio access network (RAN) to a second radio access network (RAN) includes for each access point name (APN) in communication with the first radio access network (RAN), the access point name (APN) aggregate maximum bit rate (AMBR) of each access point name (APN) in the second radio access network (RAN) is determined based on the sum of each respective access point name's (APN's) maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN).
  • ABR access point name
  • MBR maximum bit rate
  • the method also includes a user agent (UA) aggregated maximum bit rate (AMBR) is determined based on the sum of all the respective access point names' (APNs') maximum bit rates for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN).
  • UA user agent
  • ABR aggregated maximum bit rate
  • a system to promote connectivity for inter-radio access technology (RAT) handovers from a first radio access network (RAN) to a second radio access network (RAN) includes a component configured such that for each access point name (APN) in communication with the first radio access network (RAN), the access point name (APN) aggregate maximum bit rate (AMBR) of each access point name (APN) in the second radio access network (RAN) is determined based on the sum of each respective access point name's (APN's) maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN), and further such that a user agent (UA) aggregated maximum bit rate (AMBR) is determined based on the sum of all the respective access point names' (APNs') maximum bit rates for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN).
  • APN access point name
  • ABR access point name
  • MMR maximum bit rate
  • the wireless domain services for both voice and data have greatly evolved to include broadband, high speed, and multi-media services using different radio access technologies (RATs) such as UMTS, GPRS, Enhanced Data rates for Global Evolution (EDGE), and 3GPP-LTE.
  • RATs radio access technologies
  • UMTS Universal Mobile Telecommunications
  • GPRS Universal Mobile Telecommunications
  • EDGE Enhanced Data rates for Global Evolution
  • 3GPP-LTE 3GPP-LTE
  • an operator may deploy multiple radio access networks in the same geophysical locations, fully or partially overlaid. There may also be cases in which different operators share the same radio access network with the same or different radio frequencies.
  • inter-RAT/inter-network systems operators may wish to support inter-working functionality that allows UAs to camp in or hand over to different RATs according to the service needs of the UAs, radio conditions, and network load balancing considerations.
  • QoS quality of service
  • a required bit rate, a delay, packet dropping probability, and/or bit error rate may be “guaranteed” or agreed upon by provider.
  • QoS commitments may be challenging to meet if, for example the network capacity is insufficient or other network issues exist.
  • An example illustrating one issue related to QoS includes, for example, a user agent on a mobile device operating in a UTRAN/GERAN (Evolved Universal Terrestrial Radio Access Network/global system for mobiles (GSM) enhanced data for GSM evolution (EDGE) radio access network) technology based network.
  • GSM Universal Terrestrial Radio Access Network/global system for mobiles
  • EDGE enhanced data for GSM evolution
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the user of the mobile device may experience a loss in service or a loss of data. This disruption can be caused by of one or more incompatibilities between the networks, such as the manner in which the QoS services are managed and maintained by networks.
  • the disruption may be caused by a mishandling of the bearer traffic, more specifically non-guaranteed bit rates (non-GBRs) bearer traffic and associated quality of service (QoS) parameters which include used aggregated maximum bit rate(s) (AMBR) associated with the user agent (UA).
  • the AMBR associated with the UA-to-access device communication may be also referred to as a UA-AMBR or UE-AMBR, and the AMBR associated with the access point name (APN) communication may be referred to as the APN-AMBR.
  • the APN-AMBR may be described as the maximum allowed bit rate of the all the bearers of the respective APN. Current mechanisms for handling of these non-GBR bearer(s) and QoS parameters during handovers may result in these disruptions.
  • a standardized mechanism to effectively manage the continuity of the quality of services to a user agent (UA) might be of assistance in some instances.
  • the present disclosure contemplates a mechanism that standardizes incompatibilities in the handling of the non-GBR UA-AMBRs and APN-AMBRs during the handover of the UA between differing radio access network (RAN) and other network system technologies.
  • RAN radio access network
  • E-UTRAN has UA-AMBR and APN-AMBR
  • UTRAN/GERAN does not support AMBR for non-GBR bearers.
  • the present disclosure provide for QoS mapping to address these incompatibilities during a handover.
  • FIG. 1 illustrated is an embodiment of two radio access networks (RANs) in which inter-working functionalities are provided.
  • FIG. 1 is exemplary and may have other components or arrangements in other embodiments.
  • a source RAN 104 and a target RAN 106 each using one or more technologies such as GPRS/EDGE, UMTS, 3GPP LTE, WLAN, WiMAX, CDMA 2000, and/or other current or future technologies.
  • Internet protocols (IP) IPV4, IPV6, and/or other current or future protocols may be supported by these technologies.
  • IP Internet protocols
  • the source RAN 104 and the target RAN 106 might be intersected and/or overlaid.
  • the source RAN 104 and the target RAN 106 may be serviced by any or a combination of Internet Protocol-based networks, packet-based networks, public switched telecom networks (PSTN), and/or integrated services digital networks.
  • PSTN public switched telecom networks
  • the source RAN 104 and the target RAN 106 may each include the RANs 104 1 , 104 2 , 106 1 , or 106 2 dependent upon the configuration of the communications technology being described during the handover.
  • the RANs 104 1 and 106 1 may include UTRAN, UTRAN/GERAN, or GERAN based technology
  • the RANs 104 2 and 106 2 may include E-UTRAN based technology. It will be appreciated that both systems, i.e. 104 1 and 104 2 , may not in fact exist within the same network, i.e. the source RAN 104 , simultaneously.
  • the RANs 104 2 and 106 2 each include an access device or ENB 104 b and 106 b and a mobility management entity (MME) 104 a and 106 a in communication with a source gateway 108 and a target gateway 110 each in communication through bearers 112 1-N or signaling connections to packet data network (PDN) gateways 116 1-n .
  • the RANs 104 1 and 106 1 each include a radio network component (RNC) 104 c and 106 c , a serving general packet radio service (GPRS) support node gateway (SGSN GW) 104 d and 106 d , a base station subsystem (BSS) 104 e and 106 e , a base station component or other network components.
  • RNC radio network component
  • GPRS general packet radio service
  • SGSN GW serving general packet radio service
  • BSS base station subsystem
  • the SGSN SW 104 d and 106 d are in communication with the source gateway 108 and the target gateway 110 each in communication through bearers 112 1-N or signaling connections to packet data network (PDN) gateways 116 1-n .
  • the (PDN) gateways 116 1-n are connected to APNs 120 1-n which may include packet based services such as World Wide Web pages, multimedia broadcasting/multicast services, and other data packet-based services.
  • the lines connecting the elements in the drawing can represent bearer connections, signaling connections, or both. Traditionally, a different style of line is used to represent each type of connection. However, for the sake of clarity in the drawing, bearer connections and signaling connections are both represented by solid lines in FIG. 1 .
  • the dashed lines connecting the UA 101 to the source RAN 104 and the target RAN 106 are intended to represent the fact that the UA 101 might be connected to the source RAN 104 at a first time and to the target RAN 106 at a second time via the air interface or other media interface.
  • a home subscriber server (HSS) or an authentication, authorization and accounting (AAA) server 122 stores policy and tracking/location information for subscribers to a wireless telecommunications service.
  • a logical inter-access system (IAS) anchor 124 terminates IP access service and manages inter-system IP service termination, inter-system routing and billing, and IP bearer services. Physically, the IAS anchor 124 could be collocated with a gateway or elsewhere.
  • the source RAN 104 and the target RAN 106 are typically furnished with multiple radio channel resources. Each RAN 104 and 106 measures its radio channel resources and reports the utilization of its radio channel resources to its respective gateway 108 and 110 , which then pass this information on to the IAS anchor 124 via various protocols.
  • HSS/AAA server 122 can connect to the source MME 104 a or the target MME 106 a and can store data related to services available to the UA 101 , quality of service (QoS) policies for the UA 101 , and other similar UA profile data.
  • QoS quality of service
  • PCRF policy control and charging rules function
  • the PCRF 118 and 119 can connect to the source and target gateway(s) 108 and 110 , the PDN gateway 116 1-n , and/or the APNs 120 1-n for an operators IP services, and can store and enforce policies related to the connections between the source and target gateway(s) 108 and 110 and the PDN gateway 116 1-n .
  • source and target gateways 108 and 110 are shown connected to certain of the PDN gateways 116 , it will be appreciate that gateways 108 and 110 may connect, directly or indirectly, to communicate with any of the PDN gateways PDN gateway 116 1 , PDN gateway 116 2 , PDN gateway 116 n .
  • a user agent In communication with the source RAN 104 and/or the target RAN 106 is a user agent (UA) 101 .
  • the source RAN 104 connects to at least one radio access cell by which the source RAN 104 provides services to the UA 101 via an air interface.
  • the UA 101 and/or the RAN 104 and 106 may obtain channel and other measurement information that may include a quality of service (QoS) parameter 103 such as an aggregated maximum bit rate (AMBR) or a maximum bit rate (MBR).
  • QoS quality of service
  • APN 120 1-n may each also include a corresponding QoS parameter 105 .
  • the parameters 103 and 105 may include a total bandwidth available to be shared among all the non-GBR bearers 112 1-N between the UA 101 , the source ENB 104 b , the target ENB 106 b , and the APNs 120 1-n .
  • the QoS parameters 103 and 105 might be located or shared with systems other than only the UA 101 and APNs 105 , respectively, as shown.
  • the UA 101 may connect to a plurality of PDN gateway 116 1-n concurrently via for example the ENB 106 b , the target gateway 110 , and the plurality of bearer 112 1-N .
  • the bearers 112 1-N may conform to a set of quality of service requirements, such as a guaranteed bit rate (GBR), a maximum bit rate (MBR), a packet delay budget (PDB), and other parameters of data transfer quality.
  • GBR guaranteed bit rate
  • MRR maximum bit rate
  • PDB packet delay budget
  • Bearer traffic (represented by the bearers 112 1-N ) can be classified into two categories: Guaranteed Bit Rate (GBR) and non-Guaranteed Bit Rate (non-GBR).
  • GBR Guaranteed Bit Rate
  • non-GBR non-Guaranteed Bit Rate
  • a GBR bearer might be established for services with large bandwidth requirements, such as streaming video. Services such as email that have more flexible bandwidth requirements might use non-GBR bearers, for which a specified bandwidth is not reserved.
  • QoS can be enforced by a QoS Class Indicator (QCI), an Allocation and Retention Priority (ARP), and an Aggregated Maximum Bit Rate (AMBR).
  • QCI QoS Class Indicator
  • ARP Allocation and Retention Priority
  • AMBR Aggregated Maximum Bit Rate
  • the QCI, ARP, and AMBR are typically stored in the UA's QoS profile.
  • the source or target MME 104 a and 106 b can retrieve these parameters from the HSS 122 and send them to the source or target ENB 104 b and 106 b or the UA for downlink/uplink QoS enforcement between the UA and ENB and the PDN gateway(s) 116 1 and 116 , or the PCRF 118 and 119 for downlink/uplink QoS enforcement.
  • the AMBR may be a fixed value that provides a limit to the total bandwidth provided for non-GBR traffic to the ENB 104 b and 106 b or to the APNs 120 1-n .
  • the HSS 122 may store the AMBR of the UA 101 as a subscribed static value.
  • the UA-AMBR assigned to the UA may be referred to as the subscribed UA-AMBR or just UA-AMBR.
  • the APN-AMBR associated with the UA for a subscribed PDN might also be included in the terms subscribed APN-AMBR and APN-AMBR.
  • a UA with multiple PDN subscriptions may be associated with multiple APN-AMBRs, one for each subscribed PDN.
  • a static AMBR may not optimally utilize the real-time bandwidth availability under non-GBR QoS enforcement.
  • the present disclosure relates to issues that may arise in relation to maintaining continuity of the quality of service (QoS) parameter 103 and 105 of the UA 101 and the APN 120 1-n such as a maximum but rate (MBR) or an aggregated maximum bit rate (AMBR) during an inter-RAT/inter-network handover.
  • QoS quality of service
  • the network technology may include E-UTRAN, UTRAN, GERAN, UTRAN/GERAN, and/or other technologies.
  • a UA 101 may switch between networks for various reasons including but not limited to improve coverage, bandwidth availability, load balancing, or other reasons.
  • the source RAN 104 may include a E-UTRAN based network and the target RAN 106 may include a UTRAN/GERAN based network
  • the inter-RAT/inter-network handover preparation of the UA 101 may require additional operations to maintain QoS continuity. For example, to maintain continuity it may be useful to map the AMBR of the APN 120 1-n associated with the source RAN 104 2 into an MBR associated with the target RAN 106 1 .
  • E-UTRAN has UA-AMBR and APN-AMBR, but UTRAN/GERAN does not support AMBR for non-GBR bearers.
  • the present disclosure provides for QoS mapping between components in these networks. This may include, for example, mapping the AMBR of APN 120 1 in the source network to the MBRs of all the active non-GBRs connected to the APN 120 n in the target network.
  • the AMBR for an APN such as APN 120 1
  • the maximum allowable bit rates of the all the relative bearers such as bearers 112 1a and 112 2b .
  • the MBRs are mapped for each active non-GBR bearer, such as bearers 112 Na and 112 Nb , of the target APN, such as APN 120 n .
  • the MBRs of each active non-GBR, bearers 112 Na and 112 Nb , of APN 120 , in the target network 106 will be configured to be the AMBR of the active APN 120 1 in the source network 104 divided by N, where N represents the total sum of active non-GBRs bearers connected to each of the APN 120 n .
  • MBRs may be allocated to the bearer 112 2 of the PDN gateway 116 2 and the APN 2 .
  • Other allocations will readily suggest themselves to one skilled in the art.
  • the above described mappings may be repeated for all active APNs where the source and target RANs 104 , 106 support multiple PDN connectivity.
  • the target RAN 106 does not support more than one of the APNs 120 n , then only the AMBR parameters for the default APN 120 1 (or perhaps another PDN) in the source network 104 may be selected for mapping to the MBRs of the non-GBR bearers in the target network 106 . It may be the case that only the default APN is connected to the target RAN. The AMBRs of other APNs in the source network might then be ignored.
  • the inter-RAT/inter-network handover preparation of the UA 101 may be somewhat different than described above.
  • Maintaining the continuity of the QoS includes mapping the MBRs associated one or more of the APN 120 1 in the source RAN 104 to the AMBR associated with the APN 120 , that are compatible with the target RAN 106 .
  • the MBRs may include one or more active non-GBRs.
  • the AMBR of the APN, such as APN 120 n , of the target RAN 106 is set to the sum of the MBRs of all the active non-GBRs connected to the APN, APN 120 1 , in the source network 104 .
  • the mapping or allocations may not be proportional between the source and target networks 104 and 106 .
  • the sum of the MBRs of all the active non-GBRs connected to the APN in the source network 104 might be greater or less than the AMBR allocated to the APN in the target RAN 106 .
  • the handover may commence by the MME 104 a, or other systems in other embodiments, updating the ENB 106 b and the gateways 108 and 110 or PDN gateways 116 based upon quality of service (QoS) policies for the UA 101 from the HSS/AAA 122 .
  • QoS quality of service
  • FIG. 2 illustrates an example of a EUTRAN to UTRAN handover preparation procedure.
  • uplink and downlink packet data units distribute amongst the UA 101 , the ENB 104 b , the RNC 106 c , the MME 104 a , the SGSN gateway 106 d , the source serving gateway 108 , the target serving gateway 110 , and the PDN gateway 116 1-n . are exchanged.
  • handover preparation commences of the UA 101 from the source RAN 104 to the target RAN 106 .
  • the source ENB 104 b acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined.
  • the source ENB 104 b communicates with the source MME 104 a which also acknowledges the existence and QoS parameter(s) of the UA 101 .
  • the source MME 104 a may map one-to-one the EPS (evolved packet system) bearer(s), such as EUTRAN bearers, to PDP (packet data protocol) context(s), such as UTRAN QoS parameters, and sequentially maps EPS QoS parameters associated with an EPS bearer to QoS parameters of the PDP context(s).
  • the PDP context(s) are then used to determine a prioritization order. Where more than one APN 120 1-n is present in the target RAN 106 (or RAN 106 1 ), QoS mapping is determined for each active non-GBR bearers associated with each of the APN 120 1-n .
  • the MBRs to be employed by the target SGSN gateway 106 d and the target RNC 106 c may be set to be equal to the AMBR of the APN 120 1-n , divided by the number of active non-GBRs.
  • the MBRs may each have unique values such that the sum of the MBRs may be equal to the total number of used APN-AMBR.
  • the target RAN 106 can only support one of the APN 120 1-n , then a specific bearer associated with the APN 120 1-n may be connected to the target RAN 106 .
  • a PDP request and response are exchanged between the target SGSN gateway 106 d and the target serving gateway 110 to communicate the mapping of the MBRs to the AMBRs via IP packet data.
  • a relocation request and response are exchanged between the target RNC 106 c and the SGSN gateway 106 d , and by another PDP request and response exchange between the target SGSN gateway 106 d and the target serving gateway 110 at event 214 a and 214 b.
  • the relocation response associated with the UA 101 is sent from the SGSN gateway 106 d to the source MME 104 a , and a bearer request and response are exchanged between the source MME 104 a and the serving source gateway 108 .
  • FIG. 3 illustrates an example of a UTRAN to E-UTRAN inter-RAT handover preparation.
  • PDUs uplink and downlink packet data units
  • the UA 101 the ENB 106 b , the RNC 104 c , the MME 106 a , the SGSN gateway 104 d , the source serving gateway 108 , the target serving gateway 110 , and the PDN gateway 116 1-n are exchanged.
  • handover preparation commences of the UA 101 from the source RAN 104 (RAN 104 1 ) to the target RAN 106 (RAN 106 2 ).
  • the source RNC 104 c acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined. Once the UA 101 is acknowledged, at event 306 the source RNC 104 c communicates with the source SGSN gateway 104 d that the UA 101 is initiating a handover to map an associated QoS parameter.
  • the source SGSN gateway 104 d sends the relocation request to the target MME 106 a .
  • the target MME 106 a maps the PDP contexts to the EPS bearers and values associated with the QoS parameter to the PDP context to the EPS QoS parameter values of the EPS bearer.
  • the target MME 106 a may terminate certain EPS bearers that may not be able to be established.
  • the target ENB 106 b may require both the AMBR associated with the UA and the APN 120 1-n for enforcing QoS of the UA 101 between the source RAN 104 and the target RAN 106 .
  • the UE-AMBR and the APN-AMBR may be set according to APN-AMBR of each active of the APN 120 1-n equal to the sum of the MBRs of the active non-GBRs, and the UE-AMBR equal to the sum of all MBRs associated with active non-GBRs associated with the source RAN 104 .
  • a bearer request and response are exchanged between the target MME 106 a and the serving target gateway 110 , subsequently followed by a handover request and acknowledgement between the target MME 106 a and the target ENB 106 b at event 312 a and 312 b.
  • the target MME 106 a requests the target ENB 106 b to establish bearers by sending the handover request.
  • the a handover request may include one or more UE identifier(s), Cause, K eNB , an allowed AS Integrity Protection and Ciphering algorithm(s), and/or a KSI and key derivation parameters.
  • the handover may also include the mapped QoS parameters for each of the APN 120 1-n including the used or dynamic UE-AMBRs and the APN-AMBRs from the source RAN 104 to the target RAN 106 .
  • a bearer request and response are established between the serving target gateway 110 and the target MME 106 a, followed by the relocation response being sent to the source SGSN gateway 104 d from the target MME 106 a at event 316 .
  • a bearer request and response are exchanged between the source SGSN gateway 104 d and the serving source gateway 108 at event 318 a and 318 b.
  • FIG. 4 illustrates an example of E-UTRAN to GERAN A/GB mode inter-RAT handover preparation.
  • uplink and downlink packet data units distribute amongst the UA 101 , the ENB 104 b, the BSS 106 e, the MME 104 a, the SGSN gateway 106 d, the source serving gateway 108 , the target serving gateway 110 , and the PDN gateway 116 1-n are exchanged.
  • handover preparation commences of the UA 101 from the source RAN 104 to the target RAN 106 .
  • the source ENB 104 b acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined.
  • the source ENB 104 b communicates with the source MME 104 a that the UA 101 is initiating a handover to map an associated QoS parameter.
  • the source MME 104 a maps the EPS bearers to the PDP contexts and values associated with the EPS QoS parameter of an EPS bearer to pre-determined QoS parameter values of another pre-determined PDP context.
  • the PDP contexts are prioritized in order from highest to lowest importance PDP context(s).
  • the MBRs of an active APN employed in the SGSN target gateway 106 d of the target RAN 106 may be equal to the used APN-AMBRs of that APN divided by N, wherein N includes the number of active non-GBR bearers in that APN 120 1-n .
  • the MBRs of an active APN may include a myriad of values such that the sum of the MBRs may equal to the used APN-AMBR. If multiple APN 120 1-n are not supported by the target RAN 106 , then only the “default” APN 120 1 bearer connections associated with the source RAN 104 may be connected to the target RAN 106 .
  • PDP context requests and responses are exchanged between the target SGSN gateway 106 d and the target serving gateway 110 , followed by a PS handover request and acknowledgement between the target SGSN 106 d and the target BSS 106 e at events 412 a and 412 b.
  • PDP context requests and responses are exchanged at events 414 a and 414 b between the target SGSN gateway 106 d and the target serving gateway 110 , and the relocation is forwarded from the target SGSN gateway 106 d to the source MME 104 a.
  • a relocation request is sent to the source MME 104 a from the target SGSN gateway 106 d at event 416 .
  • Bearer request(s) and response(s) are then exchanged between the source MME 104 a and the serving source gateway 108 at event 418 a and 418 b.
  • FIG. 5 illustrates an example of GERAN A/Gb mode to E-TRAN inter-RAT handover preparation.
  • uplink and downlink packet data units distribute amongst the UA 101 , the ENB 106 b, the BSS 104 e, the MME 106 a, the SGSN gateway 104 d, the source serving gateway 108 , the target serving gateway 110 , and the PDN gateway 116 1-n are exchanged.
  • handover of the UA 101 preparation commences from the source RAN 104 to the target RAN 106 .
  • the source BSS 104 e acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined.
  • the source BSS 104 e communicates with the source SGSN gateway 104 d that the UA 101 is initiating a PS handover to map an associated QoS parameter.
  • the source SGSN gateway 104 d forwards a relocation request to the target MME 106 a.
  • the request includes a ‘Direct Forwarding Flag’ IE that may be set by the source SGSN gateway 104 d, that indicates whether or not Direct Forwarding of data to the target RAN 106 is to be employed for the mapping of QoS parameters, such as the AMBRs associated with the UA 101 and the APN 120 1-n .
  • the target MME 106 a then maps the PDP context to the EPS QoS parameter values associated with an EPS bearer.
  • the target MME 106 a establishes the EPS bearer(s) in a determined prioritize manner. In some embodiments, the target MME 106 a may deactivate the EPS bearers that may not be able to be established in the target RAN 106 .
  • PDP context requests and responses are exchanged between the target MME 106 a and the target serving gateway 110 , followed by a PS handover request and request acknowledgement between the target MME 106 a and the target ENB 106 b at events 512 a and 512 b.
  • the target MME 106 a may request the target ENB 106 b to establish bearer(s) by sending the handover request.
  • the handover request may include a UA Identifier, Cause, Integrity protection information and associated IK or Integrity Protection algorithms, Encryption information such as CK and allowed Ciphering algorithms, EPS Bearers to be setup list, and Source to Target Transparent Container.
  • the target MME 106 a may not request resources for which an activity status indicator within a PDP context indicates no active bearers from the source RAN 104 .
  • the EPS may include information such as ID, bearer parameters, Transport Layer Address, and S1 Transport Association.
  • the transport layer Address may include the source serving gateway 108 address associated with user data of the UA 101 , and the S1 Transport Association may correspond to an uplink Tunnel Endpoint Identifier Data.
  • the ciphering and integrity protection keys may be transparently sent from the target ENB 106 b to the UA 101 using for example, the Target to Source Container, and also in the message PS handover command from the source BSS 104 e to the UA 101 to allow data transfer in the source RAN 106 without requiring additional authentication and key agreement procedures.
  • the handover message may also include the mapped QoS parameters from both the source RAN 104 and the target RAN 106 , which includes the used or dynamic UE-AMBRs and the APN-AMBR.
  • PDP context requests and responses are exchanged between the target MME 106 a and the target serving gateway 110 , and the relocation is forwarded from the target MME 106 a to the source SGSN gateway 104 d at event 516 .
  • Bearer request(s) and response(s) are then exchanged between the source SGSN gateway 104 d and the serving source gateway 108 at event 518 a and 518 b.
  • FIG. 6 illustrates a wireless communications system including an embodiment of the UA 101 .
  • the UA 101 is operable for implementing aspects of the disclosure, but the disclosure should not be limited to these implementations.
  • the UA 101 may take various forms including a wireless handset, a pager, a personal digital assistant (PDA), a portable computer, a tablet computer, or a laptop computer. Many suitable devices combine some or all of these functions.
  • the UA 101 is not a general purpose computing device like a portable, laptop or tablet computer, but rather is a special-purpose communications device such as a mobile phone, a wireless handset, a pager, a PDA, or a telecommunications device installed in a vehicle.
  • the UA 101 may be a portable, laptop or other computing device.
  • the UA 101 may support specialized activities such as gaming, inventory control, job control, and/or task management functions, and so on.
  • the UA 101 includes a display 602 .
  • the UA 101 also includes a touch-sensitive surface, a keyboard or other input keys generally referred as 604 for input by a user.
  • the keyboard may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY, and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad.
  • the input keys may include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function.
  • the UA 101 may present options for the user to select, controls for the user to actuate, and/or cursors or other indicators for the user to direct.
  • the UA 101 may further accept data entry from the user, including numbers to dial or various parameter values for configuring the operation of the UA 101 .
  • the UA 101 may further execute one or more software or firmware applications in response to user commands. These applications may configure the UA 101 to perform various customized functions in response to user interaction. Additionally, the UA 101 may be programmed and/or configured over-the-air, for example from a wireless base station, a wireless access point, or a peer UA 101 .
  • the various applications executable by the UA 101 are a web browser, which enables the display 602 to show a web page.
  • the web page may be obtained via wireless communications with a wireless network access node, a cell tower, a peer UA 101 , or any other wireless communication network or system 600 .
  • the network 600 is coupled to a wired network 608 , such as the Internet.
  • the UA 101 has access to information on various servers, such as a server 610 .
  • the server 610 may provide content that may be shown on the display 602 .
  • the UA 101 may access the network 600 through a peer UA 101 acting as an intermediary, in a relay type or hop type of connection.
  • FIG. 7 shows a block diagram of the UA 101 . While a variety of known components of UAs 101 are depicted, in an embodiment a subset of the listed components and/or additional components not listed may be included in the UA 101 .
  • the UA 101 includes a digital signal processor (DSP) 702 and a memory 704 .
  • DSP digital signal processor
  • the UA 101 may further include an antenna and front end unit 706 , a radio frequency (RF) transceiver 708 , an analog baseband processing unit 710 , a microphone 712 , an earpiece speaker 714 , a headset port 716 , an input/output interface 718 , a removable memory card 720 , a universal serial bus (USB) port 722 , a short range wireless communication sub-system 724 , an alert 726 , a keypad 728 , a liquid crystal display (LCD), which may include a touch sensitive surface 730 , an LCD controller 732 , a charge-coupled device (CCD) camera 734 , a camera controller 736 , and a global positioning system (GPS) sensor 738 .
  • the UA 101 may include another kind of display that does not provide a touch sensitive screen.
  • the DSP 702 may communicate directly with the memory 704 without passing through the input/output interface 718 .
  • the DSP 702 or some other form of controller or central processing unit operates to control the various components of the UA 101 in accordance with embedded software or firmware stored in memory 704 or stored in memory contained within the DSP 702 itself.
  • the DSP 702 may execute other applications stored in the memory 704 or made available via information carrier media such as portable data storage media like the removable memory card 720 or via wired or wireless network communications.
  • the application software may comprise a compiled set of machine-readable instructions that configure the DSP 702 to provide the desired functionality, or the application software may be high-level software instructions to be processed by an interpreter or compiler to indirectly configure the DSP 702 .
  • the antenna and front end unit 706 may be provided to convert between wireless signals and electrical signals, enabling the UA 101 to send and receive information from a cellular network or some other available wireless communications network or from a peer UA 101 .
  • the antenna and front end unit 706 may include multiple antennas to support beam forming and/or multiple input multiple output (MIMO) operations.
  • MIMO operations may provide spatial diversity which can be used to overcome difficult channel conditions and/or increase channel throughput.
  • the antenna and front end unit 706 may include antenna tuning and/or impedance matching components, RF power amplifiers, and/or low noise amplifiers.
  • the RF transceiver 708 provides frequency shifting, converting received RF signals to baseband and converting baseband transmit signals to RF.
  • a radio transceiver or RF transceiver may be understood to include other signal processing functionality such as modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions.
  • IFFT inverse fast Fourier transforming
  • FFT fast Fourier transforming
  • cyclic prefix appending/removal and other signal processing functions.
  • the description here separates the description of this signal processing from the RF and/or radio stage and conceptually allocates that signal processing to the analog baseband processing unit 710 and/or the DSP 702 or other central processing unit.
  • the analog baseband processing unit 710 may provide various analog processing of inputs and outputs, for example analog processing of inputs from the microphone 712 and the headset 716 and outputs to the earpiece 714 and the headset 716 .
  • the analog baseband processing unit 710 may have ports for connecting to the built-in microphone 712 and the earpiece speaker 714 that enable the UA 101 to be used as a cell phone.
  • the analog baseband processing unit 710 may further include a port for connecting to a headset or other hands-free microphone and speaker configuration.
  • the analog baseband processing unit 710 may provide digital-to-analog conversion in one signal direction and analog-to-digital conversion in the opposing signal direction.
  • at least some of the functionality of the analog baseband processing unit 710 may be provided by digital processing components, for example by the DSP 702 or by other central processing units.
  • the DSP 702 may perform modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions associated with wireless communications.
  • IFFT inverse fast Fourier transforming
  • FFT fast Fourier transforming
  • cyclic prefix appending/removal and other signal processing functions associated with wireless communications.
  • CDMA code division multiple access
  • the DSP 702 may perform modulation, coding, interleaving, inverse fast Fourier transforming, and cyclic prefix appending, and for a receiver function the DSP 702 may perform cyclic prefix removal, fast Fourier transforming, deinterleaving, decoding, and demodulation.
  • OFDMA orthogonal frequency division multiplex access
  • the DSP 702 may communicate with a wireless network via the analog baseband processing unit 710 .
  • the communication may provide Internet connectivity, enabling a user to gain access to content on the Internet and to send and receive e-mail or text messages.
  • the input/output interface 718 interconnects the DSP 702 and various memories and interfaces.
  • the memory 704 and the removable memory card 720 may provide software and data to configure the operation of the DSP 702 .
  • the interfaces may be the USB interface 722 and the short range wireless communication sub-system 724 .
  • the USB interface 522 may be used to charge the UA 101 and may also enable the UA 101 to function as a peripheral device to exchange information with a personal computer or other computer system.
  • the short range wireless communication sub-system 724 may include an infrared port, a Bluetooth interface, an IEEE 802.11 compliant wireless interface, or any other short range wireless communication sub-system, which may enable the UA 101 to communicate wirelessly with other nearby mobile devices and/or wireless base stations.
  • the input/output interface 718 may further connect the DSP 702 to the alert 726 that, when triggered, causes the UA 101 to provide a notice to the user, for example, by ringing, playing a melody, or vibrating.
  • the alert 726 may serve as a mechanism for alerting the user to any of various events such as an incoming call, a new text message, and an appointment reminder by silently vibrating, or by playing a specific pre-assigned melody for a particular caller.
  • the keypad 728 couples to the DSP 702 via the interface 718 to provide one mechanism for the user to make selections, enter information, and otherwise provide input to the UA 101 .
  • the keyboard 728 may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad.
  • the input keys may include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function.
  • Another input mechanism may be the LCD 730 , which may include touch screen capability and also display text and/or graphics to the user.
  • the LCD controller 732 couples the DSP 702 to the LCD 730 .
  • the CCD camera 734 if equipped, enables the UA 101 to take digital pictures.
  • the DSP 702 communicates with the CCD camera 734 via the camera controller 736 .
  • a camera operating according to a technology other than Charge Coupled Device cameras may be employed.
  • the GPS sensor 738 is coupled to the DSP 702 to decode global positioning system signals, thereby enabling the UA 101 to determine its position.
  • Various other peripherals may also be included to provide additional functions, e.g., radio and television reception.
  • FIG. 8 illustrates a software environment 802 that may be implemented by the DSP 702 .
  • the DSP 702 executes operating system drivers 804 that provide a platform from which the rest of the software operates.
  • the operating system drivers 804 provide drivers for the UA hardware with standardized interfaces that are accessible to application software.
  • the operating system drivers 804 include application management services (“AMS”) 806 that transfer control between applications running on the UA 101 .
  • AMS application management services
  • FIG. 8 also shown in FIG. 8 are a web browser application 808 , a media player application 810 , and Java applets 812 .
  • the web browser application 808 configures the UA 101 to operate as a web browser, allowing a user to enter information into forms and select links to retrieve and view web pages.
  • the media player application 810 configures the UA 101 to retrieve and play audio or audiovisual media.
  • the Java applets 812 configure the UA 101 to provide games, utilities, and other functionality.
  • a component 814 might provide functionality described herein. Although shown at an application layer, the component 814 might be provided at various layers within the environment 802 or elsewhere on the UA 101 .
  • FIG. 9 illustrates an example of a system 1300 that includes a processing component 1310 suitable for implementing one or more embodiments disclosed herein.
  • the system 1300 might include network connectivity devices 1320 , random access memory (RAM) 1330 , read only memory (ROM) 1340 , secondary storage 1350 , and input/output (I/O) devices 1360 .
  • RAM random access memory
  • ROM read only memory
  • secondary storage 1350 secondary storage
  • I/O input/output
  • some of these components may not be present or may be combined in various combinations with one another or with other components not shown.
  • These components might be located in a single physical entity or in more than one physical entity. Any actions described herein as being taken by the processor 1310 might be taken by the processor 1310 alone or by the processor 1310 in conjunction with one or more components shown or not shown in the drawing.
  • the processor 1310 executes instructions, codes, computer programs, or scripts that it might access from the network connectivity devices 1320 , RAM 1330 , ROM 1340 , or secondary storage 1350 (which might include various disk-based systems such as hard disk, floppy disk, or optical disk). While only one processor 1310 is shown, multiple processors may be present. Thus, while instructions may be discussed as being executed by a processor, the instructions may be executed simultaneously, serially, or otherwise by one or multiple processors.
  • the processor 1310 may be implemented as one or more CPU chips.
  • the network connectivity devices 1320 may take the form of modems, modem banks, Ethernet devices, universal serial bus (USB) interface devices, serial interfaces, token ring devices, fiber distributed data interface (FDDI) devices, wireless local area network (WLAN) devices, radio transceiver devices such as code division multiple access (CDMA) devices, global system for mobile communications (GSM) radio transceiver devices, worldwide interoperability for microwave access (WiMAX) devices, and/or other well-known devices for connecting to networks.
  • FDDI fiber distributed data interface
  • WLAN wireless local area network
  • radio transceiver devices such as code division multiple access (CDMA) devices, global system for mobile communications (GSM) radio transceiver devices, worldwide interoperability for microwave access (WiMAX) devices, and/or other well-known devices for connecting to networks.
  • CDMA code division multiple access
  • GSM global system for mobile communications
  • WiMAX worldwide interoperability for microwave access
  • the network connectivity devices 1320 might also include one or more transceiver components 1325 capable of transmitting and/or receiving data wirelessly in the form of electromagnetic waves, such as radio frequency signals or microwave frequency signals. Alternatively, the data may propagate in or on the surface of electrical conductors, in coaxial cables, in waveguides, in optical media such as optical fiber, or in other media.
  • the transceiver component 1325 might include separate receiving and transmitting units or a single transceiver.
  • Information transmitted or received by the transceiver 1325 may include data that has been processed by the processor 1310 or instructions that are to be executed by processor 1310 . Such information may be received from and outputted to a network in the form, for example, of a computer data baseband signal or signal embodied in a carrier wave.
  • the data may be ordered according to different sequences as may be desirable for either processing or generating the data or transmitting or receiving the data.
  • the baseband signal, the signal embedded in the carrier wave, or other types of signals currently used or hereafter developed may be referred to as the transmission medium and may be generated according to several methods well known to one skilled in the art.
  • the RAM 1330 might be used to store volatile data and perhaps to store instructions that are executed by the processor 1310 .
  • the ROM 1340 is a non-volatile memory device that typically has a smaller memory capacity than the memory capacity of the secondary storage 1350 .
  • ROM 1340 might be used to store instructions and perhaps data that are read during execution of the instructions. Access to both RAM 1330 and ROM 1340 is typically faster than to secondary storage 1350 .
  • the secondary storage 1350 is typically comprised of one or more disk drives or tape drives and might be used for non-volatile storage of data or as an over-flow data storage device if RAM 1330 is not large enough to hold all working data. Secondary storage 1350 may be used to store programs that are loaded into RAM 1330 when such programs are selected for execution.
  • the I/O devices 1360 may include liquid crystal displays (LCDs), touch screen displays, keyboards, keypads, switches, dials, mice, track balls, voice recognizers, card readers, paper tape readers, printers, video monitors, or other well-known input devices.
  • the transceiver 1325 might be considered to be a component of the I/O devices 1360 instead of or in addition to being a component of the network connectivity devices 1320 .
  • Some or all of the I/O devices 1360 may be substantially similar to various components depicted in the previously described drawing of the UA 101 , such as the display 602 and the input 604 .
  • the dynamic (or the used) per UE-AMBR has been agreed for per UE UL and DL non-GBR enforcement at the eNodeB.
  • the used UE-AMBR takes the sum of the APN-AMBRs of the active APNs and it shall be updated by the MME (it could be updated by the eNodeB too).
  • the changes to several of the impacted procedures have been also proposed and agreed for the used UE-AMBR handling together with non-GBR QoS enforcement using both the per UE-AMBR and the per APN AMBR[1].
  • the eUTRAN handover cases w.r.t. (with respect to) the AMBR updates for 3GPP accesses have not been specified.
  • the source eNodeB can send the UE's QoS information to the target eNodeB via the X-2 interface. Whether the UE is handed over to a new MME or staying in the same MME, the MME shall have the UE's profile with the AMBR subscriptions and the active APN information for the used (or dynamic) AMBR updates.
  • the UE shall be handed over from an eNodeB to a RNC or BSC and from a MME to a SGSN.
  • AMBR advanced basic service broker
  • the source eUTRAN may have connected to multiple-PDNs before the handover.
  • For the target UTRAN/GERAN only support the multiple-PDN connectivity [3], only the connections to the default APN shall be connected to UTRAN/GERAN during handover.
  • Propose 1 AMBR Mapping for eUTRAN to UTRAN/GERAN Inter-RAT Handover.
  • Propose 2 IF the target UTRAN/GERAN does not support multiple PDN connectivity, in the eURAN to UTRAN/GERAN Inter-RAT handover preparation, only the QoS mapping for the default APN shall be implemented and only the connections to the default APN shall be connected to the target UTRAN/GERAN.
  • Case 3 UTRAN/GERAN to eUTRAN Inter-RAT handover: For the case of UTRAN/GERAN to eUTRAN handover, the UE shall be handed over from RNC or BSC and from a SGSN to an eNodeB. Note that for each active APN connected the eUTRAN requires both the UE AMBR and the associated APN-AMBRs in order for non-GBR QoS enforcement.
  • the UE-AMBR and APN-AMBR shall be updated from accessing the HSS (via location/tracking area updates).
  • Propose 3 AMBR Mapping for UTRAN/GERAN to eUTRAN inter-RAT handover.
  • the UE-AMBR and APN-AMBRs used by the eNodeB, the PDN GWs shall be updated by the MME (or the eNodeB or some other NE) based on the subscribed UE-AMBR and APN-AMBRs from accessing the HSS in the handover execution phase.
  • 3GPP Access I-RAT Handover Procedure Enhancement for AMBR Handling Propose 4: 3GPP Access Inter-RAT handover procedure enhancements for non-GBR AMBR handling. To support the proposals 1-3, the procedures for 3GPP Access eUTRAN I-RAT handover shall be enhanced.
  • the source MME maps the EPS bearers to PDP contexts 1-to-1 and maps the EPS QoS parameter values of an EPS bearer to the pre-Rel-8 QoS parameter values of a PDP context as defined in Annex E.
  • the PDP Contexts shall be sent in a prioritized order, i.e. the most important PDP Context first.
  • the prioritization method is implementation dependent, but should be based on the current activity. If multiple PDN connectivity is supported in the target UTRAN, for each active APN, all the bearer connections shall be connected to the target UTRAN.
  • the target MME maps the PDP contexts to the EPS bearers 1-to-1 and maps the pre-Rel-8 QoS parameter values of a PDP context to the EPS QoS parameter values of an EPS bearer as defined in Annex E.
  • the MME establishes the EPS bearer(s) in the indicated order.
  • the MME deactivates the EPS bearers which cannot be established.
  • the target MME requests the target eNodeB to establish the bearer(s) by sending the message Handover Request (UE Identifier, Cause, KeNB, allowed AS Integrity Protection and Ciphering algorithm(s), NAS Integrity Protection and Ciphering algorithm(s), EPS Bearers to be setup list, Source to Target Transparent Container).
  • NAS Integrity Protection and Ciphering algorithm(s), KSI and key derivation parameters are targeted for the UE.
  • the message shall also include the mapped QoS parameters from UTRAN to eUTRAN including the used UE-AMBR and the APN-AMBRs.
  • the source MME maps the EPS bearers to PDP contexts 1-to-1 and maps the EPS QoS parameter values of an EPS bearer to the pre-Rel-8 QoS parameter values of a PDP context as defined in Annex E.
  • the PDP Contexts shall be sent in a prioritized order, i.e. the most important PDP Context first.
  • the prioritization method is implementation dependent, but should be based on the current activity.
  • the ‘Direct Forwarding Flag’ IE indicates if Direct Forwarding of data to Target side shall be used or not. This flag is set by the source SGSN.
  • the target MME maps the PDP contexts to the EPS bearers 1-to-1 and maps the pre-Rel-8 QoS parameter values of a PDP context to the EPS QoS parameter values of an EPS bearer as defined in Annex E.
  • the MME establishes the EPS bearer(s) in the indicated order.
  • the MME deactivates the EPS bearers which cannot be established.
  • the Target MME will request the Target eNodeB to establish the Bearer(s) by sending the message Handover Request (UE Identifier, Cause, Integrity protection information (i.e. IK and allowed Integrity Protection algorithms), Encryption information (i.e. CK and allowed Ciphering algorithms), EPS Bearers to be setup list, Source to Target Transparent Container).
  • the Target MME shall not request resources for which the Activity Status Indicator within a PDP Context indicates that no active bearer exists on the source side for that PDP Context.
  • ‘EPS Bearers To Be Setup’ IE shall contain information such as ID, bearer parameters, Transport Layer Address, and S1 Transport Association.
  • the Transport Layer Address is the Serving GW Address for user data, and the S1 Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.
  • the ciphering and integrity protection keys will be sent transparently from the target eNodeB to the UE in the Target to Source Transparent Container, and in the message PS Handover Command from source BSS to the UE. This will then allow data transfer to continue in the new RAT/mode target cell without requiring a new AKA (Authentication and Key Agreement) procedure.
  • the message shall also include the mapped QoS parameters from GERAN to eUTRAN including the used UE-AMBR and the APN-AMBRs.
  • Annex E Mapping Between EPS and pre-Rel-8 QoS Parameters
  • This annex specifies how the QoS parameter values of an EPS bearer (E-UTRAN access to the EPS) should be mapped to/from the pre-Rel-8 QoS parameter values of a PDP context (UTRAN/GERAN access to the EPS) before a procedure is triggered that executes a handover between E-UTRAN and UTRAN/GERAN.
  • the EPS bearer parameters ARP is mapped one-to-one to/from the pre-Rel-8 bearer parameter ARP.
  • the EPS bearer parameters GBR and MBR of a GBR EPS bearer are mapped one-to-one to/from the pre-Rel-8 bearer parameters GBR and MBR of a PDP context associated with Traffic class ‘conversational’ or ‘streaming’.
  • the pre-Rel-8 bearer parameter MBR of PDP contexts associated with Traffic Class ‘interactive’ or ‘background’ is set based on MME operator policy.
  • one such policy may be to set the sum of those MBRs to not exceed the value of the EPS bearer parameter used APN-AMBR.
  • the handover involves M-PDN connections and the target UTRAN/GERAN does not support M-PDN connectivity, only the connections to the default APN shall be connected to the target UTRAN/GERAN and only the used APN_AMBR of the default APN need to be converted to MBRs.
  • one such policy may be to have an MME store at handover from UTRAN/GERAN to E-UTRAN the pre-Rel-8 bearer parameter MBR of PDP contexts associated with Traffic Class ‘interactive’ or ‘background’.
  • the AMBRs from the EPS subscribed QoS profile for the corresponding APN shall take precedence.
  • the MME provides a local UE-AMBR and local APN-AMBR (APN-AMBRs if it is a M-PDN connection handover) to the eNodeB, the local APN-AMBRs to the Serving GW and the PDNGWs until the MME gets the EPS subscribed AMBRs.
  • APN-AMBRs if it is a M-PDN connection handover
  • This the local UE-AMBR may be for example based on the summing up of pre-Rel-8 bearer parameter MBR of all the interactive/background PDP contexts of all the active APNs or on internal configuration.
  • Each local APN-AMBR may be for example based on the summing up of pre-Rel-8 bearer parameter MBR of all the interactive/background PDP contexts of that active APN or on internal configuration.
  • the MME initiates HSS Initiated Subscribed QoS Modification procedure to notify the used UE-AMBR and the APN-AMBRs (or used APN-AMBRs) to the eNodeB, notify the subscribed APN-AMBRs (or used APN-AMBRs) to the Serving GW and PDNGWs.
  • the setting of the values of all other pre-Rel-8 QoS is based on operator policy pre-configured in the MME.
  • the mapping of QCI 4 is FFS.
  • Propose 2 IF the target UTRAN/GERAN does not support multiple PDN connectivity, in the eURAN to UTRAN/GERAN Inter-RAT handover preparation.
  • Propose 3 AMBR Mapping for UTRAN/GERAN to eUTRAN inter-RAT handover.
  • the UE-AMBR and APN-AMBRs used by the eNodeB, the PDN GWs shall be updated by the MME (or the eNodeB or some other NE) based on the subscribed UE-AMBR and APN-AMBRs from accessing the HSS in the handover execution phase.
  • Propose 4 3GPP Access Inter-RAT handover procedure enhancements for non-GBR AMBR handling.
  • TS 3rd Generation Partnership Project
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specifications
  • 3GPP S2-084350 per UE AMBR, 2008-5; 3GPP TS23.401 v8.1.0, 2008-3; 3GPP TS23.236
  • 3GPP S2-084350 per UE AMBR, 2008-5; 3GPP TS23.401 v8.1.0, 2008-3; 3GPP TS23.236

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

A system to promote connectivity for inter-radio access technology (RAT) handover from a first radio access network (RAN) to a second radio access network (RAN) is provided. The system comprises a component configured such that for each access point name (APN) in communication with the first radio access network (RAN), the maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the second radio access network (RAN) is determined based on each respective access point name's (APN's) used aggregate maximum bit rate (AMBR) and the number of active non-guaranteed bit rate(s) (non-GBR) bearers for the respective access point name (APN).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority to U.S. provisional patent application No. 61/073,742, filed Jun. 18, 2008, by Xiaoming Zhao, et al, entitled “Mechanism for 3GPP Multiple Inter-Network Quality of Service Continuity” (33865-US-PRV—4214-09500), which is incorporated by reference herein as if reproduced in its entirety.
  • BACKGROUND
  • As used herein, the terms “user agent” and “UA” can refer to mobile devices such as mobile telephones, personal digital assistants, handheld or laptop computers, and similar devices that have telecommunications capabilities. Such a UA might consist of a wireless device and its associated Universal Integrated Circuit Card (UICC) that includes a Subscriber Identity Module (SIM) application, a Universal Subscriber Identity Module (USIM) application, or a Removable User Identity Module (R-UIM) application or might consist of the device itself without such a card. The term “UA” may also refer to devices that have similar capabilities but that are not transportable, such as fixed line telephones, desktop computers, set-top boxes, or network nodes and therefore may also be referred to as user equipment “UE”. When a UA is a network node, the network node could act on behalf of another function such as a wireless device or a fixed line device and simulate or emulate the wireless device or fixed line device. For example, for some wireless devices, the IP (Internet Protocol) Multimedia Subsystem (IMS) Session Initiation Protocol (SIP) client that would typically reside on the device actually resides in the network and relays SIP message information to the device using optimized protocols. In other words, some functions that were traditionally carried out by a wireless device can be distributed in the form of a remote UA, where the remote UA represents the wireless device in the network. The term “UA” can also refer to any hardware or software component that can terminate a SIP session.
  • In traditional wireless telecommunications systems, transmission equipment in a base station transmits signals throughout a geographical region known as a cell. As technology has evolved, more advanced equipment has been introduced that can provide services that were not possible previously. This advanced equipment might include, for example, an enhanced node B (ENB) rather than a base station or other systems and devices that are more highly evolved than the equivalent equipment in a traditional wireless telecommunications system. Such advanced or next generation equipment may be referred to herein as long-term evolution (LTE) equipment, and a packet-based network that uses such equipment can be referred to as an evolved packet system (EPS). As used herein, the term “access device” will refer to any component, such as a traditional base station or an LTE ENB that can provide a UA with access to other components in a telecommunications system.
  • For a wireless Voice over Internet Protocol (VoIP) call, the signal that carries data between a UA and an access device can have a specific set of frequency, time, and coding parameters and other characteristics that might be specified by the access device. A connection between a UA and an access device that has a specific set of such characteristics can be referred to as a resource. An access device typically establishes a different resource for each UA with which it is communicating at any particular time.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of this disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
  • FIG. 1 is an illustration of a wireless telecommunications system according to an embodiment of the disclosure.
  • FIG. 2 is a flow diagram according to an embodiment of the disclosure.
  • FIG. 3 is a flow diagram according to an embodiment of the disclosure.
  • FIG. 4 is another flow diagram according to an embodiment of the disclosure.
  • FIG. 5 is another flow diagram according to an embodiment of the disclosure.
  • FIG. 6 is a diagram of a wireless communications system including a user agent operable for some of the various embodiments of the disclosure.
  • FIG. 7 is a block diagram of a user agent operable for some of the various embodiments of the disclosure.
  • FIG. 8 is a diagram of a software environment that may be implemented on a user equipment operable for some of the various embodiments of the disclosure.
  • FIG. 9 illustrates an exemplary general-purpose computer system suitable for implementing the several embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • It should be understood at the outset that although illustrative implementations of one or more embodiments of the present disclosure are provided below, the disclosed systems and/or methods may be implemented using any number of techniques, whether currently known or in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, including the exemplary designs and implementations illustrated and described herein, but may be modified within the scope of the appended claims along with their full scope of equivalents.
  • In an embodiment, a system to promote connectivity for inter-radio access technology (RAT) handover from a first radio access network (RAN) to a second radio access network (RAN) is provided. The system includes a component configured such that for each access point name (APN), which may be the APN of that packet data network PDN, in communication with the first radio access network (RAN), the maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the second radio access network (RAN) is determined based on each respective access point name's (APN's) used aggregate maximum bit rate (AMBR) and the number of active non-guaranteed bit rate(s) (non-GBRs) for the respective access point name (APN) of the PDN.
  • In an alternative embodiment, a method for inter-radio access technology (RAT) connectivity during a handover from a first radio access network (RAN) to a second radio access network (RAN) is provided. The method includes for each access point name (APN)), which may be the APN of that packet data network PDN, in communication with the first radio access network (RAN), determining the maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the second RAN based on each respective access point name's (APN's) used aggregate maximum bit rate (AMBR) and the number of active non-guaranteed bit rate(s) (non-GBR)s for the respective access point name (APN) of the PDN.
  • In an alternative embodiment, a method for inter-radio access technology (RAT) connectivity during a handover from a first radio access network (RAN) to a second radio access network (RAN) is provided. The method includes for each access point name (APN) in communication with the first radio access network (RAN), the access point name (APN) aggregate maximum bit rate (AMBR) of each access point name (APN) in the second radio access network (RAN) is determined based on the sum of each respective access point name's (APN's) maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN). The method also includes a user agent (UA) aggregated maximum bit rate (AMBR) is determined based on the sum of all the respective access point names' (APNs') maximum bit rates for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN).
  • In an alternative embodiment, a system to promote connectivity for inter-radio access technology (RAT) handovers from a first radio access network (RAN) to a second radio access network (RAN) is provided. The system includes a component configured such that for each access point name (APN) in communication with the first radio access network (RAN), the access point name (APN) aggregate maximum bit rate (AMBR) of each access point name (APN) in the second radio access network (RAN) is determined based on the sum of each respective access point name's (APN's) maximum bit rate (MBR) for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN), and further such that a user agent (UA) aggregated maximum bit rate (AMBR) is determined based on the sum of all the respective access point names' (APNs') maximum bit rates for each active non-guaranteed bit rate (non-GBR) bearer in the first radio access network (RAN).
  • The wireless domain services for both voice and data have greatly evolved to include broadband, high speed, and multi-media services using different radio access technologies (RATs) such as UMTS, GPRS, Enhanced Data rates for Global Evolution (EDGE), and 3GPP-LTE. To satisfy end user service demands with the technologies that have historically evolved, an operator may deploy multiple radio access networks in the same geophysical locations, fully or partially overlaid. There may also be cases in which different operators share the same radio access network with the same or different radio frequencies. For inter-RAT/inter-network systems, operators may wish to support inter-working functionality that allows UAs to camp in or hand over to different RATs according to the service needs of the UAs, radio conditions, and network load balancing considerations.
  • Within any of these RATs and RANs, the ability to support scheduling and prioritization of calls, data packets, data streams, bearer traffic, and other network events are useful. These events and their management may be referred to as quality of service (QoS), which promotes differing priorities to various applications, user agents, data flows, data packets, or to guarantee a selectable level of performance to a flow of data. For example, a required bit rate, a delay, packet dropping probability, and/or bit error rate may be “guaranteed” or agreed upon by provider. QoS commitments may be challenging to meet if, for example the network capacity is insufficient or other network issues exist.
  • An example illustrating one issue related to QoS includes, for example, a user agent on a mobile device operating in a UTRAN/GERAN (Evolved Universal Terrestrial Radio Access Network/global system for mobiles (GSM) enhanced data for GSM evolution (EDGE) radio access network) technology based network. In a data transaction the user agent operating on the mobile phone may be handed off to a “new” more advanced technological radio network such as the Evolved Universal Terrestrial Radio Access Network (E-UTRAN). During the handoff, the user of the mobile device may experience a loss in service or a loss of data. This disruption can be caused by of one or more incompatibilities between the networks, such as the manner in which the QoS services are managed and maintained by networks. The disruption may be caused by a mishandling of the bearer traffic, more specifically non-guaranteed bit rates (non-GBRs) bearer traffic and associated quality of service (QoS) parameters which include used aggregated maximum bit rate(s) (AMBR) associated with the user agent (UA). The AMBR associated with the UA-to-access device communication may be also referred to as a UA-AMBR or UE-AMBR, and the AMBR associated with the access point name (APN) communication may be referred to as the APN-AMBR. The APN-AMBR may be described as the maximum allowed bit rate of the all the bearers of the respective APN. Current mechanisms for handling of these non-GBR bearer(s) and QoS parameters during handovers may result in these disruptions.
  • A standardized mechanism to effectively manage the continuity of the quality of services to a user agent (UA) might be of assistance in some instances. The present disclosure contemplates a mechanism that standardizes incompatibilities in the handling of the non-GBR UA-AMBRs and APN-AMBRs during the handover of the UA between differing radio access network (RAN) and other network system technologies. Specifically, E-UTRAN has UA-AMBR and APN-AMBR, while UTRAN/GERAN does not support AMBR for non-GBR bearers. The present disclosure provide for QoS mapping to address these incompatibilities during a handover.
  • Turning now to FIG. 1, illustrated is an embodiment of two radio access networks (RANs) in which inter-working functionalities are provided. FIG. 1 is exemplary and may have other components or arrangements in other embodiments. A source RAN 104 and a target RAN 106 each using one or more technologies such as GPRS/EDGE, UMTS, 3GPP LTE, WLAN, WiMAX, CDMA 2000, and/or other current or future technologies. Internet protocols (IP) IPV4, IPV6, and/or other current or future protocols may be supported by these technologies. Geographically, the source RAN 104 and the target RAN 106 might be intersected and/or overlaid. In addition, the source RAN 104 and the target RAN 106 may be serviced by any or a combination of Internet Protocol-based networks, packet-based networks, public switched telecom networks (PSTN), and/or integrated services digital networks.
  • The source RAN 104 and the target RAN 106 may each include the RANs 104 1, 104 2, 106 1, or 106 2 dependent upon the configuration of the communications technology being described during the handover. For example, the RANs 104 1 and 106 1 may include UTRAN, UTRAN/GERAN, or GERAN based technology, and the RANs 104 2 and 106 2 may include E-UTRAN based technology. It will be appreciated that both systems, i.e. 104 1 and 104 2, may not in fact exist within the same network, i.e. the source RAN 104, simultaneously. The RANs 104 2 and 106 2 each include an access device or ENB 104 b and 106 b and a mobility management entity (MME) 104 a and 106 a in communication with a source gateway 108 and a target gateway 110 each in communication through bearers 112 1-N or signaling connections to packet data network (PDN) gateways 116 1-n. The RANs 104 1 and 106 1 each include a radio network component (RNC) 104 c and 106 c, a serving general packet radio service (GPRS) support node gateway (SGSN GW) 104 d and 106 d, a base station subsystem (BSS) 104 e and 106 e, a base station component or other network components. In an embodiment, the SGSN SW 104 d and 106 d are in communication with the source gateway 108 and the target gateway 110 each in communication through bearers 112 1-N or signaling connections to packet data network (PDN) gateways 116 1-n. The (PDN) gateways 116 1-n are connected to APNs 120 1-n which may include packet based services such as World Wide Web pages, multimedia broadcasting/multicast services, and other data packet-based services.
  • It should be noted that the lines connecting the elements in the drawing can represent bearer connections, signaling connections, or both. Traditionally, a different style of line is used to represent each type of connection. However, for the sake of clarity in the drawing, bearer connections and signaling connections are both represented by solid lines in FIG. 1. The dashed lines connecting the UA 101 to the source RAN 104 and the target RAN 106 are intended to represent the fact that the UA 101 might be connected to the source RAN 104 at a first time and to the target RAN 106 at a second time via the air interface or other media interface.
  • A home subscriber server (HSS) or an authentication, authorization and accounting (AAA) server 122 stores policy and tracking/location information for subscribers to a wireless telecommunications service. A logical inter-access system (IAS) anchor 124 terminates IP access service and manages inter-system IP service termination, inter-system routing and billing, and IP bearer services. Physically, the IAS anchor 124 could be collocated with a gateway or elsewhere. The source RAN 104 and the target RAN 106 are typically furnished with multiple radio channel resources. Each RAN 104 and 106 measures its radio channel resources and reports the utilization of its radio channel resources to its respective gateway 108 and 110, which then pass this information on to the IAS anchor 124 via various protocols.
  • In an embodiment, HSS/AAA server 122, or a similar component, can connect to the source MME 104 a or the target MME 106 a and can store data related to services available to the UA 101, quality of service (QoS) policies for the UA 101, and other similar UA profile data. If dynamic policy and charge control (PCC) rules are to be deployed in the system 100, a policy control and charging rules function (PCRF) 118 and 119, or a similar component, might be present. The PCRF 118 and 119 can connect to the source and target gateway(s) 108 and 110, the PDN gateway 116 1-n, and/or the APNs 120 1-n for an operators IP services, and can store and enforce policies related to the connections between the source and target gateway(s) 108 and 110 and the PDN gateway 116 1-n. Although source and target gateways 108 and 110 are shown connected to certain of the PDN gateways 116, it will be appreciate that gateways 108 and 110 may connect, directly or indirectly, to communicate with any of the PDN gateways PDN gateway 116 1, PDN gateway 116 2, PDN gateway 116 n.
  • In communication with the source RAN 104 and/or the target RAN 106 is a user agent (UA) 101. In an embodiment, the source RAN 104 connects to at least one radio access cell by which the source RAN 104 provides services to the UA 101 via an air interface. In some embodiments, the UA 101 and/or the RAN 104 and 106 may obtain channel and other measurement information that may include a quality of service (QoS) parameter 103 such as an aggregated maximum bit rate (AMBR) or a maximum bit rate (MBR). The APN 120 1-n may each also include a corresponding QoS parameter 105. The parameters 103 and 105 may include a total bandwidth available to be shared among all the non-GBR bearers 112 1-N between the UA 101, the source ENB 104 b, the target ENB 106 b, and the APNs 120 1-n. The QoS parameters 103 and 105 might be located or shared with systems other than only the UA 101 and APNs 105, respectively, as shown.
  • In some instances, the UA 101 may connect to a plurality of PDN gateway 116 1-n concurrently via for example the ENB 106 b, the target gateway 110, and the plurality of bearer 112 1-N. Based on the UAs' 101 quality of service (QoS) profiles, the bearers 112 1-N may conform to a set of quality of service requirements, such as a guaranteed bit rate (GBR), a maximum bit rate (MBR), a packet delay budget (PDB), and other parameters of data transfer quality.
  • Bearer traffic (represented by the bearers 112 1-N) can be classified into two categories: Guaranteed Bit Rate (GBR) and non-Guaranteed Bit Rate (non-GBR). On a GBR bearer, a specified bandwidth is reserved and remains available as long as the bearer remains in place. A GBR bearer might be established for services with large bandwidth requirements, such as streaming video. Services such as email that have more flexible bandwidth requirements might use non-GBR bearers, for which a specified bandwidth is not reserved.
  • For non-GBR bearers of a UA in an EUTRAN/EPC system, QoS can be enforced by a QoS Class Indicator (QCI), an Allocation and Retention Priority (ARP), and an Aggregated Maximum Bit Rate (AMBR). The QCI, ARP, and AMBR are typically stored in the UA's QoS profile. When the UA 101 attaches to the network via for example the RAN 104 2 or 106 2, the source or target MME 104 a and 106 b can retrieve these parameters from the HSS 122 and send them to the source or target ENB 104 b and 106 b or the UA for downlink/uplink QoS enforcement between the UA and ENB and the PDN gateway(s) 116 1 and 116, or the PCRF 118 and 119 for downlink/uplink QoS enforcement.
  • The AMBR may be a fixed value that provides a limit to the total bandwidth provided for non-GBR traffic to the ENB 104 b and 106 b or to the APNs 120 1-n. For example, the HSS 122 may store the AMBR of the UA 101 as a subscribed static value. The UA-AMBR assigned to the UA may be referred to as the subscribed UA-AMBR or just UA-AMBR. The APN-AMBR associated with the UA for a subscribed PDN might also be included in the terms subscribed APN-AMBR and APN-AMBR. A UA with multiple PDN subscriptions may be associated with multiple APN-AMBRs, one for each subscribed PDN. Since the bandwidth that is actually available at the ENB 104 b and 106 b or at the APN 120 1-n might change in real time and might be greater than or less than the bandwidth specified in the AMBR, a static AMBR may not optimally utilize the real-time bandwidth availability under non-GBR QoS enforcement.
  • As noted above, the present disclosure relates to issues that may arise in relation to maintaining continuity of the quality of service (QoS) parameter 103 and 105 of the UA 101 and the APN 120 1-n such as a maximum but rate (MBR) or an aggregated maximum bit rate (AMBR) during an inter-RAT/inter-network handover. The network technology may include E-UTRAN, UTRAN, GERAN, UTRAN/GERAN, and/or other technologies.
  • E-UTRAN to UTRAN/GERAN Inter-RAT Handover
  • A UA 101 may switch between networks for various reasons including but not limited to improve coverage, bandwidth availability, load balancing, or other reasons. In some instances where the source RAN 104 may include a E-UTRAN based network and the target RAN 106 may include a UTRAN/GERAN based network the inter-RAT/inter-network handover preparation of the UA 101 may require additional operations to maintain QoS continuity. For example, to maintain continuity it may be useful to map the AMBR of the APN 120 1-n associated with the source RAN 104 2 into an MBR associated with the target RAN 106 1. As mentioned earlier, E-UTRAN has UA-AMBR and APN-AMBR, but UTRAN/GERAN does not support AMBR for non-GBR bearers.
  • The present disclosure provides for QoS mapping between components in these networks. This may include, for example, mapping the AMBR of APN 120 1 in the source network to the MBRs of all the active non-GBRs connected to the APN 120 n in the target network. When the source network 104 is an EUTRAN network, the AMBR for an APN, such as APN 120 1, is the maximum allowable bit rates of the all the relative bearers, such as bearers 112 1a and 112 2b. When the target RAN 106 is a UTRAN/GERAN such as the RAN 106 1, the MBRs are mapped for each active non-GBR bearer, such as bearers 112 Na and 112 Nb, of the target APN, such as APN 120 n. In this case, the MBRs of each active non-GBR, bearers 112 Na and 112 Nb, of APN 120, in the target network 106 will be configured to be the AMBR of the active APN 120 1 in the source network 104 divided by N, where N represents the total sum of active non-GBRs bearers connected to each of the APN 120 n. While this allocation is proportional, in other embodiments, allocation of MBRs to the active non-GBR bearers might not be proportionate and some non-GBR bearers might be allocated more or fewer MBRs than others. For, example, the MBR may be allocated to the bearer 112 2 of the PDN gateway 116 2 and the APN2. Other allocations will readily suggest themselves to one skilled in the art. The above described mappings may be repeated for all active APNs where the source and target RANs 104, 106 support multiple PDN connectivity.
  • Where the target RAN 106 does not support more than one of the APNs 120 n, then only the AMBR parameters for the default APN 120 1 (or perhaps another PDN) in the source network 104 may be selected for mapping to the MBRs of the non-GBR bearers in the target network 106. It may be the case that only the default APN is connected to the target RAN. The AMBRs of other APNs in the source network might then be ignored.
  • UTRAN/GERAN to E-UTRAN Inter-RAT Handover
  • In other instances where the source RAN 104 may include UTRAN/GERAN based network (or the RAN 104 1) and the target RAN 106 may include E-UTRAN (the RAN 106 2), the inter-RAT/inter-network handover preparation of the UA 101 may be somewhat different than described above. Maintaining the continuity of the QoS includes mapping the MBRs associated one or more of the APN 120 1 in the source RAN 104 to the AMBR associated with the APN 120, that are compatible with the target RAN 106. The MBRs may include one or more active non-GBRs. The AMBR of the APN, such as APN 120 n, of the target RAN 106 is set to the sum of the MBRs of all the active non-GBRs connected to the APN, APN 120 1, in the source network 104. In some embodiments, the mapping or allocations may not be proportional between the source and target networks 104 and 106. For example, the sum of the MBRs of all the active non-GBRs connected to the APN in the source network 104 might be greater or less than the AMBR allocated to the APN in the target RAN 106. Once the AMBR of the APN 120, in the target RAN 106 is determined, the handover may commence by the MME 104 a, or other systems in other embodiments, updating the ENB 106 b and the gateways 108 and 110 or PDN gateways 116 based upon quality of service (QoS) policies for the UA 101 from the HSS/AAA 122.
  • Examples of procedures for QoS AMBR handling during inter-RAT/inter-network preparation mentioned above are further presented in flow diagrams 200, 300, 400, and 500 of FIGS. 2 through 5, with reference to 3GPP S2-084350, 3GPP TS23.401, 3GPP TS23.402, and 3GPP TS23.236, which are incorporated herein by reference for all purposes. It is to be understood that the following discussion are examples of 3GPP or other inter-RAT handover procedure enhancements for non-GBR AMBR handling and are not to be limited.
  • FIG. 2, illustrates an example of a EUTRAN to UTRAN handover preparation procedure. At event 202, uplink and downlink packet data units (PDUs) distribute amongst the UA 101, the ENB 104 b, the RNC 106 c, the MME 104 a, the SGSN gateway 106 d, the source serving gateway 108, the target serving gateway 110, and the PDN gateway 116 1-n. are exchanged. At event 204, handover preparation commences of the UA 101 from the source RAN 104 to the target RAN 106. The source ENB 104 b acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined. Once the UA 101 is acknowledged, at event 206 the source ENB 104 b communicates with the source MME 104 a which also acknowledges the existence and QoS parameter(s) of the UA 101.
  • At event 208, the source MME 104 a may map one-to-one the EPS (evolved packet system) bearer(s), such as EUTRAN bearers, to PDP (packet data protocol) context(s), such as UTRAN QoS parameters, and sequentially maps EPS QoS parameters associated with an EPS bearer to QoS parameters of the PDP context(s). The PDP context(s) are then used to determine a prioritization order. Where more than one APN 120 1-n is present in the target RAN 106 (or RAN 106 1), QoS mapping is determined for each active non-GBR bearers associated with each of the APN 120 1-n. The MBRs to be employed by the target SGSN gateway 106 d and the target RNC 106 c may be set to be equal to the AMBR of the APN 120 1-n, divided by the number of active non-GBRs. In some embodiments, the MBRs may each have unique values such that the sum of the MBRs may be equal to the total number of used APN-AMBR. Of course, if the target RAN 106 can only support one of the APN 120 1-n, then a specific bearer associated with the APN 120 1-n may be connected to the target RAN 106.
  • At event 210 a and 210 b, a PDP request and response are exchanged between the target SGSN gateway 106 d and the target serving gateway 110 to communicate the mapping of the MBRs to the AMBRs via IP packet data. At event 212 a and 212 b, a relocation request and response are exchanged between the target RNC 106 c and the SGSN gateway 106 d, and by another PDP request and response exchange between the target SGSN gateway 106 d and the target serving gateway 110 at event 214 a and 214 b.
  • At event 216, 218 a, and 218 b, the relocation response associated with the UA 101 is sent from the SGSN gateway 106 d to the source MME 104 a, and a bearer request and response are exchanged between the source MME 104 a and the serving source gateway 108.
  • FIG. 3 illustrates an example of a UTRAN to E-UTRAN inter-RAT handover preparation. At event 302, uplink and downlink packet data units (PDUs) distribute amongst the UA 101, the ENB 106 b, the RNC 104 c, the MME 106 a, the SGSN gateway 104 d, the source serving gateway 108, the target serving gateway 110, and the PDN gateway 116 1-n are exchanged. At event 304, handover preparation commences of the UA 101 from the source RAN 104 (RAN 104 1) to the target RAN 106 (RAN 106 2). The source RNC 104 c acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined. Once the UA 101 is acknowledged, at event 306 the source RNC 104 c communicates with the source SGSN gateway 104 d that the UA 101 is initiating a handover to map an associated QoS parameter.
  • At event 308, the source SGSN gateway 104 d sends the relocation request to the target MME 106 a. The target MME 106 a maps the PDP contexts to the EPS bearers and values associated with the QoS parameter to the PDP context to the EPS QoS parameter values of the EPS bearer. In some embodiments, the target MME 106 a may terminate certain EPS bearers that may not be able to be established. Moreover, it is to be understood that the target ENB106 b may require both the AMBR associated with the UA and the APN 120 1-n for enforcing QoS of the UA 101 between the source RAN 104 and the target RAN 106. The UE-AMBR and the APN-AMBR may be set according to APN-AMBR of each active of the APN 120 1-n equal to the sum of the MBRs of the active non-GBRs, and the UE-AMBR equal to the sum of all MBRs associated with active non-GBRs associated with the source RAN 104.
  • At event 310 a and 310 b, a bearer request and response are exchanged between the target MME 106 a and the serving target gateway 110, subsequently followed by a handover request and acknowledgement between the target MME 106 a and the target ENB 106 b at event 312 a and 312 b. In an embodiment, the target MME 106 a requests the target ENB 106 b to establish bearers by sending the handover request. The a handover request may include one or more UE identifier(s), Cause, KeNB, an allowed AS Integrity Protection and Ciphering algorithm(s), and/or a KSI and key derivation parameters. In addition, the handover may also include the mapped QoS parameters for each of the APN 120 1-n including the used or dynamic UE-AMBRs and the APN-AMBRs from the source RAN 104 to the target RAN 106.
  • At event 314 a and 314 b, a bearer request and response are established between the serving target gateway 110 and the target MME 106 a, followed by the relocation response being sent to the source SGSN gateway 104 d from the target MME 106 a at event 316. A bearer request and response are exchanged between the source SGSN gateway 104 d and the serving source gateway 108 at event 318 a and 318 b.
  • FIG. 4 illustrates an example of E-UTRAN to GERAN A/GB mode inter-RAT handover preparation. At event 402, uplink and downlink packet data units (PDUs) distribute amongst the UA 101, the ENB 104 b, the BSS 106 e, the MME 104 a, the SGSN gateway 106 d, the source serving gateway 108, the target serving gateway 110, and the PDN gateway 116 1-n are exchanged. At event 404, handover preparation commences of the UA 101 from the source RAN 104 to the target RAN 106. The source ENB 104 b acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined.
  • At event 406 the source ENB 104 b communicates with the source MME 104 a that the UA 101 is initiating a handover to map an associated QoS parameter. In an embodiment, at event 408, the source MME 104 a maps the EPS bearers to the PDP contexts and values associated with the EPS QoS parameter of an EPS bearer to pre-determined QoS parameter values of another pre-determined PDP context. The PDP contexts are prioritized in order from highest to lowest importance PDP context(s). In one embodiment, if there are more than one APN 120 1, support capability present in the target RAN 106, then for each of the active one or more of the APN 120 1-n all of the associated bearer connections will be connected to the target RAN 106. For each of the active non-GBR bearers associated with the one or more APN 120 1-n, the MBRs of an active APN employed in the SGSN target gateway 106 d of the target RAN 106 may be equal to the used APN-AMBRs of that APN divided by N, wherein N includes the number of active non-GBR bearers in that APN 120 1-n. In some embodiments, the MBRs of an active APN may include a myriad of values such that the sum of the MBRs may equal to the used APN-AMBR. If multiple APN 120 1-n are not supported by the target RAN 106, then only the “default” APN 120 1 bearer connections associated with the source RAN 104 may be connected to the target RAN 106.
  • At event 410 a and 410 b, PDP context requests and responses are exchanged between the target SGSN gateway 106 d and the target serving gateway 110, followed by a PS handover request and acknowledgement between the target SGSN 106 d and the target BSS 106 e at events 412 a and 412 b. After the PS handover exchange, PDP context requests and responses are exchanged at events 414 a and 414 b between the target SGSN gateway 106 d and the target serving gateway 110, and the relocation is forwarded from the target SGSN gateway 106 d to the source MME 104 a. A relocation request is sent to the source MME 104 a from the target SGSN gateway 106 d at event 416. Bearer request(s) and response(s) are then exchanged between the source MME 104 a and the serving source gateway 108 at event 418 a and 418 b.
  • FIG. 5 illustrates an example of GERAN A/Gb mode to E-TRAN inter-RAT handover preparation. At event 502, uplink and downlink packet data units (PDUs) distribute amongst the UA 101, the ENB 106 b, the BSS 104 e, the MME 106 a, the SGSN gateway 104 d, the source serving gateway 108, the target serving gateway 110, and the PDN gateway 116 1-n are exchanged. At event 504, handover of the UA 101 preparation commences from the source RAN 104 to the target RAN 106. The source BSS 104 e acknowledges the UA 101 and profile information and QoS profile of the UA 101 is determined. Once the UA 101 is acknowledged, at event 506 the source BSS 104 e communicates with the source SGSN gateway 104 d that the UA 101 is initiating a PS handover to map an associated QoS parameter.
  • At event 508, the source SGSN gateway 104 d forwards a relocation request to the target MME 106 a. In an embodiment, the request includes a ‘Direct Forwarding Flag’ IE that may be set by the source SGSN gateway 104 d, that indicates whether or not Direct Forwarding of data to the target RAN 106 is to be employed for the mapping of QoS parameters, such as the AMBRs associated with the UA 101 and the APN 120 1-n. The target MME 106 a then maps the PDP context to the EPS QoS parameter values associated with an EPS bearer. The target MME 106 a establishes the EPS bearer(s) in a determined prioritize manner. In some embodiments, the target MME 106 a may deactivate the EPS bearers that may not be able to be established in the target RAN 106.
  • At event 510 a and 510 b, PDP context requests and responses are exchanged between the target MME 106 a and the target serving gateway 110, followed by a PS handover request and request acknowledgement between the target MME 106 a and the target ENB 106 b at events 512 a and 512 b. In an embodiment, the target MME 106 a may request the target ENB 106 b to establish bearer(s) by sending the handover request. The handover request may include a UA Identifier, Cause, Integrity protection information and associated IK or Integrity Protection algorithms, Encryption information such as CK and allowed Ciphering algorithms, EPS Bearers to be setup list, and Source to Target Transparent Container. In some embodiments, the target MME 106 a may not request resources for which an activity status indicator within a PDP context indicates no active bearers from the source RAN 104. For each EPS bearer requested to be established, the EPS may include information such as ID, bearer parameters, Transport Layer Address, and S1 Transport Association. The transport layer Address may include the source serving gateway 108 address associated with user data of the UA 101, and the S1 Transport Association may correspond to an uplink Tunnel Endpoint Identifier Data. The ciphering and integrity protection keys may be transparently sent from the target ENB 106 b to the UA 101 using for example, the Target to Source Container, and also in the message PS handover command from the source BSS 104 e to the UA 101 to allow data transfer in the source RAN 106 without requiring additional authentication and key agreement procedures. In some instances, each of the APN 120 1-n connected to the target RAN 106, the handover message may also include the mapped QoS parameters from both the source RAN 104 and the target RAN 106, which includes the used or dynamic UE-AMBRs and the APN-AMBR.
  • At event 514 a and 514 b, PDP context requests and responses are exchanged between the target MME 106 a and the target serving gateway 110, and the relocation is forwarded from the target MME 106 a to the source SGSN gateway 104 d at event 516. Bearer request(s) and response(s) are then exchanged between the source SGSN gateway 104 d and the serving source gateway 108 at event 518 a and 518 b.
  • FIG. 6 illustrates a wireless communications system including an embodiment of the UA 101. The UA 101 is operable for implementing aspects of the disclosure, but the disclosure should not be limited to these implementations. Though illustrated as a mobile phone, the UA 101 may take various forms including a wireless handset, a pager, a personal digital assistant (PDA), a portable computer, a tablet computer, or a laptop computer. Many suitable devices combine some or all of these functions. In some embodiments of the disclosure, the UA 101 is not a general purpose computing device like a portable, laptop or tablet computer, but rather is a special-purpose communications device such as a mobile phone, a wireless handset, a pager, a PDA, or a telecommunications device installed in a vehicle. In another embodiment, the UA 101 may be a portable, laptop or other computing device. The UA 101 may support specialized activities such as gaming, inventory control, job control, and/or task management functions, and so on.
  • The UA 101 includes a display 602. The UA 101 also includes a touch-sensitive surface, a keyboard or other input keys generally referred as 604 for input by a user. The keyboard may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY, and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad. The input keys may include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function. The UA 101 may present options for the user to select, controls for the user to actuate, and/or cursors or other indicators for the user to direct.
  • The UA 101 may further accept data entry from the user, including numbers to dial or various parameter values for configuring the operation of the UA 101. The UA 101 may further execute one or more software or firmware applications in response to user commands. These applications may configure the UA 101 to perform various customized functions in response to user interaction. Additionally, the UA 101 may be programmed and/or configured over-the-air, for example from a wireless base station, a wireless access point, or a peer UA 101.
  • Among the various applications executable by the UA 101 are a web browser, which enables the display 602 to show a web page. The web page may be obtained via wireless communications with a wireless network access node, a cell tower, a peer UA 101, or any other wireless communication network or system 600. The network 600 is coupled to a wired network 608, such as the Internet. Via the wireless link and the wired network, the UA 101 has access to information on various servers, such as a server 610. The server 610 may provide content that may be shown on the display 602. Alternately, the UA 101 may access the network 600 through a peer UA 101 acting as an intermediary, in a relay type or hop type of connection.
  • FIG. 7 shows a block diagram of the UA 101. While a variety of known components of UAs 101 are depicted, in an embodiment a subset of the listed components and/or additional components not listed may be included in the UA 101. The UA 101 includes a digital signal processor (DSP) 702 and a memory 704. As shown, the UA 101 may further include an antenna and front end unit 706, a radio frequency (RF) transceiver 708, an analog baseband processing unit 710, a microphone 712, an earpiece speaker 714, a headset port 716, an input/output interface 718, a removable memory card 720, a universal serial bus (USB) port 722, a short range wireless communication sub-system 724, an alert 726, a keypad 728, a liquid crystal display (LCD), which may include a touch sensitive surface 730, an LCD controller 732, a charge-coupled device (CCD) camera 734, a camera controller 736, and a global positioning system (GPS) sensor 738. In an embodiment, the UA 101 may include another kind of display that does not provide a touch sensitive screen. In an embodiment, the DSP 702 may communicate directly with the memory 704 without passing through the input/output interface 718.
  • The DSP 702 or some other form of controller or central processing unit operates to control the various components of the UA 101 in accordance with embedded software or firmware stored in memory 704 or stored in memory contained within the DSP 702 itself. In addition to the embedded software or firmware, the DSP 702 may execute other applications stored in the memory 704 or made available via information carrier media such as portable data storage media like the removable memory card 720 or via wired or wireless network communications. The application software may comprise a compiled set of machine-readable instructions that configure the DSP 702 to provide the desired functionality, or the application software may be high-level software instructions to be processed by an interpreter or compiler to indirectly configure the DSP 702.
  • The antenna and front end unit 706 may be provided to convert between wireless signals and electrical signals, enabling the UA 101 to send and receive information from a cellular network or some other available wireless communications network or from a peer UA 101. In an embodiment, the antenna and front end unit 706 may include multiple antennas to support beam forming and/or multiple input multiple output (MIMO) operations. As is known to those skilled in the art, MIMO operations may provide spatial diversity which can be used to overcome difficult channel conditions and/or increase channel throughput. The antenna and front end unit 706 may include antenna tuning and/or impedance matching components, RF power amplifiers, and/or low noise amplifiers.
  • The RF transceiver 708 provides frequency shifting, converting received RF signals to baseband and converting baseband transmit signals to RF. In some descriptions a radio transceiver or RF transceiver may be understood to include other signal processing functionality such as modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions. For the purposes of clarity, the description here separates the description of this signal processing from the RF and/or radio stage and conceptually allocates that signal processing to the analog baseband processing unit 710 and/or the DSP 702 or other central processing unit. In some embodiments, the RF Transceiver 708, portions of the Antenna and Front End 706, and the analog baseband processing unit 710 may be combined in one or more processing units and/or application specific integrated circuits (ASICs).
  • The analog baseband processing unit 710 may provide various analog processing of inputs and outputs, for example analog processing of inputs from the microphone 712 and the headset 716 and outputs to the earpiece 714 and the headset 716. To that end, the analog baseband processing unit 710 may have ports for connecting to the built-in microphone 712 and the earpiece speaker 714 that enable the UA 101 to be used as a cell phone. The analog baseband processing unit 710 may further include a port for connecting to a headset or other hands-free microphone and speaker configuration. The analog baseband processing unit 710 may provide digital-to-analog conversion in one signal direction and analog-to-digital conversion in the opposing signal direction. In some embodiments, at least some of the functionality of the analog baseband processing unit 710 may be provided by digital processing components, for example by the DSP 702 or by other central processing units.
  • The DSP 702 may perform modulation/demodulation, coding/decoding, interleaving/deinterleaving, spreading/despreading, inverse fast Fourier transforming (IFFT)/fast Fourier transforming (FFT), cyclic prefix appending/removal, and other signal processing functions associated with wireless communications. In an embodiment, for example in a code division multiple access (CDMA) technology application, for a transmitter function the DSP 702 may perform modulation, coding, interleaving, and spreading, and for a receiver function the DSP 702 may perform despreading, deinterleaving, decoding, and demodulation. In another embodiment, for example in an orthogonal frequency division multiplex access (OFDMA) technology application, for the transmitter function the DSP 702 may perform modulation, coding, interleaving, inverse fast Fourier transforming, and cyclic prefix appending, and for a receiver function the DSP 702 may perform cyclic prefix removal, fast Fourier transforming, deinterleaving, decoding, and demodulation. In other wireless technology applications, yet other signal processing functions and combinations of signal processing functions may be performed by the DSP 702.
  • The DSP 702 may communicate with a wireless network via the analog baseband processing unit 710. In some embodiments, the communication may provide Internet connectivity, enabling a user to gain access to content on the Internet and to send and receive e-mail or text messages. The input/output interface 718 interconnects the DSP 702 and various memories and interfaces. The memory 704 and the removable memory card 720 may provide software and data to configure the operation of the DSP 702. Among the interfaces may be the USB interface 722 and the short range wireless communication sub-system 724. The USB interface 522 may be used to charge the UA 101 and may also enable the UA 101 to function as a peripheral device to exchange information with a personal computer or other computer system. The short range wireless communication sub-system 724 may include an infrared port, a Bluetooth interface, an IEEE 802.11 compliant wireless interface, or any other short range wireless communication sub-system, which may enable the UA 101 to communicate wirelessly with other nearby mobile devices and/or wireless base stations.
  • The input/output interface 718 may further connect the DSP 702 to the alert 726 that, when triggered, causes the UA 101 to provide a notice to the user, for example, by ringing, playing a melody, or vibrating. The alert 726 may serve as a mechanism for alerting the user to any of various events such as an incoming call, a new text message, and an appointment reminder by silently vibrating, or by playing a specific pre-assigned melody for a particular caller.
  • The keypad 728 couples to the DSP 702 via the interface 718 to provide one mechanism for the user to make selections, enter information, and otherwise provide input to the UA 101. The keyboard 728 may be a full or reduced alphanumeric keyboard such as QWERTY, Dvorak, AZERTY and sequential types, or a traditional numeric keypad with alphabet letters associated with a telephone keypad. The input keys may include a trackwheel, an exit or escape key, a trackball, and other navigational or functional keys, which may be inwardly depressed to provide further input function. Another input mechanism may be the LCD 730, which may include touch screen capability and also display text and/or graphics to the user. The LCD controller 732 couples the DSP 702 to the LCD 730.
  • The CCD camera 734, if equipped, enables the UA 101 to take digital pictures. The DSP 702 communicates with the CCD camera 734 via the camera controller 736. In another embodiment, a camera operating according to a technology other than Charge Coupled Device cameras may be employed. The GPS sensor 738 is coupled to the DSP 702 to decode global positioning system signals, thereby enabling the UA 101 to determine its position. Various other peripherals may also be included to provide additional functions, e.g., radio and television reception.
  • FIG. 8 illustrates a software environment 802 that may be implemented by the DSP 702. The DSP 702 executes operating system drivers 804 that provide a platform from which the rest of the software operates. The operating system drivers 804 provide drivers for the UA hardware with standardized interfaces that are accessible to application software. The operating system drivers 804 include application management services (“AMS”) 806 that transfer control between applications running on the UA 101. Also shown in FIG. 8 are a web browser application 808, a media player application 810, and Java applets 812. The web browser application 808 configures the UA 101 to operate as a web browser, allowing a user to enter information into forms and select links to retrieve and view web pages. The media player application 810 configures the UA 101 to retrieve and play audio or audiovisual media. The Java applets 812 configure the UA 101 to provide games, utilities, and other functionality. A component 814 might provide functionality described herein. Although shown at an application layer, the component 814 might be provided at various layers within the environment 802 or elsewhere on the UA 101.
  • The UA 101 and other components described above might include a processing component that is capable of executing instructions related to the actions described above. FIG. 9 illustrates an example of a system 1300 that includes a processing component 1310 suitable for implementing one or more embodiments disclosed herein. In addition to the processor 1310 (which may be referred to as a central processor unit or CPU), the system 1300 might include network connectivity devices 1320, random access memory (RAM) 1330, read only memory (ROM) 1340, secondary storage 1350, and input/output (I/O) devices 1360. In some cases, some of these components may not be present or may be combined in various combinations with one another or with other components not shown. These components might be located in a single physical entity or in more than one physical entity. Any actions described herein as being taken by the processor 1310 might be taken by the processor 1310 alone or by the processor 1310 in conjunction with one or more components shown or not shown in the drawing.
  • The processor 1310 executes instructions, codes, computer programs, or scripts that it might access from the network connectivity devices 1320, RAM 1330, ROM 1340, or secondary storage 1350 (which might include various disk-based systems such as hard disk, floppy disk, or optical disk). While only one processor 1310 is shown, multiple processors may be present. Thus, while instructions may be discussed as being executed by a processor, the instructions may be executed simultaneously, serially, or otherwise by one or multiple processors. The processor 1310 may be implemented as one or more CPU chips.
  • The network connectivity devices 1320 may take the form of modems, modem banks, Ethernet devices, universal serial bus (USB) interface devices, serial interfaces, token ring devices, fiber distributed data interface (FDDI) devices, wireless local area network (WLAN) devices, radio transceiver devices such as code division multiple access (CDMA) devices, global system for mobile communications (GSM) radio transceiver devices, worldwide interoperability for microwave access (WiMAX) devices, and/or other well-known devices for connecting to networks. These network connectivity devices 1320 may enable the processor 1310 to communicate with the Internet or one or more telecommunications networks or other networks from which the processor 1310 might receive information or to which the processor 1310 might output information.
  • The network connectivity devices 1320 might also include one or more transceiver components 1325 capable of transmitting and/or receiving data wirelessly in the form of electromagnetic waves, such as radio frequency signals or microwave frequency signals. Alternatively, the data may propagate in or on the surface of electrical conductors, in coaxial cables, in waveguides, in optical media such as optical fiber, or in other media. The transceiver component 1325 might include separate receiving and transmitting units or a single transceiver. Information transmitted or received by the transceiver 1325 may include data that has been processed by the processor 1310 or instructions that are to be executed by processor 1310. Such information may be received from and outputted to a network in the form, for example, of a computer data baseband signal or signal embodied in a carrier wave. The data may be ordered according to different sequences as may be desirable for either processing or generating the data or transmitting or receiving the data. The baseband signal, the signal embedded in the carrier wave, or other types of signals currently used or hereafter developed may be referred to as the transmission medium and may be generated according to several methods well known to one skilled in the art.
  • The RAM 1330 might be used to store volatile data and perhaps to store instructions that are executed by the processor 1310. The ROM 1340 is a non-volatile memory device that typically has a smaller memory capacity than the memory capacity of the secondary storage 1350. ROM 1340 might be used to store instructions and perhaps data that are read during execution of the instructions. Access to both RAM 1330 and ROM 1340 is typically faster than to secondary storage 1350. The secondary storage 1350 is typically comprised of one or more disk drives or tape drives and might be used for non-volatile storage of data or as an over-flow data storage device if RAM 1330 is not large enough to hold all working data. Secondary storage 1350 may be used to store programs that are loaded into RAM 1330 when such programs are selected for execution.
  • The I/O devices 1360 may include liquid crystal displays (LCDs), touch screen displays, keyboards, keypads, switches, dials, mice, track balls, voice recognizers, card readers, paper tape readers, printers, video monitors, or other well-known input devices. Also, the transceiver 1325 might be considered to be a component of the I/O devices 1360 instead of or in addition to being a component of the network connectivity devices 1320. Some or all of the I/O devices 1360 may be substantially similar to various components depicted in the previously described drawing of the UA 101, such as the display 602 and the input 604.
  • The following is an alternative embodiment of the disclosure.
  • Introduction
  • This paper discusses the non-GBR dynamic UE-AMBR and APN-AMBR handling for 3GPP Inter-RAT handover cases.
  • Discussion
  • In SA2#65, the dynamic (or the used) per UE-AMBR has been agreed for per UE UL and DL non-GBR enforcement at the eNodeB. The used UE-AMBR takes the sum of the APN-AMBRs of the active APNs and it shall be updated by the MME (it could be updated by the eNodeB too). At SA2 #65, the changes to several of the impacted procedures have been also proposed and agreed for the used UE-AMBR handling together with non-GBR QoS enforcement using both the per UE-AMBR and the per APN AMBR[1]. However the eUTRAN handover cases w.r.t. (with respect to) the AMBR updates for 3GPP accesses have not been specified.
  • Case 1: Intra-eUTRAN (Inter-eNodeB) Handover
  • It shall not be an issue for Intra-eUTRAN (or inter-eNodeB) handover. The source eNodeB can send the UE's QoS information to the target eNodeB via the X-2 interface. Whether the UE is handed over to a new MME or staying in the same MME, the MME shall have the UE's profile with the AMBR subscriptions and the active APN information for the used (or dynamic) AMBR updates.
  • Case 2: eURAN to UTRAN/GERAN Inter-RAT Handover
  • For the case of eUTRAN to UTRAN/GERAN inter-RAT handover, the UE shall be handed over from an eNodeB to a RNC or BSC and from a MME to a SGSN. As UTRAN and GERAN do not support AMBR, for the non-GBR bearers, QoS mapping from the AMBR of rel. 8 to MBRs of rel.7 is needed. Notice that since there are two types of AMBR defined: UE-AMBR and APN AMBR, the APN-AMBR of the default APN used in the eUTRAN shall be mapped to the MBRs used in the UTRAN/GERAN. As AMBR is the aggregated bit rate for all the active non-GBRs connecting to the default APN, the mapped MBR shall be set to MBR=APN-AMBR/N, or it can be also the sum of MBRs with various values=APN-AMBR, where N is the active non-GBRs connecting to the default APN. Notice that the source eUTRAN may have connected to multiple-PDNs before the handover. For the target UTRAN/GERAN only support the multiple-PDN connectivity [3], only the connections to the default APN shall be connected to UTRAN/GERAN during handover.
  • Propose 1: AMBR Mapping for eUTRAN to UTRAN/GERAN Inter-RAT Handover. For each of the active APNs connected, the MBR for each of the active non-GBRs used in the target UTRAN/GERAN shall be set to MBR=used APN-AMBR/N, or sum of MBRs with various values=used APN-AMBR; where N is the active non-GBRs for the APN and the used APN-AMBR can be the subscribed APN-AMBR or a modified APN-AMBR for the active APN.
  • Propose 2: IF the target UTRAN/GERAN does not support multiple PDN connectivity, in the eURAN to UTRAN/GERAN Inter-RAT handover preparation, only the QoS mapping for the default APN shall be implemented and only the connections to the default APN shall be connected to the target UTRAN/GERAN.
  • Case 3: UTRAN/GERAN to eUTRAN Inter-RAT handover: For the case of UTRAN/GERAN to eUTRAN handover, the UE shall be handed over from RNC or BSC and from a SGSN to an eNodeB. Note that for each active APN connected the eUTRAN requires both the UE AMBR and the associated APN-AMBRs in order for non-GBR QoS enforcement. These two type AMBRs can be set during the UTRAN/GERAN to eUTRAN Inter-RAT handover preparation phase according to: APN-AMBR of each active APN=sum of MBRs of the active non-GBRs of the APN and UE-AMBR=sum of MBRs of all the active non-GBRs in UTRAN/GERAN. In the handover execution phase, the UE-AMBR and APN-AMBR shall be updated from accessing the HSS (via location/tracking area updates).
  • Propose 3: AMBR Mapping for UTRAN/GERAN to eUTRAN inter-RAT handover. The APN-AMBRs and the UE-AMBR used by the target eUTRAN during the Inter-RAT handover preparation phase shall be set according to: APN-AMBR of each active APN=sum of MBRs of the active non-GBRs in that APN; and UE-AMBR=sum of MBRs of all the active non-GBRs in the source UTRAN/GERAN. The UE-AMBR and APN-AMBRs used by the eNodeB, the PDN GWs shall be updated by the MME (or the eNodeB or some other NE) based on the subscribed UE-AMBR and APN-AMBRs from accessing the HSS in the handover execution phase.
  • 3GPP Access I-RAT Handover Procedure Enhancement for AMBR Handling. Propose 4: 3GPP Access Inter-RAT handover procedure enhancements for non-GBR AMBR handling. To support the proposals 1-3, the procedures for 3GPP Access eUTRAN I-RAT handover shall be enhanced.
  • Step 3:
  • The source MME maps the EPS bearers to PDP contexts 1-to-1 and maps the EPS QoS parameter values of an EPS bearer to the pre-Rel-8 QoS parameter values of a PDP context as defined in Annex E. The PDP Contexts shall be sent in a prioritized order, i.e. the most important PDP Context first. The prioritization method is implementation dependent, but should be based on the current activity. If multiple PDN connectivity is supported in the target UTRAN, for each active APN, all the bearer connections shall be connected to the target UTRAN. For each of the active non-GBR bearers in the APN, MBRs used in the target SGSN/Target RNC shall be set according to: MBR=used APN-AMBR/N, where N is the active non-GBRs in the APN, or the MBRs can have different values such that sum MBRs=used APN-AMBR and used APN-AMBR can be the subscribed APN-AMBR or its modification . If multiple PDN connectivity is not supported in the target UTRAN, only the default APN bearer connections shall be connected to the target UTRAN.
  • Step 3:
  • The target MME maps the PDP contexts to the EPS bearers 1-to-1 and maps the pre-Rel-8 QoS parameter values of a PDP context to the EPS QoS parameter values of an EPS bearer as defined in Annex E. The MME establishes the EPS bearer(s) in the indicated order. The MME deactivates the EPS bearers which cannot be established. The target eNodeB requires both UE-AMBR and the APN-AMBR for non-GBR QoS enforcement. These two AMBRs shall be set according to: APN-AMBR of each active APN=sum MBR of the active non- GBRs, and UE-AMBR=sum of MBRs of all the active non-GBRs in the source UTRAN.
  • Step 5:
  • The target MME requests the target eNodeB to establish the bearer(s) by sending the message Handover Request (UE Identifier, Cause, KeNB, allowed AS Integrity Protection and Ciphering algorithm(s), NAS Integrity Protection and Ciphering algorithm(s), EPS Bearers to be setup list, Source to Target Transparent Container). NAS Integrity Protection and Ciphering algorithm(s), KSI and key derivation parameters are targeted for the UE. For each APN to be connected to the target eUTRAN, the message shall also include the mapped QoS parameters from UTRAN to eUTRAN including the used UE-AMBR and the APN-AMBRs.
  • Step 3:
  • The source MME maps the EPS bearers to PDP contexts 1-to-1 and maps the EPS QoS parameter values of an EPS bearer to the pre-Rel-8 QoS parameter values of a PDP context as defined in Annex E. The PDP Contexts shall be sent in a prioritized order, i.e. the most important PDP Context first. The prioritization method is implementation dependent, but should be based on the current activity.
  • If multiple PDN connectivity is supported in the target GERAN, for each active APN, all the bearer connections shall be connected to the target GERAN. For each of the active non-GBR bearers in the APN, MBRs used in the target SGSN/Target RNC shall be set according to: MBR=used APN-AMBRIN, where N is the active non-GBRs in the APN, or the MBRs can have different values such that sum MBRs=used APN-AMBR and used APN-AMBR can be the subscribed APN-AMBR or its modification. If multiple PDN connectivity is not supported in the target GERAN, only the default APN bearer connections shall be connected to the target GERAN.
  • Step 3:
  • The ‘Direct Forwarding Flag’ IE indicates if Direct Forwarding of data to Target side shall be used or not. This flag is set by the source SGSN. The target MME maps the PDP contexts to the EPS bearers 1-to-1 and maps the pre-Rel-8 QoS parameter values of a PDP context to the EPS QoS parameter values of an EPS bearer as defined in Annex E. The MME establishes the EPS bearer(s) in the indicated order. The MME deactivates the EPS bearers which cannot be established. The target eNodeB requires both UE-AMBR and the APN-AMBR for non-GBR QoS enforcement. These two AMBRs shall be set according to: APN-AMBR of each active APN=sum MBR of the active non-GBRs, and UE-AMBR=sum of MBRs of all the active non-GBRs in the source GERAN.
  • Step 5:
  • The Target MME will request the Target eNodeB to establish the Bearer(s) by sending the message Handover Request (UE Identifier, Cause, Integrity protection information (i.e. IK and allowed Integrity Protection algorithms), Encryption information (i.e. CK and allowed Ciphering algorithms), EPS Bearers to be setup list, Source to Target Transparent Container). The Target MME shall not request resources for which the Activity Status Indicator within a PDP Context indicates that no active bearer exists on the source side for that PDP Context. For each EPS bearer requested to be established, ‘EPS Bearers To Be Setup’ IE shall contain information such as ID, bearer parameters, Transport Layer Address, and S1 Transport Association. The Transport Layer Address is the Serving GW Address for user data, and the S1 Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data. The ciphering and integrity protection keys will be sent transparently from the target eNodeB to the UE in the Target to Source Transparent Container, and in the message PS Handover Command from source BSS to the UE. This will then allow data transfer to continue in the new RAT/mode target cell without requiring a new AKA (Authentication and Key Agreement) procedure. For each APN to be connected to the target eUTRAN, the message shall also include the mapped QoS parameters from GERAN to eUTRAN including the used UE-AMBR and the APN-AMBRs.
  • QoS Mapping Standard Enhancement on Specs
  • Annex E (Normative): Mapping Between EPS and pre-Rel-8 QoS Parameters
  • This annex specifies how the QoS parameter values of an EPS bearer (E-UTRAN access to the EPS) should be mapped to/from the pre-Rel-8 QoS parameter values of a PDP context (UTRAN/GERAN access to the EPS) before a procedure is triggered that executes a handover between E-UTRAN and UTRAN/GERAN. The following mapping rules hold:
  • There is a one-to-one mapping between an EPS bearer and a PDP context.
  • The handling of this principle in case of “dual stack IPv4/IPv6 bearers” is FSS.
  • The EPS bearer parameters ARP is mapped one-to-one to/from the pre-Rel-8 bearer parameter ARP.
  • Note that in GPRS pre-Rel-8 the same UE/PDN connection, the system does not expect to have two or more PDP contexts with different ARP values. This is different in EPS. It is FFS whether this causes conflict/errors or whether a specific mapping rule for ARP is needed.
  • The EPS bearer parameters GBR and MBR of a GBR EPS bearer are mapped one-to-one to/from the pre-Rel-8 bearer parameters GBR and MBR of a PDP context associated with Traffic class ‘conversational’ or ‘streaming’.
  • The details of the mapping of GBR, and MBR between GBR EPS bearers and conversational/streaming PDP contexts are captured in stage 3 specs.
  • At handover from E-UTRAN to UTRAN/GERAN the pre-Rel-8 bearer parameter MBR of PDP contexts associated with Traffic Class ‘interactive’ or ‘background’ is set based on MME operator policy.
  • In order to apply the concept of AMBRs in UTRAN/GERAN, for each active APN, one such policy may be to set the sum of those MBRs to not exceed the value of the EPS bearer parameter used APN-AMBR. In the case that the handover involves M-PDN connections and the target UTRAN/GERAN does not support M-PDN connectivity, only the connections to the default APN shall be connected to the target UTRAN/GERAN and only the used APN_AMBR of the default APN need to be converted to MBRs.
  • In order to ensure that the MBR of PDP contexts associated with Traffic Class ‘interactive’ or ‘background’ are restored to their previous values when handing over again from E-UTRAN to UTRAN/GERAN, one such policy may be to have an MME store at handover from UTRAN/GERAN to E-UTRAN the pre-Rel-8 bearer parameter MBR of PDP contexts associated with Traffic Class ‘interactive’ or ‘background’.
  • At handover from UTRAN/GERAN to E-UTRAN the AMBRs from the EPS subscribed QoS profile for the corresponding APN shall take precedence. In case of handover from a pre-Rel8 SGSN and if the MME has no subscribed AMBR values for the UE, the MME provides a local UE-AMBR and local APN-AMBR (APN-AMBRs if it is a M-PDN connection handover) to the eNodeB, the local APN-AMBRs to the Serving GW and the PDNGWs until the MME gets the EPS subscribed AMBRs. This the local UE-AMBR may be for example based on the summing up of pre-Rel-8 bearer parameter MBR of all the interactive/background PDP contexts of all the active APNs or on internal configuration. Each local APN-AMBR may be for example based on the summing up of pre-Rel-8 bearer parameter MBR of all the interactive/background PDP contexts of that active APN or on internal configuration. When the MME gets the subscribed UE-AMBR and APN-AMBR values from the HSS, it calculate the used UE-AMBR (UE-AMBR=MIN(subscribed UE-AMBR, sum APN-AMBR of all active APNs) and possibly set the used APN-AMBRs if the used UE-AMBR is smaller than the subscribed UE-AMBR. Then it compares these values with the local AMBRs and if any of the local AMBRs are different from the corresponding subscribed (or used) AMBRs, the MME initiates HSS Initiated Subscribed QoS Modification procedure to notify the used UE-AMBR and the APN-AMBRs (or used APN-AMBRs) to the eNodeB, notify the subscribed APN-AMBRs (or used APN-AMBRs) to the Serving GW and PDNGWs.
  • Handling of AMBR in case of handover from Rel8 SGSN is FFS.
  • standardized value of the EPS bearer parameter QCI is mapped one-to-one to/from values of the pre-Rel-8 parameters Traffic Class, Traffic Handling Priority, Signalling Indication, and Source Statistics Descriptor as shown in Table E-1.
  • At handover from E-UTRAN to UTRAN/GERAN the setting of the values of the pre-Rel-8 parameters Transfer Delay and SDU Error Ratio should be derived from the corresponding QCI's Packet Delay Budget and Packet Loss Rate, respectively. At handover from UTRAN/GERAN to E-UTRAN the values of the pre-Rel-8 parameters Transfer Delay and SDU Error Ratio should be ignored.
  • The setting of the values of all other pre-Rel-8 QoS is based on operator policy pre-configured in the MME.
  • TABLE E-1
    Mapping between standardized QCIs and pre-Rel-8 QoS parameter
    values
    Traffic Source
    Handling Signaling Statistics
    QCI Traffic Class Priority Indication Descriptor
    1 Conversational N/A N/A Speech
    2 Conversational N/A N/A Unknown
    FFS Streaming N/A N/A Speech
    3 Streaming N/A N/A Unknown
    5 Interactive 1 Yes N/A
    7 Interactive 1 No N/A
    6 Interactive 2 No N/A
    8 Interactive 3 No N/A
    9 Background N/A N/A N/A
  • The mapping of QCI 4 is FFS.
  • Conclusion and Summary
  • AMBR Mapping for eUTRAN to UTRAN/GERAN Inter-RAT Handover.
  • For each of the active APNs connected, the MBR For each of the active non-GBRs used in the target UTRAN/GERAN shall be set to MBR=used APN-AMBR/N, or sum of MBRs with various values=used APN-AMBR; where N is the active non-GBRs for the APN and the used APN-AMBR can be the subscribed APN-AMBR or a modified APN-AMBR for the active APN.
  • Propose 2: IF the target UTRAN/GERAN does not support multiple PDN connectivity, in the eURAN to UTRAN/GERAN Inter-RAT handover preparation.
  • Only the QoS mapping for the default APN shall be implemented and only the connections to the default APN shall be connected to the target UTRAN/GERAN.
  • Propose 3: AMBR Mapping for UTRAN/GERAN to eUTRAN inter-RAT handover.
  • The APN-AMBRs and the UE-AMBR used by the target eUTRAN during the Inter-RAT handover preparation phase shall be set according to: APN-AMBR of each active APN=sum of MBRs of the active non-GBRs in that APN; and UE-AMBR=sum of MBRs of all the active non-GBRs in the source UTRAN/GERAN. The UE-AMBR and APN-AMBRs used by the eNodeB, the PDN GWs shall be updated by the MME (or the eNodeB or some other NE) based on the subscribed UE-AMBR and APN-AMBRs from accessing the HSS in the handover execution phase.
  • Propose 4: 3GPP Access Inter-RAT handover procedure enhancements for non-GBR AMBR handling.
  • To support the proposals 1-3, the procedures for 3GPP Access eUTRAN I-RAT handover shall be enhanced.
  • The following 3rd Generation Partnership Project (3GPP) Technical Specifications (TS) are incorporated herein by reference: TS 36.321, TS 36.331, TS 36.300, TS 23.401, TS 23.402, S2-084350, and TS 23.236. 3GPP S2-084350, per UE AMBR, 2008-5; 3GPP TS23.401 v8.1.0, 2008-3; 3GPP TS23.236 Intra-domain connection of RAN notes to multiple CN nodes, v7.0.0 2006-12.
  • While several embodiments have been provided in the present disclosure, it should be understood that the disclosed systems and methods may be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted, or not implemented.
  • Also, techniques, systems, subsystems and methods described and illustrated in the various embodiments as discrete or separate may be combined or integrated with other systems, modules, techniques, or methods without departing from the scope of the present disclosure. Other items shown or discussed as coupled or directly coupled or communicating with each other may be indirectly coupled or communicating through some interface, device, or intermediate component, whether electrically, mechanically, or otherwise. Other examples of changes, substitutions, and alterations are ascertainable by one skilled in the art and could be made without departing from the spirit and scope disclosed herein.

Claims (13)

1-24. (canceled)
25. A method for inter-radio access technology (RAT) connectivity during a handover from a first radio access network (RAN) to a second RAN, wherein one of the first RAN and the second RAN does not support aggregated maximum bit rate (AMBR) for non-guaranteed bit rate (non-GBR) bearers, comprising:
for each access point name (APN) in communication with the first RAN, determining a maximum bit rate (MBR) for each active non-GBR bearer associated with a user equipment (UE) in the second RAN based on each respective APN's AMBR associated with the UE.
26. The method of claim 25, wherein a maximum bit rate (MBR) for each active non-GBR bearer in the second RAN is further defined as being determined by dividing each respective APN's AMBR by a number of active non-GBR bearers for the respective APN.
27. The method of claim 25, wherein the first RAN comprises an evolved universal terrestrial radio access network (E-UTRAN) network and wherein the second RAN comprises a universal terrestrial radio access network (UTRAN)/ global system for mobiles (GSM) enhanced data for GSM evolution (EDGE) radio access network (GERAN).
28. The method of claim 25, wherein when the second RAN supports only single APN connectivity, the method further comprising:
determining which APNs in communication with the first RAN are default APNs; and
mapping only default APNs to the second RAN.
29. The method of claim 25, wherein the MBRs of packet data protocol (PDP) contexts associated with traffic classes, selected from the group consisting of interactive and background, are further set based on an APN-AMBR operator authorization.
30. The method of claim 29, wherein the authorization is based on a policy comprising setting a sum of MBRs not to exceed a value of an evolved packet system (EPS) bearer parameter APN-AMBR.
31. A device for inter-radio access technology (RAT) connectivity during a handover from a first radio access network (RAN) to a second RAN, wherein one of the first RAN and the second RAN does not support aggregated maximum bit rate (AMBR) for non-guaranteed bit rate (non-GBR) bearers, the device comprising:
one or more components configured, such that for each access point name (APN) in communication with the first RAN, determine a maximum bit rate (MBR) for each active non-GBR bearer associated with a user equipment (UE) in the second RAN based on each respective APN's AMBR associated with the UE.
32. The device of claim 31, wherein a maximum bit rate (MBR) for each active non-GBR bearer in the second RAN is further defined as being determined by dividing each respective APN's AMBR by a number of active non-GBR bearers for the respective APN.
33. The device of claim 31, wherein the first RAN comprises an evolved universal terrestrial radio access network (E-UTRAN) network and wherein the second RAN comprises a universal terrestrial radio access network (UTRAN)/global system for mobiles (GSM) enhanced data for GSM evolution (EDGE) radio access network (GERAN).
34. The device of claim 31, wherein when the second RAN supports only single APN connectivity, the method further comprising:
determine which APNs in communication with the first RAN are default APNs; and
map only default APNs to the second RAN.
35. The device of claim 31, wherein the MBRs of packet data protocol (PDP) contexts associated with traffic classes, selected from the group consisting of interactive and background, are further set based on an APN-AMBR operator authorization.
36. The device of claim 35, wherein the authorization is based on a policy comprising setting a sum of MBRs not to exceed a value of an evolved packet system (EPS) bearer parameter APN-AMBR.
US13/336,978 2008-06-18 2011-12-23 Mechanism for 3rd Generation Partnership Project Multiple Inter-Network Quality of Service Continuity Abandoned US20120093129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/336,978 US20120093129A1 (en) 2008-06-18 2011-12-23 Mechanism for 3rd Generation Partnership Project Multiple Inter-Network Quality of Service Continuity

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US7374208P 2008-06-18 2008-06-18
USPCT/US2009/047824 2009-06-18
PCT/US2009/047824 WO2009155438A1 (en) 2008-06-18 2009-06-18 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity
US12/487,446 US8085731B2 (en) 2008-06-18 2009-06-18 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity
US13/336,978 US20120093129A1 (en) 2008-06-18 2011-12-23 Mechanism for 3rd Generation Partnership Project Multiple Inter-Network Quality of Service Continuity

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/487,446 Continuation US8085731B2 (en) 2008-06-18 2009-06-18 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity

Publications (1)

Publication Number Publication Date
US20120093129A1 true US20120093129A1 (en) 2012-04-19

Family

ID=40984787

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/487,446 Active 2029-12-05 US8085731B2 (en) 2008-06-18 2009-06-18 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity
US13/336,978 Abandoned US20120093129A1 (en) 2008-06-18 2011-12-23 Mechanism for 3rd Generation Partnership Project Multiple Inter-Network Quality of Service Continuity
US13/336,798 Active 2030-06-19 US8787316B2 (en) 2008-06-18 2011-12-23 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity
US14/336,804 Active US9008044B2 (en) 2008-06-18 2014-07-21 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/487,446 Active 2029-12-05 US8085731B2 (en) 2008-06-18 2009-06-18 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/336,798 Active 2030-06-19 US8787316B2 (en) 2008-06-18 2011-12-23 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity
US14/336,804 Active US9008044B2 (en) 2008-06-18 2014-07-21 Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity

Country Status (13)

Country Link
US (4) US8085731B2 (en)
EP (3) EP2314100B1 (en)
JP (2) JP4914951B2 (en)
KR (3) KR101260210B1 (en)
CN (2) CN104284374B (en)
AT (1) ATE539573T1 (en)
AU (1) AU2009260005B2 (en)
BR (1) BRPI0914154B1 (en)
CA (1) CA2728483C (en)
ES (1) ES2380200T3 (en)
HK (1) HK1162227A1 (en)
MX (1) MX2010014263A (en)
WO (1) WO2009155438A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090052384A1 (en) * 2007-08-20 2009-02-26 Ipwireless, Inc. Apparatus and method for signaling in a wireless communication system
US20110217952A1 (en) * 2009-10-05 2011-09-08 Telefonaktiebolaget L M Ericsson (Publ) Method and Arrangement in a Telecommunication System
US20120072585A1 (en) * 2010-09-17 2012-03-22 Telefonaktiebolaget L M Ericsson (Publ) PCC Control at PCRF Failure
US20120209978A1 (en) * 2011-02-11 2012-08-16 Industry-Academic Cooperation Foundation, Yonsei University Group-based control method and apparatus for mtc devices in mobile communication system
US20120218971A1 (en) * 2011-02-24 2012-08-30 Qualcomm Incorporated Methods and apparatus to reduce a time to transfer multiple pdn contexts during inter-radio access technology handoff
US20130107860A1 (en) * 2011-10-27 2013-05-02 Qualcomm Incorporated REDUCING SERVICE INTERRUPTION OF VOICE OVER INTERNET PROTOCOL (VoIP) CALLS DUE TO INTER-RADIO ACCESS TECHNOLOGY (RAT) HANDOVER
WO2014021671A1 (en) * 2012-08-03 2014-02-06 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
WO2015174700A1 (en) * 2014-05-11 2015-11-19 엘지전자 주식회사 Method for configuring apn-ambr in wireless communication system supporting csipto and device therefor
CN106471847A (en) * 2014-07-01 2017-03-01 谷歌技术控股有限责任公司 Method and apparatus for transmitting data communication session between radio access network
US9628980B2 (en) 2012-03-23 2017-04-18 Nec Corporation Subscriber server, monitoring server, mobile terminal, methods related thereto, and computer readable medium
US11178576B2 (en) 2017-05-05 2021-11-16 Huawei Technologies Co., Ltd. Parameter conversions between an evolved packet system network and a 5G network

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227714B (en) * 2007-01-18 2011-04-06 华为技术有限公司 System, apparatus and method for sharing network resource
CN101409951B (en) 2007-10-11 2010-08-25 华为技术有限公司 Method for establishing load bearing and relevant apparatus
CN101534532B (en) * 2008-03-12 2012-02-08 中兴通讯股份有限公司 Switch-based bearing establishing method and system thereof
JP5411263B2 (en) * 2008-06-16 2014-02-12 サムスン エレクトロニクス カンパニー リミテッド Method and system for handover management in wireless access network
CN101635962B (en) * 2008-07-24 2012-01-04 电信科学技术研究院 Method for acquiring load situation during user-equipment switch, and MME
CN101651898B (en) * 2008-08-15 2012-12-12 华为技术有限公司 Method, device and system for acquiring position area information during switching heterogeneous networks
US8832208B2 (en) * 2008-08-18 2014-09-09 Telefonaktiebolaget L M Ericsson (Publ) Handling of aggregate maximum bit rate by policy and charge control
US8391239B2 (en) * 2008-09-22 2013-03-05 Qualcomm Incorporated Bearer count alignment during inter-rat handover
US9232452B2 (en) * 2008-10-31 2016-01-05 Htc Corporation Method of handling an inter rat handover in wireless communication system and related communication device
KR20100060800A (en) * 2008-11-28 2010-06-07 삼성전자주식회사 System and method for allocating selectively resource to user equipment in home node b
US8289848B2 (en) 2009-02-02 2012-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Controlling a packet flow from a user equipment
US9357568B2 (en) * 2009-06-16 2016-05-31 Futurewei Technologies, Inc. System and method for adapting an application source rate to a load condition
RU2546975C2 (en) * 2009-06-19 2015-04-10 Дойче Телеком Аг Method, system and base station for sharing or jointly using geran (gsm edge radio access network) mobile radio access network
ES2435472T3 (en) * 2009-09-25 2013-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for managing a retention priority and evolved allocation
US8762232B2 (en) * 2010-01-20 2014-06-24 Futurewei Technologies, Inc. Method for accounting information handling in an interworking
JP5465025B2 (en) * 2010-01-27 2014-04-09 Necトーキン株式会社 Conductive polymer suspension and manufacturing method thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
JP5432811B2 (en) * 2010-04-14 2014-03-05 株式会社日立製作所 Wireless communication system and gateway device
US8774128B2 (en) 2010-04-19 2014-07-08 Qualcomm Incorporated Method and apparatus for detachment from a wireless communication network
WO2011137580A1 (en) * 2010-05-04 2011-11-10 Qualcomm Incorporated Shared circuit switched security context
US8787172B2 (en) * 2010-06-21 2014-07-22 Qualcomm Incorporated Method and apparatus for QoS context transfer during inter radio access technology handover in a wireless communication system
CN101925137B (en) * 2010-08-30 2012-11-21 华为技术有限公司 Method for processing QoS parameter under signing service combining scene and equipment thereof
WO2012041366A1 (en) * 2010-09-28 2012-04-05 Telefonaktiebolaget L M Ericsson (Publ) Authorization of a communication node to determine a bit rate
WO2012080084A1 (en) * 2010-12-13 2012-06-21 Telefonaktiebolaget L M Ericsson (Publ) Extended qos support in epc
CN102595362A (en) * 2011-01-18 2012-07-18 中兴通讯股份有限公司 Modification undertaking system and method
ES2974801T3 (en) * 2011-03-21 2024-07-01 Nokia Technologies Oy System and method for taking advantage of the download capacity in a wireless communications network
KR101197904B1 (en) 2011-04-04 2012-11-05 삼성전기주식회사 Power combiner, power amplifying module having thereof, and signal transceiver module
GB2489705B (en) 2011-04-04 2018-01-10 Samsung Electronics Co Ltd Method and apparatus for quality of service control for a user equipment
US8861475B2 (en) * 2011-05-19 2014-10-14 Telefonaktiebolaget L M Ericsson (Publ) Inter-RAT handover control using sequence numbers
US8902852B2 (en) * 2011-05-19 2014-12-02 Telefonaktiebolaget L M Ericsson (Publ) Inter-rat handover control using empty GRE packets
CN103597879A (en) 2011-06-16 2014-02-19 瑞典爱立信有限公司 SGSN-MME centric handover
WO2013006379A1 (en) 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
US9374744B2 (en) * 2011-08-10 2016-06-21 Kt Corporation Apparatus and method for seamless handoff of a service between different types of networks
US20130114571A1 (en) 2011-11-07 2013-05-09 Qualcomm Incorporated Coordinated forward link blanking and power boosting for flexible bandwidth systems
US9848339B2 (en) 2011-11-07 2017-12-19 Qualcomm Incorporated Voice service solutions for flexible bandwidth systems
US9516531B2 (en) 2011-11-07 2016-12-06 Qualcomm Incorporated Assistance information for flexible bandwidth carrier mobility methods, systems, and devices
US9001679B2 (en) 2011-11-07 2015-04-07 Qualcomm Incorporated Supporting voice for flexible bandwidth systems
US8446844B1 (en) 2011-12-04 2013-05-21 Ofinno Technologies, Llc Handover in multicarrier wireless networks
US9055496B2 (en) 2011-12-09 2015-06-09 Qualcomm Incorporated Providing for mobility for flexible bandwidth carrier systems
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US10327196B2 (en) * 2012-04-09 2019-06-18 Apple Inc. Apparatus and methods for intelligent scheduling in hybrid networks based on client identity
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
CN103428690B (en) * 2012-05-23 2016-09-07 华为技术有限公司 The safe method for building up of WLAN and system, equipment
CN103457967B (en) * 2012-05-30 2015-05-20 腾讯科技(深圳)有限公司 Service node switching method and system
CN103841538B (en) * 2012-11-22 2019-06-25 中兴通讯股份有限公司 Manage the method and system of data flow
US9444745B2 (en) * 2013-03-08 2016-09-13 Blackberry Limited Sending data rate information to a wireless access network node
US20140295849A1 (en) * 2013-03-29 2014-10-02 Alexander Sirotkin Handover of user equipment with non-gbr bearers
GB2512589B (en) * 2013-04-02 2015-07-15 Broadcom Corp Method, apparatus and computer program for operating a user equipment
US9560212B2 (en) 2013-04-15 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced QOS control in PCRF
JP6876432B2 (en) * 2013-05-21 2021-05-26 サムスン エレクトロニクス カンパニー リミテッド Cell selection method and device in mobile communication network
CN104641689B (en) 2013-05-22 2019-05-10 华为技术有限公司 The method and access device of user equipment access network
US10834649B2 (en) * 2013-05-30 2020-11-10 Telefonaktiebolaget Lm Ericsson (Publ) RAN-controlled selective handover between first and second RAN:S
EP3047625A1 (en) 2013-09-16 2016-07-27 Convida Wireless, LLC Mobile network operator (mno) control of wifi qos via eap/diameter
EP2854447B1 (en) 2013-09-30 2017-06-28 Alcatel Lucent On-demand qos for data connections
CN105323806B (en) * 2014-07-31 2020-01-14 中兴通讯股份有限公司 Method and device for establishing bearer
WO2016034199A1 (en) * 2014-09-01 2016-03-10 Telefonaktiebolaget L M Ericsson (Publ) Routing based on access point name (apn) information
US10257760B2 (en) 2014-09-16 2019-04-09 Mediatek Inc. Method of inter-RAT bearer change for 3GPP system
WO2016049562A2 (en) * 2014-09-26 2016-03-31 Kyocera Corporation Traffic steering between cellular networks and wireless local area networks (wlans) using user equipment (ue) throughput estimates
CN106162927A (en) * 2015-03-25 2016-11-23 中兴通讯股份有限公司 A kind of carrying establishing method, packet data gateway, gateway and system
US9763148B2 (en) 2015-05-04 2017-09-12 At&T Intellectual Property I, L.P. Method and system for managing wireless connectivity in a communication system
US10148509B2 (en) * 2015-05-13 2018-12-04 Oracle International Corporation Methods, systems, and computer readable media for session based software defined networking (SDN) management
US10609740B2 (en) * 2015-10-09 2020-03-31 Apple Inc. Network initiated packet data network connection
CN110995773B (en) * 2016-05-24 2021-01-05 华为技术有限公司 QoS control method and device
WO2018088808A1 (en) * 2016-11-09 2018-05-17 엘지전자 주식회사 Method and network node for supporting handover
CN108616931B (en) * 2017-02-04 2023-06-09 中兴通讯股份有限公司 Control method and device for maximum bandwidth of user equipment
US10772022B2 (en) * 2017-02-10 2020-09-08 Mediatek Inc. Method and apparatus for inter-system handover in wireless communication
CN110786048A (en) * 2017-06-20 2020-02-11 中兴通讯股份有限公司 Method and system for switching between systems
EP3675557B1 (en) 2017-09-28 2022-06-08 LG Electronics Inc. Method for transmitting and receiving signal related to handover from 5gs to eps in wireless communication system and device therefor
CN107888612A (en) * 2017-11-29 2018-04-06 北京汽车股份有限公司 Vehicle and its without key start control method, control system
CN110366270B (en) 2018-04-10 2021-08-13 华为技术有限公司 Communication method and device
US10820230B2 (en) * 2018-08-14 2020-10-27 Motorola Solutions, Inc. Device, system and method for determining and providing bearer indications for a group communication session
CN111372267B (en) * 2018-12-26 2022-03-08 华为技术有限公司 Parameter determination method, communication device and storage medium
US20210328886A1 (en) * 2021-06-25 2021-10-21 Intel Corporation Methods and apparatus to facilitate service proxying

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219166A1 (en) * 2007-03-07 2008-09-11 Nec Corporation Node and fair rate calculating method
US20090052384A1 (en) * 2007-08-20 2009-02-26 Ipwireless, Inc. Apparatus and method for signaling in a wireless communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330448B2 (en) * 2002-08-21 2008-02-12 Thomson Licensing Technique for managing quality of services levels when interworking a wireless local area network with a wireless telephony network
US8064400B2 (en) * 2005-07-20 2011-11-22 Interdigital Technology Corporation Method and system for supporting an evolved UTRAN
CN101119581A (en) * 2006-08-04 2008-02-06 华为技术有限公司 Method for transmitting service quality information in evolvement network
US8064382B2 (en) 2007-09-28 2011-11-22 Wireless Technology Solutions Llc Apparatus and method for scheduling in a wireless communication system
EP2292063A1 (en) * 2008-05-30 2011-03-09 Nokia Siemens Networks Oy Allocating resources within a communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080219166A1 (en) * 2007-03-07 2008-09-11 Nec Corporation Node and fair rate calculating method
US20090052384A1 (en) * 2007-08-20 2009-02-26 Ipwireless, Inc. Apparatus and method for signaling in a wireless communication system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090052384A1 (en) * 2007-08-20 2009-02-26 Ipwireless, Inc. Apparatus and method for signaling in a wireless communication system
US8761091B2 (en) * 2007-08-20 2014-06-24 Sony Corporation Apparatus and method for signaling in a wireless communication system
US8660088B2 (en) * 2009-10-05 2014-02-25 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a telecommunication system
US20110217952A1 (en) * 2009-10-05 2011-09-08 Telefonaktiebolaget L M Ericsson (Publ) Method and Arrangement in a Telecommunication System
US9088920B2 (en) 2009-10-05 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a telecommunication system
US9172776B2 (en) * 2010-09-17 2015-10-27 Telefonaktiebolaget L M Ericsson (Publ) PCC control at PCRF failure
US20120072585A1 (en) * 2010-09-17 2012-03-22 Telefonaktiebolaget L M Ericsson (Publ) PCC Control at PCRF Failure
US20120209978A1 (en) * 2011-02-11 2012-08-16 Industry-Academic Cooperation Foundation, Yonsei University Group-based control method and apparatus for mtc devices in mobile communication system
US9003004B2 (en) * 2011-02-22 2015-04-07 Samsung Electronics Co., Ltd. Group-based control method and apparatus for MTC devices in mobile communication system
US8837405B2 (en) * 2011-02-24 2014-09-16 Qualcomm Incorporated Methods and apparatus to reduce a time to transfer multiple PDN contexts during inter-radio access technology handoff
US20120218971A1 (en) * 2011-02-24 2012-08-30 Qualcomm Incorporated Methods and apparatus to reduce a time to transfer multiple pdn contexts during inter-radio access technology handoff
US20130107860A1 (en) * 2011-10-27 2013-05-02 Qualcomm Incorporated REDUCING SERVICE INTERRUPTION OF VOICE OVER INTERNET PROTOCOL (VoIP) CALLS DUE TO INTER-RADIO ACCESS TECHNOLOGY (RAT) HANDOVER
US9628980B2 (en) 2012-03-23 2017-04-18 Nec Corporation Subscriber server, monitoring server, mobile terminal, methods related thereto, and computer readable medium
US10484864B2 (en) 2012-03-23 2019-11-19 Nec Corporation Subscriber server, monitoring server, mobile terminal, methods related thereto, and computer readable medium
WO2014021671A1 (en) * 2012-08-03 2014-02-06 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
US9736744B2 (en) 2012-08-03 2017-08-15 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
WO2015174700A1 (en) * 2014-05-11 2015-11-19 엘지전자 주식회사 Method for configuring apn-ambr in wireless communication system supporting csipto and device therefor
CN106471847A (en) * 2014-07-01 2017-03-01 谷歌技术控股有限责任公司 Method and apparatus for transmitting data communication session between radio access network
US11178576B2 (en) 2017-05-05 2021-11-16 Huawei Technologies Co., Ltd. Parameter conversions between an evolved packet system network and a 5G network

Also Published As

Publication number Publication date
CN102124778A (en) 2011-07-13
US20140364121A1 (en) 2014-12-11
KR20120073348A (en) 2012-07-04
KR101260210B1 (en) 2013-05-09
US20090316656A1 (en) 2009-12-24
EP2469920B1 (en) 2018-11-21
WO2009155438A1 (en) 2009-12-23
US20120165018A1 (en) 2012-06-28
KR101203304B1 (en) 2012-11-21
BRPI0914154B1 (en) 2020-12-22
US8085731B2 (en) 2011-12-27
JP2011525334A (en) 2011-09-15
MX2010014263A (en) 2011-07-01
JP2012142950A (en) 2012-07-26
JP5351292B2 (en) 2013-11-27
EP2469920A1 (en) 2012-06-27
HK1162227A1 (en) 2012-08-24
KR20120138824A (en) 2012-12-26
US9008044B2 (en) 2015-04-14
KR20110030619A (en) 2011-03-23
EP2314100A1 (en) 2011-04-27
EP3499967A1 (en) 2019-06-19
US8787316B2 (en) 2014-07-22
ATE539573T1 (en) 2012-01-15
CA2728483A1 (en) 2009-12-23
EP2314100B1 (en) 2011-12-28
JP4914951B2 (en) 2012-04-11
AU2009260005B2 (en) 2013-10-31
CN104284374A (en) 2015-01-14
CN102124778B (en) 2014-10-29
EP3499967B1 (en) 2021-03-10
AU2009260005A1 (en) 2009-12-23
CA2728483C (en) 2015-04-21
BRPI0914154A2 (en) 2015-10-20
KR101274289B1 (en) 2013-06-13
ES2380200T3 (en) 2012-05-09
CN104284374B (en) 2019-06-04

Similar Documents

Publication Publication Date Title
US9008044B2 (en) Mechanism for 3rd generation partnership project multiple inter-network quality of service continuity
EP2104275B1 (en) Dynamic aggregated maximum bit rate for evolved packet system non-guaranteed bit rate quality of service enforcement and network bandwidth utilization
US8599689B2 (en) Network quality of service update control
US8295174B2 (en) Proactive uplink aggregate maximum bit rate enforcement

Legal Events

Date Code Title Description
AS Assignment

Owner name: RESEARCH IN MOTION CORPORATION, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHAO, XIAOMING;WU, WEI;SIGNING DATES FROM 20091123 TO 20100115;REEL/FRAME:027492/0305

Owner name: RESEARCH IN MOTION LIMITED, ONTARIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESEARCH IN MOTION CORPORATION;REEL/FRAME:027492/0339

Effective date: 20101005

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BLACKBERRY LIMITED, ONTARIO

Free format text: CHANGE OF NAME;ASSIGNOR:RESEARCH IN MOTION LIMITED;REEL/FRAME:032836/0938

Effective date: 20130709

AS Assignment

Owner name: OT PATENT ESCROW, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLACKBERRY LIMITED;REEL/FRAME:064007/0061

Effective date: 20230320

Owner name: MALIKIE INNOVATIONS LIMITED, IRELAND

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:OT PATENT ESCROW, LLC;REEL/FRAME:064015/0001

Effective date: 20230511