US20110311788A1 - Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method - Google Patents
Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method Download PDFInfo
- Publication number
- US20110311788A1 US20110311788A1 US13/163,174 US201113163174A US2011311788A1 US 20110311788 A1 US20110311788 A1 US 20110311788A1 US 201113163174 A US201113163174 A US 201113163174A US 2011311788 A1 US2011311788 A1 US 2011311788A1
- Authority
- US
- United States
- Prior art keywords
- photocurable composition
- silphenylene
- derivatives
- component
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000007261 regionalization Effects 0.000 title claims abstract description 27
- 230000003287 optical effect Effects 0.000 title claims abstract description 24
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 125000002723 alicyclic group Chemical group 0.000 claims abstract description 10
- 150000003961 organosilicon compounds Chemical class 0.000 claims abstract description 10
- 239000002253 acid Substances 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000011417 postcuring Methods 0.000 claims abstract description 6
- -1 sulfonate ester Chemical class 0.000 claims description 44
- 125000000962 organic group Chemical group 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical class C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- LJHFIVQEAFAURQ-ZPUQHVIOSA-N (NE)-N-[(2E)-2-hydroxyiminoethylidene]hydroxylamine Chemical class O\N=C\C=N\O LJHFIVQEAFAURQ-ZPUQHVIOSA-N 0.000 claims description 5
- IZJVVXCHJIQVOL-UHFFFAOYSA-N nitro(phenyl)methanesulfonic acid Chemical class OS(=O)(=O)C([N+]([O-])=O)C1=CC=CC=C1 IZJVVXCHJIQVOL-UHFFFAOYSA-N 0.000 claims description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 3
- 150000003918 triazines Chemical class 0.000 claims description 3
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 claims 2
- 239000010408 film Substances 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 16
- 235000012431 wafers Nutrition 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 0 *[Y][Si]1(*)OCC[Si](*)(C[Si](C)(C)C2=CC=C([Si](C)(C)[W][Si](*)(*)O[Si](*)(*)O[Si](*)(*)*)C=C2)O[Si](*)(*)O1.C.C.C.C.C.C Chemical compound *[Y][Si]1(*)OCC[Si](*)(C[Si](C)(C)C2=CC=C([Si](C)(C)[W][Si](*)(*)O[Si](*)(*)O[Si](*)(*)*)C=C2)O[Si](*)(*)O1.C.C.C.C.C.C 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 125000003710 aryl alkyl group Chemical group 0.000 description 7
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 5
- SLJFKNONPLNAPF-UHFFFAOYSA-N 3-Vinyl-7-oxabicyclo[4.1.0]heptane Chemical compound C1C(C=C)CCC2OC21 SLJFKNONPLNAPF-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- WUKUJFNYTULCOP-UHFFFAOYSA-N CCCC1CCC2OC2C1 Chemical compound CCCC1CCC2OC2C1 WUKUJFNYTULCOP-UHFFFAOYSA-N 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- UHXCHUWSQRLZJS-UHFFFAOYSA-N (4-dimethylsilylidenecyclohexa-2,5-dien-1-ylidene)-dimethylsilane Chemical compound C[Si](C)C1=CC=C([Si](C)C)C=C1 UHXCHUWSQRLZJS-UHFFFAOYSA-N 0.000 description 3
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000006165 cyclic alkyl group Chemical group 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 125000005375 organosiloxane group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000000016 photochemical curing Methods 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 3
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 3
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 2
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 2
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 2
- JIHKNJSZJGQASS-UHFFFAOYSA-N CCCC1CCC2OC2C1.CCCC1CO1 Chemical compound CCCC1CCC2OC2C1.CCCC1CO1 JIHKNJSZJGQASS-UHFFFAOYSA-N 0.000 description 2
- NVRBTKMAZQNKPX-UHFFFAOYSA-N C[Si](C)(C)C1=CC=C([Si](C)(C)C)C=C1 Chemical compound C[Si](C)(C)C1=CC=C([Si](C)(C)C)C=C1 NVRBTKMAZQNKPX-UHFFFAOYSA-N 0.000 description 2
- JVUBHRQWZCRMGA-UHFFFAOYSA-N C[Si](C)(CCC1CCC2OC2C1)C1=CC=C([Si](C)(C)CCC2CCC3OC3C2)C=C1 Chemical compound C[Si](C)(CCC1CCC2OC2C1)C1=CC=C([Si](C)(C)CCC2CCC3OC3C2)C=C1 JVUBHRQWZCRMGA-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000005036 alkoxyphenyl group Chemical group 0.000 description 2
- 125000005037 alkyl phenyl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- BITPLIXHRASDQB-UHFFFAOYSA-N ethenyl-[ethenyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound C=C[Si](C)(C)O[Si](C)(C)C=C BITPLIXHRASDQB-UHFFFAOYSA-N 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 238000006459 hydrosilylation reaction Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- GCIYMCNGLUNWNR-UHFFFAOYSA-N (2,4-dinitrophenyl)methyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OCC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O GCIYMCNGLUNWNR-UHFFFAOYSA-N 0.000 description 1
- MCJPJAJHPRCILL-UHFFFAOYSA-N (2,6-dinitrophenyl)methyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OCC1=C([N+]([O-])=O)C=CC=C1[N+]([O-])=O MCJPJAJHPRCILL-UHFFFAOYSA-N 0.000 description 1
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- VLLPVDKADBYKLM-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate;triphenylsulfanium Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 VLLPVDKADBYKLM-UHFFFAOYSA-M 0.000 description 1
- LEEANUDEDHYDTG-UHFFFAOYSA-N 1,2-dimethoxypropane Chemical compound COCC(C)OC LEEANUDEDHYDTG-UHFFFAOYSA-N 0.000 description 1
- VNQNXQYZMPJLQX-UHFFFAOYSA-N 1,3,5-tris[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CN2C(N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C(=O)N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C2=O)=O)=C1 VNQNXQYZMPJLQX-UHFFFAOYSA-N 0.000 description 1
- JEIHSRORUWXJGF-UHFFFAOYSA-N 1-[(2-methylpropan-2-yl)oxy]propan-2-yl acetate Chemical compound CC(=O)OC(C)COC(C)(C)C JEIHSRORUWXJGF-UHFFFAOYSA-N 0.000 description 1
- WNQSKPOIYILBMI-UHFFFAOYSA-N 1-[butylsulfonyl(diazo)methyl]sulfonylbutane Chemical compound CCCCS(=O)(=O)C(=[N+]=[N-])S(=O)(=O)CCCC WNQSKPOIYILBMI-UHFFFAOYSA-N 0.000 description 1
- GLYOFBNLYMTEPS-UHFFFAOYSA-N 1-[diazo(2-methylpropylsulfonyl)methyl]sulfonyl-2-methylpropane Chemical compound CC(C)CS(=O)(=O)C(=[N+]=[N-])S(=O)(=O)CC(C)C GLYOFBNLYMTEPS-UHFFFAOYSA-N 0.000 description 1
- INVPZZAWURTZET-UHFFFAOYSA-N 1-[diazo(3-methylbutylsulfonyl)methyl]sulfonyl-3-methylbutane Chemical compound CC(C)CCS(=O)(=O)C(=[N+]=[N-])S(=O)(=O)CCC(C)C INVPZZAWURTZET-UHFFFAOYSA-N 0.000 description 1
- WUYAQJZXAJBVFT-UHFFFAOYSA-N 1-[diazo(propylsulfonyl)methyl]sulfonylpropane Chemical compound CCCS(=O)(=O)C(=[N+]=[N-])S(=O)(=O)CCC WUYAQJZXAJBVFT-UHFFFAOYSA-N 0.000 description 1
- GYQQFWWMZYBCIB-UHFFFAOYSA-N 1-[diazo-(4-methylphenyl)sulfonylmethyl]sulfonyl-4-methylbenzene Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1=CC=C(C)C=C1 GYQQFWWMZYBCIB-UHFFFAOYSA-N 0.000 description 1
- DDPLKUDCQKROTF-UHFFFAOYSA-N 1-cyclohexyl-2-methyl-2-(4-methylphenyl)sulfonylpropan-1-one Chemical compound C1=CC(C)=CC=C1S(=O)(=O)C(C)(C)C(=O)C1CCCCC1 DDPLKUDCQKROTF-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- FODCFYIWOJIZQL-UHFFFAOYSA-N 1-methylsulfanyl-3,5-bis(trifluoromethyl)benzene Chemical compound CSC1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1 FODCFYIWOJIZQL-UHFFFAOYSA-N 0.000 description 1
- MOLRNXJUYCXJTN-UHFFFAOYSA-N 2,4-dimethyl-2-(4-methylphenyl)sulfonylpentan-3-one Chemical compound CC(C)C(=O)C(C)(C)S(=O)(=O)C1=CC=C(C)C=C1 MOLRNXJUYCXJTN-UHFFFAOYSA-N 0.000 description 1
- KJXSTIJHXKFZKV-UHFFFAOYSA-N 2-(cyclohexylmethylsulfanyl)cyclohexan-1-one;trifluoromethanesulfonic acid Chemical compound [O-]S(=O)(=O)C(F)(F)F.O=C1CCCCC1[SH+]CC1CCCCC1 KJXSTIJHXKFZKV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZFOHYVABZSHZFF-UHFFFAOYSA-N 2-[(z)-tert-butylsulfonyl(diazo)methyl]sulfonyl-2-methylbutane Chemical compound CCC(C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(C)(C)C ZFOHYVABZSHZFF-UHFFFAOYSA-N 0.000 description 1
- KKOOSMDBEULUDH-UHFFFAOYSA-N 2-[butan-2-ylsulfonyl(diazo)methyl]sulfonylbutane Chemical compound CCC(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(C)CC KKOOSMDBEULUDH-UHFFFAOYSA-N 0.000 description 1
- IIBYXAJIXZFSSE-UHFFFAOYSA-N 2-[diazo(2-methylbutan-2-ylsulfonyl)methyl]sulfonyl-2-methylbutane Chemical compound CCC(C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(C)(C)CC IIBYXAJIXZFSSE-UHFFFAOYSA-N 0.000 description 1
- FTPALKUEAPIMPZ-UHFFFAOYSA-N 2-[diazo(pentan-2-ylsulfonyl)methyl]sulfonylpentane Chemical compound CCCC(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(C)CCC FTPALKUEAPIMPZ-UHFFFAOYSA-N 0.000 description 1
- DRYBUHKBBRHEAE-UHFFFAOYSA-N 2-[diazo(propan-2-ylsulfonyl)methyl]sulfonylpropane Chemical compound CC(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(C)C DRYBUHKBBRHEAE-UHFFFAOYSA-N 0.000 description 1
- SAFWZKVQMVOANB-UHFFFAOYSA-N 2-[tert-butylsulfonyl(diazo)methyl]sulfonyl-2-methylpropane Chemical compound CC(C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C(C)(C)C SAFWZKVQMVOANB-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- JSGVZVOGOQILFM-UHFFFAOYSA-N 3-methoxy-1-butanol Chemical compound COC(C)CCO JSGVZVOGOQILFM-UHFFFAOYSA-N 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- WVSYONICNIDYBE-UHFFFAOYSA-M 4-fluorobenzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=C(F)C=C1 WVSYONICNIDYBE-UHFFFAOYSA-M 0.000 description 1
- AOMKYCIOFLWFBM-UHFFFAOYSA-M 4-methylbenzenesulfonate;[4-[(2-methylpropan-2-yl)oxy]phenyl]-diphenylsulfanium Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1=CC(OC(C)(C)C)=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 AOMKYCIOFLWFBM-UHFFFAOYSA-M 0.000 description 1
- RAXMFFZNRKLKLH-UHFFFAOYSA-M 4-methylbenzenesulfonate;[4-[(2-methylpropan-2-yl)oxy]phenyl]-phenyliodanium Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1=CC(OC(C)(C)C)=CC=C1[I+]C1=CC=CC=C1 RAXMFFZNRKLKLH-UHFFFAOYSA-M 0.000 description 1
- MNYVHIDJVUQXKZ-UHFFFAOYSA-M 4-methylbenzenesulfonate;trimethylsulfanium Chemical compound C[S+](C)C.CC1=CC=C(S([O-])(=O)=O)C=C1 MNYVHIDJVUQXKZ-UHFFFAOYSA-M 0.000 description 1
- YXZXRYDYTRYFAF-UHFFFAOYSA-M 4-methylbenzenesulfonate;triphenylsulfanium Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 YXZXRYDYTRYFAF-UHFFFAOYSA-M 0.000 description 1
- MJGQMEJOQAULGB-UHFFFAOYSA-M 4-methylbenzenesulfonate;tris[4-[(2-methylpropan-2-yl)oxy]phenyl]sulfanium Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1=CC(OC(C)(C)C)=CC=C1[S+](C=1C=CC(OC(C)(C)C)=CC=1)C1=CC=C(OC(C)(C)C)C=C1 MJGQMEJOQAULGB-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- ZHCOLTMTHSJRAB-UHFFFAOYSA-N C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si](C)(CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1)O[Si](C)(C)CC[Si](C)(C)C1=CC=C([Si](C)(C)CC[Si](C)(C)O[Si](C)(C)CC[Si](C)(C)C2=CC=C([Si](C)(C)C)C=C2)C=C1 Chemical compound C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si](C)(CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1)O[Si](C)(C)CC[Si](C)(C)C1=CC=C([Si](C)(C)CC[Si](C)(C)O[Si](C)(C)CC[Si](C)(C)C2=CC=C([Si](C)(C)C)C=C2)C=C1 ZHCOLTMTHSJRAB-UHFFFAOYSA-N 0.000 description 1
- ZHCOLTMTHSJRAB-RMMAUAELSA-N C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CCC8CC[C@@H]9OC9C8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si](C)(CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1)O[Si](C)(C)CC[Si](C)(C)C1=CC=C([Si](C)(C)CC[Si](C)(C)O[Si](C)(C)CC[Si](C)(C)C2=CC=C([Si](C)(C)C)C=C2)C=C1 Chemical compound C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CCC8CC[C@@H]9OC9C8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si](C)(CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1)O[Si](C)(C)CC[Si](C)(C)C1=CC=C([Si](C)(C)CC[Si](C)(C)O[Si](C)(C)CC[Si](C)(C)C2=CC=C([Si](C)(C)C)C=C2)C=C1 ZHCOLTMTHSJRAB-RMMAUAELSA-N 0.000 description 1
- SJHUIAZBDOSWSU-UHFFFAOYSA-N C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]8(C)O[Si](C)(CCC9CCC%10OC%10C9)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]9(C)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O9)O[Si](C)(CCC9CCC%10OC%10C9)O8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](O[Si](O[Si](C)(C)CCC1CCC2OC2C1)(C1=CC=CC=C1)C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.C[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1 Chemical compound C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]8(C)O[Si](C)(CCC9CCC%10OC%10C9)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]9(C)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O9)O[Si](C)(CCC9CCC%10OC%10C9)O8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](O[Si](O[Si](C)(C)CCC1CCC2OC2C1)(C1=CC=CC=C1)C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.C[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1 SJHUIAZBDOSWSU-UHFFFAOYSA-N 0.000 description 1
- HRYOBMQPKSDYBY-UHFFFAOYSA-N C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]8(C)O[Si](C)(CCC9CCC%10OC%10C9)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]9(C)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O9)O[Si](C)(CCC9CCC%10OC%10C9)O8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1 Chemical compound C.C.C.C.CCC[Si](C)(C)O[Si](C)(C)CC[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]2(C)O[Si](C)(CCC3CCC4OC4C3)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]3(C)O[Si](C)(CCC4CCC5OC5C4)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]4(C)O[Si](C)(CCC5CCC6OC6C5)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]5(C)O[Si](C)(CCC6CCC7OC7C6)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]6(C)O[Si](C)(CCC7CCC8OC8C7)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]7(C)O[Si](C)(CCC8CCC9OC9C8)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]8(C)O[Si](C)(CCC9CCC%10OC%10C9)O[Si](C)(CC[Si](C)(C)O[Si](C)(C)CC[Si]9(C)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O[Si](C)(CCC%10CCC%11OC%11C%10)O9)O[Si](C)(CCC9CCC%10OC%10C9)O8)O[Si](C)(CCC8CCC9OC9C8)O7)O[Si](C)(CCC7CCC8OC8C7)O6)O[Si](C)(CCC6CCC7OC7C6)O5)O[Si](C)(CCC5CCC6OC6C5)O4)O[Si](C)(CCC4CCC5OC5C4)O3)O[Si](C)(CCC3CCC4OC4C3)O2)O[Si](C)(CCC2CCC3OC3C2)O1.C[Si]1(C)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O[Si](C)(CCC2CCC3OC3C2)O1 HRYOBMQPKSDYBY-UHFFFAOYSA-N 0.000 description 1
- XIMRXDBWUKMGOO-UHFFFAOYSA-N C.CCC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CC Chemical compound C.CCC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CC XIMRXDBWUKMGOO-UHFFFAOYSA-N 0.000 description 1
- HPFODLCEBDTPKR-UHFFFAOYSA-N C1(C(C=CC=C1)C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1(C(C=CC=C1)C)C Chemical compound C1(C(C=CC=C1)C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1(C(C=CC=C1)C)C HPFODLCEBDTPKR-UHFFFAOYSA-N 0.000 description 1
- FICVQKKISPFSSW-UHFFFAOYSA-M C1=CC=C(SC2=CC=C([S+](C3=CC=CC=C3)C3=CC=CC=C3)C=C2)C=C1.FP(F)(F)(F)F.[CH-].[F-] Chemical compound C1=CC=C(SC2=CC=C([S+](C3=CC=CC=C3)C3=CC=CC=C3)C=C2)C=C1.FP(F)(F)(F)F.[CH-].[F-] FICVQKKISPFSSW-UHFFFAOYSA-M 0.000 description 1
- MJMUCPAPLVSRIW-UHFFFAOYSA-N CC(=O)C1=CC=C(SC2=CC=C([S+](C3=CC=C(SC4=CC=C(C(C)=O)C=C4)C=C3)C3=CC=C(SC4=CC=C(C(C)=O)C=C4)C=C3)C=C2)C=C1.O=S(=O)(C(S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F)C(F)(F)F.[C-2] Chemical compound CC(=O)C1=CC=C(SC2=CC=C([S+](C3=CC=C(SC4=CC=C(C(C)=O)C=C4)C=C3)C3=CC=C(SC4=CC=C(C(C)=O)C=C4)C=C3)C=C2)C=C1.O=S(=O)(C(S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F)C(F)(F)F.[C-2] MJMUCPAPLVSRIW-UHFFFAOYSA-N 0.000 description 1
- XHRXGFQOLPTYGJ-UHFFFAOYSA-N CC1=CC=C(S([O-])(=O)=O)C=C1.O=C1CCCCC1[SH+]CC1CCCCC1 Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.O=C1CCCCC1[SH+]CC1CCCCC1 XHRXGFQOLPTYGJ-UHFFFAOYSA-N 0.000 description 1
- IHIHWDWZXUUGCK-UHFFFAOYSA-N CCC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CCC Chemical compound CCC[Si](C)(C)O[Si](C)(C)O[Si](C)(C)CCC IHIHWDWZXUUGCK-UHFFFAOYSA-N 0.000 description 1
- ILLCCAOVXWKWQI-UHFFFAOYSA-N CO[Si](CC[Si]1(C)O[SiH](C)O[Si](C)(CCCOCC2CO2)O[SiH](C)O1)(OC)OC Chemical compound CO[Si](CC[Si]1(C)O[SiH](C)O[Si](C)(CCCOCC2CO2)O[SiH](C)O1)(OC)OC ILLCCAOVXWKWQI-UHFFFAOYSA-N 0.000 description 1
- JGBDSGVXKIFELC-UHFFFAOYSA-N C[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](O[Si](O[Si](C)(C)CCC1CCC2OC2C1)(C1=CC=CC=C1)C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.[H][Si](C)(O[SiH](C)C)O[Si]([H])(C)O[Si](O[Si](O[SiH](C)C)(C1=CC=CC=C1)C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](C)(CCC1CCC2OC2C1)O[Si](O[Si](O[Si](C)(C)CCC1CCC2OC2C1)(C1=CC=CC=C1)C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1.[H][Si](C)(O[SiH](C)C)O[Si]([H])(C)O[Si](O[Si](O[SiH](C)C)(C1=CC=CC=C1)C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1 JGBDSGVXKIFELC-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- XXRCUYVCPSWGCC-UHFFFAOYSA-N Ethyl pyruvate Chemical compound CCOC(=O)C(C)=O XXRCUYVCPSWGCC-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XPZWRXYDVYKMSN-UHFFFAOYSA-N [(e)-diazo(2-methylbutan-2-ylsulfonyl)methyl]sulfonylcyclohexane Chemical compound CCC(C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1CCCCC1 XPZWRXYDVYKMSN-UHFFFAOYSA-N 0.000 description 1
- YPPVLYIFEAESGO-UHFFFAOYSA-N [2,3-bis(methylsulfonyloxy)phenyl] methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=CC(OS(C)(=O)=O)=C1OS(C)(=O)=O YPPVLYIFEAESGO-UHFFFAOYSA-N 0.000 description 1
- DCYQPMGIYRPCBA-UHFFFAOYSA-N [2,3-bis(trifluoromethylsulfonyloxy)phenyl] trifluoromethanesulfonate Chemical compound FC(F)(F)S(=O)(=O)OC1=CC=CC(OS(=O)(=O)C(F)(F)F)=C1OS(=O)(=O)C(F)(F)F DCYQPMGIYRPCBA-UHFFFAOYSA-N 0.000 description 1
- OIHCCWXZFYNOJS-UHFFFAOYSA-N [2,3-bis-(4-methylphenyl)sulfonyloxyphenyl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OC1=CC=CC(OS(=O)(=O)C=2C=CC(C)=CC=2)=C1OS(=O)(=O)C1=CC=C(C)C=C1 OIHCCWXZFYNOJS-UHFFFAOYSA-N 0.000 description 1
- HKKMPPDCCCBZHM-UHFFFAOYSA-M [4-[(2-methylpropan-2-yl)oxy]phenyl]-diphenylsulfanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC(OC(C)(C)C)=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 HKKMPPDCCCBZHM-UHFFFAOYSA-M 0.000 description 1
- ISFXMNADAJKIEG-UHFFFAOYSA-M [4-[(2-methylpropan-2-yl)oxy]phenyl]-phenyliodanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC(OC(C)(C)C)=CC=C1[I+]C1=CC=CC=C1 ISFXMNADAJKIEG-UHFFFAOYSA-M 0.000 description 1
- DBQJFJFPPMVQAF-UHFFFAOYSA-N [4-[[5-[cyano-(2-methylphenyl)methylidene]thiophen-2-ylidene]amino]oxysulfonylphenyl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OC1=CC=C(S(=O)(=O)ON=C2C=CC(S2)=C(C#N)C=2C(=CC=CC=2)C)C=C1 DBQJFJFPPMVQAF-UHFFFAOYSA-N 0.000 description 1
- GLCCGSHEKBXUGH-UHFFFAOYSA-N [[5-[cyano-(2-methylphenyl)methylidene]thiophen-2-ylidene]amino] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)ON=C(S1)C=CC1=C(C#N)C1=CC=CC=C1C GLCCGSHEKBXUGH-UHFFFAOYSA-N 0.000 description 1
- QFKJMDYQKVPGNM-UHFFFAOYSA-N [benzenesulfonyl(diazo)methyl]sulfonylbenzene Chemical compound C=1C=CC=CC=1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1=CC=CC=C1 QFKJMDYQKVPGNM-UHFFFAOYSA-N 0.000 description 1
- GLGXSTXZLFQYKJ-UHFFFAOYSA-N [cyclohexylsulfonyl(diazo)methyl]sulfonylcyclohexane Chemical compound C1CCCCC1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1CCCCC1 GLGXSTXZLFQYKJ-UHFFFAOYSA-N 0.000 description 1
- DUJLILQBTCLTDQ-UHFFFAOYSA-N [cyclopentylsulfonyl(diazo)methyl]sulfonylcyclopentane Chemical compound C1CCCC1S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1CCCC1 DUJLILQBTCLTDQ-UHFFFAOYSA-N 0.000 description 1
- FEVJONIJUZTKGL-UHFFFAOYSA-N [tert-butylsulfonyl(diazo)methyl]sulfonylcyclohexane Chemical compound CC(C)(C)S(=O)(=O)C(=[N+]=[N-])S(=O)(=O)C1CCCCC1 FEVJONIJUZTKGL-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- CXJVMJWCNFOERL-UHFFFAOYSA-N benzenesulfonylsulfonylbenzene Chemical compound C=1C=CC=CC=1S(=O)(=O)S(=O)(=O)C1=CC=CC=C1 CXJVMJWCNFOERL-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- WTXDNMDDFAESOT-UHFFFAOYSA-M bis[4-[(2-methylpropan-2-yl)oxy]phenyl]-phenylsulfanium;4-methylbenzenesulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1=CC(OC(C)(C)C)=CC=C1[S+](C=1C=CC(OC(C)(C)C)=CC=1)C1=CC=CC=C1 WTXDNMDDFAESOT-UHFFFAOYSA-M 0.000 description 1
- SSCOHVUVCBYNFB-UHFFFAOYSA-M bis[4-[(2-methylpropan-2-yl)oxy]phenyl]-phenylsulfanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC(OC(C)(C)C)=CC=C1[S+](C=1C=CC(OC(C)(C)C)=CC=1)C1=CC=CC=C1 SSCOHVUVCBYNFB-UHFFFAOYSA-M 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- QPXMRCTYZIAUQD-UHFFFAOYSA-M butane-1-sulfonate;triphenylsulfanium Chemical compound CCCCS([O-])(=O)=O.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 QPXMRCTYZIAUQD-UHFFFAOYSA-M 0.000 description 1
- QDHFHIQKOVNCNC-UHFFFAOYSA-N butane-1-sulfonic acid Chemical compound CCCCS(O)(=O)=O QDHFHIQKOVNCNC-UHFFFAOYSA-N 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000000068 chlorophenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- ODOYKCYDOVBTAR-UHFFFAOYSA-N cyclohexylsulfonylsulfonylcyclohexane Chemical compound C1CCCCC1S(=O)(=O)S(=O)(=O)C1CCCCC1 ODOYKCYDOVBTAR-UHFFFAOYSA-N 0.000 description 1
- OVLXQLQBOCAFDH-UHFFFAOYSA-M dicyclohexyl(phenyl)sulfanium;4-methylbenzenesulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1CCCCC1[S+](C=1C=CC=CC=1)C1CCCCC1 OVLXQLQBOCAFDH-UHFFFAOYSA-M 0.000 description 1
- NSXRYFKEEKGLHO-UHFFFAOYSA-M dicyclohexyl(phenyl)sulfanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1CCCCC1[S+](C=1C=CC=CC=1)C1CCCCC1 NSXRYFKEEKGLHO-UHFFFAOYSA-M 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- SXHRYKLRBLHUPL-UHFFFAOYSA-M dimethyl(phenyl)sulfanium;4-methylbenzenesulfonate Chemical compound C[S+](C)C1=CC=CC=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 SXHRYKLRBLHUPL-UHFFFAOYSA-M 0.000 description 1
- CYQUIWZGOBANMJ-UHFFFAOYSA-M dimethyl(phenyl)sulfanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C[S+](C)C1=CC=CC=C1 CYQUIWZGOBANMJ-UHFFFAOYSA-M 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- UMIKAXKFQJWKCV-UHFFFAOYSA-M diphenyliodanium;4-methylbenzenesulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C=1C=CC=CC=1[I+]C1=CC=CC=C1 UMIKAXKFQJWKCV-UHFFFAOYSA-M 0.000 description 1
- SBQIJPBUMNWUKN-UHFFFAOYSA-M diphenyliodanium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C=1C=CC=CC=1[I+]C1=CC=CC=C1 SBQIJPBUMNWUKN-UHFFFAOYSA-M 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 229940117360 ethyl pyruvate Drugs 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- BDJSOPWXYLFTNW-UHFFFAOYSA-N methyl 3-methoxypropanoate Chemical compound COCCC(=O)OC BDJSOPWXYLFTNW-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005246 nonafluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- JAELLLITIZHOGQ-UHFFFAOYSA-N tert-butyl propanoate Chemical compound CCC(=O)OC(C)(C)C JAELLLITIZHOGQ-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- AANIRNIRVXARSN-UHFFFAOYSA-M trifluoromethanesulfonate;trimethylsulfanium Chemical compound C[S+](C)C.[O-]S(=O)(=O)C(F)(F)F AANIRNIRVXARSN-UHFFFAOYSA-M 0.000 description 1
- TUODWSVQODNTSU-UHFFFAOYSA-M trifluoromethanesulfonate;tris[4-[(2-methylpropan-2-yl)oxy]phenyl]sulfanium Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC(OC(C)(C)C)=CC=C1[S+](C=1C=CC(OC(C)(C)C)=CC=1)C1=CC=C(OC(C)(C)C)C=C1 TUODWSVQODNTSU-UHFFFAOYSA-M 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- FAYMLNNRGCYLSR-UHFFFAOYSA-M triphenylsulfonium triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F.C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 FAYMLNNRGCYLSR-UHFFFAOYSA-M 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0754—Non-macromolecular compounds containing silicon-to-silicon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/30—Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
- C08G59/306—Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0005—Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
- G03F7/0755—Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
- C08L2312/06—Crosslinking by radiation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
Definitions
- the present invention relates to a silphenylene-containing photocurable composition, a pattern formation method that uses the composition, and an optical semiconductor element obtained using the method.
- the invention relates particularly to a silphenylene-containing photocurable composition which, due to its superior properties of transparency, light resistance and heat resistance, is useful in optical devices typified by light-emitting elements such as light-emitting diodes (LED), light-receiving elements such as photodiodes, optical sensors and CMOS image sensors, and optical transmission devices such as optical waveguides, as well as a pattern formation method that uses the silphenylene-containing photocurable composition, and an optical semiconductor element obtained using the method.
- light-emitting elements such as light-emitting diodes (LED), light-receiving elements such as photodiodes, optical sensors and CMOS image sensors, and optical transmission devices
- optical waveguides such as optical waveguides
- the present invention has been developed in light of the above circumstances, and has an object of providing a silphenylene-containing photocurable composition that is capable of very fine pattern formation across a broad range of wavelengths, and following pattern formation, yields a film that exhibits a high degree of transparency and superior light resistance, as well as providing a pattern formation method that uses the silphenylene-containing photocurable composition, and an optical semiconductor element that is obtained using the pattern formation method.
- a photocurable composition described below comprising a specific alicyclic epoxy-modified silphenylene compound, could be exposed with light across a broad range of wavelengths, enabling ready formation of a cured product with no oxygen inhibition.
- the pattern formation method described below enabled the formation of very fine patterns, and that optical semiconductor elements produced using the above-mentioned photocurable composition and pattern formation method exhibited excellent transparency and light resistance, and they were therefore able to complete the present invention.
- a first aspect of the present invention provides a silphenylene-containing photocurable composition comprising:
- (C) a photoacid generator that generates acid upon irradiation with light having a wavelength of 240 to 500 nm.
- the photocurable composition may further comprise:
- each R independently represents a hydrogen atom or a monovalent organic group, at least one R comprises an epoxy group
- a, b and c each represents an integer of 0 or greater
- d represents an integer of 0 or greater
- e represents an integer of 1 or greater
- W X and Y each represents a divalent organic group
- f, g and h each independently represents 0 or 1, provided that when a and c are 0, b is 1 and g is 0, the R groups do not both represent epoxy group-containing organic groups represented by the formula below).
- a second aspect of the present invention provides a cured film obtained by curing the above photocurable composition.
- a third aspect of the present invention provides a pattern formation method comprising:
- a fourth aspect of the present invention provides an optical semiconductor element obtained by performing pattern formation using the method described above.
- a fifth aspect of the present invention provides use of the above-mentioned photocurable composition for pattern formation.
- the photocurable composition of the present invention comprising a specific alicyclic epoxy-modified silphenylene compound
- exposure can be performed with light across a broad range of wavelengths, and thin films can be formed readily with no oxygen inhibition.
- very fine patterns of 10 ⁇ m or less can be formed, and the cured films obtained from the composition exhibit excellent transparency, light resistance and heat resistance, meaning they can be used favorably for protecting and encapsulating optical devices and the like.
- FIG. 1 is a graph illustrating the results of investigating the change over time in the light transmission of a sample of Example 5 composed of a cured film sandwiched between glass wafers, wherein the initial transmission was deemed to be 100%.
- the component (A) is a silphenylene having both terminals modified with alicyclic epoxy groups, represented by formula (1) shown above.
- the component (A) can be produced, for example as described below in Synthesis Example 1, by subjecting a 2/1 molar ratio of 1,2-epoxy-4-vinylcyclohexane and 1,4-bis(dimethylsilyl)benzene to a hydrosilylation reaction using normal methods.
- the component (B) is an epoxy group-containing organosilicon compound represented by general formula (2) shown above.
- the component (B) is an optional component, and may be either included or not included in the photocurable composition of the present invention.
- the component (B) may be either a single compound or a combination of two or more different compounds.
- each R independently represents a hydrogen atom or a monovalent organic group, and at least one R group, and preferably 20 mol % or more of the R groups, comprise an epoxy group. If the general formula (2) does not include a single R group that comprises an epoxy group, then cross-linking between the component (A) and the component (B) does not proceed.
- the R groups may be the same or different.
- R examples include a hydrogen atom, monovalent hydrocarbon groups of 1 to 8 carbon atoms, and epoxy group-containing organic groups represented by the formulas shown below.
- the monovalent hydrocarbon groups of 1 to 8 carbon atoms for R include alkyl groups such as a methyl group, ethyl group, propyl group, butyl group, pentyl group or hexyl group, cycloalkyl groups such as a cyclopentyl group or cyclohexyl group, aryl groups such as a phenyl group, and aralkyl groups such as a benzyl group or phenethyl group. From the viewpoint of ease of availability of the raw material, a methyl group, ethyl group or phenyl group is preferred. Appropriate selection of R from the various possibilities mentioned above makes it easier to achieve a combination of favorable transparency and superior pattern formability.
- a, b and c each represents an integer of 0 or greater. Although there are no particular limitations on a, provided it is an integer of 0 or greater, an integer of 0 to 10 is typical. Further, although there are no particular limitations on b, provided it is an integer of 0 or greater, an integer of 0 to 10 is typical. Similarly, although there are no particular limitations on c, provided it is an integer of 0 or greater, an integer of 0 to 10 is typical.
- the repeating units to which a, b and c are appended need not necessarily be linked continuously, and need not necessarily be linked in the sequence shown in the above formula, meaning the repeating units may be linked in a random order. In those cases where a, b or c is 2 or greater, indicating a plurality of the corresponding repeating unit, the plurality of repeating units may be the same or different.
- d represents an integer of 0 or greater
- e represents an integer of 1 or greater.
- d represents an integer of 0 or greater
- e represents an integer of 1 or greater.
- W, X and Y represent divalent organic groups. Each of W, X and Y may represent one type of group or a plurality of different groups. W, X and Y preferably represent divalent organic groups represented by general formula (3) shown below:
- the divalent organic groups represented by general formula (3) above are produced, for example, by using the corresponding linear dimethylsiloxane having vinyl groups at both terminals as a raw material.
- i represents an integer of 0 to 10, but is typically an integer of 0 or 1.
- f, g and h each represents 0 or 1.
- f is preferably 0, but when the same unit is positioned at a location other than the right terminal in general formula (2), f is preferably 1.
- g is preferably 0, but when the same unit is positioned at a location other than the right terminal in general formula (2), g is preferably 1.
- h is preferably 0, but when the same unit is positioned at a location other than the right terminal in general formula (2), h is preferably 1.
- component (B) examples include the epoxy group-containing organosilicon compounds represented by general formula (2′) shown below:
- a′, b′ and c′ each represents an integer of 0 or greater, R, d, e, W, X and Y are the same as defined above, and Z represents a divalent organic group represented by one of the formulas shown below:
- the R groups do not both represent epoxy group-containing organic groups represented by the formula below).
- the divalent organic group represented by Z is produced, for example, by using the equivalent SiH group-containing organosilicon compound that includes an additional two hydrogen atoms on the divalent organic group (namely, the compound that includes silicon atom-bonded hydrogen atoms at both terminals) as a raw material.
- component (B) includes the structures shown below.
- Adding the component (B) facilitates regulation of the viscosity of the resulting composition, making it easier to achieve the required film thickness and effectively improving the flexibility of the resulting cured product.
- the amount added of the component (B) is preferably within a range from 0.5 to 900 parts by mass, and more preferably from 10 to 200 parts by mass, per 100 parts by mass of the component (A). Provided the amount of the component (B) satisfies this range from 0.5 to 900 parts by mass, the effect of including the component (B) can be achieved satisfactorily, while maintaining good compatibility between the epoxy group-containing organosilicon compound of the component (B) and the photoacid generator of the component (C).
- the component (B) is not necessarily limited to a single compound, and a plurality of different compounds may also be used in combination.
- the component (B) can be produced, for example, by mixing together appropriate amounts of vinyl group-containing compounds and SiH group-containing organosilicon compounds corresponding with each of the portions of the component (B), and then performing a hydrosilylation reaction in accordance with normal methods.
- the component (C) is a photoacid generator that generates acid upon irradiation with light having a wavelength of 240 to 500 nm, and is used as a curing catalyst.
- this type of photoacid generator include onium salts, diazomethane derivatives, glyoxime derivatives, ⁇ -ketosulfone derivatives, disulfone derivatives, nitrobenzyl sulfonate derivatives, sulfonate ester derivatives, imidoyl sulfonate derivatives, oxime sulfonate derivatives, iminosulfonate derivatives and triazine derivatives.
- Examples of the above-mentioned onium salts include compounds represented by general formula (4) shown below.
- R 1 represents a linear, branched or cyclic alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms or an aralkyl group of 7 to 12 carbon atoms, which may have a substituent
- M + represents an iodonium or sulfonium ion
- K′′ represents a non-nucleophilic counter ion
- h represents 2 or 3.
- alkyl group for R 1 examples include a methyl group, ethyl group, propyl group, butyl group, cyclohexyl group, 2-oxocyclohexyl group, norbornyl group or adamantyl group.
- Examples of the aryl group for R 1 include alkoxyphenyl groups such as an o-, m- or p-methoxyphenyl group, ethoxyphenyl group, or m- or p-tert-butoxyphenyl group, and alkylphenyl groups such as a 2-, 3- or 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group or dimethylphenyl group.
- examples of the aralkyl group for R 1 include a benzyl group or phenethyl group.
- non-nucleophilic counter-ion represented by K ⁇ examples include halide ions such as a chloride ion or bromide ion, fluoroalkylsulfonate ions such as triflate, 1,1,1-trifluoroethanesulfonate and nonafluorobutanesulfonate ions, arylsulfonate ions such as tosylate, benzenesulfonate, 4-fluorobenzenesulfonate and 1,2,3,4,5-pentafluorobenzenesulfonate ions, alkylsulfonate ions such as mesylate and butanesulfonate ions, as well as a hexafluorophosphate ion and fluorinated alkylfluorophosphate ions.
- halide ions such as a chloride ion or bromide ion
- fluoroalkylsulfonate ions such as tri
- Examples of the above-mentioned diazomethane derivatives include compounds represented by general formula (5) shown below.
- R 2 groups may be the same or different, and each represents a linear, branched or cyclic alkyl group or halogenated alkyl group of 1 to 12 carbon atoms, an aryl group or halogenated aryl group of 6 to 12 carbon atoms, or an aralkyl group of 7 to 12 carbon atoms.
- alkyl group for R 2 examples include a methyl group, ethyl group, propyl group, butyl group, amyl group, cyclopentyl group, cyclohexyl group, norbornyl group or adamantyl group.
- halogenated alkyl group for R 2 examples include a trifluoromethyl group, 1,1,1-trifluoroethyl group, 1,1,1-trichloroethyl group or nonafluorobutyl group.
- Examples of the aryl group for R 2 include a phenyl group, alkoxyphenyl groups such as an o-, m- or p-methoxyphenyl group, ethoxyphenyl group, or m- or p-tert-butoxyphenyl group, and alkylphenyl groups such as a 2-, 3- or 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group or dimethylphenyl group.
- Examples of the halogenated aryl group for R 2 include a fluorophenyl group, chlorophenyl group or 1,2,3,4,5-pentafluorophenyl group.
- Examples of the aralkyl group for R 2 include a benzyl group or phenethyl group.
- Examples of the above-mentioned glyoxime derivatives include compounds represented by general formula (6) shown below.
- R 3 groups and the R 4 groups may be the same or different, and each represents a linear, branched or cyclic alkyl group or halogenated alkyl group of 1 to 12 carbon atoms, an aryl group or halogenated aryl group of 6 to 12 carbon atoms, or an aralkyl group of 7 to 12 carbon atoms.
- the R 4 groups may be bonded together to form a cyclic structure, and in those cases where such a cyclic structure is formed, R 4 represents a linear or branched alkylene group of 1 to 6 carbon atoms.
- Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group or aralkyl group for R 3 and R 4 include the same groups as those exemplified above for R 2 .
- Examples of the alkylene group for R 4 include a methylene group, ethylene group, propylene group, butylene group or hexylene group.
- photoacid generator on the component (C) include:
- onium salts such as diphenyliodonium trifluoromethanesulfonate, (p-tert-butoxyphenyl)phenyliodonium trifluoromethanesulfonate, diphenyliodonium p-toluenesulfonate, (p-tert-butoxyphenyl)phenyliodonium p-toluenesulfonate, triphenylsulfonium trifluoromethanesulfonate, (p-tert-butoxyphenyl)diphenylsulfonium trifluoromethanesulfonate, bis(p-tert-butoxyphenyl)phenylsulfonium trifluoromethanesulfonate, tris(p-tert-butoxyphenyl)sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, (
- diazomethane derivatives such as bis(benzenesulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, bis(xylenesulfonyl)diazomethane, bis(cyclohexylsulfonyl)diazomethane, bis(cyclopentylsulfonyl)diazomethane, bis(n-butylsulfonyl)diazomethane, bis(isobutylsulfonyl)diazomethane, bis(sec-butylsulfonyl)diazomethane, bis(n-propylsulfonyl)diazomethane, bis(isopropylsulfonyl)diazomethane, bis(tert-butylsulfonyl)diazomethane, bis(n-amylsulfonyl)
- glyoxime derivatives such as bis-o-(p-toluenesulfonyl)- ⁇ -dimethylglyoxime, bis-o-(p-toluenesulfonyl)- ⁇ -diphenylglyoxime, bis-o-(p-toluenesulfonyl)- ⁇ -dicyclohexylglyoxime, bis-o-(p-toluenesulfonyl)-2,3-pentanedioneglyoxime, bis-o-(p-toluenesulfonyl)-2-methyl-3,4-pentanedioneglyoxime, bis-o-(n-butanesulfonyl)- ⁇ -dimethylglyoxime, bis-o-(n-butanesulfonyl)- ⁇ -diphenylglyoxime, bis-o-(n-butanesulfonyl)- ⁇ -dicyclo
- oxime sulfonate derivatives such as ⁇ -(benzenesulfoniumoxyimino)-4-methylphenylacetonitrile
- ⁇ -ketosulfone derivatives such as 2-cyclohexylcarbonyl-2-(p-toluenesulfonyl)propane and 2-isopropylcarbonyl-2-(p-toluenesulfonyl)propane;
- disulfone derivatives such as diphenyl disulfone and dicyclohexyl disulfone
- nitrobenzyl sulfonate derivatives such as 2,6-dinitrobenzyl p-toluenesulfonate and 2,4-dinitrobenzyl p-toluenesulfonate;
- sulfonate ester derivatives such as 1,2,3-tris(methanesulfonyloxy)benzene, 1,2,3-tris(trifluoromethanesulfonyloxy)benzene, and 1,2,3-tris(p-toluenesulfonyloxy)benzene; and imidoyl sulfonate derivatives such as phthalimidoyl triflate, phthalimidoyl tosylate, 5-norbornene-2,3-dicarboxyImidoyl triflate, 5-norbornene-2,3-dicarboxyImidoyl tosylate, 5-norbornene-2,3-dicarboxyImidoyl n-butylsulfonate, and n-trifluoromethylsulfonyloxynaphthylimide.
- imidoyl sulfonate derivatives such as phthalimidoyl triflat
- iminosulfonate derivatives such as (5-(4-methylphenyl)sulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile and (5-(4-(4-methylphenylsulfonyloxy)phenylsulfonyloxyimino)-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile.
- an onium salt or a sulfonium salt-based derivative is particularly desirable.
- the component (C) a single compound may be used alone, or two or more different compounds may be mixed.
- the amount added of the component (C) is preferably within a range from 0.05 to 20 parts by mass, more preferably from 0.2 to 5 parts by mass, and still more preferably 0.5 to 2 parts by mass, per 100 parts by mass of the component (A) or per 100 parts by mass of the combination of the component (A) and the component (B). Provided the amount of the component (C) satisfies this range from 0.05 to 20 parts by mass, satisfactory photocuring properties can be readily achieved, and the problem wherein the acid generator itself absorbs light, causing a deterioration in the curing properties within thick films, can be effectively prevented.
- the photocurable composition of the present invention may also contain an organic solvent as a component (D) according to need.
- the organic solvent is preferably a solvent that is capable of dissolving the silphenylene having both terminals modified with alicyclic epoxy groups of the component (A), the epoxy group-containing organosilicon compound of the component (B), and the photoacid generator of the component (C) and the like.
- the component (D) may be either a single solvent or a combination of two or more different solvents.
- Examples of the organic solvent of the component (D) include ketones such as cyclohexanone, cyclopentanone and methyl 2-n-amyl ketone, alcohols such as 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol and 1-ethoxy-2-propanol, ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether and diethylene glycol dimethyl ether, esters such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, tert-butyl acetate, tert
- solvents that exhibit superior solubility of the photoacid generator including cyclohexanone, cyclopentanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, or a mixed solvent containing two or more of these solvents are particularly preferred.
- the photocurable composition of the present invention may also include other added components.
- these other added components include antioxidants such as hindered amines and hindered phenols. These compounds may be included in amounts that do not impair the transparency of the cured product.
- the above-mentioned photocurable composition is first applied to a substrate.
- the substrate include a silicon wafer, glass wafer or quartz wafer, or a plastic circuit board or ceramic circuit board.
- preliminary heating may be performed if necessary to volatilize the solvent or the like. This preliminary heating is typically performed by heating at 40 to 140° C. for a period of approximately one minute to one hour. Subsequently, the film is exposed through a photomask with light having a wavelength of 240 to 500 nm, thereby curing the film.
- the photomask may include a desired pattern cut therein.
- the material of the photomask preferably blocks the above light having a wavelength of 240 to 500 nm, and a material such as chrome can be used favorably, although the present invention is not limited to such materials.
- Examples of the above-mentioned light having a wavelength of 240 to 500 nm include lights of various wavelengths generated by appropriate radiation-generating devices, including ultraviolet light such as g-line and i-line radiation, and far ultraviolet light (248 nm).
- the exposure dose is preferably within a range from 10 to 5,000 mJ/cm 2 .
- a heating treatment may be performed following the exposure in order to improve the developing sensitivity. This post-exposure heating treatment is typically conducted at a temperature of 40 to 140° C. for a period of 0.5 to 10 minutes.
- the pattern formation method is as described above, but in those cases where a pattern need not be formed, namely in those cases where a simple uniform film is to be formed, the method may be conducted in the same manner as the pattern formation method described above, with the exception of not using the above-mentioned photomask. Furthermore, if necessary, the resulting pattern may be heated in an oven or on a hotplate at 120 to 300° C. for a period of approximately 10 minutes to 10 hours in order to increase the cross-linking density and remove any residual volatile components (so-called post-curing).
- an optical semiconductor element having superior transparency, light resistance and heat resistance can be obtained.
- the cured film obtained from the photocurable composition in the manner described above exhibits excellent levels of transparency, light resistance and heat resistance, and an optical semiconductor element obtained by forming a fine pattern from this cured film can be used favorably in optical devices such as light-emitting elements, light-receiving elements and optical transmission devices.
- a flask fitted with a stirrer and a thermometer was charged with 49.7 g (0.4 mols) of 1,2-epoxy-4-vinylcyclohexane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C. Subsequently, 38.9 g (0.2 mols) of 1,4-bis(dimethylsilyl)benzene was added dropwise to the flask over a period of 20 minutes. Following completion of the dropwise addition, the reaction mixture was stirred for 3 hours at 90° C.
- reaction liquid was subjected to a distillation treatment under heating and reduced pressure (50° C., 1 mmHg) using a rotary evaporator until no further distillate was produced, thus yielding 85 g of a silphenylene (A-1) having both terminals modified with alicyclic epoxy groups that represents the component (A).
- a flask fitted with a stirrer and a thermometer was charged with 49.7 g (0.4 mols) of 1,2-epoxy-4-vinylcyclohexane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C. Subsequently, 65.1 g (0.1 mols) of an organosiloxane having an average structure represented by formula (7) shown below was added dropwise to the flask over a period of 20 minutes. Following completion of the dropwise addition, the reaction mixture was stirred for 3 hours at 90° C.
- reaction liquid was subjected to a distillation treatment under heating and reduced pressure (50° C., 1 mmHg) using a rotary evaporator until no further distillate was produced, thus yielding 110 g of an epoxy-modified siloxane compound (B-1) having an average structure represented by formula (8) shown below.
- a flask fitted with a stirrer and a thermometer was charged with 27.3 g (0.22 mols) of 1,2-epoxy-4-vinylcyclohexane, 16.8 g (0.09 mols) of 1,3-divinyl-1,1,3,3-tetramethylpropanedisiloxane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C.
- a flask fitted with a stirrer and a thermometer was charged with 22.4 g (0.18 mols) of 1,2-epoxy-4-vinylcyclohexane, 16.8 g (0.09 mols) of 1,3-divinyl-1,1,3,3-tetramethylpropanedisiloxane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C.
- the composition of each example was coated onto one 6-inch silicon wafer that had been primed with hexamethyldisilazane and one 6-inch glass wafer to form a film of the thickness shown in Table 1 in each case.
- the silicon wafer and the glass wafer were each placed on a hotplate and heated at 100° C. for 2 minutes.
- the coated wafer substrate was dipped in propylene glycol monomethyl ether acetate for 3 minutes to develop the composition.
- the narrowest line width resolved during the developing is listed in Table 1. Further, the film thickness following developing is also listed in Table 1.
- the entire surface of the composition applied to the glass wafer was irradiated directly with light from a high-pressure mercury lamp, without using a quartz mask, using a Mask Aligner MA8 manufactured by SUSS MicroTec AG.
- a post-exposure heat treatment was performed, and the composition was then developed by dipping in propylene glycol monomethyl ether acetate.
- the film that was left following these operations was then heated in an oven for one hour at 180° C., yielding a cured film. This cured film was measured for light transmission of light having a wavelength of 405 nm. The results are shown in Table 2.
- Example 2 The composition used in Example 2 was applied to a glass wafer, and subjected to total-surface exposure, post-exposure heating and developing operations in the same manner as described above for Example 2. Subsequently, with the wafer positioned on a hotplate at 140° C., another glass wafer was bonded to the coated surface. Following this operation, the bonded structure was heated in an oven at 180° C. for one hour, yielding a sample composed of a cured film sandwiched between two glass wafers.
- Example 1 Example 2
- Example 3 Example 4 Light transmission 99.9 99.7 99.1 99.2 (%, 405 nm)
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Epoxy Resins (AREA)
- Silicon Polymers (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Provided is a silphenylene-containing photocurable composition including: (A) a specific silphenylene having both terminals modified with alicyclic epoxy groups, and (C) a photoacid generator that generates acid upon irradiation with light having a wavelength of 240 to 500 nm. Also provided is a pattern formation method including: (i) forming a film of the photocurable composition on a substrate, (ii) exposing the film through a photomask with light having a wavelength of 240 to 500 nm, and if necessary, performing heating following the exposure, and (iii) developing the film in a developing liquid, and if necessary, performing post-curing at a temperature within a range from 120 to 300° C. following the developing. Further provided is an optical semiconductor element obtained by performing pattern formation using the method. The composition is capable of very fine pattern formation across a broad range of wavelengths, and following pattern formation, yields a film that exhibits a high degree of transparency and superior light resistance. The composition may also include: (B) a specific epoxy group-containing organosilicon compound.
Description
- 1. Field of the Invention
- The present invention relates to a silphenylene-containing photocurable composition, a pattern formation method that uses the composition, and an optical semiconductor element obtained using the method. The invention relates particularly to a silphenylene-containing photocurable composition which, due to its superior properties of transparency, light resistance and heat resistance, is useful in optical devices typified by light-emitting elements such as light-emitting diodes (LED), light-receiving elements such as photodiodes, optical sensors and CMOS image sensors, and optical transmission devices such as optical waveguides, as well as a pattern formation method that uses the silphenylene-containing photocurable composition, and an optical semiconductor element obtained using the method.
- 2. Description of the Prior Art
- Epoxy resins have typically been used as the encapsulating protective material within various optical devices typified by LEDs and CMOS image sensors. Among such resins, a large number of epoxy-modified silicone resins have been used due to their high levels of transparency and light resistance, and resins in which alicyclic epoxy groups have been introduced into a silphenylene backbone also exist (see Patent Document 1). However, these resins are not capable of undergoing microfabrication in the order of 10 μm. Nowadays, many types of optical devices require microfabrication. When this type of microfabrication is required, resist materials typified by epoxy resin-based materials have often been used, but these resist materials tend to have inadequate light resistance, meaning although there may be no problems with devices of low light intensity, devices that use a stronger light intensity have tended to suffer from problems such as gas emission and discoloration.
- [Patent Document 1]
EP 0 447 926 A2 - The present invention has been developed in light of the above circumstances, and has an object of providing a silphenylene-containing photocurable composition that is capable of very fine pattern formation across a broad range of wavelengths, and following pattern formation, yields a film that exhibits a high degree of transparency and superior light resistance, as well as providing a pattern formation method that uses the silphenylene-containing photocurable composition, and an optical semiconductor element that is obtained using the pattern formation method.
- As a result of intensive investigation aimed at achieving the above object, the inventors of the present invention discovered that a photocurable composition described below, comprising a specific alicyclic epoxy-modified silphenylene compound, could be exposed with light across a broad range of wavelengths, enabling ready formation of a cured product with no oxygen inhibition. They also discovered that the pattern formation method described below enabled the formation of very fine patterns, and that optical semiconductor elements produced using the above-mentioned photocurable composition and pattern formation method exhibited excellent transparency and light resistance, and they were therefore able to complete the present invention.
- In other words, a first aspect of the present invention provides a silphenylene-containing photocurable composition comprising:
- (A) a silphenylene having both terminals modified with alicyclic epoxy groups, represented by formula (1) shown below, and
- (C) a photoacid generator that generates acid upon irradiation with light having a wavelength of 240 to 500 nm.
- If necessary, the photocurable composition may further comprise:
- (B) an epoxy group-containing organosilicon compound represented by general formula (2) shown below:
- (wherein each R independently represents a hydrogen atom or a monovalent organic group, at least one R comprises an epoxy group, a, b and c each represents an integer of 0 or greater, d represents an integer of 0 or greater, e represents an integer of 1 or greater, W, X and Y each represents a divalent organic group, and f, g and h each independently represents 0 or 1, provided that when a and c are 0, b is 1 and g is 0, the R groups do not both represent epoxy group-containing organic groups represented by the formula below).
- A second aspect of the present invention provides a cured film obtained by curing the above photocurable composition.
- A third aspect of the present invention provides a pattern formation method comprising:
- (i) forming a film of the above-mentioned photocurable composition on a substrate,
- (ii) exposing the film through a photomask with light having a wavelength of 240 to 500 nm, or exposing the film through a photomask with light having a wavelength of 240 to 500 nm and then performing heating following the exposure, and
- (iii) developing the film in a developing liquid, or developing the film in a developing liquid and subsequently performing post-curing at a temperature within a range from 120 to 300° C.
- A fourth aspect of the present invention provides an optical semiconductor element obtained by performing pattern formation using the method described above.
- A fifth aspect of the present invention provides use of the above-mentioned photocurable composition for pattern formation.
- By using the photocurable composition of the present invention comprising a specific alicyclic epoxy-modified silphenylene compound, exposure can be performed with light across a broad range of wavelengths, and thin films can be formed readily with no oxygen inhibition. Further, very fine patterns of 10 μm or less can be formed, and the cured films obtained from the composition exhibit excellent transparency, light resistance and heat resistance, meaning they can be used favorably for protecting and encapsulating optical devices and the like.
-
FIG. 1 is a graph illustrating the results of investigating the change over time in the light transmission of a sample of Example 5 composed of a cured film sandwiched between glass wafers, wherein the initial transmission was deemed to be 100%. - A more detailed description of the present invention is presented below.
- The component (A) is a silphenylene having both terminals modified with alicyclic epoxy groups, represented by formula (1) shown above. The component (A) can be produced, for example as described below in Synthesis Example 1, by subjecting a 2/1 molar ratio of 1,2-epoxy-4-vinylcyclohexane and 1,4-bis(dimethylsilyl)benzene to a hydrosilylation reaction using normal methods.
- The component (B) is an epoxy group-containing organosilicon compound represented by general formula (2) shown above. The component (B) is an optional component, and may be either included or not included in the photocurable composition of the present invention. The component (B) may be either a single compound or a combination of two or more different compounds.
- In general formula (2), each R independently represents a hydrogen atom or a monovalent organic group, and at least one R group, and preferably 20 mol % or more of the R groups, comprise an epoxy group. If the general formula (2) does not include a single R group that comprises an epoxy group, then cross-linking between the component (A) and the component (B) does not proceed. The R groups may be the same or different.
- Examples of R include a hydrogen atom, monovalent hydrocarbon groups of 1 to 8 carbon atoms, and epoxy group-containing organic groups represented by the formulas shown below.
- Specific examples of the monovalent hydrocarbon groups of 1 to 8 carbon atoms for R include alkyl groups such as a methyl group, ethyl group, propyl group, butyl group, pentyl group or hexyl group, cycloalkyl groups such as a cyclopentyl group or cyclohexyl group, aryl groups such as a phenyl group, and aralkyl groups such as a benzyl group or phenethyl group. From the viewpoint of ease of availability of the raw material, a methyl group, ethyl group or phenyl group is preferred. Appropriate selection of R from the various possibilities mentioned above makes it easier to achieve a combination of favorable transparency and superior pattern formability.
- In general formula (2), a, b and c each represents an integer of 0 or greater. Although there are no particular limitations on a, provided it is an integer of 0 or greater, an integer of 0 to 10 is typical. Further, although there are no particular limitations on b, provided it is an integer of 0 or greater, an integer of 0 to 10 is typical. Similarly, although there are no particular limitations on c, provided it is an integer of 0 or greater, an integer of 0 to 10 is typical. The repeating units to which a, b and c are appended need not necessarily be linked continuously, and need not necessarily be linked in the sequence shown in the above formula, meaning the repeating units may be linked in a random order. In those cases where a, b or c is 2 or greater, indicating a plurality of the corresponding repeating unit, the plurality of repeating units may be the same or different.
- In general formula (2), d represents an integer of 0 or greater, and e represents an integer of 1 or greater. Although there are no particular limitations on d, provided it is an integer of 0 or greater, an integer of 0 to 15 is typical. Further, although there are no particular limitations on e, provided it is an integer of 1 or greater, an integer of 1 to 8 is typical.
- In general formula (2), W, X and Y represent divalent organic groups. Each of W, X and Y may represent one type of group or a plurality of different groups. W, X and Y preferably represent divalent organic groups represented by general formula (3) shown below:
- (wherein i represents an integer of 0 to 10).
- The divalent organic groups represented by general formula (3) above are produced, for example, by using the corresponding linear dimethylsiloxane having vinyl groups at both terminals as a raw material.
- In general formula (3), i represents an integer of 0 to 10, but is typically an integer of 0 or 1.
- In the above general formula (2), f, g and h each represents 0 or 1. In those cases where one of the repeating units to which the subscript a is appended is positioned at the right terminal in general formula (2), f is preferably 0, but when the same unit is positioned at a location other than the right terminal in general formula (2), f is preferably 1. Similarly, in those cases where one of the repeating units to which the subscript b is appended is positioned at the right terminal in general formula (2), g is preferably 0, but when the same unit is positioned at a location other than the right terminal in general formula (2), g is preferably 1. Moreover, in a similar manner, in those cases where one of the repeating units to which the subscript c is appended is positioned at the right terminal in general formula (2), h is preferably 0, but when the same unit is positioned at a location other than the right terminal in general formula (2), h is preferably 1.
- As is clear from the provision mentioned in the description immediately following the general formula (2) shown above, the component (B) and the component (A) do not represent identical compounds.
- Specific examples of the component (B) include the epoxy group-containing organosilicon compounds represented by general formula (2′) shown below:
- (wherein a′, b′ and c′ each represents an integer of 0 or greater, R, d, e, W, X and Y are the same as defined above, and Z represents a divalent organic group represented by one of the formulas shown below:
- (wherein R, d and e are the same as defined above),
provided that when a′, b′ and c′ are 0 and Z is a divalent organic group represented by the formula shown below: - the R groups do not both represent epoxy group-containing organic groups represented by the formula below).
- In the above general formula (2′), the divalent organic group represented by Z is produced, for example, by using the equivalent SiH group-containing organosilicon compound that includes an additional two hydrogen atoms on the divalent organic group (namely, the compound that includes silicon atom-bonded hydrogen atoms at both terminals) as a raw material.
- Specific examples of the component (B) include the structures shown below.
- Adding the component (B) facilitates regulation of the viscosity of the resulting composition, making it easier to achieve the required film thickness and effectively improving the flexibility of the resulting cured product.
- The amount added of the component (B) is preferably within a range from 0.5 to 900 parts by mass, and more preferably from 10 to 200 parts by mass, per 100 parts by mass of the component (A). Provided the amount of the component (B) satisfies this range from 0.5 to 900 parts by mass, the effect of including the component (B) can be achieved satisfactorily, while maintaining good compatibility between the epoxy group-containing organosilicon compound of the component (B) and the photoacid generator of the component (C). The component (B) is not necessarily limited to a single compound, and a plurality of different compounds may also be used in combination.
- The component (B) can be produced, for example, by mixing together appropriate amounts of vinyl group-containing compounds and SiH group-containing organosilicon compounds corresponding with each of the portions of the component (B), and then performing a hydrosilylation reaction in accordance with normal methods.
- The component (C) is a photoacid generator that generates acid upon irradiation with light having a wavelength of 240 to 500 nm, and is used as a curing catalyst. Examples of this type of photoacid generator include onium salts, diazomethane derivatives, glyoxime derivatives, β-ketosulfone derivatives, disulfone derivatives, nitrobenzyl sulfonate derivatives, sulfonate ester derivatives, imidoyl sulfonate derivatives, oxime sulfonate derivatives, iminosulfonate derivatives and triazine derivatives.
- Examples of the above-mentioned onium salts include compounds represented by general formula (4) shown below.
-
(R1)hM+K− (4) - (wherein R1 represents a linear, branched or cyclic alkyl group of 1 to 12 carbon atoms, an aryl group of 6 to 12 carbon atoms or an aralkyl group of 7 to 12 carbon atoms, which may have a substituent, M+ represents an iodonium or sulfonium ion, K″ represents a non-nucleophilic counter ion, and h represents 2 or 3.)
- Examples of the alkyl group for R1 include a methyl group, ethyl group, propyl group, butyl group, cyclohexyl group, 2-oxocyclohexyl group, norbornyl group or adamantyl group. Examples of the aryl group for R1 include alkoxyphenyl groups such as an o-, m- or p-methoxyphenyl group, ethoxyphenyl group, or m- or p-tert-butoxyphenyl group, and alkylphenyl groups such as a 2-, 3- or 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group or dimethylphenyl group. Further, examples of the aralkyl group for R1 include a benzyl group or phenethyl group.
- Examples of the non-nucleophilic counter-ion represented by K− include halide ions such as a chloride ion or bromide ion, fluoroalkylsulfonate ions such as triflate, 1,1,1-trifluoroethanesulfonate and nonafluorobutanesulfonate ions, arylsulfonate ions such as tosylate, benzenesulfonate, 4-fluorobenzenesulfonate and 1,2,3,4,5-pentafluorobenzenesulfonate ions, alkylsulfonate ions such as mesylate and butanesulfonate ions, as well as a hexafluorophosphate ion and fluorinated alkylfluorophosphate ions.
- Examples of the above-mentioned diazomethane derivatives include compounds represented by general formula (5) shown below.
- (wherein the R2 groups may be the same or different, and each represents a linear, branched or cyclic alkyl group or halogenated alkyl group of 1 to 12 carbon atoms, an aryl group or halogenated aryl group of 6 to 12 carbon atoms, or an aralkyl group of 7 to 12 carbon atoms.)
- Examples of the alkyl group for R2 include a methyl group, ethyl group, propyl group, butyl group, amyl group, cyclopentyl group, cyclohexyl group, norbornyl group or adamantyl group. Examples of the halogenated alkyl group for R2 include a trifluoromethyl group, 1,1,1-trifluoroethyl group, 1,1,1-trichloroethyl group or nonafluorobutyl group. Examples of the aryl group for R2 include a phenyl group, alkoxyphenyl groups such as an o-, m- or p-methoxyphenyl group, ethoxyphenyl group, or m- or p-tert-butoxyphenyl group, and alkylphenyl groups such as a 2-, 3- or 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group or dimethylphenyl group. Examples of the halogenated aryl group for R2 include a fluorophenyl group, chlorophenyl group or 1,2,3,4,5-pentafluorophenyl group. Examples of the aralkyl group for R2 include a benzyl group or phenethyl group.
- Examples of the above-mentioned glyoxime derivatives include compounds represented by general formula (6) shown below.
- (wherein the R3 groups and the R4 groups may be the same or different, and each represents a linear, branched or cyclic alkyl group or halogenated alkyl group of 1 to 12 carbon atoms, an aryl group or halogenated aryl group of 6 to 12 carbon atoms, or an aralkyl group of 7 to 12 carbon atoms. Further, the R4 groups may be bonded together to form a cyclic structure, and in those cases where such a cyclic structure is formed, R4 represents a linear or branched alkylene group of 1 to 6 carbon atoms.)
- Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group or aralkyl group for R3 and R4 include the same groups as those exemplified above for R2. Examples of the alkylene group for R4 include a methylene group, ethylene group, propylene group, butylene group or hexylene group.
- Specific examples of the photoacid generator on the component (C) include:
- onium salts such as diphenyliodonium trifluoromethanesulfonate, (p-tert-butoxyphenyl)phenyliodonium trifluoromethanesulfonate, diphenyliodonium p-toluenesulfonate, (p-tert-butoxyphenyl)phenyliodonium p-toluenesulfonate, triphenylsulfonium trifluoromethanesulfonate, (p-tert-butoxyphenyl)diphenylsulfonium trifluoromethanesulfonate, bis(p-tert-butoxyphenyl)phenylsulfonium trifluoromethanesulfonate, tris(p-tert-butoxyphenyl)sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, (p-tert-butoxyphenyl)diphenylsulfonium p-toluenesulfonate, bis(p-tert-butoxyphenyl)phenylsulfonium p-toluenesulfonate, tris(p-tert-butoxyphenyl)sulfonium p-toluenesulfonate, triphenylsulfonium nonafluorobutanesulfonate, triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate, cyclohexylmethyl(2-oxocyclohexyl)sulfonium trifluoromethanesulfonate, cyclohexylmethyl(2-oxocyclohexyl)sulfonium p-toluenesulfonate, dimethylphenylsulfonium trifluoromethanesulfonate, dimethylphenylsulfonium p-toluenesulfonate, dicyclohexylphenylsulfonium trifluoromethanesulfonate, dicyclohexylphenylsulfonium p-toluenesulfonate, bis(4-tert-butylphenyl)iodonium hexafluorophosphate, and diphenyl(4-thiophenoxyphenyl)sulfonium hexafluoroantimonate;
- diazomethane derivatives such as bis(benzenesulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, bis(xylenesulfonyl)diazomethane, bis(cyclohexylsulfonyl)diazomethane, bis(cyclopentylsulfonyl)diazomethane, bis(n-butylsulfonyl)diazomethane, bis(isobutylsulfonyl)diazomethane, bis(sec-butylsulfonyl)diazomethane, bis(n-propylsulfonyl)diazomethane, bis(isopropylsulfonyl)diazomethane, bis(tert-butylsulfonyl)diazomethane, bis(n-amylsulfonyl)diazomethane, bis(isoamylsulfonyl)diazomethane, bis(sec-amylsulfonyl)diazomethane, bis(tert-amylsulfonyl)diazomethane, 1-cyclohexylsulfonyl-1-(tert-butylsulfonyl)diazomethane, 1-cyclohexylsulfonyl-1-(tert-amylsulfonyl)diazomethane, and 1-tert-amylsulfonyl-1-(tert-butylsulfonyl)diazomethane;
- glyoxime derivatives such as bis-o-(p-toluenesulfonyl)-α-dimethylglyoxime, bis-o-(p-toluenesulfonyl)-α-diphenylglyoxime, bis-o-(p-toluenesulfonyl)-α-dicyclohexylglyoxime, bis-o-(p-toluenesulfonyl)-2,3-pentanedioneglyoxime, bis-o-(p-toluenesulfonyl)-2-methyl-3,4-pentanedioneglyoxime, bis-o-(n-butanesulfonyl)-α-dimethylglyoxime, bis-o-(n-butanesulfonyl)-α-diphenylglyoxime, bis-o-(n-butanesulfonyl)-α-dicyclohexylglyoxime, bis-o-(n-butanesulfonyl)-2,3-pentanedioneglyoxime, bis-o-(n-butanesulfonyl)-2-methyl-3,4-pentanedioneglyoxime, bis-o-(methanesulfonyl)-α-dimethylglyoxime, bis-o-(trifluoromethanesulfonyl)-α-dimethylglyoxime, bis-o-(1,1,1-trifluoroethanesulfonyl)-α-dimethylglyoxime, bis-o-(tert-butanesulfonyl)-α-dimethylglyoxime, bis-o-(perfluorooctanesulfonyl)-α-dimethylglyoxime, bis-o-(cyclohexanesulfonyl)-α-dimethylglyoxime, bis-o-(benzenesulfonyl)-α-dimethylglyoxime, bis-o-(p-fluorobenzenesulfonyl)-α-dimethylglyoxime, bis-o-(p-tert-butylbenzenesulfonyl)-α-dimethylglyoxime, bis-o-(xylenesulfonyl)-α-dimethylglyoxime, and bis-o-(camphorsulfonyl)-α-dimethylglyoxime;
- oxime sulfonate derivatives such as α-(benzenesulfoniumoxyimino)-4-methylphenylacetonitrile;
- β-ketosulfone derivatives such as 2-cyclohexylcarbonyl-2-(p-toluenesulfonyl)propane and 2-isopropylcarbonyl-2-(p-toluenesulfonyl)propane;
- disulfone derivatives such as diphenyl disulfone and dicyclohexyl disulfone;
- nitrobenzyl sulfonate derivatives such as 2,6-dinitrobenzyl p-toluenesulfonate and 2,4-dinitrobenzyl p-toluenesulfonate;
- sulfonate ester derivatives such as 1,2,3-tris(methanesulfonyloxy)benzene, 1,2,3-tris(trifluoromethanesulfonyloxy)benzene, and 1,2,3-tris(p-toluenesulfonyloxy)benzene; and imidoyl sulfonate derivatives such as phthalimidoyl triflate, phthalimidoyl tosylate, 5-norbornene-2,3-dicarboxyImidoyl triflate, 5-norbornene-2,3-dicarboxyImidoyl tosylate, 5-norbornene-2,3-dicarboxyImidoyl n-butylsulfonate, and n-trifluoromethylsulfonyloxynaphthylimide.
- Other examples include iminosulfonate derivatives such as (5-(4-methylphenyl)sulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile and (5-(4-(4-methylphenylsulfonyloxy)phenylsulfonyloxyimino)-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile. Of the above photoacid generators, the use of an onium salt or a sulfonium salt-based derivative is particularly desirable.
- As the component (C), a single compound may be used alone, or two or more different compounds may be mixed. The amount added of the component (C) is preferably within a range from 0.05 to 20 parts by mass, more preferably from 0.2 to 5 parts by mass, and still more preferably 0.5 to 2 parts by mass, per 100 parts by mass of the component (A) or per 100 parts by mass of the combination of the component (A) and the component (B). Provided the amount of the component (C) satisfies this range from 0.05 to 20 parts by mass, satisfactory photocuring properties can be readily achieved, and the problem wherein the acid generator itself absorbs light, causing a deterioration in the curing properties within thick films, can be effectively prevented. Further, in order to achieve the superior levels of transparency and light resistance that represent features of a product of the present invention, the amount of a photoacid generator of the component (C) that exhibits light absorption is preferably at the lower end of the range that yields favorable photocuring.
- The photocurable composition of the present invention may also contain an organic solvent as a component (D) according to need. The organic solvent is preferably a solvent that is capable of dissolving the silphenylene having both terminals modified with alicyclic epoxy groups of the component (A), the epoxy group-containing organosilicon compound of the component (B), and the photoacid generator of the component (C) and the like. The component (D) may be either a single solvent or a combination of two or more different solvents.
- Examples of the organic solvent of the component (D) include ketones such as cyclohexanone, cyclopentanone and methyl 2-n-amyl ketone, alcohols such as 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol and 1-ethoxy-2-propanol, ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether and diethylene glycol dimethyl ether, esters such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, tert-butyl acetate, tert-butyl propionate, propylene glycol mono-tert-butyl ether acetate and γ-butyrolactone, and amides such as N-methyl-2-pyrrolidone and N,N-dimethylacetamide. Of these, those solvents that exhibit superior solubility of the photoacid generator, including cyclohexanone, cyclopentanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, or a mixed solvent containing two or more of these solvents are particularly preferred.
- The amount used of the organic solvent of the component (D) is typically within a range from 1 to 2,000 parts by mass, and preferably from 20 to 1,000 parts by mass, per 100 parts by mass of the combination of the component (A) and the component (C) or per 100 parts by mass of the combination of the components (A), (B) and (C). Provided the amount of the organic solvent satisfies this range from 1 to 2,000 parts by mass, favorable co-solubility can be achieved for the component (A) and the component (C), or the components (A), (B) and (C), and the viscosity of the resulting solution is not too low, thereby facilitating application of the resulting composition.
- In addition to each of the components described above, the photocurable composition of the present invention may also include other added components. Examples of these other added components include antioxidants such as hindered amines and hindered phenols. These compounds may be included in amounts that do not impair the transparency of the cured product.
- Other possible added components include organosiloxanes besides the component (A) and the component (B). These other organosiloxanes can be added for purposes such as improving the adhesion of the composition, regulating the viscosity of the solution, and improving the workability during pattern formation. These compounds may be included in amounts that do not impair the pattern formability, do not inhibit the photocurability, and cause no deterioration in the transparency.
- Preparation of the Photocurable Composition of the Present Invention May be performed using typical methods. For example, the photocurable composition of the present invention can be prepared by mixing the above-mentioned component (A) and the component (C), together with the component (B), the component (D) and any other added components as required, stirring the resulting mixture, and then, if required, performing a filtration through a filter or the like to remove any solid fraction.
- The pattern formation method of the present invention uses the photocurable composition described above, and comprises:
- (i) forming a film of the above-mentioned photocurable composition on a substrate by application of the composition or by another appropriate method,
- (ii) exposing the film through a photomask with light having a wavelength of 240 to 500 nm, and if necessary, performing heating following the exposure (so-called post-exposure baking or PEB), and
- (iii) developing the film in a developing liquid, and if necessary, performing post-curing at a temperature within a range from 120 to 300° C. following the developing (so-called hard-baking). This method enables the production of a very fine pattern.
- In the pattern formation method of the present invention, the above-mentioned photocurable composition is first applied to a substrate. Examples of the substrate include a silicon wafer, glass wafer or quartz wafer, or a plastic circuit board or ceramic circuit board.
- Conventional lithography techniques may be employed for the application method. For example, the composition can be applied using techniques such as dip coating, spin coating or roll coating. The amount of composition applied may be selected appropriately in accordance with the intended purpose, but the amount is usually determined so as to achieve a film thickness of 0.1 to 100 μm.
- At this point, in order to ensure an effective photocuring reaction, preliminary heating may be performed if necessary to volatilize the solvent or the like. This preliminary heating is typically performed by heating at 40 to 140° C. for a period of approximately one minute to one hour. Subsequently, the film is exposed through a photomask with light having a wavelength of 240 to 500 nm, thereby curing the film. The photomask may include a desired pattern cut therein. The material of the photomask preferably blocks the above light having a wavelength of 240 to 500 nm, and a material such as chrome can be used favorably, although the present invention is not limited to such materials.
- Examples of the above-mentioned light having a wavelength of 240 to 500 nm include lights of various wavelengths generated by appropriate radiation-generating devices, including ultraviolet light such as g-line and i-line radiation, and far ultraviolet light (248 nm). The exposure dose is preferably within a range from 10 to 5,000 mJ/cm2. If necessary, a heating treatment may be performed following the exposure in order to improve the developing sensitivity. This post-exposure heating treatment is typically conducted at a temperature of 40 to 140° C. for a period of 0.5 to 10 minutes.
- Following the exposure, or following the post-exposure heat treatment, the film is developed in a developing liquid. An organic solvent-based developing liquid is preferably used as the developing liquid, and specific examples of preferred solvents include isopropyl alcohol, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate. The developing may be performed using a typical method, for example, by dipping the pattern-formed structure into the developing liquid. Subsequently, the film is washed, rinsed and dried as required, yielding a cured film having the desired pattern formed therein. The pattern formation method is as described above, but in those cases where a pattern need not be formed, namely in those cases where a simple uniform film is to be formed, the method may be conducted in the same manner as the pattern formation method described above, with the exception of not using the above-mentioned photomask. Furthermore, if necessary, the resulting pattern may be heated in an oven or on a hotplate at 120 to 300° C. for a period of approximately 10 minutes to 10 hours in order to increase the cross-linking density and remove any residual volatile components (so-called post-curing).
- By forming a very fine pattern from the photocurable composition using the method described above, an optical semiconductor element having superior transparency, light resistance and heat resistance can be obtained. The cured film obtained from the photocurable composition in the manner described above exhibits excellent levels of transparency, light resistance and heat resistance, and an optical semiconductor element obtained by forming a fine pattern from this cured film can be used favorably in optical devices such as light-emitting elements, light-receiving elements and optical transmission devices.
- The present invention is described below in further detail based on a series of synthesis examples and examples, although the present invention is in no way limited by the examples presented below.
- A flask fitted with a stirrer and a thermometer was charged with 49.7 g (0.4 mols) of 1,2-epoxy-4-vinylcyclohexane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C. Subsequently, 38.9 g (0.2 mols) of 1,4-bis(dimethylsilyl)benzene was added dropwise to the flask over a period of 20 minutes. Following completion of the dropwise addition, the reaction mixture was stirred for 3 hours at 90° C. Following completion of the reaction, the reaction liquid was subjected to a distillation treatment under heating and reduced pressure (50° C., 1 mmHg) using a rotary evaporator until no further distillate was produced, thus yielding 85 g of a silphenylene (A-1) having both terminals modified with alicyclic epoxy groups that represents the component (A).
- A flask fitted with a stirrer and a thermometer was charged with 49.7 g (0.4 mols) of 1,2-epoxy-4-vinylcyclohexane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C. Subsequently, 65.1 g (0.1 mols) of an organosiloxane having an average structure represented by formula (7) shown below was added dropwise to the flask over a period of 20 minutes. Following completion of the dropwise addition, the reaction mixture was stirred for 3 hours at 90° C. Following completion of the reaction, the reaction liquid was subjected to a distillation treatment under heating and reduced pressure (50° C., 1 mmHg) using a rotary evaporator until no further distillate was produced, thus yielding 110 g of an epoxy-modified siloxane compound (B-1) having an average structure represented by formula (8) shown below.
- A flask fitted with a stirrer and a thermometer was charged with 27.3 g (0.22 mols) of 1,2-epoxy-4-vinylcyclohexane, 16.8 g (0.09 mols) of 1,3-divinyl-1,1,3,3-tetramethylpropanedisiloxane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C. Subsequently, 24.1 g (0.1 mols) of 1,3,5,7-tetramethylcyclotetrasiloxane was added dropwise to the flask over a period of 20 minutes. Following completion of the dropwise addition, the reaction mixture was stirred for 3 hours at 90° C. Following completion of the reaction, the reaction liquid was subjected to a distillation treatment under heating and reduced pressure (50° C., 1 mmHg) using a rotary evaporator until no further distillate was produced, thus yielding 65 g of an epoxy-modified siloxane compound (B-2) having an average structure represented by formula (9) shown below.
- A flask fitted with a stirrer and a thermometer was charged with 22.4 g (0.18 mols) of 1,2-epoxy-4-vinylcyclohexane, 16.8 g (0.09 mols) of 1,3-divinyl-1,1,3,3-tetramethylpropanedisiloxane, 500 g of toluene and 0.5 g of a 2% by mass ethanol solution of chloroplatinic acid, and with the flask contents undergoing constant stirring, the flask was heated using an oil bath until the internal temperature reached 70° C. Subsequently, 19.2 g (0.08 mols) of 1,3,5,7-tetramethylcyclotetrasiloxane and 3.9 g (0.02 mols) of 1,4-bis(dimethylsilyl)benzene were added dropwise to the flask over a period of 20 minutes. Following completion of the dropwise addition, the reaction mixture was stirred for 3 hours at 90° C. Following completion of the reaction, the reaction liquid was subjected to a distillation treatment under heating and reduced pressure (50° C., 1 mmHg) using a rotary evaporator until no further distillate was produced, thus yielding 60 g of an epoxy-modified siloxane compound (B-3) having an average structure represented by formula (10) shown below.
- Using the silphenylene having both terminals modified with alicyclic epoxy groups that was synthesized in Synthesis Example 1 as the component (A) and the epoxy-modified siloxane compounds synthesized in Synthesis Examples 2 to 4 as the component (B), the components (A) and (B) were combined with a photoacid generator of the component (C), a solvent of the component (D) and other additives using the formulations listed below in Table 1 (the units for the numerical values represent “parts by mass”). Each of the resulting mixtures was stirred and dissolved, and then subjected to microfiltration through a Teflon (a registered trademark) 0.2-micron filter, thus yielding photocurable compositions of Examples 1 to 4.
- Using a spin coater, the composition of each example was coated onto one 6-inch silicon wafer that had been primed with hexamethyldisilazane and one 6-inch glass wafer to form a film of the thickness shown in Table 1 in each case. In order to remove the solvent from the composition, the silicon wafer and the glass wafer were each placed on a hotplate and heated at 100° C. for 2 minutes.
- The composition applied to the silicon wafer was irradiated with light having a wavelength of 365 nm at the exposure dose shown in Table 1, through a quartz mask having groups of lines and spaces of equal width with line widths from 1 μm to 50 μm. The exposure was performed using a stepper exposure apparatus NSR-1755i7A manufactured by Nikon Corporation. Following the irradiation, a post-exposure heat treatment was performed at 110° C. for 2 minutes, and the wafer was then cooled.
- Subsequently, the coated wafer substrate was dipped in propylene glycol monomethyl ether acetate for 3 minutes to develop the composition. The narrowest line width resolved during the developing is listed in Table 1. Further, the film thickness following developing is also listed in Table 1.
- On the other hand, the entire surface of the composition applied to the glass wafer was irradiated directly with light from a high-pressure mercury lamp, without using a quartz mask, using a Mask Aligner MA8 manufactured by SUSS MicroTec AG. Following the irradiation, a post-exposure heat treatment was performed, and the composition was then developed by dipping in propylene glycol monomethyl ether acetate. The film that was left following these operations was then heated in an oven for one hour at 180° C., yielding a cured film. This cured film was measured for light transmission of light having a wavelength of 405 nm. The results are shown in Table 2.
- The composition used in Example 2 was applied to a glass wafer, and subjected to total-surface exposure, post-exposure heating and developing operations in the same manner as described above for Example 2. Subsequently, with the wafer positioned on a hotplate at 140° C., another glass wafer was bonded to the coated surface. Following this operation, the bonded structure was heated in an oven at 180° C. for one hour, yielding a sample composed of a cured film sandwiched between two glass wafers. This sample was placed in an oven at 120° C., and was then irradiated continuously with a 1 mW laser having a wavelength of 406 nm, while the change over time in the light transmission of the sample relative to light having a wavelength of 405 nm was investigated, with the initial transmission deemed to be 100%. The results are shown in
FIG. 1 . -
TABLE 1 Film thickness after Film thick- spin ness after Exposure Component Component Component Component coating developing dose Resolution (A) (B) (C) (D) Additives (μm) (μm) (mJ) (μm) Example 1 A-1 C-1 D-1 E-1 0.1 9.6 9.5 600 10 100 1 50 E-2 0.1 2 A-1 B-1 C-1 D-1 E-1 0.1 9.0 9.0 600 10 50 50 1 30 E-2 0.1 E-3 20 3 A-1 B-2 C-2 D-1 E-1 0.1 13.3 13.2 800 20 50 50 1 50 E-2 0.1 4 A-1 B-3 C-2 D-1 E-1 0.1 9.8 9.8 800 20 50 50 1 60 E-2 0.1 E-1: CHIMASSORB 119FL (manufactured by BASF Japan Ltd.) E-2: IRGANOX 3114 (manufactured by BASF Japan Ltd.) -
TABLE 2 Example 1 Example 2 Example 3 Example 4 Light transmission 99.9 99.7 99.1 99.2 (%, 405 nm) - From the above results it was evident that the compositions of Examples 1 to 4 were capable of very fine pattern formation with a line width of approximately 10 to 20 μM, suffered essentially no thickness loss, exhibited satisfactory properties as photosensitive materials, and yielded cured films that exhibited superior light transmission as well as favorable heat resistance and light resistance, meaning the compositions were particularly useful as materials for optical devices.
Claims (19)
1. A silphenylene-containing photocurable composition comprising:
(A) a silphenylene having both terminals modified with alicyclic epoxy groups, represented by formula (1) shown below, and
2. The silphenylene-containing photocurable composition according to claim 1 , wherein an amount of component (C) is within a range from 0.05 to 20 parts by mass per 100 parts by mass of component (A).
3. The silphenylene-containing photocurable composition according to claim 1 , further comprising:
(D) an organic solvent, in an amount of 1 to 2,000 parts by mass per 100 parts by mass of a combined mass of component (A) and component (C).
4. The silphenylene-containing photocurable composition according to claim 1 , further comprising:
(B) an epoxy group-containing organosilicon compound represented by general formula (2) shown below:
wherein each R independently represents a hydrogen atom or a monovalent organic group, at least one R comprises an epoxy group, a, b and c each represents an integer of 0 or greater, d represents an integer of 0 or greater, e represents an integer of 1 or greater, W, X and Y each represents a divalent organic group, and f, g and h each independently represents 0 or 1, provided that when a and c are 0, b is 1 and g is 0, the R groups do not both represent epoxy group-containing organic groups represented by the formula below.
5. The silphenylene-containing photocurable composition according to claim 4 , wherein an amount of component (B) is within a range from 0.5 to 900 parts by mass per 100 parts by mass of component (A), and an amount of component (C) is within a range from 0.05 to 20 parts by mass per 100 parts by mass of a combined mass of component (A) and component (B).
6. The silphenylene-containing photocurable composition according to claim 4 , further comprising:
(D) an organic solvent, in an amount of 1 to 2,000 parts by mass per 100 parts by mass of a combined mass of components (A), (B) and (C).
7. The silphenylene-containing photocurable composition according to claim 4 , wherein component (B) is an epoxy group-containing organosilicon compound represented by general formula (2′) shown below:
wherein a′, b′ and c′ each represents an integer of 0 or greater, R, d, e, W, X and Y are as defined above, and Z represents a divalent organic group represented by a formula shown below:
provided that when a′, b′ and c′ are 0 and Z is a divalent organic group represented by a formula shown below:
the R groups do not both represent epoxy group-containing organic groups represented by a formula below.
8. The silphenylene-containing photocurable composition according to claim 4 , wherein each R independently represents a hydrogen atom, a monovalent hydrocarbon group of 1 to 8 carbon atoms, or an epoxy group-containing organic group represented by a formula shown below:
and at least one R comprises an epoxy group.
10. The silphenylene-containing photocurable composition according to claim 1 , wherein the component (C) is at least one photoacid generator selected from the group consisting of onium salts, diazomethane derivatives, glyoxime derivatives, β-ketosulfone derivatives, disulfone derivatives, nitrobenzyl sulfonate derivatives, sulfonate ester derivatives, imidoyl sulfonate derivatives, oxime sulfonate derivatives, iminosulfonate derivatives and triazine derivatives.
11. The silphenylene-containing photocurable composition according to claim 4 , wherein the component (C) is at least one photoacid generator selected from the group consisting of onium salts, diazomethane derivatives, glyoxime derivatives, β-ketosulfonederivatives, disulfone derivatives, nitrobenzyl sulfonate derivatives, sulfonate ester derivatives, imidoyl sulfonate derivatives, oxime sulfonate derivatives, iminosulfonate derivatives and triazine derivatives.
12. A cured film obtained by curing the silphenylene-containing photocurable composition defined in claim 1 .
13. A cured film obtained by curing the silphenylene-containing photocurable composition defined in claim 4 .
14. A pattern formation method comprising:
(i) forming a film of the photocurable composition defined in claim 1 on a substrate,
(ii) exposing the film through a photomask with light having a wavelength of 240 to 500 nm, or exposing the film through a photomask with light having a wavelength of 240 to 500 nm and then performing heating following the exposure, and
(iii) developing the film in a developing liquid, or developing the film in a developing liquid and subsequently performing post-curing at a temperature within a range from 120 to 300° C.
15. A pattern formation method comprising:
(i) forming a film of the photocurable composition defined in claim 4 on a substrate,
(ii) exposing the film through a photomask with light having a wavelength of 240 to 500 nm, or exposing the film through a photomask with light having a wavelength of 240 to 500 nm and then performing heating following the exposure, and
(iii) developing the film in a developing liquid, or developing the film in a developing liquid and subsequently performing post-curing at a temperature within a range from 120 to 300° C.
16. An optical semiconductor element obtained by performing pattern formation using the method defined in claim 14 .
17. The optical semiconductor element according to claim 16 , having a cured film obtained by curing the photocurable composition.
18. An optical semiconductor element obtained by performing pattern formation using the method defined in claim 15 .
19. The optical semiconductor element according to claim 18 , having a cured film obtained by curing the photocurable composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/019,910 US8715905B2 (en) | 2010-06-18 | 2013-09-06 | Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-139535 | 2010-06-18 | ||
JP2010139535A JP5310656B2 (en) | 2010-06-18 | 2010-06-18 | Silphenylene-containing photocurable composition, pattern forming method using the same, and optical semiconductor device obtained by the method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/019,910 Division US8715905B2 (en) | 2010-06-18 | 2013-09-06 | Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110311788A1 true US20110311788A1 (en) | 2011-12-22 |
Family
ID=44504397
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/163,174 Abandoned US20110311788A1 (en) | 2010-06-18 | 2011-06-17 | Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method |
US14/019,910 Expired - Fee Related US8715905B2 (en) | 2010-06-18 | 2013-09-06 | Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/019,910 Expired - Fee Related US8715905B2 (en) | 2010-06-18 | 2013-09-06 | Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method |
Country Status (5)
Country | Link |
---|---|
US (2) | US20110311788A1 (en) |
EP (1) | EP2397508B1 (en) |
JP (1) | JP5310656B2 (en) |
KR (1) | KR101805191B1 (en) |
TW (1) | TWI475325B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107849223A (en) * | 2015-07-10 | 2018-03-27 | 住友精化株式会社 | The purposes of composition epoxy resin, its manufacture method and said composition |
CN108693711A (en) * | 2017-03-31 | 2018-10-23 | 东京应化工业株式会社 | Anti-corrosion agent composition and corrosion-resisting pattern forming method and compound and acid diffusion controlling agent |
CN109976091A (en) * | 2017-12-27 | 2019-07-05 | 信越化学工业株式会社 | The manufacture of photosensitive resin composition, pattern forming method and optoelectronic semiconductor component |
US11091627B2 (en) | 2017-01-10 | 2021-08-17 | Sumitomo Seika Chemicals Co., Ltd. | Epoxy resin composition |
US11111382B2 (en) | 2017-01-10 | 2021-09-07 | Sumitomo Seika Chemicals Co., Ltd. | Epoxy resin composition |
US11292872B2 (en) | 2017-01-10 | 2022-04-05 | Sumitomo Seika Chemicals Co., Ltd. | Epoxy resin composition |
CN115244100A (en) * | 2020-02-21 | 2022-10-25 | 陶氏东丽株式会社 | Solvent-free photocurable liquid composition, cured product thereof, optical filler comprising same, and display device comprising layer formed from cured product thereof |
US11603466B2 (en) | 2017-01-10 | 2023-03-14 | Sumitomo Seika Chemicals Co.. Ltd. | Epoxy resin composition |
CN115894934A (en) * | 2022-11-21 | 2023-04-04 | 江南大学 | Phosphorus-containing polysiloxane, preparation method thereof and application of modified epoxy resin |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013092633A (en) * | 2011-10-25 | 2013-05-16 | Adeka Corp | Positive photosensitive composition |
WO2013140601A1 (en) * | 2012-03-23 | 2013-09-26 | 株式会社Adeka | Silicon-containing curable resin composition |
US10435585B2 (en) | 2013-05-17 | 2019-10-08 | Dow Corning Corporation | Curable composition, method of preparing cured article, and cured article formed thereby |
EP3006481A4 (en) * | 2013-05-28 | 2017-01-18 | Daicel Corporation | Curable composition for sealing optical semiconductor |
JP6302816B2 (en) * | 2014-10-15 | 2018-03-28 | 信越化学工業株式会社 | Silicone resin composition and optical semiconductor device |
JP6656870B2 (en) * | 2015-07-10 | 2020-03-04 | 住友精化株式会社 | Benzoxazine resin composition, method for producing the same, and use of the composition |
TWI721039B (en) * | 2015-11-18 | 2021-03-11 | 日商住友精化股份有限公司 | Epoxy resin composition, its manufacturing method, and use of the composition |
JP6599240B2 (en) * | 2016-01-06 | 2019-10-30 | 住友精化株式会社 | Silphenylene compound, production method thereof, epoxy resin composition containing the silphenylene compound, and use of the composition |
WO2018131564A1 (en) * | 2017-01-10 | 2018-07-19 | 住友精化株式会社 | Epoxy resin composition |
WO2018131569A1 (en) * | 2017-01-10 | 2018-07-19 | 住友精化株式会社 | Epoxy resin composition |
JP6874584B2 (en) | 2017-08-09 | 2021-05-19 | 信越化学工業株式会社 | Photosensitive resin composition, photosensitive resin film, photosensitive dry film, laminate, and pattern forming method |
JP6866802B2 (en) | 2017-08-09 | 2021-04-28 | 信越化学工業株式会社 | Silicone skeleton-containing polymer compound, photosensitive resin composition, photosensitive resin film, photosensitive dry film, laminate, and pattern forming method |
EP3450478B1 (en) | 2017-08-31 | 2020-11-11 | Shin-Etsu Chemical Co., Ltd. | Epoxy-containing, isocyanurate-modified silicone resin, photosensitive resin composition, photosensitive dry film, laminate, and pattern forming process |
JP6798481B2 (en) * | 2017-12-27 | 2020-12-09 | 信越化学工業株式会社 | Photosensitive resin composition, pattern forming method, and manufacturing method of optical semiconductor device |
JP7111031B2 (en) * | 2018-03-23 | 2022-08-02 | 信越化学工業株式会社 | Photosensitive resin composition, photosensitive resin laminate, and pattern forming method |
JP6870657B2 (en) | 2018-05-17 | 2021-05-12 | 信越化学工業株式会社 | Photosensitive resin composition, photosensitive dry film, and pattern forming method |
JP6919626B2 (en) | 2018-05-17 | 2021-08-18 | 信越化学工業株式会社 | Polymers containing silphenylene skeleton and polyether skeleton |
JP6984539B2 (en) | 2018-05-21 | 2021-12-22 | 信越化学工業株式会社 | Photosensitive resin composition, pattern forming method, and manufacturing method of optical semiconductor device |
US11119409B2 (en) | 2018-11-22 | 2021-09-14 | Shin-Etsu Chemical Co., Ltd. | Polysiloxane skeleton polymer, photosensitive resin composition, pattern forming process, and fabrication of opto-semiconductor device |
JP7183939B2 (en) * | 2018-11-22 | 2022-12-06 | 信越化学工業株式会社 | Polysiloxane skeleton-containing polymer, photosensitive resin composition, pattern forming method, and method for manufacturing optical semiconductor element |
US11548985B2 (en) | 2018-11-28 | 2023-01-10 | Shin-Etsu Chemical Co., Ltd. | Siloxane polymer containing isocyanuric acid and polyether skeletons, photosensitive resin composition, pattern forming process, and fabrication of opto-semiconductor device |
JP7176469B2 (en) | 2018-11-28 | 2022-11-22 | 信越化学工業株式会社 | Siloxane polymer containing isocyanuric acid skeleton and polyether skeleton, photosensitive resin composition, pattern forming method, and method for producing optical semiconductor element |
JP7056541B2 (en) | 2018-12-19 | 2022-04-19 | 信越化学工業株式会社 | Photosensitive resin composition, photosensitive dry film and pattern forming method |
JP7119997B2 (en) | 2018-12-28 | 2022-08-17 | 信越化学工業株式会社 | Photosensitive resin composition, laminate, and pattern forming method |
WO2020262061A1 (en) * | 2019-06-27 | 2020-12-30 | 住友精化株式会社 | Epoxy resin composition |
WO2021010360A1 (en) | 2019-07-16 | 2021-01-21 | 信越化学工業株式会社 | Photosensitive resin composition, photosensitive dry film, layered product, and pattern formation method |
JP2024025981A (en) * | 2022-08-15 | 2024-02-28 | 信越化学工業株式会社 | Photo-cationically curable silicone composition, silicone cured product, and optical device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6779656B2 (en) * | 2000-01-13 | 2004-08-24 | 3M Espe Ag | Polymerizable preparations based on epoxides that contain silicon |
US7235602B2 (en) * | 2001-02-19 | 2007-06-26 | 3M Espe Ag | Polymerizable preparations on the basis of silicon compounds comprising aliphatic and cycloaliphatic epoxide groups |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990546A (en) * | 1990-03-23 | 1991-02-05 | General Electric Company | UV-curable silphenylene-containing epoxy functional silicones |
WO2005120439A1 (en) * | 2004-05-13 | 2005-12-22 | Rhodia Chimie | Photopolymerisable dental composition |
US20050261390A1 (en) * | 2004-05-13 | 2005-11-24 | Jean-Marc Frances | Stable cationically crosslinkable/polymerizable dental composition with a high filler content |
JPWO2009104680A1 (en) * | 2008-02-22 | 2011-06-23 | 日本化薬株式会社 | Radiation sensitive resin composition, cured product thereof, interlayer insulating film using the composition, and optical device |
-
2010
- 2010-06-18 JP JP2010139535A patent/JP5310656B2/en active Active
-
2011
- 2011-06-17 KR KR1020110058935A patent/KR101805191B1/en active IP Right Grant
- 2011-06-17 EP EP11004969.9A patent/EP2397508B1/en active Active
- 2011-06-17 TW TW100121229A patent/TWI475325B/en not_active IP Right Cessation
- 2011-06-17 US US13/163,174 patent/US20110311788A1/en not_active Abandoned
-
2013
- 2013-09-06 US US14/019,910 patent/US8715905B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6779656B2 (en) * | 2000-01-13 | 2004-08-24 | 3M Espe Ag | Polymerizable preparations based on epoxides that contain silicon |
US7235602B2 (en) * | 2001-02-19 | 2007-06-26 | 3M Espe Ag | Polymerizable preparations on the basis of silicon compounds comprising aliphatic and cycloaliphatic epoxide groups |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107849223A (en) * | 2015-07-10 | 2018-03-27 | 住友精化株式会社 | The purposes of composition epoxy resin, its manufacture method and said composition |
US11066510B2 (en) | 2015-07-10 | 2021-07-20 | Sumitomo Seika Chemicals Co., Ltd. | Epoxy resin composition, process for producing same, and uses of said composition |
US11091627B2 (en) | 2017-01-10 | 2021-08-17 | Sumitomo Seika Chemicals Co., Ltd. | Epoxy resin composition |
US11111382B2 (en) | 2017-01-10 | 2021-09-07 | Sumitomo Seika Chemicals Co., Ltd. | Epoxy resin composition |
US11292872B2 (en) | 2017-01-10 | 2022-04-05 | Sumitomo Seika Chemicals Co., Ltd. | Epoxy resin composition |
US11603466B2 (en) | 2017-01-10 | 2023-03-14 | Sumitomo Seika Chemicals Co.. Ltd. | Epoxy resin composition |
CN108693711A (en) * | 2017-03-31 | 2018-10-23 | 东京应化工业株式会社 | Anti-corrosion agent composition and corrosion-resisting pattern forming method and compound and acid diffusion controlling agent |
CN109976091A (en) * | 2017-12-27 | 2019-07-05 | 信越化学工业株式会社 | The manufacture of photosensitive resin composition, pattern forming method and optoelectronic semiconductor component |
CN115244100A (en) * | 2020-02-21 | 2022-10-25 | 陶氏东丽株式会社 | Solvent-free photocurable liquid composition, cured product thereof, optical filler comprising same, and display device comprising layer formed from cured product thereof |
CN115894934A (en) * | 2022-11-21 | 2023-04-04 | 江南大学 | Phosphorus-containing polysiloxane, preparation method thereof and application of modified epoxy resin |
Also Published As
Publication number | Publication date |
---|---|
JP5310656B2 (en) | 2013-10-09 |
EP2397508B1 (en) | 2016-02-10 |
US8715905B2 (en) | 2014-05-06 |
TW201209519A (en) | 2012-03-01 |
TWI475325B (en) | 2015-03-01 |
EP2397508A1 (en) | 2011-12-21 |
KR20110138187A (en) | 2011-12-26 |
KR101805191B1 (en) | 2017-12-05 |
JP2012001668A (en) | 2012-01-05 |
US20140011126A1 (en) | 2014-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8715905B2 (en) | Silphenylene-containing photocurable composition, pattern formation method using same, and optical semiconductor element obtained using the method | |
JP4336999B2 (en) | Silphenylene skeleton-containing polymer compound, photocurable resin composition, pattern forming method, and film for protecting circuit board | |
JP3767676B2 (en) | Organosiloxane polymer compound, photocurable resin composition, pattern forming method, and film for protecting substrate | |
JP5417623B2 (en) | Polyimide-based photocurable resin composition, pattern forming method, and film for protecting substrate | |
JP4530284B2 (en) | Polyimide-based photocurable resin composition, pattern forming method, and film for protecting substrate | |
JP4959778B2 (en) | Photocurable resin composition, film adhesive using the composition, and adhesive sheet | |
JP3944734B2 (en) | Organosiloxane polymer compound, photocurable resin composition, pattern forming method, and film for protecting substrate | |
KR100831715B1 (en) | Photo-curable resin composition, patterning process, and substrate protecting film | |
JP7111031B2 (en) | Photosensitive resin composition, photosensitive resin laminate, and pattern forming method | |
US11156919B2 (en) | Photosensitive resin composition, pattern forming process, and fabrication of opto-semiconductor device | |
JP6981390B2 (en) | Photosensitive resin composition, photosensitive dry film, and pattern forming method | |
KR101117023B1 (en) | Polyimide-based photocurable resin composition and patterning process and substrate-protecting film | |
US20200157348A1 (en) | Photosensitive resin composition, pattern forming process, and antireflection film | |
JP2004224856A (en) | Hydrophilic group-containing organosiloxane-based polymer compound, photocurable resin composition, method for pattern formation and coating film for substrate protection | |
JP2021173852A (en) | Photosensitive resin composition, photosensitive resin coat, photosensitive dry film and patterning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHIN-ETSU CHEMICAL CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAGAMI, SHOHEI;SAKURAI, TAKATO;KATO, HIDETO;REEL/FRAME:026477/0896 Effective date: 20110531 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |