[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20110286081A1 - Electronically addressable microencapsulated ink and display thereof - Google Patents

Electronically addressable microencapsulated ink and display thereof Download PDF

Info

Publication number
US20110286081A1
US20110286081A1 US13/197,439 US201113197439A US2011286081A1 US 20110286081 A1 US20110286081 A1 US 20110286081A1 US 201113197439 A US201113197439 A US 201113197439A US 2011286081 A1 US2011286081 A1 US 2011286081A1
Authority
US
United States
Prior art keywords
materials
referring
color
display
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/197,439
Inventor
Joseph M. Jacobson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink Corp
Original Assignee
E Ink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21808482&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110286081(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/935,800 external-priority patent/US6120588A/en
Application filed by E Ink Corp filed Critical E Ink Corp
Priority to US13/197,439 priority Critical patent/US20110286081A1/en
Publication of US20110286081A1 publication Critical patent/US20110286081A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4076Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material printing on rewritable, bistable "electronic paper" by a focused electric or magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/026Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B47/00Time-pieces combined with other articles which do not interfere with the running or the time-keeping of the time-piece
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • G09F9/372Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the positions of the elements being controlled by the application of an electric field
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/04Electronic labels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]

Definitions

  • electronically addressable contrast media In the area of electronically addressable contrast media (as may be used to effect a flat panel display) emissive and reflective electronically active films (such as electroluminescent and electrochromic films), polymer dispersed liquid crystal films, and bichromal microsphere elastomeric slabs are known. No such directly electronically addressable contrast medium however is amenable to printing onto an arbitrary surface.
  • electrostatic motors which may be etched or non-etched, are known in the art.
  • etched devices suffer from their inability to be fabricated on arbitrary surfaces.
  • non-etched devices suffer from the inability to incorporate drive logic and electronic control directly onto the actuating surface.
  • the present invention provides a system of electronically active inks and means for printing said inks in an arbitrary pattern onto a large class of substrates without the requirements of standard vacuum processing or etching.
  • Said inks may incorporate mechanical, electrical or other properties and may provide but are not limited to the following function: conducting, insulating, resistive, magnetic, semiconductive, light modulating, piezoelectric, spin, optoelectronic, thermoelectric or radio frequency.
  • this invention provides for a microencapsulated electric field actuated contrast ink system suitable for addressing by means of top and bottom electrodes or solely bottom electrodes and which operates by means of a bichromal dipolar microsphere, electrophoretic, dye system, liquid crystal, electroluminescent dye system or dielectrophoretic effect.
  • a microencapsulated electric field actuated contrast ink system suitable for addressing by means of top and bottom electrodes or solely bottom electrodes and which operates by means of a bichromal dipolar microsphere, electrophoretic, dye system, liquid crystal, electroluminescent dye system or dielectrophoretic effect.
  • Such an ink system may be useful in fabricating an electronically addressable display on any of a large class of substrate materials which may be thin, flexible and may result in an inexpensive display.
  • this invention provides for a semiconductive ink system in which a semiconductor material is deployed in a binder such that when said binder is cured a percolated structure with semiconductive properties results.
  • this invention for provides for systems capable of printing an arbitrary pattern of metal or semiconductive materials by means of photoreduction of a salt, electron beam reduction of a salt, jet electroplating, dual jet electroless plating or inert gas or local vacuum thermal, sputtering or electron beam deposition.
  • this invention provides for semiconductor logic elements and electro-optical elements which may include diode, transistor, light emitting, light sensing or solar cell elements which are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments. Additionally said elements may be multilayered and may form multilayer logic including vias and three dimensional interconnects.
  • this invention provides for analog circuits elements which may include resistors, capacitors, inductors or elements which may be used in radio applications or magnetic or electric field transmission of power or data.
  • this invention provides for an electronically addressable display in which some or all of address lines, electronically addressable contrast media, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments.
  • Such display may further comprise a radio receiver or transceiver and power means thus forming a display sheet capable of receiving wireless data and displaying the same.
  • this invention provides for an electrostatic actuator or motor which may be in the form of a clock or watch in which some or all of address lines, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments.
  • this invention provides for a wrist watch band which includes an electronically addressable display in which some or all of address lines, electronically addressable contrast media, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments.
  • Said watch band may be formed such that it has no external connections but rather receives data and or power by means of electric or magnetic field flux coupling by means of an antennae which may be a printed antennae.
  • this invention provides for a spin computer in which some or all of address lines, electronically addressable spin media, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments.
  • FIGS. 1A-F are schematic representations of means of fabricating particles with a permanent dipole moment.
  • FIGS. 2A-C are schematic representations of means of microencapsulation.
  • FIGS. 3A-E are schematic representations of microencapsulated electronically addressable contrast media systems suitable for top to bottom addressing.
  • FIGS. 4A-M are schematic representations of microencapsulated electronically addressable contrast media systems suitable for bottom addressing.
  • FIGS. 5A-D are schematic representations of microencapsulated electronically addressable contrast media systems based on a dielectrophoretic effect.
  • FIGS. 6A-B are schematic representations of microencapsulated electronically addressable contrast media systems based on a frequency dependent dielectrophoretic effect.
  • FIGS. 6C-E are plots of the dielectric parameter as a function of frequency for various physical systems.
  • FIGS. 7A-D are schematic representations of electronic ink systems and means for printing the same.
  • FIG. 8 is a schematic representation of a laser reduced metal salt ink system.
  • FIGS. 9A-E are schematic representations of electronic ink systems and means for printing the same.
  • FIGS. 10A-C are schematic diagrams of printed transistor structures.
  • FIG. 10D is a schematic diagram of a printed optoelectronic element.
  • FIGS. 10E-H are schematic diagrams of printed analog circuit elements.
  • FIGS. 11A-C are a schematic diagram of an electronic display employing printed elements which; this display may further include a data receiver or transceiver and a power means.
  • FIG. 12 is a schematic diagram of an electrostatic motor which may be in the form of a watch or clock in which said electrostatic elements are printed.
  • FIGS. 13A-B are a schematic diagram of a watch in which the wristband of said watch incorporates an electronically addressable display having printed elements and which may further comprise wireless means for sending or receiving data or power between watch and watchband.
  • FIG. 14 is a schematic diagram of a spin computer.
  • FIG. 1 details means of producing particles, either bichromal as might be used in an electrostatic display, or monochromal as might be used in a dielectrophoretic display, with an implanted dipole moment.
  • atomizing nozzles 1 are loaded with materials 12 and 13 which may be differently colored.
  • a first atomizing nozzle may be held at a positive potential 3 and a second nozzle may be held at a negative potential 4 .
  • Such potentials aid in atomization and impart a charge to droplets which form from said nozzles producing positively charged droplets 5 and negatively charged droplets 6 .
  • Such opposite charged droplets are attracted to each other electrostatically forming an overall neutral pair. After the formation of a neutral pair there is no more electrostatic attraction and no additional droplets are attracted to the neutral pair.
  • said material 12 and 13 is such that the particles are liquid when exiting said nozzles and either cool to form a solid or undergo a chemical reaction which may involve an additional hardening agent to form a solid then said charge may be trapped on each side of said neutral pair forming a bichromal solid particle with an implanted dipole 16 .
  • suitable choice of materials such as polyethylene, polyvinylidene fluoride or other materials such metastable dipoles may persist for long periods of time as is known in the art of electrets.
  • a heating element 7 may serve to reheat said pair thus minimizing surface tension energy and serving to reform said pair into a more perfect spherical shape.
  • a set of electrodes 8 biased at either the same or opposite voltage may be employed to trap particles which are not overall charge neutral.
  • a similar apparatus may be employed to create a monochromal particle with an implanted dipole.
  • nozzles containing material of the same color 12 are employed as before to create a monochromal particle with implanted dipole 21 .
  • FIGS. 1C and 1D alternative means are shown for producing a bichromal particle with implanted dipole by means of combining two differentially colored materials 12 and 13 on a spinning disk 11 or in a double barreled nozzle 19 .
  • Said materials are charged by means of positive electrode 14 and negative electrode 15 and combine by means of electrostatic attraction at the rim of said disk or exit of said double barrel nozzle to form bichromal particle with implanted dipole moment 16 .
  • Said means differs from that known in the art by means of causing said two different materials 12 and 13 to coalesce by means of electrostatic attraction as opposed to relying on surface properties and interactions between the two materials. Additionally the present scheme creates a particle with an implanted dipole moment 16 which may serve to create a larger dipole moment than that possible from the naturally occurring Zeta potential.
  • a similar apparatus may be employed to create a monochromal particle with an implanted dipole.
  • nozzles containing material of the same color 12 are employed as before to create a monochromal particle with implanted dipole 21 .
  • an internal phase 25 may be a liquid or may be a solid with an additional associated surface layer 27 .
  • Said internal phase if liquid or said associated surface layer may contain a polymer building block, such as adipoyl chloride in silicone oil.
  • Said internal phase, with associated boundary layer in the case of a liquid may then be dispersed in a continuous phase liquid 30 which may be an aqueous solution which is immiscible with said internal phase or associated surface layer.
  • a solution 40 which contains another polymer building block or cross linking agent may be added to continuous phase liquid 30 .
  • Said solution 40 has the effect of forming a solid layer at the interface of the internal phase or associated surface layer and said continuous phase liquid 30 thus acting to microencapsulate said internal phase.
  • an internal phase 25 which may be a solid or a liquid may be caused to pass through a series of liquid films 50 , 60 , 70 which may contain polymer building blocks, cross linking agents and overcoat materials such that a final microcapsule 120 results comprised of an internal phase 25 , an associated surface layer 27 and an outer shell 80 .
  • FIG. 2C An alternate means of microencapsulation is shown in FIG. 2C .
  • a light source 82 which may be a UV light source passes in some areas through a photomask 84 exposing a crosslinkable polymer which may be caused to form a cellular structure 86 .
  • the individual cells of said cellular structure may then be filled with an internal phase 25 .
  • FIG. 3 details such electronically addressable contrast media systems which are suitable for addressing by means of a top clear electrode 100 and bottom electrode 110 .
  • a microcapsule 120 may contain a microsphere with a positively charged hemisphere 142 and a negatively charged 140 hemisphere and an associated surface layer material 130 . If said hemispheres are differentially colored an electric field applied to said electrodes may act to change the orientation of said sphere thus causing a perceived change in color.
  • a microcapsule 120 may contain positively charged particles of one color 210 and negatively charged particles of another color 220 such that application of an electric field to said electrodes causes a migration of the one color or the other color, depending on the polarity of the field, toward the surface of said microcapsule and thus effecting a perceived color change.
  • Such a system constitutes a microencapsulated electrophoretic system.
  • a microcapsule 120 may contain a dye, dye precursor or dye indicator material of a given charge polarity 230 or a dye, dye precursor or dye indicator material attached to a particle of given charge polarity such as a microsphere with an appropriate surface group attached and a reducing, oxidizing, proton donating, proton absorbing or solvent agent of the other charge polarity 240 or a reducing, oxidizing, proton donating, proton absorbing or solvent agent attached to a particle of the other charge polarity.
  • said dye substance 230 is maintained distal to said reducing, oxidizing, proton donating, proton absorbing or solvent agent 240 thus effecting one color state as in FIG. 3C .
  • said dye substance and said reducing, oxidizing, proton donating, proton absorbing or solvent agent may bond to form a complex 245 of second color state.
  • Suitable materials for use in this system are leuco and lactone dye systems and other ring structures which may go from a state of one color to a state of a second color upon application of a reducing, oxidizing or solvent agent or dye indicator systems which may go from a state of one color to a state of a second color upon application of a proton donating or proton absorbing agent as is known in the art.
  • An additional gel or polymer material may be added to the contents of said microcapsule in order to effect a bistability of the system such that said constituents are relatively immobile except on application of an electric field.
  • a microcapsule 120 may contain phosphor particles 255 and photoconductive semiconductor particles and dye indicator particles 260 in a suitable binder 250 . Applying an AC electric field to electrodes 100 and 110 causes AC electroluminescence which causes free charge to be generated in the semiconducting material further causing said dye indicator to change color state.
  • the chemistry as described in reference to FIGS. 3C-D may be employed with in-plane electrodes such that said chemistry undergoes a color switch from one color state to a second color state upon application of an electric field to in-plane electrodes 270 and 280 .
  • Such a system is viewed from above and thus said electrodes may be opaque and do not effect the optical characteristics of said display.
  • FIGS. 4C and 4D a bistable liquid crystal system of the type demonstrated by Hatano et. al. of Minolta Corp. is modified to be effected by in plane electrodes such that a liquid crystal mixture transforms from a first transparent planar structure 290 to a second scattering focal conic structure 292 .
  • the system of FIG. 3E may be switched by use of in-plane electrodes 270 and 280 .
  • a hairpin shaped molecule or spring in the closed state 284 may have attached to it a positively charged 282 and a negatively charged 283 head which may be microspheres with implanted dipoles. Additionally one side of said hairpin shaped molecule or spring has attached to it a leuco dye 286 and the other side of said hairpin shaped molecule or spring has attached to it a reducing agent 285 .
  • said leuco dye 286 and said reducing agent 285 are brought into proximity such that a bond is formed 287 and said leuco dye is effectively reduced thus effecting a first color state.
  • said bond 287 may be made to break, thus yielding an open state 288 .
  • said open state the leuco dye and reducing agent are no longer proximal and the leuco dye, being in a non-reduced state, effects a second color state.
  • the system may be reversed by applying a DC electric field which serves to reproximate the leuco dye and reducing agent groups.
  • Many molecules or microfabricated structures may serve as the normally open hairpin shaped molecule or spring. These may include oleic acid like molecules 289 . Reducing agents may include sodium dithionite.
  • the system as discussed is bistable. Energy may be stored in said hairpin shaped molecule or spring and as such said system may also function as a battery.
  • an alternative leucodye-reducing agent system may employ a polymer shown in FIG. 41 in a natural state 293 .
  • a DC electric field When a DC electric field is applied said polymer assumes a linear shape 294 with leuco 286 and reducing agent 285 groups distal from each other.
  • said polymer Upon application of either a reversing DC field or an AC electric field said polymer will tend to coil bringing into random contact said leuco and reducing groups forming a bond 287 with a corresponding color change.
  • Said polymer serves to make said system bistable.
  • polymer leuco and reducing groups may be attached to oppositely charge microspheres directly by means of a bridge 286 which may be a biotin-streptavidin bridge, polymer bridge or any other suitable bridge.
  • a bridge 286 may be a biotin-streptavidin bridge, polymer bridge or any other suitable bridge.
  • a polymer may be added to aid in the stability of the oxidized state.
  • an entirely different principle may be employed in an electronically addressable contrast media ink.
  • the dielectrophoretic effect is employed in which a species of higher dielectric constant may be caused to move to a region of high electric field strength.
  • a non-colored dye solvent complex 315 which is stable when no field is applied across electrode pair 150 may be caused to become dissociate into colored dye 300 and solvent 310 components by means of an electric field 170 acting differentially on the dielectric constant of said dye complex and said solvent complex as applied by electrode pair 150 .
  • the chemistries as discussed in the system of FIG. 3C-D may readily be employed here and that said dye complex and said solvent complex need not themselves have substantially different dielectric constants but rather may be associated with other molecules or particles such as microspheres with substantially different dielectric constants.
  • a gel or polymer complex may be added to the contents of said microcapsule in order to effect a bistability.
  • stacked electrode pairs 150 and 160 may be employed to effect a high electric field region in a higher 170 or lower 180 plane thus causing a higher dielectric constant material such as one hemisphere of a bichromal microsphere 141 or one species of a mixture of colored species 147 to migrate to a higher or lower plane respectively and give the effect of differing color states.
  • materials 165 which may be dielectric materials or may be conducting materials may be employed to shape said electric fields.
  • FIGS. 6A-B systems based on a frequency dependent dielectrophoretic effect are described. Such systems are addressed by means of applying a field of one frequency to produce a given color and applying a field of a different frequency to produce another color. Such a functionality allows for a rear addressed display.
  • a microcapsule 120 encompasses an internal phase 184 which may be a material which has a frequency independent dielectric constant as shown in FIG. 6C , curve 320 and which may have a first color B and material 182 which has a frequency dependent dielectric constant and a second color W. Said frequency dependent material may further have a high dielectric constant at low frequency and a smaller dielectric constant at higher frequency as shown in FIG. 6C , curve 322 .
  • Application of a low frequency AC field by means of electrodes 270 and 280 causes said material 182 to be attracted to the high field region proximal the electrodes thus causing said microcapsule to appear as the color B when viewed from above.
  • a particle is fabricated with an engineered frequency dependent dielectric constant.
  • the means for fabricating this particle are depicted in FIGS. 1B , E and F.
  • dipolar particles At low frequency such dipolar particles have sufficiently small mass that they may rotate in phase with said AC field thus effectively canceling said field and acting as a high. dielectric constant material.
  • the inertia of said particles At high frequency however the inertia of said particles is such that they cannot keep in phase with said AC field and thus fail to cancel said field and consequently have an effectively small dielectric constant.
  • material 182 may be comprised of naturally occurring frequency dependent dielectric materials.
  • material 182 may be a natural or artificial cell material which has a dielectric constant frequency dependence as depicted in FIG. 6D , curve 330 as are discussed in Electromechanics of Particles by T. B. Jones incorporated herein by reference. Such particles are further suitable for fabrication of an electronically addressable contrast ink.
  • Microcapsule 120 contains a particle of a first dielectric constant, conductivity and color 186 , a particle of a second dielectric constant, conductivity and color and an internal phase of a third dielectric constant, conductivity and color 190 .
  • FIG. 6E it is known in the art of electromechanics of particles that for particles with ohmic loss (e.g. finite conductivity) at low frequency the DC conductivity governs the dielectric constant whereas at high frequency the dielectric polarization governs the dielectric constant.
  • a particle with finite conductivity has a dielectric constant K as a function of frequency f as in FIG. 6E , curve 338 .
  • a second particle of second color has a dielectric constant K as a function of frequency f as in FIG. 6E , curve 340 .
  • an internal phase with no conductivity has a frequency independent dielectric constant K, curve 336 .
  • FIGS. 7-9 depict other types of electronically active ink systems.
  • prior art means are known for depositing metals or resistive materials in a binding medium which may later be cured to form conducting or resistive traces.
  • novel means are described for depositing semiconductive materials in a binder on a large class of substrate materials in one case and for depositing metals, resistive materials or semiconductive materials outside of vacuum, in an arbitrary pattern, without the need for an etch step and on a large class of substrate materials in another case.
  • a semiconductor ink 350 may be fabricated by dispersing a semiconductor powder 355 in a suitable binder 356 .
  • Said semiconductor powder may be Si, Germanium or GaAs or other suitable semiconductor and may further be with n-type impurities such as phosphorus, antimony or arsenic or p-type impurities such as boron, gallium, indium or aluminum or other suitable n or p type dopants as is known in the art of semiconductor fabrication.
  • Said binder 356 may be a vinyl, plastic heat curable or UV curable material or other suitable binder as is known in the art of conducting inks
  • Said semiconductive ink 350 may be applied by printing techniques to form switch or logic structures.
  • Said printing techniques may include a fluid delivery system 370 in which one or more inks 372 , 374 may be printed in a desired pattern on to a substrate.
  • said ink system 350 may be printed by means of a screen process 377 in which an ink 380 is forced through a patterned aperture mask 378 onto a substrate 379 to form a desired pattern.
  • Said ink pattern 360 when cured brings into proximity said semiconductive powder particles 355 to create a continuous percolated structure with semiconductive properties 365 .
  • a system for causing a conductive or semiconductive trace 390 to be formed on substrate 388 in correspondence to an impinging light source 382 which may be steered by means of an optical beam steerer 384 .
  • the operation of said system is based upon a microcapsule 386 which contains a metal or semiconductive salt in solution.
  • light 382 which may be a UV light said metal or semiconductive salt is reduced to a metal or semiconductor and said microcapsule is simultaneously burst causing deposition of a conductive or semiconductive trace.
  • an ink jet system for depositing metallic or semiconductive traces 410 is depicted.
  • a jet containing a metal or semiconductive salt 420 impinges upon substrate 400 in conjunction with a jet containing a reducing agent 430 .
  • a metallic trace silver nitrate (AgNO 3 ) may be used for jet 420 and a suitable aldehyde may be used for the reducing jet 430 .
  • chemistries suitable for the present system are known in the art of electroless plating. In all such examples it is understood that said jets are moveable and controllable such that an arbitrary trace may be printed.
  • FIG. 9B a system which is similar to that of FIG. 9A is depicted.
  • an electron beam 470 may be used instead of said reducing jet in order to bring about a reduction of a metal or semiconductive salt emanating from a jet 460 .
  • a ground plane 450 may be employed to ground said electron beam.
  • FIG. 9C an ink jet system for depositing a metallic or semiconductive trace is depicted based on electroplating.
  • a metal or semiconductive salt in a jet 480 held at a potential V may be electroplated onto a substrate 410 thus forming a metallic or semiconductive trace.
  • jet 490 may contain a photoconductive material and a metal salt which may be caused to be photoconductively electroplated onto surface 400 by means of application of light source 495 as is known in the field of photoconductive electroplating.
  • a system is depicted for a moveable deposition head 500 which contains a chamber 520 which may be filled with an inert gas via inlet 510 and which further contains thermal, sputtering, electron beam or other deposition means 530 .
  • Said moveable head 500 may print a metal, semiconductor, insulator, spin material or other material in an arbitrary pattern onto a large class of substrates 540 . In some case such substrate 540 be cooled or chilled to prevent damage from said materials which may be at an elevated temperature.
  • an NPN junction transistor may be fabricated consisting of a n-type emitter 950 , a p-type base 954 and a n-type collector 952 .
  • a field effect transistor may be printed such as a metal oxide semiconductor.
  • a transistor consists of a p-type material 970 , an n-type material 966 an n-type inversion layer 968 an oxide layer 962 which acts as the gate a source lead 960 and a drain lead 964 .
  • a field effect transistor may be printed such as a metal oxide semiconductor.
  • Such a transistor consists of a p-type material 970 , an n-type material 966 an n-type inversion layer 968 an oxide layer 962 which acts as the gate a source lead 960 and a drain lead 964 .
  • multiple layers of logic may be printed by using an appropriate insulating layer between said logic layers. Further three dimensional interconnects between different logic layers may be accomplished by means of vias in said insulating layers.
  • a printed solar cell may be fabricated by printing some or all of a metal contact layer 972 , a p-type layer 974 , an n type layer 976 and an insulating layer 978 .
  • Light 979 which impinges upon said structure generates a current as is known in the art of solar cells.
  • Such printed solar cells may be useful in very thin compact and/or inexpensive structures where power is needed.
  • FIGS. 10E-H elements useful for analog circuitry may be printed.
  • a capacitor may be printed with dielectric material 983 interposing capacitor plates 981 and 985 .
  • the same structure may constitute a resistor by replacing dielectric 983 with a resistive material such as carbon ink.
  • chokes or radio antennae may be printed layer by layer.
  • a first set of diagonal electrodes 989 may be laid down on a substrate.
  • On top of this may be printed an insulator or magnetic core 987 .
  • top electrodes 992 which connect with said bottom electrodes may be printed this forming an inductor, choke or radio antennae.
  • An alternate in-plane structure is shown in FIG. 10H in which the flux field 995 is now perpendicular to the structure.
  • FIGS. 11-14 depict a number of possible such structures which may be fabricated.
  • an electronic display similar to one described in a copending patent application Ser. No. 08/504,896, filed Jul. 20, 1995 by Jacobson (now U.S. Pat. No. 6,124,851), is comprised of electronically addressable contrast media 640 , address lines 610 and 620 and logic elements 670 all or some of which may be fabricated with the ink systems and printing means as described in the foregoing descriptions.
  • Said Electronic Display may additionally comprise a data receiver or transceiver block 672 and a power block 674 .
  • Said data receiver block may further be a wireless radio receiver as pictured in FIG.
  • said data receiver or transceiver block may be an optoelectronic structure, a magnetic inductive coil an electric inductive coupling or an acoustic transducer such as a piezoresistive film.
  • Said power block 674 may comprise a printed polymer battery as pictured in FIG. 11C which consists of in one instance a lithium film 686 , a propylene carbonate LiPF 6 film 688 and LiCoO 2 in matrix 690 .
  • Said power block may alternatively consist of any other battery structure as known in the art of thin structure batteries, a magnetic or electric inductive converter for means of power reception as known in the art, a solar cell which may be a printed solar cell or a semiconductive electrochemical cell which may further have an integral fuel cell for energy storage or a piezoelectric material which generates power when flexed.
  • Such a display 600 as described above further comprising a data receiver or transceiver 672 and power block 674 in which some or all of said components are printed may comprise an inexpensive, lightweight, flexible receiver for visual data and text which we may term “radio paper.”
  • data might be transmitted to the “radio paper” sheet and there displayed thus forming a completely novel type of newspaper, namely one which is continuously updated.
  • an electrostatic motor which may form an analog clock or watch is depicted which consists of printed conducting elements 720 , 730 , 740 and 760 which are printed onto substrate 700 . Said elements, when caused to alternately switch between positive negative or neutral states by means of a logic control circuit 710 may cause an element 750 to be translated thus forming a motor or actuator.
  • some or all of said conducting elements and/or logic control elements may be printed using the ink systems and printing means described in the foregoing description.
  • a wrist watch 800 is depicted in which the band 820 of said watch contains an electronically addressable display 830 in which some or all of the components of said display, including the electronically addressable contrast media, the address lines and/or the logic are fabricated by means of the ink systems and printing means described in the foregoing description. Such a fabrication may be useful in terms of producing an inexpensive, easily manufacturing and thin display function.
  • Control buttons 810 may serve to control aspects of said display 830 .
  • FIG. 13B it is presently a problem to transmit data or power to a watch band via a wire connection as such connections tend to become spoiled by means of motion of the watchband relative to the watch.
  • FIG. 13B describes a system in which a magnetic or electric inductor 832 in watch band 820 may receive or transmit power or data to a magnetic or electric inductor 834 in watch 800 thus eliminating said wired connection.
  • Said inductor 832 and 834 may be printed structures.
  • a spin computer is depicted in which dipoles 912 with dipole moment 914 are situated at the nodes of row 920 and column 930 address lines.
  • Such a computer works by means of initially addressing said dipoles to an initial condition by said address lines and then allowing dipole interactions to produce a final state of the system as a whole thus performing a calculation as is known in the art of Spin Ising models and cellular automata.
  • Said dipoles may consist of a dipolar microsphere 912 microencapsulated in a microcapsule 910 or may consist of another form of dipole and/or another means of encapsulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Ink Jet (AREA)
  • Electric Clocks (AREA)
  • Liquid Crystal (AREA)
  • Color Printing (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

A system of electronically active inks is described which may include electronically addressable contrast media, conductors, insulators, resistors, semiconductive materials, magnetic materials, spin materials, piezoelectric materials, optoelectronic, thermoelectric or radio frequency materials. We further describe a printing system capable of laying down said materials in a definite pattern. Such a system may be used for instance to: print a flat panel display complete with onboard drive logic; print a working logic circuit onto any of a large class of substrates; print an electrostatic or piezoelectric motor with onboard logic and feedback or print a working radio transmitter or receiver.

Description

    REFERENCE TO RELATED APPLICATIONS
  • This application is a division of copending application Ser. No. 11/555,833, filed Nov. 2, 2006 (Publication No. 2007/0057908), which is a continuation of application Ser. No. 10/652,218, filed Aug. 29, 2003 (now U.S. Pat. No. 7,148,128, issued Dec. 12, 2006), which is a continuation of U.S. Ser. No. 10/200,571, filed Jul. 22, 2002 (now U.S. Pat. No. 6,652,075, issued Nov. 25, 2003), which is a continuation of U.S. Ser. No. 09/471,604, filed Dec. 23, 1999 (now U.S. Pat. No. 6,422,687 issued Jul. 23, 2002), which is a divisional of U.S. Ser. No. 08/935,800, filed Sep. 23, 1997 (now U.S. Pat. No. 6,120,588 issued Sep. 19, 2000), which claims priority to U.S. Provisional Application No. 60/035,622, filed Sep. 24, 1996, and claims priority to and is a continuation-in-part of International Application PCT/US96/13469, filed Aug. 20, 1996, which claims priority to U.S. Provisional Application No. 60/022,222, filed Jul. 19, 1996, the entire disclosures of which applications are incorporated herein by reference in their entirety.
  • BACKGROUND OF INVENTION
  • Currently, printing of conductors and resistors is well known in the art of circuit board manufacture. In order to incorporate logic elements the standard practice is to surface mount semiconductor chips onto said circuit board. To date there does not exist a system for directly printing said logic elements onto an arbitrary substrate.
  • In the area of flat panel display drivers there exists technology for laying down logic elements onto glass by means of vacuum depositing silicon or other semiconductive material and subsequently etching circuits and logic elements. Such a technology is not amenable to laying down logic elements onto an arbitrary surface due to the presence of the vacuum requirement and the etch step.
  • In the area of electronically addressable contrast media (as may be used to effect a flat panel display) emissive and reflective electronically active films (such as electroluminescent and electrochromic films), polymer dispersed liquid crystal films, and bichromal microsphere elastomeric slabs are known. No such directly electronically addressable contrast medium however is amenable to printing onto an arbitrary surface.
  • Finally in the area of surface actuators electrostatic motors, which may be etched or non-etched, are known in the art. In the first case, such etched devices suffer from their inability to be fabricated on arbitrary surfaces. In the second case, non-etched devices suffer from the inability to incorporate drive logic and electronic control directly onto the actuating surface.
  • It is an object of the present disclosure to overcome the limitations of the prior art in the area of printable logic, display and actuation.
  • SUMMARY OF THE INVENTION
  • In general the present invention provides a system of electronically active inks and means for printing said inks in an arbitrary pattern onto a large class of substrates without the requirements of standard vacuum processing or etching. Said inks may incorporate mechanical, electrical or other properties and may provide but are not limited to the following function: conducting, insulating, resistive, magnetic, semiconductive, light modulating, piezoelectric, spin, optoelectronic, thermoelectric or radio frequency.
  • In one embodiment this invention provides for a microencapsulated electric field actuated contrast ink system suitable for addressing by means of top and bottom electrodes or solely bottom electrodes and which operates by means of a bichromal dipolar microsphere, electrophoretic, dye system, liquid crystal, electroluminescent dye system or dielectrophoretic effect. Such an ink system may be useful in fabricating an electronically addressable display on any of a large class of substrate materials which may be thin, flexible and may result in an inexpensive display.
  • In another embodiment this invention provides for a semiconductive ink system in which a semiconductor material is deployed in a binder such that when said binder is cured a percolated structure with semiconductive properties results.
  • In another embodiment this invention for provides for systems capable of printing an arbitrary pattern of metal or semiconductive materials by means of photoreduction of a salt, electron beam reduction of a salt, jet electroplating, dual jet electroless plating or inert gas or local vacuum thermal, sputtering or electron beam deposition.
  • In another embodiment this invention provides for semiconductor logic elements and electro-optical elements which may include diode, transistor, light emitting, light sensing or solar cell elements which are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments. Additionally said elements may be multilayered and may form multilayer logic including vias and three dimensional interconnects.
  • In another embodiment this invention provides for analog circuits elements which may include resistors, capacitors, inductors or elements which may be used in radio applications or magnetic or electric field transmission of power or data.
  • In another embodiment this invention provides for an electronically addressable display in which some or all of address lines, electronically addressable contrast media, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments. Such display may further comprise a radio receiver or transceiver and power means thus forming a display sheet capable of receiving wireless data and displaying the same.
  • In another embodiment this invention provides for an electrostatic actuator or motor which may be in the form of a clock or watch in which some or all of address lines, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments.
  • In another embodiment this invention provides for a wrist watch band which includes an electronically addressable display in which some or all of address lines, electronically addressable contrast media, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments. Said watch band may be formed such that it has no external connections but rather receives data and or power by means of electric or magnetic field flux coupling by means of an antennae which may be a printed antennae.
  • In another embodiment this invention provides for a spin computer in which some or all of address lines, electronically addressable spin media, logic or power are fabricated by means of a printing process or which employ an electronically active ink system as described in the aforementioned embodiments.
  • Further features and aspects will become apparent from the following description and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
  • FIGS. 1A-F are schematic representations of means of fabricating particles with a permanent dipole moment.
  • FIGS. 2A-C are schematic representations of means of microencapsulation.
  • FIGS. 3A-E are schematic representations of microencapsulated electronically addressable contrast media systems suitable for top to bottom addressing.
  • FIGS. 4A-M are schematic representations of microencapsulated electronically addressable contrast media systems suitable for bottom addressing.
  • FIGS. 5A-D are schematic representations of microencapsulated electronically addressable contrast media systems based on a dielectrophoretic effect.
  • FIGS. 6A-B are schematic representations of microencapsulated electronically addressable contrast media systems based on a frequency dependent dielectrophoretic effect.
  • FIGS. 6C-E are plots of the dielectric parameter as a function of frequency for various physical systems.
  • FIGS. 7A-D are schematic representations of electronic ink systems and means for printing the same.
  • FIG. 8 is a schematic representation of a laser reduced metal salt ink system.
  • FIGS. 9A-E are schematic representations of electronic ink systems and means for printing the same.
  • FIGS. 10A-C are schematic diagrams of printed transistor structures.
  • FIG. 10D is a schematic diagram of a printed optoelectronic element.
  • FIGS. 10E-H are schematic diagrams of printed analog circuit elements.
  • FIGS. 11A-C are a schematic diagram of an electronic display employing printed elements which; this display may further include a data receiver or transceiver and a power means.
  • FIG. 12 is a schematic diagram of an electrostatic motor which may be in the form of a watch or clock in which said electrostatic elements are printed.
  • FIGS. 13A-B are a schematic diagram of a watch in which the wristband of said watch incorporates an electronically addressable display having printed elements and which may further comprise wireless means for sending or receiving data or power between watch and watchband.
  • FIG. 14 is a schematic diagram of a spin computer.
  • DETAILED DESCRIPTION
  • Means are known in the prior art for producing bichromal particles or microspheres for use in electronic displays. Such techniques produce a particle that does not have an implanted dipole moment but rather relies in general on the Zeta potential of the material to create a permanent dipole. Such a scheme suffers from the fact that it links the material properties to the electronic properties thus limiting the size of the dipole moment which may be created. FIG. 1 details means of producing particles, either bichromal as might be used in an electrostatic display, or monochromal as might be used in a dielectrophoretic display, with an implanted dipole moment.
  • Referring to FIG. 1A, atomizing nozzles 1 are loaded with materials 12 and 13 which may be differently colored. A first atomizing nozzle may be held at a positive potential 3 and a second nozzle may be held at a negative potential 4. Such potentials aid in atomization and impart a charge to droplets which form from said nozzles producing positively charged droplets 5 and negatively charged droplets 6. Such opposite charged droplets are attracted to each other electrostatically forming an overall neutral pair. After the formation of a neutral pair there is no more electrostatic attraction and no additional droplets are attracted to the neutral pair. If said material 12 and 13 is such that the particles are liquid when exiting said nozzles and either cool to form a solid or undergo a chemical reaction which may involve an additional hardening agent to form a solid then said charge may be trapped on each side of said neutral pair forming a bichromal solid particle with an implanted dipole 16. By suitable choice of materials such as polyethylene, polyvinylidene fluoride or other materials such metastable dipoles may persist for long periods of time as is known in the art of electrets. A heating element 7 may serve to reheat said pair thus minimizing surface tension energy and serving to reform said pair into a more perfect spherical shape. Finally a set of electrodes 8 biased at either the same or opposite voltage may be employed to trap particles which are not overall charge neutral.
  • Referring to FIG. 1B a similar apparatus may be employed to create a monochromal particle with an implanted dipole. In this arrangement nozzles containing material of the same color 12 are employed as before to create a monochromal particle with implanted dipole 21.
  • Referring to FIGS. 1C and 1D alternative means are shown for producing a bichromal particle with implanted dipole by means of combining two differentially colored materials 12 and 13 on a spinning disk 11 or in a double barreled nozzle 19. Said materials are charged by means of positive electrode 14 and negative electrode 15 and combine by means of electrostatic attraction at the rim of said disk or exit of said double barrel nozzle to form bichromal particle with implanted dipole moment 16. Said means differs from that known in the art by means of causing said two different materials 12 and 13 to coalesce by means of electrostatic attraction as opposed to relying on surface properties and interactions between the two materials. Additionally the present scheme creates a particle with an implanted dipole moment 16 which may serve to create a larger dipole moment than that possible from the naturally occurring Zeta potential.
  • Referring to FIGS. 1E and 1F, a similar apparatus may be employed to create a monochromal particle with an implanted dipole. In this arrangement nozzles containing material of the same color 12 are employed as before to create a monochromal particle with implanted dipole 21.
  • A large number of techniques are known in the literature for microencapsulating one material inside of another material. Such techniques are generally used in the paper or pharmaceutical industry and do not generally produce a microcapsule which embodies simultaneously the properties of optical clarity, high dielectric strength, impermeability and resistance to pressure. With proper modification however these techniques may be made amenable to microencapsulating systems with electronic properties.
  • Referring to FIG. 2A, an internal phase 25 may be a liquid or may be a solid with an additional associated surface layer 27. Said internal phase if liquid or said associated surface layer may contain a polymer building block, such as adipoyl chloride in silicone oil. Said internal phase, with associated boundary layer in the case of a liquid, may then be dispersed in a continuous phase liquid 30 which may be an aqueous solution which is immiscible with said internal phase or associated surface layer. Finally a solution 40 which contains another polymer building block or cross linking agent may be added to continuous phase liquid 30. Said solution 40 has the effect of forming a solid layer at the interface of the internal phase or associated surface layer and said continuous phase liquid 30 thus acting to microencapsulate said internal phase.
  • Referring to FIG. 2B an internal phase 25 which may be a solid or a liquid may be caused to pass through a series of liquid films 50,60,70 which may contain polymer building blocks, cross linking agents and overcoat materials such that a final microcapsule 120 results comprised of an internal phase 25, an associated surface layer 27 and an outer shell 80.
  • An alternate means of microencapsulation is shown in FIG. 2C. In this scheme a light source 82 which may be a UV light source passes in some areas through a photomask 84 exposing a crosslinkable polymer which may be caused to form a cellular structure 86. The individual cells of said cellular structure may then be filled with an internal phase 25.
  • Employing the systems described in FIGS. 2A-C it is possible to microencapsulate systems with electronically active properties specifically electronically addressable contrast media. FIG. 3 details such electronically addressable contrast media systems which are suitable for addressing by means of a top clear electrode 100 and bottom electrode 110. Referring to FIG. 3A a microcapsule 120 may contain a microsphere with a positively charged hemisphere 142 and a negatively charged 140 hemisphere and an associated surface layer material 130. If said hemispheres are differentially colored an electric field applied to said electrodes may act to change the orientation of said sphere thus causing a perceived change in color.
  • Referring to FIG. 3B a microcapsule 120 may contain positively charged particles of one color 210 and negatively charged particles of another color 220 such that application of an electric field to said electrodes causes a migration of the one color or the other color, depending on the polarity of the field, toward the surface of said microcapsule and thus effecting a perceived color change. Such a system constitutes a microencapsulated electrophoretic system.
  • Referring to FIGS. 3C-D, a microcapsule 120 may contain a dye, dye precursor or dye indicator material of a given charge polarity 230 or a dye, dye precursor or dye indicator material attached to a particle of given charge polarity such as a microsphere with an appropriate surface group attached and a reducing, oxidizing, proton donating, proton absorbing or solvent agent of the other charge polarity 240 or a reducing, oxidizing, proton donating, proton absorbing or solvent agent attached to a particle of the other charge polarity. Under application of an electric field said dye substance 230 is maintained distal to said reducing, oxidizing, proton donating, proton absorbing or solvent agent 240 thus effecting one color state as in FIG. 3C. Upon de-application of said electric field said dye substance and said reducing, oxidizing, proton donating, proton absorbing or solvent agent may bond to form a complex 245 of second color state. Suitable materials for use in this system are leuco and lactone dye systems and other ring structures which may go from a state of one color to a state of a second color upon application of a reducing, oxidizing or solvent agent or dye indicator systems which may go from a state of one color to a state of a second color upon application of a proton donating or proton absorbing agent as is known in the art. An additional gel or polymer material may be added to the contents of said microcapsule in order to effect a bistability of the system such that said constituents are relatively immobile except on application of an electric field.
  • Referring to FIG. 3E, a microcapsule 120 may contain phosphor particles 255 and photoconductive semiconductor particles and dye indicator particles 260 in a suitable binder 250. Applying an AC electric field to electrodes 100 and 110 causes AC electroluminescence which causes free charge to be generated in the semiconducting material further causing said dye indicator to change color state.
  • Referring to FIGS. 4A-M, it may be desirable to develop ink systems which are suitable for use without a top transparent electrode 100 which may degrade the optical characteristics of the device. Referring to FIGS. 4A and 4B, the chemistry as described in reference to FIGS. 3C-D may be employed with in-plane electrodes such that said chemistry undergoes a color switch from one color state to a second color state upon application of an electric field to in- plane electrodes 270 and 280. Such a system is viewed from above and thus said electrodes may be opaque and do not effect the optical characteristics of said display.
  • As another system in-plane switching techniques have been employed in transmissive LCD displays for another purpose, namely to increase viewing angle of such displays. Referring to FIGS. 4C and 4D a bistable liquid crystal system of the type demonstrated by Hatano et. al. of Minolta Corp. is modified to be effected by in plane electrodes such that a liquid crystal mixture transforms from a first transparent planar structure 290 to a second scattering focal conic structure 292.
  • Referring to FIG. 4E the system of FIG. 3E may be switched by use of in- plane electrodes 270 and 280.
  • Other systems may be created which cause a first color change by means of applying an AC field and a second color change by means of application of either a DC field or an AC field of another frequency. Referring to FIGS. 4F-G, a hairpin shaped molecule or spring in the closed state 284 may have attached to it a positively charged 282 and a negatively charged 283 head which may be microspheres with implanted dipoles. Additionally one side of said hairpin shaped molecule or spring has attached to it a leuco dye 286 and the other side of said hairpin shaped molecule or spring has attached to it a reducing agent 285. When said molecule or spring is in the closed state 284 then said leuco dye 286 and said reducing agent 285 are brought into proximity such that a bond is formed 287 and said leuco dye is effectively reduced thus effecting a first color state. Upon a applying an AC electric field with frequency that is resonant with the vibrational mode of said charged heads cantilevered on said hairpin shaped molecule or spring said bond 287 may be made to break, thus yielding an open state 288. In said open state the leuco dye and reducing agent are no longer proximal and the leuco dye, being in a non-reduced state, effects a second color state. The system may be reversed by applying a DC electric field which serves to reproximate the leuco dye and reducing agent groups. Many molecules or microfabricated structures may serve as the normally open hairpin shaped molecule or spring. These may include oleic acid like molecules 289. Reducing agents may include sodium dithionite. The system as discussed is bistable. Energy may be stored in said hairpin shaped molecule or spring and as such said system may also function as a battery.
  • Referring to FIGS. 4I-K an alternative leucodye-reducing agent system may employ a polymer shown in FIG. 41 in a natural state 293. When a DC electric field is applied said polymer assumes a linear shape 294 with leuco 286 and reducing agent 285 groups distal from each other. Upon application of either a reversing DC field or an AC electric field said polymer will tend to coil bringing into random contact said leuco and reducing groups forming a bond 287 with a corresponding color change. Said polymer serves to make said system bistable.
  • Referring to FIGS. 4L and 4M, a similar system is possible but instead polymer leuco and reducing groups may be attached to oppositely charge microspheres directly by means of a bridge 286 which may be a biotin-streptavidin bridge, polymer bridge or any other suitable bridge. As before application of a DC field cause leuco and reducing groups to become distal whereas application of a reverse DC field or AC field brings into random contact the leuco and reducing groups. A polymer may be added to aid in the stability of the oxidized state.
  • Referring to FIGS. 5A-D and FIGS. 6A-B an entirely different principle may be employed in an electronically addressable contrast media ink. In these systems the dielectrophoretic effect is employed in which a species of higher dielectric constant may be caused to move to a region of high electric field strength.
  • Referring to FIGS. 5A and 5B a non-colored dye solvent complex 315 which is stable when no field is applied across electrode pair 150 may be caused to become dissociate into colored dye 300 and solvent 310 components by means of an electric field 170 acting differentially on the dielectric constant of said dye complex and said solvent complex as applied by electrode pair 150. It is understood that the chemistries as discussed in the system of FIG. 3C-D may readily be employed here and that said dye complex and said solvent complex need not themselves have substantially different dielectric constants but rather may be associated with other molecules or particles such as microspheres with substantially different dielectric constants. Finally it is understood that a gel or polymer complex may be added to the contents of said microcapsule in order to effect a bistability.
  • Referring to FIG. 5C-D stacked electrode pairs 150 and 160 may be employed to effect a high electric field region in a higher 170 or lower 180 plane thus causing a higher dielectric constant material such as one hemisphere of a bichromal microsphere 141 or one species of a mixture of colored species 147 to migrate to a higher or lower plane respectively and give the effect of differing color states. In such schemes materials 165 which may be dielectric materials or may be conducting materials may be employed to shape said electric fields.
  • Referring to FIGS. 6A-B, systems based on a frequency dependent dielectrophoretic effect are described. Such systems are addressed by means of applying a field of one frequency to produce a given color and applying a field of a different frequency to produce another color. Such a functionality allows for a rear addressed display.
  • Referring to FIG. 6A, a microcapsule 120 encompasses an internal phase 184 which may be a material which has a frequency independent dielectric constant as shown in FIG. 6C, curve 320 and which may have a first color B and material 182 which has a frequency dependent dielectric constant and a second color W. Said frequency dependent material may further have a high dielectric constant at low frequency and a smaller dielectric constant at higher frequency as shown in FIG. 6C, curve 322. Application of a low frequency AC field by means of electrodes 270 and 280 causes said material 182 to be attracted to the high field region proximal the electrodes thus causing said microcapsule to appear as the color B when viewed from above. Conversely application of a high frequency AC field by means of electrodes 270 and 280 causes said material 184 to be attracted to the high field region proximal the electrodes thus displacing material 182 and thus causing said microcapsule to appear as the color W when viewed from above. If B and W correspond to Black and White then a black and white display may be effected. A polymer material may be added to internal phase 184 to cause said system to be bistable in the field off condition. Alternatively stiction to the internal side wall of said capsule may cause bistability.
  • Referring to FIG. 6A, material 182 and FIG. 6C, a particle is fabricated with an engineered frequency dependent dielectric constant. The means for fabricating this particle are depicted in FIGS. 1B, E and F. At low frequency such dipolar particles have sufficiently small mass that they may rotate in phase with said AC field thus effectively canceling said field and acting as a high. dielectric constant material. At high frequency however the inertia of said particles is such that they cannot keep in phase with said AC field and thus fail to cancel said field and consequently have an effectively small dielectric constant.
  • Alternatively material 182 may be comprised of naturally occurring frequency dependent dielectric materials. Materials which obey a frequency dependence functionality similar to the artificially created dipole material discussed above and which follow curves similar to FIG. 6C, curve 322 include materials such as Hevea rubber compound which has a dielectric constant of K=36 at f=103 Hz and K=9 at f=106 Hz, materials with ohmic loss as are known in Electromechanics of Particles by T. B. Jones incorporated herein by reference and macromolecules with permanent dipole moments.
  • Additionally material 182 may be a natural or artificial cell material which has a dielectric constant frequency dependence as depicted in FIG. 6D, curve 330 as are discussed in Electromechanics of Particles by T. B. Jones incorporated herein by reference. Such particles are further suitable for fabrication of an electronically addressable contrast ink.
  • Referring to FIG. 6B, a system is depicted capable of effecting a color display. Microcapsule 120 contains a particle of a first dielectric constant, conductivity and color 186, a particle of a second dielectric constant, conductivity and color and an internal phase of a third dielectric constant, conductivity and color 190. Referring to FIG. 6E it is known in the art of electromechanics of particles that for particles with ohmic loss (e.g. finite conductivity) at low frequency the DC conductivity governs the dielectric constant whereas at high frequency the dielectric polarization governs the dielectric constant. Thus a particle with finite conductivity has a dielectric constant K as a function of frequency f as in FIG. 6E, curve 338. A second particle of second color has a dielectric constant K as a function of frequency f as in FIG. 6E, curve 340. Finally an internal phase with no conductivity has a frequency independent dielectric constant K, curve 336. If an AC field of frequency f1 is applied by means of electrodes 270 and 280, material 186 of color M will be attracted to the high field region proximal to said electrodes thus causing said microcapsule to appear as a mixture of the colors C and Y, due to the other particle and internal phase respectively, when viewed from above. If an AC field of frequency f2 is applied by means of electrodes 270 and 280 material 188 of color Y will be attracted to the high field region proximal to said electrodes thus causing said microcapsule to appear as a mixture of the colors C and M when viewed from above. Finally if an AC field of frequency f3 is applied by means of electrodes 270 and 280 internal phase 190 of color C will be attracted to the high field region proximal to said electrodes thus causing said microcapsule to appear as a mixture of the colors M and Y when viewed from above. If C, M and Y correspond to Cyan, Magenta and Yellow a color display may be effected.
  • It is understood that many other combinations of particles with frequency dependent dielectric constants arising from the physical processes discussed above may be employed to effect a frequency dependent electronically addressable display.
  • In addition to the microencapsulated electronically addressable contrast media ink discussed in FIGS. 3-6, FIGS. 7-9 depict other types of electronically active ink systems. In the prior art means are known for depositing metals or resistive materials in a binding medium which may later be cured to form conducting or resistive traces. In the following description novel means are described for depositing semiconductive materials in a binder on a large class of substrate materials in one case and for depositing metals, resistive materials or semiconductive materials outside of vacuum, in an arbitrary pattern, without the need for an etch step and on a large class of substrate materials in another case.
  • In one system a semiconductor ink 350 may be fabricated by dispersing a semiconductor powder 355 in a suitable binder 356. Said semiconductor powder may be Si, Germanium or GaAs or other suitable semiconductor and may further be with n-type impurities such as phosphorus, antimony or arsenic or p-type impurities such as boron, gallium, indium or aluminum or other suitable n or p type dopants as is known in the art of semiconductor fabrication. Said binder 356 may be a vinyl, plastic heat curable or UV curable material or other suitable binder as is known in the art of conducting inks Said semiconductive ink 350 may be applied by printing techniques to form switch or logic structures. Said printing techniques may include a fluid delivery system 370 in which one or more inks 372, 374 may be printed in a desired pattern on to a substrate. Alternatively said ink system 350 may be printed by means of a screen process 377 in which an ink 380 is forced through a patterned aperture mask 378 onto a substrate 379 to form a desired pattern. Said ink pattern 360 when cured brings into proximity said semiconductive powder particles 355 to create a continuous percolated structure with semiconductive properties 365.
  • Referring to FIG. 8 a system is depicted for causing a conductive or semiconductive trace 390 to be formed on substrate 388 in correspondence to an impinging light source 382 which may be steered by means of an optical beam steerer 384. The operation of said system is based upon a microcapsule 386 which contains a metal or semiconductive salt in solution. Upon being exposed to light 382 which may be a UV light said metal or semiconductive salt is reduced to a metal or semiconductor and said microcapsule is simultaneously burst causing deposition of a conductive or semiconductive trace.
  • Referring to FIG. 9A, an ink jet system for depositing metallic or semiconductive traces 410 is depicted. In this system a jet containing a metal or semiconductive salt 420 impinges upon substrate 400 in conjunction with a jet containing a reducing agent 430. As an example, to form a metallic trace silver nitrate (AgNO3) may be used for jet 420 and a suitable aldehyde may be used for the reducing jet 430. Many other examples of chemistries suitable for the present system are known in the art of electroless plating. In all such examples it is understood that said jets are moveable and controllable such that an arbitrary trace may be printed.
  • Referring to FIG. 9B a system which is similar to that of FIG. 9A is depicted. In this case an electron beam 470 may be used instead of said reducing jet in order to bring about a reduction of a metal or semiconductive salt emanating from a jet 460. A ground plane 450 may be employed to ground said electron beam.
  • Referring to FIG. 9C an ink jet system for depositing a metallic or semiconductive trace is depicted based on electroplating. In this system a metal or semiconductive salt in a jet 480 held at a potential V may be electroplated onto a substrate 410 thus forming a metallic or semiconductive trace.
  • Referring to FIG. 9D means are known in the prior art for UV reduction of a metal salt from an ink jet head. In the present system a jet containing a metal or semiconductive salt 490 may be incident upon a substrate 400 in conjunction with a directed light beam 495 such that said metal or semiconductive salt is reduced into a conductive or semiconductive trace 410. Alternatively jet 490 may contain a photoconductive material and a metal salt which may be caused to be photoconductively electroplated onto surface 400 by means of application of light source 495 as is known in the field of photoconductive electroplating.
  • Referring to FIG. 9E a system is depicted for a moveable deposition head 500 which contains a chamber 520 which may be filled with an inert gas via inlet 510 and which further contains thermal, sputtering, electron beam or other deposition means 530. Said moveable head 500 may print a metal, semiconductor, insulator, spin material or other material in an arbitrary pattern onto a large class of substrates 540. In some case such substrate 540 be cooled or chilled to prevent damage from said materials which may be at an elevated temperature.
  • Referring to FIG. 10 said previously described electronically active ink systems and printing means may be applied to form switch or logic structures, optoelectronic structures or structures useful in radio or magnetic or electric field transmission of signals or power. As indicated in FIGS. 10A-B an NPN junction transistor may be fabricated consisting of a n-type emitter 950, a p-type base 954 and a n-type collector 952.
  • Alternatively a field effect transistor may be printed such as a metal oxide semiconductor. Such a transistor consists of a p-type material 970, an n-type material 966 an n-type inversion layer 968 an oxide layer 962 which acts as the gate a source lead 960 and a drain lead 964. It is readily understood that multiple layers of logic may be printed by using an appropriate insulating layer between said logic layers. Further three dimensional interconnects between different logic layers may be accomplished by means of vias in said insulating layers.
  • Referring to FIG. 10D a printed solar cell may be fabricated by printing some or all of a metal contact layer 972, a p-type layer 974, an n type layer 976 and an insulating layer 978. Light 979 which impinges upon said structure generates a current as is known in the art of solar cells. Such printed solar cells may be useful in very thin compact and/or inexpensive structures where power is needed.
  • Referring to FIGS. 10E-H elements useful for analog circuitry may be printed. Referring to FIG. 10E a capacitor may be printed with dielectric material 983 interposing capacitor plates 981 and 985. Alternatively the same structure may constitute a resistor by replacing dielectric 983 with a resistive material such as carbon ink.
  • Referring to FIGS. 10E-H inductors, chokes or radio antennae may be printed layer by layer. Referring to FIGS. 10F and G a first set of diagonal electrodes 989 may be laid down on a substrate. On top of this may be printed an insulator or magnetic core 987. Finally top electrodes 992 which connect with said bottom electrodes may be printed this forming an inductor, choke or radio antennae. An alternate in-plane structure is shown in FIG. 10H in which the flux field 995 is now perpendicular to the structure.
  • The ink systems and printing means discussed in the foregoing descriptions may be useful for the fabrication of a large class of electronically functional structures. FIGS. 11-14 depict a number of possible such structures which may be fabricated.
  • Referring to FIG. 11A, an electronic display, similar to one described in a copending patent application Ser. No. 08/504,896, filed Jul. 20, 1995 by Jacobson (now U.S. Pat. No. 6,124,851), is comprised of electronically addressable contrast media 640, address lines 610 and 620 and logic elements 670 all or some of which may be fabricated with the ink systems and printing means as described in the foregoing descriptions. Said Electronic Display may additionally comprise a data receiver or transceiver block 672 and a power block 674. Said data receiver block may further be a wireless radio receiver as pictured in FIG. 11B in which some or all of the components thereof including antennae 676, inductor or choke 678, diode, 680, capacitor 682, NPN transistor 684, resistor 681, conducting connection 677 or insulation overpass 675 may be printed by the means discussed above. Alternatively said data receiver or transceiver block may be an optoelectronic structure, a magnetic inductive coil an electric inductive coupling or an acoustic transducer such as a piezoresistive film.
  • Said power block 674 may comprise a printed polymer battery as pictured in FIG. 11C which consists of in one instance a lithium film 686, a propylene carbonate LiPF6 film 688 and LiCoO2 in matrix 690. Said power block may alternatively consist of any other battery structure as known in the art of thin structure batteries, a magnetic or electric inductive converter for means of power reception as known in the art, a solar cell which may be a printed solar cell or a semiconductive electrochemical cell which may further have an integral fuel cell for energy storage or a piezoelectric material which generates power when flexed.
  • Such a display 600 as described above further comprising a data receiver or transceiver 672 and power block 674 in which some or all of said components are printed may comprise an inexpensive, lightweight, flexible receiver for visual data and text which we may term “radio paper.” In such a system data might be transmitted to the “radio paper” sheet and there displayed thus forming a completely novel type of newspaper, namely one which is continuously updated.
  • Referring to FIG. 12 an electrostatic motor which may form an analog clock or watch is depicted which consists of printed conducting elements 720, 730, 740 and 760 which are printed onto substrate 700. Said elements, when caused to alternately switch between positive negative or neutral states by means of a logic control circuit 710 may cause an element 750 to be translated thus forming a motor or actuator. In the device of FIG. 12 some or all of said conducting elements and/or logic control elements may be printed using the ink systems and printing means described in the foregoing description.
  • Referring to FIG. 13A a wrist watch 800 is depicted in which the band 820 of said watch contains an electronically addressable display 830 in which some or all of the components of said display, including the electronically addressable contrast media, the address lines and/or the logic are fabricated by means of the ink systems and printing means described in the foregoing description. Such a fabrication may be useful in terms of producing an inexpensive, easily manufacturing and thin display function. Control buttons 810 may serve to control aspects of said display 830.
  • Referring to FIG. 13B it is presently a problem to transmit data or power to a watch band via a wire connection as such connections tend to become spoiled by means of motion of the watchband relative to the watch. In order to overcome this FIG. 13B describes a system in which a magnetic or electric inductor 832 in watch band 820 may receive or transmit power or data to a magnetic or electric inductor 834 in watch 800 thus eliminating said wired connection. Said inductor 832 and 834 may be printed structures.
  • Referring to FIG. 14, a spin computer is depicted in which dipoles 912 with dipole moment 914 are situated at the nodes of row 920 and column 930 address lines. Such a computer works by means of initially addressing said dipoles to an initial condition by said address lines and then allowing dipole interactions to produce a final state of the system as a whole thus performing a calculation as is known in the art of Spin Ising models and cellular automata. Said dipoles may consist of a dipolar microsphere 912 microencapsulated in a microcapsule 910 or may consist of another form of dipole and/or another means of encapsulation.
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (7)

1. An electrophoretic display comprising a substrate having a cavity therein, a liquid suspension contained in the cavity and comprising electrophoretic particles having an optical property, and a sealing member sealing the cavity, the sealing member having been formed by polymerization of a polymerizable species.
2. An electrophoretic display according to claim 1 wherein the substrate has a plurality of cavities therein, each cavity having a liquid suspension contained in the cavity and comprising electrophoretic particles having an optical property, and each cavity being sealed by a sealing member.
3. An electrophoretic display according to claim 1 wherein the substrate is flexible.
4. An electrophoretic display according to claim 1 wherein the liquid suspension comprises a first species of electrophoretic particles having a first optical property and a second species of electrophoretic particles having a second optical property different from the first optical property.
5. An electrophoretic display according to claim 4 wherein the first and second species of electrophoretic particles are oppositely charged.
6. An electrophoretic display according to claim 1 wherein the liquid suspension further comprises a dielectric solvent.
7. An electrophoretic display according to claim 6 wherein the dielectric solvent is adapted to facilitate bistability of the liquid suspension.
US13/197,439 1996-07-19 2011-08-03 Electronically addressable microencapsulated ink and display thereof Abandoned US20110286081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/197,439 US20110286081A1 (en) 1996-07-19 2011-08-03 Electronically addressable microencapsulated ink and display thereof

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US2222296P 1996-07-19 1996-07-19
PCT/US1996/013469 WO1998003896A1 (en) 1996-07-19 1996-08-20 Electronically addressable microencapsulated ink and display thereof
US3562296P 1996-09-24 1996-09-24
US08/935,800 US6120588A (en) 1996-07-19 1997-09-23 Electronically addressable microencapsulated ink and display thereof
US09/471,604 US6422687B1 (en) 1996-07-19 1999-12-23 Electronically addressable microencapsulated ink and display thereof
US10/200,571 US6652075B2 (en) 1996-07-19 2002-07-22 Electronically addressable microencapsulated ink and display thereof
US10/652,218 US7148128B2 (en) 1996-07-19 2003-08-29 Electronically addressable microencapsulated ink and display thereof
US11/555,833 US8035886B2 (en) 1996-07-19 2006-11-02 Electronically addressable microencapsulated ink and display thereof
US13/197,439 US20110286081A1 (en) 1996-07-19 2011-08-03 Electronically addressable microencapsulated ink and display thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/555,833 Division US8035886B2 (en) 1996-07-19 2006-11-02 Electronically addressable microencapsulated ink and display thereof

Publications (1)

Publication Number Publication Date
US20110286081A1 true US20110286081A1 (en) 2011-11-24

Family

ID=21808482

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/555,439 Abandoned US20070052757A1 (en) 1996-07-19 2006-11-01 Electronically addressable microencapsulated ink and display thereof
US11/555,833 Expired - Fee Related US8035886B2 (en) 1996-07-19 2006-11-02 Electronically addressable microencapsulated ink and display thereof
US13/197,439 Abandoned US20110286081A1 (en) 1996-07-19 2011-08-03 Electronically addressable microencapsulated ink and display thereof

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/555,439 Abandoned US20070052757A1 (en) 1996-07-19 2006-11-01 Electronically addressable microencapsulated ink and display thereof
US11/555,833 Expired - Fee Related US8035886B2 (en) 1996-07-19 2006-11-02 Electronically addressable microencapsulated ink and display thereof

Country Status (8)

Country Link
US (3) US20070052757A1 (en)
EP (2) EP0912913A1 (en)
JP (7) JP3833266B2 (en)
AT (1) ATE356369T1 (en)
AU (1) AU726057B2 (en)
CA (1) CA2260947A1 (en)
DE (1) DE69636960C5 (en)
WO (1) WO1998003896A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810896B2 (en) 2011-03-31 2014-08-19 Ricoh Company, Ltd. Rewritable recording medium, image recording set, and image recording method
US20150246553A1 (en) * 2012-09-18 2015-09-03 Ricoh Company, Ltd. Recording medium, image recording apparatus, and image recording set
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US9506243B1 (en) 2014-03-20 2016-11-29 E Ink Corporation Thermally-responsive film
US9529240B2 (en) 2014-01-17 2016-12-27 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
US10175550B2 (en) 2014-11-07 2019-01-08 E Ink Corporation Applications of electro-optic displays
WO2020033787A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
WO2020033175A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
US10809590B2 (en) 2017-06-16 2020-10-20 E Ink Corporation Variable transmission electrophoretic devices
US10983410B2 (en) 2017-06-16 2021-04-20 E Ink Corporation Electro-optic media including encapsulated pigments in gelatin binder
US11079651B2 (en) 2017-12-15 2021-08-03 E Ink Corporation Multi-color electro-optic media
US11175561B1 (en) 2018-04-12 2021-11-16 E Ink Corporation Electrophoretic display media with network electrodes and methods of making and using the same
US11314098B2 (en) 2018-08-10 2022-04-26 E Ink California, Llc Switchable light-collimating layer with reflector
EP3877807A4 (en) * 2018-11-05 2022-08-10 Halion Displays Inc. Optical activation of chemical entities in electrophoretic dispersions for display devices
US11520210B2 (en) 2019-09-30 2022-12-06 E Ink Corporation Electrically-actuated variable transmission film having very low haze and a visible grid in a clear state
US11567388B2 (en) 2019-02-25 2023-01-31 E Ink Corporation Composite electrophoretic particles and variable transmission films containing the same
US11708720B2 (en) 2013-10-22 2023-07-25 E Ink Corporation Light-modulating electrophoretic device
US11747701B2 (en) 2019-12-23 2023-09-05 E Ink Corporation Color electrophoretic layer including microcapsules with nonionic polymeric walls
US11754903B1 (en) 2018-11-16 2023-09-12 E Ink Corporation Electro-optic assemblies and materials for use therein
US11761123B2 (en) 2019-08-07 2023-09-19 E Ink Corporation Switching ribbons for textiles

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7848006B2 (en) * 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7583251B2 (en) * 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US6054809A (en) * 1996-08-14 2000-04-25 Add-Vision, Inc. Electroluminescent lamp designs
US6014116A (en) * 1996-08-28 2000-01-11 Add-Vision, Inc. Transportable electroluminescent display system
BR9705156A (en) 1996-10-25 2000-01-04 Massachusetts Inst Technology Process and system of manufacturing a component consisting of parts made up of different materials
US6259506B1 (en) 1997-02-18 2001-07-10 Spectra Science Corporation Field activated security articles including polymer dispersed liquid crystals, and including micro-encapsulated field affected materials
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
EP1557714B1 (en) * 1998-04-10 2013-11-06 E Ink Corporation Full color reflective display with multichromatic sub-pixels
EP1105772B1 (en) * 1998-04-10 2004-06-23 E-Ink Corporation Electronic displays using organic-based field effect transistors
JP2002513169A (en) * 1998-04-27 2002-05-08 イー−インク コーポレイション Microencapsulated electrophoretic display in shutter mode
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
US6294401B1 (en) 1998-08-19 2001-09-25 Massachusetts Institute Of Technology Nanoparticle-based electrical, chemical, and mechanical structures and methods of making same
DE69908381T2 (en) * 1998-09-11 2004-04-22 Gelbman, Alexander INTELLIGENT ELECTRONIC LABEL WITH ELECTRONIC INK
US6924781B1 (en) 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
US6753830B2 (en) 1998-09-11 2004-06-22 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
WO2000026761A1 (en) * 1998-11-02 2000-05-11 E Ink Corporation Broadcast system for display devices made of electronic ink
EP1881400A1 (en) * 1998-11-02 2008-01-23 E-Ink Corporation Display devices made of electronic ink
CA2289382C (en) * 1998-11-25 2007-03-06 Xerox Corporation Gyricon displays utilizing magnetic addressing and latching mechanisms
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
WO2000067110A1 (en) * 1999-05-03 2000-11-09 E Ink Corporation Display unit for electronic shelf price label system
US6372689B1 (en) 1999-05-25 2002-04-16 Ricoh Company, Ltd. Thermal transfer image receiving material and thermal transfer recording method using the receiving material
AUPQ439299A0 (en) * 1999-12-01 1999-12-23 Silverbrook Research Pty Ltd Interface system
AUPQ363299A0 (en) 1999-10-25 1999-11-18 Silverbrook Research Pty Ltd Paper based information inter face
US6485280B1 (en) * 1999-07-23 2002-11-26 Xerox Corporation Methods and apparatus for fabricating bichromal elements
US6394870B1 (en) * 1999-08-24 2002-05-28 Eastman Kodak Company Forming a display having conductive image areas over a light modulating layer
US6545291B1 (en) 1999-08-31 2003-04-08 E Ink Corporation Transistor design for use in the construction of an electronically driven display
US6337761B1 (en) 1999-10-01 2002-01-08 Lucent Technologies Inc. Electrophoretic display and method of making the same
JP2001188269A (en) * 1999-10-22 2001-07-10 Ricoh Co Ltd Electrophoresis display method, liquid for display, particle for display, display medium, display device, and reversible display body
US7715088B2 (en) * 2000-03-03 2010-05-11 Sipix Imaging, Inc. Electrophoretic display
US20070237962A1 (en) * 2000-03-03 2007-10-11 Rong-Chang Liang Semi-finished display panels
TWI224722B (en) * 2000-05-19 2004-12-01 Asulab Sa Electronic device for generating and displaying an item of information
US6323928B1 (en) * 2000-06-26 2001-11-27 Eastman Kodak Company Method of forming a liquid crystal display with color dielectric layer
US6462859B1 (en) 2000-10-04 2002-10-08 3M Innovative Properties Company Electromagnetically responsive particle assembly and methods and articles for manufacture and use
JP4677092B2 (en) * 2000-12-04 2011-04-27 株式会社アルバック Electrode forming method for flat panel display
US6524500B2 (en) * 2000-12-28 2003-02-25 Xerox Corporation Method for making microencapsulated gyricon beads
US7030854B2 (en) * 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
US8390918B2 (en) * 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
EP1415193B1 (en) * 2001-07-09 2012-03-14 E Ink Corporation Electro-optical display having a lamination adhesive layer
CN1525999A (en) * 2001-07-12 2004-09-01 ��˹���´﹫˾ A compressed fluid formulation
CN1575486A (en) * 2001-08-24 2005-02-02 数字无线有限责任公司 Changing the visual appearance of input devices
US6936181B2 (en) 2001-10-11 2005-08-30 Kovio, Inc. Methods for patterning using liquid embossing
US6850230B1 (en) * 2001-10-16 2005-02-01 Hewlett-Packard Development Company, L.P. Electronic writing and erasing pencil
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US6885032B2 (en) 2001-11-21 2005-04-26 Visible Tech-Knowledgy, Inc. Display assembly having flexible transistors on a flexible substrate
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US7843621B2 (en) * 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US8363299B2 (en) * 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7583427B2 (en) * 2002-06-10 2009-09-01 E Ink Corporation Components and methods for use in electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US8049947B2 (en) * 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US20110199671A1 (en) * 2002-06-13 2011-08-18 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US6957608B1 (en) 2002-08-02 2005-10-25 Kovio, Inc. Contact print methods
US7839564B2 (en) * 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
AU2003275591A1 (en) * 2002-10-22 2004-05-13 Oji Paper Co., Ltd. Display element and manufacturing method thereof
WO2004053909A1 (en) * 2002-12-09 2004-06-24 Koninklijke Philips Electronics N.V. Transparent touch-sensitive switching system
US7910175B2 (en) * 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
EP1669798A4 (en) 2003-09-03 2008-07-09 Mitsubishi Pencil Co Liquid for electrophoretic display and display medium and display employing it
US7551346B2 (en) * 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) * 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US8289250B2 (en) * 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
GB2422211A (en) * 2004-12-02 2006-07-19 Cornelis John Boterhoek Timepiece with electronic ink display elements
US7557875B2 (en) 2005-03-22 2009-07-07 Industrial Technology Research Institute High performance flexible display with improved mechanical properties having electrically modulated material mixed with binder material in a ratio between 6:1 and 0.5:1
US7564528B2 (en) 2005-05-20 2009-07-21 Industrial Technology Research Institute Conductive layer to reduce drive voltage in displays
US7699226B2 (en) 2005-07-28 2010-04-20 Industrial Technology Research Institute Automatic plan-o-gram system
US7392948B2 (en) 2005-07-28 2008-07-01 Industrial Technology Research Institute Electronic product identifier system
US20070085838A1 (en) 2005-10-17 2007-04-19 Ricks Theodore K Method for making a display with integrated touchscreen
DE102006008345B3 (en) 2006-02-21 2007-08-23 Bundesdruckerei Gmbh Security or valuable document comprising electronic transponder circuit where transponder circuit is connected to transponder antenna and transponder antenna and transponder circuit is connected to medium
US8390301B2 (en) * 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
TWI350793B (en) * 2006-03-08 2011-10-21 E Ink Corp Methods for production of electro-optic displays
US7843624B2 (en) * 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
JP5151058B2 (en) * 2006-04-10 2013-02-27 株式会社リコー Microcapsule sheet manufacturing method and manufacturing apparatus
US7768221B2 (en) 2006-06-02 2010-08-03 Power Efficiency Corporation Method, system, and apparatus for controlling an electric motor
US8830072B2 (en) 2006-06-12 2014-09-09 Intelleflex Corporation RF systems and methods for providing visual, tactile, and electronic indicators of an alarm condition
US7796038B2 (en) 2006-06-12 2010-09-14 Intelleflex Corporation RFID sensor tag with manual modes and functions
US7754295B2 (en) 2006-06-29 2010-07-13 Industrial Technology Research Institute Single substrate guest-host polymer dispersed liquid crystal displays
US7903319B2 (en) * 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7492497B2 (en) * 2006-08-02 2009-02-17 E Ink Corporation Multi-layer light modulator
US8077142B2 (en) * 2006-09-27 2011-12-13 Tred Displays Corporation Reflective, bi-stable magneto optical display architectures
WO2008048635A2 (en) 2006-10-17 2008-04-24 Karen Nixon-Lane Incentive imaging methods and devices
US7649666B2 (en) * 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US7667886B2 (en) * 2007-01-22 2010-02-23 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7688497B2 (en) 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US8002191B2 (en) 2007-02-22 2011-08-23 Karen Nixon Lane Segmented microencapsulated display system
US7826129B2 (en) * 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
JP6033526B2 (en) * 2007-05-21 2016-11-30 イー インク コーポレイション Method for driving a video electro-optic display
CA2684766C (en) 2007-06-05 2010-11-30 Bank Of Canada Ink or toner compositions, methods of use, and products derived therefrom
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
US8034209B2 (en) 2007-06-29 2011-10-11 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US8085009B2 (en) 2007-08-13 2011-12-27 The Powerwise Group, Inc. IGBT/FET-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US8698447B2 (en) 2007-09-14 2014-04-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
US20090122389A1 (en) 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
JP2011517490A (en) * 2008-03-21 2011-06-09 イー インク コーポレイション Electro-optic display and color filter
JP5904791B2 (en) 2008-04-11 2016-04-20 イー インク コーポレイション Method for driving an electro-optic display
TWI484273B (en) * 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) * 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
JP5134637B2 (en) 2009-03-13 2013-01-30 三菱鉛筆株式会社 Electrophoretic display liquid, electrophoretic display device and electronic apparatus using the same
CA2771121C (en) 2009-09-08 2018-05-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
US8698446B2 (en) 2009-09-08 2014-04-15 The Powerwise Group, Inc. Method to save energy for devices with rotating or reciprocating masses
JP5859447B2 (en) 2009-10-28 2016-02-10 イー インク コーポレイション Electro-optic display with touch sensor
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
CN102884110B (en) 2010-01-27 2014-04-30 积水化学工业株式会社 Process for production of composite fine particles with heterogeneous surfaces
WO2011123847A2 (en) 2010-04-02 2011-10-06 E Ink Corporation Electrophoretic media
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
KR101407209B1 (en) * 2010-10-07 2014-06-16 포항공과대학교 산학협력단 Method for formation of micro- and nano-scale patterns and method for producing micro- and nano-scale channel transistor, and micro- and nano-scale channel light emitting transistor using the same
KR20120122177A (en) * 2011-04-28 2012-11-07 삼성전기주식회사 An electronic paper display device and a driving method thereof
US9030837B2 (en) 2011-06-10 2015-05-12 Scott Moncrieff Injection molded control panel with in-molded decorated plastic film that includes an internal connector
CN103517938A (en) 2011-07-26 2014-01-15 国立大学法人新泻大学 Method for pruducing fine particles
US11467466B2 (en) 2012-04-20 2022-10-11 E Ink Corporation Illumination systems for reflective displays
US10190743B2 (en) 2012-04-20 2019-01-29 E Ink Corporation Illumination systems for reflective displays
US8824040B1 (en) * 2012-07-03 2014-09-02 Brian K. Buchheit Enhancing low light usability of electrophoretic displays
US8797636B2 (en) * 2012-07-17 2014-08-05 Sipix Imaging, Inc. Light-enhancing structure for electrophoretic display
US9726957B2 (en) 2013-01-10 2017-08-08 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
JP2015018209A (en) 2013-04-12 2015-01-29 株式会社リコー Recording medium, image recorder, image recording set
DE102013105229A1 (en) 2013-05-22 2014-11-27 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
KR102081328B1 (en) * 2013-05-31 2020-02-26 하이디스 테크놀로지 주식회사 Three dimensional image display and converter therefor
JP2015018210A (en) 2013-06-11 2015-01-29 株式会社リコー Recording medium, image recorder, image recording set
DE102013106944A1 (en) 2013-07-02 2015-01-08 Osram Oled Gmbh An optoelectronic component device, method for producing an optoelectronic component device and method for operating an optoelectronic component device
US10317767B2 (en) 2014-02-07 2019-06-11 E Ink Corporation Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces
CN106133816A (en) 2014-02-07 2016-11-16 伊英克公司 The back board structure of electro-optic displays
US10446585B2 (en) 2014-03-17 2019-10-15 E Ink Corporation Multi-layer expanding electrode structures for backplane assemblies
DE102014119541A1 (en) 2014-12-23 2016-06-23 Osram Oled Gmbh Method for operating a light-emitting assembly
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
US10997930B2 (en) 2015-05-27 2021-05-04 E Ink Corporation Methods and circuitry for driving display devices
US11397361B2 (en) 2015-06-29 2022-07-26 E Ink Corporation Method for mechanical and electrical connection to display electrodes
US20180299688A1 (en) * 2015-10-08 2018-10-18 Dai Nippon Printing Co., Ltd. Particles, optical sheet, screen, display device, particle inspection device, particle manufacturing device, particle inspection method, particle manufacturing method, screen inspection method, and screen manufacturing method
AU2017274508A1 (en) 2016-05-31 2018-11-22 E Ink Corporation Backplanes for electro-optic displays
WO2018011143A1 (en) 2016-07-12 2018-01-18 Basf Se Electrophoretic ink providing coloured and transparent states
US10324577B2 (en) 2017-02-28 2019-06-18 E Ink Corporation Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits
WO2018183240A1 (en) 2017-03-28 2018-10-04 E Ink Corporation Porous backplane for electro-optic display
JP2020522730A (en) 2017-05-19 2020-07-30 イー インク コーポレイション Foldable electro-optical display including digitization and touch sensing
JP2020522741A (en) 2017-05-30 2020-07-30 イー インク コーポレイション Electro-optic display
KR20200015543A (en) 2017-06-01 2020-02-12 바스프 에스이 Electrophoretic Inks Provide Bistable Stability
CN111107937B (en) 2017-10-18 2022-08-02 核酸有限公司 Digital microfluidic device including dual substrates with thin film transistors and capacitive sensing
US10824042B1 (en) 2017-10-27 2020-11-03 E Ink Corporation Electro-optic display and composite materials having low thermal sensitivity for use therein
CA3101886C (en) 2017-11-03 2023-01-03 E Ink Corporation Processes for producing electro-optic displays
EP3502800A1 (en) * 2017-12-20 2019-06-26 ETA SA Manufacture Horlogère Suisse Method for producing a functional element on a timepiece component
WO2019160841A1 (en) 2018-02-15 2019-08-22 E Ink Corporation Via placement for slim border electro-optic display backplanes with decreased capacitive coupling between t-wires and pixel electrodes
US11353759B2 (en) 2018-09-17 2022-06-07 Nuclera Nucleics Ltd. Backplanes with hexagonal and triangular electrodes
KR102651889B1 (en) * 2018-09-21 2024-03-28 삼성디스플레이 주식회사 Inkjet print device, method of aligning dipoles and method of fabricating display device
TWI730448B (en) 2018-10-15 2021-06-11 美商電子墨水股份有限公司 Digital microfluidic delivery device
KR20230128588A (en) 2018-11-09 2023-09-05 이 잉크 코포레이션 Electro-optic displays
EP3894934A4 (en) 2018-12-13 2022-07-20 E Ink Corporation Illumination systems for reflective displays
TWI728631B (en) 2018-12-28 2021-05-21 美商電子墨水股份有限公司 Electro-optic displays
EP3903303A4 (en) 2018-12-30 2022-09-07 E Ink California, LLC Electro-optic displays
JP7407293B2 (en) 2020-02-07 2023-12-28 イー インク コーポレイション Electrophoretic display layer with thin film top electrode
KR20210104385A (en) 2020-02-17 2021-08-25 삼성디스플레이 주식회사 Ink-jet printing apparatus, and inspection method of ink-jet head using the same
JP7506769B2 (en) 2020-06-03 2024-06-26 イー インク コーポレイション Foldable electrophoretic display module including a non-conductive support plate - Patents.com
US11830449B2 (en) 2022-03-01 2023-11-28 E Ink Corporation Electro-optic displays
DE102023204221A1 (en) 2022-05-27 2023-11-30 BSH Hausgeräte GmbH HOUSEHOLD APPARATUS HAVING AN ELECTROPHORETIC INK ELEMENT
CN115195127B (en) * 2022-06-06 2024-01-05 深圳市纵维立方科技有限公司 Color 3D printing device, control method and system thereof, and readable storage medium
CN116691203B (en) * 2023-08-08 2023-10-20 武汉国创科光电装备有限公司 Ink-jet printing process method and system for display device and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203106A (en) * 1977-11-23 1980-05-13 North American Philips Corporation X-Y addressable electrophoretic display device with control electrode
US5408344A (en) * 1993-01-11 1995-04-18 Ricoh Company, Inc. Reflection type liquid crystal display with selective reflecting means
US5431771A (en) * 1993-04-15 1995-07-11 France Telecom Etablissement Autonome De Droit Public Method for embodying a display cell with counter-electrode contact pick-up
US5708525A (en) * 1995-12-15 1998-01-13 Xerox Corporation Applications of a transmissive twisting ball display
US6113810A (en) * 1993-05-21 2000-09-05 Copytele, Inc. Methods of preparing electrophoretic dispersions containing two types of particles with different colors and opposite charges

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US518609A (en) * 1894-04-24 William j
US620990A (en) * 1899-03-14 Frequency-changer
USRE25822E (en) * 1961-10-27 1965-07-20 Magnetic writing materials set
US3406363A (en) * 1966-05-26 1968-10-15 Clarence R. Tate Multicolored micromagnets
US3460248A (en) * 1966-05-26 1969-08-12 Clarence R Tate Method for making micromagnets
NL7005615A (en) * 1969-04-23 1970-10-27
US3668106A (en) * 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3767392A (en) * 1970-04-15 1973-10-23 Matsushita Electric Ind Co Ltd Electrophoretic light image reproduction process
US3792308A (en) * 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
US3670323A (en) * 1970-12-14 1972-06-13 Zenith Radio Corp Image-display devices comprising particle light modulators with storage
JPS4917079B1 (en) * 1970-12-21 1974-04-26
JPS5826026B2 (en) * 1974-02-01 1983-05-31 京セラミタ株式会社 Transfer method
US4093534A (en) * 1974-02-12 1978-06-06 Plessey Handel Und Investments Ag Working fluids for electrophoretic image display devices
FR2318474A1 (en) 1975-07-17 1977-02-11 Thomson Csf ELECTROPHORESIS DISPLAY DEVICE
US4126854A (en) * 1976-05-05 1978-11-21 Xerox Corporation Twisting ball panel display
US4143103A (en) * 1976-05-04 1979-03-06 Xerox Corporation Method of making a twisting ball panel display
JPS5947676B2 (en) * 1977-04-11 1984-11-20 株式会社パイロット magnetic panel
US4126528A (en) * 1977-07-26 1978-11-21 Xerox Corporation Electrophoretic composition and display device
US4261653A (en) * 1978-05-26 1981-04-14 The Bendix Corporation Light valve including dipolar particle construction and method of manufacture
US4293451A (en) * 1978-06-08 1981-10-06 Bernd Ross Screenable contact structure and method for semiconductor devices
DE2906652A1 (en) * 1979-02-02 1980-08-14 Bbc Brown Boveri & Cie METHOD FOR PRODUCING AN ELECTROPHORETIC DISPLAY WITH WAX-COVERED PIGMENT PARTICLES
US4272596A (en) * 1979-06-01 1981-06-09 Xerox Corporation Electrophoretic display device
JPS5932796B2 (en) * 1979-12-11 1984-08-10 株式会社パイロット magnet reversal display magnetic panel
US4419383A (en) 1979-12-26 1983-12-06 Magnavox Government And Industrial Electronics Company Method for individually encapsulating magnetic particles
US4305807A (en) 1980-03-13 1981-12-15 Burroughs Corporation Electrophoretic display device using a liquid crystal as a threshold device
US4311361A (en) * 1980-03-13 1982-01-19 Burroughs Corporation Electrophoretic display using a non-Newtonian fluid as a threshold device
JPS5914745B2 (en) * 1980-11-10 1984-04-05 コニカ株式会社 Toner for developing electrostatic images
US4418346A (en) * 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4390403A (en) * 1981-07-24 1983-06-28 Batchelder J Samuel Method and apparatus for dielectrophoretic manipulation of chemical species
US4435047A (en) * 1981-09-16 1984-03-06 Manchester R & D Partnership Encapsulated liquid crystal and method
CA1190362A (en) * 1982-01-18 1985-07-16 Reiji Ishikawa Method of making a rotary ball display device
JPS614020A (en) * 1984-06-18 1986-01-09 Nissha Printing Co Ltd Multicolor liquid crystal display device
US4824208A (en) * 1984-08-28 1989-04-25 Talig Corporation Display for contrast enhancement
US4832458A (en) * 1984-08-28 1989-05-23 Talig Corporation Display for contrast enhancement
US4643528A (en) * 1985-03-18 1987-02-17 Manchester R & D Partnership Encapsulated liquid crystal and filler material
JPS6258222A (en) * 1985-09-09 1987-03-13 Ricoh Co Ltd Matrix type display device
US4620916A (en) * 1985-09-19 1986-11-04 Zwemer Dirk A Degradation retardants for electrophoretic display devices
US4726662A (en) * 1985-09-24 1988-02-23 Talig Corporation Display including a prismatic lens system or a prismatic reflective system
US4948692A (en) * 1986-03-31 1990-08-14 Seiko Epson Corporation Combination toner and printer utilizing same
JPS62231930A (en) * 1986-04-02 1987-10-12 Stanley Electric Co Ltd Liquid crystal display device
IT1204914B (en) * 1987-03-06 1989-03-10 Bonapace & C Spa PROCEDURE FOR THE PROTECTION OF LITTLE STABLE SUBSTANCES WITH POLYMERIC MIXTURES AND PROCESSES FOR THEIR APPLICATION
JPS63268777A (en) * 1987-04-25 1988-11-07 Kanzaki Paper Mfg Co Ltd Microencapsulated ink composition
US4772102A (en) * 1987-05-18 1988-09-20 Taliq Corporation Display with light traps between reflector and scattering means
JPS63303325A (en) * 1987-06-03 1988-12-09 Nippon Sheet Glass Co Ltd Electromagneto-optical device for optical element
EP0346484B1 (en) * 1987-12-02 1995-08-16 Japan Capsular Products, Inc. Microencapsulated photochromic material, process for its preparation, and water-base ink composition prepared therefrom
US4931323A (en) * 1987-12-10 1990-06-05 Texas Instruments Incorporated Thick film copper conductor patterning by laser
JPH01282589A (en) * 1988-05-10 1989-11-14 Fuji Xerox Co Ltd Manufacture of rotary particles for display for particle rotation type display
US5250388A (en) * 1988-05-31 1993-10-05 Westinghouse Electric Corp. Production of highly conductive polymers for electronic circuits
JPH01118115A (en) * 1988-09-16 1989-05-10 Fujitsu Ltd Electrochromic display element
JP2617213B2 (en) * 1988-11-10 1997-06-04 三菱製紙株式会社 Thermal recording ink
JP2770409B2 (en) * 1989-04-28 1998-07-02 ソニー株式会社 Display composition, coloring pigment and recording material
US5508068A (en) * 1989-06-17 1996-04-16 Shinko Electric Works Co., Ltd. Cholesteric liquid crystal composition, color-forming liquid crystal composite product, method for protecting liquid crystal and color-forming liquid crystal picture laminated product
US4958173A (en) * 1989-07-06 1990-09-18 Dennison Manufacturing Company Toner receptive coating
JPH0344621A (en) * 1989-07-12 1991-02-26 Alps Electric Co Ltd Method and device for displaying and display medium tube used therein
US5484292A (en) * 1989-08-21 1996-01-16 Mctaggart; Stephen I. Apparatus for combining audio and visual indicia
US5254981A (en) * 1989-09-15 1993-10-19 Copytele, Inc. Electrophoretic display employing gray scale capability utilizing area modulation
CA2027440C (en) * 1989-11-08 1995-07-04 Nicholas K. Sheridon Paper-like computer output display and scanning system therefor
US5077157A (en) 1989-11-24 1991-12-31 Copytele, Inc. Methods of fabricating dual anode, flat panel electrophoretic displays
US5057363A (en) * 1989-12-27 1991-10-15 Japan Capsular Products Inc. Magnetic display system
EP0443571A3 (en) * 1990-02-23 1992-04-15 Ube Industries, Ltd. Liquid crystal display panel
US5151032A (en) * 1990-07-13 1992-09-29 Kabushiki Kaisha Pilot Magnetophoretic display panel
JP2911662B2 (en) * 1991-03-20 1999-06-23 シャープ株式会社 Display device
US5187609A (en) * 1991-03-27 1993-02-16 Disanto Frank J Electrophoretic display panel with semiconductor coated elements
US5315312A (en) * 1991-05-06 1994-05-24 Copytele, Inc. Electrophoretic display panel with tapered grid insulators and associated methods
US5223115A (en) * 1991-05-13 1993-06-29 Copytele, Inc. Electrophoretic display with single character erasure
US5689282A (en) * 1991-07-09 1997-11-18 U.S. Philips Corporation Display device with compensation for stray capacitance
US5216416A (en) * 1991-08-19 1993-06-01 Copytele, Inc. Electrophoretic display panel with interleaved local anode
DE69124707T2 (en) * 1991-08-29 1997-05-28 Copytele Inc ELECTROPHORETIC DISPLAY PANEL WITH INTERNAL NETWORK BACKGROUND
JP3164919B2 (en) * 1991-10-29 2001-05-14 ゼロックス コーポレーション Method of forming dichroic balls
US5174882A (en) 1991-11-25 1992-12-29 Copytele, Inc. Electrode structure for an electrophoretic display apparatus
JPH0748149B2 (en) * 1992-03-19 1995-05-24 テクトロニクス・インコーポレイテッド LCD flat panel display
CA2070068C (en) * 1992-05-29 2000-07-04 Masayuki Nakanishi Magnetic display system
US5298833A (en) * 1992-06-22 1994-03-29 Copytele, Inc. Black electrophoretic particles for an electrophoretic image display
US5512162A (en) * 1992-08-13 1996-04-30 Massachusetts Institute Of Technology Method for photo-forming small shaped metal containing articles from porous precursors
US5398131A (en) * 1992-08-13 1995-03-14 Hall; Dennis R. Stereoscopic hardcopy methods
US5270843A (en) 1992-08-31 1993-12-14 Jiansheng Wang Directly formed polymer dispersed liquid crystal light shutter displays
US5442386A (en) * 1992-10-13 1995-08-15 Hewlett-Packard Company Structure and method for preventing ink shorting of conductors connected to printhead
US5279511A (en) * 1992-10-21 1994-01-18 Copytele, Inc. Method of filling an electrophoretic display
US5543177A (en) * 1992-11-05 1996-08-06 Xerox Corporation Marking materials containing retroreflecting fillers
US5380769A (en) * 1993-01-19 1995-01-10 Tektronix Inc. Reactive ink compositions and systems
JPH06175165A (en) * 1992-12-03 1994-06-24 Toray Ind Inc Color tone-changing gel and optical element, display board and educational equipment using the same
TW226478B (en) * 1992-12-04 1994-07-11 Semiconductor Energy Res Co Ltd Semiconductor device and method for manufacturing the same
US5262098A (en) * 1992-12-23 1993-11-16 Xerox Corporation Method and apparatus for fabricating bichromal balls for a twisting ball display
JPH06289528A (en) * 1993-04-07 1994-10-18 Nippon Paint Co Ltd Photosensitive color developing composition
EP0695339A4 (en) * 1993-04-21 1997-05-07 Copytele Inc Black and white electrophoretic particles and method of manufacture
US5360689A (en) * 1993-05-21 1994-11-01 Copytele, Inc. Colored polymeric dielectric particles and method of manufacture
US5596024A (en) * 1993-06-22 1997-01-21 Three Bond Co., Ltd. Sealing composition for liquid crystal
US5380362A (en) * 1993-07-16 1995-01-10 Copytele, Inc. Suspension for use in electrophoretic image display systems
US5411656A (en) * 1993-08-12 1995-05-02 Copytele, Inc. Gas absorption additives for electrophoretic suspensions
CA2169169A1 (en) * 1993-09-09 1995-03-16 Christopher A. Laspina Electrophoretic display panel with selective character addressability
DE69412567T2 (en) * 1993-11-01 1999-02-04 Hodogaya Chemical Co., Ltd., Tokio/Tokyo Amine compound and electroluminescent device containing it
US5752442A (en) * 1993-11-03 1998-05-19 Corning Incorporated Method for printing a color filter
US5403518A (en) * 1993-12-02 1995-04-04 Copytele, Inc. Formulations for improved electrophoretic display suspensions and related methods
US5383008A (en) * 1993-12-29 1995-01-17 Xerox Corporation Liquid ink electrostatic image development system
JP2725587B2 (en) * 1994-02-03 1998-03-11 日本電気株式会社 Field-effect transistor
JP2725591B2 (en) * 1994-03-10 1998-03-11 日本電気株式会社 Field-effect transistor
US5744283A (en) * 1994-04-12 1998-04-28 U.S. Philips Corporation Method of photolithographically metallizing at least the inside of holes arranged in accordance with a pattern in a plate of an electrically insulating material
WO1995030178A1 (en) * 1994-04-28 1995-11-09 Philips Electronics N.V. Method of photolithographically producing a copper pattern on a plate of an electrically insulating material
CN1149894A (en) * 1994-05-26 1997-05-14 考贝泰利公司 Fluorinated dielectric suspensions for electrophoretic image displays and related methods
JPH07331090A (en) * 1994-06-06 1995-12-19 Japan Carlit Co Ltd:The Temperature-sensitive color-changeable resin composition and construction member using the same
JPH08106082A (en) * 1994-10-05 1996-04-23 Dainippon Ink & Chem Inc Liquid crystal display element and its production
US5754094A (en) * 1994-11-14 1998-05-19 Frushour; Robert H. Sound generating apparatus
DE4446509A1 (en) * 1994-12-24 1996-06-27 Sel Alcatel Ag Method for producing conductor tracks on a substrate having depressions
US5745094A (en) * 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US5604027A (en) * 1995-01-03 1997-02-18 Xerox Corporation Some uses of microencapsulation for electric paper
US5736074A (en) * 1995-06-30 1998-04-07 Micro Fab Technologies, Inc. Manufacture of coated spheres
US6124851A (en) * 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6120588A (en) * 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
GB2306229B (en) 1995-10-13 1999-04-07 Ibm Diffusely reflective display cell
US5582700A (en) 1995-10-16 1996-12-10 Zikon Corporation Electrophoretic display utilizing phase separation of liquids
US5717514A (en) * 1995-12-15 1998-02-10 Xerox Corporation Polychromal segmented balls for a twisting ball display
US5760761A (en) * 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US5737115A (en) * 1995-12-15 1998-04-07 Xerox Corporation Additive color tristate light valve twisting ball display
US5767826A (en) * 1995-12-15 1998-06-16 Xerox Corporation Subtractive color twisting ball display
US5751268A (en) * 1995-12-15 1998-05-12 Xerox Corporation Pseudo-four color twisting ball display
US5739801A (en) * 1995-12-15 1998-04-14 Xerox Corporation Multithreshold addressing of a twisting ball display
US5908899A (en) * 1995-12-27 1999-06-01 Mitsui Chemicals, Inc. Resin composition for sealing liquid crystal cells
US5717283A (en) * 1996-01-03 1998-02-10 Xerox Corporation Display sheet with a plurality of hourglass shaped capsules containing marking means responsive to external fields
JPH11505635A (en) * 1996-03-18 1999-05-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Display device
TW449670B (en) * 1996-05-15 2001-08-11 Seiko Epson Corp Method for making thin film device with coating film, liquid crystal panel and electronic device
GB9613065D0 (en) * 1996-06-21 1996-08-28 Philips Electronics Nv Electronic device manufacture
US5754332A (en) * 1996-06-27 1998-05-19 Xerox Corporation Monolayer gyricon display
US5930026A (en) * 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
GB2376566B (en) 1997-10-14 2003-02-05 Patterning Technologies Ltd Method of forming an electronic device
US6209990B1 (en) * 1997-12-19 2001-04-03 Array Printers Ab Method and apparatus for coating an intermediate image receiving member to reduce toner bouncing during direct electrostatic printing
JP4003273B2 (en) 1998-01-19 2007-11-07 セイコーエプソン株式会社 Pattern forming method and substrate manufacturing apparatus
US6319381B1 (en) * 1998-06-11 2001-11-20 Micron Technology, Inc. Methods of forming a face plate assembly of a color display
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
WO2001008242A1 (en) * 1999-07-21 2001-02-01 E Ink Corporation Preferred methods for producing electrical circuit elements used to control an electronic display
US6930818B1 (en) * 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203106A (en) * 1977-11-23 1980-05-13 North American Philips Corporation X-Y addressable electrophoretic display device with control electrode
US5408344A (en) * 1993-01-11 1995-04-18 Ricoh Company, Inc. Reflection type liquid crystal display with selective reflecting means
US5431771A (en) * 1993-04-15 1995-07-11 France Telecom Etablissement Autonome De Droit Public Method for embodying a display cell with counter-electrode contact pick-up
US6113810A (en) * 1993-05-21 2000-09-05 Copytele, Inc. Methods of preparing electrophoretic dispersions containing two types of particles with different colors and opposite charges
US5708525A (en) * 1995-12-15 1998-01-13 Xerox Corporation Applications of a transmissive twisting ball display

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US8810896B2 (en) 2011-03-31 2014-08-19 Ricoh Company, Ltd. Rewritable recording medium, image recording set, and image recording method
US20150246553A1 (en) * 2012-09-18 2015-09-03 Ricoh Company, Ltd. Recording medium, image recording apparatus, and image recording set
US12000207B2 (en) 2013-10-22 2024-06-04 E Ink Corporation Light-modulating electrophoretic device
US11708720B2 (en) 2013-10-22 2023-07-25 E Ink Corporation Light-modulating electrophoretic device
US9529240B2 (en) 2014-01-17 2016-12-27 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
US10151955B2 (en) 2014-01-17 2018-12-11 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
US10795221B2 (en) 2014-01-17 2020-10-06 E Ink Corporation Methods for making two-phase light-transmissive electrode layer with controlled conductivity
US9506243B1 (en) 2014-03-20 2016-11-29 E Ink Corporation Thermally-responsive film
US10976634B2 (en) 2014-11-07 2021-04-13 E Ink Corporation Applications of electro-optic displays
US10175550B2 (en) 2014-11-07 2019-01-08 E Ink Corporation Applications of electro-optic displays
US11749218B2 (en) 2017-06-16 2023-09-05 E Ink Corporation Method of forming an electro-optic medium
US10983410B2 (en) 2017-06-16 2021-04-20 E Ink Corporation Electro-optic media including encapsulated pigments in gelatin binder
US10809590B2 (en) 2017-06-16 2020-10-20 E Ink Corporation Variable transmission electrophoretic devices
EP4086318A2 (en) 2017-06-16 2022-11-09 E Ink Corporation Variable transmission electrophoretic devices
US11079651B2 (en) 2017-12-15 2021-08-03 E Ink Corporation Multi-color electro-optic media
US11175561B1 (en) 2018-04-12 2021-11-16 E Ink Corporation Electrophoretic display media with network electrodes and methods of making and using the same
US11397366B2 (en) 2018-08-10 2022-07-26 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
WO2020033787A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
US11435606B2 (en) 2018-08-10 2022-09-06 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
WO2020033175A1 (en) 2018-08-10 2020-02-13 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
US11719953B2 (en) 2018-08-10 2023-08-08 E Ink California, Llc Switchable light-collimating layer with reflector
US11656526B2 (en) 2018-08-10 2023-05-23 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
US11314098B2 (en) 2018-08-10 2022-04-26 E Ink California, Llc Switchable light-collimating layer with reflector
EP3877807A4 (en) * 2018-11-05 2022-08-10 Halion Displays Inc. Optical activation of chemical entities in electrophoretic dispersions for display devices
US11754903B1 (en) 2018-11-16 2023-09-12 E Ink Corporation Electro-optic assemblies and materials for use therein
US12130533B2 (en) 2018-11-16 2024-10-29 E Ink Corporation Electro-optic assemblies and materials for use therein
US11567388B2 (en) 2019-02-25 2023-01-31 E Ink Corporation Composite electrophoretic particles and variable transmission films containing the same
US12130531B2 (en) 2019-02-25 2024-10-29 E Ink Corporation Composite electrophoretic particles and variable transmission films containing the same
US11761123B2 (en) 2019-08-07 2023-09-19 E Ink Corporation Switching ribbons for textiles
US11520210B2 (en) 2019-09-30 2022-12-06 E Ink Corporation Electrically-actuated variable transmission film having very low haze and a visible grid in a clear state
US11762258B2 (en) 2019-09-30 2023-09-19 E Ink Corporation Electrically-actuated variable transmission film having very low haze and a visible grid in a clear state
US11747701B2 (en) 2019-12-23 2023-09-05 E Ink Corporation Color electrophoretic layer including microcapsules with nonionic polymeric walls
US12130534B2 (en) 2019-12-23 2024-10-29 E Ink Corporation Color electrophoretic layer including microcapsules with nonionic polymeric walls

Also Published As

Publication number Publication date
US8035886B2 (en) 2011-10-11
AU6955096A (en) 1998-02-10
JP2004252465A (en) 2004-09-09
DE69636960C5 (en) 2015-07-30
JP2006189899A (en) 2006-07-20
JP4105107B2 (en) 2008-06-25
JP2010244066A (en) 2010-10-28
DE69636960D1 (en) 2007-04-19
JP2011100151A (en) 2011-05-19
EP1231500A3 (en) 2003-07-09
JP4410135B2 (en) 2010-02-03
EP1231500A2 (en) 2002-08-14
DE69636960T2 (en) 2007-06-14
EP0912913A1 (en) 1999-05-06
JP2001500172A (en) 2001-01-09
JP2005227795A (en) 2005-08-25
CA2260947A1 (en) 1998-01-29
JP3833266B2 (en) 2006-10-11
US20070057908A1 (en) 2007-03-15
JP2010224576A (en) 2010-10-07
ATE356369T1 (en) 2007-03-15
AU726057B2 (en) 2000-10-26
US20070052757A1 (en) 2007-03-08
EP1231500B1 (en) 2007-03-07
WO1998003896A1 (en) 1998-01-29

Similar Documents

Publication Publication Date Title
US8035886B2 (en) Electronically addressable microencapsulated ink and display thereof
US6652075B2 (en) Electronically addressable microencapsulated ink and display thereof
US6967640B2 (en) Microencapsulated electrophoretic display with integrated driver
DE69905292T2 (en) ASSEMBLY OF MICROCAPSULATED ELECTRONIC DISPLAY
JP5047331B2 (en) Method for obtaining an improved color in a microencapsulated electrophoretic device
JP4460150B2 (en) A new addressing scheme for electrophoretic displays.
US6392786B1 (en) Electrophoretic medium provided with spacers
US20030214697A1 (en) Electrophoretic electronic displays with low-index films
JP2008209953A (en) Display device and manufacturing method therefor
EP1772768A2 (en) Electronically addressable microencapsulated ink and display thereof
CA2553137A1 (en) Electronically addressable microencapsulated ink and display thereof
AU761075B2 (en) Electronically addressable microencapsulated ink, display thereof and methods therefor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION