[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20110165106A1 - Cleansing composition - Google Patents

Cleansing composition Download PDF

Info

Publication number
US20110165106A1
US20110165106A1 US13/062,017 US200913062017A US2011165106A1 US 20110165106 A1 US20110165106 A1 US 20110165106A1 US 200913062017 A US200913062017 A US 200913062017A US 2011165106 A1 US2011165106 A1 US 2011165106A1
Authority
US
United States
Prior art keywords
sodium
glyceryl
ether
potassium
glutamate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/062,017
Inventor
Michael Molenda
Like Tietjen
Eiji Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Germany GmbH
Original Assignee
KPSS Kao Professional Salon Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KPSS Kao Professional Salon Services GmbH filed Critical KPSS Kao Professional Salon Services GmbH
Assigned to KPSS KAO PROFESSIONAL SALON SERVICES GMBH reassignment KPSS KAO PROFESSIONAL SALON SERVICES GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOLENDA, MICHAEL, TIETJEN, ILKA
Publication of US20110165106A1 publication Critical patent/US20110165106A1/en
Assigned to KAO GERMANY GMBH reassignment KAO GERMANY GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KPSS-KAO PROFESSIONAL SALON SERVICES GMBH
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/046Aerosols; Foams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • A61K8/442Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof substituted by amido group(s)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring
    • A61Q5/065Preparations for temporary colouring the hair, e.g. direct dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes
    • A61K2800/432Direct dyes

Definitions

  • the present invention is related to an aqueous cleansing composition for keratin fibres, especially human hair, comprising at least one amino acid surfactant, at least one alkyl glyceryl ether and at least one fatty alcohol.
  • Cleansing compositions have been known for many years. Many patent applications and scientific publications deal with such compositions aiming at cleansing and especially improved conditioning effects. On the other hand, attempts have been made to improve foam quality of cleansing compositions in terms of its volume and its creaminess. However there is still need for further improvements.
  • EP 1 696 023 A1 discloses surfactant compositions comprising alkyl ether sulphate type of surfactant, glyceryl ether or diglyceryl ether and a water soluble salt. The document is silent on amino acid surfactants.
  • WO 2004/014334 A1 is on hair detergent compositions comprising anionic surfactant, monoalkyl or monoalkenyl glyceryl ether and silicone conditioning agent. None is disclosed on amino acid surfactants.
  • EP 1 221 474 A1 is as well on detergent compositions comprising anionic phosphate surfactants and glyceryl ether. Amino acid surfactants are not mentioned at all.
  • Aim of the present invention is to provide a cleansing composition having improved foam properties in terms of its volume and creaminess as well as improved conditioning effects on keratin fibres, especially human hair, in terms of compatibility, smoothness, elasticity, softness, volume and body.
  • a cleansing composition comprising at least one amino acid surfactant, at least one mono or dialkyl glyceryl ether and at least one fatty alcohol provides excellent foam performance observed as improved foam creaminess and foam volume.
  • the first object of the present invention is a cleansing composition comprising at least one amino acid surfactant of the following structure
  • R 1 is a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms
  • R 2 is H or a methyl
  • R 3 is H, COO ⁇ M + , CH 2 COO ⁇ M or COOH
  • n is 0 to 2
  • X is COO ⁇ or SO 3 ⁇
  • M is independent from each other H, sodium or potassium, at least one glyceryl ether of the following formula
  • R 4 is straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms and R 5 is H, or straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms, and at least one fatty alcohol of the following formula
  • R 6 is straight or branched, saturated or unsaturated alkyl chain with 8 to 24 C atoms.
  • amino acid surfactants especially those surfactants are meant derived from taurate, glucamate, alanin or alaninate, sarcosinate and aspartate.
  • Second object of the present invention is the use of cleansing composition comprising at least one amino acid surfactant of the above general formula, at least one glyceryl ether of the above general formula and at least one fatty alcohol of the above general formula for cleansing hair.
  • Third objective of the present invention is the use of at least one amino acid surfactant of the above general formula, at least one gylceryl ether of the above general formula and at least one fatty alcohol of the above general formula for increasing foam volume and for improving foam creaminess of the cleansing compositions based on at least one anionic surfactant and optionally comprising non-ionic and amphoteric surfactants.
  • Cleansing composition of the present invention comprises at least one amino acid surfactant according to the general formula given above at a concentration of 0.1 to 15%, by weight, calculated to total composition.
  • concentration of amino acid surfactant is from 0.25 to 10% by weight, more preferably 0.5 to 7.5% by weight and most preferably 1 to 5% by weight, calculated to total composition.
  • concentrations mentioned here are total concentration ranges in case more than one amino acid surfactant is present.
  • R 1 in the general formula of amino acid surfactants disclosed above is a saturated or unsaturated, straight or branched alkyl chain with 9 to 17 C atoms, and more preferably 9 to 13 C atoms
  • R 2 is H or a methyl
  • R 3 is H, COO ⁇ M + , CH 2 COO ⁇ M or COOH
  • n is 0 to 2
  • X is COO ⁇ or SO 3 ⁇
  • M is independent from each other H, sodium or potassium.
  • alkyl chain includes also mixture of various alkyl groups as present especially in plant triglyceride derived alkyl chains such as cocoyl chain.
  • amino acid surfactant types are taurate, glutamate, alanin or alaninate, sarcosinate, aspartate surfactants, and mixtures thereof.
  • Preferred are taurate, glutamate and sarcosinate surfactants and mixtures thereof. More preferred are taurates and glutamates and most preferred is glutamate type surfactants.
  • Suitable taurate surfactants are according to the general formula
  • R 1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms
  • R 2 is H or methyl
  • M is H, sodium or potassium.
  • Suitable examples are potassium cocoyl taurate, potassium methyl cocoyl taurate, sodium caproyl methyl taurate, sodium cocoyl taurate, sodium lauroyl taurate, sodium methyl cocoyl taurate, sodium methyl lauroyl taurate, sodium methyl myristoyl taurate, sodium methyl oleoyl taurate, sodium methyl palmitoyl taurate, and sodium methyl stearoyl taurate and mixtures thereof.
  • potassium cocoyl taurate potassium methyl cocoyl taurate, sodium caproyl methyl taurate, sodium cocoyl taurate, sodium lauroyl taurate, sodium methyl cocoyl taurate and sodium methyl lauroyl taurate and mixtures thereof. More preferred are potassium cocoyl taurate, potassium methyl cocoyl taurate, sodium cocoyl taurate, sodium lauroyl taurate, sodium methyl cocoyl taurate and sodium methyl lauroyl taurate and mixtures thereof.
  • Suitable glutamate surfactants are according to the general formula
  • R 1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is independent from each other H, sodium or potassium.
  • Suitable examples are dipotassium capryloyl glutamate, dipotassium undecylenoyl glutamate, disodium capryloyl glutamate, disodium cocoyl glutamate, disodium lauroyl glutamate, disodium stearoyl glutamate, disodium undecylenoyl glutamate, potassium capryloyl glutamate, potassium cocoyl glutamate, potassium lauroyl glutamate, potassium myristoyl glutamate, potassium stearoyl glutamate, potassium undecylenoyl glutamate, sodium capryloyl glutamate, sodium cocoyl glutamate, sodium lauroyl glutamate, sodium myristoyl glutamate, sodium olivoyl glutamate
  • disodium capryloyl glutamate disodium cocoyl glutamate, disodium lauroyl glutamate, potassium capryloyl glutamate, potassium cocoyl glutamate, potassium lauroyl glutamate, sodium capryloyl glutamate, sodium cocoyl glutamate, and sodium lauroyl glutamate and mixtures thereof.
  • Suitable alanine or alaninate surfactants are according to the general formula
  • R 1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms
  • R 2 is H or methyl
  • M is H, sodium or potassium.
  • Suitable examples are cocoyl methyl ⁇ -alanine, lauroyl ⁇ -alanine, lauroyl methyl ⁇ -alanine, myristoyl ⁇ -alanine, potassium lauroyl methyl ⁇ -alanine, sodium cocoyl alaninate, sodium cocoyl methyl ⁇ -alanine and sodium myristoyl methyl ⁇ -alanine and mixtures thereof.
  • Suitable glycine surfactants are according to the general formula
  • R 1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms
  • M is H, sodium or potassium.
  • Suitable examples are palmitoyl glycine, sodium lauroyl glycine, sodium cocoyl glycine, sodium myristoyl glycine, potassium lauroyl glycine, and potassium cocoyl glycine and mixtures thereof.
  • Suitable sarcosinate surfactants are according to the general formula
  • R 1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms
  • M is H, sodium or potassium.
  • Suitable examples are potassium lauroyl sarcosinate, potassium cocoyl sarcosinate, sodium cocoyl sarcosinate, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, and sodium palmitoyl sarcosinate and mixtures thereof.
  • Preferred are potassium lauroyl sarcosinate, potassium cocoyl sarcosinate, sodium cocoyl sarcosinate, and sodium lauroyl sarcosinate and mixtures thereof. More preferred are sodium cocoyl sarcosinate, and sodium lauroyl sarcosinate and mixtures thereof.
  • Suitable aspartate surfactants are according to the general formula
  • R 1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is independent from each other H, sodium or potassium.
  • Suitable examples are sodium lauroyl aspartate, sodium myristoyl aspartate, sodium cocoyl aspartate, sodium caproyl aspartate, disodium lauroyl aspartate, disodium myristoyl aspartate, disodium cocoyl aspartate, disodium caproyl aspartate, potassium lauroyl aspartate, potassium myristoyl aspartate, potassium cocoyl aspartate, potassium caproyl aspartate, dipotassium lauroyl aspartate, dipotassium myristoyl aspartate, dipotassium cocoyl aspartate, and dipotassium caproyl aspartate and mixtures thereof.
  • Preferred are sodium lauroyl aspartate, sodium myristoyl aspartate, sodium cocoyl aspartate,
  • compositions of the present invention can also comprise mixture of several type of amino acid surfactants such as mixture of glutamate and taurate surfactants, or mixture of taurate, glutamate and sarcosinate surfactants etc.
  • Cleansing compositions of the present invention comprise at least one anionic surfactant at a concentration range of 1 to 25%, preferably 2 to 20% and more preferably 2.5 to 20%, and most preferably 5 to 15% by weight, calculated to the total composition.
  • anionic surfactant it is meant any anionic surfactant other than amino acid surfactants.
  • any anionic surfactant is suitable within the meaning of the present invention.
  • any anionic surfactants are meant other than amino acid surfactants.
  • anionic surfactants of the sulfate, sulfonate, carboxylate and alkyl phosphate type especially, of course, those customarily used in shampoo compositions, for example, the known C 10 -C 18 -alkyl sulfates, and in particular the respective ether sulfates, for example, C 12 -C 14 -alkyl ether sulfate, lauryl ether sulfate, especially with 1 to 4 ethylene oxide groups in the molecule, monoglyceride (ether) sulfates, fatty acid amide sulfates obtained by ethoxylation and subsequent sulfatation of fatty acid alkanolamides, and the alkali salts thereof, as well as the salts of long-chain mono- and dialkyl phosphate
  • Additional anionic surfactants useful within the scope of the invention are ⁇ -olefin sulfonates or the salts thereof, and in particular alkali salts of sulfosuccinic acid semiesters, for example, the disodium salt of monooctyl sulfosuccinate and alkali salts of long-chain monoalkyl ethoxysulfosuccinates.
  • Suitable surfactants of the carboxylate type are alkyl polyether carboxylic acids and the salts thereof of the formula
  • R 7 is a C 8 -C 20 -alkyl group, preferably a C 12 -C 14 -alkyl group, n is a number from 1 to 20, preferably 2 to 17, and X is H or preferably a cation of the group sodium, potassium, magnesium and ammonium, which can optionally be hydroxyalkyl-substituted, as well as alkyl amido polyether carboxylic acids of the general formula
  • R and X have the above meanings, and n is in particular a number from 1 to 10, preferably 2.5 to 5.
  • C 8 -C 20 -acyl isethionates are also useful, alone or in admixture with other anionic surfactants, as well as sulfofatty acids and the esters thereof.
  • anionic surfactants for example an ether sulfate and a polyether carboxylic acid or alkyl amidoether carboxylic acid.
  • the most preferred anionic surfactants within the meaning of the present invention are those of alkyl ether sulphates such as lauryl ether sulphate sodium salt.
  • cleansing composition of the present invention comprises at least one anionic surfactant as mentioned above and at least one nonionic surfactant.
  • Nonionic surfactants are suitable at a concentration of 1% to 15%, in particular from 1% to 10% by weight, calculated to the total composition.
  • Nonionic surfactants especially suited in the cleansing compositions according to the invention are alkyl polyglucosides of the general formula
  • R 8 is an alkyl group with 8 to 18 carbon atoms
  • R 9 is an ethylene or propylene group
  • Z is a saccharide group with 5 to 6 carbon atoms
  • n is a number from 0 to 10 and x is a number between 1 and 5.
  • alkyl polyglucosides are known in particular as excellent skin-compatible, foam improving agents in liquid detergents and body cleansing compositions. Mixtures of anionic surfactants and alkyl polyglucosides as well as the use thereof in liquid body cleansing compositions are already known, for example, from EP-A 70 074.
  • the alkyl polyglucosides disclosed therein are basically also suited within the scope of the present invention; as well as the mixtures of sulfosuccinates and alkyl polyglucosides disclosed in EP-A 358 216.
  • nonionic surfactants are, suitable for the cleansing compositions of the present invention, long-chain fatty acid dialkanolamides, such as coco fatty acid diethanolamide and myristic fatty acid diethanolamide.
  • nonionic surfactants are, for example, the various sorbitan esters, such as polyethylene glycol sorbitan stearic acid ester, fatty acid polyglycol esters or poly-condensates of ethyleneoxide and propyleneoxide, as they are on the market, for example, under the trade name “Pluronics®”, as well as fatty alcohol ethoxylates.
  • sorbitan esters such as polyethylene glycol sorbitan stearic acid ester, fatty acid polyglycol esters or poly-condensates of ethyleneoxide and propyleneoxide, as they are on the market, for example, under the trade name “Pluronics®”, as well as fatty alcohol ethoxylates.
  • amineoxides are state of the art, for example C 12 -C 18 -alkyl dimethyl amineoxides such as lauryl dimethyl amineoxide, C 12 -C 18 -alkyl amidopropyl or -ethyl amineoxides, C 12 -C 18 -alkyl di(hydroxyethyl) or (hydroxypropyl) amineoxides, or also amineoxides with ethyleneoxide and/or propyleneoxide groups in the alkyl chain.
  • Such amineoxides are on the market, for example, under the trade names “Ammonyx®”, “Aromox®” or “Genaminox®”.
  • nonionic surfactants useful in the compositions according to invention are C 10 -C 22 -fatty alcohol ethoxylate.
  • C 10 -C 22 -fatty alcohol ethers the alkyl polyglycol ethers known by the generic terms “Laureth”, “Myristeth”, “Oleth”, “Ceteth”, “Deceth”, “Steareth” and “Ceteareth” according to the CTFA nomenclature, including addition of the number of ethylene oxide molecules, e.g., “Laureth-16”:
  • the average degree of ethoxylation thereby ranges between about 2.5 and about 25, preferably about 10 and about 20.
  • non-ionic surfactants are alkyl polyglucosides such as decyl, cocoyl polyglucoside and ethoxylated fatty alcohols such as laureth-16.
  • cleansing composition of the present invention comprises at least one anionic, at least one nonionic surfactant and at least one amphoteric or zwitterionic surfactant.
  • Amphoteric or zwitterionic surfactants are present at a concentration of 0.5% to about 15%, preferably 1% to about 10%, by weight, calculated to the total composition. It has especially been found out that addition of zwitterionic or amphoteric surfactants enhances foam feeling in terms of creaminess, foam volume and as well as skin compatibility are also improved. For achieving milder formulations anionic surfactant, especially of sulphate types, to amphoteric surfactant ratio should be in the range of 10:1 to 1:1, preferably 5:1 to 1:1.
  • betaines such as alkyl betaines, fatty acid amidoalkyl betaines and sulfobetaines, for example, lauryl hydroxysulfobetaine; long-chain alkyl amino acids, such as cocoaminoacetate, cocoaminopropionate and sodium cocoamphopropionate and -acetate have also proven suitable.
  • betaine surfactants are of general structure
  • R 10 is a C 8 -C 18 -alkyl group and n is 1 to 3;
  • amphoteric surfactants are alkyl betaines such as lauryl betaine and alkyl amido betaines such as cocamidopropyl betaine.
  • cleansing composition comprises at least one anionic surfactant especially of alkyl ether sulphate type, at least one amphoteric surfactant especially alkyl amido alkyl betaine type and at least one non-ionic surfactant especially an alkyl polyglucoside type in the above mentioned concentration ranges.
  • Aqueous cleansing composition of the present invention comprises at least one glyceryl ether of the following formula
  • R 4 is straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms, preferably 4 to 18 and more preferably 4 to 12 C atoms and R 5 is H, or straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms, 4 to 18 and more preferably 4 to 12 C atoms and most preferably R 5 is H, at a concentration of 0.1 to 15%, preferably 0.1 to 10% and more preferably 0.25 to 7.5% and most preferably 0.5 to 5% by weight calculated to total composition.
  • Suitable unlimited examples are glyceryl butyl ether, glyceryl isobutyl ether, glyceryl tert-butyl ether, glyceryl pentyl ether, glyceryl isopentyl ether, glyceryl hexyl ether, glyceryl isohexyl ether, glyceryl heptyl ether, glyceryl octyl ether, glyceryl ethylhexyl ether, glyceryl nonyl ether, glyceryl decyl ether, glyceryl isodecyl ether, glyceryl lauryl ether, glyceryl myristyl ether, glyceryl palmityl ether, glyceryl stearyl ether and glyceryl behenyl ether and their mixtures.
  • glyceryl butyl ether glyceryl isobutyl ether, glyceryl tert-butyl ether, glyceryl pentyl ether, glyceryl isopentyl ether, glyceryl hexyl ether, glyceryl isohexyl ether, glyceryl heptyl ether, glyceryl octyl ether, glyceryl ethylhexyl ether, glyceryl nonyl ether, glyceryl decyl ether, glyceryl isodecyl ether are glyceryl lauryl ether, and their mixtures.
  • glyceryl decyl ether is used as synonym of decyl glycerine.
  • decyl glycerine is used as synonym of decyl glycerine.
  • Aqueous cleansing composition of the present invention comprise at least one fatty alcohol of the following formula
  • R 6 is straight or branched, saturated or unsaturated alkyl chain with 8 to 24, preferably 10 to 22, more preferably 12 to 18 and most preferably 12 to 16C atoms at a concentration of 0.1 to 5%, preferably 0.1 to 4% and more preferably 0.25 to 3% and most preferably 0.5 to 2.5% by weight calculated to total composition.
  • Suitable non-limiting preferred examples are decyl alcohol, myristyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, and arachidyl alcohol and their mixtures. More preferred are decyl alcohol, myristyl alcohol, lauryl alcohol, cetyl alcohol, and stearyl alcohol. Most preferred are decyl alcohol, myristyl alcohol and lauryl alcohol, and their mixtures.
  • cleansing composition of the present invention comprises hair-conditioning agents.
  • Conditioning agents can be selected from oily substances, non-ionic substances, cationic amphiphilic ingredients, cationic polymers or their mixtures.
  • Oily substances are selected from such as silicone oils, either volatile or non-volatile, natural and synthetic oils.
  • silicone oils those can be added to the compositions include dimethicone, dimethiconol, polydimethylsiloxane, DC fluid ranges from Dow Corning, arylated silicones such as phenyl trimethicone or any other silicone with up to 5 aryl, preferably phenyl, group in its molecule such as trimethyl pentaphenyl trisiloxane, natural oils such as olive oil, almond oil, avocado oil, wheatgerm oil, ricinus oil and the synthetic oils, such as mineral oil, isopropyl myristate, palmitate, stearate and isostearate, oleyl oleate, isocetyl stearate, hexyl laurate, dibutyl adipate, dioctyl adipate, myristyl myristate and oleyl erucate.
  • Non-ionic conditioning agents can be polyols such as glycerin, glycol and derivatives, polyethyleneglycoles known with trade names Carbowax PEG from Union Carbide and Polyox WSR range from Amerchol, polyglycerin, polyethyleneglycol mono or di fatty acid esters having general formula
  • R 11 and R 12 are independent from each other saturated, unsaturated or branched or non-branched alkyl chain with 7 to 21 C atoms and n is typically 2-100.
  • cleansing compositions comprise at least one cationic polymer as conditioning agent.
  • Suitable cationic polymers are those of best known with their CTFA category name Polyquaternium. Typical examples of those are Polyquaternium 1, Polyquaternium 2, Polyquaternium 4, Polyquaternium 5, Polyquaternium 6, Polyquaternium 7, Polyquaternium 8, Polyquaternium 9, Polyquaternium 10, Polyquaternium 11, Polyquaternium 12, Polyquaternium 13, Polyquaternium 14, Polyquaternium 15, Polyquaternium 16, Polyquaternium 17, Polyquaternium 18, Polyquaternium 19, Polyquaternium 20, Polyquaternium 22, Polyquaternium 24, Polyquaternium 27, Polyquaternium 28, Polyquaternium 29, Polyquaternium 30, Polyquaternium 31, Polyquaternium 32, Polyquaternium 33, Polyquaternium 34, Polyquaternium 35 and Polyquaternium 36, Polyquaternium-37, Polyquaternium 39, Polyquaternium 42, Polyquaternium 43, Polyquaternium 44, Polyquaternium 45, Polyquaternium
  • Quaternium As well those polymers known with their CTFA category name Quaternium are suitable. Those are for example Quaternium-8, Quaternium-14, Quaternium-15, Quaternium-18, Quaternium-22, Quaternium-24, Quaternium-26, Quaternium-27, Quaternium-30, Quaternium-33, Quaternium-53, Quaternium-60, Quaternium-61, Quaternium-72, Quaternium-78, Quaternium-80, Quaternium-81, Quaternium-82, Quaternium-83 and Quaternium-84.
  • cationic cellulose type polymers known as Polymer JR type from Amerchol such as Polyquaternium 10 or cationic galactomannans such as cationic guar gum known with trade name Jaguar from Rhône-Poulenc which are chemically for example Guar hydroxypropyl trimonium chloride and cationic tara gum an its derivatives known with INCI name Caesalpinia spinosa hydroxypropyltrimonium chloride, are preferred ones.
  • chitosan and chitin can also be included in the compositions as cationic natural polymers.
  • the most preferred cationic polymers are those of cationic cellulose derivatives, cationic guar gum derivatives, cationic Caesalpinia spinosa gum derivatives, polyquaternium 6, polyquaternium 7, polyquaternium 67 and polyquaternium 70.
  • the cationic polymers also include the quaternized products of graft polymers from organopolysiloxanes and polyethyl oxazolines described in EP-A 524 612 and EP-A 640 643.
  • cleansing compositions of the present invention may comprise additionally one or more cationic surfactant(s) as conditioner presented with the general formula
  • R 13 is a saturated or unsaturated, branched or non-branched alkyl chain with 8-24 C atoms or
  • R 17 is saturated or unsaturated, branched or non-branched alkyl chain with 7-21 C atoms and n has value of 1-4, or
  • R 18 is saturated or unsaturated, branched or non-branched alkyl chain with 7-21 C atoms and n has value of 1-4, and
  • R 14 is hydrogen or unsaturated or saturated, branched or non-branched alkyl chain with 1-24 C atoms or
  • R 15 and R 16 are hydrogen or lower alkyl chain with 1 to 4 carbon atoms which may be substituted with one or more hydroxyl groups, and X is anion such as chloride, bromide, methosulfate.
  • Typical examples of those ingredients are cetyl trimethly ammonium chloride, stear trimonium chloride, behentrimonium chloride, stearamidopropyl trimonuim chloride, dioleoylethyl dimethyl ammonium methosulfate, dioleoylethyl hydroxyethylmonium methosulfate.
  • compositions according to the invention may also comprise further conditioning substances such as protein hydrolyzates and polypeptides, e.g., keratin hydrolyzates, collagen hydrolyzates of the type “Nutrilan®” or elastin hydrolyzates, as well as also in particular plant protein hydrolyzates, optionally, cationized protein hydrolyzates, e.g., “Gluadin®”.
  • protein hydrolyzates and polypeptides e.g., keratin hydrolyzates, collagen hydrolyzates of the type “Nutrilan®” or elastin hydrolyzates
  • plant protein hydrolyzates e.g., cationized protein hydrolyzates, e.g., “Gluadin®”.
  • Typical concentration range for any of those conditioners of cationic polymers, silicone oil and derivatives and cationic surfactants is in the range of 0.01 to 5% by weight, preferably 0.01 to 3.5% by weight, more preferably 0.05 to 2.5% and most preferably 0.1 to 1.5% by weight calculated to the total composition.
  • Most preferred conditioning agents are cationic polymers.
  • aqueous cleansing composition comprises at least one organic solvent such as ethanol, propanol, isopropanol, benzyl alcohol, benzyloxyethanol, ethoxydiglycol, alkylene carbonates such as ethylene carbonate and propylene carbonate, phenoxyethanol, butanol, isobutanol, cyclohexane, cyclohexanol, hexyleneglycol, ethylenecarbonate, propyleneglycol, polypropyleneglycols, ethyleneglycol monoethylether, ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, 1-phenylethylalcohol, 2-phenylethylalcohol, o-methoxyphenol.
  • organic solvent such as ethanol, propanol, isopropanol, benzyl alcohol, benzyloxyethanol, ethoxydiglycol, alkylene carbonates such as ethylene carbonate and propylene carbon
  • Total concentration of organic solvents in the shampoo composition should not exceed 5% by weight, preferably in the range of 0.1 to 3%, more preferably 0.5 to 2.5% by weight calculated to total composition.
  • Further conditioning additives are hair conditioning and/or styling polymers. These may be nonionic polymers, preferably alcohol- and/or water-soluble vinyl pyrrolidone polymers, such as a vinyl pyrrolidone homopolymers or copolymers, in particular with vinyl acetate.
  • Useful vinyl pyrrolidone polymers are, e.g., those known by the trade name “Luviskol®”, for example, the homopolymers “Luviskol® K 30, K 60 and K 90”, as well as the water-or alcohol-soluble copolymers from vinyl pyrrolidone and vinyl acetate, distributed by BASF AG under the trade name “Luviskol® VA 55 respectively VA 64”.
  • nonionic polymers are vinyl pyrrolidone/vinyl acetate/vinyl propionate copolymers such as “Luviskol® VAP 343”, vinyl pyrrolidone/(meth)acrylic acid ester copolymers, as well as chitosan derivatives.
  • Amphoteric polymers are found to be useful in conditioning shampoo composition of the present invention. They are incorporated alone or in admixture with at least one additional cationic, nonionic or anionic polymer, particularly copolymers of N-octyl acrylamide, (meth)acrylic acid and tert.-butyl aminoethyl methacrylate of the type “Amphomer®”; copolymers from methacryl oylethyl betaine and alkyl methacrylates of the type “Yukaformer®”, e.g., the butyl methacrylate copolymer “Yukaformer® Am75”; copolymers from monomers containing carboxyl groups and sulfonic groups, e.g., (meth)acrylic acid and itaconic acid, with monomers such as mono- or dialkyl amino alkyl(meth)acrylates or mono- or dialkyl aminoalkyl (meth)acrylamides containing basic groups, in particular amino
  • Cleansing composition of the present invention are preferably pearly. Pearl-shiny appearance is achieved with those dispersed in cleansing conditioning compositions in crystalline form, i.e. so called pearl-shine or pearlizing agents.
  • the preferred once are PEG-3 distearate and ethylene glycol distearate.
  • the concentration of those can typically be from 0.1 to 3%, preferably 0.5 to 2% by weight, calculated to the total composition.
  • These compounds are preferably added to the compositions in admixture with anionic, nonionic and/or amphoteric surfactants. Such kinds of mixtures are available commercially.
  • Solubilizers may be added to the compositions especially when oily substances are chosen as conditioning agents and fragrance oils with highly lipophilic properties.
  • Typical solubilizers may be hydrogenated castor oil known with the trade mark Cremophor CO series from BASF. It should be noted that as well the surfactant mixture can be a good solubilizer for fragrance oils.
  • Typical concentration of the solubilizers can be in the range of 0.01-2% by weight, preferably 0.1-1% by weight, calculated to total composition.
  • the cleansing composition may contain active ingredients selected from UV filters, moisturisers, sequestering agents, and natural ingredients.
  • the moisturizing agents are selected from panthenol, polyols, such as glycerol, polyethylene glycols with molecular weight 200 to 20,000.
  • the moisturizing ingredients can be included in the conditioner compositions at a concentration range of 0.01-2.5% by weight calculated to the total composition.
  • the sequestering agents are preferably selected from polycarboxy acids.
  • the preferred one is ethylene diamine tetraacetic acid, EDTA.
  • Typical useful concentration range for sequestering agents is of 0.01-2.5% by weight calculated to the total composition.
  • the UV filters are that oil and water soluble ones for the purpose of protecting hair and hair colour.
  • anionic and non-ionic, oily, UV filters are suitably used in the compositions of the present invention.
  • Suitable UV-absorbing substances is are: 4-Aminobenzoic acid and the esters and salts thereof, 2-phenyl benzimidazole-5-sulfonic acid and the alkali and amine salts thereof, 4-dimethyl aminobenzoic acid and the esters and salts thereof, cinnamic acid and the esters and salts thereof, 4-methoxycinnamic acid and the esters and salts thereof, salicylic acid and the esters and salts thereof, 2,4-dihydroxybenzophenone, 2,2′,4,4′-tetrahydroxy-benzophenone, 2-hydroxy-4-methoxybenzophenone and its 5-sulfonic acid or the sodium salt thereof, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2-hydroxy-5-chloro
  • Natural plant extracts are incorporated usually in an amount of about 0.01% to about 10%, preferably 0.05% to 7.5%, in particular 0.1% to 5% by weight, calculated as dry residue thereof to the total composition.
  • Suitable aqueous (e.g. steam-distilled) alcoholic or hydro-alcoholic plant extracts known per se are in particular extracts from leaves, fruits, blossoms, roots, rinds or stems of aloe, pineapple, artichoke, arnica, avocado, valerian, bamboo, henbane, birch, stinging nettle, echinacea, ivy, wild angelica, gentian, ferns, pine needles, silver weed, ginseng, broom, oat, rose hip, hamamelis, hay flowers, elderberry, hop, coltsfoot, currants, chamomile, carrots, chestnuts, clover, burr root, coconut, cornflower, lime blossom, lily of the valley, marine algae, balm, mistletoe,
  • compositions of the present invention may comprise further at least one compound according to the formula
  • n is a number from 1 to 10.
  • compositions of the present invention can certainly comprise more than one ubichinone.
  • Preferred ubichinones are the ones where n is a number between 6 and 10 and especially preferred is Ubichinone 50 where n is 10, also known as Coenzyme Q10.
  • Concentration ubichinone of the above formula in the compositions is from 0.0001 to 1%, preferably from 0.0002 to 0.75%, more preferably from 0.0002 to 0.5% and most preferably from 0.0005 to 0.5% by weight, calculated to total composition.
  • Cleansing compositions of the present invention can also comprise synthetic mica as a further shine enhancer.
  • Suitable metal oxide or oxides for coating synthetic mica are titanium dioxide, chromium oxide, ferric oxide or mixtures thereof.
  • the preferred is synthetic mice coated with titanium dioxide.
  • Such materials are commercially available from Sun Chemical Corporation and known with their INCI names Synthetic Fluorphologopite.
  • the particle size distribution of synthetic mica coated with a metal oxide or oxides is in the range of 1 to 750 ⁇ m, preferably 1 to 250 ⁇ m, more preferably 1 to 100 ⁇ m and most preferably 20 to 95 ⁇ m.
  • the particle sizes referred are relating to the volume particle size distribution meaning that particles found in the coated synthetic mica having volume particle size in the given ranges.
  • Concentration of synthetic mica coated with at least metal oxide or oxides is from 0.001 to 10%, preferably 0.05 to 7.5%, more preferably 0.1 to 5% and most preferably 0.20 to 2.5% by weight calculated to total composition.
  • compositions comprise at least one direct dye.
  • Suitable direct dyes are of cationic, anionic and neutral nitro dyes. It should be noted that they can also be used in combination with each other.
  • a composition according to present invention can comprise an anionic and a cationic dye as well as an anionic and a nitro dye or a cationic and a nitro dye. Certainly the combination of all three dyestuff categories is also possible.
  • Any cationic direct dye is in principal suitable for the compositions.
  • Examples are Basic Blue 6, Basic Blue 7, Basic Blue 9, Basic Blue 26, Basic Blue 41, Basic Blue 99, Basic Brown 4, Basic Brown 16, Basic Brown 17, Natural Brown 7, Basic Green 1, Basic Orange 31, Basic Red 2, Basic Red 12 Basic Red 22, Basic Red 51, Basic Red 76, Basic Violet 1, Basic Violet 2, Basic Violet 3, Basic Violet 10, Basic Violet 14, Basic Yellow 57 and Basic Yellow 87, and mixtures thereof.
  • Any anionic dye is in principal suitable for the compositions. Suitable examples are such as Acid Black 1, Acid Blue 1, Acid Blue 3, Food Blue 5, Acid Blue 7, Acid Blue 9, Acid Blue 74, Acid Orange 3, Acid Orange 6, Acid Orange 7, Acid Orange 10, Acid Red 1, Acid Red 14, Acid Red 18, Acid Red 27, Acid Red 50, Acid Red 52, Acid Red 73, Acid Red 87, Acid Red 88, Acid Red 92, Acid Red 155, Acid Red 180, Acid Violet 9, Acid Violet 43, Acid Violet 49, Acid Yellow 1, Acid Yellow 23, Acid Yellow 3, Food Yellow No. 8, D&C Brown No. 1, D&C Green No. 5, D&C Green No. 8, D&C Orange No. 4, D&C Orange No. 10, D&C Orange No. 11, D&C Red No. 21, D&C Red No. 27, D&C Red No.
  • the preferred anionic dyestuffs are Acid Red 52, Acid Violet 2, Acid Red 33, Acid Orange 4, Acid Red 27 and Acid Yellow 10 and their salts, and mixtures thereof.
  • the most preferred anionic dyes are Acid Red 52, Acid Violet 2, Acid Red 33, Acid Orange 4 and Acid Yellow 10, and their salts, and mixtures thereof.
  • Neutral dyes so called nitro dyes for shading purposes are also optionally contained in the compositions. Suitable ones are HC Blue No.2, HC Blue No.4, HC Blue No.5, HC Blue No.6, HC Blue No.7, HC Blue No.8, HC Blue No.9, HC Blue No.10, HC Blue No.11, HC Blue No.12, HC Blue No.13, HC Brown No.1, HC Brown No.2, HC Green No.1, HC Orange No.1, HC Orange No.2, HC Orange No.3, HC Orange No.5, HC Red BN, HC Red No.1, HC Red No.3, HC Red No.7, HC Red No.8, HC Red No.9, HC Red No.10, HC Red No.11, HC Red No.13, HC Red No.54, HC Red No.14, HC Violet BS, HC Violet No.1, HC Violet No.2, HC Yellow No.2, HC Yellow No.4, HC Yellow No.5, HC Yellow No
  • Concentration of one or more direct dyes in total is in the range of 0.001 to 5% by weight, preferably 0.01 to 4% more preferably 0.05 to 3% and most preferably 0.1 to 2.5% by weight calculated to total composition.
  • the most preferred among the direct dyes is cationic direct dyes.
  • the shampoos according to the invention may comprise other substances customarily used in such compositions such as preservatives, fragrances.
  • the pH of the compositions according to the present invention is suitably between 2 and 8.0, preferably in the range of 2.5 to 7.0, more preferably 3 to 6.5 and most preferably 4 to 5.5 measured at ambient temperature with a suitable pH meter.
  • Acidic compounds can be inorganic and organic acid or their mixtures.
  • Nonlimiting suitable examples are citric acid, lactic acid, glycolic acid, hydroxyacrylic acid, glyceric acid, malic acid and tartaric acid and of the dicarboxylic acids are malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid and phtalic acid.
  • Alkaline compounds such as sodium hydroxide can be used to adjust the pH of the compositions.
  • Aqueous cleansing composition of the present invention preferably comprises one or more thickeners. Suitable ones are ethoxylated polyglyceryl esters with total ethoxy units in the range of 50 to 200 and fatty acyl chain length of 8 to 22 C atoms such as PEG-80 glyceryl cocoate, PEG-90 glyceryl isostearate, PEG-120 glyceryl stearate, PEG-200 glyceryl stearate, PEG-80 glyceryl tallowate, PEG-82 glyceryl tallowate, PEG-130 glyceryl tallowate, and PEG-200 glyceryl tallowate, gylceryl oleate/cocoate and inorganic salt in particular sodium chloride when especially composition comprise alkyl ether sulphate type of surfactants.
  • Cleansing compositions of the present invention preferably has a viscosity in the range of 500 to 20,000 mPa ⁇ s, more preferably 1,000 to 15,000 mPa ⁇ s and most preferably 1,500 to 10,000 mPa ⁇ s measured at 20° C. with a Brookfield viscosimetre using fro example Spindle 5 at appropriate rotation speed.
  • the following examples are to illustrate the invention, but not to limit.
  • the products according to the invention are prepared by mixing the individual components in water, whereby it is also possible to use pre-mixtures of various ingredients.
  • Shampoo composition E is according to the invention and A to D represent comparative compositions.
  • Foam speed, foam stability and foam creaminess were measured as follows.
  • Foam speed A shampoo solution was prepared in tap water at a concentration of 20% by weight. The solution was mixed with a propeller at 100 rpm for 2 min and left for 4 min without mixing. Afterwards foam volume (ml) was measured in the same cylinder.
  • Foam stability 35 g of the foam obtained with foam speed test was placed on a filter in a funnel and volume of liquid collected in a cylinder was measured after 30 min.
  • Foam creaminess 10 volunteers were asked to judge creaminess by hand.
  • the inventive composition showed the highest foam volume, the highest foam speed and the foam was the creamiest.
  • the effect is synergistic since sum of the effects of the individual components is less than the effect observed in combination.
  • the above shampoo was judged to have rich and creamy foam in a monadic test by the volunteers. It was furthermore mentioned that it foams very quickly.
  • the above composition has excellent creamy rich foam and conditions hair excellently in terms of compatibility and soft hair feeling.
  • the above composition improves hair volume, gives hair more elasticity in addition to the excellent creamy foam and conditioning effect in terms of compatibility, shine and soft hair feeling.
  • the above composition gives hair a red shine, and additionally delivers excellent conditioning effect in terms of more elasticity, compatibility, shine and soft hair feeling in addition to the excellent creamy rich foam.
  • the composition foams very quickly.
  • the above composition delivered excellent volume and shine to dark blonde fine hair. Foam characteristics were found to be excellent in terms of volume, speed and creaminess in a monadic test.
  • the above shampoo conditions hair excellently in terms of compatibility, softness, shine and elasticity and additionally gives fine hair excellent long lasting volume.
  • the above shampoo conditions hair excellently in terms of compatibility, shine, softness and elasticity and additionally gives fine hair excellent long lasting volume.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

An aqueous cleansing composition for keratin fibres comprises at least one amino acid surfactant and an aqueous emulsion of divinyldimethicone/dimethicone copolymer. The amino acid surfactant 3 of the following structure
Figure US20110165106A1-20110707-C00001
wherein R1 is a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, R2 is H or a methyl, R3 is H, COOM+, CH2COOM or COOH, n is 0 to 2, X is COO or SO3 and M is independent from each other H, sodium or potassium, and an aqueous emulsion of divinyldimethicone/dimethicone copolymer with an internal phase viscosity of more than 1×108 mm2/s measured at 0.01 Hz at about 25° C.

Description

  • The present invention is related to an aqueous cleansing composition for keratin fibres, especially human hair, comprising at least one amino acid surfactant, at least one alkyl glyceryl ether and at least one fatty alcohol.
  • Cleansing compositions have been known for many years. Many patent applications and scientific publications deal with such compositions aiming at cleansing and especially improved conditioning effects. On the other hand, attempts have been made to improve foam quality of cleansing compositions in terms of its volume and its creaminess. However there is still need for further improvements.
  • EP 1 696 023 A1 discloses surfactant compositions comprising alkyl ether sulphate type of surfactant, glyceryl ether or diglyceryl ether and a water soluble salt. The document is silent on amino acid surfactants.
  • WO 2004/014334 A1 is on hair detergent compositions comprising anionic surfactant, monoalkyl or monoalkenyl glyceryl ether and silicone conditioning agent. Nothing is disclosed on amino acid surfactants.
  • EP 1 221 474 A1 is as well on detergent compositions comprising anionic phosphate surfactants and glyceryl ether. Amino acid surfactants are not mentioned at all.
  • Aim of the present invention is to provide a cleansing composition having improved foam properties in terms of its volume and creaminess as well as improved conditioning effects on keratin fibres, especially human hair, in terms of compatibility, smoothness, elasticity, softness, volume and body.
  • Present inventors have surprisingly found that a cleansing composition comprising at least one amino acid surfactant, at least one mono or dialkyl glyceryl ether and at least one fatty alcohol provides excellent foam performance observed as improved foam creaminess and foam volume.
  • Accordingly, the first object of the present invention is a cleansing composition comprising at least one amino acid surfactant of the following structure
  • Figure US20110165106A1-20110707-C00002
  • wherein R1 is a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, R2 is H or a methyl, R3 is H, COOM+, CH2COOM or COOH, n is 0 to 2, X is COO or SO3 and M is independent from each other H, sodium or potassium, at least one glyceryl ether of the following formula
  • Figure US20110165106A1-20110707-C00003
  • wherein R4 is straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms and R5 is H, or straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms, and at least one fatty alcohol of the following formula

  • R6—OH
  • wherein R6 is straight or branched, saturated or unsaturated alkyl chain with 8 to 24 C atoms.
  • With the term amino acid surfactants especially those surfactants are meant derived from taurate, glucamate, alanin or alaninate, sarcosinate and aspartate.
  • Second object of the present invention is the use of cleansing composition comprising at least one amino acid surfactant of the above general formula, at least one glyceryl ether of the above general formula and at least one fatty alcohol of the above general formula for cleansing hair.
  • Third objective of the present invention is the use of at least one amino acid surfactant of the above general formula, at least one gylceryl ether of the above general formula and at least one fatty alcohol of the above general formula for increasing foam volume and for improving foam creaminess of the cleansing compositions based on at least one anionic surfactant and optionally comprising non-ionic and amphoteric surfactants.
  • Cleansing composition of the present invention comprises at least one amino acid surfactant according to the general formula given above at a concentration of 0.1 to 15%, by weight, calculated to total composition. Preferably, the concentration of amino acid surfactant is from 0.25 to 10% by weight, more preferably 0.5 to 7.5% by weight and most preferably 1 to 5% by weight, calculated to total composition. The concentrations mentioned here are total concentration ranges in case more than one amino acid surfactant is present. In the preferred embodiment of the present invention R1 in the general formula of amino acid surfactants disclosed above is a saturated or unsaturated, straight or branched alkyl chain with 9 to 17 C atoms, and more preferably 9 to 13 C atoms, R2 is H or a methyl, R3 is H, COOM+, CH2COOM or COOH, n is 0 to 2, X is COO or SO3 and M is independent from each other H, sodium or potassium. It should be noted that alkyl chain includes also mixture of various alkyl groups as present especially in plant triglyceride derived alkyl chains such as cocoyl chain.
  • Suitably amino acid surfactant types are taurate, glutamate, alanin or alaninate, sarcosinate, aspartate surfactants, and mixtures thereof. Preferred are taurate, glutamate and sarcosinate surfactants and mixtures thereof. More preferred are taurates and glutamates and most preferred is glutamate type surfactants.
  • Suitable taurate surfactants are according to the general formula
  • Figure US20110165106A1-20110707-C00004
  • wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, R2 is H or methyl, and M is H, sodium or potassium. Suitable examples are potassium cocoyl taurate, potassium methyl cocoyl taurate, sodium caproyl methyl taurate, sodium cocoyl taurate, sodium lauroyl taurate, sodium methyl cocoyl taurate, sodium methyl lauroyl taurate, sodium methyl myristoyl taurate, sodium methyl oleoyl taurate, sodium methyl palmitoyl taurate, and sodium methyl stearoyl taurate and mixtures thereof. Preferred are potassium cocoyl taurate, potassium methyl cocoyl taurate, sodium caproyl methyl taurate, sodium cocoyl taurate, sodium lauroyl taurate, sodium methyl cocoyl taurate and sodium methyl lauroyl taurate and mixtures thereof. More preferred are potassium cocoyl taurate, potassium methyl cocoyl taurate, sodium cocoyl taurate, sodium lauroyl taurate, sodium methyl cocoyl taurate and sodium methyl lauroyl taurate and mixtures thereof.
  • Suitable glutamate surfactants are according to the general formula
  • Figure US20110165106A1-20110707-C00005
  • wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is independent from each other H, sodium or potassium. Suitable examples are dipotassium capryloyl glutamate, dipotassium undecylenoyl glutamate, disodium capryloyl glutamate, disodium cocoyl glutamate, disodium lauroyl glutamate, disodium stearoyl glutamate, disodium undecylenoyl glutamate, potassium capryloyl glutamate, potassium cocoyl glutamate, potassium lauroyl glutamate, potassium myristoyl glutamate, potassium stearoyl glutamate, potassium undecylenoyl glutamate, sodium capryloyl glutamate, sodium cocoyl glutamate, sodium lauroyl glutamate, sodium myristoyl glutamate, sodium olivoyl glutamate, sodium palmitoyl glutamate, sodium stearoyl glutamate, and sodium undecylenoyl glutamate and mixtures thereof. Preferred are disodium capryloyl glutamate, disodium cocoyl glutamate, disodium lauroyl glutamate, potassium capryloyl glutamate, potassium cocoyl glutamate, potassium lauroyl glutamate, potassium myristoyl glutamate, sodium capryloyl glutamate, sodium cocoyl glutamate, sodium lauroyl glutamate, and sodium myristoyl glutamate and mixtures thereof. More preferred are disodium capryloyl glutamate, disodium cocoyl glutamate, disodium lauroyl glutamate, potassium capryloyl glutamate, potassium cocoyl glutamate, potassium lauroyl glutamate, sodium capryloyl glutamate, sodium cocoyl glutamate, and sodium lauroyl glutamate and mixtures thereof.
  • Suitable alanine or alaninate surfactants are according to the general formula
  • Figure US20110165106A1-20110707-C00006
  • wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, R2 is H or methyl and M is H, sodium or potassium. Suitable examples are cocoyl methyl β-alanine, lauroyl β-alanine, lauroyl methyl β-alanine, myristoyl β-alanine, potassium lauroyl methyl β-alanine, sodium cocoyl alaninate, sodium cocoyl methyl β-alanine and sodium myristoyl methyl β-alanine and mixtures thereof.
  • Suitable glycine surfactants are according to the general formula
  • Figure US20110165106A1-20110707-C00007
  • wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is H, sodium or potassium. Suitable examples are palmitoyl glycine, sodium lauroyl glycine, sodium cocoyl glycine, sodium myristoyl glycine, potassium lauroyl glycine, and potassium cocoyl glycine and mixtures thereof.
  • Suitable sarcosinate surfactants are according to the general formula
  • Figure US20110165106A1-20110707-C00008
  • wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is H, sodium or potassium. Suitable examples are potassium lauroyl sarcosinate, potassium cocoyl sarcosinate, sodium cocoyl sarcosinate, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, and sodium palmitoyl sarcosinate and mixtures thereof. Preferred are potassium lauroyl sarcosinate, potassium cocoyl sarcosinate, sodium cocoyl sarcosinate, and sodium lauroyl sarcosinate and mixtures thereof. More preferred are sodium cocoyl sarcosinate, and sodium lauroyl sarcosinate and mixtures thereof.
  • Suitable aspartate surfactants are according to the general formula
  • Figure US20110165106A1-20110707-C00009
  • wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is independent from each other H, sodium or potassium. Suitable examples are sodium lauroyl aspartate, sodium myristoyl aspartate, sodium cocoyl aspartate, sodium caproyl aspartate, disodium lauroyl aspartate, disodium myristoyl aspartate, disodium cocoyl aspartate, disodium caproyl aspartate, potassium lauroyl aspartate, potassium myristoyl aspartate, potassium cocoyl aspartate, potassium caproyl aspartate, dipotassium lauroyl aspartate, dipotassium myristoyl aspartate, dipotassium cocoyl aspartate, and dipotassium caproyl aspartate and mixtures thereof. Preferred are sodium lauroyl aspartate, sodium myristoyl aspartate, sodium cocoyl aspartate, and sodium caproyl aspartate and mixtures thereof.
  • It should be noted that compositions of the present invention can also comprise mixture of several type of amino acid surfactants such as mixture of glutamate and taurate surfactants, or mixture of taurate, glutamate and sarcosinate surfactants etc.
  • Cleansing compositions of the present invention comprise at least one anionic surfactant at a concentration range of 1 to 25%, preferably 2 to 20% and more preferably 2.5 to 20%, and most preferably 5 to 15% by weight, calculated to the total composition.
  • Within the scope of the present invention, with the term anionic surfactant it is meant any anionic surfactant other than amino acid surfactants.
  • In principal any anionic surfactant is suitable within the meaning of the present invention. As mentioned above with the term anionic surfactant any anionic surfactants are meant other than amino acid surfactants. Nonlimiting examples are anionic surfactants of the sulfate, sulfonate, carboxylate and alkyl phosphate type, especially, of course, those customarily used in shampoo compositions, for example, the known C10-C18-alkyl sulfates, and in particular the respective ether sulfates, for example, C12-C14-alkyl ether sulfate, lauryl ether sulfate, especially with 1 to 4 ethylene oxide groups in the molecule, monoglyceride (ether) sulfates, fatty acid amide sulfates obtained by ethoxylation and subsequent sulfatation of fatty acid alkanolamides, and the alkali salts thereof, as well as the salts of long-chain mono- and dialkyl phosphates constituting mild, skin-compatible detergents.
  • Additional anionic surfactants useful within the scope of the invention are α-olefin sulfonates or the salts thereof, and in particular alkali salts of sulfosuccinic acid semiesters, for example, the disodium salt of monooctyl sulfosuccinate and alkali salts of long-chain monoalkyl ethoxysulfosuccinates.
  • Suitable surfactants of the carboxylate type are alkyl polyether carboxylic acids and the salts thereof of the formula

  • R7—(C2H4O)n—O—CH2COOX,
  • wherein R7 is a C8-C20-alkyl group, preferably a C12-C14-alkyl group, n is a number from 1 to 20, preferably 2 to 17, and X is H or preferably a cation of the group sodium, potassium, magnesium and ammonium, which can optionally be hydroxyalkyl-substituted, as well as alkyl amido polyether carboxylic acids of the general formula
  • Figure US20110165106A1-20110707-C00010
  • wherein R and X have the above meanings, and n is in particular a number from 1 to 10, preferably 2.5 to 5.
  • Such products have been known for some time and are on the market, for example, under the trade name “AKYPO®” and “AKYPO-SOFT®”.
  • Also useful are C8-C20-acyl isethionates, alone or in admixture with other anionic surfactants, as well as sulfofatty acids and the esters thereof.
  • It is also possible to use mixtures of several anionic surfactants, for example an ether sulfate and a polyether carboxylic acid or alkyl amidoether carboxylic acid.
  • The most preferred anionic surfactants within the meaning of the present invention are those of alkyl ether sulphates such as lauryl ether sulphate sodium salt.
  • In a preferred embodiment of the present invention, cleansing composition of the present invention comprises at least one anionic surfactant as mentioned above and at least one nonionic surfactant. Nonionic surfactants are suitable at a concentration of 1% to 15%, in particular from 1% to 10% by weight, calculated to the total composition.
  • Nonionic surfactants especially suited in the cleansing compositions according to the invention are alkyl polyglucosides of the general formula

  • R8—O—(R9O)n—Zx,
  • wherein R8 is an alkyl group with 8 to 18 carbon atoms, R9 is an ethylene or propylene group, Z is a saccharide group with 5 to 6 carbon atoms, n is a number from 0 to 10 and x is a number between 1 and 5.
  • These alkyl polyglucosides are known in particular as excellent skin-compatible, foam improving agents in liquid detergents and body cleansing compositions. Mixtures of anionic surfactants and alkyl polyglucosides as well as the use thereof in liquid body cleansing compositions are already known, for example, from EP-A 70 074. The alkyl polyglucosides disclosed therein are basically also suited within the scope of the present invention; as well as the mixtures of sulfosuccinates and alkyl polyglucosides disclosed in EP-A 358 216.
  • Further nonionic surfactants are, suitable for the cleansing compositions of the present invention, long-chain fatty acid dialkanolamides, such as coco fatty acid diethanolamide and myristic fatty acid diethanolamide.
  • Further additionally useful nonionic surfactants are, for example, the various sorbitan esters, such as polyethylene glycol sorbitan stearic acid ester, fatty acid polyglycol esters or poly-condensates of ethyleneoxide and propyleneoxide, as they are on the market, for example, under the trade name “Pluronics®”, as well as fatty alcohol ethoxylates.
  • Further suitable nonionic surfactants are amineoxides. Such amineoxides are state of the art, for example C12-C18-alkyl dimethyl amineoxides such as lauryl dimethyl amineoxide, C12-C18-alkyl amidopropyl or -ethyl amineoxides, C12-C18-alkyl di(hydroxyethyl) or (hydroxypropyl) amineoxides, or also amineoxides with ethyleneoxide and/or propyleneoxide groups in the alkyl chain. Such amineoxides are on the market, for example, under the trade names “Ammonyx®”, “Aromox®” or “Genaminox®”.
  • Further nonionic surfactants useful in the compositions according to invention are C10-C22-fatty alcohol ethoxylate. Especially suited are C10-C22-fatty alcohol ethers, the alkyl polyglycol ethers known by the generic terms “Laureth”, “Myristeth”, “Oleth”, “Ceteth”, “Deceth”, “Steareth” and “Ceteareth” according to the CTFA nomenclature, including addition of the number of ethylene oxide molecules, e.g., “Laureth-16”:
  • The average degree of ethoxylation thereby ranges between about 2.5 and about 25, preferably about 10 and about 20.
  • The most preferred non-ionic surfactants are alkyl polyglucosides such as decyl, cocoyl polyglucoside and ethoxylated fatty alcohols such as laureth-16.
  • In a further preferred embodiment of the present invention, cleansing composition of the present invention comprises at least one anionic, at least one nonionic surfactant and at least one amphoteric or zwitterionic surfactant.
  • Amphoteric or zwitterionic surfactants, are present at a concentration of 0.5% to about 15%, preferably 1% to about 10%, by weight, calculated to the total composition. It has especially been found out that addition of zwitterionic or amphoteric surfactants enhances foam feeling in terms of creaminess, foam volume and as well as skin compatibility are also improved. For achieving milder formulations anionic surfactant, especially of sulphate types, to amphoteric surfactant ratio should be in the range of 10:1 to 1:1, preferably 5:1 to 1:1.
  • Useful as such are in particular the various known betaines such as alkyl betaines, fatty acid amidoalkyl betaines and sulfobetaines, for example, lauryl hydroxysulfobetaine; long-chain alkyl amino acids, such as cocoaminoacetate, cocoaminopropionate and sodium cocoamphopropionate and -acetate have also proven suitable.
  • In detail, suitable betaine surfactants are of general structure
  • Figure US20110165106A1-20110707-C00011
  • wherein R10 is a C8-C18-alkyl group and n is 1 to 3;
  • sulfobetaines of the structure
  • Figure US20110165106A1-20110707-C00012
  • wherein R10 and n are same as above;
  • and amidoalkyl betaines of the structure
  • Figure US20110165106A1-20110707-C00013
  • wherein R10 and n are same as above.
  • The most preferred amphoteric surfactants are alkyl betaines such as lauryl betaine and alkyl amido betaines such as cocamidopropyl betaine.
  • In a further preferred form of the present invention, cleansing composition comprises at least one anionic surfactant especially of alkyl ether sulphate type, at least one amphoteric surfactant especially alkyl amido alkyl betaine type and at least one non-ionic surfactant especially an alkyl polyglucoside type in the above mentioned concentration ranges.
  • Aqueous cleansing composition of the present invention comprises at least one glyceryl ether of the following formula
  • Figure US20110165106A1-20110707-C00014
  • wherein R4 is straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms, preferably 4 to 18 and more preferably 4 to 12 C atoms and R5 is H, or straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms, 4 to 18 and more preferably 4 to 12 C atoms and most preferably R5 is H, at a concentration of 0.1 to 15%, preferably 0.1 to 10% and more preferably 0.25 to 7.5% and most preferably 0.5 to 5% by weight calculated to total composition.
  • Suitable unlimited examples are glyceryl butyl ether, glyceryl isobutyl ether, glyceryl tert-butyl ether, glyceryl pentyl ether, glyceryl isopentyl ether, glyceryl hexyl ether, glyceryl isohexyl ether, glyceryl heptyl ether, glyceryl octyl ether, glyceryl ethylhexyl ether, glyceryl nonyl ether, glyceryl decyl ether, glyceryl isodecyl ether, glyceryl lauryl ether, glyceryl myristyl ether, glyceryl palmityl ether, glyceryl stearyl ether and glyceryl behenyl ether and their mixtures. Most preferred are glyceryl butyl ether, glyceryl isobutyl ether, glyceryl tert-butyl ether, glyceryl pentyl ether, glyceryl isopentyl ether, glyceryl hexyl ether, glyceryl isohexyl ether, glyceryl heptyl ether, glyceryl octyl ether, glyceryl ethylhexyl ether, glyceryl nonyl ether, glyceryl decyl ether, glyceryl isodecyl ether are glyceryl lauryl ether, and their mixtures.
  • It should be noted that within the disclosure of the present description, glyceryl decyl ether is used as synonym of decyl glycerine. For the other compounds in the above paragraph the same is valid.
  • Aqueous cleansing composition of the present invention comprise at least one fatty alcohol of the following formula

  • R6—OH
  • wherein R6 is straight or branched, saturated or unsaturated alkyl chain with 8 to 24, preferably 10 to 22, more preferably 12 to 18 and most preferably 12 to 16C atoms at a concentration of 0.1 to 5%, preferably 0.1 to 4% and more preferably 0.25 to 3% and most preferably 0.5 to 2.5% by weight calculated to total composition.
  • Suitable non-limiting preferred examples are decyl alcohol, myristyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, and arachidyl alcohol and their mixtures. More preferred are decyl alcohol, myristyl alcohol, lauryl alcohol, cetyl alcohol, and stearyl alcohol. Most preferred are decyl alcohol, myristyl alcohol and lauryl alcohol, and their mixtures.
  • In a further preferred embodiment, cleansing composition of the present invention comprises hair-conditioning agents. Conditioning agents can be selected from oily substances, non-ionic substances, cationic amphiphilic ingredients, cationic polymers or their mixtures.
  • Oily substances are selected from such as silicone oils, either volatile or non-volatile, natural and synthetic oils. Among silicone oils those can be added to the compositions include dimethicone, dimethiconol, polydimethylsiloxane, DC fluid ranges from Dow Corning, arylated silicones such as phenyl trimethicone or any other silicone with up to 5 aryl, preferably phenyl, group in its molecule such as trimethyl pentaphenyl trisiloxane, natural oils such as olive oil, almond oil, avocado oil, wheatgerm oil, ricinus oil and the synthetic oils, such as mineral oil, isopropyl myristate, palmitate, stearate and isostearate, oleyl oleate, isocetyl stearate, hexyl laurate, dibutyl adipate, dioctyl adipate, myristyl myristate and oleyl erucate.
  • Non-ionic conditioning agents can be polyols such as glycerin, glycol and derivatives, polyethyleneglycoles known with trade names Carbowax PEG from Union Carbide and Polyox WSR range from Amerchol, polyglycerin, polyethyleneglycol mono or di fatty acid esters having general formula

  • R11CO(OCH2CH2)nOH or

  • R11CO(OCH2CH2)nOOCR12
  • where R11 and R12 are independent from each other saturated, unsaturated or branched or non-branched alkyl chain with 7 to 21 C atoms and n is typically 2-100.
  • In one of the preferred form of the present invention, cleansing compositions comprise at least one cationic polymer as conditioning agent. Suitable cationic polymers are those of best known with their CTFA category name Polyquaternium. Typical examples of those are Polyquaternium 1, Polyquaternium 2, Polyquaternium 4, Polyquaternium 5, Polyquaternium 6, Polyquaternium 7, Polyquaternium 8, Polyquaternium 9, Polyquaternium 10, Polyquaternium 11, Polyquaternium 12, Polyquaternium 13, Polyquaternium 14, Polyquaternium 15, Polyquaternium 16, Polyquaternium 17, Polyquaternium 18, Polyquaternium 19, Polyquaternium 20, Polyquaternium 22, Polyquaternium 24, Polyquaternium 27, Polyquaternium 28, Polyquaternium 29, Polyquaternium 30, Polyquaternium 31, Polyquaternium 32, Polyquaternium 33, Polyquaternium 34, Polyquaternium 35 and Polyquaternium 36, Polyquaternium-37, Polyquaternium 39, Polyquaternium 42, Polyquaternium 43, Polyquaternium 44, Polyquaternium 45, Polyquaternium 46, Polyquaternium 47, Polyquaternium 48, Polyquaternium-49, Polyquaternium 50, Polyquaternium 51, Polyquaternium 52, Polyquaternium 53, Polyquaternium 54, Polyquaternium 55, Polyquaternium 56, Polyquaternium 57, Polyquaternium 58, Polyquaternium 59, Polyquaternium 60, Polyquaternium 61, Polyquaternium 62, Polyquaternium 63, Polyquaternium 64, Polyquaternium 65, Polyquaternium 66, Polyquaternium 67, Polyquaternium 68, Polyquaternium 69, Polyquaternium-70, Polyquaternium 71, Polyquaternium 72, Polyquaternium 73, Polyquaternium 74, Polyquaternium 75, Polyquaternium 76, Polyquaternium 77, Polyquaternium 78, Polyquaternium-79, Polyquaternium 80, Polyquaternium 81, Polyquaternium 82, Polyquaternium 83, Polyquaternium 84, Polyquaternium 85, Polyquaternium 86 and Polyquaternium 87.
  • As well those polymers known with their CTFA category name Quaternium are suitable. Those are for example Quaternium-8, Quaternium-14, Quaternium-15, Quaternium-18, Quaternium-22, Quaternium-24, Quaternium-26, Quaternium-27, Quaternium-30, Quaternium-33, Quaternium-53, Quaternium-60, Quaternium-61, Quaternium-72, Quaternium-78, Quaternium-80, Quaternium-81, Quaternium-82, Quaternium-83 and Quaternium-84.
  • It has further been found out that especially those of cationic cellulose type polymers known as Polymer JR type from Amerchol such as Polyquaternium 10 or cationic galactomannans such as cationic guar gum known with trade name Jaguar from Rhône-Poulenc which are chemically for example Guar hydroxypropyl trimonium chloride and cationic tara gum an its derivatives known with INCI name Caesalpinia spinosa hydroxypropyltrimonium chloride, are preferred ones. Furthermore, chitosan and chitin can also be included in the compositions as cationic natural polymers. In this context reference is also made to the cationic polymers disclosed in DE 25 21 960, 28 11 010, 30 44 738 and 32 17 059, as well as to the products described in EP-A 337 354 on pages 3 to 7. It is also possible to use mixtures of various cationic polymers.
  • The most preferred cationic polymers are those of cationic cellulose derivatives, cationic guar gum derivatives, cationic Caesalpinia spinosa gum derivatives, polyquaternium 6, polyquaternium 7, polyquaternium 67 and polyquaternium 70.
  • The cationic polymers also include the quaternized products of graft polymers from organopolysiloxanes and polyethyl oxazolines described in EP-A 524 612 and EP-A 640 643.
  • Although less preferred, cleansing compositions of the present invention may comprise additionally one or more cationic surfactant(s) as conditioner presented with the general formula
  • Figure US20110165106A1-20110707-C00015
  • where R13 is a saturated or unsaturated, branched or non-branched alkyl chain with 8-24 C atoms or

  • R17CONH(CH2)n
  • where R17 is saturated or unsaturated, branched or non-branched alkyl chain with 7-21 C atoms and n has value of 1-4, or

  • R18COO(CH2)n
  • where R18 is saturated or unsaturated, branched or non-branched alkyl chain with 7-21 C atoms and n has value of 1-4, and
  • R14 is hydrogen or unsaturated or saturated, branched or non-branched alkyl chain with 1-24 C atoms or

  • R17CONH(CH2)n

  • or

  • R18COO(CH2)n
  • where R17, R18 and n are same as above.
  • R15 and R16 are hydrogen or lower alkyl chain with 1 to 4 carbon atoms which may be substituted with one or more hydroxyl groups, and X is anion such as chloride, bromide, methosulfate.
  • Typical examples of those ingredients are cetyl trimethly ammonium chloride, stear trimonium chloride, behentrimonium chloride, stearamidopropyl trimonuim chloride, dioleoylethyl dimethyl ammonium methosulfate, dioleoylethyl hydroxyethylmonium methosulfate.
  • The compositions according to the invention may also comprise further conditioning substances such as protein hydrolyzates and polypeptides, e.g., keratin hydrolyzates, collagen hydrolyzates of the type “Nutrilan®” or elastin hydrolyzates, as well as also in particular plant protein hydrolyzates, optionally, cationized protein hydrolyzates, e.g., “Gluadin®”.
  • Typical concentration range for any of those conditioners of cationic polymers, silicone oil and derivatives and cationic surfactants is in the range of 0.01 to 5% by weight, preferably 0.01 to 3.5% by weight, more preferably 0.05 to 2.5% and most preferably 0.1 to 1.5% by weight calculated to the total composition. Most preferred conditioning agents are cationic polymers.
  • In another preferred form of the invention, aqueous cleansing composition comprises at least one organic solvent such as ethanol, propanol, isopropanol, benzyl alcohol, benzyloxyethanol, ethoxydiglycol, alkylene carbonates such as ethylene carbonate and propylene carbonate, phenoxyethanol, butanol, isobutanol, cyclohexane, cyclohexanol, hexyleneglycol, ethylenecarbonate, propyleneglycol, polypropyleneglycols, ethyleneglycol monoethylether, ethylene glycol monobutyl ether, ethylene glycol monophenyl ether, 1-phenylethylalcohol, 2-phenylethylalcohol, o-methoxyphenol. The most preferred ones are benzyl alcohol and polypropylene glycols. Total concentration of organic solvents in the shampoo composition should not exceed 5% by weight, preferably in the range of 0.1 to 3%, more preferably 0.5 to 2.5% by weight calculated to total composition.
  • Further conditioning additives are hair conditioning and/or styling polymers. These may be nonionic polymers, preferably alcohol- and/or water-soluble vinyl pyrrolidone polymers, such as a vinyl pyrrolidone homopolymers or copolymers, in particular with vinyl acetate. Useful vinyl pyrrolidone polymers are, e.g., those known by the trade name “Luviskol®”, for example, the homopolymers “Luviskol® K 30, K 60 and K 90”, as well as the water-or alcohol-soluble copolymers from vinyl pyrrolidone and vinyl acetate, distributed by BASF AG under the trade name “Luviskol® VA 55 respectively VA 64”. Further possible nonionic polymers are vinyl pyrrolidone/vinyl acetate/vinyl propionate copolymers such as “Luviskol® VAP 343”, vinyl pyrrolidone/(meth)acrylic acid ester copolymers, as well as chitosan derivatives.
  • Amphoteric polymers are found to be useful in conditioning shampoo composition of the present invention. They are incorporated alone or in admixture with at least one additional cationic, nonionic or anionic polymer, particularly copolymers of N-octyl acrylamide, (meth)acrylic acid and tert.-butyl aminoethyl methacrylate of the type “Amphomer®”; copolymers from methacryl oylethyl betaine and alkyl methacrylates of the type “Yukaformer®”, e.g., the butyl methacrylate copolymer “Yukaformer® Am75”; copolymers from monomers containing carboxyl groups and sulfonic groups, e.g., (meth)acrylic acid and itaconic acid, with monomers such as mono- or dialkyl amino alkyl(meth)acrylates or mono- or dialkyl aminoalkyl (meth)acrylamides containing basic groups, in particular amino groups; copolymers from N-octyl acryl-amide, methyl methacrylate, hydroxypropyl methacrylate, N-tert.-butyl aminoethyl-methacrylate and acrylic acid, as well as the copolymers known from U.S. Pat. No. 3,927,199, are applicable.
  • Cleansing composition of the present invention are preferably pearly. Pearl-shiny appearance is achieved with those dispersed in cleansing conditioning compositions in crystalline form, i.e. so called pearl-shine or pearlizing agents. The preferred once are PEG-3 distearate and ethylene glycol distearate. The concentration of those can typically be from 0.1 to 3%, preferably 0.5 to 2% by weight, calculated to the total composition. These compounds are preferably added to the compositions in admixture with anionic, nonionic and/or amphoteric surfactants. Such kinds of mixtures are available commercially.
  • Solubilizers may be added to the compositions especially when oily substances are chosen as conditioning agents and fragrance oils with highly lipophilic properties. Typical solubilizers may be hydrogenated castor oil known with the trade mark Cremophor CO series from BASF. It should be noted that as well the surfactant mixture can be a good solubilizer for fragrance oils. Typical concentration of the solubilizers can be in the range of 0.01-2% by weight, preferably 0.1-1% by weight, calculated to total composition.
  • The cleansing composition may contain active ingredients selected from UV filters, moisturisers, sequestering agents, and natural ingredients.
  • The moisturizing agents are selected from panthenol, polyols, such as glycerol, polyethylene glycols with molecular weight 200 to 20,000. The moisturizing ingredients can be included in the conditioner compositions at a concentration range of 0.01-2.5% by weight calculated to the total composition.
  • The sequestering agents are preferably selected from polycarboxy acids. The preferred one is ethylene diamine tetraacetic acid, EDTA. Typical useful concentration range for sequestering agents is of 0.01-2.5% by weight calculated to the total composition.
  • The UV filters are that oil and water soluble ones for the purpose of protecting hair and hair colour. In other words, anionic and non-ionic, oily, UV filters are suitably used in the compositions of the present invention. Suitable UV-absorbing substances is are: 4-Aminobenzoic acid and the esters and salts thereof, 2-phenyl benzimidazole-5-sulfonic acid and the alkali and amine salts thereof, 4-dimethyl aminobenzoic acid and the esters and salts thereof, cinnamic acid and the esters and salts thereof, 4-methoxycinnamic acid and the esters and salts thereof, salicylic acid and the esters and salts thereof, 2,4-dihydroxybenzophenone, 2,2′,4,4′-tetrahydroxy-benzophenone, 2-hydroxy-4-methoxybenzophenone and its 5-sulfonic acid or the sodium salt thereof, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2-hydroxy-5-chlorobenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxy-5,5′-disulfobenzo-phenone or the sodium salt thereof, 2-hydroxy-4-octyloxybenzophenone, 2-hydroxy-4-methoxy-4′-methylbenzophenone, 3-benzyl-idenecampher, 3-(4′-sulfo)-benzyl-idenebornane-2-one and the salts thereof, 3-(4′-methyl benzylidene)-DL-campher, and/or polysilicone-15. The amount of the UV-absorber ranges typically from about 0.01% to 2.5%, more preferably from 0.05% to 1% by weight, calculated to the total composition.
  • Natural plant extracts are incorporated usually in an amount of about 0.01% to about 10%, preferably 0.05% to 7.5%, in particular 0.1% to 5% by weight, calculated as dry residue thereof to the total composition. Suitable aqueous (e.g. steam-distilled) alcoholic or hydro-alcoholic plant extracts known per se are in particular extracts from leaves, fruits, blossoms, roots, rinds or stems of aloe, pineapple, artichoke, arnica, avocado, valerian, bamboo, henbane, birch, stinging nettle, echinacea, ivy, wild angelica, gentian, ferns, pine needles, silver weed, ginseng, broom, oat, rose hip, hamamelis, hay flowers, elderberry, hop, coltsfoot, currants, chamomile, carrots, chestnuts, clover, burr root, coconut, cornflower, lime blossom, lily of the valley, marine algae, balm, mistletoe, passion flower, ratanhia, marigold, rosemary, horse chestnut, pink hawthorn, sage, horsetail, yarrow, primrose, nettle, thyme, walnut, wine leaves, white hawthorn, etc. Suitable trade products are, for example, various “Extrapone®” products, and “HerbasoI®”. Extracts and the preparation thereof are also described in “Hagers Handbuch der pharmazeutischen Praxis”, 4th Ed.
  • Compositions of the present invention may comprise further at least one compound according to the formula
  • Figure US20110165106A1-20110707-C00016
  • where n is a number from 1 to 10.
  • The compounds of the above formula are known as Ubiquinone, and also are known as Coenzyme. It should be noted that the compositions of the present invention can certainly comprise more than one ubichinone. Preferred ubichinones are the ones where n is a number between 6 and 10 and especially preferred is Ubichinone 50 where n is 10, also known as Coenzyme Q10. Concentration ubichinone of the above formula in the compositions is from 0.0001 to 1%, preferably from 0.0002 to 0.75%, more preferably from 0.0002 to 0.5% and most preferably from 0.0005 to 0.5% by weight, calculated to total composition.
  • Cleansing compositions of the present invention can also comprise synthetic mica as a further shine enhancer.
  • Suitable metal oxide or oxides for coating synthetic mica are titanium dioxide, chromium oxide, ferric oxide or mixtures thereof. In the present invention the preferred is synthetic mice coated with titanium dioxide. Such materials are commercially available from Sun Chemical Corporation and known with their INCI names Synthetic Fluorphologopite.
  • The particle size distribution of synthetic mica coated with a metal oxide or oxides is in the range of 1 to 750 μm, preferably 1 to 250 μm, more preferably 1 to 100 μm and most preferably 20 to 95 μm. The particle sizes referred are relating to the volume particle size distribution meaning that particles found in the coated synthetic mica having volume particle size in the given ranges.
  • Concentration of synthetic mica coated with at least metal oxide or oxides is from 0.001 to 10%, preferably 0.05 to 7.5%, more preferably 0.1 to 5% and most preferably 0.20 to 2.5% by weight calculated to total composition.
  • Further in a preferred embodiment of the present invention, compositions comprise at least one direct dye. Suitable direct dyes are of cationic, anionic and neutral nitro dyes. It should be noted that they can also be used in combination with each other. In other words a composition according to present invention can comprise an anionic and a cationic dye as well as an anionic and a nitro dye or a cationic and a nitro dye. Certainly the combination of all three dyestuff categories is also possible.
  • Any cationic direct dye is in principal suitable for the compositions. Examples are Basic Blue 6, Basic Blue 7, Basic Blue 9, Basic Blue 26, Basic Blue 41, Basic Blue 99, Basic Brown 4, Basic Brown 16, Basic Brown 17, Natural Brown 7, Basic Green 1, Basic Orange 31, Basic Red 2, Basic Red 12 Basic Red 22, Basic Red 51, Basic Red 76, Basic Violet 1, Basic Violet 2, Basic Violet 3, Basic Violet 10, Basic Violet 14, Basic Yellow 57 and Basic Yellow 87, and mixtures thereof.
  • Any anionic dye is in principal suitable for the compositions. Suitable examples are such as Acid Black 1, Acid Blue 1, Acid Blue 3, Food Blue 5, Acid Blue 7, Acid Blue 9, Acid Blue 74, Acid Orange 3, Acid Orange 6, Acid Orange 7, Acid Orange 10, Acid Red 1, Acid Red 14, Acid Red 18, Acid Red 27, Acid Red 50, Acid Red 52, Acid Red 73, Acid Red 87, Acid Red 88, Acid Red 92, Acid Red 155, Acid Red 180, Acid Violet 9, Acid Violet 43, Acid Violet 49, Acid Yellow 1, Acid Yellow 23, Acid Yellow 3, Food Yellow No. 8, D&C Brown No. 1, D&C Green No. 5, D&C Green No. 8, D&C Orange No. 4, D&C Orange No. 10, D&C Orange No. 11, D&C Red No. 21, D&C Red No. 27, D&C Red No. 33, D&C Violet 2, D&C Yellow No. 7, D&C Yellow No. 8, D&C Yellow No. 10, FD&C Red 2, FD&C Red 40, FD&C Red No. 4, FD&C Yellow No. 6, FD&C Blue 1, Food Black 1, Food Black 2, Disperse Black 9 and Disperse Violet 1 and their alkali metal salts such as sodium, potassium, and mixtures thereof.
  • Among those, the preferred anionic dyestuffs are Acid Red 52, Acid Violet 2, Acid Red 33, Acid Orange 4, Acid Red 27 and Acid Yellow 10 and their salts, and mixtures thereof. The most preferred anionic dyes are Acid Red 52, Acid Violet 2, Acid Red 33, Acid Orange 4 and Acid Yellow 10, and their salts, and mixtures thereof.
  • Neutral dyes, so called nitro dyes for shading purposes are also optionally contained in the compositions. Suitable ones are HC Blue No.2, HC Blue No.4, HC Blue No.5, HC Blue No.6, HC Blue No.7, HC Blue No.8, HC Blue No.9, HC Blue No.10, HC Blue No.11, HC Blue No.12, HC Blue No.13, HC Brown No.1, HC Brown No.2, HC Green No.1, HC Orange No.1, HC Orange No.2, HC Orange No.3, HC Orange No.5, HC Red BN, HC Red No.1, HC Red No.3, HC Red No.7, HC Red No.8, HC Red No.9, HC Red No.10, HC Red No.11, HC Red No.13, HC Red No.54, HC Red No.14, HC Violet BS, HC Violet No.1, HC Violet No.2, HC Yellow No.2, HC Yellow No.4, HC Yellow No.5, HC Yellow No.6, HC Yellow No.7, HC Yellow No.8, HC Yellow No.9, HC Yellow No.10, HC Yellow No.11, HC Yellow No.12, HC Yellow No.13, HC Yellow No.14, HC Yellow No.15, 2-Amino-6-chloro-4-nitrophenol, picramic acid, 1,2-Diamino-4-nitrobenzol, 1,4-Diamino-2-nitrobenzol, 3-Nitro-4-aminophenol, 1-Hydroxy-2-amino-3-nitrobenzol and 2-hydroxyethylpicramic acid, and mixtures thereof.
  • Concentration of one or more direct dyes in total is in the range of 0.001 to 5% by weight, preferably 0.01 to 4% more preferably 0.05 to 3% and most preferably 0.1 to 2.5% by weight calculated to total composition. The most preferred among the direct dyes is cationic direct dyes.
  • It is self-understood that the shampoos according to the invention may comprise other substances customarily used in such compositions such as preservatives, fragrances.
  • The pH of the compositions according to the present invention is suitably between 2 and 8.0, preferably in the range of 2.5 to 7.0, more preferably 3 to 6.5 and most preferably 4 to 5.5 measured at ambient temperature with a suitable pH meter.
  • pH of the compositions is adjusted with acidic and alkaline compounds. Acidic compounds can be inorganic and organic acid or their mixtures. Nonlimiting suitable examples are citric acid, lactic acid, glycolic acid, hydroxyacrylic acid, glyceric acid, malic acid and tartaric acid and of the dicarboxylic acids are malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid and phtalic acid. Alkaline compounds such as sodium hydroxide can be used to adjust the pH of the compositions.
  • Aqueous cleansing composition of the present invention preferably comprises one or more thickeners. Suitable ones are ethoxylated polyglyceryl esters with total ethoxy units in the range of 50 to 200 and fatty acyl chain length of 8 to 22 C atoms such as PEG-80 glyceryl cocoate, PEG-90 glyceryl isostearate, PEG-120 glyceryl stearate, PEG-200 glyceryl stearate, PEG-80 glyceryl tallowate, PEG-82 glyceryl tallowate, PEG-130 glyceryl tallowate, and PEG-200 glyceryl tallowate, gylceryl oleate/cocoate and inorganic salt in particular sodium chloride when especially composition comprise alkyl ether sulphate type of surfactants.
  • Cleansing compositions of the present invention preferably has a viscosity in the range of 500 to 20,000 mPa·s, more preferably 1,000 to 15,000 mPa·s and most preferably 1,500 to 10,000 mPa·s measured at 20° C. with a Brookfield viscosimetre using fro example Spindle 5 at appropriate rotation speed.
  • The following examples are to illustrate the invention, but not to limit. The products according to the invention are prepared by mixing the individual components in water, whereby it is also possible to use pre-mixtures of various ingredients.
  • EXAMPLE 1
  • TABLE I
    Comparative aqueous cleansing compositions
    % by weight
    A B C D E
    Sodium laureth sulfate 12 12 12 12 12
    Cocamidopropyl betaine 3 3 3 3 3
    Coco glucoside 1.5 1.5 1.5 1.5 1.5
    Sodium lauroyl glutamate 1 0.5
    Ethylhexyl glycerin 1 0.5
    Myristly alcohol 1 1
    Guar hydroxypropyl trimonium 0.5 0.5 0.5 0.5 0.5
    chloride
    Bis(C13-15 Alcoxy PG- 0.4 0.4 0.4 0.4 0.4
    Amodimethocne
    Citric acid q.s to pH 5.0
    Preservative, fragrance q.s.
    Water q.s. to 100
  • Shampoo composition E is according to the invention and A to D represent comparative compositions.
  • Foam speed, foam stability and foam creaminess were measured as follows.
  • Foam speed: A shampoo solution was prepared in tap water at a concentration of 20% by weight. The solution was mixed with a propeller at 100 rpm for 2 min and left for 4 min without mixing. Afterwards foam volume (ml) was measured in the same cylinder.
  • Foam stability: 35 g of the foam obtained with foam speed test was placed on a filter in a funnel and volume of liquid collected in a cylinder was measured after 30 min.
  • Foam creaminess: 10 volunteers were asked to judge creaminess by hand.
  • Results are presented in Table II.
  • TABLE II
    Results of the foam volume, foam speed and foam creaminess tests
    A B C D E
    Foam speed 310 360 380 320 440
    Foam volume 25 21 22.5 19.5 14
    Foam creaminess 0 0 1 9
  • From the above results, it was concluded that the inventive composition showed the highest foam volume, the highest foam speed and the foam was the creamiest. The effect is synergistic since sum of the effects of the individual components is less than the effect observed in combination.
  • EXAMPLE 2
  • % by weight
    Sodium lauryl ether sulphate 12.6
    Sodium lauroyl glutamate 1.5
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 0.5
    PEG-90 glyceryl isostearate 3.0
    Citric acid/sodium hydroxide q.s. to pH 5.5
    Preservative, fragrance q.s
    Water to 100
  • The above shampoo was judged to have rich and creamy foam in a monadic test by the volunteers. It was furthermore mentioned that it foams very quickly.
  • EXAMPLE 3
  • % by weight
    Sodium lauryl ether sulphate 9.0
    Cocyl glucoside 4.0
    Sodium lauroyl glutamate 2.0
    Ethylhexyl glycerine 0.8
    Lauryl alcohol 1.0
    Polyquaternium-7 1.0
    PEG-18 Glyceryl oleate/cocoate 1.0
    Citric acid/sodium hydroxide q.s. to pH 5.5
    Preservative, fragrance q.s
    Water to 100
  • The above composition has excellent creamy rich foam and conditions hair excellently in terms of compatibility and soft hair feeling.
  • EXAMPLE 4
  • % by weight
    Sodium lauryl ether sulfate 9.0
    Cocyl glucoside 3.0
    Cocoyl betaine 2.0
    Sodium lauroyl glutamate 2.0
    Ethylhexyl glycerine 1.5
    Lauryl alcohol 0.7
    Polyquaternium-10 0.5
    Dimethicone 0.5
    Ubiquinone 0.1
    Sodium chloride 1.2
    PPG-9 2.0
    Citric acid/sodium hydroxide q.s. to pH 5.0
    Preservative, fragrance q.s
    Water to 100
  • The above composition improves hair volume, gives hair more elasticity in addition to the excellent creamy foam and conditioning effect in terms of compatibility, shine and soft hair feeling.
  • EXAMPLE 5
  • % by weight
    Sodium lauryl ether sulphate 8.0
    Cocoyl polyglucoside 1.5
    Cocamidopropyl betaine 4.0
    Sodium cocoyl glutamate 2.0
    Decyl glycerine 1.0
    Decyl alcohol 1.0
    Polyquaternium-7 0.8
    Dimethicone 0.5
    PEG-160 sorbitan triisostearate 1.0
    PPG-9 1.2
    Basic red 51 0.1
    Citric acid/sodium hydroxide q.s. to pH 5.5
    Preservative, fragrance q.s
    Water to 100
  • The above composition gives hair a red shine, and additionally delivers excellent conditioning effect in terms of more elasticity, compatibility, shine and soft hair feeling in addition to the excellent creamy rich foam. The composition foams very quickly.
  • EXAMPLE 6
  • % by weight
    Sodium lauryl ether sulfate 9.0
    Laureth - 16 3.0
    Cocoyl betaine 2.0
    Sodium cocoyl glutamate 2.0
    Guarhydroxypropyltrimonium chloride 1.0
    Sodium chloride 1.0
    Heptyl glycerine 0.7
    Myristyl alcohol 0.5
    PPG-9 1.0
    Trimethyl pentaphenyl trisiloxane 0.3
    Basic yellow 87 0.08
    Basic red 76 0.001
    Citric acid/sodium hydroxide q.s. to pH 5.0
    Preservative, fragrance q.s
    Water to 100
  • Excellent conditioning effects were observed in terms of volume, compatibility, elasticity and manageably and additionally an excellent golden blonde shine was observed on light blond hair. Excellent foam quality in terms of speed, volume and creaminess was observed in a monadic test.
  • EXAMPLE 7
  • % by weight
    Sodium lauryl ether sulfate 9.0
    Cocyl glucoside 3.0
    Lauryl betaine 2.0
    Sodium cocoyl glutamate 2.0
    Guarhydroxypropyltrimonium chloride 1.0
    PEG-80 glyceryl oleate/cocoate 1.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    PPG-9 1.0
    Trimethyl pentaphenyl trisiloxane 0.3
    Basic red 51 0.1
    Basic orange 31 0.05
    Citric acid/sodium hydroxide q.s. to pH 5.0
    Preservative, fragrance q.s
    Water to 100
  • Excellent red shine were observed on medium blond hair, in addition to excellent foam characteristics in terms of speed, volume and creaminess in a monadic test.
  • EXAMPLE 8
  • % by weight
    Sodium lauryl ether sulfate 9.0
    Laureth -16 3.0
    Cocoyl betaine 2.0
    Sodium cocoyl glutamate 2.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Polyquaternium-10 1.0
    PEG-90 glyceryl isostearate 3.5
    PPG-9 0.7
    Carbopol Aqua CC 5.0
    Synthetic fluorphologopite* 0.5
    Citric acid/sodium hydroxide q.s. to pH 4.7
    Preservative, fragrance q.s
    Water to 100
    *Synthetic fluorphologopite used is commercially available from Sun Chemical Corporation under the trade name SunShine Glitter White with a particle size distribution in the range of 20 to 95 μm.
  • The above composition delivered excellent volume and shine to dark blonde fine hair. Foam characteristics were found to be excellent in terms of volume, speed and creaminess in a monadic test.
  • EXAMPLE 9
  • % by weight
    Sodium lauryl ether sulfate 10.0
    Cocoyl betaine 2.0
    Decyl glucoside 1.5
    Sodium lauroyl glutamate 4.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Quaternium 80 0.5
    Polyquaternium-7 0.2
    Sodium chloride 1.0
    PPG-9 1.7
    Citric acid/sodium hydroxide q.s. to pH 5.0
    Preservative, fragrance q.s
    Water to 100
  • Above shampoo was found to be excellent volume giving shampoo to fine hair in a monadic test in addition to the excellent foam characteristics as in the previous examples.
  • With the following examples similar results were found as in the previous examples in hair conditioning and foam characteristics.
  • EXAMPLE 10
  • % by weight
    Sodium lauryl ether sulphate 8.0
    Cocoyl polyglucoside 2.0
    Cocamidopropyl betaine 4.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Sodium cocoyl glutamate 2.0
    Trimethyl pentaphenyl trisiloxane 0.3
    Polyquaternium-7 1.0
    PEG-120 glyceryl stearate 3.0
    PPG-15 1.7
    Citric acid/sodium hydroxide q.s. to pH 5.2
    Preservative, fragrance q.s
    Water to 100
  • EXAMPLE 11
  • % by weight
    Sodium lauryl ether sulphate 8.0
    Cocoyl glucoside 5.0
    Cocamidopropyl betaine 4.0
    Sodium cocoyl glutamate 2.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Polyquaternium-7 1.0
    PEG-90 glyceryl isostearate 1.5
    PEG-30 glyceryl isostearate 1.5
    PPG-15 0.3
    PPG-9 0.8
    Citric acid/sodium hydroxide q.s. to pH 5.2
    Preservative, fragrance q.s
    Water to 100
  • EXAMPLE 12
  • % by weight
    Sodium lauryl ether sulphate 5.0
    Sodium lauryl ether carboxylate 3.0
    Laureth - 16 3.0
    Cocoyl betaine 2.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Sodium lauroyl glutamate 2.0
    Polyquaternium-6 0.5
    Dimethicone 0.5
    Ubiquinone 0.1
    PEG-18 Glyceryl oleate/cocoate 1.2
    PPG-9 0.8
    Citric acid/sodium hydroxide q.s. to pH 5.0
    Preservative, fragrance q.s
    Water to 100
  • EXAMPLE 13
  • % by weight
    Sodium lauryl ether sulphate 3.0
    Sodium lauryl ether carboxylate 6.0
    Cocoyl polyglucoside 3.0
    Cocoamphoacetate 4.0
    Sodium cocyl glutamate 2.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Cocoyl betaine 1.0
    Polyquaternium-7 0.8
    Dimethicone 0.5
    PEG-90 glyceryl isostearate 3.0
    PPG-12 0.6
    PPG-7 0.9
    Basic red 51 0.1
    Citric acid/sodium hydroxide q.s. to pH 5.5
    Preservative, fragrance q.s
    Water to 100
  • EXAMPLE 14
  • % by weight
    Sodium lauryl ether sulfate 9.0
    Laureth - 16 3.0
    Cocoyl betaine 2.0
    Sodium lauroyl glutamate 2.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Guarhydroxypropyltrimonium chloride 1.0
    Sodium chloride 1.3
    PPG-20 0.8
    Trimethyl pentaphenyl trisiloxane 0.2
    Basic yellow 87 0.10
    Basic red 76 0.01
    Citric acid/sodium hydroxide q.s. to pH 6.0
    Preservative, fragrance q.s
    Water to 100
  • Increase of volume and an excellent golden blonde shine was observed on light blond hair. Conditioning effect in terms of manageability and soft feeling upon touching is excellent.
  • EXAMPLE 15
  • % by weight
    Sodium lauryl ether sulfate 3.0
    Sodium lauryl ether carboxylate 7.0
    Laureth - 16 3.0
    Cocoyl betaine 2.0
    Sodium lauroyl glutamate 2.0
    Ethylhexyl glycerine 1.0
    Lauryl alcohol 1.0
    Guarhydroxypropyltrimonium chloride 1.0
    PEG-120 glyceryl stearate 1.8
    PPG-7 1.8
    Dimethicone 1.0
    Basic red 51 0.1
    Basic orange 31 0.05
    Citric acid/sodium hydroxide q.s. to pH 5.7
    Preservative, fragrance q.s
    Water to 100
  • An excellent red shine were observed on medium blond hair.
  • EXAMPLE 16
  • % by weight
    Sodium lauryl ether sulphate 10.0
    Laureth - 16 3.0
    Cocoyl betaine 2.0
    Sodium lauroyl glutamate 2.0
    Polyquaternium-6 0.5
    Polysilicone-15 0.35
    Dimethicone 0.5
    Ubiquinone 0.1
    Sodium chloride 1.0
    PPG-9 0.9
    Citric acid/sodium hydroxide q.s. to pH 4.8
    Preservative, fragrance q.s
    Water to 100
  • The above shampoo conditions hair excellently in terms of compatibility, softness, shine and elasticity and additionally gives fine hair excellent long lasting volume.
  • EXAMPLE 17
  • % by weight
    Sodium lauryl ether sulphate 6.0
    Sodium lauryl ether carboxylate 4.0
    Cocoyl glucoside 3.0
    Cocamidopropyl betaine 2.0
    Sodium lauroyl glutamate 2.0
    Heptyl glycerine 1.0
    Lauryl alcohol 1.0
    Polyquaternium-6 0.5
    Benzophenone-4 0.5
    Dimethicone 0.5
    Ubiquinone 0.1
    PEG-18 glyceryl oleate/cocoate 1.2
    PPG-9 2.0
    Citric acid/sodium hydroxide q.s. to pH 5.5
    Preservative, fragrance q.s
    Water to 100
  • The above shampoo conditions hair excellently in terms of compatibility, shine, softness and elasticity and additionally gives fine hair excellent long lasting volume.
  • EXAMPLE 18
  • % by weight
    Sodium lauryl ether sulphate 15.0
    Decyl glucoside 3.0
    Cocamidopropyl betaine 2.0
    Sodium cocyl glutamate 2.0
    Polyquaternium-6 0.5
    Decyl glycerine 1.0
    Decyl alcohol 1.0
    Ethylhexyl methoxy cinnamate 0.3
    Dimethicone 0.5
    Ubiquinone 0.1
    Sodium chloride 0.9
    PPG-9 0.7
    Citric acid/sodium hydroxide q.s. to pH 5.2
    Preservative, fragrance q.s
    Water to 100
  • EXAMPLE 19
  • % by weight
    Sodium lauryl ether sulphate 10.0
    Cocyl glucoside 5.0
    Lauryl betaine 4.0
    Ethylhexyl glycerine 1.0
    Myristyl alcohol 1.0
    Sodium lauroyl glutamate 2.0
    Polyquaternium-10 0.5
    Benzophenone-3 0.4
    Dimethicone 0.5
    Sodium chloride 1.0
    PPG-9 0.5
    Citric acid/sodium hydroxide q.s. to pH 5.4
    Preservative, fragrance q.s
    Water to 100

Claims (14)

1. Aqueous cleansing composition for keratin fibres especially for human hair comprising at least one amino acid surfactant of the following structure
Figure US20110165106A1-20110707-C00017
wherein R1 is a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, R2 is H or a methyl, R3 is H, COOM+, CH2COOM or COOH, n is 0 to 2, X is COO or SO3 and M is independent from each other H, sodium or potassium, at least one glyceryl ether of the following formula
Figure US20110165106A1-20110707-C00018
wherein R4 is straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms and R5 is H, or straight or branched, saturated or unsaturated alkyl chain with 4 to 24 C atoms, and at least one fatty alcohol of the following formula

R6—OH
wherein R6 is straight or branched, saturated or unsaturated alkyl chain with 8 to 24 C atoms.
2. Cleansing composition according to claim 1, comprising at least one amino acid surfactant according to the general formula at a concentration of 0.1 to 15% by weight, at least one glyceryl ether according to general formula at a concentration of 0.1 to 10% by weight and at least fatty alcohol according to general formula at a concentration of 0.1 to 5% by weight, all values are calculated to total composition.
3. Cleansing composition according to claim 1, further comprising at least one non-ionic surfactant, preferably according to the general formula

R6—O—(R4O)n—Zx,
wherein R6 is an alkyl group with 8 to 18 carbon atoms, R4 is an ethylene or propylene group, Z is a saccharide group with 5 to 6 carbon atoms, n is a number from 0 to 10 and x is a number between 1 and 5.
4. Cleansing composition according to claim 1, further comprising at least one amphoteric surfactant, preferably selected from betaines, amidoalkyl betaines and sulfobetaines, and their mixtures.
5. Composition according to claim 1, wherein the at least one amino acid surfactant is selected from
i—taurate surfactants according to the general formula
Figure US20110165106A1-20110707-C00019
wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, R2 is H or methyl, and M is H, sodium or potassium,
ii—glutamate surfactants are according to the general formula
Figure US20110165106A1-20110707-C00020
wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is independent from each other H, sodium or potassium,
iii—alanine or alaninate surfactants according to the general formula
Figure US20110165106A1-20110707-C00021
wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, R2 is H or methyl and M is H, sodium or potassium,
iv—glycine surfactants according to the general formula
Figure US20110165106A1-20110707-C00022
wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms, and M is H, sodium or potassium,
v—sarcosinate surfactants according to the general formula
Figure US20110165106A1-20110707-C00023
wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms and M is H, sodium or potassium, and
vi—aspartate surfactants according to the general formula
Figure US20110165106A1-20110707-C00024
wherein R1 is preferably a saturated or unsaturated, straight or branched alkyl chain with 7 to 17 C atoms, and more preferably 9 to 13 C atoms and M is independent from each other H, sodium or potassium.
6. Cleansing composition according to claim 6, wherein the at least one amino acid surfactant is selected from potassium cocoyl taurate, potassium methyl cocoyl taurate, sodium caproyl methyl taurate, sodium cocoyl taurate, sodium lauroyl taurate, sodium methyl cocoyl taurate, sodium methyl lauroyl taurate, sodium methyl myristoyl taurate, sodium methyl oleoyl taurate, sodium methyl palmitoyl taurate, sodium methyl stearoyl taurate, dipotassium capryloyl glutamate, dipotassium undecylenoyl glutamate, disodium capryloyl glutamate, disodium cocoyl glutamate, disodium lauroyl glutamate, disodium stearoyl glutamate, disodium undecylenoyl glutamate, potassium capryloyl glutamate, potassium cocoyl glutamate, potassium lauroyl glutamate, potassium myristoyl glutamate, potassium stearoyl glutamate, potassium undecylenoyl glutamate, sodium capryloyl glutamate, sodium cocoyl glutamate, sodium lauroyl glutamate, sodium myristoyl glutamate, sodium olivoyl glutamate, sodium palmitoyl glutamate, sodium stearoyl glutamate, sodium undecylenoyl glutamate, cocoyl methyl β-alanine, lauroyl β-alanine, lauroyl methyl β-alanine, myristoyl β-alanine, potassium lauroyl methyl β-alanine, sodium cocoyl alaninate, sodium cocoyl methyl β-alanine and sodium myristoyl methyl β-alanine palmitoyl glycine, sodium lauroyl glycine, sodium cocoyl glycine, sodium myristoyl glycine, potassium lauroyl glycine, potassium cocoyl glycine, potassium lauroyl sarcosinate, potassium cocoyl sarcosinate, sodium cocoyl sarcosinate, sodium lauroyl sarcosinate, sodium myristoyl sarcosinate, and sodium palmitoyl sarcosinate and mixtures thereof, preferably potassium lauroyl sarcosinate, potassium cocoyl sarcosinate, sodium cocoyl sarcosinate, sodium lauroyl sarcosinate, sodium lauroyl aspartate, sodium myristoyl aspartate, sodium cocoyl aspartate, sodium caproyl aspartate, disodium lauroyl aspartate, disodium myristoyl aspartate, disodium cocoyl aspartate, disodium caproyl aspartate, potassium lauroyl aspartate, potassium myristoyl aspartate, potassium cocoyl aspartate, potassium caproyl aspartate, dipotassium lauroyl aspartate, dipotassium myristoyl aspartate, dipotassium cocoyl aspartate, and dipotassium caproyl aspartate and mixtures thereof.
7. Cleansing composition according to claim 1, comprising at least one additional anionic surfactant other then amino acid surfactant at a concentration of 2 to 25% by weight calculated to total composition.
8. Composition according to claim 1, comprising at least one conditioning agent being a cationic polymer.
9. Composition according to claim 1, comprising as glyceryl ether one or more compound selected from glyceryl butyl ether, glyceryl isobutyl ether, glyceryl tert-butyl ether, glyceryl pentyl ether, glyceryl isopentyl ether, glyceryl hexyl ether, glyceryl isohexyl ether, glyceryl heptyl ether, glyceryl octyl ether, glyceryl ethylhexyl ether, glyceryl nonyl ether, glyceryl decyl ether, glyceryl isodecyl ether, glyceryl lauryl ether, glyceryl myristyl ether, glyceryl palmityl ether, glyceryl stearyl ether and glyceryl behenyl ether and their mixtures, preferably glyceryl butyl ether, glyceryl isobutyl ether, glyceryl tert-butyl ether, glyceryl pentyl ether, glyceryl isopentyl ether, glyceryl hexyl ether, glyceryl isohexyl ether, glyceryl heptyl ether, glyceryl octyl ether, glyceryl ethylhexyl ether, glyceryl nonyl ether, glyceryl decyl ether, glyceryl isodecyl ether are glyceryl lauryl ether and their mixtures, and as fatty alcohol a compound selected from decyl alcohol, myristyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, behenyl alcohol, and arachidyl alcohol and their mixtures preferably decyl alcohol, myristyl alcohol, lauryl alcohol, cetyl alcohol, and stearyl alcohol and their mixtures, and most preferably decyl alcohol, myristyl alcohol and lauryl alcohol and their mixtures.
10. Composition according to claim 1, comprising oily substances as conditioning agent selected from silicone oils, either volatile or non-volatile, natural and synthetic oils.
11. Composition according to claim 1, comprising at least one UV filter.
12. Composition according to claim 1, comprising at least one direct dye.
13. (canceled)
14. (canceled)
US13/062,017 2008-09-05 2009-09-02 Cleansing composition Abandoned US20110165106A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08015668A EP2161017A1 (en) 2008-09-05 2008-09-05 Cleansing composition
EP08015668.0 2008-09-05
PCT/EP2009/006347 WO2010025898A1 (en) 2008-09-05 2009-09-02 Cleansing composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/006347 A-371-Of-International WO2010025898A1 (en) 2008-09-05 2009-09-02 Cleansing composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/398,235 Continuation US10603258B2 (en) 2008-09-05 2017-01-04 Cleansing composition

Publications (1)

Publication Number Publication Date
US20110165106A1 true US20110165106A1 (en) 2011-07-07

Family

ID=40380517

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/062,017 Abandoned US20110165106A1 (en) 2008-09-05 2009-09-02 Cleansing composition
US15/398,235 Expired - Fee Related US10603258B2 (en) 2008-09-05 2017-01-04 Cleansing composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/398,235 Expired - Fee Related US10603258B2 (en) 2008-09-05 2017-01-04 Cleansing composition

Country Status (3)

Country Link
US (2) US20110165106A1 (en)
EP (2) EP2161017A1 (en)
WO (1) WO2010025898A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10376452B2 (en) * 2016-07-01 2019-08-13 Ajinomoto Co., Inc. Cleansing composition
CN110693748A (en) * 2019-11-04 2020-01-17 木芷秋山(广州)化妆品研究开发有限公司 Amino acid bubble cleanser and preparation method thereof
CN115404134A (en) * 2022-10-09 2022-11-29 广州立白企业集团有限公司 Transparent self-thickening cleaning composition
CN115813789A (en) * 2023-01-03 2023-03-21 上海家化联合股份有限公司 Foam composition with improved foam durability
CN116035933A (en) * 2023-01-18 2023-05-02 张家港格瑞特化学有限公司 Personal cleaning care composition and preparation method and application thereof
WO2023086227A1 (en) * 2021-11-11 2023-05-19 Colgate-Palmolive Company Personal care compositions
EP4062977A4 (en) * 2019-11-20 2023-12-27 Ajinomoto Co., Inc. Detergent composition for foamer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2335681A1 (en) * 2009-12-18 2011-06-22 KPSS-Kao Professional Salon Services GmbH Cleansing composition
KR101879886B1 (en) 2010-08-31 2018-08-17 오츠카 세이야쿠 가부시키가이샤 Composition for cleaning scalp and head hair
CN103228254B (en) 2010-12-09 2015-08-12 高露洁-棕榄公司 Liquid cleansing composition containing long-chain fatty acid
CA2819851C (en) 2010-12-09 2015-11-24 Colgate-Palmolive Company Liquid cleaning compositions containing long-chain fatty alcohols
EP2471505A1 (en) * 2010-12-28 2012-07-04 KPSS-Kao Professional Salon Services GmbH Cleansing composition especially for artificially coloured hair
WO2012149617A1 (en) * 2011-05-04 2012-11-08 L'oreal S.A. Detergent cosmetic compositions comprising four surfactants, a cationic polymer and a silicone, and use thereof
EP3311793A1 (en) * 2016-10-19 2018-04-25 Kao Germany GmbH Hair cleansing composition with improved color retention on pre-colored keratin fibers and improved foam properties
DE102017212401A1 (en) * 2017-07-19 2019-01-24 Henkel Ag & Co. Kgaa Hair detergent
DE102019209058A1 (en) * 2019-06-24 2020-12-24 Beiersdorf Ag High consistency cleaning product
CN112043618B (en) * 2020-10-20 2023-08-15 杭州岛屿星晴生物技术有限公司 Composite sweetener and application thereof in toothpaste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201965A1 (en) * 2004-03-11 2005-09-15 The Procter & Gamble Company Personal cleansing compositions
US20060251602A1 (en) * 2003-02-19 2006-11-09 Dieter Goddinger Hair treatment agents with surfactant mixtures
US20070031365A1 (en) * 2005-08-08 2007-02-08 Kao Corporation Water-based shampoo

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927199A (en) 1972-04-14 1975-12-16 Nat Starch Chem Corp Hair fixing compositions containing N-alkyl acrylamide or methacrylamide interpolymer
IT1050562B (en) 1974-05-16 1981-03-20 Oreal COSMETIC AGENT BASED ON QUATERNIZED POLYMERS
LU76955A1 (en) 1977-03-15 1978-10-18
DE3044738C2 (en) 1979-11-28 1994-09-15 Oreal Preparations and methods for the treatment of human hair
LU83349A1 (en) 1981-05-08 1983-03-24 Oreal AEROSOL FOAM COMPOSITION BASED ON CATIONIC POLYMER AND ANIONIC POLYMER
EP0070074B2 (en) 1981-07-13 1997-06-25 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
MY105119A (en) 1988-04-12 1994-08-30 Kao Corp Low irritation detergent composition.
US5015414A (en) 1988-09-08 1991-05-14 Kao Corporation Low-irritant detergent composition containing alkyl saccharide and sulfosuccinate surfactants
JPH0525025A (en) 1991-07-22 1993-02-02 Kao Corp Hair-care cosmetics
EP0640643B1 (en) 1993-08-10 2000-04-26 Kao Corporation Organopolysiloxanes and a method of setting hair using the same
JP3908420B2 (en) 1999-10-12 2007-04-25 花王株式会社 Cleaning composition
JP2004500422A (en) * 2000-04-17 2004-01-08 ユニリーバー・ナームローゼ・ベンノートシヤープ Substantially dry cleaning products with improved lathering and wet flexibility
JP4147068B2 (en) 2002-08-09 2008-09-10 花王株式会社 Hair cleaning composition
JP2006182728A (en) * 2004-12-28 2006-07-13 Kao Corp Aqueous hair shampoo
KR101222646B1 (en) 2005-02-28 2013-01-16 가오 가부시키가이샤 Surfactant composition
FR2894136B1 (en) * 2005-12-07 2008-01-18 Oreal FOAMING SOLUBLE COSMETIC ARTICLE
CN101077332B (en) * 2006-05-22 2012-05-23 花王株式会社 Aqueous hair cleansing agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060251602A1 (en) * 2003-02-19 2006-11-09 Dieter Goddinger Hair treatment agents with surfactant mixtures
US20050201965A1 (en) * 2004-03-11 2005-09-15 The Procter & Gamble Company Personal cleansing compositions
US20070031365A1 (en) * 2005-08-08 2007-02-08 Kao Corporation Water-based shampoo

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10376452B2 (en) * 2016-07-01 2019-08-13 Ajinomoto Co., Inc. Cleansing composition
CN110693748A (en) * 2019-11-04 2020-01-17 木芷秋山(广州)化妆品研究开发有限公司 Amino acid bubble cleanser and preparation method thereof
EP4062977A4 (en) * 2019-11-20 2023-12-27 Ajinomoto Co., Inc. Detergent composition for foamer
WO2023086227A1 (en) * 2021-11-11 2023-05-19 Colgate-Palmolive Company Personal care compositions
US11998628B2 (en) 2021-11-11 2024-06-04 Colgate-Palmolive Company Personal care compositions
CN115404134A (en) * 2022-10-09 2022-11-29 广州立白企业集团有限公司 Transparent self-thickening cleaning composition
CN115813789A (en) * 2023-01-03 2023-03-21 上海家化联合股份有限公司 Foam composition with improved foam durability
CN116035933A (en) * 2023-01-18 2023-05-02 张家港格瑞特化学有限公司 Personal cleaning care composition and preparation method and application thereof

Also Published As

Publication number Publication date
EP2320862B1 (en) 2016-04-27
EP2320862A1 (en) 2011-05-18
WO2010025898A1 (en) 2010-03-11
US20170112739A1 (en) 2017-04-27
EP2161017A1 (en) 2010-03-10
US10603258B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
US10603258B2 (en) Cleansing composition
US7875085B2 (en) Color enhancing shampoo composition
EP2358342B1 (en) Cleansing composition
EP2376057B1 (en) Cleansing composition
EP2130529B1 (en) Volume giving cleansing composition
US20120171146A1 (en) Shear Thickening Cleansing Composition
EP2320863B1 (en) Cleansing composition
EP2512426B1 (en) Cleansing composition
US20060100114A1 (en) Color enhancing shampoo composition
US7268105B2 (en) Shampoo composition comprising a mixture of glyceryl esters
US20160361246A1 (en) Cleansing composition especially for artificially coloured hair
US7759297B2 (en) Cleansing composition comprising an arylated silicone with five phenyl groups

Legal Events

Date Code Title Description
AS Assignment

Owner name: KPSS KAO PROFESSIONAL SALON SERVICES GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOLENDA, MICHAEL;TIETJEN, ILKA;REEL/FRAME:026136/0373

Effective date: 20110309

AS Assignment

Owner name: KAO GERMANY GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:KPSS-KAO PROFESSIONAL SALON SERVICES GMBH;REEL/FRAME:030186/0381

Effective date: 20120102

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION