US20110143362A1 - Method for identification of protease activity inhibitors and assaying the presence of protease activity - Google Patents
Method for identification of protease activity inhibitors and assaying the presence of protease activity Download PDFInfo
- Publication number
- US20110143362A1 US20110143362A1 US12/962,610 US96261010A US2011143362A1 US 20110143362 A1 US20110143362 A1 US 20110143362A1 US 96261010 A US96261010 A US 96261010A US 2011143362 A1 US2011143362 A1 US 2011143362A1
- Authority
- US
- United States
- Prior art keywords
- protease
- domain
- reporter
- bont
- transcriptional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091005804 Peptidases Proteins 0.000 title claims abstract description 141
- 239000004365 Protease Substances 0.000 title claims abstract description 139
- 230000000694 effects Effects 0.000 title claims abstract description 45
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 title claims abstract 31
- 238000000034 method Methods 0.000 title claims description 38
- 239000003112 inhibitor Substances 0.000 title description 39
- 102000035195 Peptidases Human genes 0.000 claims abstract description 109
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 66
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 230000014509 gene expression Effects 0.000 claims abstract description 49
- 230000027455 binding Effects 0.000 claims abstract description 35
- 108700008625 Reporter Genes Proteins 0.000 claims abstract description 32
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 claims abstract description 22
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims abstract description 18
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims abstract description 17
- 230000001939 inductive effect Effects 0.000 claims abstract description 14
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 claims abstract description 13
- 230000002103 transcriptional effect Effects 0.000 claims abstract description 11
- 108091007494 Nucleic acid- binding domains Proteins 0.000 claims abstract description 5
- 210000004027 cell Anatomy 0.000 claims description 141
- 108030001720 Bontoxilysin Proteins 0.000 claims description 106
- 108010057722 Synaptosomal-Associated Protein 25 Proteins 0.000 claims description 42
- 150000001875 compounds Chemical class 0.000 claims description 35
- 238000013518 transcription Methods 0.000 claims description 33
- 230000035897 transcription Effects 0.000 claims description 33
- 238000003776 cleavage reaction Methods 0.000 claims description 30
- 230000007017 scission Effects 0.000 claims description 28
- 108090000623 proteins and genes Proteins 0.000 claims description 27
- 102000003786 Vesicle-associated membrane protein 2 Human genes 0.000 claims description 25
- 108090000169 Vesicle-associated membrane protein 2 Proteins 0.000 claims description 25
- 239000013598 vector Substances 0.000 claims description 22
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 claims description 20
- 241000545067 Venus Species 0.000 claims description 20
- 108091006106 transcriptional activators Proteins 0.000 claims description 20
- 108010001515 Galectin 4 Proteins 0.000 claims description 18
- 102100039556 Galectin-4 Human genes 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 18
- 102000004169 proteins and genes Human genes 0.000 claims description 17
- 108060001084 Luciferase Proteins 0.000 claims description 15
- 239000005089 Luciferase Substances 0.000 claims description 14
- 108091005957 yellow fluorescent proteins Proteins 0.000 claims description 12
- 241000963438 Gaussia <copepod> Species 0.000 claims description 11
- 230000001413 cellular effect Effects 0.000 claims description 9
- 241000193738 Bacillus anthracis Species 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 8
- 108090000848 Ubiquitin Proteins 0.000 claims description 7
- 102000044159 Ubiquitin Human genes 0.000 claims description 7
- 108010082025 cyan fluorescent protein Proteins 0.000 claims description 7
- 239000005090 green fluorescent protein Substances 0.000 claims description 6
- 241000710929 Alphavirus Species 0.000 claims description 5
- 101710144128 Non-structural protein 2 Proteins 0.000 claims description 5
- 102100022648 Reticulon-2 Human genes 0.000 claims description 5
- 239000012634 fragment Substances 0.000 claims description 5
- 101150034092 ATG4 gene Proteins 0.000 claims description 4
- 108010082399 Autophagy-Related Proteins Proteins 0.000 claims description 4
- 102000003954 Autophagy-Related Proteins Human genes 0.000 claims description 4
- 108010076667 Caspases Proteins 0.000 claims description 4
- 102000011727 Caspases Human genes 0.000 claims description 4
- 108010043121 Green Fluorescent Proteins Proteins 0.000 claims description 4
- 102000004144 Green Fluorescent Proteins Human genes 0.000 claims description 4
- 108010010369 HIV Protease Proteins 0.000 claims description 4
- 101100271280 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cpr-1 gene Proteins 0.000 claims description 4
- 108091005948 blue fluorescent proteins Proteins 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 150000007523 nucleic acids Chemical class 0.000 claims description 4
- 108010054624 red fluorescent protein Proteins 0.000 claims description 4
- 102000006830 Luminescent Proteins Human genes 0.000 claims description 3
- 108010047357 Luminescent Proteins Proteins 0.000 claims description 3
- 241000059559 Agriotes sordidus Species 0.000 claims description 2
- 108090000331 Firefly luciferases Proteins 0.000 claims description 2
- 101001057508 Homo sapiens Ubiquitin-like protein ISG15 Proteins 0.000 claims description 2
- 108010052090 Renilla Luciferases Proteins 0.000 claims description 2
- 102100027266 Ubiquitin-like protein ISG15 Human genes 0.000 claims description 2
- 241000700605 Viruses Species 0.000 claims description 2
- 102000004183 Synaptosomal-Associated Protein 25 Human genes 0.000 claims 2
- 210000003855 cell nucleus Anatomy 0.000 claims 1
- 208000006454 hepatitis Diseases 0.000 claims 1
- 231100000283 hepatitis Toxicity 0.000 claims 1
- 238000009877 rendering Methods 0.000 claims 1
- 238000011156 evaluation Methods 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 3
- 235000019419 proteases Nutrition 0.000 description 79
- 150000003522 tetracyclines Chemical class 0.000 description 49
- 239000004098 Tetracycline Substances 0.000 description 48
- 229960002180 tetracycline Drugs 0.000 description 48
- 229930101283 tetracycline Natural products 0.000 description 48
- 235000019364 tetracycline Nutrition 0.000 description 48
- 102100030552 Synaptosomal-associated protein 25 Human genes 0.000 description 40
- 238000003556 assay Methods 0.000 description 31
- 108091023040 Transcription factor Proteins 0.000 description 20
- 239000001963 growth medium Substances 0.000 description 20
- 101710117542 Botulinum neurotoxin type A Proteins 0.000 description 19
- 231100001103 botulinum neurotoxin Toxicity 0.000 description 19
- 230000005764 inhibitory process Effects 0.000 description 19
- 238000012216 screening Methods 0.000 description 18
- 101710117524 Botulinum neurotoxin type B Proteins 0.000 description 17
- 102000040945 Transcription factor Human genes 0.000 description 17
- 239000012528 membrane Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 16
- 239000003053 toxin Substances 0.000 description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 238000013537 high throughput screening Methods 0.000 description 15
- 210000004379 membrane Anatomy 0.000 description 15
- 231100000765 toxin Toxicity 0.000 description 15
- 108700012359 toxins Proteins 0.000 description 15
- 150000003384 small molecules Chemical class 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 12
- 238000001890 transfection Methods 0.000 description 11
- 108020004459 Small interfering RNA Proteins 0.000 description 10
- 108700026226 TATA Box Proteins 0.000 description 10
- 210000002569 neuron Anatomy 0.000 description 10
- 239000002581 neurotoxin Substances 0.000 description 9
- 231100000618 neurotoxin Toxicity 0.000 description 9
- 230000001105 regulatory effect Effects 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 8
- 150000001413 amino acids Chemical class 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 230000004807 localization Effects 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 238000003146 transient transfection Methods 0.000 description 8
- 101000979342 Homo sapiens Nuclear factor NF-kappa-B p105 subunit Proteins 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 238000005415 bioluminescence Methods 0.000 description 7
- 230000029918 bioluminescence Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000010200 validation analysis Methods 0.000 description 7
- 230000004568 DNA-binding Effects 0.000 description 6
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000499 gel Substances 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000004020 luminiscence type Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000000423 cell based assay Methods 0.000 description 5
- 210000000170 cell membrane Anatomy 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 231100000518 lethal Toxicity 0.000 description 5
- 230000001665 lethal effect Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 239000013642 negative control Substances 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 101710117515 Botulinum neurotoxin type E Proteins 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 4
- 230000003518 presynaptic effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002797 proteolythic effect Effects 0.000 description 4
- 230000003584 silencer Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000010361 transduction Methods 0.000 description 4
- 230000026683 transduction Effects 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 101000708016 Caenorhabditis elegans Sentrin-specific protease Proteins 0.000 description 3
- 108010059378 Endopeptidases Proteins 0.000 description 3
- 102000005593 Endopeptidases Human genes 0.000 description 3
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 3
- 101000684503 Homo sapiens Sentrin-specific protease 3 Proteins 0.000 description 3
- 241000713666 Lentivirus Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 102100023645 Sentrin-specific protease 3 Human genes 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 3
- 229960004373 acetylcholine Drugs 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 210000000172 cytosol Anatomy 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000000063 presynaptic terminal Anatomy 0.000 description 3
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 3
- 238000007423 screening assay Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 241001589086 Bellapiscis medius Species 0.000 description 2
- 102000001477 Deubiquitinating Enzymes Human genes 0.000 description 2
- 108010093668 Deubiquitinating Enzymes Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 101710138657 Neurotoxin Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 108010039918 Polylysine Proteins 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 102000005917 R-SNARE Proteins Human genes 0.000 description 2
- 108010005730 R-SNARE Proteins Proteins 0.000 description 2
- 102000000583 SNARE Proteins Human genes 0.000 description 2
- 108010041948 SNARE Proteins Proteins 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 229940053031 botulinum toxin Drugs 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001713 cholinergic effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229940066758 endopeptidases Drugs 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000003197 gene knockdown Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012160 loading buffer Substances 0.000 description 2
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 210000000715 neuromuscular junction Anatomy 0.000 description 2
- 230000026792 palmitoylation Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920000656 polylysine Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 210000001533 respiratory mucosa Anatomy 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 230000004572 zinc-binding Effects 0.000 description 2
- HBZBAMXERPYTFS-SECBINFHSA-N (4S)-2-(6,7-dihydro-5H-pyrrolo[3,2-f][1,3]benzothiazol-2-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic acid Chemical compound OC(=O)[C@H]1CSC(=N1)c1nc2cc3CCNc3cc2s1 HBZBAMXERPYTFS-SECBINFHSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- HLFQUUKVLVOMHH-UHFFFAOYSA-N 1-(1,3-benzothiazol-2-yl)-4-phenyl-5,7-dihydro-4H-pyrazolo[3,4-b]pyridin-6-one Chemical compound O=C1CC(c2cnn(c2N1)-c1nc2ccccc2s1)c1ccccc1 HLFQUUKVLVOMHH-UHFFFAOYSA-N 0.000 description 1
- OTLLEIBWKHEHGU-UHFFFAOYSA-N 2-[5-[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy]-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-4-phosphonooxyhexanedioic acid Chemical compound C1=NC=2C(N)=NC=NC=2N1C(C(C1O)O)OC1COC1C(CO)OC(OC(C(O)C(OP(O)(O)=O)C(O)C(O)=O)C(O)=O)C(O)C1O OTLLEIBWKHEHGU-UHFFFAOYSA-N 0.000 description 1
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101710117520 Botulinum neurotoxin type F Proteins 0.000 description 1
- 208000003508 Botulism Diseases 0.000 description 1
- 101800001415 Bri23 peptide Proteins 0.000 description 1
- 101800000655 C-terminal peptide Proteins 0.000 description 1
- 102400000107 C-terminal peptide Human genes 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- 101000985023 Clostridium botulinum C phage Botulinum neurotoxin type C Proteins 0.000 description 1
- 208000032163 Emerging Communicable disease Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001492222 Epicoccum Species 0.000 description 1
- 101000887162 Gallus gallus Gallinacin-5 Proteins 0.000 description 1
- 101000887166 Gallus gallus Gallinacin-7 Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000684497 Homo sapiens Sentrin-specific protease 2 Proteins 0.000 description 1
- 101000628899 Homo sapiens Small ubiquitin-related modifier 1 Proteins 0.000 description 1
- 101000652300 Homo sapiens Synaptosomal-associated protein 23 Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 101150027568 LC gene Proteins 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 1
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 208000033952 Paralysis flaccid Diseases 0.000 description 1
- 208000005374 Poisoning Diseases 0.000 description 1
- 108010076039 Polyproteins Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108010010469 Qa-SNARE Proteins Proteins 0.000 description 1
- 101000608768 Rattus norvegicus Galectin-5 Proteins 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- 102100026940 Small ubiquitin-related modifier 1 Human genes 0.000 description 1
- 101710081623 Small ubiquitin-related modifier 1 Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 102100030545 Synaptosomal-associated protein 23 Human genes 0.000 description 1
- 102000050389 Syntaxin Human genes 0.000 description 1
- 102000013265 Syntaxin 1 Human genes 0.000 description 1
- 108010090618 Syntaxin 1 Proteins 0.000 description 1
- 101800001117 Ubiquitin-related Proteins 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 101710204001 Zinc metalloprotease Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 150000007854 aminals Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000000467 autonomic pathway Anatomy 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229940126587 biotherapeutics Drugs 0.000 description 1
- 229930189065 blasticidin Natural products 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000003100 counter screening assay Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- -1 e.g. Proteins 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 231100000776 exotoxin Toxicity 0.000 description 1
- 239000002095 exotoxin Substances 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 208000028331 flaccid paralysis Diseases 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 108010027225 gag-pol Fusion Proteins Proteins 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- 102000049669 human SENP2 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000003093 intracellular space Anatomy 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005399 mechanical ventilation Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002805 secondary assay Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005556 structure-activity relationship Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/34—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
- C12Q1/37—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1086—Preparation or screening of expression libraries, e.g. reporter assays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/635—Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/66—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6897—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
Definitions
- This invention generally relates to the field of protease inhibitor identification assays.
- Botulinum neurotoxins BoNTs
- BoNTs Botulinum neurotoxins
- Botulism can be caused by ingestion of food stuff contaminated with the bacteria Clostridium botulinum , colonization of open wounds by the bacterium, or ingestion or respiration of the toxin(s). These toxins represent a serious threat to both military personnel and civilian populations (S. C. Clarke. Br J Biomed Sci 62:40-6 (2005); R. P. Hicks, M. G. Hartell, et al. Curr Med Chem 12:667-90 (2005); D. Josko. Clin Lab Sci 17:30-4 (2004).
- the lethal dose in humans is ⁇ 1 ng/kg of body weight. J. C. Burnett, E. A. Henchal, et al. Nat Rev Drug Discov 4:281-97 (2005); J. C.
- BoNTs can be dangerous, they have been recognized as useful medicinal compounds. BoNTs are now established biotherapeutics for a range of physical ailments and cosmetic treatments and are being produced in increasing quantities, both domestically and overseas. R. Bhidayasiri, and D. D. Truong, J. Neurol. Sci. 235:1-9 (2005); C. L. Comellaand and S. L. Pullman. Muscle Nerve 29:628-44 (2004); K. A.
- BoNTs are transcytosed across the respiratory epithelium or mucosa into the blood stream, where they can enter the intercellular space prior to binding to and entering the peripheral cholinergic presynaptic nerve endings.
- critical care mechanical ventilation is the only treatment option once neurons have been affected and diaphragm muscles cease to function.
- the effects of internalized BoNTs can last for months.
- long-term mechanical ventilation would be impractical if even a limited number of individuals were simultaneously affected.
- each serotype is composed of a 100 KDa heavy chain (HC) and a 50 KDa light chain (LC). They are synthesized initially as a single polypeptide chain, which is severed by bacterial or host proteases. The chains remain connected by a disulfide bridge until reaching the reducing cytosolic environment of the neuronal target cells.
- HC heavy chain
- LC light chain
- BoNTs are transcytosed across the mucosal epithelium into the blood stream, where they can enter the intracellular space prior to accessing peripheral cholinergic presynaptic nerve endings.
- the HC serves as a delivery system for the proteolytic LC by binding to neurons and transporting the LC into the cytosol via the carboxyl terminal half of the HC(HC C ) and transporting the LC into the cytosol from the endosomes via a pore formed by the aminal terminal half of the HC(HC N ).
- each BoNT serotype is a protease that cleaves a component of the SNARE proteins, which are responsible for acetylcholine containing vesicle fusion and release at the neuromuscular junctions.
- BoNT serotypes A and E cleave SNAP-25 (synaptosomal-associated protein (25 kDa). T. Binz, J. Blasi, et al. J Biol Chem 269:1617-20 (1994).
- Serotypes B, D, F and G cleave VAMP (vesicle-associated membrane protein, also referred to as synaptobrevin and VAMP-2).
- G. Schiavo F. Benfenati, et al. Nature 359:832-5 (1992); G. Schiavo, C. Malizio, et al. J. Biol. Chem. 269:20213-6 (1994); G. Schiavo, O. Rossetto, et al. J Biol Chem 268:23784-7 (1993); G. Schiavo, C. C. Shone, et al. J Biol Chem 268:11516-9 (1993); J. J. Schmidt, and R. G. Stafford.
- BoNT serotypes differ significantly in amino acid sequence. However, the different serotypes adopt similar overall protein folds and aspects of the catalytic core are conserved. M. A. Breidenbachand A. T. Brunger. Trends Mol Med 11:377-81 (2005).
- the X-ray crystal structures of BoNT/A and BoNT/B indicate that the areas within 8 ⁇ of the zinc-binding site of these two serotypes are highly homologous with 17 of the 22 residues being identical. S. Swaminathan & S. Eswaramoorthy, Nature Structural Biology 7:693-699 (2000).
- BoNT substrate specificity is also determined by its binding of the substrate over the long substrate/LC protease interface through sites distal to the active site, which is called “exosite” binding. M. A. Breidenbachand A. T. Brunger. Trends Mol Med 11:377-81 (2005).
- Vaccine approaches will likely play a role in biodefense against BoNT. M. P. Byrne and L. A. Smith. Biochimie 82:955-66 (2000). J. B. Park and L. L. Simpson. Expert Rev Vaccines 3:477-87 (2004).
- identification and inoculation of all members of large at risk populations prior to exposure is problematic.
- the development of therapeutic approaches that are effective post-exposure treatment is essential.
- Low molecular weight, non-peptidic inhibitors offer the best opportunity for the development of post-exposure therapeutics. Interruption of later steps in the pathway, and particularly proteolytic steps, is desirable for post-exposure therapy.
- Such compounds would have to be capable of penetrating into the cytoplasm of the intoxicated neurons and would need to act with specificity.
- FIGS. 1A and 1B are schematic diagrams of three constructs made in accordance with one embodiment of the invention and their interaction with other molecules for assessing the change in the transcription signal of a reporter in the presence of a protease.
- One construct provides a Transcriptional Activator agent (“TA”).
- the TA agent comprises a Binding Domain (“BD”), a Protease Substrate (“PS”) domain, and a transcriptional Activation Domain (“AD”).
- the second construct is a Protease Construct (“PC”).
- the PC comprises a promoter, a regulator sequence, e.g. TetO, and the sequence of a protease, which proteolytic activity cleaves the PC of the TA.
- the third construct is a Reporter Construct (“RC”).
- the RC of one preferred embodiment comprises a transcriptional promoter region and the reporter gene(s).
- the transcriptional promoter region comprises at least two elements: at least one binding site (“BS”) sequence that functionally corresponds to the BD domain of the TA agent and a minimal promoter region having at least one TATA box sequence.
- BS binding site
- TATA box sequence The system illustrated in this figure is called the “cleave off” system because when the protease of the PC cleaves the PS, transcription stops and signal decreases.
- FIGS. 2A and 2B are schematic representations of the three constructs generally described in FIGS. 1A and 1B , for illustration/exemplary purposes the domains illustrated as part of the TA agent are: the BD derived from transcriptional factor for the Gal4 operon, the PS is either VAMP2 (amino acids 25-94) or SNAP25 (amino acids 104-206), and the AD is the nuclear factor ⁇ B (“NF ⁇ B/AD”).
- the elements illustrated as part of the RC in FIG. 1B are: a promoter consisting of at least one BS corresponding to the Gal4 BD of the TA agent and a minimal adenovirus promoter region comprising the TATA box (E. D. Lewis, J. L. Manley, Mol. Cell. Biol.
- the PC comprises the CMV promoter with a TetO sequence for regulation of expression and the SBP-CFP-BoNT/LC-A sequence for expression of BoNT/A light chain.
- Other constructs may include the light chains of any botulinum toxin or a protease that cleaves the PS on the TA agent.
- FIGS. 3A and 3B are a schematic representation of a system in accordance with one embodiment of the present invention in which the BD and AD of the TA agent are attached to the end of the PS.
- the PS is localized to a membrane or kept outside the nucleus of the cell.
- the protease is added to the system, it cleaves the PS releasing the BD-AD pair and enhancing transcription of the Reporter Gene (“RG”). This system is referred to as the “cleave on” system.
- FIG. 4 a is a schematic representation of the “cleave on” system where the PS is VAMP-2 and FIG. 4 b is a schematic representation of the “cleave on” where the PS is SNAP-25.
- FIG. 5 is a schematic representation of a TA agent and a RC, which have an additional element to control any leakage of the minimal promoter.
- the additional element is at least one copy of a transcription regulator, in one preferred embodiment the transcription regulator is the TetO promoter region (5′-tccctatcagtgatagagatc-3′). Specifically, in the illustrated embodiment, the construct employs four copies of the TetO promoter sequence.
- FIG. 6 a bar graph of the results of experiments showing the ratio of bioluminescence in the presence and absence of tetracycline for stably integrated RCs.
- the clones in this figure do not contain the TA agent construct.
- FIG. 7 is a bar graph of the results of experiments showing the ratio of bioluminescence in the presence and absence of tetracycline for stable reporter in the presence of TA agent.
- FIG. 8 shows the results of a microplate cell-based assay of cells containing a reporter construct and the indicated BD-VAMP-NF ⁇ B TA agent in the presence and absence of tetracycline.
- FIG. 9 is a bioluminescence assay in accordance with one preferred embodiment of the present invention showing the effect of the indicated TA agents on YFP (Venus) and GLuc expression.
- FIG. 10 is a bar graph of the results of experiments showing the evaluation of stable BoNT/LC-B indicator cell lines.
- FIG. 11 is a bar graph and pictures of bioluminescence results of a functional test of the TA agent constructs.
- FIG. 12 is a bar graph showing validation of the cleave off indicator system.
- FIG. 13 is a bar graph showing validation of the cleave on system in stable cell lines.
- a system for the identification of proteases and protease inhibitors has at least two components.
- the first component is a reporter construct with at least one binding site, a transcriptional promoter, an inducible promoter region, and at least one reporter gene, all functionally connected for expression of the reporter gene(s) in functional coordination with a transcriptional activation agent.
- the second component is a transcriptional activation agent comprising a nucleic acid binding domain, at least one protease substrate domain, and at least one transcriptional activation domain for an inducible promoter.
- the system allows detection and evaluation of agents affecting protease activity directed to the protease substrate domain.
- the system may also include at least one protease or protease candidate that specifically cleaves the protease substrate domain of the transcriptional activation agent.
- One embodiment of the present invention provides a novel, cell-based system for identification of protease inhibitors and evaluation of protease activity.
- the components of the system comprise multiple constructs. As shown FIGS. 1 through 5 , three constructs form part of the system: a Transcriptional Activation agent (“TA”, sometimes herein also referred to as “transactivator” construct), a Reporter Construct (“RC”), and a Protease Construct (“PC”).
- the three constructs can be utilized in two types of protease evaluation systems. In a “cleave off” system as shown in FIGS. 1 and 2 , the product of the PC inactivates the TA, resulting in a decrease in transcription of the product of the RC. In a “cleave on” system as shown in FIGS. 3 and 4 , the product of the PC releases the active portion of the TA agent activating transcription and enhancing signal from the reporter of the RC.
- TA Transcriptional Activation agent
- RC Reporter Construct
- PC Pro
- the TA agent is engineered to express a chimeric protein molecule comprising three elements: a DNA Binding Domain (“BD”), a Protease Substrate domain (“PS”) comprising the cleavage site for at least one protease, and a transcription Activation Domain (“AD”).
- BD DNA Binding Domain
- PS Protease Substrate domain
- AD transcription Activation Domain
- the TA agent is designed so that the BD and the transcriptional activation domain AD are on opposite sides of the PS as described in FIGS. 1 and 2 .
- the PS is on one end of the BD-AD elements of the TA agent as shown in FIGS. 3 and 4 . Whether the system is a “cleave on” or “cleave of” system depends upon the position of the PS in the TA agent.
- the TA agent utilizes botulinum toxin substrates, such as SNAP-25 or VAMP-2.
- the selected domains of SNAP-25 and VAMP-2 in these constructs are sufficient to allow cleavage activity. Accordingly, domains sufficient to encompass the protease substrate domain of either protein in respect to the BoNT proteases that normally cleave the respective substrate are provided. More preferably, the PS domain provided is sufficiently large to at least encompass also the exotoxin PS sites. M. A. Breidenbach and A.T.B. TRENDS in Molecular Medicine 11: 376-381 (2005).
- the PS domain would comprise amino acids 25-94 of VAMP-2. Cornille F, Martin L, et al. J Biol.
- the sequence of the AD constructs are BD-SNAP-25-NF ⁇ B or BD-VAMP-NF ⁇ B.
- the SNAP-25 and VAMP-2 fragments utilized lack their palmitoylated residues, thus preventing localization of the TA agent to the plasma membrane or cellular vesicles respectively.
- the PC includes a protease that recognizes a Protease Substrate (“PS”) in the TA agent.
- the PC may be a vector expressing the protease and capable of being expressed in the host cell containing the TA and RC as shown in FIGS. 1 through 5 .
- the protease is expressed in a vector as described in Example 3 below.
- the PC can be a protease or a protease like molecule introduced into the cell expressing the TA and RC. The protease of the PC cleaves the PS domain of the TA agent.
- the AD of the TA agent is brought into proximity of the promoter on the RC by the BD, promoting transcription of a reporter located transcriptionally downstream from the BS of the RC as shown on FIGS. 1 and 2 .
- the proteolytic activity of the protease acts to deactivate and render ineffective the TA agent as a transcriptional enhancer by separating the BD from the AD, as shown in FIGS. 1B and 2B .
- the protease is selected from among BoNT A, C and E, and the PS is SNAP-25.
- the protease is selected from among BoNT B, D, F and G, and the PS is VAMP-2.
- the BoNT is serotype C and the PS is syntaxin1a (GenBank: AAK54507.2).
- the TA may include a domain of syntaxin1a that lacks its c-terminal transmembrane domain (BD-syntaxin1a (1 to 265)-AD).
- the protease substrate may be any known protease substrate. It is expected that various proteases may also be utilized.
- Examples include the anthrax protease, caspases, alpha virus NSP2 protease, HIV processing proteases, Sumo processing proteases, Ubiquitin processing proteases, ISG15 processing protease, autophagy related ATG4 like processing proteases, and Hepatitis C processing proteases.
- cleavage of the PS domain results in enhanced expression of the reporter gene (the “cleave on” effect) as shown in FIGS. 3B and 4B . If the cleavage releases a unit comprising both the BD and AD elements functionally connected, transcription is enhanced. As shown in FIGS. 3B and 4B , the TA agent consisting of a BD and an AD can be kept outside the nucleus by palmitoylated residues on the protease substrate (PS) domain.
- PS protease substrate
- the BD-AD pair may be attached to other molecules that keep the BD-AD construct outside the nucleus of the cell until the protease from the PC releases the BD-AD construct, which is transported into the nucleus and then enhances transcription of the reporter gene.
- the protease substrate domain may be attached to the plasma membrane or other vesicular membranes in the cell.
- the cleavage site of the protease is located between the TA consisting of the BD-AD and the extra-nuclear anchoring site of the PS.
- expression of the protease in the PC is regulated.
- a TetO control element may be included upstream of the protease gene preventing expression of the protease unless the appropriate conditions are present.
- the TetO operator is utilized, which prevents expression of the protease in the absence of Tetracycline. It is contemplated that other control mechanisms known to individuals of ordinary skill in the art would also be appropriate for controlling the expression of the protease in the host cells.
- the RC is a nucleic acid based construct.
- the TA agent and/or the PC are also nucleic acid based constructs that express the trans-activator molecule and the protease, respectively.
- the TA and/or the PCs may be provided as pre-made proteins to a functional mammalian cell.
- an artisan skilled in the art can understand the application of the three construct system in other backgrounds, e.g. a cell-free system, where either or both the TA agent and the PC are provided as nucleic acid or proteins, where of the three constructs may be fixed on membranes and so on.
- the focus is on the preferred embodiment, where each of the constructs is a transgenic genetic construct introduced into a mammalian cell, preferably a human cell.
- the RC has one or more BS recognized by the BD of the TA agent, a promoter sequence preferably comprising a TATA box and at least one reporter gene as shown in FIGS. 1 through 4 .
- the BD element of the TA agent binds to the one or more BS elements.
- the Gal4 BD is used in the TA agent and the corresponding Gal4 BS is used in the RC.
- the LexA BD and corresponding BS sequence are utilized.
- other activation domains from transactivators may be utilized such as B42 acidic blob domain, VP16 acidic activity, and p53 acidic activation domain. J Estojak, R. Brent, E. A.
- the IPR has five copies of the Gal4 cognate DNA binding sequence located in amino acids 1 to 148. It is contemplated that multiple copies of other binding domain recognition sequences may be utilized.
- the binding domain sequences (BD) for LexA are usually located 10 to 500 bp upstream of the TATA box.
- the BS and promoter sequence constitute an Inducible Promoter Region (“IPR”) that is essentially a bipartite construct with a first component being the minimal promoter TATA box, which functions minimally alone and upstream from the minimal promoter, and a second component being at least one BS that significantly increases transcription from the bipartite promoter in the presence of an intact TA agent bound to the BS.
- IPR Inducible Promoter Region
- the IPR has a minimal adenovirus promoter region (E. D. Lewis, J. L. Manley, Mol Cell Biol 5: 2433-2442 (1985). Utilizing several copies of the BS recognized by the BD of the TA agent allows for stronger binding of the TA agent to the RC.
- the number of BS to be provided ranges from 1 to about 8, preferably about 5.
- the corresponding BS is the DNA sequence recognized by the BD. K. H. Young, Biol. Reprod. 58: 302-311 (1998).
- the minimal TATA box promoter region will be able to promote only very minimal transcription in the absence of binding to the BD region by an additional transcriptional activator, in this case provided by the BD-AD chimeric protein.
- the first element of the bipartite transcriptional control region consisting of the minimal promoters such as the TATA box may lead to an undesirably high level of transcriptional activity in the absence of binding of the transcriptional activator containing the BD-AD to the BS sequence.
- an additional tetracycline regulated repressor or preferably a tetracycline regulated suppressor element is placed downstream of the minimal promoter as shown in FIG. 5 .
- This DNA sequence element termed a TetO will bind a tetracycline repressor protein or a tetracycline suppressor protein in the absence of tetracycline as shown in FIG. 5 .
- the tetracycline responsive repressor or suppressor protein will be released from the TetO element and relieve the repression of transcription from the bipartite transcriptional control region containing the BS and minimal TATA region. It is contemplated that other control elements may be used.
- a transcriptional control region is located downstream of the BS and the promoter region (which promoter region may comprise a TATA box).
- the element downstream of the promoter region on the Reporter Construct is at least one copy of a 21-nucleotide TetO promoter region.
- the RC comprises at least one to about six TetO promoter repeats, more preferably about four TetO promoter repeats.
- a preferred such TetS/tTS cell line is a HeLa cell line derivative, for example the cell line from Clontech: HEK 293 tTS, Catalog #631146; or HeLa 293 tTS, Catalog #631147.
- the TetO promoter is not bound by tTS.
- the Reporter Construct includes additional components to enhance the efficiency of the method of evaluating protease activity.
- One such component consists of a transcription silencing or inhibition sequence that is used to prevent transcription of the reporter product unless the appropriate conditions are present. For example, as shown in FIG. 5 , several copies of the Tet operons (TetO) may be placed down-stream from the promoter. N. F.
- the AD element of the TA agent (in accordance to the preferred embodiment described above, the AD is NF ⁇ B) is then free to facilitate transcription.
- This additional control level allows for a tightly controlled system. For example, absent tetracycline, there is no reporter gene product and the expression is not particularly “leaky.” Background transcriptional levels in the absence of expression the TA or release of the BD-NF ⁇ B chimera can be measured.
- the IPR comprising the above elements is upstream and controls transcription of one or more reporter genes.
- more than one reporter may be utilized to evaluate protease activity.
- two different fluorescent molecule sequences may be included.
- Other reporter couples may also be utilized, such as a fluorescent reporter and an antibiotic resistance sequence.
- the two sequences may be translated as separate molecules or might produce a chimeric product.
- the two reporters are part of a single translation product.
- the two reporter molecules are separated by a cleavable linker. In one example, as shown in FIGS.
- a Venus gene product is fused to the Gaussia luciferase gene (GLuc) gene product and the two reporter proteins are linked by a “self-cleavage” peptide 2A sequence of the foot-and-mouth disease virus (FMDV).
- FMDV foot-and-mouth disease virus
- a person of ordinary skill in the art would recognize that other self-cleavage peptides may be utilized to link the two reporters or that the two reporters may be active as part of a fused protein product, not necessitating separation into two protein products.
- the 2A cleavage site allows the production of secreted GLuc activity into the medium and cell fluorescence from Venus expression. Inclusion of both reporter genes permits instantaneous examination of cells microscopically for Venus YFP production as well as detection of bioluminescence in plate readers. Because the GLuc product is released into the media in which the cells are grown, over-expression of the GLuc reporter can be easily measured by methods recognized by a person of ordinary skill in the art.
- An alternative method to express two proteins from one transcript is to insert the Internal Ribosome Entrance Site (IRES) in between two genes. Yury A. Bochkov and Ann C. Palmenberg BioTechniques 41:283-292 (2006).
- the system may be utilized to evaluate the activity of the protease that specifically recognizes the PS of the TA agent, in vivo. For example, when the construct is expressed in cells that contain a RC, the level of expression of the reporter product indicates the presence of the chimeric BD-AD product, which is a function of the activity of the protease in the same cell.
- the protease substrate contains trans-membrane components
- the effect of the BD-AD components are disabled.
- the botulinum neurotoxin protease substrates in their natural form contain palmitoylated residues that localize the proteins to vesicular membranes. Lane, S. R. and Y. C. Liu. Journal of Neurochemistry 69: 1864-1869 (1997).
- the PS utilized in the BD-PS-AD constructs described above exclude the palmitoylated residues of the substrate. Localization to the cell membrane can be avoided simply by deleting palmitoylated residues from the construct.
- the construct may be engineered to prevent palmitoylation of those residues and inhibit localization of the construct to vesicular membranes.
- Palmitoylation and the resulting localization to the cell membrane can also be used in an alternative preferred embodiment of the present invention.
- a palmitoylated protease substrate is attached to the transcription enhancer domain as shown in FIGS. 3 and 4 .
- This configuration is described below as the BD-AD-PS or as AD-BD-PS where the order of BD-AD and AD-BD are interchangeable.
- the protease substrate may be attached to the transcription enhancer element resulting in a PS-BD-AD configuration.
- the botulinum neurotoxin substrate is provided as shown on FIG. 4 a (BD-NF ⁇ B-VAMP) and FIG.
- the BD in this preferred embodiment is the Gal4 binding domain.
- the C-terminal transmembrane domain of syntaxin1a anchors the BD-AD-syntaxin1a full length molecule to the membrane of the presynaptic terminal.
- the BD-AD domain may be fused to the protease substrate PS in this case SNAP25 amino acids 104 to 206 (lacking the palmitoylated cysteine residues present in SNAP25, amino acids 95 to 103) which is further fused to either syntaxin1a full length molecule to anchor the entire fusion molecule BD-AD-SNAP25 (104 to 206)-syntaxin1a full length (1-288).
- the principle advantage is that the syntaxin1a targeting and localization to the presynaptic membrane essentially identical to that of SNAP25 provide correct localization of the SNAP25 substrate. Additionally the BoNT/A LC is trafficked to the presynaptic membrane similar to the syntaxin1a trafficking allowing localization of protease substrate and BD-AD-SNAP25 (104 to 206)-syntaxin1a full length (1-328).
- the TA agent is a BD-AD-SNAP25 (104-206)-VAMP-2 construct.
- the BD-AD-SNAP25 (104-206)-VAMP-2 construct is a universal botulinum protease system that can be utilized as an assay for essentially all BoNT serotypes (BoNT/A, C1, and E cleave SNAP-25 and BoNT/B, D, F, and G cleave VAMP-2).
- the reporter sequence of the RC may correspond to the sequence a fluorescent protein, a bioluminescent protein or any other protein that allows for the quantification of a signal upon expression of the gene. It is contemplated that yellow fluorescent protein (YFP), green fluorescent protein (GFP), cyan fluorescent protein (CFP); blue fluorescent protein (BFP), red fluorescent protein (RFP) and fluorescing mutants thereof, may also be utilized. Bioluminescent proteins such as Gaussia luciferase, renilla luciferase, click beetle, and firefly luciferase may also be used to quantify the activity of the reporter vector. In one preferred embodiment, the reporter sequence may consist of the Venus yellow fluorescent protein. Nagai T., Ibata K., Park E. S., et al. Nature Biotechnol 20: 87-90 (2002).
- the system may be utilized to create a genetically engineered cell line containing one or more of the constructs described above.
- the constructs may be incorporated into one or more vectors for expression in a particular type of cell.
- the constructs may be stably integrated in the cell, or may reside on transformation vectors.
- the methods and vectors are well known in the art. The methodologies used for transfection and transduction into cells are well known in the art. Laura Bonetta, The Inside Scoop—Evaluating Gene Delivery Methods , Nature Methods 2:875-883 (2005).
- one or more of the constructs are integrated via lentiviral vectors.
- the lentiviral vectors are self-inactivated (“SIN”) lentiviral vectors.
- SI self-inactivated
- Another preferred embodiment of the present invention provides a method for creating a genetically engineered cell line.
- eukaryotic cells such as 293-tTS cells
- a vector containing the RC comprising a regulated reporter gene, expressed from a minimal promoter controlled by five copies of the Gal4 BS.
- four copies of the synthetic tetracycline operator are also included (“the G5TO4 promoter”) as described above.
- the system is used to evaluate the activity of specific proteases, such as botulinum neurotoxins.
- a lentivirus vector containing the RC with the Gal5/TO4 promoter and the Venus and GLuc genes is transfected into mammalian 293-Ts cells.
- the cells are then transfected with a lentivirus vector containing either the BD-SNAP-25-AD construct or the BD-VAMP-2-AD construct.
- the construct is stably integrated.
- the cell line is engineered to further comprise a gene construct encoding BoNT/LC-B to generate the final reporter cell line for evaluating the activity of the various botulinum neurotoxin proteases.
- BoNT/LC cleaves the SNAP-25 or VAMP-based transactivator fusion protein, separating the DNA binding domain from the activator domain and, consequently, cells fail to express the Venus and luciferase reporter genes.
- the protease is transduced into the cell. The same method may be utilized for identifying the activity of other protease-substrate or binding domain-binding site couples, as described above.
- the reporter cell lines containing the RC, TA agent, and PC are utilized to identify protease inhibitors.
- the cell lines are utilized for high throughput screening of protease inhibitors, such as botulinum neurotoxin inhibitors.
- protease inhibitors such as botulinum neurotoxin inhibitors.
- the chimeric transcription factor activates the G5 or G5TO4 promoter resulting in expression of the Venus and GLuc reporter genes, and when cleaved by the botulinum neurotoxin light chain, the expression of the reporter genes is turned off.
- this system is referred to as a “cleave-off” system and is ideal for small molecule BoNT/LC inhibitor screening because inhibition of BoNT will result in an increase in reporter signal (“gain-of-signal” assay), reducing the frequency at which false positives are detected.
- the transcription factor will no longer be cleaved, resulting in restoration of the expression of the Venus and GLuc indicators.
- the cell lines are used in a high throughput screening assay, where the system is exposed to potential inhibitors.
- the systems may be utilized to identify inhibitors present in available chemical libraries or by testing specific molecules of interest. One such method utilizing libraries is discussed in Examples 4 through 6.
- One embodiment of the present invention presents a cellular, gain-of-signal, bioluminescent, reporter screen.
- the present invention identifies endopeptidase inhibitors of neurotoxins, such as BoNT/A LC and BoNT/B LC, through cell-based reporter HTS.
- endopeptidase inhibitors are small molecules, which inhibit neurotoxins, such as BoNT/A or BoNT/B.
- the engineered cell lines used in accordance to one preferred embodiment exhibit a low basal reporter signal, but produce a much higher amplified light signal (>10 ⁇ ) when small molecules inhibit the peptidase activity of the BoNT/LCs.
- Each cell-based BoNT/LC or HTS screening assay provides a convenient counter screen for the other assay.
- employing serially a cleave on and a cleave off assays may serve as counter screening assays.
- the purpose of these counter screen assays is to determine, for example, the mechanism of action in accordance to the invention as opposed to other, general toxicity phenomena.
- Such testing of the system includes cytotoxicity assays or determination of cleaved transcriptional activator molecules, and quickly remove false positives and rapidly identify the most selective and non-toxic neurotoxin inhibitors.
- One manner of screening false positives includes the analysis of the transcriptional activator molecule in a system that seems to have affected the expression of the reporter molecule.
- the screens for the false positives e.g. inhibitors that worked by some mechanism unrelated to release or break down of the TA molecule
- the cell-based screening approach described here provides significant benefits over any in vitro enzymatic screens, since compounds must reach the intracellular milieu and inhibit neurotoxins, such as BoNT/A or BoNT/B, in the cytosol from cleaving their substrates, such as SNAP-25, VAMP-2, syntaxin1a. Therefore, both the toxin and its substrate are in a clinical, in vivo milieu.
- the toxin function is very likely different within the cell as opposed to cell free enzymatic activity.
- the use of large substrate fragments of 70-100 amino acid residues is one of the key advantages to these cell based assays. Since the active site may encompass proteins larger than the exosites, it allows the detection of cleavage at sites not normally considered an exosite.
- the method and system disclosed herein may be used to identify and prioritize inhibitors of various neurotoxins, such as botulinum neurotoxins A and B for optimization into therapeutics.
- the method may be further used to construct, validate, and apply mammalian cell-based primary reporter screens for inhibitors of neurotoxins, such as BoNT/A and BoNT/B, to libraries of diverse compounds. Hits may be confirmed by re-assay in triplicate, and false positives may be eliminated by using multiple BoNT-based assays or non-toxin assays as counter-screens for each other and the other methods as described above.
- the method disclosed in this application further provides for a cellular, gain-of-signal, reporter screen.
- These screens may be applied libraries of compounds and follow-up with biochemical assays as a secondary validation to identify potential inhibitors.
- the validated hits may be characterized thoroughly to ensure that they act specifically on the botulinum neurotoxins both in vitro and in neuronal cell model systems and that they exhibit minimal cytotoxicity.
- the systems and methods described herein provides for the identification and development of highly potent small molecule inhibitors for the treatment of BoNT induced poisoning.
- Small molecule BoNT LC inhibitors can penetrate neurons and provide protection both pre- and post-toxin exposure.
- the systems and methods described here may be used for identification of small molecule inhibitors to other protease substrate pairs that may be important in causing pathogenic states.
- protease substrate pairs may include anthrax lethal factor, caspases, ubiquitin proteases, sumo proteases, ubiquitin-like molecule processing protease, autophagy related processing proteases such as ATG4, viral encoded proteases such as alpha virus NSP2 and HIV proteases.
- BoNTs are but one example of the many ways in which a system to identify protease inhibitors may be utilized. A person of ordinary skill in the art would recognize that the constructs and methods described herein may be utilized for the evaluation of other proteases, their activity and their inhibitors.
- anthrax lethal factor zinc metalloprotease (LF) and its cognate substrate MAPKK viral processing proteases such as the NSP2 protease of alpha viruses and its cognate substrate NSP1-4, ubiquitin and ubiquitin like molecule processing proteases, caspases, ubiquitin proteases, sumo proteases, ubiquitin-like molecule processing protease, autophagy related processing proteases such as ATG4, viral encoded proteases such as alpha virus NSP2 and HIV proteases.
- cell based systems that have a suppressed signal when the protease is active in cells but generate an increase in signal when the protease is inhibited by small molecules in cells is preferable for the rapid high-throughput screen of small molecule inhibitors.
- This preference is due to the fact that an increase in signal in the presence of a “positive hit” or the presence of an active protease inhibitor compound is more effective in high throughput screening (HTS) generally.
- Means for detecting the presence of a protease activity in cells may be important. For instance if a mass exposure to BoNT were to occur, rapid triage of those requiring immediate therapy with limited resources vs. those who may not have actually been exposed but feel ill (so called walking well) may be needed.
- the current “gold standard” or primary means of assaying the potency and efficacy of BoNT pharmaceutical preparations relies on the injection of toxin into mice for establishment of mouse LD50 units. This method requires extensive use of live animals in a lethal assay. It would be desirable to limit or eliminate the use of such live animal assays. A cell based assay which might reliably detect the presence and quantify the activity of the BoNT is needed.
- Cell based assays for detecting the presence of a protease in the cells such as the BoNT LC protease are best configured with a system that turns on an indicator signal or signals with the presences of the protease in the cell.
- cells expressing the TA agent and RC in the “cleave on” configuration are utilized to identify the presence of known proteases in a sample.
- an environmental sample is presented to cells containing the TA and RC constructs. If target protease, e.g., BoNT/LC A, is present, it will enter the cell, cleave the TA at the PS, releasing the AD-BD fragment, which in turn enhance transcription of the reporter gene in the RC.
- a RC in accordance with one embodiment of the present invention, containing a synthetic promoter G5/TO4 was transfected by a lentiviral vector into cells.
- the RC was co-transfected with a plasmid expressing a Gal4 binding domain fused to the NF ⁇ B activator fusion (pBD-NF ⁇ B) (the TA agent) into HeLa-tTS cells.
- the transfected cells constitutively express the tetracycline transcription silencer tTS (Clontech).
- the cells were grown in a 6-well plate to approximately 80% confluence. Six hours after transfection, 1 ug/ml of tetracycline was added to the media of the test cells.
- Tetracycline was not added to the media of cells used as a control.
- Culture medium was collected two days post-transfection for the Gaussia luciferase (GLuc) assay. Monique Verhaegen and Theodore K. Christopoulos Anal. Chem., 74:4378-4385 (2002).
- Venus expression was observed with a fluorescent microscope.
- the relative light units (RLU) of the cells cultured in medium containing 1 ⁇ g/ml tetracycline is 16 fold higher than that of cells cultured in the absence of tetracycline as measured by luminometer. Additionally, there is Venus expression in the cells cultured in medium containing tetracycline but no Venus expression in cells grown in medium lacking tetracycline.
- the synthetic promoter G5TO4 is functional. It can be highly activated by a transactivator, such as BD-NF ⁇ B that binds to Gal4 binding sites. Both GLuc and YFP expression are highly activated in the presence of tetracycline; (2) The GLuc gene is a very sensitive and convenient reporter. In these experiments, ninety-five percent of Gaussia luciferase is secreted into the culture medium; thus, GLuc activity can be directly measured from culture medium by a luminometer. In light of this controlled reporter gene expression, low and measurable backgrounds of reporter gene expression, and convenient use, the promoter-reporter system described in this application is useful for high throughput screening.
- the novel RC was transduced into 293-tTS cells by lentiviral vector.
- Lentiviral vector particles carrying the RC were produced by co-transfecting 3.5 ⁇ g of the transducing plasmid with 7.1 ⁇ g HIV-1 gag-pol helper construct (Synaptic Research), and 2.8 ⁇ g VSV-G expression plasmid (Synaptic Research) onto 80-90% confluent 293FT cells (Invitrogen) cultured in 100 mm plates. Culture medium that contained the budded viral vectors was collected 48 hours after transfection and was cleared of cell debris by centrifugation at 2,000 RPM for 10 minutes at 4° C. (Sorvall RT 600D).
- the cleared viral supernatant was further concentrated by ultracentrifugation at 25,000 RPM for 90 minutes at 4° C. (Beckman Coulter OptimaTM XL-100K). Lastly, the viral vector pellet was soaked in 50 ⁇ l ( 1/200 the original volume) of culture medium overnight, resuspended, and stored at ⁇ 85° C. until needed for transduction. The resulting viral vector particles were used to transduce 293T-tTS cells (Clontech®) that constitutively express the tetracycline transcription silencer tTS.
- Single cell colonies were cloned by cloning rings and tested for functionality by transient transfection of the expanded cells with a pBD-NF ⁇ B construct, which expresses the chimeric transactivator BD-NF ⁇ B.
- the transfected cells were cultured in the presence and absence of 1 ⁇ g/ml tetracycline. Two days after tetracycline induction, YFP fluorescence (Venus gene expression) was observed with a fluorescent microscope and Gaussia luciferase gene expression was measured by a luminometer.
- a gene for the regulatory component a transactivator chimeric fusion protein consisting of the appropriate BoNT substrate, SNAP-25 for BoNT/A and VAMP-2 for BoNT/B, sandwiched between a Gal4 DNA binding domain (amino acids 1-148) (Gal4/BD or BD) and the NF ⁇ B transactivation domain (NF ⁇ B/AD or AD) was transduced into the cells that have the novel Reporter construct as described in Example 1.
- the BD-PS-AD constructs in which the protein substrate does not contain palmitoylated residues, were constructed synthetically and introduced in cells containing the RC.
- the TA agent encoding either 103 amino acid residues around the cleavage site of SNAP-25 (residues 104-206) or 70 amino acid residues around the cleavage site of VAMP-2 (residues 25-94) fused between the Gal4 DNA binding domain and the NF ⁇ B transactivator domain were used.
- the reporter cell line clone #17 from Example 1 was further transduced with a lentiviral vector that carries the BD-VAMP-NF ⁇ B transactivator gene construct.
- the transduced cells were subjected to appropriate selection (G418, blasticidin, and puromycin), and single-cell clones carrying stable integrations of both the reporter and the VAMP-2 transactivator fusion were obtained.
- the reporter gene in clone #32 was routinely/repeatedly activated more than 200-fold when 1 ⁇ g/ml tetracycline was added to the culture medium.
- a similar process is used to create a cell lines containing other chimeric transactivator constructs.
- the cell lines containing the reporter vector are further transfected with a BD-SNAP25-NF ⁇ B or a BD-syntaxin1a-NF ⁇ B gene construct.
- more than one transcriptional activator construct, each containing another BoNT substrate, is created.
- the binding domain (BD) and the transactivation domain (NF ⁇ B) may be replaced with any DNA binding domain and transactivation domain as long as the binding sites of the Reporter construct are changed correspondingly.
- Single cell clones carrying the RC and TA agent are selected and their functionality are evaluated as described for clone #32.
- clone #32 was analyzed in a 96-well microplate in order to demonstrate that signal strength and the signal:background ratio are adequate for use in high throughput screening.
- Duplicates of three groups of 3 wells each were seeded with a low (group 1), medium (group 2), and high (group 3) density of cells.
- group 1 low
- group 2 medium
- group 3 high
- luminescence was measured in a plate reader.
- the luciferase activity in the medium of cells treated with tetracycline was 200-fold higher than that observed from culture medium of cells not treated with tetracycline. See FIG. 8 .
- the “cleave-on” method was evaluated by the transcriptional activator constructs encoding either 103 amino acid residues around the cleavage site of SNAP-25 (residues 104-206) or 70 amino acid residues around the cleavage site of VAMP-2 (residues 25-94) fused upstream or downstream of the chimeric transactivator BD-NF ⁇ B/AD, respectively, as shown in FIGS. 3 and 4 .
- the SNAP-25 and VAMP-2 segments are expressed on the cellular presynaptic plasma membrane tethering BD-NF ⁇ B/AD to the membrane.
- FIG. 9 shows examples of the results of experiments conducted using both configurations.
- GLuc activity expressed in terms of RLU was measured using a luminometer and showed an approximate 15-fold reduction in GLuc signal after 48 hours induction of the BoNT/B LC from the Tet-regulated PC FIG. 10 .
- This result demonstrates that the fully assembled system with the RC, cleave-off TA, and the PC is suitable for high-throughput screening of BoNT/B LC inhibitors.
- the system in this configuration will exhibit an increase in signal with inhibition of the LC protease.
- the SNAP-25 and VAMP-2 chimeric transcriptional activators were cloned into self-inactivated (SIN) lentiviral vectors and co-transfected into 293T-tTS cells with the reporter construct together with various BoNT/LC gene constructs (wild-type LC-A, an inactive mutant LC-A, and wild-type LC-B).
- the cells were treated with 1 ⁇ g/ml tetracycline.
- Gaussia luciferase (GLuc) activity was measured with a luminometer and Venus YFP expression was observed by fluorescent microscopy. The results are shown in FIG. 9 . The results confirmed that the reporter is turned off by cleavage of the transactivator.
- the chimeric BD-SNAP25-NF ⁇ B transactivator strongly activates the G5TO4 promoter when co-transfected with inactive mutant BoNT/A-LC mLC-A and Gal4/BD-SNAP25-NF ⁇ B/AD, which was used to mimic the presence of a potent BoNT/LC-A inhibitor, but not when co-transfected with the wild-type BoNT/A-LC LC-A and Gal4/BD-SNAP25-NF ⁇ B./AD.
- the chimeric Gal4/BD-VAMP-NF ⁇ B transactivator/AD transactivates the G5TO4 promoter when transfected with the BoNT/A-LC expressing plasmid because it is not cleaved by BoNT/A-LC.
- the chimeric transcription activator construct Gal4/BD-VAMP-NF ⁇ B/AD does not activate the reporter when co-transfected with wild-type BoNT/LC-B LC-B and Gal4/BD-VAMP-NF ⁇ B/AD because the transcription factor is cleaved.
- the Gaussia luciferase activities expressed as RLU values are consistent with the visualized YFP fluorescence and provide quantitative measurements of the reporter response—20-fold and 23-fold in the SNAP-25 and VAMP transactivator systems, respectively, for uncleaved vs. cleaved transactivators.
- BoNT constructs consist of the streptavidin binding protein (SBP), the cyan fluorescent protein (CFP), and BoNT/A-LC or BoNT/B-LC fused sequentially and in frame. These two constructs, SBP-CFP-BoNT/A-LC and SBP-CFP-BoNT/B-LC, have been cloned into the lentiviral vector pLenti4/TO/V5-DEST (Invitrogen, Inc., Catalog No. K4965-00). The fusion genes are expressed from a modified CMV promoter that has two copies of Tet operator inserted immediately upstream of the TATA box.
- this RC was stably integrated into HEK 293 cells with lentiviral vectors as described previously.
- the VAMP cleave-off system was tested by complementation with the corresponding PC (BoNT/LC-B) and TA (BD-VAMP2-AD) plasmids using transient transfection.
- the time-course expression of both Venus (YFP) and GLuc from the reporter construct was assayed.
- the reporter cells were grown in 6-well sterile polylysine coated plates to approximately 70% confluence in 2 ml of complete growth medium.
- the SNAP25 cleave-off system was tested by complementation with the corresponding PC and/or TA plasmids using transient transfection. Again, immediately following transfection, the time-course expression of both Venus (YFP) and GLuc from the reporter construct was assayed. Specifically, reporter cells are grown in 6-well sterile polylysine coated plates to approximately 70% confluence in 2 ml of complete growth medium without antibiotics and with serum. For transfection with transcriptional activator BD-SNAP25(104-206)—NF ⁇ B plasmid alone, 4 ⁇ g of plasmid DNA was transfected using LipofectamineTM 2000 (Invitrogen).
- GLuc activity expressed in terms of RLU was measured using a luminometer and Venus fluorescence was be monitored by a fluorescent microscope.
- Cells scraped from the plate surface from different wells at 24 h, 48 h, 72 h time intervals were washed twice with PBS and centrifuged at 10,000 rpm for 10 min at 4° C. then lysed with a gel loading buffer. Samples were run on SDS-PAGE gels and then transferred to PVDF membranes for Western blot analysis with rabbit anti-GFP (Santa Cruz Biotechnology) as primary and AP-conjugated anti-rabbit IgG as secondary antibody.
- FIG. 11 The results were run on SDS-PAGE gels and then transferred to PVDF membranes for Western blot analysis with rabbit anti-GFP (Santa Cruz Biotechnology) as primary and AP-conjugated anti-rabbit IgG as secondary antibody.
- the luciferase signal increases at least 2 fold after cleavage of the SNAP25 (1-206)-BD-AD by the BoNT/E LC despite a high basal signal level as shown in FIG. 13 .
- the carboxyl terminal SNAP25 cleavage product after BoNT/E LC cleavage is stable. Thus there is not degradation of the BD-AD after cleavage like there is with the BoNT/A cleavage.
- SNAP23 cleave-on system Due to high base line signal with the SNAP25 (1-206)-BD-AD and rapid degradation of the C-terminal SNAP25 (1-206)-BD-AD, a different SNAP23 cleave-on system is used. This system consists of BD-AD-SNAP25(104-206)-VAMP full length or BD-AD-SNAP25 (104-206)-syntaxin1a full length.
- Any TA construct comprised of the truncated form of SNAP25(104-206) lacks palmytolation and, as a result, is not inherently capable of membrane localization.
- the fusion of this TA to a membrane anchor, such as VAMP2 or syntaxin 1a allows for an alternative method to perform cleave-on studies.
- Possible TA configurations are BD-AD-SNAP25(104-206)-VAMP2 or BD-AD-SNAP25(104-206)-syntaxin1a.
- fusion constructs are tested in the same manner as before: by transient transfection of the stable reporter cell line (lacking TetO) with both the fusion TA and either BoNT/LC-A or -B.
- the reporter signal is low at baseline in the absence of tetracycline, but will increase upon proteolytic cleavage of the TA.
- an aliquot of the culture medium is collected after 24 h, 48 h and 72 h for Gaussia luciferase (GLuc) assays before replacing the media with fresh culture media.
- GLuc activity expressed in terms of RLU was measured using a luminometer and Venus fluorescence was be monitored by a fluorescent microscope.
- the major advantage of these fused TA constructs is the ability for them to acts as universal detectors of numerous BoNT/LC serotypes.
- this cell line can function as a high affinity sensitive cell based biodetector for the presence of fully active BoNT. If a suitable cell line can not be found that has adequate ability to take up toxins from the environment to sensitively detect the toxins, then the affinity and sensitivity of the cell line to toxin can be increased by making a stable cell line overexpressing the necessary protein receptor and ganglioside component of the BoNT toxin cellular receptor.
- a TA is constructed such that the PS is the full-length mitogen-activate protein kinase kinase (MEK1) (NCBI Reference Sequence: NP — 002746) in the form BS-MEK1-AD.
- MEK1 mitogen-activate protein kinase kinase
- This TA construct is similarly transferred to the stable reporter cell line lacking TetO—used in a Stable Cell Line with RC (Not Tetracycline Regulated) example—by transient transfection.
- the Tet-inducible PC in this case is anthrax lethal factor (LF) protease (NCBI Reference Sequence: AAY15237), which cleaves MEK1.
- LF lethal factor
- AAY15237 NCBI Reference Sequence: AAY15237
- a TA is constructed such that the PS is the human small ubiquitin-related modifier1 (SUMO1) protein with the carboxyl terminal 5-AA (NCBI Reference Sequence: ABM87155).
- the 5-AA C-terminal peptide is cleaved by the (ubiquitin-like)-specific protease (ULP1), thus a PC construct is constructed with ULP1 as the protease (NCBI Reference Sequence: AAG33252).
- ULP1 the protease
- Both the PC and TA construct are similarly transferred to the stable reporter cell line lacking TetO by transient transfection.
- the all three components, RC, TA cleave-off Sumo construct, and the ULP1 PC are expressed, the luciferase signal is diminished.
- This system is appropriate for high-throughput screening of SUMO protease inhibitors.
- the final reporter cell lines is functionally validated by small molecule inhibitors of siRNA knock-down.
- small molecule inhibitors of siRNA knock-down For the BoNT/A-LC screening assay, established inhibitors (e.g., either hydroxamate compounds) are used. Since there is no small molecule inhibitors known for BoNT/B-LC, siRNAs are used that target BoNT/B-LC from Dahrmacon/Thermo-Fisher. In one embodiment of the present invention, three siRNAs per target may be developed. In addition, a scrambled siRNA is used as a control, which ensures that the knock-down is real and specific and there in no off-target effect.
- 293T cells are co-transfected with the siRNA and the BoNT/A-LC or BoNT/B-LC plasmids and Western blot analysis are used to choose the most effective siRNA for validating the final reporter cell lines. Then both the effective and the scrambled siRNA are used to transfect the final reporter cells. Transfection 1 ⁇ g/ml of tetracycline is added to the culture medium to initiate expression of BoNT/LC immediately after transfection. An aliquot of the culture medium is collected at day 1 through day 4 for luciferase assays. Venus fluorescence may be monitored by a fluorescent microscope. The expression of the reporters (both luciferase and Venus fluorescence) in the final reporter cells are restored by the effective siRNA.
- the reporter screens are optimized by running microplates with half positive (BoNT/A-LC inhibitor or siRNA for BoNT/B-LC) and half negative (DMSO only) controls and measuring the Z′ value.
- Conditions used to determine the effectiveness of each reporter strain include the density of microplate (96-well or 384-well), concentration of compound to be tested, DMSO concentration tolerance, temperature, degree of confluence of reporter strain before addition of test compounds, time of incubation in microplates before reading luminescence, and quantity of medium withdrawn for luciferase assay. Conditions may be changed to achieve an optimal Z′ factor >0.5 J. H. Zhang, T. D. Chung, and K. R. Oldenburg, J. Biomol. Screen 4:67-73 (1999). for each screen.
- the screens are conducted in 384-well dishes. 96-well dishes may be used if necessary to maintain adequate Z′ factor values.
- Reporter strains are grown and seeded into 96- or 384-well opaque white screening plates using a sterile Wellmate Microplate reagent dispenser (ThermoFisher, Inc.).
- a sterile Wellmate Microplate reagent dispenser ThermoFisher, Inc.
- compound master plates are thawed at room temperature on the day of the screen, and a predetermined quantity of compound is added by using a Sciclone ALH 3000 liquid handling robot (Caliper, Inc.) and a Twister II Microplate Handler (Caliper, Inc.). Plates are then incubated under established optimal conditions of time and temperature. Then, a predetermined quantity of the cell medium is transferred to a fresh microplate with the Sciclone robot to generate an appropriate dilution. Luciferase substrate is added by means of a Wellmate reagent dispenser, and luminescence is measured in an Envision Multilabel microplate reader (PerkinElmer).
- the system used to screen inhibitors is subjected to a pilot screen to assess screening conditions.
- the optimized assay configuration is tested in a pilot screen of ⁇ 2,000 compounds at 2-3 different concentrations. Controls are included in each plate—8 wells for 0% inhibition (DMSO only) and 8 wells for nearly complete inhibition (BoNT/A-LC inhibitor or siRNA for BoNT/B-LC).
- Assay plates receive appropriate reporter cells and compounds to be tested according to the protocol described above. The data obtained from this screen is used to determine variation (% CV), the hit rate at various z-score cutoffs, and may identify any problems with the assay which require resolution before HTS begins.
- the data from the pilot screen is then used to determine the compound concentration for the screen (probably in the range of 25-40 ⁇ M) in order to establish a hit rate between 0.1% and 1%.
- the criteria for designating a compound as a hit is determined in the pilot screen; however, a z-score >3 or >5 is likely suitable.
- the z-score for each sample is derived by subtracting the sample RLU from the mean negative control RLU and dividing the difference by the negative control standard deviation.
- the method in accordance with one embodiment of the present invention may also be utilized to screen diverse compound libraries to identify and confirm protease inhibitors with IC50's of ⁇ 10 ⁇ M.
- BoNT/A-LC and BoNT/B-LC screens described above is applied to libraries of discrete small molecules and natural products in order to identify compounds having potent inhibitory activity against either of these botulinum neurotoxins. Hits from the screen are confirmed by re-assay, establishing that they inhibit either BoNT/B-LC or BoNT/A-LC, but not both, and by demonstrating their potency in concentration-dependent inhibition studies (IC50).
- the NERCE library The compound collections of the National Screening Laboratory (NSRB) of the New England Regional Center for Excellence for Biodefense and Emerging Infectious Diseases (NERCE/BEID) at Harvard Medical is used as one example of a small molecule library to be screen in the cleave off cell based BoNT screening system.
- This library has been assembled by a group of NERCE's chemistry consultants who screened out compounds with undesirable properties, such as poor solubility, potential detergent-like activities, lack of stability in aqueous solutions and chemical reactivity.
- NERCE's chemistry consultants who screened out compounds with undesirable properties, such as poor solubility, potential detergent-like activities, lack of stability in aqueous solutions and chemical reactivity.
- BoNT/A&B-LC screens Compounds in a candidate chemical library are examined in 96 or 384-well format vs. the cell-based BoNT/A-LC and BoNT/B-LC cell base HTS described above. Screening library compounds are stored in 96-well master plates at 2.5 mM in 100% DMSO at ⁇ 20° C. Master plates are thawed, and an amount of compound determined in the pilot screen described above are added to the assay plates by means of a SciClone ALH 3000 liquid handling robot (Caliper, Inc.) and a Twister II Microplate Handler (Caliper, Inc.), at the same time, combining 4 ⁇ 96-well source plates into one 384-well assay plate. The screening plates contain positive and negative controls in the first and last columns as described for the pilot screen above.
- Raw data generated by the plate reader is processed as follows: relative luminescence unit (RLU) data is captured and analyzed in a semi-automated procedure by relating the plate serial number to the database entry, associating the numerical readout to each compound entry, and calculating the % inhibition and z-score.
- RLU relative luminescence unit
- a Z′-factor calculation is performed on each plate based on the positive and negative controls; Z′ values of >0.6 are considered adequate, and data from compounds in that plate are accepted into the database.
- All screening data, including the % inhibition, z-score, and confirmation/validation data such as the 50% inhibitory concentration (IC50) and the counter-screen results is stored in one central database (CambridgeSoft's ChemBioOffice). A structure-activity relationship on an investigated chemical series is analyzed quickly.
- analog compounds are identified rapidly from commercial databases, acquired, registered into the database and submitted for biological testing.
- Compounds that satisfy the criteria for designation as primary hits undergo a 3-step confirmation process previously described.
- First, primary hits are selected from stock plates into a confirmation stock plate and replicated to produce a set of 4 confirmation assay plates.
- the 4 confirmation assay plates are used in the primary screening assay to generate 4 new data points for each compound.
- a confirmed hit displays inhibition >50% and a z-score >3 in at least 3 of the 4 replicated assays.
- confirmed hits are counter-screened in replicate for inhibition of the other botulinum neurotoxin.
- Third, confirmed hits may be examined for concentration-dependent activity in FRET assays for inhibition of BoNT/A-LC and BoNT/B-LC; an IC50 is determined to rank the potency of each.
- the hit rate may be increased by accepting lower inhibition levels for hits as long as the Z′ value for the screening plate is above ⁇ 0.6, indicating a wide separation band between the negative and positive controls, and each hit is at least 3 standard deviations below the fully active control.
- each identified inhibitor is validated and multiple hits are prioritized by potency and selectivity. It is contemplated that validated inhibitors of BoNT/A and BoNT/B, may have IC50s of ⁇ 10 ⁇ M, a selectivity index CC50/IC50 ⁇ 10, no significant cytotoxicity, and demonstrated activity in primary neuronal cell model.
- This step in one embodiment of the present invention generates the potency and specificity information necessary to prioritize screening hits/or chemotypes discovered in the HTS assays described above.
- four types of activity may be assessed: (a) in vitro potency (IC50 for inhibition of the BoNT/A and BoNT/B endopeptidase activities in vitro), (b) specificity (IC50 for potency of inhibition of other endopeptidases in vitro, BoNT/F, anthrax lethal factor (AT-LF), and a panel of human matrix metalloproteases, MMP's; and test of chelation properties), (c) cytotoxicity (i.e., CC50 of the compounds on mammalian cells in culture), and (d) in vivo potency (i.e., IC50 for inhibition of the BoNT/A SNAP-25 cleavage or BoNT/B inhibition of VAMP cleavage activity in primary rat neurons; and rescue of axonal growth inhibition).
- Successful compounds exhibit little or no detectable
- Rat Neuronal Cell SNAP-25 Cleavage Assay As described previously, cells are harvested from 7-8 day old rat cerebella, washed and cultured in 6-well plates, and grown over a week with media changes. Once the cells have become networked neutrally, they are preincubated with compounds or diluent (DMSO) for 15 min. Cells are then inoculated with BoNT/A and incubated for 3 hours at 37° C., 5% CO 2 before harvesting. Cells are treated with 1 M NaOH to inactivate the BoNT and are scraped from the plate surface prior to centrifugation and lysis with a gel loading buffer.
- DMSO diluent
- Samples are run on SDS-PAGE gels and then transferred to membranes for immunoblot analysis with rabbit anti-SNAP-25 and then HRP-conjugated goat anti-rabbit IgG. Band intensities are read and normalized using scanning densitometry.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Peptides Or Proteins (AREA)
Abstract
A system for the identification of proteases and protease inhibitors is provided. The system has at least two components. The first component is a reporter construct with at least one binding site, a transcriptional promoter, an inducible promoter region, and at least one reporter gene, all functionally connected for expression of the reporter gene(s) in functional coordination with a transcriptional activation agent. The second component is a transcriptional activation agent comprising a nucleic acid binding domain, at least one protease substrate domain, and at least one transcriptional activation domain for an inducible promoter. The system allows detection and evaluation of agents affecting protease activity directed to the protease substrate domain. The system also allows for the detection of the presence of proteases in environmental samples.
Description
- This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/267,386, entitled “BOTULINUM NEUROTOXIN INHIBITOR IDENTIFICATION METHOD AND SYSTEM” and filed Dec. 7, 2009, which is incorporated herein by reference in its entirety.
- This invention generally relates to the field of protease inhibitor identification assays.
- Proteases play an important role in biological processes. Proteases, however, can also cause significant harm to biological systems particularly those delivered by virus, toxins and pathogenic micro-organisms. Methods for developing protease inhibitors and assaying for protease activity particularly in cells is a critical area of biotechnology. For example, the Botulinum neurotoxins (BoNTs) are the most potent toxins known (S. S. Arnon, R. Schechter, et al. Jama 285:1059-70. (2001); and B. M. Paddle. J Appl Toxicol 23:139-70. (2003). Botulism can be caused by ingestion of food stuff contaminated with the bacteria Clostridium botulinum, colonization of open wounds by the bacterium, or ingestion or respiration of the toxin(s). These toxins represent a serious threat to both military personnel and civilian populations (S. C. Clarke. Br J Biomed Sci 62:40-6 (2005); R. P. Hicks, M. G. Hartell, et al. Curr Med Chem 12:667-90 (2005); D. Josko. Clin Lab Sci 17:30-4 (2004). The lethal dose in humans is <1 ng/kg of body weight. J. C. Burnett, E. A. Henchal, et al. Nat Rev Drug Discov 4:281-97 (2005); J. C. Burnett, J. J. Schmidt, et al. Bioorg Med Chem 13:333-41 (2005); B. M. Paddle J Appl Toxicol 23:139-70 (2003). The Centers for Disease Control and Prevention has listed these toxins as category A (the highest priority) bio-threat agents. Although BoNTs can be dangerous, they have been recognized as useful medicinal compounds. BoNTs are now established biotherapeutics for a range of physical ailments and cosmetic treatments and are being produced in increasing quantities, both domestically and overseas. R. Bhidayasiri, and D. D. Truong, J. Neurol. Sci. 235:1-9 (2005); C. L. Comellaand and S. L. Pullman. Muscle Nerve 29:628-44 (2004); K. A. Foster. Drug Discov Today 10:563-9 (2005); R. G. Glogau. Clin J Pain 18:S191-7 (2002); J. D. Marks. Anesthesiol Clin North America 22:509-32, vii. (2004); C. Montecucco and J. Molgo. Curr Opin Pharmacol 5:274-9 (2005). A negative consequence of their usefulness is the increased availability of the neurotoxins for misuse Likewise, increased usage increases the likelihood of the occurrence of unintended adverse effects during treatment. T. R. Cote, A. K. Mohan, et al. J Am Acad Dermatol 53:407-15 (2005).
- Once inhaled into the lung or ingested into the gastrointestinal tract, the BoNTs are transcytosed across the respiratory epithelium or mucosa into the blood stream, where they can enter the intercellular space prior to binding to and entering the peripheral cholinergic presynaptic nerve endings. Currently, critical care mechanical ventilation is the only treatment option once neurons have been affected and diaphragm muscles cease to function. However, the effects of internalized BoNTs can last for months. R. Eleopra, V. Tugnoli, et al. Neurosci Lett 256:135-8 (1998); F. A. Meunier, G. Lisk, et al. Mol Cell Neurosci 22:454-66 (2003). As such, long-term mechanical ventilation would be impractical if even a limited number of individuals were simultaneously affected.
- There are seven BoNT serotypes (A-G), which possess different tertiary structures and significant sequence divergence. Structurally, each serotype is composed of a 100 KDa heavy chain (HC) and a 50 KDa light chain (LC). They are synthesized initially as a single polypeptide chain, which is severed by bacterial or host proteases. The chains remain connected by a disulfide bridge until reaching the reducing cytosolic environment of the neuronal target cells. D. B. Lacy, W. Tepp, et al. Nat Struct Biol 5:898-902 (1998). L. L. Simpson. Annu Rev Pharmacol Toxicol 44:167-93 (2004). The LC is a zinc-dependent endopeptidase.
- Once inhaled into the lung or ingested into the digestive tract, BoNTs are transcytosed across the mucosal epithelium into the blood stream, where they can enter the intracellular space prior to accessing peripheral cholinergic presynaptic nerve endings. The HC serves as a delivery system for the proteolytic LC by binding to neurons and transporting the LC into the cytosol via the carboxyl terminal half of the HC(HCC) and transporting the LC into the cytosol from the endosomes via a pore formed by the aminal terminal half of the HC(HCN). The LC of each BoNT serotype is a protease that cleaves a component of the SNARE proteins, which are responsible for acetylcholine containing vesicle fusion and release at the neuromuscular junctions. B. R. Singh. Nat. Struct Biol 7:617-9 (2000); and K. J. Turton, A. Chaddock, and K. R. Acharya, Trends Biochem. Sci. 27:552-8 (2002). BoNT serotypes A and E cleave SNAP-25 (synaptosomal-associated protein (25 kDa). T. Binz, J. Blasi, et al. J Biol Chem 269:1617-20 (1994). Serotypes B, D, F and G cleave VAMP (vesicle-associated membrane protein, also referred to as synaptobrevin and VAMP-2). G. Schiavo, F. Benfenati, et al. Nature 359:832-5 (1992); G. Schiavo, C. Malizio, et al. J. Biol. Chem. 269:20213-6 (1994); G. Schiavo, O. Rossetto, et al. J Biol Chem 268:23784-7 (1993); G. Schiavo, C. C. Shone, et al. J Biol Chem 268:11516-9 (1993); J. J. Schmidt, and R. G. Stafford. Biochemistry 44:4067-73 (2005). Serotype C cleaves both SNAP-25 and syntaxin1a. J. Blasi, E. R. Chapman, et al. Embo J 12:4821-8 (1993). BoNT mediated cleavage of the SNARE proteins results in flaccid paralysis, by preventing motor neurons from releasing acetylcholine at the neuromuscular junctions and interrupting the function of autonomic nerves via the inhibition of acetylcholine release as well. Once diaphragm muscles are affected, breathing is impaired and ultimately suffocation results.
- The seven BoNT serotypes differ significantly in amino acid sequence. However, the different serotypes adopt similar overall protein folds and aspects of the catalytic core are conserved. M. A. Breidenbachand A. T. Brunger. Trends Mol Med 11:377-81 (2005). The X-ray crystal structures of BoNT/A and BoNT/B indicate that the areas within 8 Å of the zinc-binding site of these two serotypes are highly homologous with 17 of the 22 residues being identical. S. Swaminathan & S. Eswaramoorthy, Nature Structural Biology 7:693-699 (2000). However, significant variation is observed within 15 Å, including at the zinc-binding pocket, which is buried much more deeply in BoNT/A than in BoNT/B. Therefore, the active sites differ sufficiently among the serotypes, such that broad-spectrum potential inhibitors are unlikely. Furthermore, upon binding, the substrate wraps around the circumference of BoNT LC, creating an unusually large substrate enzyme interface. M. A. Breidenbachand A. T. Brunger. Nature 432:925-9 (2004). BoNT substrate specificity is also determined by its binding of the substrate over the long substrate/LC protease interface through sites distal to the active site, which is called “exosite” binding. M. A. Breidenbachand A. T. Brunger. Trends Mol Med 11:377-81 (2005).
- Vaccine approaches will likely play a role in biodefense against BoNT. M. P. Byrne and L. A. Smith. Biochimie 82:955-66 (2000). J. B. Park and L. L. Simpson. Expert Rev Vaccines 3:477-87 (2004). However, identification and inoculation of all members of large at risk populations prior to exposure is problematic. The development of therapeutic approaches that are effective post-exposure treatment is essential. Low molecular weight, non-peptidic inhibitors offer the best opportunity for the development of post-exposure therapeutics. Interruption of later steps in the pathway, and particularly proteolytic steps, is desirable for post-exposure therapy. Such compounds would have to be capable of penetrating into the cytoplasm of the intoxicated neurons and would need to act with specificity.
- The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying drawings in which:
-
FIGS. 1A and 1B are schematic diagrams of three constructs made in accordance with one embodiment of the invention and their interaction with other molecules for assessing the change in the transcription signal of a reporter in the presence of a protease. One construct provides a Transcriptional Activator agent (“TA”). The TA agent comprises a Binding Domain (“BD”), a Protease Substrate (“PS”) domain, and a transcriptional Activation Domain (“AD”). The second construct is a Protease Construct (“PC”). The PC comprises a promoter, a regulator sequence, e.g. TetO, and the sequence of a protease, which proteolytic activity cleaves the PC of the TA. The third construct is a Reporter Construct (“RC”). The RC of one preferred embodiment comprises a transcriptional promoter region and the reporter gene(s). - The transcriptional promoter region comprises at least two elements: at least one binding site (“BS”) sequence that functionally corresponds to the BD domain of the TA agent and a minimal promoter region having at least one TATA box sequence. The system illustrated in this figure is called the “cleave off” system because when the protease of the PC cleaves the PS, transcription stops and signal decreases.
-
FIGS. 2A and 2B are schematic representations of the three constructs generally described inFIGS. 1A and 1B , for illustration/exemplary purposes the domains illustrated as part of the TA agent are: the BD derived from transcriptional factor for the Gal4 operon, the PS is either VAMP2 (amino acids 25-94) or SNAP25 (amino acids 104-206), and the AD is the nuclear factor κB (“NFκB/AD”). The elements illustrated as part of the RC inFIG. 1B are: a promoter consisting of at least one BS corresponding to the Gal4 BD of the TA agent and a minimal adenovirus promoter region comprising the TATA box (E. D. Lewis, J. L. Manley, Mol. Cell. Biol. 5: 2433-2442 (1985). The PC comprises the CMV promoter with a TetO sequence for regulation of expression and the SBP-CFP-BoNT/LC-A sequence for expression of BoNT/A light chain. Other constructs may include the light chains of any botulinum toxin or a protease that cleaves the PS on the TA agent. -
FIGS. 3A and 3B are a schematic representation of a system in accordance with one embodiment of the present invention in which the BD and AD of the TA agent are attached to the end of the PS. Where the PS is localized to a membrane or kept outside the nucleus of the cell. When the protease is added to the system, it cleaves the PS releasing the BD-AD pair and enhancing transcription of the Reporter Gene (“RG”). This system is referred to as the “cleave on” system. -
FIG. 4 a is a schematic representation of the “cleave on” system where the PS is VAMP-2 andFIG. 4 b is a schematic representation of the “cleave on” where the PS is SNAP-25. -
FIG. 5 is a schematic representation of a TA agent and a RC, which have an additional element to control any leakage of the minimal promoter. The additional element is at least one copy of a transcription regulator, in one preferred embodiment the transcription regulator is the TetO promoter region (5′-tccctatcagtgatagagatc-3′). Specifically, in the illustrated embodiment, the construct employs four copies of the TetO promoter sequence. -
FIG. 6 a bar graph of the results of experiments showing the ratio of bioluminescence in the presence and absence of tetracycline for stably integrated RCs. The clones in this figure do not contain the TA agent construct. -
FIG. 7 is a bar graph of the results of experiments showing the ratio of bioluminescence in the presence and absence of tetracycline for stable reporter in the presence of TA agent. -
FIG. 8 shows the results of a microplate cell-based assay of cells containing a reporter construct and the indicated BD-VAMP-NFκB TA agent in the presence and absence of tetracycline. -
FIG. 9 is a bioluminescence assay in accordance with one preferred embodiment of the present invention showing the effect of the indicated TA agents on YFP (Venus) and GLuc expression. -
FIG. 10 is a bar graph of the results of experiments showing the evaluation of stable BoNT/LC-B indicator cell lines. -
FIG. 11 is a bar graph and pictures of bioluminescence results of a functional test of the TA agent constructs. -
FIG. 12 is a bar graph showing validation of the cleave off indicator system. -
FIG. 13 is a bar graph showing validation of the cleave on system in stable cell lines. - A system for the identification of proteases and protease inhibitors is provided. The system has at least two components. The first component is a reporter construct with at least one binding site, a transcriptional promoter, an inducible promoter region, and at least one reporter gene, all functionally connected for expression of the reporter gene(s) in functional coordination with a transcriptional activation agent. The second component is a transcriptional activation agent comprising a nucleic acid binding domain, at least one protease substrate domain, and at least one transcriptional activation domain for an inducible promoter. The system allows detection and evaluation of agents affecting protease activity directed to the protease substrate domain. The system may also include at least one protease or protease candidate that specifically cleaves the protease substrate domain of the transcriptional activation agent.
- A second preferred embodiment of the present invention is a method to identify protease inhibitors utilizing the system described above. Yet another embodiment of the present invention provides for a method to identify the presence of proteases in an environmental sample utilizing the system described above.
- The invention summarized above may be better understood by referring to the following description, which should be read in conjunction with the accompanying claims and drawings. The description of embodiments, set out below to enable a person of ordinary skill in the art to make and use the invention, is not intended to limit the invention, but to serve as particular examples thereof. Those skilled in the art would appreciate that they may readily use the concept and specific embodiments disclosed as a basis for modifying or designing alternative, elements, methods and systems for carrying out the present invention.
- One embodiment of the present invention provides a novel, cell-based system for identification of protease inhibitors and evaluation of protease activity. The components of the system comprise multiple constructs. As shown
FIGS. 1 through 5 , three constructs form part of the system: a Transcriptional Activation agent (“TA”, sometimes herein also referred to as “transactivator” construct), a Reporter Construct (“RC”), and a Protease Construct (“PC”). The three constructs can be utilized in two types of protease evaluation systems. In a “cleave off” system as shown inFIGS. 1 and 2 , the product of the PC inactivates the TA, resulting in a decrease in transcription of the product of the RC. In a “cleave on” system as shown inFIGS. 3 and 4 , the product of the PC releases the active portion of the TA agent activating transcription and enhancing signal from the reporter of the RC. - The TA agent is engineered to express a chimeric protein molecule comprising three elements: a DNA Binding Domain (“BD”), a Protease Substrate domain (“PS”) comprising the cleavage site for at least one protease, and a transcription Activation Domain (“AD”). In one preferred embodiment of the present invention, the TA agent is designed so that the BD and the transcriptional activation domain AD are on opposite sides of the PS as described in
FIGS. 1 and 2 . In other embodiments of the present invention, the PS is on one end of the BD-AD elements of the TA agent as shown inFIGS. 3 and 4 . Whether the system is a “cleave on” or “cleave of” system depends upon the position of the PS in the TA agent. - The TA agent according to one preferred embodiment utilizes botulinum toxin substrates, such as SNAP-25 or VAMP-2. The selected domains of SNAP-25 and VAMP-2 in these constructs are sufficient to allow cleavage activity. Accordingly, domains sufficient to encompass the protease substrate domain of either protein in respect to the BoNT proteases that normally cleave the respective substrate are provided. More preferably, the PS domain provided is sufficiently large to at least encompass also the exotoxin PS sites. M. A. Breidenbach and A.T.B. TRENDS in Molecular Medicine 11: 376-381 (2005). For VAMP-2, the PS domain would comprise amino acids 25-94 of VAMP-2. Cornille F, Martin L, et al. J Biol. Chem. 272:3459-64 (1997); Sikorra S, Henke T, et al. J Biol. Chem. 283:21145-52 (2008). For SNAP-25, that domain would comprise amino acids 104-206 of SNAP-25. S. Chen and J. T. Barbieri, Journal of Biological Chemistry 281: 10906-10911 (2006). In one preferred embodiment, the sequence of the AD constructs are BD-SNAP-25-NFκB or BD-VAMP-NFκB. The SNAP-25 and VAMP-2 fragments utilized lack their palmitoylated residues, thus preventing localization of the TA agent to the plasma membrane or cellular vesicles respectively.
- The PC includes a protease that recognizes a Protease Substrate (“PS”) in the TA agent. The PC may be a vector expressing the protease and capable of being expressed in the host cell containing the TA and RC as shown in
FIGS. 1 through 5 . In one embodiment of the present invention, the protease is expressed in a vector as described in Example 3 below. In an alternative embodiment, the PC can be a protease or a protease like molecule introduced into the cell expressing the TA and RC. The protease of the PC cleaves the PS domain of the TA agent. In accordance with one embodiment, the AD of the TA agent is brought into proximity of the promoter on the RC by the BD, promoting transcription of a reporter located transcriptionally downstream from the BS of the RC as shown onFIGS. 1 and 2 . When the PC is activated, or present in the host system, the proteolytic activity of the protease acts to deactivate and render ineffective the TA agent as a transcriptional enhancer by separating the BD from the AD, as shown inFIGS. 1B and 2B . In a preferred embodiment, the protease is selected from among BoNT A, C and E, and the PS is SNAP-25. In an alternative preferred embodiment, the protease is selected from among BoNT B, D, F and G, and the PS is VAMP-2. In a yet another preferred embodiment, the BoNT is serotype C and the PS is syntaxin1a (GenBank: AAK54507.2). In one embodiment, the TA may include a domain of syntaxin1a that lacks its c-terminal transmembrane domain (BD-syntaxin1a (1 to 265)-AD). The protease substrate may be any known protease substrate. It is expected that various proteases may also be utilized. Examples include the anthrax protease, caspases, alpha virus NSP2 protease, HIV processing proteases, Sumo processing proteases, Ubiquitin processing proteases, ISG15 processing protease, autophagy related ATG4 like processing proteases, and Hepatitis C processing proteases. - In accordance to other embodiments, cleavage of the PS domain results in enhanced expression of the reporter gene (the “cleave on” effect) as shown in
FIGS. 3B and 4B . If the cleavage releases a unit comprising both the BD and AD elements functionally connected, transcription is enhanced. As shown inFIGS. 3B and 4B , the TA agent consisting of a BD and an AD can be kept outside the nucleus by palmitoylated residues on the protease substrate (PS) domain. In yet further embodiments, the BD-AD pair may be attached to other molecules that keep the BD-AD construct outside the nucleus of the cell until the protease from the PC releases the BD-AD construct, which is transported into the nucleus and then enhances transcription of the reporter gene. In such arrangement the protease substrate domain may be attached to the plasma membrane or other vesicular membranes in the cell. The cleavage site of the protease is located between the TA consisting of the BD-AD and the extra-nuclear anchoring site of the PS. Thus, when the PS is cleaved by the protease, the BD-AD is freed to enter the nucleus and enhance transcription of the indicator, signaling the presence of the protease. In one embodiment of the present invention, expression of the protease in the PC is regulated. For example, a TetO control element may be included upstream of the protease gene preventing expression of the protease unless the appropriate conditions are present. In one preferred embodiment, the TetO operator is utilized, which prevents expression of the protease in the absence of Tetracycline. It is contemplated that other control mechanisms known to individuals of ordinary skill in the art would also be appropriate for controlling the expression of the protease in the host cells. - The RC is a nucleic acid based construct. Preferably, the TA agent and/or the PC are also nucleic acid based constructs that express the trans-activator molecule and the protease, respectively. However, a person having ordinary skill in the art would recognize that the TA and/or the PCs may be provided as pre-made proteins to a functional mammalian cell. Likewise, an artisan skilled in the art can understand the application of the three construct system in other backgrounds, e.g. a cell-free system, where either or both the TA agent and the PC are provided as nucleic acid or proteins, where of the three constructs may be fixed on membranes and so on. In the description, below, the focus is on the preferred embodiment, where each of the constructs is a transgenic genetic construct introduced into a mammalian cell, preferably a human cell.
- The RC has one or more BS recognized by the BD of the TA agent, a promoter sequence preferably comprising a TATA box and at least one reporter gene as shown in
FIGS. 1 through 4 . The BD element of the TA agent binds to the one or more BS elements. In one embodiment of the present invention the Gal4 BD is used in the TA agent and the corresponding Gal4 BS is used in the RC. In another preferred embodiment the LexA BD and corresponding BS sequence are utilized. Similarly, other activation domains from transactivators may be utilized such as B42 acidic blob domain, VP16 acidic activity, and p53 acidic activation domain. J Estojak, R. Brent, E. A. Golemis Molecular and Cellular Biology 15:5820-5829 (1995); and H. Lee, K Hun Mok et al. JBC 275: 29426-29423 (2000). In one preferred embodiment, the IPR has five copies of the Gal4 cognate DNA binding sequence located inamino acids 1 to 148. It is contemplated that multiple copies of other binding domain recognition sequences may be utilized. For example, the binding domain sequences (BD) for LexA. The binding sites are usually located 10 to 500 bp upstream of the TATA box. - In a preferred embodiment, the BS and promoter sequence constitute an Inducible Promoter Region (“IPR”) that is essentially a bipartite construct with a first component being the minimal promoter TATA box, which functions minimally alone and upstream from the minimal promoter, and a second component being at least one BS that significantly increases transcription from the bipartite promoter in the presence of an intact TA agent bound to the BS. In a preferred embodiment, the IPR has a minimal adenovirus promoter region (E. D. Lewis, J. L. Manley, Mol Cell Biol 5: 2433-2442 (1985). Utilizing several copies of the BS recognized by the BD of the TA agent allows for stronger binding of the TA agent to the RC. The number of BS to be provided ranges from 1 to about 8, preferably about 5. In accordance to the above, preferred BD element, the corresponding BS is the DNA sequence recognized by the BD. K. H. Young, Biol. Reprod. 58: 302-311 (1998). In this configuration the minimal TATA box promoter region will be able to promote only very minimal transcription in the absence of binding to the BD region by an additional transcriptional activator, in this case provided by the BD-AD chimeric protein.
- In some instances the first element of the bipartite transcriptional control region consisting of the minimal promoters such as the TATA box may lead to an undesirably high level of transcriptional activity in the absence of binding of the transcriptional activator containing the BD-AD to the BS sequence. To allow a greater level of control through suppressing transcription from the minimal promoter TATA box in the absence of binding to the BS by a transcriptional activator, an additional tetracycline regulated repressor or preferably a tetracycline regulated suppressor element is placed downstream of the minimal promoter as shown in
FIG. 5 . This DNA sequence element termed a TetO will bind a tetracycline repressor protein or a tetracycline suppressor protein in the absence of tetracycline as shown inFIG. 5 . In the presence of tetracycline the tetracycline responsive repressor or suppressor protein will be released from the TetO element and relieve the repression of transcription from the bipartite transcriptional control region containing the BS and minimal TATA region. It is contemplated that other control elements may be used. - In one exemplary embodiment, a transcriptional control region is located downstream of the BS and the promoter region (which promoter region may comprise a TATA box). In accordance to a preferred embodiment, the element downstream of the promoter region on the Reporter Construct is at least one copy of a 21-nucleotide TetO promoter region. N. F. J. van Poppel, J. Welagen, et al. International Journal for Parasitology 36: 443-452 (2006). Preferably, the RC comprises at least one to about six TetO promoter repeats, more preferably about four TetO promoter repeats. When the RC is located in a TetS cell which comprises a tTS gene product, transcription over the TetO promoter region is blocked. A preferred such TetS/tTS cell line is a HeLa cell line derivative, for example the cell line from Clontech: HEK 293 tTS, Catalog #631146; or HeLa 293 tTS, Catalog #631147. Upon addition of tetracycline, the TetO promoter is not bound by tTS. In one preferred embodiment of the invention, the Reporter Construct includes additional components to enhance the efficiency of the method of evaluating protease activity. One such component consists of a transcription silencing or inhibition sequence that is used to prevent transcription of the reporter product unless the appropriate conditions are present. For example, as shown in
FIG. 5 , several copies of the Tet operons (TetO) may be placed down-stream from the promoter. N. F. J. van Poppel, J. Welagen, et al. International Journal for Parasitology. 36:443-452 (2006). If the RC is introduced into cell lines that express transcription silencer tTS the transcription of the reporter will be repressed. Addition of tetracycline will remove the tTS from binding to the TetO and the promoter will be highly activated. A person of ordinary skill in the art would recognize that other similar transcription inhibitors may be utilized. It is understood that an increase in the number of copies of the TetO is directly related to the level of transcription of the reporter, as more copies of the inhibitor bind to the region tighter. - The AD element of the TA agent (in accordance to the preferred embodiment described above, the AD is NFκB) is then free to facilitate transcription. This additional control level allows for a tightly controlled system. For example, absent tetracycline, there is no reporter gene product and the expression is not particularly “leaky.” Background transcriptional levels in the absence of expression the TA or release of the BD-NFκB chimera can be measured.
- The IPR comprising the above elements is upstream and controls transcription of one or more reporter genes. In a preferred embodiment of the present invention more than one reporter may be utilized to evaluate protease activity. For example, two different fluorescent molecule sequences may be included. Other reporter couples may also be utilized, such as a fluorescent reporter and an antibiotic resistance sequence. The two sequences may be translated as separate molecules or might produce a chimeric product. In one preferred embodiment, the two reporters are part of a single translation product. In a yet more preferred embodiment, the two reporter molecules are separated by a cleavable linker. In one example, as shown in
FIGS. 2 and 4 , a Venus gene product is fused to the Gaussia luciferase gene (GLuc) gene product and the two reporter proteins are linked by a “self-cleavage” peptide 2A sequence of the foot-and-mouth disease virus (FMDV). M. D. Ryan and J. Drew, Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein, The EMBO Journal 13:928-933 (1994). A person of ordinary skill in the art would recognize that other self-cleavage peptides may be utilized to link the two reporters or that the two reporters may be active as part of a fused protein product, not necessitating separation into two protein products. The 2A cleavage site allows the production of secreted GLuc activity into the medium and cell fluorescence from Venus expression. Inclusion of both reporter genes permits instantaneous examination of cells microscopically for Venus YFP production as well as detection of bioluminescence in plate readers. Because the GLuc product is released into the media in which the cells are grown, over-expression of the GLuc reporter can be easily measured by methods recognized by a person of ordinary skill in the art. An alternative method to express two proteins from one transcript (one RNA expressed from one promoter) is to insert the Internal Ribosome Entrance Site (IRES) in between two genes. Yury A. Bochkov and Ann C. Palmenberg BioTechniques 41:283-292 (2006). - The system may be utilized to evaluate the activity of the protease that specifically recognizes the PS of the TA agent, in vivo. For example, when the construct is expressed in cells that contain a RC, the level of expression of the reporter product indicates the presence of the chimeric BD-AD product, which is a function of the activity of the protease in the same cell.
- When the protease substrate contains trans-membrane components, the effect of the BD-AD components are disabled. For example, the botulinum neurotoxin protease substrates in their natural form contain palmitoylated residues that localize the proteins to vesicular membranes. Lane, S. R. and Y. C. Liu. Journal of Neurochemistry 69: 1864-1869 (1997). As a result, the PS utilized in the BD-PS-AD constructs described above exclude the palmitoylated residues of the substrate. Localization to the cell membrane can be avoided simply by deleting palmitoylated residues from the construct. A person of ordinary skill in the art would recognize that in some embodiments, instead of excluding the palmitoylated residues from the construct, the construct may be engineered to prevent palmitoylation of those residues and inhibit localization of the construct to vesicular membranes.
- Palmitoylation and the resulting localization to the cell membrane, however, can also be used in an alternative preferred embodiment of the present invention. In such embodiment, a palmitoylated protease substrate is attached to the transcription enhancer domain as shown in
FIGS. 3 and 4 . This configuration is described below as the BD-AD-PS or as AD-BD-PS where the order of BD-AD and AD-BD are interchangeable. Alternatively, the protease substrate may be attached to the transcription enhancer element resulting in a PS-BD-AD configuration. In examples of these preferred embodiments, the botulinum neurotoxin substrate is provided as shown onFIG. 4 a (BD-NFκB-VAMP) andFIG. 4 b (SNAP-25-BD-NFκB), where the BD in this preferred embodiment is the Gal4 binding domain. In another preferred embodiment, the full length syntaxin1 a with the BD-AD domains fused to syntaxin1a N-terminus. The C-terminal transmembrane domain of syntaxin1a anchors the BD-AD-syntaxin1a full length molecule to the membrane of the presynaptic terminal. - Due to the potential limitations of the Cleavage-on BoNT/A cleavage assay, one potential solution which represents a separate embodiment of this invention, the BD-AD domain may be fused to the protease substrate PS in this case SNAP25 amino acids 104 to 206 (lacking the palmitoylated cysteine residues present in SNAP25, amino acids 95 to 103) which is further fused to either syntaxin1a full length molecule to anchor the entire fusion molecule BD-AD-SNAP25 (104 to 206)-syntaxin1a full length (1-288). This arrangement will not only address potential limitations of the SNAP25 full length (1-206)-BD-AD Cleavage-on system for BoNT/A but the BD-AD-SNAP25 (104 to 206)-syntaxin1a full length (1-288) will also function as a Cleavage-on indicator for BoNT/C1 due to cleavage of both the SNAP-25 and the syntaxin1a molecules and for BoNT/E in SNAP25. There are potential advantages to using syntaxin1a to anchor the BD-AD-SNAP25 molecule to the presynaptic membrane. The principle advantage is that the syntaxin1a targeting and localization to the presynaptic membrane essentially identical to that of SNAP25 provide correct localization of the SNAP25 substrate. Additionally the BoNT/A LC is trafficked to the presynaptic membrane similar to the syntaxin1a trafficking allowing localization of protease substrate and BD-AD-SNAP25 (104 to 206)-syntaxin1a full length (1-328). In another embodiment of the present invention, the TA agent is a BD-AD-SNAP25 (104-206)-VAMP-2 construct. The BD-AD-SNAP25 (104-206)-VAMP-2 construct is a universal botulinum protease system that can be utilized as an assay for essentially all BoNT serotypes (BoNT/A, C1, and E cleave SNAP-25 and BoNT/B, D, F, and G cleave VAMP-2).
- The reporter sequence of the RC may correspond to the sequence a fluorescent protein, a bioluminescent protein or any other protein that allows for the quantification of a signal upon expression of the gene. It is contemplated that yellow fluorescent protein (YFP), green fluorescent protein (GFP), cyan fluorescent protein (CFP); blue fluorescent protein (BFP), red fluorescent protein (RFP) and fluorescing mutants thereof, may also be utilized. Bioluminescent proteins such as Gaussia luciferase, renilla luciferase, click beetle, and firefly luciferase may also be used to quantify the activity of the reporter vector. In one preferred embodiment, the reporter sequence may consist of the Venus yellow fluorescent protein. Nagai T., Ibata K., Park E. S., et al. Nature Biotechnol 20: 87-90 (2002).
- The system may be utilized to create a genetically engineered cell line containing one or more of the constructs described above. The constructs may be incorporated into one or more vectors for expression in a particular type of cell. The constructs may be stably integrated in the cell, or may reside on transformation vectors. The methods and vectors are well known in the art. The methodologies used for transfection and transduction into cells are well known in the art. Laura Bonetta, The Inside Scoop—Evaluating Gene Delivery Methods, Nature Methods 2:875-883 (2005). In a preferred embodiment, one or more of the constructs are integrated via lentiviral vectors. In a further preferred embodiment, the lentiviral vectors are self-inactivated (“SIN”) lentiviral vectors. A person of ordinary skill in the art would recognize that the vector may include other selection markers such as antibiotic resistance markers in order to distinguish cells that contain the constructs from those that do not.
- Another preferred embodiment of the present invention provides a method for creating a genetically engineered cell line. In a first step of the method, eukaryotic cells, such as 293-tTS cells, are transduced with a vector containing the RC comprising a regulated reporter gene, expressed from a minimal promoter controlled by five copies of the Gal4 BS. IN other preferred embodiments, four copies of the synthetic tetracycline operator are also included (“the G5TO4 promoter”) as described above.
- The system is used to evaluate the activity of specific proteases, such as botulinum neurotoxins. In the first step, a lentivirus vector containing the RC with the Gal5/TO4 promoter and the Venus and GLuc genes is transfected into mammalian 293-Ts cells. The cells are then transfected with a lentivirus vector containing either the BD-SNAP-25-AD construct or the BD-VAMP-2-AD construct. The construct is stably integrated. The cell line is engineered to further comprise a gene construct encoding BoNT/LC-B to generate the final reporter cell line for evaluating the activity of the various botulinum neurotoxin proteases. In these final cell strains, expression of BoNT/LC cleaves the SNAP-25 or VAMP-based transactivator fusion protein, separating the DNA binding domain from the activator domain and, consequently, cells fail to express the Venus and luciferase reporter genes. Alternatively, the protease is transduced into the cell. The same method may be utilized for identifying the activity of other protease-substrate or binding domain-binding site couples, as described above.
- The reporter cell lines containing the RC, TA agent, and PC, are utilized to identify protease inhibitors. In one preferred embodiment, the cell lines are utilized for high throughput screening of protease inhibitors, such as botulinum neurotoxin inhibitors. When intact, the chimeric transcription factor activates the G5 or G5TO4 promoter resulting in expression of the Venus and GLuc reporter genes, and when cleaved by the botulinum neurotoxin light chain, the expression of the reporter genes is turned off. As described previously, this system is referred to as a “cleave-off” system and is ideal for small molecule BoNT/LC inhibitor screening because inhibition of BoNT will result in an increase in reporter signal (“gain-of-signal” assay), reducing the frequency at which false positives are detected. In the presence of BoNT/LC inhibitors, the transcription factor will no longer be cleaved, resulting in restoration of the expression of the Venus and GLuc indicators.
- The cell lines are used in a high throughput screening assay, where the system is exposed to potential inhibitors. In one embodiment of the present invention, the systems may be utilized to identify inhibitors present in available chemical libraries or by testing specific molecules of interest. One such method utilizing libraries is discussed in Examples 4 through 6.
- One embodiment of the present invention presents a cellular, gain-of-signal, bioluminescent, reporter screen. In a preferred embodiment, the present invention identifies endopeptidase inhibitors of neurotoxins, such as BoNT/A LC and BoNT/B LC, through cell-based reporter HTS. These endopeptidase inhibitors are small molecules, which inhibit neurotoxins, such as BoNT/A or BoNT/B. The engineered cell lines used in accordance to one preferred embodiment exhibit a low basal reporter signal, but produce a much higher amplified light signal (>10×) when small molecules inhibit the peptidase activity of the BoNT/LCs. This approach provides a means to identify inhibitors that are active in cells against BoNT/LC interacting with SNAP-25, VAMP-2, syntaxin1a, and other neurotoxins. Each cell-based BoNT/LC or HTS screening assay provides a convenient counter screen for the other assay. Likewise, employing serially a cleave on and a cleave off assays may serve as counter screening assays. The purpose of these counter screen assays is to determine, for example, the mechanism of action in accordance to the invention as opposed to other, general toxicity phenomena. Such testing of the system includes cytotoxicity assays or determination of cleaved transcriptional activator molecules, and quickly remove false positives and rapidly identify the most selective and non-toxic neurotoxin inhibitors. One manner of screening false positives includes the analysis of the transcriptional activator molecule in a system that seems to have affected the expression of the reporter molecule. The screens for the false positives (e.g. inhibitors that worked by some mechanism unrelated to release or break down of the TA molecule) relay on, for example, the analysis of the size of the TA molecule by a separation column and antibodies recognizing the TA molecule. Therefore, one embodiment of the invention provides methods for the identification of “drug-like” small molecules, which inhibit neurotoxin cleavage of its substrates, such as SNAP-25, VAMP-2, syntaxin1a, in neurons through cell based HTS.
- The cell-based screening approach described here provides significant benefits over any in vitro enzymatic screens, since compounds must reach the intracellular milieu and inhibit neurotoxins, such as BoNT/A or BoNT/B, in the cytosol from cleaving their substrates, such as SNAP-25, VAMP-2, syntaxin1a. Therefore, both the toxin and its substrate are in a clinical, in vivo milieu. The toxin function is very likely different within the cell as opposed to cell free enzymatic activity. The use of large substrate fragments of 70-100 amino acid residues is one of the key advantages to these cell based assays. Since the active site may encompass proteins larger than the exosites, it allows the detection of cleavage at sites not normally considered an exosite.
- The method and system disclosed herein may be used to identify and prioritize inhibitors of various neurotoxins, such as botulinum neurotoxins A and B for optimization into therapeutics. The method may be further used to construct, validate, and apply mammalian cell-based primary reporter screens for inhibitors of neurotoxins, such as BoNT/A and BoNT/B, to libraries of diverse compounds. Hits may be confirmed by re-assay in triplicate, and false positives may be eliminated by using multiple BoNT-based assays or non-toxin assays as counter-screens for each other and the other methods as described above. The method disclosed in this application further provides for a cellular, gain-of-signal, reporter screen. These screens may be applied libraries of compounds and follow-up with biochemical assays as a secondary validation to identify potential inhibitors. The validated hits may be characterized thoroughly to ensure that they act specifically on the botulinum neurotoxins both in vitro and in neuronal cell model systems and that they exhibit minimal cytotoxicity.
- In one embodiment the systems and methods described herein provides for the identification and development of highly potent small molecule inhibitors for the treatment of BoNT induced poisoning. Small molecule BoNT LC inhibitors can penetrate neurons and provide protection both pre- and post-toxin exposure. In other embodiments the systems and methods described here may be used for identification of small molecule inhibitors to other protease substrate pairs that may be important in causing pathogenic states. Such protease substrate pairs may include anthrax lethal factor, caspases, ubiquitin proteases, sumo proteases, ubiquitin-like molecule processing protease, autophagy related processing proteases such as ATG4, viral encoded proteases such as alpha virus NSP2 and HIV proteases.
- The BoNTs are but one example of the many ways in which a system to identify protease inhibitors may be utilized. A person of ordinary skill in the art would recognize that the constructs and methods described herein may be utilized for the evaluation of other proteases, their activity and their inhibitors. While the range of possibilities may include nearly any substrate and protease combination some specific example would include anthrax lethal factor zinc metalloprotease (LF) and its cognate substrate MAPKK, viral processing proteases such as the NSP2 protease of alpha viruses and its cognate substrate NSP1-4, ubiquitin and ubiquitin like molecule processing proteases, caspases, ubiquitin proteases, sumo proteases, ubiquitin-like molecule processing protease, autophagy related processing proteases such as ATG4, viral encoded proteases such as alpha virus NSP2 and HIV proteases. For the screening of small molecule inhibitors, cell based systems that have a suppressed signal when the protease is active in cells but generate an increase in signal when the protease is inhibited by small molecules in cells is preferable for the rapid high-throughput screen of small molecule inhibitors. This preference is due to the fact that an increase in signal in the presence of a “positive hit” or the presence of an active protease inhibitor compound is more effective in high throughput screening (HTS) generally.
- Means for detecting the presence of a protease activity in cells may be important. For instance if a mass exposure to BoNT were to occur, rapid triage of those requiring immediate therapy with limited resources vs. those who may not have actually been exposed but feel ill (so called walking well) may be needed. Similarly the current “gold standard” or primary means of assaying the potency and efficacy of BoNT pharmaceutical preparations relies on the injection of toxin into mice for establishment of mouse LD50 units. This method requires extensive use of live animals in a lethal assay. It would be desirable to limit or eliminate the use of such live animal assays. A cell based assay which might reliably detect the presence and quantify the activity of the BoNT is needed. Cell based assays for detecting the presence of a protease in the cells such as the BoNT LC protease are best configured with a system that turns on an indicator signal or signals with the presences of the protease in the cell. In one embodiment of the present invention, cells expressing the TA agent and RC in the “cleave on” configuration (BD-AD-PS) are utilized to identify the presence of known proteases in a sample. In such embodiment, an environmental sample is presented to cells containing the TA and RC constructs. If target protease, e.g., BoNT/LC A, is present, it will enter the cell, cleave the TA at the PS, releasing the AD-BD fragment, which in turn enhance transcription of the reporter gene in the RC.
- A RC in accordance with one embodiment of the present invention, containing a synthetic promoter G5/TO4 was transfected by a lentiviral vector into cells. The RC was co-transfected with a plasmid expressing a Gal4 binding domain fused to the NFκB activator fusion (pBD-NFκB) (the TA agent) into HeLa-tTS cells. The transfected cells constitutively express the tetracycline transcription silencer tTS (Clontech). The cells were grown in a 6-well plate to approximately 80% confluence. Six hours after transfection, 1 ug/ml of tetracycline was added to the media of the test cells. Tetracycline was not added to the media of cells used as a control. Culture medium was collected two days post-transfection for the Gaussia luciferase (GLuc) assay. Monique Verhaegen and Theodore K. Christopoulos Anal. Chem., 74:4378-4385 (2002). Venus expression was observed with a fluorescent microscope. The relative light units (RLU) of the cells cultured in medium containing 1 μg/ml tetracycline is 16 fold higher than that of cells cultured in the absence of tetracycline as measured by luminometer. Additionally, there is Venus expression in the cells cultured in medium containing tetracycline but no Venus expression in cells grown in medium lacking tetracycline. Thus, (1) the synthetic promoter G5TO4 is functional. It can be highly activated by a transactivator, such as BD-NFκB that binds to Gal4 binding sites. Both GLuc and YFP expression are highly activated in the presence of tetracycline; (2) The GLuc gene is a very sensitive and convenient reporter. In these experiments, ninety-five percent of Gaussia luciferase is secreted into the culture medium; thus, GLuc activity can be directly measured from culture medium by a luminometer. In light of this controlled reporter gene expression, low and measurable backgrounds of reporter gene expression, and convenient use, the promoter-reporter system described in this application is useful for high throughput screening.
- The novel RC was transduced into 293-tTS cells by lentiviral vector. Lentiviral vector particles carrying the RC were produced by co-transfecting 3.5 μg of the transducing plasmid with 7.1 μg HIV-1 gag-pol helper construct (Synaptic Research), and 2.8 μg VSV-G expression plasmid (Synaptic Research) onto 80-90% confluent 293FT cells (Invitrogen) cultured in 100 mm plates. Culture medium that contained the budded viral vectors was collected 48 hours after transfection and was cleared of cell debris by centrifugation at 2,000 RPM for 10 minutes at 4° C. (Sorvall RT 600D). The cleared viral supernatant was further concentrated by ultracentrifugation at 25,000 RPM for 90 minutes at 4° C. (Beckman Coulter Optima™ XL-100K). Lastly, the viral vector pellet was soaked in 50 μl ( 1/200 the original volume) of culture medium overnight, resuspended, and stored at −85° C. until needed for transduction. The resulting viral vector particles were used to transduce 293T-tTS cells (Clontech®) that constitutively express the tetracycline transcription silencer tTS. Single cell colonies were cloned by cloning rings and tested for functionality by transient transfection of the expanded cells with a pBD-NFκB construct, which expresses the chimeric transactivator BD-NFκB. The transfected cells were cultured in the presence and absence of 1 μg/ml tetracycline. Two days after tetracycline induction, YFP fluorescence (Venus gene expression) was observed with a fluorescent microscope and Gaussia luciferase gene expression was measured by a luminometer.
- We analyzed 25 clones, and results of six clones are shown in
FIG. 6 . We selectedclone # 17, which exhibits very low basal activity and can be activated more than 14 fold by the addition of tetracycline. Accordingly, the reporter molecules were induced by the activator agent and the system has the necessary attributes for high throughput screening - A gene for the regulatory component, a transactivator chimeric fusion protein consisting of the appropriate BoNT substrate, SNAP-25 for BoNT/A and VAMP-2 for BoNT/B, sandwiched between a Gal4 DNA binding domain (amino acids 1-148) (Gal4/BD or BD) and the NFκB transactivation domain (NFκB/AD or AD) was transduced into the cells that have the novel Reporter construct as described in Example 1.
- The BD-PS-AD constructs, in which the protein substrate does not contain palmitoylated residues, were constructed synthetically and introduced in cells containing the RC. The TA agent encoding either 103 amino acid residues around the cleavage site of SNAP-25 (residues 104-206) or 70 amino acid residues around the cleavage site of VAMP-2 (residues 25-94) fused between the Gal4 DNA binding domain and the NFκB transactivator domain were used. The reporter cell
line clone # 17 from Example 1 was further transduced with a lentiviral vector that carries the BD-VAMP-NFκB transactivator gene construct. Six single cell clones were selected and analyzed for the ratio of bioluminescence in the presence and absence of tetracycline. SeeFIG. 7 . The transduced cells were subjected to appropriate selection (G418, blasticidin, and puromycin), and single-cell clones carrying stable integrations of both the reporter and the VAMP-2 transactivator fusion were obtained. The reporter gene inclone # 32 was routinely/repeatedly activated more than 200-fold when 1 μg/ml tetracycline was added to the culture medium. - A similar process is used to create a cell lines containing other chimeric transactivator constructs. For example, the cell lines containing the reporter vector are further transfected with a BD-SNAP25-NFκB or a BD-syntaxin1a-NFκB gene construct. Alternatively, more than one transcriptional activator construct, each containing another BoNT substrate, is created. In addition, the binding domain (BD) and the transactivation domain (NFκB) may be replaced with any DNA binding domain and transactivation domain as long as the binding sites of the Reporter construct are changed correspondingly. Single cell clones carrying the RC and TA agent are selected and their functionality are evaluated as described for
clone # 32. - The functionality of
clone # 32 was analyzed in a 96-well microplate in order to demonstrate that signal strength and the signal:background ratio are adequate for use in high throughput screening. Duplicates of three groups of 3 wells each were seeded with a low (group 1), medium (group 2), and high (group 3) density of cells. One day after culturing cells in the presence or absence of 1 μg/ml tetracycline, 5 μl of 5-fold diluted culture medium was transferred to a second microplate and luminescence was measured in a plate reader. The luciferase activity in the medium of cells treated with tetracycline was 200-fold higher than that observed from culture medium of cells not treated with tetracycline. SeeFIG. 8 . That result was consistent for each member of each of the three groups. In addition, the basal activity in cells non-treated with tetracycline was extremely low. Luminescence was measured. The luminescence was increased 200 fold by transactivation in the presence of tetracycline and the intact DB-PS-TA construct. SeeFIG. 8 . - The “cleave-on” method was evaluated by the transcriptional activator constructs encoding either 103 amino acid residues around the cleavage site of SNAP-25 (residues 104-206) or 70 amino acid residues around the cleavage site of VAMP-2 (residues 25-94) fused upstream or downstream of the chimeric transactivator BD-NFκB/AD, respectively, as shown in
FIGS. 3 and 4 . As a result of the palmitoylated residues of the botulinum substrates, the SNAP-25 and VAMP-2 segments are expressed on the cellular presynaptic plasma membrane tethering BD-NFκB/AD to the membrane.FIG. 9 shows examples of the results of experiments conducted using both configurations. - Validation of the cleave off system utilizing the VAMP2-based TA construct and BoNT/LC-B as the PC, and the TetO containing RC was accomplished in stable cell lines.
Clone # 32, which carries stable integrations of both the reporter and the VAMP2 transactivator, was used to construct the final inducible indicator cell line by lentiviral transduction of the BoNT/LC-B PC. With all three components of the indicator system (RC, TA, and PC) stably incorporated into this complete cell line (Clone #12), the system was tested by evaluating the decrease in GLuc expression over the course of 48 hours immediately following induction with tetracycline. GLuc assays were performed before replacing the media with fresh culture media every 24 h. GLuc activity expressed in terms of RLU was measured using a luminometer and showed an approximate 15-fold reduction in GLuc signal after 48 hours induction of the BoNT/B LC from the Tet-regulated PCFIG. 10 . This result demonstrates that the fully assembled system with the RC, cleave-off TA, and the PC is suitable for high-throughput screening of BoNT/B LC inhibitors. The system in this configuration will exhibit an increase in signal with inhibition of the LC protease. - Validation of the cleave-on system utilizing the VAMP2-based TA construct and BoNT/LC-B as the PC, and the TetO containing RC was also accomplished in stable cell lines using the same procedure described above. The results show a nearly 40-fold increase in GLuc signal after 48 hours.
FIG. 10 . The system in this configuration will exhibit a decrease in signal with inhibition of the LC protease, but if more appropriate for detecting the presence of BoNT/LC-B protease. - To demonstrate their functionality, the SNAP-25 and VAMP-2 chimeric transcriptional activators were cloned into self-inactivated (SIN) lentiviral vectors and co-transfected into 293T-tTS cells with the reporter construct together with various BoNT/LC gene constructs (wild-type LC-A, an inactive mutant LC-A, and wild-type LC-B). The cells were treated with 1 μg/ml tetracycline. Gaussia luciferase (GLuc) activity was measured with a luminometer and Venus YFP expression was observed by fluorescent microscopy. The results are shown in
FIG. 9 . The results confirmed that the reporter is turned off by cleavage of the transactivator. The chimeric BD-SNAP25-NFκB transactivator strongly activates the G5TO4 promoter when co-transfected with inactive mutant BoNT/A-LC mLC-A and Gal4/BD-SNAP25-NFκB/AD, which was used to mimic the presence of a potent BoNT/LC-A inhibitor, but not when co-transfected with the wild-type BoNT/A-LC LC-A and Gal4/BD-SNAP25-NFκB./AD. The chimeric Gal4/BD-VAMP-NFκB transactivator/AD transactivates the G5TO4 promoter when transfected with the BoNT/A-LC expressing plasmid because it is not cleaved by BoNT/A-LC. The chimeric transcription activator construct Gal4/BD-VAMP-NFκB/AD does not activate the reporter when co-transfected with wild-type BoNT/LC-B LC-B and Gal4/BD-VAMP-NFκB/AD because the transcription factor is cleaved. The Gaussia luciferase activities expressed as RLU values are consistent with the visualized YFP fluorescence and provide quantitative measurements of the reporter response—20-fold and 23-fold in the SNAP-25 and VAMP transactivator systems, respectively, for uncleaved vs. cleaved transactivators. - Two BoNT constructs consist of the streptavidin binding protein (SBP), the cyan fluorescent protein (CFP), and BoNT/A-LC or BoNT/B-LC fused sequentially and in frame. These two constructs, SBP-CFP-BoNT/A-LC and SBP-CFP-BoNT/B-LC, have been cloned into the lentiviral vector pLenti4/TO/V5-DEST (Invitrogen, Inc., Catalog No. K4965-00). The fusion genes are expressed from a modified CMV promoter that has two copies of Tet operator inserted immediately upstream of the TATA box. Binding of the Tet responsive repressor (TRex, Invitrogen) or transcription silencer tTS (Clontech) silences the promoter. However, in the presence of tetracycline the TRex or tTS fails to bind the Tet operator, and the CMV promoter is fully active. The constructs were transfected into 293-tTS cells seeded in a 6-well plate. Expression of the BoNT/LC was detected by observing CFP expression by fluorescence microscopy. These lentiviral constructs of BoNT/A-LC and BoNT/B-LC may be used to complete the construction of the reporter cell lines.
- In order to evaluate the biological functionality of the reporter construction (RC) without TetO, this RC was stably integrated into HEK 293 cells with lentiviral vectors as described previously. Using this stable reporter cell line as a platform, the VAMP cleave-off system was tested by complementation with the corresponding PC (BoNT/LC-B) and TA (BD-VAMP2-AD) plasmids using transient transfection. Immediately following transfection, the time-course expression of both Venus (YFP) and GLuc from the reporter construct was assayed. Specifically, the reporter cells were grown in 6-well sterile polylysine coated plates to approximately 70% confluence in 2 ml of complete growth medium. For transfection with transcriptional activator BD-VAMP2(25-94)—NFκB plasmid alone, 4 μg of plasmid DNA was transfected using CalPhos Kit (Clontech Laboratories Inc.). For cells, co-transfected with BD-VAMP2-AD and BoNT/LC-B, a 1:3 ratio of TA:PC plasmid DNA was used. Plates were incubated at 37° C. overnight in CO2 incubator. After 12 h, media was replaced with 2 ml fresh complete growth media and 5 ug/ml of tetracycline is added to the media to initiate the expression of BoNT-LC-B. Cells transfected only with BoNT/LC-B were used as positive control for LC-B expression. Tetracycline was not added to the media of cells transfected with only BD-VAMP2-AD, used as a control. An aliquot of the culture medium was collected at 24 h, 48 h and 72 h for Gaussia luciferase (GLuc) assays before replacing the media with fresh culture media every 24 h. GLuc activity expressed in terms of RLU was measured using a luminometer and Venus YFP fluorescence was monitored by a fluorescent microscope. Cells scraped from the plate surface from different wells at 24 h, 48 h, 72 h time intervals were washed twice with PBS and centrifuged at 10,000 rpm for 10 min at 4° C. then lysed with a gel loading Samples were run on SDS-PAGE gels and then transferred to PVDF membranes for Western blot analysis with rabbit anti-GFP (Santa Cruz Biotechnology) as primary and AP-conjugated anti-rabbit IgG as secondary antibody.
FIG. 11 . The success of the cell system with RC lacking the TetO, cleave-off VAMP TA, and BoNT/B LC PC, to demonstrate a decrease in signal with the cleavage of the VAMP TA by the BoNT/B LC demonstrates that this system is also appropriate for high-throughput screening of BoNT/B LC inhibitors. - Using the same stable reporter cell line described previously, the SNAP25 cleave-off system was tested by complementation with the corresponding PC and/or TA plasmids using transient transfection. Again, immediately following transfection, the time-course expression of both Venus (YFP) and GLuc from the reporter construct was assayed. Specifically, reporter cells are grown in 6-well sterile polylysine coated plates to approximately 70% confluence in 2 ml of complete growth medium without antibiotics and with serum. For transfection with transcriptional activator BD-SNAP25(104-206)—NFκB plasmid alone, 4 μg of plasmid DNA was transfected using Lipofectamine™ 2000 (Invitrogen). For cells co-transfected with BD-SNAP25-NFκB and BoNT/LcA, 4 μg of each plasmid DNA is used per well. Six hours after transfection, 5 ug/ml of tetracycline was added to the media to initiate the expression of BoNT-LC-A. Cells transfected only with BoNT/LC-A were used as positive control for LC-A expression. Tetracycline was not added to the media of cells transfected with only BD-SNAP25-NFκB, used as a control. An aliquot of the culture medium was collected at 24 h, 48 h and 72 h for Gaussia luciferase (GLuc) assays before replacing the media with fresh culture media every 24 h. GLuc activity expressed in terms of RLU was measured using a luminometer and Venus fluorescence was be monitored by a fluorescent microscope. Cells scraped from the plate surface from different wells at 24 h, 48 h, 72 h time intervals were washed twice with PBS and centrifuged at 10,000 rpm for 10 min at 4° C. then lysed with a gel loading buffer. Samples were run on SDS-PAGE gels and then transferred to PVDF membranes for Western blot analysis with rabbit anti-GFP (Santa Cruz Biotechnology) as primary and AP-conjugated anti-rabbit IgG as secondary antibody.
FIG. 11 . - C) SNAP25 Cleave-Off—Stable Cell Line with RC (Tetracycline Regulated)
- A similar experimental procedure was followed to validate the stable reporter cell line that is regulated by TetO (Clone #17). In this case,
Clone # 17 was transduced by lentivirus with the BD-SNAP25-AD, which was subsequently complemented with BoNT/LC-A tet-inducible PC by transient transfection. Upon exposure to tetracycline, the GLuc signal decreased dramatically during the first 48 hours. This large decrease in signal with induction of the BoNT/LC-A LC shows the system will work for the drug screening approach and assaying decay of BoNT/LC-A. - In transient transfection and stable transduction of the RC without TetO, SNAP25 (1-206)-BD-AD as the TA, and BoNT/E LC as the PC, the luciferase signal increases at least 2 fold after cleavage of the SNAP25 (1-206)-BD-AD by the BoNT/E LC despite a high basal signal level as shown in
FIG. 13 . The carboxyl terminal SNAP25 cleavage product after BoNT/E LC cleavage is stable. Thus there is not degradation of the BD-AD after cleavage like there is with the BoNT/A cleavage. Due to high base line signal with the SNAP25 (1-206)-BD-AD and rapid degradation of the C-terminal SNAP25 (1-206)-BD-AD, a different SNAP23 cleave-on system is used. This system consists of BD-AD-SNAP25(104-206)-VAMP full length or BD-AD-SNAP25 (104-206)-syntaxin1a full length. - Any TA construct comprised of the truncated form of SNAP25(104-206) lacks palmytolation and, as a result, is not inherently capable of membrane localization. The fusion of this TA to a membrane anchor, such as VAMP2 or syntaxin 1a, allows for an alternative method to perform cleave-on studies. Possible TA configurations are BD-AD-SNAP25(104-206)-VAMP2 or BD-AD-SNAP25(104-206)-syntaxin1a.
- These fusion constructs are tested in the same manner as before: by transient transfection of the stable reporter cell line (lacking TetO) with both the fusion TA and either BoNT/LC-A or -B. As with all cleave-on systems, the reporter signal is low at baseline in the absence of tetracycline, but will increase upon proteolytic cleavage of the TA. After adding tetracycline, an aliquot of the culture medium is collected after 24 h, 48 h and 72 h for Gaussia luciferase (GLuc) assays before replacing the media with fresh culture media. GLuc activity expressed in terms of RLU was measured using a luminometer and Venus fluorescence was be monitored by a fluorescent microscope. The major advantage of these fused TA constructs is the ability for them to acts as universal detectors of numerous BoNT/LC serotypes. Thus, the potential for a single indicator cell line to detect the presence of any LC is realized. If the system is created in a cell line that has receptors for the BoNT toxins and can internalize the toxins efficiently, this cell line can function as a high affinity sensitive cell based biodetector for the presence of fully active BoNT. If a suitable cell line can not be found that has adequate ability to take up toxins from the environment to sensitively detect the toxins, then the affinity and sensitivity of the cell line to toxin can be increased by making a stable cell line overexpressing the necessary protein receptor and ganglioside component of the BoNT toxin cellular receptor.
- In one example, a TA is constructed such that the PS is the full-length mitogen-activate protein kinase kinase (MEK1) (NCBI Reference Sequence: NP—002746) in the form BS-MEK1-AD. A. P. Chopra, S. A. Boone, et al. JBC 278:9402-9406 (2003). This TA construct is similarly transferred to the stable reporter cell line lacking TetO—used in a Stable Cell Line with RC (Not Tetracycline Regulated) example—by transient transfection. Accordingly, the Tet-inducible PC in this case is anthrax lethal factor (LF) protease (NCBI Reference Sequence: AAY15237), which cleaves MEK1. With all constructs present in the reporter cell, inhibitors of anthrax LF protease are screened and success candidates are chosen based on an increase in reporter signals from Venus and GLuc.
- In another example, a TA is constructed such that the PS is the human small ubiquitin-related modifier1 (SUMO1) protein with the carboxyl terminal 5-AA (NCBI Reference Sequence: ABM87155). The 5-AA C-terminal peptide is cleaved by the (ubiquitin-like)-specific protease (ULP1), thus a PC construct is constructed with ULP1 as the protease (NCBI Reference Sequence: AAG33252). Both the PC and TA construct are similarly transferred to the stable reporter cell line lacking TetO by transient transfection. When the all three components, RC, TA cleave-off Sumo construct, and the ULP1 PC are expressed, the luciferase signal is diminished. This system is appropriate for high-throughput screening of SUMO protease inhibitors.
- The final reporter cell lines is functionally validated by small molecule inhibitors of siRNA knock-down. For the BoNT/A-LC screening assay, established inhibitors (e.g., either hydroxamate compounds) are used. Since there is no small molecule inhibitors known for BoNT/B-LC, siRNAs are used that target BoNT/B-LC from Dahrmacon/Thermo-Fisher. In one embodiment of the present invention, three siRNAs per target may be developed. In addition, a scrambled siRNA is used as a control, which ensures that the knock-down is real and specific and there in no off-target effect. 293T cells are co-transfected with the siRNA and the BoNT/A-LC or BoNT/B-LC plasmids and Western blot analysis are used to choose the most effective siRNA for validating the final reporter cell lines. Then both the effective and the scrambled siRNA are used to transfect the final reporter cells.
Transfection 1 μg/ml of tetracycline is added to the culture medium to initiate expression of BoNT/LC immediately after transfection. An aliquot of the culture medium is collected atday 1 throughday 4 for luciferase assays. Venus fluorescence may be monitored by a fluorescent microscope. The expression of the reporters (both luciferase and Venus fluorescence) in the final reporter cells are restored by the effective siRNA. - The reporter screens are optimized by running microplates with half positive (BoNT/A-LC inhibitor or siRNA for BoNT/B-LC) and half negative (DMSO only) controls and measuring the Z′ value. Conditions used to determine the effectiveness of each reporter strain include the density of microplate (96-well or 384-well), concentration of compound to be tested, DMSO concentration tolerance, temperature, degree of confluence of reporter strain before addition of test compounds, time of incubation in microplates before reading luminescence, and quantity of medium withdrawn for luciferase assay. Conditions may be changed to achieve an optimal Z′ factor >0.5 J. H. Zhang, T. D. Chung, and K. R. Oldenburg, J. Biomol. Screen 4:67-73 (1999). for each screen. In one preferred embodiment of the present invention the screens are conducted in 384-well dishes. 96-well dishes may be used if necessary to maintain adequate Z′ factor values.
- Reporter strains are grown and seeded into 96- or 384-well opaque white screening plates using a sterile Wellmate Microplate reagent dispenser (ThermoFisher, Inc.). For inhibitor screening, compound master plates are thawed at room temperature on the day of the screen, and a predetermined quantity of compound is added by using a Sciclone ALH 3000 liquid handling robot (Caliper, Inc.) and a Twister II Microplate Handler (Caliper, Inc.). Plates are then incubated under established optimal conditions of time and temperature. Then, a predetermined quantity of the cell medium is transferred to a fresh microplate with the Sciclone robot to generate an appropriate dilution. Luciferase substrate is added by means of a Wellmate reagent dispenser, and luminescence is measured in an Envision Multilabel microplate reader (PerkinElmer).
- The system used to screen inhibitors is subjected to a pilot screen to assess screening conditions. The optimized assay configuration is tested in a pilot screen of ˜2,000 compounds at 2-3 different concentrations. Controls are included in each plate—8 wells for 0% inhibition (DMSO only) and 8 wells for nearly complete inhibition (BoNT/A-LC inhibitor or siRNA for BoNT/B-LC). Assay plates receive appropriate reporter cells and compounds to be tested according to the protocol described above. The data obtained from this screen is used to determine variation (% CV), the hit rate at various z-score cutoffs, and may identify any problems with the assay which require resolution before HTS begins. The data from the pilot screen is then used to determine the compound concentration for the screen (probably in the range of 25-40 μM) in order to establish a hit rate between 0.1% and 1%. The criteria for designating a compound as a hit is determined in the pilot screen; however, a z-score >3 or >5 is likely suitable. The z-score for each sample is derived by subtracting the sample RLU from the mean negative control RLU and dividing the difference by the negative control standard deviation.
- The method in accordance with one embodiment of the present invention may also be utilized to screen diverse compound libraries to identify and confirm protease inhibitors with IC50's of ≦10 μM.
- The high-throughput cellular BoNT/A-LC and BoNT/B-LC screens described above, is applied to libraries of discrete small molecules and natural products in order to identify compounds having potent inhibitory activity against either of these botulinum neurotoxins. Hits from the screen are confirmed by re-assay, establishing that they inhibit either BoNT/B-LC or BoNT/A-LC, but not both, and by demonstrating their potency in concentration-dependent inhibition studies (IC50).
- A. Compound libraries and sample handling.
- The NERCE library. The compound collections of the National Screening Laboratory (NSRB) of the New England Regional Center for Excellence for Biodefense and Emerging Infectious Diseases (NERCE/BEID) at Harvard Medical is used as one example of a small molecule library to be screen in the cleave off cell based BoNT screening system. This library has been assembled by a group of NERCE's chemistry consultants who screened out compounds with undesirable properties, such as poor solubility, potential detergent-like activities, lack of stability in aqueous solutions and chemical reactivity. There are currently ˜165,000 compounds available including some that overlap with our in-house collection. The overlap between the two libraries is ≦10%. Therefore, the combined library resource represent ˜300,000 distinct compounds.
- B. Application of the primary BoNT/A&B-LC screens. Compounds in a candidate chemical library are examined in 96 or 384-well format vs. the cell-based BoNT/A-LC and BoNT/B-LC cell base HTS described above. Screening library compounds are stored in 96-well master plates at 2.5 mM in 100% DMSO at −20° C. Master plates are thawed, and an amount of compound determined in the pilot screen described above are added to the assay plates by means of a SciClone ALH 3000 liquid handling robot (Caliper, Inc.) and a Twister II Microplate Handler (Caliper, Inc.), at the same time, combining 4×96-well source plates into one 384-well assay plate. The screening plates contain positive and negative controls in the first and last columns as described for the pilot screen above.
- Raw data generated by the plate reader is processed as follows: relative luminescence unit (RLU) data is captured and analyzed in a semi-automated procedure by relating the plate serial number to the database entry, associating the numerical readout to each compound entry, and calculating the % inhibition and z-score. In addition, a Z′-factor calculation is performed on each plate based on the positive and negative controls; Z′ values of >0.6 are considered adequate, and data from compounds in that plate are accepted into the database. All screening data, including the % inhibition, z-score, and confirmation/validation data such as the 50% inhibitory concentration (IC50) and the counter-screen results is stored in one central database (CambridgeSoft's ChemBioOffice). A structure-activity relationship on an investigated chemical series is analyzed quickly. In addition, analog compounds are identified rapidly from commercial databases, acquired, registered into the database and submitted for biological testing.
- C. Hit confirmation and verification. Compounds that satisfy the criteria for designation as primary hits undergo a 3-step confirmation process previously described. First, primary hits are selected from stock plates into a confirmation stock plate and replicated to produce a set of 4 confirmation assay plates. The 4 confirmation assay plates are used in the primary screening assay to generate 4 new data points for each compound. A confirmed hit displays inhibition >50% and a z-score >3 in at least 3 of the 4 replicated assays. Second, confirmed hits are counter-screened in replicate for inhibition of the other botulinum neurotoxin. Third, confirmed hits may be examined for concentration-dependent activity in FRET assays for inhibition of BoNT/A-LC and BoNT/B-LC; an IC50 is determined to rank the potency of each.
- Due to the reliability of gain-of-signal cell-based assays, few false positives are encountered in the screens if the Z′ factor is >0.5 throughout the screening process. False-negatives may arise due to inhibition of both the botulinum neurotoxin and processes required for generation of bioluminescence. However, these hits would likely be promiscuous and not of sufficient quality to pursue even if they were detectable. Hits that pass the counter-screen with the alternate botulinum neurotoxin will likely not be promiscuous. To validate and prioritize the primary hits, several secondary assays are applied as described below to further qualify the hits from the screen. If the hit rate is below 0.1% using the criteria established above, the hit rate may be increased by accepting lower inhibition levels for hits as long as the Z′ value for the screening plate is above ˜0.6, indicating a wide separation band between the negative and positive controls, and each hit is at least 3 standard deviations below the fully active control.
- In the next step of a method in accordance with one embodiment of the present invention, each identified inhibitor is validated and multiple hits are prioritized by potency and selectivity. It is contemplated that validated inhibitors of BoNT/A and BoNT/B, may have IC50s of ≦10 μM, a selectivity index CC50/IC50≧10, no significant cytotoxicity, and demonstrated activity in primary neuronal cell model.
- This step in one embodiment of the present invention generates the potency and specificity information necessary to prioritize screening hits/or chemotypes discovered in the HTS assays described above. In one preferred embodiment four types of activity may be assessed: (a) in vitro potency (IC50 for inhibition of the BoNT/A and BoNT/B endopeptidase activities in vitro), (b) specificity (IC50 for potency of inhibition of other endopeptidases in vitro, BoNT/F, anthrax lethal factor (AT-LF), and a panel of human matrix metalloproteases, MMP's; and test of chelation properties), (c) cytotoxicity (i.e., CC50 of the compounds on mammalian cells in culture), and (d) in vivo potency (i.e., IC50 for inhibition of the BoNT/A SNAP-25 cleavage or BoNT/B inhibition of VAMP cleavage activity in primary rat neurons; and rescue of axonal growth inhibition). Successful compounds exhibit little or no detectable cytotoxicity or activity on other unrelated endopeptidases, but provide potent and specific rescue of BoNT/A and/or BoNT/B action in vitro and in isolated neurons.
- Rat Neuronal Cell SNAP-25 Cleavage Assay. As described previously, cells are harvested from 7-8 day old rat cerebella, washed and cultured in 6-well plates, and grown over a week with media changes. Once the cells have become networked neutrally, they are preincubated with compounds or diluent (DMSO) for 15 min. Cells are then inoculated with BoNT/A and incubated for 3 hours at 37° C., 5% CO2 before harvesting. Cells are treated with 1 M NaOH to inactivate the BoNT and are scraped from the plate surface prior to centrifugation and lysis with a gel loading buffer. Samples are run on SDS-PAGE gels and then transferred to membranes for immunoblot analysis with rabbit anti-SNAP-25 and then HRP-conjugated goat anti-rabbit IgG. Band intensities are read and normalized using scanning densitometry.
- The invention has been described with references to preferred embodiments. While specific values, relationships, materials and steps have been set forth for purposes of describing concepts of the invention, it will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the basic concepts and operating principles of the invention as broadly described. It should be recognized that, in the light of the above teachings, those skilled in the art can modify those specifics without departing from the invention taught herein. Having now fully set forth the preferred embodiments and certain modifications of the concept underlying the present invention, various other embodiments as well as certain variations and modifications of the embodiments herein shown and described will obviously occur to those skilled in the art upon becoming familiar with such underlying concept. It is intended to include all such modifications, alternatives and other embodiments insofar as they come within the scope of the appended claims or equivalents thereof. It should be understood, therefore, that the invention may be practiced otherwise than as specifically set forth herein. Consequently, the present embodiments are to be considered in all respects as illustrative and not restrictive.
Claims (20)
1. A system for the identification of proteases and protease inhibitors, comprising:
a reporter construct comprising at least one binding site, an inducible promoter region, and at least one reporter gene, all functionally connected for expression of the reporter gene(s), in functional coordination with a transcriptional activation agent;
the transcriptional activation agent comprising a nucleic acid binding domain, at least one protease substrate domain, and at least one transcriptional activation domain for an inducible promoter.
2. The system of claim 1 , further comprising at least one protease or protease candidate, wherein the protease or protease candidate specifically targets the protease substrate domain.
3. The system of claim 2 , wherein at least one of the transcriptional activation agent or the protease/protease candidate are provided into the system as products of nucleic acid constructs.
4. The system of claim 2 , wherein at least one of the transcriptional activation agent or the protease/protease candidate are provided into the system as a protein.
5. The system of claim 1 , further comprising at least one reporter gene selected from the group consisting of a Venus yellow fluorescent protein, yellow fluorescent protein (YFP), green fluorescent protein (GFP), cyan fluorescent protein (CFP); blue fluorescent protein (BFP), red fluorescent protein (RFP), fluorescing mutants thereof, bioluminescent proteins, Gaussia luciferase, renilla luciferase, click beetle luciferase, and firefly luciferase may also be used to quantify the activity of the reporter vector.
6. The system of claim 5 comprising at least two reporter genes transcribed from one inducible promoter.
7. The system of claim 1 , wherein the reporter gene construct comprises one to eight binding site sequence repeats.
8. The system of claim 1 , wherein the reporter gene construct comprises five binding site sequence repeats.
9. The system of claim 1 , wherein the binding site is selected from the group consisting of Gal4 and LexA.
10. The system of claim 1 , wherein the inducible reporter region comprises a TATA promoter region.
11. The system of claim 1 , wherein the protease substrate is selected from the group consisting of BoNT protease substrate, anthrax protease, caspase, alpha virus NSP2 protease, HIV processing proteases, SUMO processing proteases, ubiquitin processing proteases, ISG15 processing proteases, autophagy related ATG4 like processing proteases and Hepatitis virus processing proteases or a combination thereof.
12. The system of claim 10 , wherein the protease substrate is selected from the group consisting of SNAP-25, VAMP-2, and Syntaxin1a or a combination thereof.
13. The system of claim 10 , wherein the protease substrate comprises SNAP-25 and VAMP-2 protease substrate domains.
14. The system of claim 11 wherein the protease is a BoNT protease.
15. The system of claim 1 , wherein the protease substrate is located on the transcriptional activator agent between the binding domain and the transcriptional activator domain and the transcriptional activation agent is in a cellular compartment where transcription takes place.
16. The system of claim 1 , wherein the protease substrate domain is at one end of the molecule and the binding domain and the transcriptional activator domain are located in functional proximity to each other and at an opposite end of the transcriptional activator agent from the protease substrate domain, such as cleavage of the protease substrate domain releases the binding domain and the transcriptional activator rendering a functional transcriptional activator agent fragment.
17. The system of claim 15 , engineered such as the transcriptional activator agent is sequestered outside of a cell nucleus but cleavage with a protease releases a functionally active transcriptional activator agent fragment, comprising the binding domain and the transcriptional activator domain and capable to reach a cellular compartment where transcriptional activity takes place.
18. The system of claim 2 in a tTS cell.
19. A method to identify protease inhibitors, comprising:
introducing at least one test molecule or compound to a system comprising:
a reporter gene construct comprising at least one binding site, a transcriptional promoter, an inducible promoter region, and at least one reporter gene, all functionally connected for expression of the reporter gene(s) in functional coordination with a transcriptional activation agent,
the transcriptional activation agent comprising a nucleic acid binding domain, at least one protease substrate domain, and at least one transcriptional activation domain for an inducible promoter, and
a protease specific for the protease substrate domain; and
measuring the effect on the level of expression of the reporter molecule.
20. A method to identify a protease, comprising:
introducing at least one test molecule or compound to a system comprising:
a reporter gene construct comprising at least one binding site, a transcriptional promoter, an inducible promoter region, and at least one reporter gene, all functionally connected for expression of the reporter gene(s) in functional coordination with a transcriptional activation agent,
the transcriptional activation agent comprising a nucleic acid binding domain, at least one protease substrate domain, and at least one transcriptional activation domain for an inducible promoter, and
measuring the effect on the level of expression of the reporter molecule.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/962,610 US20110143362A1 (en) | 2009-12-07 | 2010-12-07 | Method for identification of protease activity inhibitors and assaying the presence of protease activity |
US14/026,014 US10787696B2 (en) | 2009-12-07 | 2013-09-13 | System for the assessment of protease activity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26738609P | 2009-12-07 | 2009-12-07 | |
US12/962,610 US20110143362A1 (en) | 2009-12-07 | 2010-12-07 | Method for identification of protease activity inhibitors and assaying the presence of protease activity |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/026,014 Division US10787696B2 (en) | 2009-12-07 | 2013-09-13 | System for the assessment of protease activity |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110143362A1 true US20110143362A1 (en) | 2011-06-16 |
Family
ID=44143366
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/962,610 Abandoned US20110143362A1 (en) | 2009-12-07 | 2010-12-07 | Method for identification of protease activity inhibitors and assaying the presence of protease activity |
US14/026,014 Active US10787696B2 (en) | 2009-12-07 | 2013-09-13 | System for the assessment of protease activity |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/026,014 Active US10787696B2 (en) | 2009-12-07 | 2013-09-13 | System for the assessment of protease activity |
Country Status (6)
Country | Link |
---|---|
US (2) | US20110143362A1 (en) |
EP (1) | EP2510107A4 (en) |
JP (1) | JP2013512692A (en) |
KR (1) | KR20120115976A (en) |
CA (1) | CA2783242A1 (en) |
WO (1) | WO2011071956A2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120251577A1 (en) * | 2009-10-09 | 2012-10-04 | Children's Medical Center Corporation | Selectively disrupted whole-cell vaccine |
US8470972B2 (en) | 2003-10-24 | 2013-06-25 | Gencia Corporation | Nonviral vectors for delivering polynucleotides to plants |
US8507277B2 (en) | 2003-10-24 | 2013-08-13 | Gencia Corporation | Nonviral vectors for delivering polynucleotides |
US8541550B2 (en) | 2003-10-24 | 2013-09-24 | Gencia Corporation | Methods and compositions for delivering polynucleotides |
US20140235490A1 (en) * | 2007-06-05 | 2014-08-21 | City Of Hope | Methods for detection of botulinum neurotoxin |
US8927691B2 (en) | 2003-10-24 | 2015-01-06 | Gencia Corporation | Transducible polypeptides for modifying metabolism |
US8940482B1 (en) * | 2010-06-11 | 2015-01-27 | Synaptic Research, Llc | N-end rule protease activity indication methods and uses thereof |
US8952133B2 (en) | 2003-10-24 | 2015-02-10 | Gencia Corporation | Nonviral vectors for delivering polynucleotides to target tissue |
US9212355B2 (en) * | 2011-03-11 | 2015-12-15 | Merz Pharma Gmbh & Co. Kgaa | Method for the determination of botulinum neurotoxin biological activity |
US10385319B2 (en) | 2016-09-08 | 2019-08-20 | The Governement of the United States of America, as represented by the Secretary of Homeland Security | Modified foot-and-mouth disease virus 3C proteases, compositions and methods thereof |
US10435695B2 (en) * | 2016-09-08 | 2019-10-08 | The Government of the United States of America, as represented by the Secretary of Homeland Security | Fusion protein comprising Gaussia luciferase, translation interrupter sequence, and interferon amino acid sequences |
US10441640B2 (en) * | 2014-08-12 | 2019-10-15 | Biomadison, Inc. | Botulinum neurotoxins with modified light chain specificity and methods for producing same |
WO2020245810A1 (en) * | 2019-06-07 | 2020-12-10 | Synaptic Research, Llc | Genetically engineered cells sensitive for clostridial neurotoxins |
US11198859B2 (en) * | 2016-05-04 | 2021-12-14 | Medytox Inc. | Recombinant polynucleotide coding for polypeptide comprising reporter moiety, substrate moiety and destabilizing moiety, host cell comprising same and use of same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102558310A (en) * | 2012-02-24 | 2012-07-11 | 李兵辉 | Preparation method and application method for indicator for monitoring activity of protease in real time |
CN109576227B (en) * | 2018-12-27 | 2022-06-10 | 江苏凯基生物技术股份有限公司 | Luciferase reporter virus-based autophagy cell line construction method |
JPWO2022259904A1 (en) * | 2021-06-07 | 2022-12-15 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6699702B1 (en) * | 1999-01-08 | 2004-03-02 | Bristol-Myers Squibb Co. | Prokaryotic system designed to monitor protease activity |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10038382A1 (en) * | 2000-08-07 | 2002-02-21 | Direvo Biotech Ag | Two-color fluorimetric protease assay |
EP1751284A4 (en) * | 2003-12-19 | 2010-01-13 | Wisconsin Alumni Res Found | Method and compositions for detecting botulinum neurotoxin |
WO2009048597A1 (en) * | 2007-10-10 | 2009-04-16 | Tenera Technology, Llc | Measurement of protease activity in post-mortem meat samples |
-
2010
- 2010-12-07 CA CA2783242A patent/CA2783242A1/en not_active Abandoned
- 2010-12-07 KR KR1020127017826A patent/KR20120115976A/en not_active Application Discontinuation
- 2010-12-07 JP JP2012543216A patent/JP2013512692A/en not_active Withdrawn
- 2010-12-07 US US12/962,610 patent/US20110143362A1/en not_active Abandoned
- 2010-12-07 WO PCT/US2010/059341 patent/WO2011071956A2/en active Application Filing
- 2010-12-07 EP EP10836574.3A patent/EP2510107A4/en not_active Withdrawn
-
2013
- 2013-09-13 US US14/026,014 patent/US10787696B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6699702B1 (en) * | 1999-01-08 | 2004-03-02 | Bristol-Myers Squibb Co. | Prokaryotic system designed to monitor protease activity |
Non-Patent Citations (5)
Title |
---|
Binz et al, Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem. 1994 Jan 21;269(3):1617-20. * |
Blasi et al, Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1 /syntaxin. J Biol Chem 269:1617-20 (1994). * |
Lawler et al, Viral protease assay based on GAL4 inactivation is applicable to high-throughput screening in mammalian cells. Anal Biochem. 1999 Apr 10;269(1):133-8. * |
Nyborg et al, A signal peptide peptidase (SPP) reporter activity assay ... Biol Chem. 2004 Oct 8;279(41):43148-56. Epub 2004 Jul 12. * |
Schiavo et al, Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832-5.Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 1993 Dec;12(12):4821-8. * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8470972B2 (en) | 2003-10-24 | 2013-06-25 | Gencia Corporation | Nonviral vectors for delivering polynucleotides to plants |
US8507277B2 (en) | 2003-10-24 | 2013-08-13 | Gencia Corporation | Nonviral vectors for delivering polynucleotides |
US8541550B2 (en) | 2003-10-24 | 2013-09-24 | Gencia Corporation | Methods and compositions for delivering polynucleotides |
US8927691B2 (en) | 2003-10-24 | 2015-01-06 | Gencia Corporation | Transducible polypeptides for modifying metabolism |
US8952133B2 (en) | 2003-10-24 | 2015-02-10 | Gencia Corporation | Nonviral vectors for delivering polynucleotides to target tissue |
US20140235490A1 (en) * | 2007-06-05 | 2014-08-21 | City Of Hope | Methods for detection of botulinum neurotoxin |
US11604185B2 (en) | 2007-06-05 | 2023-03-14 | City Of Hope | Methods for detection of botulinum neurotoxin |
US10775366B2 (en) | 2007-06-05 | 2020-09-15 | City Of Hope | Substrates for detection of botulinum neurotoxin |
US9562903B2 (en) * | 2007-06-05 | 2017-02-07 | City Of Hope | Methods for detection of botulinum neurotoxin |
US9827299B2 (en) * | 2009-10-09 | 2017-11-28 | Children's Medical Center Corporation | Selectively disrupted whole-cell vaccine |
US20120251577A1 (en) * | 2009-10-09 | 2012-10-04 | Children's Medical Center Corporation | Selectively disrupted whole-cell vaccine |
US8940482B1 (en) * | 2010-06-11 | 2015-01-27 | Synaptic Research, Llc | N-end rule protease activity indication methods and uses thereof |
US9624529B2 (en) * | 2010-06-11 | 2017-04-18 | Synaptic Research, Llc | N-end rule protease activity indication methods and uses thereof |
US20150329896A1 (en) * | 2010-06-11 | 2015-11-19 | Synaptic Research, Llc | N-end rule protease activity indication methods and uses thereof |
US9212355B2 (en) * | 2011-03-11 | 2015-12-15 | Merz Pharma Gmbh & Co. Kgaa | Method for the determination of botulinum neurotoxin biological activity |
US11357838B2 (en) | 2014-08-12 | 2022-06-14 | Biomadison, Inc. | Botulinum neurotoxins with modified light chain specificity and methods for producing same |
US10441640B2 (en) * | 2014-08-12 | 2019-10-15 | Biomadison, Inc. | Botulinum neurotoxins with modified light chain specificity and methods for producing same |
US11198859B2 (en) * | 2016-05-04 | 2021-12-14 | Medytox Inc. | Recombinant polynucleotide coding for polypeptide comprising reporter moiety, substrate moiety and destabilizing moiety, host cell comprising same and use of same |
US10858634B2 (en) | 2016-09-08 | 2020-12-08 | The Government of the United States of America, as represented by the Secretary of Homeland Security | Vaccines and pharmaceutical compositions against foot-and-mouth disease virus |
US10858633B2 (en) | 2016-09-08 | 2020-12-08 | The Government of the United States of America, as represented by the Secretary of Homeland Security | Method for producing foot-and-mouth disease virus (FMDV) viral proteins utilizing a modified FMDV 3C protease |
US10865389B2 (en) | 2016-09-08 | 2020-12-15 | The Government of the United States of America, as represented by the Secretary of Homeland Security | DNA vaccines against foot-and-mouth disease virus |
US10829770B2 (en) | 2016-09-08 | 2020-11-10 | The Government of the United States of America, as represented by the Secretary of Homeland Security | Fusion proteins containing luciferase and a polypeptide of interest |
US10435695B2 (en) * | 2016-09-08 | 2019-10-08 | The Government of the United States of America, as represented by the Secretary of Homeland Security | Fusion protein comprising Gaussia luciferase, translation interrupter sequence, and interferon amino acid sequences |
US10385319B2 (en) | 2016-09-08 | 2019-08-20 | The Governement of the United States of America, as represented by the Secretary of Homeland Security | Modified foot-and-mouth disease virus 3C proteases, compositions and methods thereof |
WO2020245810A1 (en) * | 2019-06-07 | 2020-12-10 | Synaptic Research, Llc | Genetically engineered cells sensitive for clostridial neurotoxins |
Also Published As
Publication number | Publication date |
---|---|
US20140017697A1 (en) | 2014-01-16 |
US10787696B2 (en) | 2020-09-29 |
KR20120115976A (en) | 2012-10-19 |
CA2783242A1 (en) | 2011-06-16 |
EP2510107A2 (en) | 2012-10-17 |
WO2011071956A3 (en) | 2011-10-27 |
EP2510107A4 (en) | 2013-08-07 |
JP2013512692A (en) | 2013-04-18 |
WO2011071956A2 (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10787696B2 (en) | System for the assessment of protease activity | |
US11788069B2 (en) | In vitro and cell based assays for measuring the activity of botulinum neurotoxins | |
US9005911B2 (en) | Methods for identifying inhibitors of botulinum neurotoxins | |
MXPA05003128A (en) | Cell-based fluorescence resonance energy transfer (fret) assays for clostridial toxins. | |
JP6682532B2 (en) | Method for measuring the biological activity of a neurotoxin polypeptide | |
US20240016858A1 (en) | Compositions and methods for nucleic acid expression and protein secretion in bacteroides | |
Tien et al. | Context-dependent autoprocessing of human immunodeficiency virus type 1 protease precursors | |
US20040042961A1 (en) | Development of an in vivo functional assay for proteases | |
Prashad et al. | SNARE zippering and synaptic strength | |
Hu et al. | Identification of C270 as a novel site for allosteric modulators of SARS-CoV-2 papain-like protease | |
Singh et al. | High throughput and targeted screens for prepilin peptidase inhibitors do not identify common inhibitors of eukaryotic gamma-secretase | |
US20050202488A1 (en) | Assay for therapies that inhibit expression of the cytosolic Cu/Zn superoxide dismutase (SOD1) gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SYNAPTIC RESEARCH, LLC, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OYLER, GEORGE A.;TSAI, YIEN CHE;SIGNING DATES FROM 20101124 TO 20101213;REEL/FRAME:025523/0969 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |