US20110142831A1 - Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease - Google Patents
Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease Download PDFInfo
- Publication number
- US20110142831A1 US20110142831A1 US13/015,900 US201113015900A US2011142831A1 US 20110142831 A1 US20110142831 A1 US 20110142831A1 US 201113015900 A US201113015900 A US 201113015900A US 2011142831 A1 US2011142831 A1 US 2011142831A1
- Authority
- US
- United States
- Prior art keywords
- antagonist
- treatment period
- patient
- antibody
- dose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000001363 autoimmune Effects 0.000 title claims abstract description 18
- 208000027866 inflammatory disease Diseases 0.000 title claims abstract description 16
- 239000005557 antagonist Substances 0.000 title claims description 114
- 102000013691 Interleukin-17 Human genes 0.000 claims abstract description 114
- 108050003558 Interleukin-17 Proteins 0.000 claims abstract description 114
- 102000013264 Interleukin-23 Human genes 0.000 claims abstract description 94
- 108010065637 Interleukin-23 Proteins 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 55
- 230000000694 effects Effects 0.000 claims abstract description 49
- 238000011282 treatment Methods 0.000 claims description 66
- 206010046851 Uveitis Diseases 0.000 claims description 29
- 102100036705 Interleukin-23 subunit alpha Human genes 0.000 claims description 26
- 206010061218 Inflammation Diseases 0.000 claims description 23
- 108010076561 Interleukin-23 Subunit p19 Proteins 0.000 claims description 23
- 230000004054 inflammatory process Effects 0.000 claims description 23
- 208000024891 symptom Diseases 0.000 claims description 22
- 102100036672 Interleukin-23 receptor Human genes 0.000 claims description 20
- 108040001844 interleukin-23 receptor activity proteins Proteins 0.000 claims description 18
- 238000002560 therapeutic procedure Methods 0.000 claims description 16
- 230000002829 reductive effect Effects 0.000 claims description 13
- 108010011429 Interleukin-12 Subunit p40 Proteins 0.000 claims description 10
- 102000014158 Interleukin-12 Subunit p40 Human genes 0.000 claims description 10
- 230000001684 chronic effect Effects 0.000 claims description 7
- 206010002556 Ankylosing Spondylitis Diseases 0.000 claims description 5
- 208000018359 Systemic autoimmune disease Diseases 0.000 claims description 5
- 208000002574 reactive arthritis Diseases 0.000 claims description 5
- 101000853012 Homo sapiens Interleukin-23 receptor Proteins 0.000 claims description 4
- 208000033464 Reiter syndrome Diseases 0.000 claims description 4
- 238000003745 diagnosis Methods 0.000 claims description 4
- 208000009137 Behcet syndrome Diseases 0.000 claims description 3
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 3
- 208000027496 Behcet disease Diseases 0.000 claims description 2
- 208000003456 Juvenile Arthritis Diseases 0.000 claims description 2
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 claims description 2
- 208000016604 Lyme disease Diseases 0.000 claims description 2
- 208000019069 chronic childhood arthritis Diseases 0.000 claims description 2
- 230000008034 disappearance Effects 0.000 claims description 2
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 claims description 2
- 201000000306 sarcoidosis Diseases 0.000 claims description 2
- 208000006379 syphilis Diseases 0.000 claims description 2
- 201000008827 tuberculosis Diseases 0.000 claims description 2
- 101001003142 Homo sapiens Interleukin-12 receptor subunit beta-1 Proteins 0.000 claims 2
- 102100020790 Interleukin-12 receptor subunit beta-1 Human genes 0.000 claims 2
- 239000003795 chemical substances by application Substances 0.000 abstract description 4
- 229940126534 drug product Drugs 0.000 abstract description 4
- 239000000825 pharmaceutical preparation Substances 0.000 abstract description 4
- 229940124829 interleukin-23 Drugs 0.000 description 83
- 210000001508 eye Anatomy 0.000 description 42
- 108090000765 processed proteins & peptides Proteins 0.000 description 41
- 102000004127 Cytokines Human genes 0.000 description 39
- 108090000695 Cytokines Proteins 0.000 description 39
- 230000027455 binding Effects 0.000 description 34
- 108090000623 proteins and genes Proteins 0.000 description 34
- 241000699670 Mus sp. Species 0.000 description 33
- 239000000427 antigen Substances 0.000 description 33
- 108091007433 antigens Proteins 0.000 description 33
- 102000036639 antigens Human genes 0.000 description 33
- 238000009739 binding Methods 0.000 description 33
- 210000004027 cell Anatomy 0.000 description 33
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 31
- 102000004169 proteins and genes Human genes 0.000 description 30
- 201000010099 disease Diseases 0.000 description 28
- 102100035018 Interleukin-17 receptor A Human genes 0.000 description 26
- 239000003814 drug Substances 0.000 description 24
- 101710186083 Interleukin-17 receptor A Proteins 0.000 description 22
- 102100038247 Retinol-binding protein 3 Human genes 0.000 description 21
- 230000003053 immunization Effects 0.000 description 20
- 102000004196 processed proteins & peptides Human genes 0.000 description 20
- 102100035012 Interleukin-17 receptor C Human genes 0.000 description 19
- 101710137010 Retinol-binding protein 3 Proteins 0.000 description 19
- 229920001184 polypeptide Polymers 0.000 description 19
- 101710186068 Interleukin-17 receptor C Proteins 0.000 description 18
- 238000002649 immunization Methods 0.000 description 18
- 102000005962 receptors Human genes 0.000 description 18
- 108020003175 receptors Proteins 0.000 description 18
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 16
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 16
- 108010074328 Interferon-gamma Proteins 0.000 description 15
- 239000012634 fragment Substances 0.000 description 15
- 102100037850 Interferon gamma Human genes 0.000 description 14
- 239000008194 pharmaceutical composition Substances 0.000 description 14
- 229940124597 therapeutic agent Drugs 0.000 description 14
- 238000011269 treatment regimen Methods 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 13
- 102000013462 Interleukin-12 Human genes 0.000 description 12
- 108010065805 Interleukin-12 Proteins 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 12
- 229940117681 interleukin-12 Drugs 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 11
- 230000002757 inflammatory effect Effects 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 210000001744 T-lymphocyte Anatomy 0.000 description 10
- 208000023275 Autoimmune disease Diseases 0.000 description 9
- 206010022941 Iridocyclitis Diseases 0.000 description 9
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 9
- 230000002411 adverse Effects 0.000 description 9
- 201000004612 anterior uveitis Diseases 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000005951 type IV hypersensitivity Effects 0.000 description 9
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 9
- 239000012636 effector Substances 0.000 description 8
- 238000006386 neutralization reaction Methods 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 108090001005 Interleukin-6 Proteins 0.000 description 7
- 102000004889 Interleukin-6 Human genes 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 210000001525 retina Anatomy 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 208000002691 Choroiditis Diseases 0.000 description 6
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 208000003971 Posterior uveitis Diseases 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 230000036039 immunity Effects 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 150000003384 small molecules Chemical class 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000011740 C57BL/6 mouse Methods 0.000 description 5
- 101001019598 Homo sapiens Interleukin-17 receptor A Proteins 0.000 description 5
- 201000004982 autoimmune uveitis Diseases 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 108010048996 interstitial retinol-binding protein Proteins 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 208000009299 Benign Mucous Membrane Pemphigoid Diseases 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 108060003951 Immunoglobulin Proteins 0.000 description 4
- 208000004788 Pars Planitis Diseases 0.000 description 4
- 102100040247 Tumor necrosis factor Human genes 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000004240 ciliary body Anatomy 0.000 description 4
- 210000000795 conjunctiva Anatomy 0.000 description 4
- 210000004087 cornea Anatomy 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 230000004438 eyesight Effects 0.000 description 4
- 238000000684 flow cytometry Methods 0.000 description 4
- 102000018358 immunoglobulin Human genes 0.000 description 4
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 4
- 208000015200 ocular cicatricial pemphigoid Diseases 0.000 description 4
- -1 peptide-mimetics Proteins 0.000 description 4
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 4
- 230000002207 retinal effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 150000003431 steroids Chemical class 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 208000011231 Crohn disease Diseases 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 101000998146 Homo sapiens Interleukin-17A Proteins 0.000 description 3
- 101000852980 Homo sapiens Interleukin-23 subunit alpha Proteins 0.000 description 3
- 102000014154 Interleukin-12 Subunit p35 Human genes 0.000 description 3
- 108010011301 Interleukin-12 Subunit p35 Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 206010064996 Ulcerative keratitis Diseases 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000003042 antagnostic effect Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 210000003161 choroid Anatomy 0.000 description 3
- 201000007717 corneal ulcer Diseases 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 3
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 229960004618 prednisone Drugs 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000000770 proinflammatory effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 210000004988 splenocyte Anatomy 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 102000003916 Arrestin Human genes 0.000 description 2
- 108090000328 Arrestin Proteins 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 206010014025 Ear swelling Diseases 0.000 description 2
- 108010008165 Etanercept Proteins 0.000 description 2
- 101000852992 Homo sapiens Interleukin-12 subunit beta Proteins 0.000 description 2
- 101001019602 Homo sapiens Interleukin-17 receptor C Proteins 0.000 description 2
- 101001124991 Homo sapiens Nitric oxide synthase, inducible Proteins 0.000 description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 102100036701 Interleukin-12 subunit beta Human genes 0.000 description 2
- 102100033461 Interleukin-17A Human genes 0.000 description 2
- 102000003810 Interleukin-18 Human genes 0.000 description 2
- 108090000171 Interleukin-18 Proteins 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 241001049988 Mycobacterium tuberculosis H37Ra Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 206010034960 Photophobia Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 210000002159 anterior chamber Anatomy 0.000 description 2
- 230000006472 autoimmune response Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000837 carbohydrate group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 229960001259 diclofenac Drugs 0.000 description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 229960001048 fluorometholone Drugs 0.000 description 2
- FAOZLTXFLGPHNG-KNAQIMQKSA-N fluorometholone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FAOZLTXFLGPHNG-KNAQIMQKSA-N 0.000 description 2
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 description 2
- 239000000710 homodimer Substances 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 230000004957 immunoregulator effect Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 229960000905 indomethacin Drugs 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 108040001304 interleukin-17 receptor activity proteins Proteins 0.000 description 2
- 102000053460 interleukin-17 receptor activity proteins Human genes 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 206010023332 keratitis Diseases 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 210000005210 lymphoid organ Anatomy 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 201000007407 panuveitis Diseases 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229960005205 prednisolone Drugs 0.000 description 2
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 1
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 1
- 101710163881 5,6-dihydroxyindole-2-carboxylic acid oxidase Proteins 0.000 description 1
- 102100030310 5,6-dihydroxyindole-2-carboxylic acid oxidase Human genes 0.000 description 1
- IJJWOSAXNHWBPR-HUBLWGQQSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-(6-hydrazinyl-6-oxohexyl)pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCCCC(=O)NN)SC[C@@H]21 IJJWOSAXNHWBPR-HUBLWGQQSA-N 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 206010003267 Arthritis reactive Diseases 0.000 description 1
- 208000036487 Arthropathies Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 1
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 1
- 102100036153 C-X-C motif chemokine 6 Human genes 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 102100027995 Collagenase 3 Human genes 0.000 description 1
- 108050005238 Collagenase 3 Proteins 0.000 description 1
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 206010011033 Corneal oedema Diseases 0.000 description 1
- 206010052119 Cyclitic membrane Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 230000000970 DNA cross-linking effect Effects 0.000 description 1
- 208000006313 Delayed Hypersensitivity Diseases 0.000 description 1
- 206010015943 Eye inflammation Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 206010070245 Foreign body Diseases 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 208000010412 Glaucoma Diseases 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 102100034221 Growth-regulated alpha protein Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000947177 Homo sapiens C-X-C motif chemokine 6 Proteins 0.000 description 1
- 101000725401 Homo sapiens Cytochrome c oxidase subunit 2 Proteins 0.000 description 1
- 101001069921 Homo sapiens Growth-regulated alpha protein Proteins 0.000 description 1
- 101000998178 Homo sapiens Interleukin-17C Proteins 0.000 description 1
- 101001055222 Homo sapiens Interleukin-8 Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101001128158 Homo sapiens Nanos homolog 2 Proteins 0.000 description 1
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 101001094545 Homo sapiens Retrotransposon-like protein 1 Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010017515 Interleukin-12 Receptors Proteins 0.000 description 1
- 102000004560 Interleukin-12 Receptors Human genes 0.000 description 1
- 102100033105 Interleukin-17C Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 102100026236 Interleukin-8 Human genes 0.000 description 1
- 206010022557 Intermediate uveitis Diseases 0.000 description 1
- 101150009057 JAK2 gene Proteins 0.000 description 1
- 208000012659 Joint disease Diseases 0.000 description 1
- 238000001265 Jonckheere trend test Methods 0.000 description 1
- 238000012313 Kruskal-Wallis test Methods 0.000 description 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 1
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108010028275 Leukocyte Elastase Proteins 0.000 description 1
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 1
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 description 1
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 102100038610 Myeloperoxidase Human genes 0.000 description 1
- 108090000235 Myeloperoxidases Proteins 0.000 description 1
- 102100033174 Neutrophil elastase Human genes 0.000 description 1
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 102000010175 Opsin Human genes 0.000 description 1
- 108050001704 Opsin Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101000737809 Rattus norvegicus Cadherin-related family member 5 Proteins 0.000 description 1
- 230000010799 Receptor Interactions Effects 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000018210 Recoverin Human genes 0.000 description 1
- 108010076570 Recoverin Proteins 0.000 description 1
- 206010038848 Retinal detachment Diseases 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- 101150099493 STAT3 gene Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010039705 Scleritis Diseases 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010072686 Uveitic glaucoma Diseases 0.000 description 1
- 208000001445 Uveomeningoencephalitic Syndrome Diseases 0.000 description 1
- 208000034699 Vitreous floaters Diseases 0.000 description 1
- 208000025749 Vogt-Koyanagi-Harada disease Diseases 0.000 description 1
- 208000034705 Vogt-Koyanagi-Harada syndrome Diseases 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- 238000001793 Wilcoxon signed-rank test Methods 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000011292 agonist therapy Methods 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000006470 autoimmune attack Effects 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229960004669 basiliximab Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 201000004709 chorioretinitis Diseases 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 201000001891 corneal deposit Diseases 0.000 description 1
- 201000004778 corneal edema Diseases 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 229960002806 daclizumab Drugs 0.000 description 1
- 230000004452 decreased vision Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000022811 deglycosylation Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 201000004356 excessive tearing Diseases 0.000 description 1
- 231100000573 exposure to toxins Toxicity 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 102000053162 human IL17A Human genes 0.000 description 1
- 102000043448 human IL17RA Human genes 0.000 description 1
- 102000057111 human IL23R Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940048921 humira Drugs 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000008088 immune pathway Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011283 initial treatment period Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 230000004410 intraocular pressure Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 201000004614 iritis Diseases 0.000 description 1
- 208000002551 irritable bowel syndrome Diseases 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 210000004561 lacrimal apparatus Anatomy 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 229940047091 other immunostimulants in atc Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000003950 pathogenic mechanism Effects 0.000 description 1
- 230000009745 pathological pathway Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 102000005309 phosducin Human genes 0.000 description 1
- 108010031256 phosducin Proteins 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 201000006292 polyarteritis nodosa Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000002516 postimmunization Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 208000009169 relapsing polychondritis Diseases 0.000 description 1
- 229940116176 remicade Drugs 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000003786 sclera Anatomy 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229940115586 simulect Drugs 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 201000005671 spondyloarthropathy Diseases 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 210000002301 subretinal fluid Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 229940126703 systemic medication Drugs 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 229940046728 tumor necrosis factor alpha inhibitor Drugs 0.000 description 1
- 239000002451 tumor necrosis factor inhibitor Substances 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 210000001745 uvea Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 230000004382 visual function Effects 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/244—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/02—Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- the present invention relates generally to the modulation of immune responses in the eye. More specifically, the invention relates to the use of antagonists of interleukin-23 (IL-23) and interleukin-17 (IL-17) to treat autoimmune ocular inflammatory disease.
- IL-23 interleukin-23
- IL-17 interleukin-17
- Ocular inflammatory disease is a general term embracing a number of diseases and conditions in which inflammation affects the eye or surrounding tissues.
- the diagnostic name given to an OID is typically based on the location of the ocular inflammation.
- uveitis inflammation in the uveal tract
- scleritis inflammation of the sclera
- pars planitis inflammation of the pars plana, and so forth.
- OIDs cause pain, irritation, and watering, and may result in loss of visual function.
- uveitis is the third leading cause of blindness in the developed world.
- OIDs can be caused by infections, malignancy, exposure to toxins, response to surgery or injury, and autoimmune disorders.
- AOID autoimmune-mediated OID
- S—Ag retinal arrestin
- IRB interphotoreceptor retinoid binding protein
- GP100 GP100, MART1, TRP1 and TRP2
- OID is a manifestation of a systemic autoimmune disease
- the eye is one of a variety of organs throughout the body that are being attacked.
- systemic autoimmune diseases include rheumatoid arthritis, systemic lupus erythematosus, polyarteritis nodosa, relapsing polychondritis, Wegener's granulomatosis, scleroderma, Behcet's disease, Reiter's disease, inflammatory bowel disease (ulcerative colitis and Crohn's disease) and ankylosing spondylitis.
- the eye may be the specific and only target affected in autoimmune diseases such as ocular cicatricial pemphigoid, Mooren's corneal ulcer, and various forms of uveitis.
- AOIDs such as uveitis have been treated by various classes of compounds including steroids and nonsteroidal anti-inflammatory agents such as dexamethasone, fluorometholone, prednisolone, indomethacin, aspirin, flubiprofen and diclofenac.
- nonsteroidal anti-inflammatory agents such as dexamethasone, fluorometholone, prednisolone, indomethacin, aspirin, flubiprofen and diclofenac.
- these drugs are associated with serious side effects such as cataracts, glaucoma, delayed wound healing, altered prostaglandin production, corneal complications, increased ocular pressure, superinfections, and reduced immunity to infection (see, e.g., Id, at 181; Guidera, A. C., et al. (2001) Ophthalmology 108:936-944; Olsen, E. G. & Davanger M. (1984) Acta Ophtalmol. 62:893-899).
- EAU experimental autoimmune uveitis
- a retinal antigen shown to be reactive in uveitis patients e.g., arrestin, IRBP, rhodopsin/opsin, phosducin, recoverin
- Studies using the EAU model provided apparently contradictory evidence about the mechanisms for induction and progression of this disease.
- IFN- ⁇ deficient knock-out mice were susceptible for EAU, that EAU is exacerbated by neutralization of endogenous IFN- ⁇ , and that elevated levels of IFN- ⁇ were protective against EAU in wild-type mice (Caspi, R. R. et al. (1994) J. Immunol. 152:890-899; Jones et al., J. Immunol. 158:5997-6005; Tarrant, T. K., et al. (1999) J. Exp. Med. 189:219-230.
- the present invention is based on the discoveries that (1) blocking interleukin-23 (IL-23) or interleukin-17 (IL-17) activity prevents induction of EAU; (2) after induction, neutralization of IL-17 activity inhibits or reverses progression of EAU, but neutralization of IL-23 activity has little to no effect; and (3) IL-17 activity is not necessary for induction of EAU.
- the present invention uses IL-23 and/or IL-17 antagonists in methods and compositions for treating or preventing autoimmune inflammatory disease. These antagonists antagonize either the target cytokine itself or a functional receptor for the target cytokine.
- IL-23 is a heterodimeric cytokine comprised of two subunits: p19, which is unique to IL-23; and p40, which is shared with IL-12.
- IL-23 mediates signaling by binding to a heterodimeric receptor, comprised of IL-23R and IL-12Rbeta1 (IL12RB1), which is shared by the IL-12 receptor.
- IL-12R IL-12Rbeta1
- a recent paper reported that IL-23 promotes a T cell population characterized by the production of IL-17, IL-17F, TNF, IL-6 and other factors, and named these cells “Th 17 cells” (Langrish et al. (2005) J. Exp. Med. 201:233-240)).
- IL-17 which was originally named cytotoxic T-Lymphocyte-associated antigen 8 (CTLA8) is a homodimeric cytokine that binds to IL-17RA (also known as IL17R) and IL-17C.
- CTLA8 cytotoxic T-Lymphocyte-associated antigen 8
- the functional receptor for IL-17 is believed to be a multimeric receptor complex comprising one or both of IL-17RA and IL-17RC (e.g., an IL-17RA homodimer, an IL-17RC homodimer, or an IL-17RA/IL-17RC heterodimer) and possibly a third, as yet unknown, protein (Toy, D. et al., (2006) J. of Immunol. 177(1):36-39; unpublished data).
- the invention provides a method of treating a patient with an autoimmune ocular inflammatory disease, comprising administering to the patient an IL-17 antagonist.
- an AOID need not be directly diagnosed, but may be inferred by a diagnosis that the patient has an ocular inflammation that is of putative autoimmune etiology and/or that exhibits one or more characteristics of an autoimmune response.
- a particularly preferred AOID is autoimmune uveitis, e.g., uveitis without an infectious etiology.
- the IL-17 antagonist may inhibit the expression of IL-17 or IL-17R or IL-17RC or may inhibit IL-17 signaling by directly or indirectly interacting with one or more of these polypeptides to prevent a functional ligand-receptor interaction.
- the IL-17 antagonist is an antibody or antibody fragment that binds to and inhibits the activity of either IL-17, IL17R or IL17C.
- the IL-17 antagonist is a monoclonal antibody that specifically binds to IL-17.
- the IL-17 antagonist is a bispecific antibody that binds to and inhibits the activity of IL-23p19 and IL-17; IL-23p19 and IL-17RA; IL-23R and IL-17; or IL-23R and IL-17RA.
- the IL-17 antagonist is a bispecific antibody that binds to and inhibits the activity of IL-23p19 and IL-17.
- the IL-17 antagonist is administered according to a specified treatment regimen.
- a specified dose of the antagonist is administered at a specified interval during a first treatment period, which may end after disappearance of one or more symptoms of the AOID, or within a specified period of time.
- the treatment regimen further comprises gradually reducing the dose of the IL-17 antagonist during a second treatment period that begins upon the end of the first treatment period and ends when therapy with the IL-17 antagonist is stopped.
- the duration of the second treatment period is typically between one and twelve months, one and nine months, one and six months, or one and three months.
- the specified treatment regimen also comprises administration of an IL-23 antagonist to the patient during each of the first and second treatment periods, or during only the second treatment period.
- the IL-23 antagonist may inhibit the expression of either subunit of the cytokine (IL-23p19 or p40), either subunit of the functional receptor (IL-23R or IL-12beta1), or may inhibit IL-23 signaling by directly or indirectly interacting with one or more of these polypeptides to prevent a functional ligand-receptor interaction.
- the IL-23 antagonist is an antibody or antibody fragment that binds to and inhibits the activity of either IL-23p19 or IL-23R.
- the IL-23 antagonist is a monoclonal antibody that specifically binds to IL-23p19.
- the IL-23 antagonist may be administered at a specified dose at a specified interval during one or both of the first and second treatment periods.
- the dose of the IL-23 antagonist administered in the second treatment period may be lower than the dose administered in the first period.
- the doses of the IL-17 and IL-23 antagonists may be the same or different from each other.
- the two antagonists may be administered at the same or different intervals during each treatment period.
- the dose of the IL-17 antagonist may be reduced while the dose of the IL-23 antagonist is held constant, or the dose of each antagonist may be gradually reduced.
- the dose of the IL-23 antagonist is held constant during the second treatment regimen and therapy with the IL-23 antagonist is continued during a third treatment period that begins upon the end of the second treatment period (i.e., when therapy with the IL-17 antagonist is stopped).
- the IL-23 antagonist may be administered at the same dose and interval as in the second treatment period or may be administered at a lower dose and/or less frequent interval than used in the previous period.
- the dose of the IL-23 antagonist may also be gradually reduced during the third treatment period.
- the duration of the third treatment period is typically between one and twelve months, one and nine months, one and six months, or one and three months.
- the specified treatment regimen also comprises administering a therapeutic agent that does not antagonize IL-17 or IL-23 activity but is capable of alleviating at least one symptom of the AOID or at least one side effect of the IL-17 or IL-23 antagonists during any or all of the treatment periods.
- the therapeutic agent is a steroid or a nonsteroidal anti-inflammatory agent (e.g., NSAID) that is known to have efficacy in treating uveitis.
- the therapeutic agent targets a cytokine that promotes the Th1 response.
- Another aspect of the invention provides a method of prophylactically treating a patient who is diagnosed as being susceptible for an autoimmune ocular inflammatory disease, which comprises administering to the patient an antagonist of one or both of IL-23 and IL-17.
- the susceptibility diagnosis is based on the patient having a previous incidence of ocular inflammation.
- the susceptibility diagnosis is based on the patient having a systemic autoimmune disease.
- the antagonist may be administered in a specified dose at a specified interval during a first treatment period, which typically ends after three months, six months, nine months or after two years of therapy with the antagonist.
- the dose of the antagonist is gradually reduced during a second treatment period that begins upon the end of the first treatment period, and typically has a duration of between one and three months.
- the invention provides a method of treating a patient for an autoimmune ocular inflammatory disease, comprising administering to the patient an IL-23 antagonist.
- the IL-23 antagonist may be administered at a specified interval during a first treatment period, which is followed by a second treatment period in which the IL-23 antagonist is administered at a lower dose or at less frequent intervals, or at gradually reduced doses.
- Therapy with the IL-23 antagonist will typically continue for at least three to six months and may continue for as many as 12 months, 18 months or 24 months.
- Another aspect of the invention is the use of an IL-17 antagonist or an IL-23 antagonist for the preparation of a pharmaceutical composition for the treatment or prevention of an autoimmune ocular inflammatory disease (AOID) in a patient.
- the pharmaceutical composition is for administering the antagonist according to any of the treatment regimens described herein.
- the invention provides a manufactured drug product for treating an autoimmune ocular inflammatory disease.
- the drug product comprises (i) a first pharmaceutical formulation comprising an IL-17 antagonist; and (ii) a second pharmaceutical formulation comprising an IL-23 antagonist.
- the drug product includes product information which comprises instructions for administering the pharmaceutical formulations according to any of the treatment regimens described herein.
- “Antagonist” means any molecule that can prevent, neutralize, inhibit or reduce a targeted activity, i.e., the activity of a cytokine such as IL-17 or IL-23, either in vitro or in vivo.
- Cytokine antagonists include, but are not limited to, antagonistic antibodies, peptides, peptide-mimetics, polypeptides, and small molecules that bind to a cytokine (or any of its subunits) or its functional receptor (or any of its subunits) in a manner that interferes with cytokine signal transduction and downstream activity.
- peptide and polypeptide antagonists include truncated versions or fragments of the cytokine receptor (e.g., soluble extracellular domains) that bind to the cytokine in a manner that either reduces the amount of cytokine available to bind to its functional receptor or otherwise prevents the cytokine from binding to its functional receptor.
- Antagonists also include molecules that prevent expression of any subunit that comprises the cytokine or its receptor, such as, for example, antisense oligonucleotides which target mRNA, and interfering messenger RNA, (see, e.g., Arenz and Schepers (2003) Naturwissenschaften 90:345-359; Sazani and Kole (2003) J. Clin. Invest.
- the inhibitory effect of an antagonist can be measured by routine techniques. For example, to assess the inhibitory effect on cytokine-induced activity, human cells expressing a functional receptor for a cytokine are treated with the cytokine and the expression of genes known to be activated or inhibited by that cytokine is measured in the presence or absence of a potential antagonist.
- Antagonists useful in the present invention inhibit the targeted activity by at least 25%, preferably by at least 50%, more preferably by at least 75%, and most preferably by at least 90%, when compared to a suitable control.
- Antibody refers to any form of antibody that exhibits the desired biological activity, such as inhibiting binding of a ligand to its receptor, or by inhibiting ligand-induced signaling of a receptor.
- antibody is used in the broadest sense and specifically covers, but is not limited to, monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, and multispecific antibodies (e.g., bispecific antibodies).
- Antibody fragment and “antibody binding fragment” mean antigen-binding fragments and analogues of an antibody, typically including at least a portion of the antigen binding or variable regions (e.g. one or more CDRs) of the parental antibody.
- An antibody fragment retains at least some of the binding specificity of the parental antibody.
- an antibody fragment retains at least 10% of the parental binding activity when that activity is expressed on a molar basis.
- an antibody fragment retains at least 20%, 50%, 70%, 80%, 90%, 95% or 100% or more of the parental antibody's binding affinity for the target.
- antibody fragments include, but are not limited to, Fab, Fab′, F(ab′) 2 , and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules, e.g., sc-Fv; and multispecific antibodies formed from antibody fragments.
- Engineered antibody variants are reviewed in Holliger and Hudson (2005) Nat. Biotechnol. 23:1126-1136.
- a “Fab fragment” is comprised of one light chain and the C H 1 and variable regions of one heavy chain.
- the heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule.
- An “Fc” region contains two heavy chain fragments comprising the C H 1 and C H 2 domains of an antibody.
- the two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains.
- a “Fab′ fragment” contains one light chain and a portion of one heavy chain that contains the V H domain and the C H 1 domain and also the region between the C H 1 and C H 2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab′ fragments to form a F(ab′) 2 molecule.
- a “F(ab′) 2 fragment” contains two light chains and two heavy chains containing a portion of the constant region between the C H 1 and C H 2 domains, such that an interchain disulfide bond is formed between the two heavy chains.
- a F(ab′) 2 fragment thus is composed of two Fab′ fragments that are held together by a disulfide bond between the two heavy chains.
- the “Fv region” comprises the variable regions from both the heavy and light chains, but lacks the constant regions.
- a “single-chain Fv antibody refers to antibody fragments comprising the V H and V L domains of an antibody, wherein these domains are present in a single polypeptide chain.
- the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the scFv to form the desired structure for antigen binding.
- scFv see Pluckthun (1994) THE PHARMACOLOGY OF MONOCLONAL ANTIBODIES, vol. 113, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315. See also, International Patent Application Publication No. WO 88/01649 and U.S. Pat. Nos. 4,946,778 and 5,260,203.
- a “diabody” is a small antibody fragment with two antigen-binding sites.
- the fragments comprises a heavy chain variable domain (V H ) connected to a light chain variable domain (V L ) in the same polypeptide chain (V H -V L or V L -V H ).
- V H heavy chain variable domain
- V L light chain variable domain
- the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites.
- Diabodies are described more fully in, e.g., EP 404,097; WO 93/11161; and Holliger et al. (1993) Proc. Natl. Acad. Sci. USA 90: 6444-6448.
- a “domain antibody fragment” is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain.
- two or more V H regions are covalently joined with a peptide linker to create a bivalent domain antibody fragment.
- the two V H regions of a bivalent domain antibody fragment may target the same or different antigens.
- AOID Autoimmune-mediated ocular inflammatory disease
- AOID means any disease or condition in which (a) inflammation is present in any part of the eye or surrounding tissues (including the optic nerve, blood vessels, muscles) and (b) the inflammation is part of an immune response that requires or is promoted by one or both of IL-23 and IL-17. Intraocular inflammation without an infectious etiology is typically considered an AOID.
- Nonlimiting examples of AOIDs are listed below.
- BSRC Birdshot retinochoriodopathy
- OCP Ocular cicatricial pemphigoid
- Keratitis is inflammation of the cornea, the outer, transparent, dome-like structure that forms the anterior most part of the outer coat of the eye. If ulcers develop in the peripheral cornea, it is referred to as peripheral ulcerative Keratitis.
- “Sympathetic ophtahlmia” is an AOID in which a trauma to one eye precipitates at a later time a destructive inflammation in the other (“sympathizing”) eye, apparently due to an autoimmune response to antigens released from the injured eye.
- Vogt-Koyanagi Harada VKH
- Vogt-Koyanagi-Harada syndrome VKH
- uveomenigitic syndrome Severe bilateral panuveitis associated with subretinal fluid accumulation is the hallmark of ocular VKH.
- Fuchs' heterochromic iridocyclitis A chronic, unilateral anterior uveitis characterized by iris heterochromia, a condition in which one eye is a different color from the other. The uveitis typically occurs in the lighter colored eye of a young adult.
- Binding compound refers to a molecule, small molecule, macromolecule, antibody, a fragment or analogue thereof, or soluble receptor, capable of binding to a specified target. “Binding compound” also may refer to any of the following that are capable of binding to the specified target: a complex of molecules (e.g., a non-covalent molecular complex); an ionized molecule; and a covalently or non-covalently modified molecule (e.g., modified by phosphorylation, acylation, cross-linking, cyclization, or limited cleavage). In cases where the binding compound can be dissolved or suspended in solution, “binding” may be defined as an association of the binding compound with a target where the association results in reduction in the normal Brownian motion of the binding compound.
- Binding composition refers to a binding compound in combination with at least one other substance, such as a stabilizer, excipient, salt, buffer, solvent, or additive.
- Bispecific antibody means an antibody that has two antigen binding sites having specificities for two different epitopes, which may be on the same antigen, or on two different antigens.
- Bispecific antibodies include bispecific antibody fragments. See, e.g., Hollinger, et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90: 6444-48, Gruber, et al., J. Immunol. 152: 5368 (1994).
- cytokine which consists essentially of a recited amino acid sequence may also include one or more amino acids that do not materially affect the properties of the cytokine.
- Interleukin-12R beta1 or “IL12RB1” means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL as described in NCBI Protein Sequence Database Accession Numbers NP714912, NP005526 or naturally occurring variants thereof.
- Interleukin-17 means a protein consisting of one or two polypeptide chains, with each chain consisting essentially of the sequence of the mature form of human IL17A as described in any of NCBI Protein Sequence Database Accession Numbers NP002181, AAH67505, AAH67503, AAH67504, AAH66251, AAH66252 or naturally occurring variants thereof.
- IL-17R or “IL-17RA” means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL-17RA as described in WO 96/29408 or in any of NCBI Protein Sequence Database Accession Numbers: NP 055154, Q96F46, CAJ86450, or naturally occurring variants of these sequences.
- IL-17RC means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL-17RC as described in WO 238764A2 or in any of NCBI Protein Sequence Database Accession Numbers NP703191, NP703190 and NP116121, or naturally occurring variants of these sequences.
- Interleukin-23 means a protein consisting of two polypeptide chains. One chain consists essentially of the sequence of the mature form of human IL23, subunit p19 (also known as IL23A) as described in any of NCBI Protein Sequence Database Accession Numbers NP057668, AAH67511, AAH66267, AAH66268, AAH66269, AAH667512, AAH67513 or naturally occurring variants of these sequences.
- the other chain consists essentially of the sequence of the mature form of human IL12, subunit p40 (also known as IL12B and IL23, subunit p40) as described in any of NCBI Protein Sequence Database Accession Numbers NP002178, P29460, AAG32620, AAH74723, AAH67502, AAH67499, AAH67498, AAH67501 or naturally occurring variants of these sequences.
- Interleukin-23R or “IL-23R” means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL23R as described in NCBI Protein Sequence Database Accession Number NP653302 or naturally occurring variants thereof.
- “Monoclonal antibody” or “mAb” means an antibody obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- Parental administration means an intravenous, subcutaneous, or intramuscular injection.
- Small molecule means a molecule with a molecular weight that is less than 10 kD, typically less than 2 kD, and preferably less than 1 kD.
- Small molecules include, but are not limited to, inorganic molecules, organic molecules, organic molecules containing an inorganic component, molecules comprising a radioactive atom, synthetic molecules, peptide mimetics, and antibody mimetics.
- Peptide mimetics of antibodies and cytokines are known in the art. See, e.g., Casset, et al. (2003) Biochem. Biophys. Res. Commun. 307:198-205; Muyldermans (2001) J. Biotechnol. 74:277-302; Li (2000) Nat.
- one member of a binding pair has a significantly greater affinity for the other member of the binding pair than for irrelevant proteins.
- an antibody is considered to be specific for a particular protein if it binds to that protein with an affinity that is at least 10-fold, and preferably 50-fold higher than its affinity for a different protein.
- an antibody that “specifically binds” to a protein comprising a particular epitope does not bind to any measurable degree to proteins that do not comprise that epitope.
- an antibody that is specific for a target protein will have an affinity toward the target protein that is greater than about 10 9 liters/mol, as determined, e.g., by Scatchard analysis (Munsen, et al. (1980) Analyt. Biochem. 107:220-239).
- Treat” or “Treating” means to administer a therapeutic agent, such as a composition containing any of the IL-17 and IL-23 antagonists described herein, internally or externally to a patient in need of the therapeutic agent.
- a therapeutic agent such as a composition containing any of the IL-17 and IL-23 antagonists described herein.
- the agent is administered in an amount effective to prevent or alleviate one or more disease symptoms, or one or more adverse effects of treatment with a different therapeutic agent, whether by preventing the development of, inducing the regression of, or inhibiting the progression of such symptom(s) or adverse effect(s) by any clinically measurable degree.
- the amount of a therapeutic agent that is effective to alleviate any particular disease symptom or adverse effect may vary according to factors such as the disease state, age, and weight of the patient, and the ability of the therapeutic agent to elicit a desired response in the patient. Whether a disease symptom or adverse effect has been alleviated can be assessed by any clinical measurement typically used by physicians or other skilled healthcare providers to assess the severity or progression status of that symptom or adverse effect.
- a therapeutically effective amount will typically result in a reduction of the measured symptom by at least 5%, usually by at least 10%, more usually at least 20%, most usually at least 30%, preferably at least 40%, more preferably at least 50%, most preferably at least 60%, ideally at least 70%, more ideally at least 80%, and most ideally at least 90%.
- an embodiment of the present invention may not be effective in preventing or alleviating the target disease symptom(s) or adverse effect(s) in every patient, it should alleviate such symptom(s) or effect(s) in a statistically significant number of patients as determined by any statistical test known in the art such as the Student's t-test, the chi 2 -test, the U-test according to Mann and Whitney, the Kruskal-Wallis test (H-test), Jonckheere-Terpstra-test and the Wilcoxon-test.
- any statistical test known in the art such as the Student's t-test, the chi 2 -test, the U-test according to Mann and Whitney, the Kruskal-Wallis test (H-test), Jonckheere-Terpstra-test and the Wilcoxon-test.
- Uveitis means inflammation affecting one or more of the three parts of the eye that make up the uvea: the iris (the colored part of the eye), the ciliary body (behind the iris, responsible for manufacturing the fluid inside the eye) and the choroid (the vascular lining tissue underneath the retina).
- Panuveitis denotes the presence of inflammation in multiple parts of the same eye (anterior, intermediate, and posterior sections).
- Uveitis can be either acute or chronic.
- the chronic form is more often associated with systemic disorders including ankylosing spondylitis, Behcet's syndrome, inflammatory bowel disease, juvenile rheumatoid arthritis, Reiter's syndrome, sarcoidosis, syphilis, tuberculosis, and Lyme disease.
- Anterior uveitis which involves inflammation in the front part of the eye, is the most common form of uveitis.
- the inflammation is usually isolated to the iris; thus, anterior uveitis is often called ulceris.
- anterior uveitis may be associated with the presence of an autoimmune disease such as rheumatoid arthritis or ankylosing spondylitis, but most cases of anterior uveitis occur in otherwise healthy people and do not indicate an underlying systemic disease.
- This OID may affect only one eye and is most common in young and middle-aged people.
- a history of an autoimmune disease is a risk factor. Most attacks of anterior uveitis last from a few days to weeks with treatment, but relapses are common.
- Intermediate uveitis denotes an idiopathic inflammatory syndrome mainly involving the anterior vitreous, peripheral retina, and ciliary body, with minimal or no anterior segment or chorioretinal inflammatory signs.
- Pars planitis is inflammation of the pars plana, a narrow area between the iris and the choroid. Pars planitis usually occurs in young men and is generally not associated with any other disease. However, there have been a few case reports of an association with Crohn's disease and some experts suggest a possible association with multiple sclerosis. For this reason, these experts recommend that patients over 25 years old diagnosed with pars planitis receive an MRI of their brain and spine.
- Posterior uveitis affects the back portion of the uveal tract and involves primarily the choroid. This is called choroiditis.
- Posterior uveitis is characterized by inflammation of the layer of blood vessels underlying the retina, and usually of the retina as well. If the adjacent retina is also involved, the condition is typically called chorioretinitis.
- Posterior uveitis may follow a systemic infection or occur in association with an autoimmune disease. In posterior uveitis, the inflammation may last from months to years and may cause permanent vision damage, even with treatment.
- the present invention provides methods of using antagonists of IL-17 and IL-23 activity to treat autoimmune ocular inflammatory disease.
- IL17 activity which is reviewed in Kolls, J. et al. (2004) Immunity Vol. 21, 467-476, includes promoting accumulation of neutrophils in a localized area and the activation of neutrophils.
- IL17 can induce or promote the production of any of the following proinflammatory and neutrophil-mobilizing cytokines, depending on the cell type: IL-6, MCP-1, CXCL8 (IL-8), CXCL1, CXCL6, TNF ⁇ , IL-1 ⁇ , G-CSF, GM-CSF, MMP-1, and MMP-13.
- IL-23 activity includes inducing the proliferation of memory T cells, PHA blasts, CD45RO T cells, CD45ROT cells; and enhance production of interferon-gamma (IFN ⁇ ) by PHA blasts or CD45ROT cells.
- IFN ⁇ interferon-gamma
- IL-23 preferentially stimulates memory as opposed to na ⁇ ve T cell populations in both human and mouse.
- IL-23 activates a number of intracellular cell-signaling molecules, e.g., Jak2, Tyk2, Stat1, Stat2, Stat3, and Stat4.
- IL-12 activates this same group of molecules, but Stat4 response to IL-23 is relatively weak, while Stat4 response to IL-12 is strong (Oppmann, et al., supra; Parham, et al.
- IL-23 has also been implicated in the maintenance and proliferation of IL-17 producing cells, also known as Th 17 cells (see, Cua and Kastelein (2006) Nature Immunology 7:557-559).
- Antagonists useful in the present invention include a soluble receptor comprising the extracellular domain of a functional receptor for IL-17 or IL-23.
- Soluble receptors can be prepared and used according to standard methods (see, e.g., Jones, et al. (2002) Biochim. Biophys. Acta 1592:251-263; PrudAppel, et al. (2001) Expert Opinion Biol. Ther. 1:359-373; Fernandez-Botran (1999) Crit. Rev. Clin. Lab Sci. 36:165-224).
- Preferred IL-17 antagonists for use in the present invention are antibodies that specifically bind to, and inhibit the activity of, any of IL-17, IL-17RA, IL-17RC, and a heteromeric complex comprising IL-17RA and IL-17RC. More preferably, the target of the IL-17 antagonist is IL-17 or IL-17RA. Particularly preferred IL-17 antagonists specifically bind to, and inhibit the activity of IL-17.
- IL-17 antagonist for use in the present invention is a bispecific antibody, or bispecific antibody fragment, which also antagonizes IL-23 activity.
- bispecific antagonists specifically bind to, and inhibits the activity of, each member in any of the following combinations: IL-17 and IL-23; IL-17 and IL-23p19; IL-17 and IL-12p40; IL-17 and an IL-23R/IL12RB1 complex; IL-17 and IL-23R; IL-17 and IL12RB1; IL17RA and IL-23; IL-17RA and IL-23p19; IL-17RA and IL-12p40; IL-17RA and an IL-23R/IL12RB1 complex; IL-17RA and IL-23R; IL-17RA and IL12RB1; IL17RC and IL-23; IL-17RC and IL-23p19; IL-17RC and IL-12p40; IL-17RC and an IL-23R/IL12RB1 complex;
- bispecific antibodies used in the present invention are: IL-17 and IL-23; IL-17 and IL-23p19; IL17RA and IL-23; and IL-17RA and IL-23p19.
- a particularly preferred bispecific antibody specifically binds to, and inhibits the activity of, each of IL-17 and IL-23p19.
- Preferred IL-23 antagonists are antibodies that bind to, and inhibit the activity of, any of IL-23, IL-23p19, IL-12p40, IL23R, IL12RB1, and an IL-23R/IL12RB1 complex.
- Another preferred IL-23 antagonist is an IL-23 binding polypeptide which consists essentially of the extracellular domain of IL-23R, e.g., amino acids 1-353 of GenBankAAM44229, or a fragment thereof.
- Antibody antagonists for use in the invention may be prepared by any method known in the art for preparing antibodies.
- the preparation of monoclonal, polyclonal, and humanized antibodies is described in Sheperd and Dean (eds.) (2000) Monoclonal Antibodies , Oxford Univ. Press, New York, N.Y.; Kontermann and Dubel (eds.) (2001) Antibody Engineering , Springer-Verlag, New York; Harlow and Lane (1988) Antibodies A Laboratory Manual , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 139-243; Carpenter, et al. (2000) J. Immunol. 165:6205; He, et al. (1998) J. Immunol.
- the eliciting antigen may be a peptide containing a single epitope or multiple epitopes, or it may be the entire protein alone or in combination with one or more immunogenicity enhancing agents known in the art.
- the peptide may be conjugated to a carrier protein.
- the antigen may also be an isolated full-length protein, a cell surface protein (e.g., immunizing with cells transfected with at least a portion of the antigen), or a soluble protein (e.g., immunizing with only the extracellular domain portion of the protein).
- the antigen may be expressed by a genetically modified cell, in which the DNA encoding the antigen is genomic or non-genomic (e.g., on a plasmid).
- a peptide consisting essentially of a region of predicted high antigenicity can be used for antibody generation.
- regions of high antigenicity of human p19 occur at amino acids 16-28; 57-87; 110-114; 136-154; and 182-186 of GenBank AAQ89442 (gi:37183284) and regions of high antigenicity of human IL-23R occur at amino acids 22-33; 57-63; 68-74; 101-112; 117-133; 164-177; 244-264; 294-302; 315-326; 347-354; 444-473; 510-530; and 554-558 of GenBank AAM44229 (gi: 21239252), as determined by analysis with a Parker plot using Vector NTI® Suite (Informax, Inc, Bethesda, Md.).
- Any suitable method of immunization can be used. Such methods can include use of adjuvants, other immunostimulants, repeated booster immunizations, and the use of one or more immunization routes. Immunization can also be performed by DNA vector immunization, see, e.g., Wang, et al. (1997) Virology 228:278-284. Alternatively, animals can be immunized with cells bearing the antigen of interest, which may provide superior antibody generation than immunization with purified antigen (Kaithamana, et al. (1999) J. Immunol. 163:5157-5164).
- Preferred antibody antagonists are monoclonal antibodies, which may be obtained by a variety of techniques familiar to skilled artisans. Methods for generating monoclonal antibodies are generally described in Stites, et al. (eds.) B ASIC AND C LINICAL I MMUNOLOGY (4th ed.) Lange Medical Publications, Los Altos, Calif., and references cited therein; Harlow and Lane (1988) A NTIBODIES : A L ABORATORY M ANUAL CSH Press; Goding (1986) M ONOCLONAL A NTIBODIES : P RINCIPLES AND P RACTICE (2d ed.) Academic Press, New York, N.Y.
- splenocytes isolated from an immunized mammalian host are immortalized, commonly by fusion with a myeloma cell to produce a hybridoma.
- splenocytes isolated from an immunized mammalian host are immortalized, commonly by fusion with a myeloma cell to produce a hybridoma.
- Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods known in the art. See, e.g., Doyle, et al. (eds.
- Other suitable techniques involve screening phage antibody display libraries. See, e.g., Huse et al., Science 246:1275-1281 (1989); and Ward et al., Nature 341:544-546 (1989); Clackson et al. (1991) Nature 352: 624-628 and Marks et al. (1991) J. Mol. Biol. 222: 581-597; Presta (2005) J. Allergy Clin. Immunol. 116:731.
- Preferred monoclonal antibodies for use in the present invention are “chimeric” antibodies (immunoglobulins) in which the variable domain is from the parental antibody generated in an experimental mammalian animal, such as a rat or mouse, and the constant domains are obtained from a human antibody, so that the resulting chimeric antibody will be less likely to elicit an adverse immune response in a human subject than the parental mammalian antibody.
- a monoclonal antibody used in the present invention is a “humanized antibody”, in which all or substantially all of the hypervariable loops (e.g., the complementarity determining regions or CDRs) in the variable domains correspond to those of a non-human immunoglobulin, and all or substantially all of the framework (FR) regions in the variable domains are those of a human immunoglobulin sequence.
- a particularly preferred monoclonal antibody for use in the present invention is a “fully human antibody”, e.g., an antibody that comprises human immunoglobulin protein sequences only.
- a fully human antibody may contain carbohydrate chains from the cell species in which it is produced, e.g., if produced in a mouse, in a mouse cell, or in a hybridoma derived from a mouse cell, a fully human antibody will typically contain murine carbohydrate chains.
- Monoclonal antibodies used in the present invention may also include camelized single domain antibodies. See, e.g., Muyldermans et al. (2001) Trends Biochem. Sci. 26:230; Reichmann et al. (1999) J. Immunol. Methods 231:25; WO 94/04678; WO 94/25591; U.S. Pat. No. 6,005,079.
- the antagonistic antibodies used in the present invention may have modified (or blocked) Fc regions to provide altered effector functions. See, e.g., U.S. Pat. No. 5,624,821; WO2003/086310; WO2005/120571; WO2006/0057702. Alterations of the Fc region include amino acid changes (substitutions, deletions and insertions), glycosylation or deglycosylation, and adding multiple Fc. Changes to the Fc can alter the half-life of therapeutic antibodies, enabling less frequent dosing and thus increased convenience and decreased use of material. See Presta (2005) J. Allergy Clin. Immunol. 116:731 at 734-35.
- the antibodies may also be conjugated (e.g., covalently linked) to molecules that improve stability of the antibody during storage or increase the half-life of the antibody in vivo.
- molecules that increase the half-life are albumin (e.g., human serum albumin) and polyethylene glycol (PEG).
- Albumin-linked and PEGylated derivatives of antibodies can be prepared using techniques well known in the art. See, e.g., Chapman, A. P. (2002) Adv. Drug Deliv. Rev. 54:531-545; Anderson and Tomasi (1988) J. Immunol. Methods 109:37-42; Suzuki, et al. (1984) Biochim. Biophys. Acta 788:248-255; and Brekke and Sandlie (2003) Nature Rev. 2:52-62).
- Bispecific antibodies that antagonize both IL-17 and IL-23 activity can be produced by any technique known in the art.
- bispecific antibodies can be produced recombinantly using the co-expression of two immunoglobulin heavy chain/light chain pairs. See, e.g., Milstein et al. (1983) Nature 305: 537-39.
- bispecific antibodies can be prepared using chemical linkage. See, e.g., Brennan, et al. (1985) Science 229: 81.
- bifunctional antibodies can also be prepared by disulfide exchange, production of hybrid-hybridomas (quadromas), by transcription and translation to produce a single polypeptide chain embodying a bispecific antibody, or transcription and translation to produce more than one polypeptide chain that can associate covalently to produce a bispecific antibody.
- the contemplated bispecific antibody can also be made entirely by chemical synthesis.
- the bispecific antibody may comprise two different variable regions, two different constant regions, a variable region and a constant region, or other variations.
- Antibodies used in the present invention will usually bind with at least a K D of about 10 ⁇ 3 M, more usually at least 10 ⁇ 6 M, typically at least 10 ⁇ 7 M, more typically at least 10 ⁇ 8 M, preferably at least about 10 ⁇ 9 M, and more preferably at least 10 ⁇ 10 M, and most preferably at least 10 ⁇ 11 M (see, e.g., Presta, et al. (2001) Thromb. Haemost. 85:379-389; Yang, et al. (2001) Crit. Rev. Oncol. Hematol. 38:17-23; Carnahan, et al. (2003) Clin. Cancer Res . (Suppl.) 9:3982s-3990s).
- IL-17 antagonists and IL-23 antagonists are typically administered to a patient as a pharmaceutical composition in which the antagonist is admixed with a pharmaceutically acceptable carrier or excipient, see, e.g., Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary , Mack Publishing Company, Easton, Pa. (1984).
- the pharmaceutical composition may be formulated in any manner suitable for the intended route of administration. Examples of pharmaceutical formulations include lyophilized powders, slurries, aqueous solutions, suspensions and sustained release formulations (see, e.g., Hardman, et al.
- the route of administration will depend on the properties of the antagonist or other therapeutic agent used in the pharmaceutical composition.
- a possible administration route is to administer the pharmaceutical composition topically to the eye in the form of an ointment, gel or droppable liquids using an ocular delivery system known to the art such as an applicator or eyedropper.
- the pharmaceutical composition may be administered intraocularly via an polymer implant that is placed under the under the conjunctiva of the eye or through injection directly into the eye.
- compositions containing IL-17 antagonists and IL-23 antagonists are administered systemically by oral ingestion, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, intralesional, or pulmonary routes, or by sustained release systems such as implants.
- Injection of gene transfer vectors into the central nervous system has also been described (see, e.g., Cua, et al. (2001) J. Immunol. 166:602-608; Sidman et al. (1983) Biopolymers 22:547-556; Langer, et al. (1981) J. Biomed. Mater. Res.
- compositions used in the invention may be administered according to any treatment regimen that ameliorates or prevents one or more symptoms of the AOID. Selecting the treatment regimen will depend on several composition-dependent and patient-dependent factors, including but not limited to the half-life of the antagonist, the severity of the patient's symptoms, and the type or length of any adverse effects. Preferably, an administration regimen maximizes the amount of therapeutic agent delivered to the patient consistent with an acceptable level of side effects. Guidance in selecting appropriate doses of therapeutic antibodies and small molecules is available (see, e.g., Wawrzynczak (1996) Antibody Therapy , Bios Scientific Pub.
- Biological antagonists such as antibodies may be provided by continuous infusion, or by doses at intervals of, e.g., once per day, once per week, or 2 to 7 times per week, once every other week, or once per month.
- a total weekly dose for an antibody is generally at least 0.05 ⁇ g/kg body weight, more generally at least 0.2 ⁇ g/kg, most generally at least 0.5 ⁇ g/kg, typically at least 1 ⁇ g/kg, more typically at least 10 ⁇ g/kg, most typically at least 100 ⁇ g/kg, preferably at least 0.2 mg/kg, more preferably at least 1.0 mg/kg, most preferably at least 2.0 mg/kg, optimally at least 10 mg/kg, more optimally at least 25 mg/kg, and most optimally at least 50 mg/kg (see, e.g., Yang, et al.
- the desired dose of a small molecule therapeutic is about the same as for an antibody or polypeptide, on a moles/kg basis.
- Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the beginning dose is an amount somewhat less than the optimum dose and the dose is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects.
- Treatment regimens using IL-17 or IL-23 antagonists will typically be determined by the treating physician and will take into account the patient's age, medical history, disease symptoms, and tolerance for different types of medications and dosing regimens.
- the treatment regimen is designed to suppress the overly aggressive immune system, allowing the body to eventually re-regulate itself, with the result often being that after the patient has been kept on systemic medications to suppress the inappropriate immune response for a finite length of time (for example, one year), medication can then be tapered and stopped without recurrence of the autoimmune attack. Sometimes resumption of the attack does occur, in which case the patient must be re-treated.
- the physician may prescribe the patient a certain number of doses of the antagonist to be taken over a prescribed time period, after which therapy with the antagonist is discontinued.
- the physician will continue the agonist therapy for some period of time, in which the amount and/or frequency of antagonist administered is gradually reduced before treatment is stopped.
- the present invention also contemplates treatment regimens in which an IL-17 antagonist is used in combination with an IL-23 antagonist.
- Such regimens may be especially useful in treating the acute phase of AOID, in which the IL-17 antagonist inhibits the activity of existing Th 17 cells, while the IL-23 antagonist prevents the generation of new Th 17 cells.
- Such combination therapy may provide effective treatment of AOID using a lower dose of the IL-17 antagonist and/or administering the IL-17 antagonist for a shorter period of time.
- therapy with IL-17 antagonist is preferably discontinued, while administration of the IL-23 antagonist is continued to prevent generation of new autoreactive Th 17 cells that could lead to recurrence of the disease.
- the two antagonists may be administered at the same time in a single composition, or in separate compositions. Alternately, the two antagonists may be administered at separate intervals. Different doses of the antagonists may also be used. Similarly, a bispecific antagonist may also be administered during the acute phase and gradually withdrawn, followed by treatment with an IL-23 antagonist to maintain repression of the disease.
- the treatment regimen may also include use of other therapeutic agents, to ameliorate one or more symptoms of the AOID or to prevent or ameliorate adverse effects from the antagonist therapy.
- therapeutic agents that have been used to treat AOID symptoms are steroids and other anti-inflammatories.
- steroids such as dexamethasone, fluorometholone, and prednisolone
- non-steroidal anti-inflammatories such as indomethacin, aspirin, flubiprofen and diclofenac
- antimetabolites e.g., methotrexate, azathioprine
- inhibitors of transcription factors e.g., cyclosporine, tacrolimus
- DNA cross-linking agents e.g., cyclophosphamide, chlorambucil.
- TNF inhibitors such as Infliximab (Remicade®, Centocor, Malvern, Pa.), Etanercept (Enbrel®, Amgen, Thousand Oaks, Calif.), and Adalimumab (Humira®, Abbott Laboratories, Abbott Park, Ill.) and specific inhibitors of IL-2 signaling, including Daclizumab (Zenapax®, Roche Laboratories, Nutley, N.J.) and Basiliximab (Simulect®, Novartis Pharmaceutical Co., East Hanover, N.J.).
- TNF inhibitors such as Infliximab (Remicade®, Centocor, Malvern, Pa.), Etanercept (Enbrel®, Amgen, Thousand Oaks, Calif.), and Adalimumab (Humira®, Abbott Laboratories, Abbott Park, Ill.) and specific inhibitors of IL-2 signaling, including Daclizumab (Zenapax®, Roche Laboratories, Nutley, N.
- any of the therapies described herein in which two or more different therapeutic substances are used e.g., an IL-17 antagonist and an IL-23 antagonist, or an IL-17 antagonist and a therapeutic agent that does not antagonize IL-17 or IL-23 activity
- the different therapeutic substances are administered in association with each other, that is, they may be administered concurrently in the same pharmaceutical composition or as separate compositions or the substances may be administered at separate times, and in different orders.
- Diagnosing the presence of an AOID in a patient will typically involve examining the patient for symptoms known to be consistent with such diseases.
- the typical presentation of anterior uveitis involves pain, photophobia, and hyperlacrimation. Patients report a deep, dull, aching of the involved eye and surrounding orbit. Associated sensitivity to lights may be severe. Excessive tearing occurs secondary to increased neural stimulation of the lacrimal gland and the patient does not report a foreign-body sensation.
- Visual acuity is variable ranging from mild blur to significant vision loss if synechiae or cyclitic membranes are present.
- An examination may reveal mild to moderate lid swelling resulting in pseudoptosis.
- a deep, perilimbal injection of the conjunctiva and episclera is typical, although the palpebral conjunctiva is characteristically normal.
- the cornea may display mild edema.
- the hallmark signs of anterior uveitis include cells and flare in the anterior chamber. If the anterior chamber reaction is significant, small gray to brown endothelial deposits known as keratic precipitates may be present. This can then lead to endothelial cell dysfunction and corneal edema. Iris findings may include adhesions to the lens capsule (posterior synechiae) or, less commonly, to the peripheral cornea (anterior synechiae). Additionally, granulomatous nodules may appear on the surface of the iris. Intraocular pressure (TOP) is initially reduced in the involved eye due to secretory hypotony of the ciliary body. However, as the reaction persists, inflammatory by-products may accumulate in the trabeculum. If this debris builds significantly, and if the ciliary body resumes its normal secretory output, IOP can rise sharply resulting in a secondary uveitic glaucoma.
- TOP Intraocular pressure
- Identifying patients who are susceptible for an AOID will typically taking a personal and family medical history, and may include genetic testing. For example, some individuals will have genetic predisposition to uveitis which is related to autoimmune disease processes. The most common of these susceptibility genes is the HLA B27 haplotype, which can predispose to uveitis alone or also to the Seronegative Spondyloarthropathies and the enteropathic arthropathies. Examples are ankylosing spondylitis, reactive arthritis (Reiters syndrome), psoriatic arthritis, irritable bowel disease and Crohn's disease. A patient may also be diagnosed as susceptible for an AOID if there was a family history of any of these autoimmune diseases, or the patient has already been diagnosed with such a disease.
- the effectiveness of the antagonist therapy for preventing or treating AOID in a particular patient can be determined using diagnostic measures such as reduction or occurrence of inflammatory symptoms of, e.g., the amount of ocular inflammation or level of inflammatory cytokines in the affected eye(s).
- diagnostic measures such as reduction or occurrence of inflammatory symptoms of, e.g., the amount of ocular inflammation or level of inflammatory cytokines in the affected eye(s).
- the symptoms of ocular inflammation for the most part depend on the affected area of the eye. Most common signs and symptoms are: pain redness, floaters, decreased vision, and light sensitivity.
- the level of inflammatory cytokines can be measured, e.g, by contacting a binding compound for the inflammatory cytokine of interest with a sample from the patient's eye as well as with a sample from a control subject or from unaffected tissue or fluid from the patient, and then comparing the cytokine levels detected by the binding compound.
- Expression or activity from a control subject or control sample can be provided as a predetermined value, e.g., acquired from a statistically appropriate group of control subjects.
- the present invention is based upon studies in IL-23p19 knockout (KO) mice and administration of anti-IL-23p19 and anti-IL-17 antibodies to murine models of autoimmune uveitis. These experiments were performed according to the Materials and Methods described in Section II below.
- mice In the experiments involving IL-23p19 KO mice, the EAU susceptibility of IL-23p19 KO (IL-23 deficient) mice were compared to the EAU susceptibility of IL-12p35 KO (IL-12 deficient) and IL-12p40 KO (IL-12 and IL-23 deficient) mice. All mice were on the C57BL/6 background and the EAU induction and scoring was as described in General Methods below. It was found that IL-12p35 is not required for generation of IRBP-specific eye tissue destruction. In contrast, IL-23p19 is essential for development of EAU (Table 1).
- Cytokine analysis of lymph node cell cultures derived from IRBP-immunized mice showed that the EAU susceptible IL-12 deficient mice (IL-12p35KO) had elevated levels of IFN- ⁇ , IL-6, IL-17 and IL-18, compared to IL-23 deficient mice (IL-23p19KO and IL-12p40KO).
- Delayed hypersensitivity (DTH) responses to IRBP of the 3 KO strains examined by the ear swelling assay, showed that DTH response to IRBP was well correlated with the EAU scores or the respective mice, with significantly lower responses for p19 and p40 KO and significantly higher responses in p35 KO compared to wild-type (WT).
- mice received 500 ⁇ g of the indicated antibodies every other day, starting the day before immunization, and the eyes and lymphoid organs were collected 17 days after immunization, or 6-7 days after disease onset in controls.
- cytokine protein expression in the lymph nodes of these mice was assessed by multiplex ELISA. These data show that treatment with IL-23 antagonists lessens the production of Th1 and pro-inflammatory cytokines. The data are shown in Table 3.
- mice were treated with 500 ⁇ g of anti-IL-23 p19 antibody every other day starting 7 days after immunization and the disease was compared to mice that were treated from day before immunization (as above). EAU could be prevented by early treatment with either anti-p19 or anti-p40 antibodies. However, when treatment was started 7 days after immunization, a time point when uveitogenic effector T cells have already been primed and can be isolated from the LN and spleen, EAU development could not be aborted and the disease scores developed by treated mice were similar to control. This suggests that the requirement for IL-23 occurs at an early stage of disease pathogenesis. The data are shown in Table 4.
- IL-17A ⁇ / ⁇ mice were immunized with a uveitogenic regimen of IRBP Inhibition of EAU by genetic IL-17 deficiency was only partial (Table 5).
- the relatively modest reduction of EAU scores in IL-17 ⁇ / ⁇ mice might be explained by the fact that these mice are deficient for the IL-17A isoform of the cytokine, and under conditions of congenital deficiency might compensate with the usually less abundantly produced IL-17F isoform.
- Fluorescent reagents suitable for modifying nucleic acids including nucleic acid primers and probes, polypeptides, and antibodies, for use, e.g., as diagnostic reagents, are available (Molecular Probes (2003) Catalogue , Molecular Probes, Inc., Eugene, Oreg.; Sigma-Aldrich (2003) Catalogue , St. Louis, Mo.).
- IL-23 KO (p19 KO) was described in Cua, et al. (2003) Nature 421:744-748.
- IL-17 ⁇ / ⁇ mice were produced as described in Nakae, et al. (2002) Immunity 17:375-387.
- IL-12p35 KO (P35 KO)
- IL-12p40 KO (P40 KO)
- IFN- ⁇ KO (GKO) (all on C57BL/6 background) and C57BL/6 and B10RIII
- mice were purchased from Jackson Laboratories. Animals were kept in a specific pathogen-free facility and given water and standard laboratory chow ad libitum. Animal care and use were in compliance with institutional guidelines and with the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research.
- IRBP was isolated from bovine retinas, as described previously, using Con A-Sepharose affinity chromatography and fast performance liquid chromatography (see, e.g., Pepperberg et al. (1991) Photochem Photobiol 54:1057-1060). IRBP preparations were aliquoted and stored at ⁇ 70° C. Human IRBP-derived peptide 161-180 (Karabezekian, Z. et al., (2005) Invest Ophthalmol Vis Sci. 46(10):3769-76) was synthesized by Fmoc chemistry (model 432A peptide synthesizer; Applied Biosystems, Foster City, Calif.).
- Neutralizing anti-mouse IL-23 and anti-mouse IL-17A antibodies were provided by Schering-Plough Biopharma (Palo Alto, Calif.). Anti-mouse IL-23 was described previously (see, e.g., Langrish et al. (2005) J Exp Med 201:233-240). The C17.8 (anti-IL-12p40, rat IgG2a) hybridoma was provided by the Wistar Institute, Philadelphia, Pa. Monoclonal antibody was produced in ascites and purified by ion exchange HPLC by Harlan Bioproducts for Science (Indianapolis, Ind.).
- FITC-labeled anti-mouse CD4 (clone-L3T4)
- PE-labeled anti-mouse IL-17 (clone-TC11-18H10)
- APC-labeled anti-IFN- ⁇ (clone-XMG1.2)
- cytokine secretion blocker (GolgiStopTM)
- PMA Ionomycin were purchased from LC Laboratories (Boston, Mass.).
- EAU was induced by active immunization with 150 ⁇ g of IRBP for C57BL/6 mice and with 7 ⁇ g IRBP peptide 161-180 for B10RIII mice (Jackson Labs, Me.).
- IRBP IRBP
- B10RIII mice B10RIII mice
- Bordetella pertussis toxin 0.5 ⁇ g/mouse
- PBS containing 2% normal mouse serum was given by intraperitoneal injection concurrently with immunization and in some experiments the IRBP was spiked with 500 ⁇ g of IRBP peptide 1-20 (Avichezer, D. et al. (2000), Invest Ophthalmol Vis Sci. 41(1):127-31) to enhance the usually modest disease scores seen in this strain.
- Antigen solution was emulsified 1:1 v/v in CFA that had been supplemented with Mycobacterium tuberculosis strain H37RA to 2.5 mg/ml. A total of 200 ⁇ l of emulsion was injected s.c., divided into 3 sites (base of the tail and both thighs).
- EAU was induced by adoptive transfer of a uveitogenic T cell line (see below). 1-2 million cells, freshly stimulated with antigen, were injected intraperitoneally. Clinical EAU was evaluated by fundoscopy under a binocular microscope after dilation of the pupil and was graded on a scale of 0-4 using criteria based on the extent of inflammatory lesions, as described in detail elsewhere (see, e.g., Agarwal and Caspi, (2004) Methods Mol Med 102:395-419; and Chan et al. (1990) J Autoimmun 3:247-255).
- Severity of EAU was graded on a scale of 0-4 in half-point increments using the criteria described previously, based on the type, number, and size of lesions (see, Agarwal and Caspi, supra; and Chan et al. supra).
- DTH Delayed Type Hypersensitivity
- IRBP IRBP
- spleen and draining lymph nodes (inguinal and iliac) (5 per group) were collected at the end of each experiment as indicated. Lymphoid cells were pooled within the group, and were incubated with graded doses of Ag in triplicate 0.2-ml cultures, essentially as described (see, e.g., Avichezer et al. (2000) Invest Ophthalmol Vis Sci 41:127-131).
- mice were immunized with IRBP or IRBP uveitogenic peptide (161-180) as indicated. Mice were injected intraperitoneally with 0.5 mg per dose of anti-p19, anti-p40, or anti-IL-17. Treatment was given every other day starting on day—1 through day 15 after immunization, covering both priming and effector phase (prevention protocol) or starting day 7 through day 15, covering the effector phase only (treatment). Controls were given the same regimen of isotype (rat IgG1). Eyes and lymphoid organs were harvested on day 17, 6-7 days after disease onset.
- the uveitogenic Th1 cell line specific to a peptide of human IRBP has been described (see, e.g., Silver et al. (1995) Invest Ophthalmol Vis Sci 36:946-954). Briefly, the line was derived from draining lymph nodes of B10RIII mice immunized with human IRBP peptide 161-180, polarized in vitro toward the Th1 phenotype by culture in the presence of antigen, IL-12, and anti-IL-4.
- T cell line was stimulated with 1 ⁇ g/ml IRBP peptide 161-180 in the presence of irradiated APCs for 24 h with the addition of GolgiStopTM protein transfer inhibitor (BD Biosciences, San Jose, Calif.) at the last 4 h. Thereafter, cells were separated on Ficoll, washed and stained for extracellular CD4. Than cells were washed, fixed, permeabilized with Cytofix/CytopermTM fixation and permeabilization buffer (BD Biosciences) and stained with PE-conjugated anti II-17 and APC-conjugated anti IFN- ⁇ for FACS analysis.
- GolgiStopTM protein transfer inhibitor BD Biosciences, San Jose, Calif.
- T cell line was stimulated for 5 days with antigen (1 ⁇ g/ml IRBP peptide 161-180) or antigen+rIL-23 (10 ng/ml) or antigen+IL-23+ anti IFN- ⁇ (10 ⁇ m/ml) in the presence of irradiated APCs. During the last 4 h of incubation cells were stimulated with PMA and Ionomycin with the addition of GolgiStopTM protein transfer inhibitor (BD Biosciences). Thereafter cells were treated and stained for intracellular IL-17 and IFN- ⁇ as mentioned above.
- the T cell line was adoptively transferred (2 ⁇ 10 6 /mouse) i.v. to na ⁇ ve Thy1.1/.2 heterozygous mice.
- spleens were harvested and splenocytes were stimulated with IRBP peptide 161-180 for 24 h with the presence of PMA, Ionomycin and GolgiStopTM protein transfer inhibitor (BD Biosciences) at the last 4 h. Thereafter cells were treated and stained for intracellular IL-17 and IFN- ⁇ as mentioned above.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Rheumatology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Endocrinology (AREA)
- Ophthalmology & Optometry (AREA)
- Pulmonology (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Communicable Diseases (AREA)
- Pain & Pain Management (AREA)
- Transplantation (AREA)
- Oncology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Steroid Compounds (AREA)
Abstract
Novel methods and drug products for treating autoimmune ocular inflammatory disease are disclosed, which involve administration of agents that antagonize one or both of IL-17 and IL-23 activity.
Description
- The present application is a continuation of Ser. No. 11/512,622, filed Aug. 30, 2006 which claims benefit of U.S. provisional application No. 60/713,792, filed Sep. 1, 2005 and U.S. provisional application No. 60/837,312, filed Aug. 11, 2006.
- This invention was made in part with Government support under Cooperative Research and Development Agreement (CRADA) Number M-01969-04, and amendments thereto, executed between Schering-Plough Biopharma and the National Eye Institute, National Institutes of Health. The Government of the United States of America has certain rights in this invention.
- The present invention relates generally to the modulation of immune responses in the eye. More specifically, the invention relates to the use of antagonists of interleukin-23 (IL-23) and interleukin-17 (IL-17) to treat autoimmune ocular inflammatory disease.
- Ocular inflammatory disease (OID) is a general term embracing a number of diseases and conditions in which inflammation affects the eye or surrounding tissues. The diagnostic name given to an OID is typically based on the location of the ocular inflammation. For example, uveitis is inflammation in the uveal tract; scleritis is inflammation of the sclera, pars planitis is inflammation of the pars plana, and so forth. OIDs cause pain, irritation, and watering, and may result in loss of visual function. For example, uveitis is the third leading cause of blindness in the developed world. OIDs can be caused by infections, malignancy, exposure to toxins, response to surgery or injury, and autoimmune disorders.
- A number of autoimmune diseases exist in which the eye or various parts of the eye becomes a target for an immune-mediated inflammatory attack. Patients with an autoimmune-mediated OID (AOID) often exhibit cellular and humoral responses to retinal antigens such as retinal arrestin (retinal soluble antigen, S—Ag), interphotoreceptor retinoid binding protein (IRB), and antigens related to melanin and its metabolism, including GP100, MART1, TRP1 and TRP2 (Pennesi, G. et al. (2003)J. Clin. Invest. 111:1171-1180; Gocho, K. et al. (2001) Invest. Ophthalmol. Vis. Sci. 42:2004-2009; Sugita S. et al., (1996) Int. Immunol. 8:799-803; Yamake, K. et al. (2000)J. Immunol. 165:7323-7329. However, in many cases of AOID, the target antigen(s) are not known.
- Often, OID is a manifestation of a systemic autoimmune disease, and the eye is one of a variety of organs throughout the body that are being attacked. Examples of such systemic autoimmune diseases include rheumatoid arthritis, systemic lupus erythematosus, polyarteritis nodosa, relapsing polychondritis, Wegener's granulomatosis, scleroderma, Behcet's disease, Reiter's disease, inflammatory bowel disease (ulcerative colitis and Crohn's disease) and ankylosing spondylitis. However, the eye may be the specific and only target affected in autoimmune diseases such as ocular cicatricial pemphigoid, Mooren's corneal ulcer, and various forms of uveitis.
- AOIDs such as uveitis have been treated by various classes of compounds including steroids and nonsteroidal anti-inflammatory agents such as dexamethasone, fluorometholone, prednisolone, indomethacin, aspirin, flubiprofen and diclofenac. However, a number of uveitis cases are not responsive to or become refractory to these drugs (see, e.g., Kulkarni, P. (2001) Journal of Ocular Pharmacology And Therapeutics 17:181-187). Also, these drugs are associated with serious side effects such as cataracts, glaucoma, delayed wound healing, altered prostaglandin production, corneal complications, increased ocular pressure, superinfections, and reduced immunity to infection (see, e.g., Id, at 181; Guidera, A. C., et al. (2001) Ophthalmology 108:936-944; Olsen, E. G. & Davanger M. (1984) Acta Ophtalmol. 62:893-899).
- Because the existing therapies for AOID have less than optimal efficacy or undesirable side effects, new treatment regimens are needed. It has been suggested that it may be clinically beneficial to modulate the immunoregulatory mechanisms involved in the pathogenesis of AOID (Caspi, R. R. (2002) Int Rev Immunol 21:197-208).
- These pathogenic mechanisms have been investigated using experimental autoimmune uveitis (EAU), which is an animal model of human autoimmune uveitis. EAU is induced in experimental animals such as mouse, rat, guinea pig, rabbit, and monkey by immunization with a retinal antigen shown to be reactive in uveitis patients (e.g., arrestin, IRBP, rhodopsin/opsin, phosducin, recoverin) or by infusion of T cells specific for these antigens. Studies using the EAU model provided apparently contradictory evidence about the mechanisms for induction and progression of this disease. The results of some experiments indicated that the main pathogenic pathway in EAU was due to the role of interleukin-12 (IL-12) in promoting the generation of IFN-γ producing Th1 effector cells (Caspi, R. R. (2002) Int Rev Immunol 21:197-208; Tarrant, T. K. et al., (1998) J. Immunol. 161:122-127; Caspi, R. R. (1998) Clin Immunol Immunopathol 88:4-13; Xu, H. et al. (1997) Cell Immunol 178:69-78. However other experiments showed that IFN-γ deficient knock-out mice were susceptible for EAU, that EAU is exacerbated by neutralization of endogenous IFN-γ, and that elevated levels of IFN-γ were protective against EAU in wild-type mice (Caspi, R. R. et al. (1994)J. Immunol. 152:890-899; Jones et al., J. Immunol. 158:5997-6005; Tarrant, T. K., et al. (1999) J. Exp. Med. 189:219-230.
- Thus, prior to the present invention, it was not clear which immune pathways should be targeted in developing therapies for preventing or treating autoimmune ocular inflammatory disease.
- The present invention is based on the discoveries that (1) blocking interleukin-23 (IL-23) or interleukin-17 (IL-17) activity prevents induction of EAU; (2) after induction, neutralization of IL-17 activity inhibits or reverses progression of EAU, but neutralization of IL-23 activity has little to no effect; and (3) IL-17 activity is not necessary for induction of EAU. The present invention uses IL-23 and/or IL-17 antagonists in methods and compositions for treating or preventing autoimmune ocular inflammatory disease. These antagonists antagonize either the target cytokine itself or a functional receptor for the target cytokine.
- IL-23 is a heterodimeric cytokine comprised of two subunits: p19, which is unique to IL-23; and p40, which is shared with IL-12. IL-23 mediates signaling by binding to a heterodimeric receptor, comprised of IL-23R and IL-12Rbeta1 (IL12RB1), which is shared by the IL-12 receptor. A recent paper reported that IL-23 promotes a T cell population characterized by the production of IL-17, IL-17F, TNF, IL-6 and other factors, and named these cells “Th17 cells” (Langrish et al. (2005)J. Exp. Med. 201:233-240)).
- IL-17, which was originally named cytotoxic T-Lymphocyte-associated antigen 8 (CTLA8) is a homodimeric cytokine that binds to IL-17RA (also known as IL17R) and IL-17C. The functional receptor for IL-17 is believed to be a multimeric receptor complex comprising one or both of IL-17RA and IL-17RC (e.g., an IL-17RA homodimer, an IL-17RC homodimer, or an IL-17RA/IL-17RC heterodimer) and possibly a third, as yet unknown, protein (Toy, D. et al., (2006) J. of Immunol. 177(1):36-39; unpublished data).
- In one aspect, the invention provides a method of treating a patient with an autoimmune ocular inflammatory disease, comprising administering to the patient an IL-17 antagonist. The presence of an AOID need not be directly diagnosed, but may be inferred by a diagnosis that the patient has an ocular inflammation that is of putative autoimmune etiology and/or that exhibits one or more characteristics of an autoimmune response. A particularly preferred AOID is autoimmune uveitis, e.g., uveitis without an infectious etiology.
- The IL-17 antagonist may inhibit the expression of IL-17 or IL-17R or IL-17RC or may inhibit IL-17 signaling by directly or indirectly interacting with one or more of these polypeptides to prevent a functional ligand-receptor interaction. In some preferred embodiments, the IL-17 antagonist is an antibody or antibody fragment that binds to and inhibits the activity of either IL-17, IL17R or IL17C. In one particularly preferred embodiment, the IL-17 antagonist is a monoclonal antibody that specifically binds to IL-17. In other preferred embodiments, the IL-17 antagonist is a bispecific antibody that binds to and inhibits the activity of IL-23p19 and IL-17; IL-23p19 and IL-17RA; IL-23R and IL-17; or IL-23R and IL-17RA. In another particularly preferred embodiment, the IL-17 antagonist is a bispecific antibody that binds to and inhibits the activity of IL-23p19 and IL-17.
- In some embodiments, the IL-17 antagonist is administered according to a specified treatment regimen. For example, in one embodiment, a specified dose of the antagonist is administered at a specified interval during a first treatment period, which may end after disappearance of one or more symptoms of the AOID, or within a specified period of time. In a preferred embodiment, the treatment regimen further comprises gradually reducing the dose of the IL-17 antagonist during a second treatment period that begins upon the end of the first treatment period and ends when therapy with the IL-17 antagonist is stopped. The duration of the second treatment period is typically between one and twelve months, one and nine months, one and six months, or one and three months.
- In some preferred embodiments, the specified treatment regimen also comprises administration of an IL-23 antagonist to the patient during each of the first and second treatment periods, or during only the second treatment period. The IL-23 antagonist may inhibit the expression of either subunit of the cytokine (IL-23p19 or p40), either subunit of the functional receptor (IL-23R or IL-12beta1), or may inhibit IL-23 signaling by directly or indirectly interacting with one or more of these polypeptides to prevent a functional ligand-receptor interaction. In some preferred embodiments, the IL-23 antagonist is an antibody or antibody fragment that binds to and inhibits the activity of either IL-23p19 or IL-23R. In one particularly preferred embodiment, the IL-23 antagonist is a monoclonal antibody that specifically binds to IL-23p19.
- The IL-23 antagonist may be administered at a specified dose at a specified interval during one or both of the first and second treatment periods. The dose of the IL-23 antagonist administered in the second treatment period may be lower than the dose administered in the first period. Also, in any or both of the treatment periods, the doses of the IL-17 and IL-23 antagonists may be the same or different from each other. Similarly, the two antagonists may be administered at the same or different intervals during each treatment period. During the second treatment period, the dose of the IL-17 antagonist may be reduced while the dose of the IL-23 antagonist is held constant, or the dose of each antagonist may be gradually reduced.
- In other preferred embodiments, the dose of the IL-23 antagonist is held constant during the second treatment regimen and therapy with the IL-23 antagonist is continued during a third treatment period that begins upon the end of the second treatment period (i.e., when therapy with the IL-17 antagonist is stopped). During the third treatment period, the IL-23 antagonist may be administered at the same dose and interval as in the second treatment period or may be administered at a lower dose and/or less frequent interval than used in the previous period. The dose of the IL-23 antagonist may also be gradually reduced during the third treatment period. The duration of the third treatment period is typically between one and twelve months, one and nine months, one and six months, or one and three months.
- In still other embodiments, the specified treatment regimen also comprises administering a therapeutic agent that does not antagonize IL-17 or IL-23 activity but is capable of alleviating at least one symptom of the AOID or at least one side effect of the IL-17 or IL-23 antagonists during any or all of the treatment periods. In some preferred embodiments, the therapeutic agent is a steroid or a nonsteroidal anti-inflammatory agent (e.g., NSAID) that is known to have efficacy in treating uveitis. In other preferred embodiments, the therapeutic agent targets a cytokine that promotes the Th1 response.
- Another aspect of the invention provides a method of prophylactically treating a patient who is diagnosed as being susceptible for an autoimmune ocular inflammatory disease, which comprises administering to the patient an antagonist of one or both of IL-23 and IL-17. In some preferred embodiments of this prophylactic method, the susceptibility diagnosis is based on the patient having a previous incidence of ocular inflammation. In other preferred embodiments, the susceptibility diagnosis is based on the patient having a systemic autoimmune disease. The antagonist may be administered in a specified dose at a specified interval during a first treatment period, which typically ends after three months, six months, nine months or after two years of therapy with the antagonist. In some preferred embodiments, the dose of the antagonist is gradually reduced during a second treatment period that begins upon the end of the first treatment period, and typically has a duration of between one and three months.
- In a still further aspect, the invention provides a method of treating a patient for an autoimmune ocular inflammatory disease, comprising administering to the patient an IL-23 antagonist. The IL-23 antagonist may be administered at a specified interval during a first treatment period, which is followed by a second treatment period in which the IL-23 antagonist is administered at a lower dose or at less frequent intervals, or at gradually reduced doses. Therapy with the IL-23 antagonist will typically continue for at least three to six months and may continue for as many as 12 months, 18 months or 24 months.
- Another aspect of the invention is the use of an IL-17 antagonist or an IL-23 antagonist for the preparation of a pharmaceutical composition for the treatment or prevention of an autoimmune ocular inflammatory disease (AOID) in a patient. In preferred embodiments, the pharmaceutical composition is for administering the antagonist according to any of the treatment regimens described herein.
- In a still further aspect, the invention provides a manufactured drug product for treating an autoimmune ocular inflammatory disease. The drug product comprises (i) a first pharmaceutical formulation comprising an IL-17 antagonist; and (ii) a second pharmaceutical formulation comprising an IL-23 antagonist. In preferred embodiments, the drug product includes product information which comprises instructions for administering the pharmaceutical formulations according to any of the treatment regimens described herein.
- So that the invention may be more readily understood, certain technical and scientific terms are specifically defined below. Unless specifically defined elsewhere in this document, all other technical and scientific terms used herein have the meaning that would be commonly understood by one of ordinary skill in the art to which this invention belongs when used in similar contexts as used herein.
- As used herein, including the appended claims, the singular forms of words such as “a,” “an,” and “the,” include their corresponding plural references unless the context clearly dictates otherwise.
- “Antagonist” means any molecule that can prevent, neutralize, inhibit or reduce a targeted activity, i.e., the activity of a cytokine such as IL-17 or IL-23, either in vitro or in vivo. Cytokine antagonists include, but are not limited to, antagonistic antibodies, peptides, peptide-mimetics, polypeptides, and small molecules that bind to a cytokine (or any of its subunits) or its functional receptor (or any of its subunits) in a manner that interferes with cytokine signal transduction and downstream activity. Examples of peptide and polypeptide antagonists include truncated versions or fragments of the cytokine receptor (e.g., soluble extracellular domains) that bind to the cytokine in a manner that either reduces the amount of cytokine available to bind to its functional receptor or otherwise prevents the cytokine from binding to its functional receptor. Antagonists also include molecules that prevent expression of any subunit that comprises the cytokine or its receptor, such as, for example, antisense oligonucleotides which target mRNA, and interfering messenger RNA, (see, e.g., Arenz and Schepers (2003)Naturwissenschaften 90:345-359; Sazani and Kole (2003) J. Clin. Invest. 112:481-486; Pirollo, et al. (2003) Pharmacol. Therapeutics 99:55-77; Wang, et al. (2003) Antisense Nucl. Acid Drug Devel. 13:169-189). The inhibitory effect of an antagonist can be measured by routine techniques. For example, to assess the inhibitory effect on cytokine-induced activity, human cells expressing a functional receptor for a cytokine are treated with the cytokine and the expression of genes known to be activated or inhibited by that cytokine is measured in the presence or absence of a potential antagonist. Antagonists useful in the present invention inhibit the targeted activity by at least 25%, preferably by at least 50%, more preferably by at least 75%, and most preferably by at least 90%, when compared to a suitable control.
- “Antibody” refers to any form of antibody that exhibits the desired biological activity, such as inhibiting binding of a ligand to its receptor, or by inhibiting ligand-induced signaling of a receptor. Thus, “antibody” is used in the broadest sense and specifically covers, but is not limited to, monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, and multispecific antibodies (e.g., bispecific antibodies).
- “Antibody fragment” and “antibody binding fragment” mean antigen-binding fragments and analogues of an antibody, typically including at least a portion of the antigen binding or variable regions (e.g. one or more CDRs) of the parental antibody. An antibody fragment retains at least some of the binding specificity of the parental antibody. Typically, an antibody fragment retains at least 10% of the parental binding activity when that activity is expressed on a molar basis. Preferably, an antibody fragment retains at least 20%, 50%, 70%, 80%, 90%, 95% or 100% or more of the parental antibody's binding affinity for the target. Examples of antibody fragments include, but are not limited to, Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules, e.g., sc-Fv; and multispecific antibodies formed from antibody fragments. Engineered antibody variants are reviewed in Holliger and Hudson (2005) Nat. Biotechnol. 23:1126-1136.
- A “Fab fragment” is comprised of one light chain and the CH1 and variable regions of one heavy chain. The heavy chain of a Fab molecule cannot form a disulfide bond with another heavy chain molecule.
- An “Fc” region contains two heavy chain fragments comprising the CH 1 and CH 2 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains.
- A “Fab′ fragment” contains one light chain and a portion of one heavy chain that contains the VH domain and the CH1 domain and also the region between the CH1 and CH 2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab′ fragments to form a F(ab′)2 molecule.
- A “F(ab′)2 fragment” contains two light chains and two heavy chains containing a portion of the constant region between the CH1 and CH 2 domains, such that an interchain disulfide bond is formed between the two heavy chains. A F(ab′)2 fragment thus is composed of two Fab′ fragments that are held together by a disulfide bond between the two heavy chains.
- The “Fv region” comprises the variable regions from both the heavy and light chains, but lacks the constant regions.
- A “single-chain Fv antibody (or “scFv antibody”) refers to antibody fragments comprising the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of scFv, see Pluckthun (1994) THE PHARMACOLOGY OF MONOCLONAL ANTIBODIES, vol. 113, Rosenburg and Moore eds. Springer-Verlag, New York, pp. 269-315. See also, International Patent Application Publication No. WO 88/01649 and U.S. Pat. Nos. 4,946,778 and 5,260,203.
- A “diabody” is a small antibody fragment with two antigen-binding sites. The fragments comprises a heavy chain variable domain (VH) connected to a light chain variable domain (VL) in the same polypeptide chain (VH-VL or VL-VH). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, e.g., EP 404,097; WO 93/11161; and Holliger et al. (1993)Proc. Natl. Acad. Sci. USA 90: 6444-6448.
- A “domain antibody fragment” is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain. In some instances, two or more VH regions are covalently joined with a peptide linker to create a bivalent domain antibody fragment. The two VH regions of a bivalent domain antibody fragment may target the same or different antigens.
- Autoimmune-mediated ocular inflammatory disease (AOID) means any disease or condition in which (a) inflammation is present in any part of the eye or surrounding tissues (including the optic nerve, blood vessels, muscles) and (b) the inflammation is part of an immune response that requires or is promoted by one or both of IL-23 and IL-17. Intraocular inflammation without an infectious etiology is typically considered an AOID. Nonlimiting examples of AOIDs are listed below.
- Birdshot retinochoriodopathy (BSRC): A chronic intraocular inflammatory disease affecting mainly the back (posterior) part of the eye. BSRC is distinct from other forms of posterior uveitis that have a strong association with the HLA-A29.2 antigen. Its etiology remains unknown. An autoimmune mechanism is likely to play an important pathogenic role.
- Ocular cicatricial pemphigoid (OCP): A systemic autoimmune disease. Mounting evidence supports the concept of immunoregulatory dysfunction: antibodies are directed against the basement membrane zone (BMZ) of the conjunctiva and other mucous membranes derived from stratified squamous epithelia and occasionally the skin. OCP is a vision threatening illness that usually requires treatment with immunosuppression.
- Keratitis, peripheral ulcerative Keratitis: Keratitis is inflammation of the cornea, the outer, transparent, dome-like structure that forms the anterior most part of the outer coat of the eye. If ulcers develop in the peripheral cornea, it is referred to as peripheral ulcerative Keratitis.
- “Sympathetic ophtahlmia” is an AOID in which a trauma to one eye precipitates at a later time a destructive inflammation in the other (“sympathizing”) eye, apparently due to an autoimmune response to antigens released from the injured eye.
- Vogt-Koyanagi Harada (VKH): Vogt-Koyanagi-Harada syndrome (VKH), formerly known as uveomenigitic syndrome is a systemic disorder involving multiple organ systems, including the ocular, auditory, nervous, and integumentary (skin) systems. Severe bilateral panuveitis associated with subretinal fluid accumulation is the hallmark of ocular VKH.
- Fuchs' heterochromic iridocyclitis: A chronic, unilateral anterior uveitis characterized by iris heterochromia, a condition in which one eye is a different color from the other. The uveitis typically occurs in the lighter colored eye of a young adult.
- “Binding compound” refers to a molecule, small molecule, macromolecule, antibody, a fragment or analogue thereof, or soluble receptor, capable of binding to a specified target. “Binding compound” also may refer to any of the following that are capable of binding to the specified target: a complex of molecules (e.g., a non-covalent molecular complex); an ionized molecule; and a covalently or non-covalently modified molecule (e.g., modified by phosphorylation, acylation, cross-linking, cyclization, or limited cleavage). In cases where the binding compound can be dissolved or suspended in solution, “binding” may be defined as an association of the binding compound with a target where the association results in reduction in the normal Brownian motion of the binding compound.
- “Binding composition” refers to a binding compound in combination with at least one other substance, such as a stabilizer, excipient, salt, buffer, solvent, or additive.
- “Bispecific antibody” means an antibody that has two antigen binding sites having specificities for two different epitopes, which may be on the same antigen, or on two different antigens. Bispecific antibodies include bispecific antibody fragments. See, e.g., Hollinger, et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90: 6444-48, Gruber, et al., J. Immunol. 152: 5368 (1994).
- “Consists essentially of” and variations such as “consist essentially of” or “consisting essentially of” as used throughout the specification and claims, indicate the inclusion of any recited elements or group of elements, and the optional inclusion of other elements, of similar or different nature than the recited elements, which do not materially change the basic or novel properties of the specified dosage regimen, method, or composition. As a nonlimiting example, a cytokine which consists essentially of a recited amino acid sequence may also include one or more amino acids that do not materially affect the properties of the cytokine.
- “Interleukin-12R beta1” or “IL12RB1” means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL as described in NCBI Protein Sequence Database Accession Numbers NP714912, NP005526 or naturally occurring variants thereof.
- “Interleukin-17” (or “IL-17”) means a protein consisting of one or two polypeptide chains, with each chain consisting essentially of the sequence of the mature form of human IL17A as described in any of NCBI Protein Sequence Database Accession Numbers NP002181, AAH67505, AAH67503, AAH67504, AAH66251, AAH66252 or naturally occurring variants thereof.
- “IL-17R” or “IL-17RA” means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL-17RA as described in WO 96/29408 or in any of NCBI Protein Sequence Database Accession Numbers: NP 055154, Q96F46, CAJ86450, or naturally occurring variants of these sequences.
- “IL-17RC” means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL-17RC as described in WO 238764A2 or in any of NCBI Protein Sequence Database Accession Numbers NP703191, NP703190 and NP116121, or naturally occurring variants of these sequences.
- “Interleukin-23 (or “IL-23) means a protein consisting of two polypeptide chains. One chain consists essentially of the sequence of the mature form of human IL23, subunit p19 (also known as IL23A) as described in any of NCBI Protein Sequence Database Accession Numbers NP057668, AAH67511, AAH66267, AAH66268, AAH66269, AAH667512, AAH67513 or naturally occurring variants of these sequences. The other chain consists essentially of the sequence of the mature form of human IL12, subunit p40 (also known as IL12B and IL23, subunit p40) as described in any of NCBI Protein Sequence Database Accession Numbers NP002178, P29460, AAG32620, AAH74723, AAH67502, AAH67499, AAH67498, AAH67501 or naturally occurring variants of these sequences.
- “Interleukin-23R” or “IL-23R” means a single polypeptide chain consisting essentially of the sequence of the mature form of human IL23R as described in NCBI Protein Sequence Database Accession Number NP653302 or naturally occurring variants thereof.
- “Monoclonal antibody” or “mAb” means an antibody obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- “Parenteral administration” means an intravenous, subcutaneous, or intramuscular injection.
- “Small molecule” means a molecule with a molecular weight that is less than 10 kD, typically less than 2 kD, and preferably less than 1 kD. Small molecules include, but are not limited to, inorganic molecules, organic molecules, organic molecules containing an inorganic component, molecules comprising a radioactive atom, synthetic molecules, peptide mimetics, and antibody mimetics. Peptide mimetics of antibodies and cytokines are known in the art. See, e.g., Casset, et al. (2003) Biochem. Biophys. Res. Commun. 307:198-205; Muyldermans (2001) J. Biotechnol. 74:277-302; Li (2000) Nat. Biotechnol. 18:1251-1256; Apostolopoulos, et al. (2002) Curr. Med. Chem. 9:411-420; Monfardini, et al. (2002) Curr. Pharm. Des. 8:2185-2199; Domingues, et al. (1999) Nat. Struct. Biol. 6:652-656; Sato and Sone (2003) Biochem. J. 371:603-608; U.S. Pat. No. 6,326,482 issued to Stewart, et al.
- “Specific” or “specifically”, when referring to the binding interaction between the members of a binding pair, such as a cytokine and its receptor, and antibody and its antigen or epitope, indicates a binding reaction which is determinative of the presence of one member of the binding pair in a heterogeneous population of proteins and other biologics. Thus, under designated conditions, one member of a binding pair has a significantly greater affinity for the other member of the binding pair than for irrelevant proteins. For example, an antibody is considered to be specific for a particular protein if it binds to that protein with an affinity that is at least 10-fold, and preferably 50-fold higher than its affinity for a different protein. An antibody that “specifically binds” to a protein comprising a particular epitope does not bind to any measurable degree to proteins that do not comprise that epitope. Preferably, an antibody that is specific for a target protein will have an affinity toward the target protein that is greater than about 109 liters/mol, as determined, e.g., by Scatchard analysis (Munsen, et al. (1980) Analyt. Biochem. 107:220-239).
- “Treat” or “Treating” means to administer a therapeutic agent, such as a composition containing any of the IL-17 and IL-23 antagonists described herein, internally or externally to a patient in need of the therapeutic agent. Typically, the agent is administered in an amount effective to prevent or alleviate one or more disease symptoms, or one or more adverse effects of treatment with a different therapeutic agent, whether by preventing the development of, inducing the regression of, or inhibiting the progression of such symptom(s) or adverse effect(s) by any clinically measurable degree. The amount of a therapeutic agent that is effective to alleviate any particular disease symptom or adverse effect (also referred to as the “therapeutically effective amount”) may vary according to factors such as the disease state, age, and weight of the patient, and the ability of the therapeutic agent to elicit a desired response in the patient. Whether a disease symptom or adverse effect has been alleviated can be assessed by any clinical measurement typically used by physicians or other skilled healthcare providers to assess the severity or progression status of that symptom or adverse effect. When a therapeutic agent is administered to a patient who has active disease, a therapeutically effective amount will typically result in a reduction of the measured symptom by at least 5%, usually by at least 10%, more usually at least 20%, most usually at least 30%, preferably at least 40%, more preferably at least 50%, most preferably at least 60%, ideally at least 70%, more ideally at least 80%, and most ideally at least 90%. While an embodiment of the present invention (e.g., a treatment method or article of manufacture) may not be effective in preventing or alleviating the target disease symptom(s) or adverse effect(s) in every patient, it should alleviate such symptom(s) or effect(s) in a statistically significant number of patients as determined by any statistical test known in the art such as the Student's t-test, the chi2-test, the U-test according to Mann and Whitney, the Kruskal-Wallis test (H-test), Jonckheere-Terpstra-test and the Wilcoxon-test.
- Uveitis means inflammation affecting one or more of the three parts of the eye that make up the uvea: the iris (the colored part of the eye), the ciliary body (behind the iris, responsible for manufacturing the fluid inside the eye) and the choroid (the vascular lining tissue underneath the retina). Panuveitis denotes the presence of inflammation in multiple parts of the same eye (anterior, intermediate, and posterior sections).
- Uveitis can be either acute or chronic. The chronic form is more often associated with systemic disorders including ankylosing spondylitis, Behcet's syndrome, inflammatory bowel disease, juvenile rheumatoid arthritis, Reiter's syndrome, sarcoidosis, syphilis, tuberculosis, and Lyme disease.
- Anterior uveitis, which involves inflammation in the front part of the eye, is the most common form of uveitis. The inflammation is usually isolated to the iris; thus, anterior uveitis is often called iritis. In some patients, anterior uveitis may be associated with the presence of an autoimmune disease such as rheumatoid arthritis or ankylosing spondylitis, but most cases of anterior uveitis occur in otherwise healthy people and do not indicate an underlying systemic disease. This OID may affect only one eye and is most common in young and middle-aged people. A history of an autoimmune disease is a risk factor. Most attacks of anterior uveitis last from a few days to weeks with treatment, but relapses are common.
- Intermediate uveitis denotes an idiopathic inflammatory syndrome mainly involving the anterior vitreous, peripheral retina, and ciliary body, with minimal or no anterior segment or chorioretinal inflammatory signs.
- Pars planitis is inflammation of the pars plana, a narrow area between the iris and the choroid. Pars planitis usually occurs in young men and is generally not associated with any other disease. However, there have been a few case reports of an association with Crohn's disease and some experts suggest a possible association with multiple sclerosis. For this reason, these experts recommend that patients over 25 years old diagnosed with pars planitis receive an MRI of their brain and spine.
- Posterior uveitis affects the back portion of the uveal tract and involves primarily the choroid. This is called choroiditis. Posterior uveitis is characterized by inflammation of the layer of blood vessels underlying the retina, and usually of the retina as well. If the adjacent retina is also involved, the condition is typically called chorioretinitis. Posterior uveitis may follow a systemic infection or occur in association with an autoimmune disease. In posterior uveitis, the inflammation may last from months to years and may cause permanent vision damage, even with treatment.
- The present invention provides methods of using antagonists of IL-17 and IL-23 activity to treat autoimmune ocular inflammatory disease.
- IL17 activity, which is reviewed in Kolls, J. et al. (2004)Immunity Vol. 21, 467-476, includes promoting accumulation of neutrophils in a localized area and the activation of neutrophils. IL17 can induce or promote the production of any of the following proinflammatory and neutrophil-mobilizing cytokines, depending on the cell type: IL-6, MCP-1, CXCL8 (IL-8), CXCL1, CXCL6, TNFα, IL-1α, G-CSF, GM-CSF, MMP-1, and MMP-13.
- IL-23 activity includes inducing the proliferation of memory T cells, PHA blasts, CD45RO T cells, CD45ROT cells; and enhance production of interferon-gamma (IFNγ) by PHA blasts or CD45ROT cells. In contrast to IL-12, IL-23 preferentially stimulates memory as opposed to naïve T cell populations in both human and mouse. IL-23 activates a number of intracellular cell-signaling molecules, e.g., Jak2, Tyk2, Stat1, Stat2, Stat3, and Stat4. IL-12 activates this same group of molecules, but Stat4 response to IL-23 is relatively weak, while Stat4 response to IL-12 is strong (Oppmann, et al., supra; Parham, et al. (2002) J. Immunol. 168:5699-5708). IL-23 has also been implicated in the maintenance and proliferation of IL-17 producing cells, also known as Th17 cells (see, Cua and Kastelein (2006) Nature Immunology 7:557-559).
- Antagonists useful in the present invention include a soluble receptor comprising the extracellular domain of a functional receptor for IL-17 or IL-23. Soluble receptors can be prepared and used according to standard methods (see, e.g., Jones, et al. (2002) Biochim. Biophys. Acta 1592:251-263; Prudhomme, et al. (2001) Expert Opinion Biol. Ther. 1:359-373; Fernandez-Botran (1999) Crit. Rev. Clin. Lab Sci. 36:165-224).
- Preferred IL-17 antagonists for use in the present invention are antibodies that specifically bind to, and inhibit the activity of, any of IL-17, IL-17RA, IL-17RC, and a heteromeric complex comprising IL-17RA and IL-17RC. More preferably, the target of the IL-17 antagonist is IL-17 or IL-17RA. Particularly preferred IL-17 antagonists specifically bind to, and inhibit the activity of IL-17.
- Another preferred IL-17 antagonist for use in the present invention is a bispecific antibody, or bispecific antibody fragment, which also antagonizes IL-23 activity. Such bispecific antagonists specifically bind to, and inhibits the activity of, each member in any of the following combinations: IL-17 and IL-23; IL-17 and IL-23p19; IL-17 and IL-12p40; IL-17 and an IL-23R/IL12RB1 complex; IL-17 and IL-23R; IL-17 and IL12RB1; IL17RA and IL-23; IL-17RA and IL-23p19; IL-17RA and IL-12p40; IL-17RA and an IL-23R/IL12RB1 complex; IL-17RA and IL-23R; IL-17RA and IL12RB1; IL17RC and IL-23; IL-17RC and IL-23p19; IL-17RC and IL-12p40; IL-17RC and an IL-23R/IL12RB1 complex; IL-17RC and IL-23R; IL-17RC and IL12RB1; an IL-17RA/IL-17RC complex and IL-23; an IL-17RA/IL-17RC complex and IL-23p19; an IL-17RA/IL-17RC complex and IL-12p40; an IL-17RA/IL-17RC complex and an IL-23R/IL12RB1 complex; an IL-17RA/IL-17RC complex and IL-23R; and an IL-17RA/IL-17RC complex and IL12RB1. Preferred combinations targeted by bispecific antibodies used in the present invention are: IL-17 and IL-23; IL-17 and IL-23p19; IL17RA and IL-23; and IL-17RA and IL-23p19. A particularly preferred bispecific antibody specifically binds to, and inhibits the activity of, each of IL-17 and IL-23p19.
- Preferred IL-23 antagonists are antibodies that bind to, and inhibit the activity of, any of IL-23, IL-23p19, IL-12p40, IL23R, IL12RB1, and an IL-23R/IL12RB1 complex. Another preferred IL-23 antagonist is an IL-23 binding polypeptide which consists essentially of the extracellular domain of IL-23R, e.g., amino acids 1-353 of GenBankAAM44229, or a fragment thereof.
- Antibody antagonists for use in the invention may be prepared by any method known in the art for preparing antibodies. The preparation of monoclonal, polyclonal, and humanized antibodies is described in Sheperd and Dean (eds.) (2000) Monoclonal Antibodies, Oxford Univ. Press, New York, N.Y.; Kontermann and Dubel (eds.) (2001) Antibody Engineering, Springer-Verlag, New York; Harlow and Lane (1988) Antibodies A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 139-243; Carpenter, et al. (2000) J. Immunol. 165:6205; He, et al. (1998) J. Immunol. 160:1029; Tang, et al. (1999) J. Biol. Chem. 274:27371-27378; Baca, et al. (1997) J. Biol. Chem. 272:10678-10684; Chothia, et al. (1989) Nature 342:877-883; Foote and Winter (1992) J. Mol. Biol. 224:487-499; and U.S. Pat. No. 6,329,511 issued to Vasquez, et al.
- Any antigenic form of the desired target can be used to generate antibodies, which can be screened for those having the desired antagonizing activity. Thus, the eliciting antigen may be a peptide containing a single epitope or multiple epitopes, or it may be the entire protein alone or in combination with one or more immunogenicity enhancing agents known in the art. To improve the immunogenicity of an antigenic peptide, the peptide may be conjugated to a carrier protein. The antigen may also be an isolated full-length protein, a cell surface protein (e.g., immunizing with cells transfected with at least a portion of the antigen), or a soluble protein (e.g., immunizing with only the extracellular domain portion of the protein). The antigen may be expressed by a genetically modified cell, in which the DNA encoding the antigen is genomic or non-genomic (e.g., on a plasmid).
- A peptide consisting essentially of a region of predicted high antigenicity can be used for antibody generation. For example, regions of high antigenicity of human p19 occur at amino acids 16-28; 57-87; 110-114; 136-154; and 182-186 of GenBank AAQ89442 (gi:37183284) and regions of high antigenicity of human IL-23R occur at amino acids 22-33; 57-63; 68-74; 101-112; 117-133; 164-177; 244-264; 294-302; 315-326; 347-354; 444-473; 510-530; and 554-558 of GenBank AAM44229 (gi: 21239252), as determined by analysis with a Parker plot using Vector NTI® Suite (Informax, Inc, Bethesda, Md.).
- Any suitable method of immunization can be used. Such methods can include use of adjuvants, other immunostimulants, repeated booster immunizations, and the use of one or more immunization routes. Immunization can also be performed by DNA vector immunization, see, e.g., Wang, et al. (1997) Virology 228:278-284. Alternatively, animals can be immunized with cells bearing the antigen of interest, which may provide superior antibody generation than immunization with purified antigen (Kaithamana, et al. (1999) J. Immunol. 163:5157-5164).
- Preferred antibody antagonists are monoclonal antibodies, which may be obtained by a variety of techniques familiar to skilled artisans. Methods for generating monoclonal antibodies are generally described in Stites, et al. (eds.) B
ASIC AND CLINICAL IMMUNOLOGY (4th ed.) Lange Medical Publications, Los Altos, Calif., and references cited therein; Harlow and Lane (1988) ANTIBODIES : A LABORATORY MANUAL CSH Press; Goding (1986) MONOCLONAL ANTIBODIES : PRINCIPLES AND PRACTICE (2d ed.) Academic Press, New York, N.Y. Typically, splenocytes isolated from an immunized mammalian host are immortalized, commonly by fusion with a myeloma cell to produce a hybridoma. See Kohler and Milstein (1976) Eur. J. Immunol. 6:511-519; Meyaard, et al. (1997) Immunity 7:283-290; Wright, et al. (2000) Immunity 13:233-242; Preston, et al. (1997) Eur. J. Immunol. 27:1911-1918. Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods known in the art. See, e.g., Doyle, et al. (eds. 1994 and periodic supplements) CELL AND TISSUE CULTURE : LABORATORY PROCEDURES , John Wiley and Sons, New York, N.Y. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity, affinity and inhibiting activity using suitable binding and biological assays. For example, antibody to target binding properties can be measured, e.g., by surface plasmon resonance (Karlsson, et al. (1991)J. Immunol. Methods 145:229-240; Neri, et al. (1997) Nat. Biotechnol. 15:1271-1275; Jonsson, et al. (1991) Biotechniques 11:620-627) or by competition ELISA (Friguet, et al. (1985)J. Immunol. Methods 77:305-319; Hubble (1997) Immunol. Today 18:305-306). - Alternatively, one may isolate DNA sequences which encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells, see e.g., Huse, et al. (1989) Science 246:1275-1281. Other suitable techniques involve screening phage antibody display libraries. See, e.g., Huse et al., Science 246:1275-1281 (1989); and Ward et al., Nature 341:544-546 (1989); Clackson et al. (1991) Nature 352: 624-628 and Marks et al. (1991) J. Mol. Biol. 222: 581-597; Presta (2005)J. Allergy Clin. Immunol. 116:731.
- Preferred monoclonal antibodies for use in the present invention are “chimeric” antibodies (immunoglobulins) in which the variable domain is from the parental antibody generated in an experimental mammalian animal, such as a rat or mouse, and the constant domains are obtained from a human antibody, so that the resulting chimeric antibody will be less likely to elicit an adverse immune response in a human subject than the parental mammalian antibody. More preferably, a monoclonal antibody used in the present invention is a “humanized antibody”, in which all or substantially all of the hypervariable loops (e.g., the complementarity determining regions or CDRs) in the variable domains correspond to those of a non-human immunoglobulin, and all or substantially all of the framework (FR) regions in the variable domains are those of a human immunoglobulin sequence. A particularly preferred monoclonal antibody for use in the present invention is a “fully human antibody”, e.g., an antibody that comprises human immunoglobulin protein sequences only. A fully human antibody may contain carbohydrate chains from the cell species in which it is produced, e.g., if produced in a mouse, in a mouse cell, or in a hybridoma derived from a mouse cell, a fully human antibody will typically contain murine carbohydrate chains.
- Monoclonal antibodies used in the present invention may also include camelized single domain antibodies. See, e.g., Muyldermans et al. (2001) Trends Biochem. Sci. 26:230; Reichmann et al. (1999)J. Immunol. Methods 231:25; WO 94/04678; WO 94/25591; U.S. Pat. No. 6,005,079.
- The antagonistic antibodies used in the present invention may have modified (or blocked) Fc regions to provide altered effector functions. See, e.g., U.S. Pat. No. 5,624,821; WO2003/086310; WO2005/120571; WO2006/0057702. Alterations of the Fc region include amino acid changes (substitutions, deletions and insertions), glycosylation or deglycosylation, and adding multiple Fc. Changes to the Fc can alter the half-life of therapeutic antibodies, enabling less frequent dosing and thus increased convenience and decreased use of material. See Presta (2005) J. Allergy Clin. Immunol. 116:731 at 734-35.
- The antibodies may also be conjugated (e.g., covalently linked) to molecules that improve stability of the antibody during storage or increase the half-life of the antibody in vivo. Examples of molecules that increase the half-life are albumin (e.g., human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antibodies can be prepared using techniques well known in the art. See, e.g., Chapman, A. P. (2002) Adv. Drug Deliv. Rev. 54:531-545; Anderson and Tomasi (1988)J. Immunol. Methods 109:37-42; Suzuki, et al. (1984) Biochim. Biophys. Acta 788:248-255; and Brekke and Sandlie (2003) Nature Rev. 2:52-62).
- Bispecific antibodies that antagonize both IL-17 and IL-23 activity can be produced by any technique known in the art. For example, bispecific antibodies can be produced recombinantly using the co-expression of two immunoglobulin heavy chain/light chain pairs. See, e.g., Milstein et al. (1983) Nature 305: 537-39. Alternatively, bispecific antibodies can be prepared using chemical linkage. See, e.g., Brennan, et al. (1985) Science 229: 81. These bifunctional antibodies can also be prepared by disulfide exchange, production of hybrid-hybridomas (quadromas), by transcription and translation to produce a single polypeptide chain embodying a bispecific antibody, or transcription and translation to produce more than one polypeptide chain that can associate covalently to produce a bispecific antibody. The contemplated bispecific antibody can also be made entirely by chemical synthesis. The bispecific antibody may comprise two different variable regions, two different constant regions, a variable region and a constant region, or other variations.
- Antibodies used in the present invention will usually bind with at least a KD of about 10−3M, more usually at least 10−6M, typically at least 10−7M, more typically at least 10−8M, preferably at least about 10−9M, and more preferably at least 10−10 M, and most preferably at least 10−11 M (see, e.g., Presta, et al. (2001) Thromb. Haemost. 85:379-389; Yang, et al. (2001) Crit. Rev. Oncol. Hematol. 38:17-23; Carnahan, et al. (2003) Clin. Cancer Res. (Suppl.) 9:3982s-3990s).
- IL-17 antagonists and IL-23 antagonists are typically administered to a patient as a pharmaceutical composition in which the antagonist is admixed with a pharmaceutically acceptable carrier or excipient, see, e.g., Remington's Pharmaceutical Sciences and U.S. Pharmacopeia: National Formulary, Mack Publishing Company, Easton, Pa. (1984). The pharmaceutical composition may be formulated in any manner suitable for the intended route of administration. Examples of pharmaceutical formulations include lyophilized powders, slurries, aqueous solutions, suspensions and sustained release formulations (see, e.g., Hardman, et al. (2001) Goodman and Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, N.Y.; Gennaro (2000) Remington: The Science and Practice of Pharmacy, Lippincott, Williams, and Wilkins, New York, N.Y.; Avis, et al. (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications, Marcel Dekker, NY; Lieberman, et al. (eds.) (1990) Pharmaceutical Dosage Forms: Tablets, Marcel Dekker, NY; Lieberman, et al. (eds.) (1990) Pharmaceutical Dosage Forms: Disperse Systems, Marcel Dekker, NY; Weiner and Kotkoskie (2000) Excipient Toxicity and Safety, Marcel Dekker, Inc., New York, N.Y.).
- The route of administration will depend on the properties of the antagonist or other therapeutic agent used in the pharmaceutical composition. A possible administration route is to administer the pharmaceutical composition topically to the eye in the form of an ointment, gel or droppable liquids using an ocular delivery system known to the art such as an applicator or eyedropper. Alternatively, the pharmaceutical composition may be administered intraocularly via an polymer implant that is placed under the under the conjunctiva of the eye or through injection directly into the eye. Preferably, pharmaceutical compositions containing IL-17 antagonists and IL-23 antagonists are administered systemically by oral ingestion, injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intracerebrospinal, intralesional, or pulmonary routes, or by sustained release systems such as implants. Injection of gene transfer vectors into the central nervous system has also been described (see, e.g., Cua, et al. (2001) J. Immunol. 166:602-608; Sidman et al. (1983) Biopolymers 22:547-556; Langer, et al. (1981) J. Biomed. Mater. Res. 15:167-277; Langer (1982) Chem. Tech. 12:98-105; Epstein, et al. (1985) Proc. Natl. Acad. Sci. USA 82:3688-3692; Hwang, et al. (1980) Proc. Natl. Acad. Sci. USA 77:4030-4034; U.S. Pat. Nos. 6,350,466 and 6,316,024).
- The pharmaceutical compositions used in the invention may be administered according to any treatment regimen that ameliorates or prevents one or more symptoms of the AOID. Selecting the treatment regimen will depend on several composition-dependent and patient-dependent factors, including but not limited to the half-life of the antagonist, the severity of the patient's symptoms, and the type or length of any adverse effects. Preferably, an administration regimen maximizes the amount of therapeutic agent delivered to the patient consistent with an acceptable level of side effects. Guidance in selecting appropriate doses of therapeutic antibodies and small molecules is available (see, e.g., Wawrzynczak (1996) Antibody Therapy, Bios Scientific Pub. Ltd, Oxfordshire, UK; Kresina (ed.) (1991) Monoclonal Antibodies, Cytokines and Arthritis, Marcel Dekker, New York, N.Y.; Bach (ed.) (1993) Monoclonal Antibodies and Peptide Therapy in Autoimmune Diseases, Marcel Dekker, New York, N.Y.; Baert, et al. (2003) New Engl. J. Med. 348:601-608; Milgrom, et al. (1999) New Engl. J. Med. 341:1966-1973; Slamon, et al. (2001) New Engl. Med. 344:783-792; Beniaminovitz, et al. (2000) New Engl. J. Med. 342:613-619; Ghosh, et al. (2003) New Engl. J. Med. 348:24-32; Lipsky, et al. (2000) New Engl. J. Med. 343:1594-1602).
- Biological antagonists such as antibodies may be provided by continuous infusion, or by doses at intervals of, e.g., once per day, once per week, or 2 to 7 times per week, once every other week, or once per month. A total weekly dose for an antibody is generally at least 0.05 μg/kg body weight, more generally at least 0.2 μg/kg, most generally at least 0.5 μg/kg, typically at least 1 μg/kg, more typically at least 10 μg/kg, most typically at least 100 μg/kg, preferably at least 0.2 mg/kg, more preferably at least 1.0 mg/kg, most preferably at least 2.0 mg/kg, optimally at least 10 mg/kg, more optimally at least 25 mg/kg, and most optimally at least 50 mg/kg (see, e.g., Yang, et al. (2003) New Engl. J. Med. 349:427-434; Herold, et al. (2002) New Engl. J. Med. 346:1692-1698; Liu, et al. (1999) J. Neurol. Neurosurg. Psych. 67:451-456; Portielji, et al. (20003) Cancer Immunol. Immunother. 52:133-144). The desired dose of a small molecule therapeutic, e.g., a peptide mimetic, natural product, or organic chemical, is about the same as for an antibody or polypeptide, on a moles/kg basis. Determination of the appropriate dose is made by the clinician, e.g., using parameters or factors known or suspected in the art to affect treatment or predicted to affect treatment. Generally, the beginning dose is an amount somewhat less than the optimum dose and the dose is increased by small increments thereafter until the desired or optimum effect is achieved relative to any negative side effects.
- Treatment regimens using IL-17 or IL-23 antagonists will typically be determined by the treating physician and will take into account the patient's age, medical history, disease symptoms, and tolerance for different types of medications and dosing regimens. Generally the treatment regimen is designed to suppress the overly aggressive immune system, allowing the body to eventually re-regulate itself, with the result often being that after the patient has been kept on systemic medications to suppress the inappropriate immune response for a finite length of time (for example, one year), medication can then be tapered and stopped without recurrence of the autoimmune attack. Sometimes resumption of the attack does occur, in which case the patient must be re-treated.
- Thus, in some cases, the physician may prescribe the patient a certain number of doses of the antagonist to be taken over a prescribed time period, after which therapy with the antagonist is discontinued. Preferably, after an initial treatment period in which one or more of the acute symptoms of the disease disappear, the physician will continue the agonist therapy for some period of time, in which the amount and/or frequency of antagonist administered is gradually reduced before treatment is stopped.
- The present invention also contemplates treatment regimens in which an IL-17 antagonist is used in combination with an IL-23 antagonist. Such regimens may be especially useful in treating the acute phase of AOID, in which the IL-17 antagonist inhibits the activity of existing Th17 cells, while the IL-23 antagonist prevents the generation of new Th17 cells. Such combination therapy may provide effective treatment of AOID using a lower dose of the IL-17 antagonist and/or administering the IL-17 antagonist for a shorter period of time. As symptoms ameliorate, therapy with IL-17 antagonist is preferably discontinued, while administration of the IL-23 antagonist is continued to prevent generation of new autoreactive Th17 cells that could lead to recurrence of the disease. The two antagonists may be administered at the same time in a single composition, or in separate compositions. Alternately, the two antagonists may be administered at separate intervals. Different doses of the antagonists may also be used. Similarly, a bispecific antagonist may also be administered during the acute phase and gradually withdrawn, followed by treatment with an IL-23 antagonist to maintain repression of the disease.
- The treatment regimen may also include use of other therapeutic agents, to ameliorate one or more symptoms of the AOID or to prevent or ameliorate adverse effects from the antagonist therapy. Examples of therapeutic agents that have been used to treat AOID symptoms are steroids and other anti-inflammatories. Examples of such therapies include, but are not limited to, steroids such as dexamethasone, fluorometholone, and prednisolone, as well as non-steroidal anti-inflammatories such as indomethacin, aspirin, flubiprofen and diclofenac, antimetabolites (e.g., methotrexate, azathioprine), inhibitors of transcription factors (e.g., cyclosporine, tacrolimus), and DNA cross-linking agents (e.g., cyclophosphamide, chlorambucil). New agents directed against cytokines and their receptors, many of which act by inhibiting important Th1 cytokine rather than signaling pathways, are beginning to be used for treatment of patients with uveitis. These include TNF inhibitors such as Infliximab (Remicade®, Centocor, Malvern, Pa.), Etanercept (Enbrel®, Amgen, Thousand Oaks, Calif.), and Adalimumab (Humira®, Abbott Laboratories, Abbott Park, Ill.) and specific inhibitors of IL-2 signaling, including Daclizumab (Zenapax®, Roche Laboratories, Nutley, N.J.) and Basiliximab (Simulect®, Novartis Pharmaceutical Co., East Hanover, N.J.).
- In any of the therapies described herein in which two or more different therapeutic substances are used (e.g., an IL-17 antagonist and an IL-23 antagonist, or an IL-17 antagonist and a therapeutic agent that does not antagonize IL-17 or IL-23 activity), it will be understood that the different therapeutic substances are administered in association with each other, that is, they may be administered concurrently in the same pharmaceutical composition or as separate compositions or the substances may be administered at separate times, and in different orders.
- Diagnosing the presence of an AOID in a patient will typically involve examining the patient for symptoms known to be consistent with such diseases. For example, the typical presentation of anterior uveitis involves pain, photophobia, and hyperlacrimation. Patients report a deep, dull, aching of the involved eye and surrounding orbit. Associated sensitivity to lights may be severe. Excessive tearing occurs secondary to increased neural stimulation of the lacrimal gland and the patient does not report a foreign-body sensation. Visual acuity is variable ranging from mild blur to significant vision loss if synechiae or cyclitic membranes are present. An examination may reveal mild to moderate lid swelling resulting in pseudoptosis. A deep, perilimbal injection of the conjunctiva and episclera is typical, although the palpebral conjunctiva is characteristically normal. The cornea may display mild edema.
- The hallmark signs of anterior uveitis include cells and flare in the anterior chamber. If the anterior chamber reaction is significant, small gray to brown endothelial deposits known as keratic precipitates may be present. This can then lead to endothelial cell dysfunction and corneal edema. Iris findings may include adhesions to the lens capsule (posterior synechiae) or, less commonly, to the peripheral cornea (anterior synechiae). Additionally, granulomatous nodules may appear on the surface of the iris. Intraocular pressure (TOP) is initially reduced in the involved eye due to secretory hypotony of the ciliary body. However, as the reaction persists, inflammatory by-products may accumulate in the trabeculum. If this debris builds significantly, and if the ciliary body resumes its normal secretory output, IOP can rise sharply resulting in a secondary uveitic glaucoma.
- Identifying patients who are susceptible for an AOID will typically taking a personal and family medical history, and may include genetic testing. For example, some individuals will have genetic predisposition to uveitis which is related to autoimmune disease processes. The most common of these susceptibility genes is the HLA B27 haplotype, which can predispose to uveitis alone or also to the Seronegative Spondyloarthropathies and the enteropathic arthropathies. Examples are ankylosing spondylitis, reactive arthritis (Reiters syndrome), psoriatic arthritis, irritable bowel disease and Crohn's disease. A patient may also be diagnosed as susceptible for an AOID if there was a family history of any of these autoimmune diseases, or the patient has already been diagnosed with such a disease.
- The effectiveness of the antagonist therapy for preventing or treating AOID in a particular patient can be determined using diagnostic measures such as reduction or occurrence of inflammatory symptoms of, e.g., the amount of ocular inflammation or level of inflammatory cytokines in the affected eye(s). The symptoms of ocular inflammation for the most part depend on the affected area of the eye. Most common signs and symptoms are: pain redness, floaters, decreased vision, and light sensitivity. The level of inflammatory cytokines can be measured, e.g, by contacting a binding compound for the inflammatory cytokine of interest with a sample from the patient's eye as well as with a sample from a control subject or from unaffected tissue or fluid from the patient, and then comparing the cytokine levels detected by the binding compound. Expression or activity from a control subject or control sample can be provided as a predetermined value, e.g., acquired from a statistically appropriate group of control subjects.
- The present invention is based upon studies in IL-23p19 knockout (KO) mice and administration of anti-IL-23p19 and anti-IL-17 antibodies to murine models of autoimmune uveitis. These experiments were performed according to the Materials and Methods described in Section II below.
- In the experiments involving IL-23p19 KO mice, the EAU susceptibility of IL-23p19 KO (IL-23 deficient) mice were compared to the EAU susceptibility of IL-12p35 KO (IL-12 deficient) and IL-12p40 KO (IL-12 and IL-23 deficient) mice. All mice were on the C57BL/6 background and the EAU induction and scoring was as described in General Methods below. It was found that IL-12p35 is not required for generation of IRBP-specific eye tissue destruction. In contrast, IL-23p19 is essential for development of EAU (Table 1). Cytokine analysis of lymph node cell cultures derived from IRBP-immunized mice showed that the EAU susceptible IL-12 deficient mice (IL-12p35KO) had elevated levels of IFN-γ, IL-6, IL-17 and IL-18, compared to IL-23 deficient mice (IL-23p19KO and IL-12p40KO). Delayed hypersensitivity (DTH) responses to IRBP of the 3 KO strains, examined by the ear swelling assay, showed that DTH response to IRBP was well correlated with the EAU scores or the respective mice, with significantly lower responses for p19 and p40 KO and significantly higher responses in p35 KO compared to wild-type (WT).
-
TABLE 1 IL-23, but not IL-12, is essential for EAU development. DTH Specific EAU swelling +/− Average score +/− SE IFN-γ IL-6 IL-17 IL-18 SE (μm × 10−1) (ng/ml) (ng/ml) (ng/ml) (ng/ml) Wild type 0.21 ± 0.11 44 ± 7 39 3.2 2.2 0.25 IL-12p35KO 0.57 ± 0.12 57 ± 2 16 1.9 4.9 0.29 IL-23p19KO 0 25 ± 4 6.5 0.55 1.2 0.10 IL-12p40KO 0 22 ± 3 <1 .08 0.85 0.11 - These results were further supported by experiments using an anti-mouse IL-23p19 antibody in a mouse model of uveitis, in the highly susceptible B10.RIII strain It was found that anti-mouse IL-23p19 antibody treatment significantly blocked immune-mediated eye inflammation. At the dose of 330 μg per mouse every other day, the EAU disease index of anti-IL-23p19 treated mice was dramatically reduced compared to anti-isotype antibody treated and no antibody controls as determined by histopathology of eyes collected on day 11 after immunization (Table 2). In addition, anti-IL-23p19 therapy was as efficacious as Prednisone in blocking EAU. The expression levels of IL-17, but not IFN-γ mRNA in the eyes of anti-IL-23p19 treated mice were lower than the control groups suggesting that targeting IL-23 inhibited EAU by blocking infiltration of IL-17 producing cells or preventing the expansion of the pathogenic IL-17 producing cells within the eyes. Neutrophil elastase and myeloperoxidase mRNA levels of anti-IL-23p19 treated mice were comparable to naïve as well as Prednisone control groups, whereas the “No antibody” and isotype control treated mice exhibited 10- to 100-fold increase in expression of these inflammatory genes. Other proinflammatory factors such as IL-1β, TNF, IL-6, NOS2 and COX2 were somewhat reduced in anti-IL-23p19 treated mice. These results demonstrate that targeting IL-23 inhibits the development of autoimmune uveitis.
-
TABLE 2 Anti-IL-23p19 treatment inhibits EAU and expression of inflammatory cytokines in the eye. Histo- pathology 0 = normal 1 = few monocyte infiltration Eye Quantitative-PCR gene expression analysis 4 = severe (Shown as expression relative to damage Ubiquitin). damage Tissue samples collected on day 11 after IRBP immunization. (individual Neutrophil Myeloper- eyes) IFN-γ IL-6 IL-17 TNF IL-1β NOS2 COX2 Elastase oxidase Naïve 0 0 0 0 0 0.44 0.16 0 0 3.8 2.7 4.8 0.1 0 mice No 4 4 4 4 4 3 3 6.2 37.6 7.1 37.8 117.8 22.2 24.6 1.23 4.11 mAb 3 2 2 2 1 1 1 control 1 1 1 1 1 Isotype 4 4 4 4 4 4 2 NA 13.6 3.1 28.3 103.0 19.2 14.5 1.35 3.09 mAb 1 1 1 1 1 1 1 control 1 1 1 1 1 0 Anti- 1 1 1 1 1 1 1 6.9 10.3 .013 12.5 64.3 14.7 8.9 0.08 0 IL- 1 1 1 1 1 1 0 23p19 0 0 0 0 Prednisone 4 4 2 1 1 1 1 0.51 1.2 0 17.9 74.6 5.2 14.6 0.55 0 1 1 0 0 0 0 0 0 - Another set of experiments comparing treatment with anti-IL-23p19 antibodies to treatment with anti-IL-12p40 antibodies was also performed. In this experiment mice received 500 μg of the indicated antibodies every other day, starting the day before immunization, and the eyes and lymphoid organs were collected 17 days after immunization, or 6-7 days after disease onset in controls. The data indicated that anti-IL-23p19 antibodies were as effective as anti-p40 antibodies at blocking the onset of uveitis. The data are shown in Table 3.
- In addition, cytokine protein expression in the lymph nodes of these mice was assessed by multiplex ELISA. These data show that treatment with IL-23 antagonists lessens the production of Th1 and pro-inflammatory cytokines. The data are shown in Table 3.
-
TABLE 3 Anti-IL-23p19 treatment inhibits EAU and systemic cytokine responses to the uveitis antigen. EAU score of individual IL-2 IL-4 IL-5 IL-6 IL-10 IFN-γ TNF-α IL-12 IL-17 Sample eyes pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml pg/ml Control 3, 3, 3, 3, 3, 247.6 0.4 <3.1 145.7 8.6 1295.3 46.5 2.7 72.9 3, 3, 3, 0, 0.25 Anti IL-23p19 3, 3, 0, 0, 0, 115.0 1.3 19.1 163.7 5.5 1453.3 87.5 2.1 37.0 0, 0, 0, 0, 0 Anti Isotype 3, 3, 3, 3, 3, 205.2 1.4 <3.1 206.7 12.4 2759.6 51.2 3.1 198.0 3, 3, 3, 3, 3 Anti IL-12p40 0.25, 0, 0, 0, 101.9 0.4 <3.1 26.5 4.4 305.5 16.6 <0.8 29.7 0, 0, 0, 0, 0, 0 - A second part of this experiment examined the stage of the pathogenic process during which IL-23 was required. Mice were treated with 500 μg of anti-IL-23 p19 antibody every other day starting 7 days after immunization and the disease was compared to mice that were treated from day before immunization (as above). EAU could be prevented by early treatment with either anti-p19 or anti-p40 antibodies. However, when treatment was started 7 days after immunization, a time point when uveitogenic effector T cells have already been primed and can be isolated from the LN and spleen, EAU development could not be aborted and the disease scores developed by treated mice were similar to control. This suggests that the requirement for IL-23 occurs at an early stage of disease pathogenesis. The data are shown in Table 4.
-
TABLE 4 Treatment with anti-p19 antibody prevents, but does not reverse, EAU. Start of treatment Antibody EAU score ± SE day −1 Anti-isotype 2.9 ± 0.1 Anti P19 0.6 ± 0.6 Anti P40 0 ± 0 day 7 Anti-isotype 2.05 ± 0.5 Anti P19 2.35 ± 0.5 Anti P40 2.075 ± 0.5 - In the aggregate, these experiments demonstrate that neutralization of IL-23 prevents, but does not reverse, uveitis in animal models, and indicate that treatment with IL-23 antagonists should have a beneficial effect in chronic uveitis in humans by preventing recruitment of new T cells into the effector pool, thereby reducing the severity and halting progression of the disease.
- To test whether IL-17 deficiency can affect EAU development, IL-17A−/− mice (see, e.g., Nakae et al. (2002) Immunity 17:375-387) were immunized with a uveitogenic regimen of IRBP Inhibition of EAU by genetic IL-17 deficiency was only partial (Table 5). The relatively modest reduction of EAU scores in IL-17−/− mice might be explained by the fact that these mice are deficient for the IL-17A isoform of the cytokine, and under conditions of congenital deficiency might compensate with the usually less abundantly produced IL-17F isoform.
-
TABLE 5 Genetic IL-17 deficiency reduces, but does not abrogate, EAU susceptibility. Expt # WT IL-17A−/− 1 0.5* 0.5 1.5 1.0 0.8 0.9 0.8 0.1 0.4 0.9 1.3 0.6 0.5 2 0.5 0.5 0.9 0.0 1.8 0.3 1.0 0.0 1.5 0.5 Average Score ± SE 0.9 ± 0.1 0.5 ± 0.1 - In contrast, neutralization of IL-17A with IL-17A antibodies in wild type mice, either through the entire course of disease or through the effector phase only (starting day 7), was protective. Importantly, unlike IL-23 neutralization, neutralization of IL-17 could inhibit disease when administered starting day 7 post immunization, when uveitogenic effectors have already been generated. Reduction in EAU scores correlated with reduction in the associated immunological responses, delayed-type hypersensitivity (DTH) and antigen specific LN cell proliferation. Thus, IL-17 has a role in the pathogenesis of EAU, and unlike IL-23, appears to participate in the effector phase of the disease. The data are shown in Table 6.
-
TABLE 6 Treatment with anti-IL-17A antibodies prevents and reverses EAU Start of EAU Proliferation ± treatment Antibody score ± SE DTH ± SE SE (×10−3) day −1 Anti-isotype 1.6 ± 0.7 16 ± 1 19.2 ± 1.2 Anti IL-17 0.025 ± 0.025 7.6 ± 2 6.6 ± 6.4 day 7 Anti-isotype 1.6 ± 0.6 20.2 ± 3 25.4 ± 1.4 Anti IL-17 0.5 ± 0.5 6.0 ± 2 5.9 ± 0.3 - Standard methods in molecular biology are described (Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Sambrook and Russell (2001) Molecular Cloning, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Wu (1993) Recombinant DNA, Vol. 217, Academic Press, San Diego, Calif.). Standard methods also appear in Ausbel, et al. (2001) Current Protocols in Molecular Biology, Vols. 1-4, John Wiley and Sons, Inc. New York, N.Y., which describes cloning in bacterial cells and DNA mutagenesis (Vol. 1), cloning in mammalian cells and yeast (Vol. 2), glycoconjugates and protein expression (Vol. 3), and bioinformatics (Vol. 4).
- Methods for protein purification including immunoprecipitation, chromatography, electrophoresis, centrifugation, and crystallization are described (Coligan, et al. (2000) Current Protocols in Protein Science, Vol. 1, John Wiley and Sons, Inc., New York). Chemical analysis, chemical modification, post-translational modification, production of fusion proteins, glycosylation of proteins are described (see, e.g., Coligan, et al. (2000) Current Protocols in Protein Science, Vol. 2, John Wiley and Sons, Inc., New York; Ausubel, et al. (2001) Current Protocols in Molecular Biology, Vol. 3, John Wiley and Sons, Inc., NY, NY, pp. 16.0.5-16.22.17; Sigma-Aldrich, Co. (2001) Products for Life Science Research, St. Louis, Mo.; pp. 45-89; Amersham Pharmacia Biotech (2001) BioDirectory, Piscataway, N.J., pp. 384-391). Production, purification, and fragmentation of polyclonal and monoclonal antibodies are described (Coligan, et al. (2001) Current Protcols in Immunology, Vol. 1, John Wiley and Sons, Inc., New York; Harlow and Lane (1999) Using Antibodies, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Harlow and Lane, supra). Standard techniques for characterizing ligand/receptor interactions are available (see, e.g., Coligan, et al. (2001) Current Protcols in Immunology, Vol. 4, John Wiley, Inc., New York).
- Methods for flow cytometry, including fluorescence activated cell sorting (FACS), are available (see, e.g., Owens, et al. (1994) Flow Cytometry Principles for Clinical Laboratory Practice, John Wiley and Sons, Hoboken, N.J.; Givan (2001) Flow Cytometry, 2nd ed.; Wiley-Liss, Hoboken, N.J.; Shapiro (2003) Practical Flow Cytometry, John Wiley and Sons, Hoboken, N.J.). Fluorescent reagents suitable for modifying nucleic acids, including nucleic acid primers and probes, polypeptides, and antibodies, for use, e.g., as diagnostic reagents, are available (Molecular Probes (2003) Catalogue, Molecular Probes, Inc., Eugene, Oreg.; Sigma-Aldrich (2003) Catalogue, St. Louis, Mo.).
- Standard methods of histology of the immune system are described (see, e.g., Muller-Harmelink (ed.) (1986) Human Thymus: Histopathology and Pathology, Springer Verlag, New York, N.Y.; Hiatt, et al. (2000) Color Atlas of Histology, Lippincott, Williams, and Wilkins, Phila, Pa.; Louis, et al. (2002) Basic Histology: Text and Atlas, McGraw-Hill, New York, N.Y.).
- Software packages and databases for determining, e.g., antigenic fragments, leader sequences, protein folding, functional domains, glycosylation sites, and sequence alignments, are available (see, e.g., GenBank, Vector NTI® Suite (Informax, Inc, Bethesda, Md.); GCG Wis. Package (Accelrys, Inc., San Diego, Calif.); DeCypher® (TimeLogic Corp., Crystal Bay, Nev.); Menne, et al. (2000) Bioinformatics 16: 741-742; Menne, et al. (2000) Bioinformatics Applications Note 16:741-742; Wren, et al. (2002) Comput. Methods Programs Biomed. 68:177-181; von Heijne (1983) Eur. J. Biochem. 133:17-21; von Heijne (1986) Nucleic Acids Res. 14:4683-4690).
- IL-23 KO (p19 KO) was described in Cua, et al. (2003) Nature 421:744-748. IL-17−/− mice were produced as described in Nakae, et al. (2002) Immunity 17:375-387. IL-12p35 KO (P35 KO), IL-12p40 KO (P40 KO), IFN-γ KO (GKO) (all on C57BL/6 background) and C57BL/6 and B10RIII, mice were purchased from Jackson Laboratories. Animals were kept in a specific pathogen-free facility and given water and standard laboratory chow ad libitum. Animal care and use were in compliance with institutional guidelines and with the Association for Research in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research.
- CFA was purchased from Sigma. Mycobacterium Tuberculosis strain H37RA was purchased from Thomas Scientific. Purified Bordetella PT was purchased from Sigma-Aldrich. IRBP was isolated from bovine retinas, as described previously, using Con A-Sepharose affinity chromatography and fast performance liquid chromatography (see, e.g., Pepperberg et al. (1991) Photochem Photobiol 54:1057-1060). IRBP preparations were aliquoted and stored at −70° C. Human IRBP-derived peptide 161-180 (Karabezekian, Z. et al., (2005) Invest Ophthalmol Vis Sci. 46(10):3769-76) was synthesized by Fmoc chemistry (model 432A peptide synthesizer; Applied Biosystems, Foster City, Calif.).
- Neutralizing anti-mouse IL-23 and anti-mouse IL-17A antibodies were provided by Schering-Plough Biopharma (Palo Alto, Calif.). Anti-mouse IL-23 was described previously (see, e.g., Langrish et al. (2005) J Exp Med 201:233-240). The C17.8 (anti-IL-12p40, rat IgG2a) hybridoma was provided by the Wistar Institute, Philadelphia, Pa. Monoclonal antibody was produced in ascites and purified by ion exchange HPLC by Harlan Bioproducts for Science (Indianapolis, Ind.). FITC-labeled anti-mouse CD4 (clone-L3T4), PE-labeled anti-mouse IL-17 (clone-TC11-18H10) and APC-labeled anti-IFN-γ (clone-XMG1.2) and cytokine secretion blocker (GolgiStop™) were purchased from Becton Dickinson (San Diego, Calif.). PMA, Ionomycin were purchased from LC Laboratories (Boston, Mass.).
- EAU was induced by active immunization with 150 μg of IRBP for C57BL/6 mice and with 7 μg IRBP peptide 161-180 for B10RIII mice (Jackson Labs, Me.). For C57BL/6 mice, Bordetella pertussis toxin (0.5 μg/mouse) in PBS containing 2% normal mouse serum was given by intraperitoneal injection concurrently with immunization and in some experiments the IRBP was spiked with 500 μg of IRBP peptide 1-20 (Avichezer, D. et al. (2000), Invest Ophthalmol Vis Sci. 41(1):127-31) to enhance the usually modest disease scores seen in this strain. Antigen solution was emulsified 1:1 v/v in CFA that had been supplemented with Mycobacterium tuberculosis strain H37RA to 2.5 mg/ml. A total of 200 μl of emulsion was injected s.c., divided into 3 sites (base of the tail and both thighs).
- Alternatively, EAU was induced by adoptive transfer of a uveitogenic T cell line (see below). 1-2 million cells, freshly stimulated with antigen, were injected intraperitoneally. Clinical EAU was evaluated by fundoscopy under a binocular microscope after dilation of the pupil and was graded on a scale of 0-4 using criteria based on the extent of inflammatory lesions, as described in detail elsewhere (see, e.g., Agarwal and Caspi, (2004) Methods Mol Med 102:395-419; and Chan et al. (1990) J Autoimmun 3:247-255). Eyes harvested 17-21 days after immunization, or 14 days after adoptive transfer, were prefixed in 4% phosphate-buffered glutaraldehyde for 1 h (to prevent artifactual detachment of the retina) and then transferred to 10% phosphate-buffered formaldehyde until processing. Fixed and dehydrated tissue was embedded in methacrylate, and 4- to 6-μm sections were stained with standard H&E. Eye sections cut through pupillary-optic nerve planes were scored in a masked fashion.
- Severity of EAU was graded on a scale of 0-4 in half-point increments using the criteria described previously, based on the type, number, and size of lesions (see, Agarwal and Caspi, supra; and Chan et al. supra).
- D. Determination of Immunological Responses Delayed Type Hypersensitivity (DTH) to IRBP was evaluated by the ear swelling assay (see, e.g., Tarrant et al. (1998) J Immunol 161:122-127). For Ag-specific lymphocyte proliferation and cytokine production in primary cultures, the spleen and draining lymph nodes (inguinal and iliac) (5 per group) were collected at the end of each experiment as indicated. Lymphoid cells were pooled within the group, and were incubated with graded doses of Ag in triplicate 0.2-ml cultures, essentially as described (see, e.g., Avichezer et al. (2000) Invest Ophthalmol Vis Sci 41:127-131). Proliferation was determined by [3H]thymidine uptake. Cytokines were quantitated in 48-h Ag-stimulated supernatants using the Pierce Multiplex SearchLight Arrays technology (see, e.g., Moody et al. (2001) Biotechniques 31:186-190, 192-184).
E. Neutralization of IL-23, IL-12p40, and IL-17 - B10RIII mice were immunized with IRBP or IRBP uveitogenic peptide (161-180) as indicated. Mice were injected intraperitoneally with 0.5 mg per dose of anti-p19, anti-p40, or anti-IL-17. Treatment was given every other day starting on day—1 through day 15 after immunization, covering both priming and effector phase (prevention protocol) or starting day 7 through day 15, covering the effector phase only (treatment). Controls were given the same regimen of isotype (rat IgG1). Eyes and lymphoid organs were harvested on day 17, 6-7 days after disease onset.
- The uveitogenic Th1 cell line specific to a peptide of human IRBP (p16-180) has been described (see, e.g., Silver et al. (1995) Invest Ophthalmol Vis Sci 36:946-954). Briefly, the line was derived from draining lymph nodes of B10RIII mice immunized with human IRBP peptide 161-180, polarized in vitro toward the Th1 phenotype by culture in the presence of antigen, IL-12, and anti-IL-4. Thereafter the cells were maintained by alternating cycles of expansion in IL-2 and restimulation with 1 μg/ml of p161-180 every 2 to 3 weeks in the presence of syngeneic splenocytes, irradiated with 3000 rads, as APCs. For EAU induction, cells freshly stimulated with Ag for 48 h were injected i.p. into naïve syngeneic recipients.
- Short stimulation: T cell line was stimulated with 1 μg/ml IRBP peptide 161-180 in the presence of irradiated APCs for 24 h with the addition of GolgiStop™ protein transfer inhibitor (BD Biosciences, San Jose, Calif.) at the last 4 h. Thereafter, cells were separated on Ficoll, washed and stained for extracellular CD4. Than cells were washed, fixed, permeabilized with Cytofix/Cytoperm™ fixation and permeabilization buffer (BD Biosciences) and stained with PE-conjugated anti II-17 and APC-conjugated anti IFN-γ for FACS analysis.
- Long stimulation: T cell line was stimulated for 5 days with antigen (1 μg/ml IRBP peptide 161-180) or antigen+rIL-23 (10 ng/ml) or antigen+IL-23+ anti IFN-γ (10 μm/ml) in the presence of irradiated APCs. During the last 4 h of incubation cells were stimulated with PMA and Ionomycin with the addition of GolgiStop™ protein transfer inhibitor (BD Biosciences). Thereafter cells were treated and stained for intracellular IL-17 and IFN-γ as mentioned above.
- After 48 h of stimulation with 1 μg/ml IRBP peptide 161-180 in the presence of irradiated APCs the T cell line was adoptively transferred (2×106/mouse) i.v. to naïve Thy1.1/.2 heterozygous mice. Ninety h later spleens were harvested and splenocytes were stimulated with IRBP peptide 161-180 for 24 h with the presence of PMA, Ionomycin and GolgiStop™ protein transfer inhibitor (BD Biosciences) at the last 4 h. Thereafter cells were treated and stained for intracellular IL-17 and IFN-γ as mentioned above.
- Experiments were repeated at least twice, and usually three or more times. Tables show data compiled from a representative experiment. Statistical analysis of EAU scores, was by Snedecor and Cochran's test for linear trend in proportions (nonparametric, frequency-based) (see, e.g., Snedecor and Cochran (1967) Statistical Methods Iowa State University Press, Ames, IA:p. 248). Each mouse (average of both eyes) was treated as one statistical event. DTH and proliferation were examined by t-test (2 tailed). Cytokine responses were assayed on pooled samples (usually 5 mice per group).
- Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled; and the invention is not to be limited by the specific embodiments that have been presented herein by way of example.
- All citations herein are incorporated herein by reference to the same extent as if each individual publication or patent document was specifically and individually indicated to be incorporated by reference. However, citation herein of any publication or patent document is not intended as an admission that the cited reference is pertinent prior art, nor does it constitute any admission as to the contents or effective prior art date of the reference.
Claims (20)
1. A method of treating a patient with an autoimmune ocular inflammatory disease (AOID), comprising administering to the patient an IL-17 antagonist, wherein the IL-17 antagonist is a monoclonal antibody which specifically binds to and inhibits the activity of IL-17.
2. The method of claim 1 , wherein the patient has been diagnosed as having an ocular inflammation of putative autoimmune etiology.
3. The method of claim 1 , wherein a specified dose of the IL-17 antagonist is administered at a specified interval during a first treatment period, wherein the specified interval is once per day, once per week, 2 to 7 times per week, once every other week, and once per month.
4. The method of claim 3 , wherein the first treatment period ends after disappearance of one or more symptoms of the AOID.
5. The method of claim 4 , wherein the dose of the IL-17 antagonist administered is gradually reduced during a second treatment period that begins upon the end of the first treatment period.
6. The method of claim 4 , wherein the duration of the second treatment period is at least one year.
7. The method of claim 1 , wherein the IL-17 antagonist is a humanized monoclonal antibody, a fully human monoclonal antibody or a pegylated monoclonal antibody.
8. The method of claim 3 , further comprising administering an IL-23 antagonist to the patient during the first treatment period, wherein the IL-23 antagonist is a monoclonal antibody which specifically binds to and inhibits the activity of IL-23, IL-23p19, IL-12p40, IL-23R, IL12RB1 or an IL23R/IL12RB1 complex.
9. The method of claim 8 , wherein a specified dose of the IL-23 antagonist is administered at a specified interval during the first treatment period, wherein the specified interval is once per day, once per week, 2 to 7 times per week, once every other week, and once per month.
10. The method of claim 8 , wherein the dose of each of the IL-17 antagonist and the IL-23 antagonist is gradually reduced during a second treatment period that begins upon the end of the first treatment period.
11. The method of claim 8 , wherein the dose of the IL-17 antagonist is gradually reduced during a second treatment period that begins upon the end of the first treatment period, and wherein the dose of the IL-23 antagonist administered during the second treatment period is the same as the dose administered in the first treatment period, and wherein the second treatment period ends when therapy with the IL-17 antagonist is stopped.
12. The method of claim 11 , further comprising administering the IL-23 antagonist during a third treatment period that begins upon the end of the second treatment period.
13. The method of claim 8 , wherein the IL-23 antagonist is a monoclonal antibody which specifically binds to and inhibits the activity of IL-23p19 or IL-23R.
14. The method of claim 1 , wherein the AOID is chronic uveitis.
15. The method of claim 14 , wherein the IL-17 antagonist is administered systemically to the patient.
16. The method of claim 1 , wherein the AOID is chronic uveitis associated with ankylosing spondylitis, Behcet's syndrome, inflammatory bowel disease, juvenile rheumatoid arthritis, Reiter's syndrome, sarcoidosis, syphilis, tuberculosis or Lyme disease.
17. A method of prophylactically treating a patient who is diagnosed as being susceptible for an autoimmune ocular inflammatory disease (AOID), the method comprising administering to the patient an IL-17 antagonist, wherein the IL-17 antagonist is a monoclonal antibody which specifically binds to and inhibits the activity of IL-17.
18. The method of claim 17 , wherein the susceptibility diagnosis is based on the patient having a previous incident of ocular inflammation or is based on the patient having a systemic autoimmune disease.
19. The method of claim 17 , wherein the AOID is uveitis.
20. The method of claim 14 , wherein the IL-17 antagonist is administered systemically to the patient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/015,900 US20110142831A1 (en) | 2005-09-01 | 2011-01-28 | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71379205P | 2005-09-01 | 2005-09-01 | |
US83731206P | 2006-08-11 | 2006-08-11 | |
US11/512,622 US20080199460A1 (en) | 2005-09-01 | 2006-08-30 | Use of IL-23 and IL-17 antagonists to treat autoimmune ocular inflammatory disease |
US13/015,900 US20110142831A1 (en) | 2005-09-01 | 2011-01-28 | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/512,622 Continuation US20080199460A1 (en) | 2005-09-01 | 2006-08-30 | Use of IL-23 and IL-17 antagonists to treat autoimmune ocular inflammatory disease |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110142831A1 true US20110142831A1 (en) | 2011-06-16 |
Family
ID=37686002
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/512,622 Abandoned US20080199460A1 (en) | 2005-09-01 | 2006-08-30 | Use of IL-23 and IL-17 antagonists to treat autoimmune ocular inflammatory disease |
US12/643,152 Expired - Fee Related US8524230B2 (en) | 2005-09-01 | 2009-12-21 | Use of IL-23 and IL-17 antagonists to treat autoimmune ocular inflammatory disease |
US12/643,166 Abandoned US20100111954A1 (en) | 2005-09-01 | 2009-12-21 | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
US13/015,900 Abandoned US20110142831A1 (en) | 2005-09-01 | 2011-01-28 | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
US13/960,441 Abandoned US20130323251A1 (en) | 2005-09-01 | 2013-08-06 | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
US14/274,905 Abandoned US20140248279A1 (en) | 2005-09-01 | 2014-05-12 | Use of il-23 and il-17 antiagonists to treat autoimmune ocular inflammatory disease |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/512,622 Abandoned US20080199460A1 (en) | 2005-09-01 | 2006-08-30 | Use of IL-23 and IL-17 antagonists to treat autoimmune ocular inflammatory disease |
US12/643,152 Expired - Fee Related US8524230B2 (en) | 2005-09-01 | 2009-12-21 | Use of IL-23 and IL-17 antagonists to treat autoimmune ocular inflammatory disease |
US12/643,166 Abandoned US20100111954A1 (en) | 2005-09-01 | 2009-12-21 | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/960,441 Abandoned US20130323251A1 (en) | 2005-09-01 | 2013-08-06 | Use of il-23 and il-17 antagonists to treat autoimmune ocular inflammatory disease |
US14/274,905 Abandoned US20140248279A1 (en) | 2005-09-01 | 2014-05-12 | Use of il-23 and il-17 antiagonists to treat autoimmune ocular inflammatory disease |
Country Status (22)
Country | Link |
---|---|
US (6) | US20080199460A1 (en) |
EP (3) | EP1933869B1 (en) |
JP (3) | JP2009507023A (en) |
CN (1) | CN101296706B (en) |
AT (1) | ATE445415T1 (en) |
AU (1) | AU2006284841B2 (en) |
BR (1) | BRPI0615297A2 (en) |
CA (1) | CA2621086A1 (en) |
CY (1) | CY1110606T1 (en) |
DE (1) | DE602006009834D1 (en) |
DK (1) | DK1933869T3 (en) |
ES (1) | ES2333260T3 (en) |
HK (1) | HK1119578A1 (en) |
HR (1) | HRP20100014T1 (en) |
NO (1) | NO20081574L (en) |
NZ (2) | NZ566424A (en) |
PL (1) | PL1933869T3 (en) |
PT (1) | PT1933869E (en) |
RS (1) | RS51142B (en) |
SI (1) | SI1933869T1 (en) |
TW (2) | TWI372061B (en) |
WO (1) | WO2007027761A2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013059644A1 (en) * | 2011-10-21 | 2013-04-25 | Baylor College Of Medicine | Method to measure inflammation in the conjunctiva of patients with tear dysfunction |
US8778346B2 (en) | 2010-11-04 | 2014-07-15 | Boehringer Ingelheim International Gmbh | Anti-IL-23 antibodies |
US9284283B2 (en) | 2012-02-02 | 2016-03-15 | Ensemble Therapeutics Corporation | Macrocyclic compounds for modulating IL-17 |
US9603882B2 (en) | 2013-08-13 | 2017-03-28 | Industrial Technology Research Institute | Method for modulating Th17 cells and method for treating a disease related to modulation of Th17 cells |
US10059763B2 (en) | 2014-09-03 | 2018-08-28 | Boehringer Ingelheim International Gmbh | Compound targeting IL-23A and TNF-alpha and uses thereof |
US10507241B2 (en) | 2014-07-24 | 2019-12-17 | Boehringer Ingelheim International Gmbh | Biomarkers useful in the treatment of IL-23A related diseases |
US11078265B2 (en) | 2012-05-03 | 2021-08-03 | Boehringer Ingelheim International Gmbh | Anti-IL-23 antibodies |
WO2022055641A3 (en) * | 2020-08-05 | 2022-08-11 | Synthekine, Inc. | Compositions and methods related to receptor pairings |
US11859001B2 (en) | 2020-08-05 | 2024-01-02 | Synthekine, Inc. | IL12RB1-Binding molecules and methods of use |
US11873349B1 (en) | 2020-08-05 | 2024-01-16 | Synthekine, Inc. | Compositions and methods related to IL27 receptor binding |
US12012457B1 (en) | 2020-08-05 | 2024-06-18 | Synthekine, Inc. | IL23R binding molecules and methods of use |
US12018085B2 (en) | 2020-08-05 | 2024-06-25 | Synthekine, Inc. | Interferon-gamma R2 (IFNGR2) binding molecules comprising single-domain antibodies and method of use thereof to treat autoimmune and inflammatory diseases |
US12077594B2 (en) | 2020-08-05 | 2024-09-03 | Synthekine, Inc. | IL2RG binding molecules and methods of use |
US12122839B2 (en) | 2020-08-05 | 2024-10-22 | Synthekine, Inc. | IFNGR binding synthetic cytokines and methods of use |
US12139545B2 (en) | 2023-02-03 | 2024-11-12 | Synthekine, Inc. | IL10 receptor binding molecules and methods of use |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0417487D0 (en) * | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
RU2426742C2 (en) * | 2005-12-02 | 2011-08-20 | Дженентек, Инк. | Compositions and methods of treating diseases and disorders associating cytokine signal transmission |
US7910703B2 (en) | 2006-03-10 | 2011-03-22 | Zymogenetics, Inc. | Antagonists to IL-17A, IL-17F, and IL-23P19 and methods of use |
EP2044118A2 (en) | 2006-06-13 | 2009-04-08 | Zymogenetics, Inc. | Il-17 and il-23 antagonists and methods of using the same |
US7833527B2 (en) | 2006-10-02 | 2010-11-16 | Amgen Inc. | Methods of treating psoriasis using IL-17 Receptor A antibodies |
JP5337055B2 (en) * | 2007-02-28 | 2013-11-06 | メルク・シャープ・アンド・ドーム・コーポレーション | Combination therapy for the treatment of immune disorders |
ES2465223T3 (en) * | 2007-04-27 | 2014-06-05 | Zymogenetics, Inc. | IL-17A, IL-17F and IL-23P19 antagonists and use procedures |
US20100129355A1 (en) * | 2007-07-26 | 2010-05-27 | Osaka University | Therapeutic agents for ocular inflammatory disease comprising interleukin 6 receptor inhibitor as active ingredient |
US20110212100A1 (en) * | 2007-08-15 | 2011-09-01 | Tracy Keller | Methods for modulating development and expansion of il-17 expressing cells |
EP2215123A1 (en) * | 2007-11-27 | 2010-08-11 | Ablynx N.V. | Immunoglobulin constructs |
WO2009082624A2 (en) * | 2007-12-10 | 2009-07-02 | Zymogenetics, Inc. | Antagonists of il-17a, il-17f, and il-23 and methods of using the same |
JP5886523B2 (en) * | 2008-01-09 | 2016-03-16 | ザ スキーペンズ アイ リサーチ インスティチュート インコーポレイテッド | Therapeutic composition for treating inflammatory disorders of the eye |
US20110052600A1 (en) * | 2008-02-21 | 2011-03-03 | Amgen Inc. | Il-17ra-il-17rb antagonists and uses thereof |
JP2011519911A (en) | 2008-05-05 | 2011-07-14 | ノヴィミュンヌ エスア | Anti-IL17A / IL-17F cross-reacting antibody and method of use thereof |
US10117906B2 (en) | 2009-01-09 | 2018-11-06 | The Schepens Eye Research Institute, Inc. | Methods for reducing corneal nerves damage, corneal lymphangiogenesis or immunity to corneal antigens in dry-eye associated ocular surface diseases by IL-1Ra |
US20120014970A1 (en) * | 2009-01-09 | 2012-01-19 | Reza Dana | Therapeutic Compositions for Treatment of Corneal Disorders |
UA105384C2 (en) * | 2009-04-01 | 2014-05-12 | Дженентек, Инк. | Treatment of insulin-resistant disorders |
MX348013B (en) | 2009-05-05 | 2017-05-23 | Novimmune Sa | Anti-il-17f antibodies and methods of use thereof. |
US9301997B2 (en) | 2009-09-21 | 2016-04-05 | Peptinov Sas | Method of vaccination for limiting articular inflammation in rheumatoid arthritis and multiple sclerosis by administering IL-23 peptides |
IN2012DN06720A (en) | 2010-01-15 | 2015-10-23 | Kirin Amgen Inc | |
US20110311527A1 (en) * | 2010-06-16 | 2011-12-22 | Allergan, Inc. | IL23p19 ANTIBODY INHIBITOR FOR TREATING OCULAR AND OTHER CONDITIONS |
ES2952394T3 (en) | 2010-07-29 | 2023-10-31 | Buzzard Pharmaceuticals AB | Chimeric IL-1 type I receptor antagonists |
BR112013008501A2 (en) * | 2010-10-08 | 2016-08-16 | Novartis Ag | Methods for treating psoriasis using il-17 anatgonists |
GB201112091D0 (en) | 2011-07-14 | 2011-08-31 | Gt Biolog Ltd | Bacterial strains isolated from pigs |
GB201117313D0 (en) | 2011-10-07 | 2011-11-16 | Gt Biolog Ltd | Bacterium for use in medicine |
BR112014024903A2 (en) | 2012-04-05 | 2017-07-11 | Hoffmann La Roche | bispecific antibodies to human tweak and human il17 and their uses |
AR091116A1 (en) | 2012-05-22 | 2015-01-14 | Bristol Myers Squibb Co | BISPECIFIC ANTIBODIES AND THEIR METHODS OF USE |
WO2014093206A1 (en) * | 2012-12-13 | 2014-06-19 | Merck Sharp & Dohme Corp. | Lyophilized spherical pellets of anti-il-23 antibodies |
WO2014107737A2 (en) * | 2013-01-07 | 2014-07-10 | Eleven Biotherapeutics, Inc. | Local delivery of il-17 inhibitors for treating ocular disease |
SG10201707477SA (en) | 2013-03-13 | 2017-10-30 | Eleven Biotherapeutics Inc | Chimeric cytokine formulations for ocular delivery |
GB201306536D0 (en) | 2013-04-10 | 2013-05-22 | Gt Biolog Ltd | Polypeptide and immune modulation |
AR102417A1 (en) * | 2014-11-05 | 2017-03-01 | Lilly Co Eli | ANTI-TNF- / ANTI-IL-23 BIESPECTIFIC ANTIBODIES |
SG10202105996WA (en) | 2014-12-23 | 2021-07-29 | 4D Pharma Res Ltd | Pirin polypeptide and immune modulation |
NO3065748T3 (en) | 2014-12-23 | 2018-04-21 | ||
EP3928827A1 (en) | 2014-12-31 | 2021-12-29 | Stimwave Technologies Incorporated | Antenna assembly |
JP2018506275A (en) * | 2015-01-28 | 2018-03-08 | ジェネンテック, インコーポレイテッド | Gene expression markers and treatment of multiple sclerosis |
CN104725514A (en) * | 2015-02-06 | 2015-06-24 | 中国药科大学 | Novel IL23 antagonist |
JP6426264B2 (en) | 2015-06-15 | 2018-11-21 | フォーディー ファーマ リサーチ リミテッド4D Pharma Research Limited | Compositions comprising bacterial strains |
MA41010B1 (en) | 2015-06-15 | 2020-01-31 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
MA41060B1 (en) | 2015-06-15 | 2019-11-29 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
AU2016278067B2 (en) | 2015-06-15 | 2022-09-22 | Cj Bioscience, Inc. | Compositions comprising bacterial strains |
SI3650033T1 (en) | 2015-06-15 | 2022-05-31 | 4D Pharma Research Limited | Compositions comprising bacterial strains |
CA2998349A1 (en) * | 2015-09-17 | 2017-03-23 | Amgen Inc. | Prediction of clinical response to il23-antagonists using il23 pathway biomarkers |
GB201520497D0 (en) | 2015-11-20 | 2016-01-06 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
MD3209310T2 (en) | 2015-11-20 | 2018-06-30 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
GB201520631D0 (en) * | 2015-11-23 | 2016-01-06 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
GB201520638D0 (en) | 2015-11-23 | 2016-01-06 | 4D Pharma Res Ltd | Compositions comprising bacterial strains |
PL3313423T3 (en) | 2016-03-04 | 2019-09-30 | 4D Pharma Plc | Compositions comprising bacterial blautia strains for treating visceral hypersensitivity |
GB201612191D0 (en) | 2016-07-13 | 2016-08-24 | 4D Pharma Plc | Compositions comprising bacterial strains |
TW201821093A (en) | 2016-07-13 | 2018-06-16 | 英商4D製藥有限公司 | Compositions comprising bacterial strains |
GB201621123D0 (en) | 2016-12-12 | 2017-01-25 | 4D Pharma Plc | Compositions comprising bacterial strains |
TWI787272B (en) | 2017-05-22 | 2022-12-21 | 英商4D製藥研究有限公司 | Compositions comprising bacterial strains |
WO2018215782A1 (en) | 2017-05-24 | 2018-11-29 | 4D Pharma Research Limited | Compositions comprising bacterial strain |
DK3638271T3 (en) | 2017-06-14 | 2020-12-07 | 4D Pharma Res Ltd | COMPOSITIONS INCLUDING BACTERIA STRAINS |
PL3600363T3 (en) | 2017-06-14 | 2021-06-14 | 4D Pharma Research Limited | Compositions comprising bacterial strains |
ES2823053T3 (en) | 2017-06-14 | 2021-05-07 | 4D Pharma Res Ltd | Compositions comprising a bacterial strain of the genus Megasphaera and uses thereof |
MX2024003989A (en) * | 2021-10-03 | 2024-04-26 | Systimmune Inc | Methods of treating cancer and the pharmaceutical compositions thereof. |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6680057B1 (en) * | 1995-03-23 | 2004-01-20 | Immunex Corporation | Methods of treating autoimmune disease by administering interleukin-17 receptor |
US20040156849A1 (en) * | 2002-10-30 | 2004-08-12 | Gurney Austin L. | Inhibition of IL-17 production |
US20040219150A1 (en) * | 2003-02-06 | 2004-11-04 | Cua Daniel J. | Uses of mammalian cytokine; related reagents |
US20050244874A1 (en) * | 2004-05-03 | 2005-11-03 | Schering Corporation | Use of IL-17 expression to predict skin inflammation; methods of treatment |
US20050287593A1 (en) * | 2004-05-03 | 2005-12-29 | Schering Corporation | Use of cytokine expression to predict skin inflammation; methods of treatment |
US20060110429A1 (en) * | 2004-11-24 | 2006-05-25 | Therakine Corporation | Implant for intraocular drug delivery |
US20060135518A1 (en) * | 2004-11-19 | 2006-06-22 | Synta Pharmaceuticals Corp. | Pyrimidine compounds and uses thereof |
US20070009526A1 (en) * | 2005-06-30 | 2007-01-11 | Jacqueline Benson | Anti-IL-23 antibodies, compositions, methods and uses |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
US5260203A (en) | 1986-09-02 | 1993-11-09 | Enzon, Inc. | Single polypeptide chain binding molecules |
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
AU600575B2 (en) | 1987-03-18 | 1990-08-16 | Sb2, Inc. | Altered antibodies |
DE3920358A1 (en) | 1989-06-22 | 1991-01-17 | Behringwerke Ag | BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE |
EP1136556B1 (en) | 1991-11-25 | 2005-06-08 | Enzon, Inc. | Method of producing multivalent antigen-binding proteins |
US6005079A (en) | 1992-08-21 | 1999-12-21 | Vrije Universiteit Brussels | Immunoglobulins devoid of light chains |
PT1621554E (en) | 1992-08-21 | 2009-07-13 | Univ Bruxelles | Immunoglobulins devoid of light chains |
DK0698097T3 (en) | 1993-04-29 | 2001-10-08 | Unilever Nv | Production of antibodies or (functionalized) fragments thereof derived from Camelidae heavy chain immunoglobulins |
US6132764A (en) | 1994-08-05 | 2000-10-17 | Targesome, Inc. | Targeted polymerized liposome diagnostic and treatment agents |
ES2229264T5 (en) | 1995-03-23 | 2009-12-17 | Immunex Corporation | IL-17 RECEIVER. |
US6056973A (en) | 1996-10-11 | 2000-05-02 | Sequus Pharmaceuticals, Inc. | Therapeutic liposome composition and method of preparation |
US6326482B1 (en) | 1999-04-23 | 2001-12-04 | Genentech, Inc. | SH2 domain-containing peptides |
DE69942671D1 (en) | 1998-12-01 | 2010-09-23 | Facet Biotech Corp | HUMANIZED ANTIKOERPER AGAINST GAMMA INTERFERON |
WO2002008285A2 (en) | 2000-06-22 | 2002-01-31 | Amgen, Inc. | Il-17 molecules and uses thereof |
US20030157105A1 (en) | 2001-05-30 | 2003-08-21 | Carton Jill M. | Anti-p40 immunglobulin derived proteins, compositions, methods and uses |
US20050154046A1 (en) | 2004-01-12 | 2005-07-14 | Longgui Wang | Methods of treating an inflammatory-related disease |
WO2003086310A2 (en) | 2002-04-12 | 2003-10-23 | Ramot At Tel Aviv University Ltd. | Prevention of brain inflammation as a result of induced autoimmune response |
NZ541898A (en) | 2003-03-10 | 2008-07-31 | Schering Corp | Uses of IL-23 antagonists for the manufacture of a medicament for the treatment of tumors |
EP1623011B1 (en) * | 2003-05-09 | 2013-01-02 | Janssen Biotech, Inc. | Il-23p40 specific immunoglobulin derived proteins, compositions, methods and uses |
US7410483B2 (en) | 2003-05-23 | 2008-08-12 | Novare Surgical Systems, Inc. | Hand-actuated device for remote manipulation of a grasping tool |
EP3594228A1 (en) | 2003-07-08 | 2020-01-15 | Genentech, Inc. | Il-17a/f heterologous polypedtides and therapeutic uses thereof |
EP1766396B1 (en) | 2004-06-07 | 2010-08-11 | Ramot at Tel-Aviv University Ltd. | Method of passive immunization against disease or disorder characterized by amyloid aggregation with diminished risk of neuroinflammation |
EP1771204A4 (en) * | 2004-07-01 | 2008-08-13 | Univ New York | Compositions and methods for modulation of ror gamma t |
DE102005032499B4 (en) * | 2004-07-13 | 2009-10-22 | Lg Electronics Inc. | Damper for vibration damping and thus equipped washing machine |
GB0417487D0 (en) * | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
AR051444A1 (en) | 2004-09-24 | 2007-01-17 | Centocor Inc | PROTEINS DERIVED FROM IL-23P40 SPECIFIC IMMUNOGLOBULIN, COMPOSITIONS, EPITHOPES, METHODS AND USES |
WO2006068987A2 (en) * | 2004-12-20 | 2006-06-29 | Schering Corporation | Uses of il-23 antagonists in the treatment of diabetes mellitus |
AU2005319278A1 (en) | 2004-12-21 | 2006-06-29 | Centocor, Inc. | Anti-IL-12 antibodies, epitopes, compositions, methods and uses |
CA2596509A1 (en) * | 2005-02-14 | 2006-08-24 | Wyeth | Interleukin-17f antibodies and other il-17f signaling antagonists and uses therefor |
RU2461571C2 (en) | 2005-06-30 | 2012-09-20 | Эбботт Лэборетриз | Il-12/p40 binding proteins |
EP2354160A1 (en) | 2005-08-31 | 2011-08-10 | Schering Corporation | Engineered anti-IL-23-antibodies |
MY162559A (en) | 2005-12-29 | 2017-06-15 | Centocor Inc | Human anti-il-23 antibodies, compositions, methods and uses |
TW200815469A (en) * | 2006-06-23 | 2008-04-01 | Astrazeneca Ab | Compounds |
-
2006
- 2006-08-30 NZ NZ566424A patent/NZ566424A/en not_active IP Right Cessation
- 2006-08-30 EP EP06813945A patent/EP1933869B1/en not_active Revoked
- 2006-08-30 DE DE602006009834T patent/DE602006009834D1/en active Active
- 2006-08-30 EP EP09164605A patent/EP2116258A1/en not_active Withdrawn
- 2006-08-30 JP JP2008529228A patent/JP2009507023A/en not_active Withdrawn
- 2006-08-30 SI SI200630517T patent/SI1933869T1/en unknown
- 2006-08-30 CN CN2006800403078A patent/CN101296706B/en not_active Expired - Fee Related
- 2006-08-30 BR BRPI0615297-0A patent/BRPI0615297A2/en not_active IP Right Cessation
- 2006-08-30 PL PL06813945T patent/PL1933869T3/en unknown
- 2006-08-30 WO PCT/US2006/033840 patent/WO2007027761A2/en active Application Filing
- 2006-08-30 NZ NZ595262A patent/NZ595262A/en not_active IP Right Cessation
- 2006-08-30 RS RSP-2009/0529A patent/RS51142B/en unknown
- 2006-08-30 AT AT06813945T patent/ATE445415T1/en active
- 2006-08-30 EP EP10180648.7A patent/EP2322219A3/en not_active Withdrawn
- 2006-08-30 AU AU2006284841A patent/AU2006284841B2/en not_active Ceased
- 2006-08-30 CA CA002621086A patent/CA2621086A1/en not_active Abandoned
- 2006-08-30 US US11/512,622 patent/US20080199460A1/en not_active Abandoned
- 2006-08-30 DK DK06813945.0T patent/DK1933869T3/en active
- 2006-08-30 ES ES06813945T patent/ES2333260T3/en active Active
- 2006-08-30 PT PT06813945T patent/PT1933869E/en unknown
- 2006-08-31 TW TW095132202A patent/TWI372061B/en not_active IP Right Cessation
- 2006-08-31 TW TW101115664A patent/TWI463993B/en not_active IP Right Cessation
-
2008
- 2008-03-31 NO NO20081574A patent/NO20081574L/en not_active Application Discontinuation
- 2008-10-24 HK HK08111743.9A patent/HK1119578A1/en not_active IP Right Cessation
-
2009
- 2009-12-21 US US12/643,152 patent/US8524230B2/en not_active Expired - Fee Related
- 2009-12-21 US US12/643,166 patent/US20100111954A1/en not_active Abandoned
-
2010
- 2010-01-11 HR HR20100014T patent/HRP20100014T1/en unknown
- 2010-01-12 CY CY20101100034T patent/CY1110606T1/en unknown
-
2011
- 2011-01-28 US US13/015,900 patent/US20110142831A1/en not_active Abandoned
- 2011-06-28 JP JP2011143593A patent/JP5462838B2/en not_active Expired - Fee Related
-
2013
- 2013-08-06 US US13/960,441 patent/US20130323251A1/en not_active Abandoned
- 2013-08-13 JP JP2013168006A patent/JP2014005285A/en active Pending
-
2014
- 2014-05-12 US US14/274,905 patent/US20140248279A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6680057B1 (en) * | 1995-03-23 | 2004-01-20 | Immunex Corporation | Methods of treating autoimmune disease by administering interleukin-17 receptor |
US20040156849A1 (en) * | 2002-10-30 | 2004-08-12 | Gurney Austin L. | Inhibition of IL-17 production |
US20040219150A1 (en) * | 2003-02-06 | 2004-11-04 | Cua Daniel J. | Uses of mammalian cytokine; related reagents |
US20050244874A1 (en) * | 2004-05-03 | 2005-11-03 | Schering Corporation | Use of IL-17 expression to predict skin inflammation; methods of treatment |
US20050287593A1 (en) * | 2004-05-03 | 2005-12-29 | Schering Corporation | Use of cytokine expression to predict skin inflammation; methods of treatment |
US20060135518A1 (en) * | 2004-11-19 | 2006-06-22 | Synta Pharmaceuticals Corp. | Pyrimidine compounds and uses thereof |
US20060110429A1 (en) * | 2004-11-24 | 2006-05-25 | Therakine Corporation | Implant for intraocular drug delivery |
US20070009526A1 (en) * | 2005-06-30 | 2007-01-11 | Jacqueline Benson | Anti-IL-23 antibodies, compositions, methods and uses |
US7491391B2 (en) * | 2005-06-30 | 2009-02-17 | Centocor, Inc. | Anti-IL-23 antibodies, compositions, methods and uses |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8778346B2 (en) | 2010-11-04 | 2014-07-15 | Boehringer Ingelheim International Gmbh | Anti-IL-23 antibodies |
US9441036B2 (en) | 2010-11-04 | 2016-09-13 | Boehringer Ingelheim International Gmbh | Anti-IL-23 antibodies |
US10202448B2 (en) | 2010-11-04 | 2019-02-12 | Boehringer Ingelheim International Gmbh | Anti-IL-23 antibodies |
WO2013059644A1 (en) * | 2011-10-21 | 2013-04-25 | Baylor College Of Medicine | Method to measure inflammation in the conjunctiva of patients with tear dysfunction |
US9284283B2 (en) | 2012-02-02 | 2016-03-15 | Ensemble Therapeutics Corporation | Macrocyclic compounds for modulating IL-17 |
US11078265B2 (en) | 2012-05-03 | 2021-08-03 | Boehringer Ingelheim International Gmbh | Anti-IL-23 antibodies |
US9603882B2 (en) | 2013-08-13 | 2017-03-28 | Industrial Technology Research Institute | Method for modulating Th17 cells and method for treating a disease related to modulation of Th17 cells |
US10507241B2 (en) | 2014-07-24 | 2019-12-17 | Boehringer Ingelheim International Gmbh | Biomarkers useful in the treatment of IL-23A related diseases |
US10793629B2 (en) | 2014-09-03 | 2020-10-06 | Boehringer Ingelheim International Gmbh | Compound targeting IL-23A and TNF-alpha and uses thereof |
US10059763B2 (en) | 2014-09-03 | 2018-08-28 | Boehringer Ingelheim International Gmbh | Compound targeting IL-23A and TNF-alpha and uses thereof |
US11680096B2 (en) | 2014-09-03 | 2023-06-20 | Boehringer Ingelheim International Gmbh | Compound targeting IL-23A and TNF-alpha and uses thereof |
WO2022055641A3 (en) * | 2020-08-05 | 2022-08-11 | Synthekine, Inc. | Compositions and methods related to receptor pairings |
US11859001B2 (en) | 2020-08-05 | 2024-01-02 | Synthekine, Inc. | IL12RB1-Binding molecules and methods of use |
US11873349B1 (en) | 2020-08-05 | 2024-01-16 | Synthekine, Inc. | Compositions and methods related to IL27 receptor binding |
US12012457B1 (en) | 2020-08-05 | 2024-06-18 | Synthekine, Inc. | IL23R binding molecules and methods of use |
US12018085B2 (en) | 2020-08-05 | 2024-06-25 | Synthekine, Inc. | Interferon-gamma R2 (IFNGR2) binding molecules comprising single-domain antibodies and method of use thereof to treat autoimmune and inflammatory diseases |
US12077594B2 (en) | 2020-08-05 | 2024-09-03 | Synthekine, Inc. | IL2RG binding molecules and methods of use |
US12122839B2 (en) | 2020-08-05 | 2024-10-22 | Synthekine, Inc. | IFNGR binding synthetic cytokines and methods of use |
US12139545B2 (en) | 2023-02-03 | 2024-11-12 | Synthekine, Inc. | IL10 receptor binding molecules and methods of use |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8524230B2 (en) | Use of IL-23 and IL-17 antagonists to treat autoimmune ocular inflammatory disease | |
EP2056838B1 (en) | Combination therapy for treatment of immune disorders | |
KR101345586B1 (en) | Methods of treating pain and inflammation in neuronal tissue using il-31 antagonists | |
US11279755B2 (en) | Use of IL-20 antagonists for treating eye diseases | |
AU2014200946A1 (en) | Combination therapy for treatment of immune disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |