[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20110135847A1 - Low k dielectric - Google Patents

Low k dielectric Download PDF

Info

Publication number
US20110135847A1
US20110135847A1 US13/010,573 US201113010573A US2011135847A1 US 20110135847 A1 US20110135847 A1 US 20110135847A1 US 201113010573 A US201113010573 A US 201113010573A US 2011135847 A1 US2011135847 A1 US 2011135847A1
Authority
US
United States
Prior art keywords
film
sol
solvent
done
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/010,573
Inventor
Mark L. F. Phillps
Travis P.S. Thoms
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SBA Materials Inc
Original Assignee
SBA Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SBA Materials Inc filed Critical SBA Materials Inc
Priority to US13/010,573 priority Critical patent/US20110135847A1/en
Assigned to SBA MATERIALS, INC. reassignment SBA MATERIALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PHILLIPS, MARK L.F., THOMS, TRAVIS P.S.
Publication of US20110135847A1 publication Critical patent/US20110135847A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the invention relates to dielectrics having a low dielectric constant, methods for formulating them, forming films made from the dielectrics and depositing and treating the films, for example by spin-on methods, spray coating, dip coating, draw coating, and inkjet printing.
  • dielectric constant One property of dielectric materials is the dielectric constant. For certain purposes it is desirable to use materials with low dielectric constants.
  • the manufacture of interlayer dielectric semiconductor thin films is typically carried out by first depositing the desired thin film on a surface such as a semiconductor substrate.
  • One common method of depositing thin films is by spin-on deposition. During spin-on deposition, a solution of precursor for the thin film is applied to a semiconductor wafer, and either during deposition or thereafter the wafer is rotated at sufficiently high speed (rapid spinning step) to thin and even the layer of precursor solution. During and after the rapid spinning step, the solvents are permitted to evaporate, leaving a dried film of dielectric material.
  • some of the commonly used dielectric materials require subsequent processing, including curing the thin film at high temperature.
  • the high temperature curing step can condense or cross-link the precursor molecules together, making a tighter, stronger film with a low dielectric constant. Additionally, the curing step frequently serves to “crack” a polymeric porogen into more volatile chemical fragments that vaporize to create pores or voids in the cured film, thus reducing dielectric constant.
  • the curing step can be performed in a furnace using only thermal energy. Alternatively, films may be cured simultaneously heating and exposing to UV light. They may also be cured via electron beam irradiation.
  • This invention describes a series of techniques for making porous dielectric films with an exceptional range of k values (1.3-3.0), an expanded Young's modulus vs. k envelope, excellent CTE match with silicon and copper, low film stress, and low crack propagation rates, that are curable at reduced temperatures compared with other porous dielectrics.
  • k values 1.3-3.0
  • an expanded Young's modulus vs. k envelope excellent CTE match with silicon and copper
  • low film stress low crack propagation rates
  • CVD chemical vapor deposition
  • k dielectric constant
  • the effective dielectric constant is generally higher than the CVD dielectric due to adhesion and capping layers required to meet the application requirements.
  • CVD films with lower k values suffer problems related to mechanical stability such as poor adhesion or delamination, high film stress, unacceptable crack propagation rate, and/or low Young's modulus.
  • the films in this invention have superior mechanical properties at a particular dielectric constant between 1.3 and 2.6 vs.
  • CVD and other spin-on films as determined through measurements of modulus and crack propagation
  • compositions are needed that enable rapid, efficient curing of spin-on thin films, while maintaining a low dielectric constant, high dielectric strength, low loss tangent, and high mechanical strength.
  • the dielectric constant of an insulating thin film is only one of many attributes required for making a film that will perform properly in a semiconductor device. Films must also be mechanically robust, both to survive the chemical-mechanical polish (CMP) step and inhibit crack propagation. In addition the films must be resistant to damage from ashing during post-CMP cleanup, and must be resistant to attack from atmospheric moisture.
  • the conventional CVD materials have limitations for ULK dielectrics with both properties.
  • the coefficient of thermal expansion (CTE) of the film should be close to the CTEs of copper and silicon, the pores (if any) in the dielectric must be small (5 nm or less) to avoid copper migration, and outgassing of the film during subsequent thermal processing should be minimal.
  • the optimum cure temperature will depend on the application, since some devices will require lower cure temperatures than others. It will also depend on the type of surfactant used, film thickness, atmosphere during cure, time available for cure, and desired electrical and mechanical properties. Most films will be cured at temperatures between 250 and 500° C., more preferably temperatures between 350 and 425° C.
  • the present invention overcomes the foregoing drawbacks by providing a spin-on dielectric of novel composition.
  • a fluid colloidal solution comprising a silica source, a polar solvent, water, an acid catalyst and an amphiphilic block copolymer surfactant.
  • a sol (also referred to as a hydrosol), comprising an orthosilicate ester, alone or in combination with an alkylated orthosilicate ester, a polar solvent, water, an acid catalyst, and an amphiphilic block copolymer surfactant.
  • the above fluid colloidal solutions further comprise of a second cosolvent, which may be polar or nonpolar, and an additional acid in the form of an organic acid.
  • a method of formulating a low dielectric film comprising combining a silica source, polar solvent, water, acid catalyst, polymer surfactant, and cosolvent.
  • a method of formulating a low dielectric film is provided by combining a silica source with a polar solvent to form a part A; separately combining water, an acid catalyst, and a polymer surfactant with a polar solvent to form a part B; and mixing part A and part B to form a fluid colloidal solution.
  • a method for preparing a low dielectric film comprising combining a silica source with a polar solvent to form a part A; separately combining water, an acid catalyst, and a polymer surfactant with a polar solvent to form a part B; mixing part A and part B to form a fluid colloidal solution; and depositing the fluid colloidal solution onto a surface under conditions whereby to form a low dielectric film.
  • dielectric films formed by the above processes are provided.
  • a dielectric film comprising a metal or non-metal oxide comprising M-O bonds, wherein the M-O bonds are partially replaced with M-R bonds, wherein M is a metal, O is oxygen, R is an alkyl or aryl group, and a amphiphilic block copolymer template that can be removed by the action of heat.
  • FIG. 1 shows the locus of maximum Young's modulus at a particular value of dielectric constant in the films described in this invention.
  • FIG. 2 a is a flow diagram illustrating the preparation of a two-component sol and its deposition as a film on a wafer.
  • FIG. 2 b is a flow diagram illustrating the preparation of a single component sol and its deposition as a film on a wafer.
  • FIG. 3 a is a TEM image of an uncured film.
  • FIG. 3 b is a TEM image of a film following furnace cure at 400° C.
  • FIG. 4 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in air.
  • FIG. 5 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in air.
  • FIG. 6 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in CO 2 .
  • FIG. 7 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in CO 2 .
  • FIG. 8 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in forming gas.
  • FIG. 9 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in forming gas.
  • FIG. 10 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in wet N 2 .
  • FIG. 11 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in wet N 2 .
  • FIG. 12 shows a graph illustrating the relationship between K and ETES concentration within the film compositions vacuum annealed.
  • FIG. 13 shows a graph illustrating the relationship between K and P104 concentration within the film compositions vacuumed annealed.
  • FIG. 14 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in dry N 2 .
  • FIG. 15 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in dry N 2 .
  • the invention provides a novel spin-on dielectric composition formed from a sol having components to produce a lyotropic liquid crystal solution as the sol dries.
  • This lyotropic solution may or may not impart order to the sol as it dries, but has the effect of producing a uniform pore size distribution upon removal of the surfactant template.
  • the sol contains several components that affect the ability of the material to be uniformly coated onto a substrate, or influence the film dielectric constant after template is removed. These components are: (1) a source of silica; (2) a polar solvent, (3) water, (4) an acid catalyst, and (5) an amphiphilic block copolymer surfactant Optionally, one can add a co-solvent, an organic acid, and/or a reactive solvent.
  • the acid catalyst is preferably a strong acid catalyst and can be inorganic or organic.
  • the source of silica is more particularly a mixture of silicate esters.
  • this includes tetraethoxysilane, more commonly referred to as tetraethyl orthosilicate and abbreviated TEOS, in combination with alkylated silicate esters such as methyltriethoxysilane (MTES), ethyltriethoxysilane (ETES) or vinyltriethoxysilane (VTES).
  • MTES methyltriethoxysilane
  • ETES ethyltriethoxysilane
  • VTES vinyltriethoxysilane
  • esters of silicic acid or alkyl-silicic acid other than ethyl, such as methyl, propyl or butyl it may also be advantageous to include silicones such as ethoxy-terminated poly(dimethylsiloxane).
  • Phenylated silicate esters alkylated or phenylated silicate esters wherein the alkene, alkane, or phenyl substituent contains a thiol, amino, halide, or hydroxyl group, or other desired moiety.
  • Methoxy-terminated esters such as methyltrimethoxysilane, tetramethoxysilane and methoxy-teminated poly(dimethylsiloxane).
  • ETES ethyl triethoxysilane
  • DMDS dimethyl dimethoxysilane
  • the ratio of TEOS to other components affects several qualities in the final film, including dielectric constant (k), elastic modulus and hardness, and water contact angle.
  • k dielectric constant
  • MTES metal-oxide-semiconductor
  • the polar solvent affects the drying rate and thus film thickness at a particular spin speed. It also affects k and modulus, possibly by altering the structure of the solution as it dries. In particular, it is observed that using aprotic solvents reduces the amount of thickness reduction or shrinkage upon anneal. Such films have lower k but lower modulus than films prepared with protic solvents such as light alcohols. Additionally, small quantities of reactive solvents such as propylene oxide reduce shrinkage, k, and modulus as well. Reducing shrinkage offers the secondary benefit of reducing film stress.
  • Ethanol yields high quality films with acceptable k and modulus values. Acetonitrile lowers k but also decreases modulus. Propylene oxide may be partially substituted for ethanol to further lower k.
  • Other solvents that can be used include: n-propanol, isopropanol, ethylacetoacetate, other short chain alcohols such as methanol, isobutanol and esters such as ethyl acetate or propyl acetate, and mono- and di-substituted glycol ethers such as 2-ethoxyethanol and glyme. Additionally acetone and THF may be used.
  • H 2 O/Si ratio affects film modulus and sol pot life. We find that H 2 O/Si mole ratios between 3 and 8, in particular 6, to be effective.
  • An acid catalyst is required for the water to hydrolyze the silicate esters.
  • This is preferably a strong acid that leaves no metallic or halide residue upon calcination or anneal, and is present at a concentration between 0.01 mol/L H 2 O and 1.0 mol/L, particularly at 0.1 mol/L H 2 O.
  • acid catalysts that are effective include nitric acid (HNO 3 ), oxalic acid (H 2 C 2 O 4 ), and squaric acid (H 2 C 4 O 4 ). The latter increases both k and modulus of the final film.
  • Weaker acids may be employed (viz. acetic, glycolic, citric acid) but without a strong acid present the films typically have lower Young's moduli.
  • An organic acid that has a lower ionization constant than the strong acid used as a catalyst can be included in the sol.
  • This acid has the effect of increasing hardness and modulus in the final film if the film is initially “soft baked” at a moderate temperature (120-150° C., particularly 130° C.). This will also increase dielectric constant. Most of the acid decomposes and vaporizes during anneal, though it may be desirable for the acid to leave behind some carbon-containing residue.
  • acids that are effective include citric acid, and glycolic acid, benzoic acid, ascorbic acid, salicylic acid, and any short-chain carboxylic acid or aryl-substituted acid, which may additionally have hydroxyl groups such as lactic acid, or a hydroxyl-substituted benzene such as pyrogallol.
  • An amphiphilic copolymer surfactant is added to produce a lyotropic solution that forms an oxide-polymer nanocomposite while drying. It is desirable that this surfactant be electrically neutral and decompose at a low temperature (300-500° C.).
  • these include the poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) detergents exemplified by the PluronicTM surfactants, PluronicTM being a trade name of BASF. These are included at concentrations from 2-10% w/v, with typical concentrations varying from 4-9%. At a given concentration, lowering the molecular weight of the PluronicTM increases k. Increasing Pluronic concentration lowers k as well as modulus.
  • amphiphilic copolymer surfactants are the amphiphilic copolymers described in Stucky et al. U.S. Pat. No. 7,176,245, entitled: “Block copolymer processing for mesostructured inorganic oxide materials”, the specification of which is incorporated herein by reference.
  • Pluronic P104 PEO-PPO-PEO triblock copolymer referred to by its trade name Pluronic P104 to have some advantages over other surfactants in terms of its ability to template films with a particular modulus, k value, and microtexture. This does not limit the use of other polymer surfactants in this invention, many of which exhibit quite satisfactory performance.
  • Pluronic family of surfactants it appears that there is an optimum ratio of hydrophilic (EO) to hydrophobic (PO) chain lengths, and that this ratio depends on the molecular weight of the surfactant.
  • PO-EO-PO reverse Pluronics
  • PEO-PBO-PEO PEO-PBO-PEO
  • Brij particularly, but not exclusively Brij 56
  • Tergitol Tergitol
  • PAMAM surface-modified dendrimers such as PAMAM can be effective at templating porous low-k films although the curing requirements may differ from PEO-PPO surfactants.
  • a co-solvent can be added to the sol made from the above components in order to improve the quality of the spun film and to control thickness.
  • Many solvents are effective. Most effective are ethyl lactate, propylene glycol methyl ether acetate, and mono- and di-glycol ethers and their esters, particularly diethylene glycol monoethyl ether (2,2-EEE) and diethylene glycol monoethyl ether acetate (2,2-EEE acetate)
  • a test for excessive striation from a given solvent choice can be performed by mixing the sol with the cosolvent to be tested and dispensing the sol onto a wafer, and spinning the wafer at a speed between 1000 and 3000 rpm for wafers of 8′′ diameter and greater. If the optical and thickness uniformity of the resulting dried film is deemed acceptable the cosolvent has passed the striation test.
  • a test for thickness nonuniformity maybe performed using a spin coater that allows a user-programmable dispense rate.
  • a wafer of at least 8′′ diameter, and preferably 12′′ diameter, is spun at the desired speed, typically 1000-2400 rpm.
  • the sol is dispensed at various rates or combination of rates until a film of the desired thickness uniformity is produced. If no dispense recipe can be found that yields the desired uniformity, the cosolvent fails the test.
  • test wafer diameter and spin speed should be similar or identical to the wafer size and spin speed to be used for production.
  • a cosolvent that passes the uniformity test on one model of coater will fail the test on another.
  • the invention also includes methods of formulating the sol.
  • the ingredients are combined, at once or in stages, to form a sol that can be used immediately or more than 6 months after formulation. This is referred to here as a single component or “1-c” sol.
  • the ingredients are combined in a fashion that prevents the hydrolysis reaction from taking place until the time of use. This is done by combining the silica-containing ingredients into a solution, which may be termed “part A”, and separately combining the water and acid catalyst with other ingredients into a separate solution, termed “part B”. This system is termed a two-component or “A/B” sol.
  • the sol is formed by mixing the silicate esters with ethanol, then adding a solution containing ethanol, water, and strong acid catalyst.
  • the polymer surfactant solution will have been prefiltered with a 0.22 ⁇ m or smaller filter prior to mixing.
  • Cosolvent is then added in the desired concentration.
  • extra cosolvent may be added at the time of manufacture to later produce a film of a particular thickness when it is spun.
  • cosolvent may be added during manufacture in a partial amount, and additional cosolvent may be added to “thin” the product at the point of use prior to spin.
  • the cosolvent is ideally chosen such that it is not expected to significantly hydrolyze in the presence of water and acid catalyst within the rated shelf life of the product.
  • the sol is formed by combining the silicate esters with ethanol (or other solvent), and separately combining the water, strong acid catalyst, organic acid, and polymer surfactant with ethanol (or other solvent).
  • ethanol or other solvent
  • These solutions termed Part A and B respectively, are then mixed, either immediately or at a later date. It may be advantageous to heat the resulting sol to 40-60° C. to promote hydrolysis of the silicate esters.
  • the hydrolyzed sol is then mixed with the cosolvent in the desired ratio. This ratio will depend on the intended film thickness, wafer diameter, and the evaporation rate of the cosolvent among other factors, but is typically between 3 parts sol:1 part cosolvent and 1 part sol:1 part cosolvent by volume.
  • the diluted sol is filtered prior to dispense through a 0.10-0.22 micrometer filter. One or both of the original solutions may be filtered prior to mixing, which improves the speed and quality of the final filtration (after sol is diluted with cosolvent).
  • the shelf life of 1-c sol is known to exceed 6 months.
  • the shelf life of parts A and B in the A/B system is known to be at least 6 months.
  • Both A/B and 1-c sols may be stored at ambient temperature.
  • the pot life of the mixed sol is defined by the change in dielectric constant of a film spun from the sol as the sol ages. Typically the dielectric constant of the spun film changes little in the first 8 hrs after the sol is mixed. Sols that have aged longer than 16 hrs typically yield films with higher dielectric constants.
  • the second solution is ion exchanged using acid-exchanged DowexTM Monosphere 650C UPW or Dowex HCR W2 ion exchange resin or NH 4 -exchanged Zeolite LTA, then filtered through a 0.22 ⁇ m syringe filter via a pressure tank.
  • the second solution is added to the first after the three day period, and the completed mixture was diluted with 1200 g 2-(2-ethoxyethoxy)ethanol.
  • the second solution may be purified by dialysis rather than ion exchange.
  • 3315.1 g ethanol, 2638.5 g methyltriethoxysilane, 2638.5 g tetraethoxysilane are placed in a 10 L media bottle, mixed, filtered through a 0.04 ⁇ m capsule filter and stored.
  • equal volume portions of “A” and “B” are mixed and allowed to age for 2 h at room temperature or 1 hr at 40 C before use.
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • TEOS tetraethoxysilane
  • Pluronic P104 0.62 g citric acid
  • 7.02 g 0.1 N HNO3 are dissolved in 9.0 g ethanol to make part B.
  • the sol is then mixed with diethylene glycol ethyl ether (2,2-EEE) in the desired ratio. For example, if the desired ratio is 3:1, 30 mL of the sol is mixed with 10 mL 2,2-EEE.
  • the diluted sol is then filtered through a 0.22 pm syringe filter and dispensed onto a silicon wafer.
  • the diluted sol is preferably used within 8 hr after mixing.
  • a stripped sol is made by combining the components of Parts A and B (with or without citric acid [or other organic acids] and Pluronic; generally without) and heating and stirring until hydrolysis is complete. It may be beneficial to add only a portion of the final amount of water, typically about 1 ⁇ 3 of the total, before the sol is heated. The heating is done at any temperature at or below the boiling point of the solvent, though 60° C. is often employed. Heating and stirring are continued until hydrolysis is complete; 16 hr will generally suffice.
  • the original solvent is partially distilled off until 1 ⁇ 3-1 ⁇ 2 of the original volume remains, after which the lost solvent volume is replaced with a solvent from which the silica sol is less susceptible to attack from re-esterification.
  • a solvent may be aprotic, such as acetone or acetonitrile, or may be hindered, such as 2,2-EEE.
  • Esters such as ethyl acetoacetate or 2,2-EEE acetate may be employed although the solvent should not be excessively acid labile.
  • the sol is redistilled until 1 ⁇ 3-1 ⁇ 2 the original volume remains and the desired solvent is added. This is repeated a third time, with the final solvent addition making up the original sol volume.
  • Block copolymer surfactant is added, citric or other organic acid is added if desired, a cosolvent is added if desired, and the sol is filtered prior to dispense.
  • an acetonitrile-based sol may be prepared by combining 6.25 g each of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) with 18 g acetonitrile and 2.34 g 0.3 N HNO 3 . This is heated at 60° C. with stirring for 16 hr. The acetonitrile and residual ethanol (from ester hydrolysis) and water are distilled off in a vacuum distillation apparatus such as a Büchi RotavaporTM or equivalent until the sol volume is ca. 0.3-0.5 mL of its original volume, then replaced with fresh acetonitrile. This process is repeated as necessary until no more ethanol distills off (usually about 3 times).
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • Such a sol will have substantially reduced k and modulus vs. an alcohol-based sol but may have a much longer pot life.
  • an ethanol-based sol may be subjected to the above treatment and yield the same result, though the solvent removal/replacement process may be lengthier.
  • the wafer may be coated using a manual or automated spin coater, and the sol may be dispensed statically (i.e., with the wafer not rotating) but is preferably dispensed dynamically, i.e., with the wafer rotating.
  • a typical rotation speed for dispense would be 400-500 rpm.
  • the rotation speed for the spin cycle depends on the desired film thickness and thickness uniformity, wafer diameter, type of wafer chuck, and exhaust condition of the spin bowl.
  • the films may be effectively spun at speeds between 500 and 4000 rpm, though it is generally advantageous to use a dilution that will yield the desired film thickness at a spin speed between 1000 and 2000 rpm.
  • the spun films are subjected to a low temperature “soft bake” at a temperature between 130° C. and 150° C. for between 5 min. and 16 hr. with shorter times more desirable for increasing wafer throughput and longer times for increasing the modulus of the final product.
  • the spun films are dried for 5-20 minutes at 90-110° C. prior to soft bake; this is done if the wafers must be stored or handled between the spinning and soft bake steps.
  • soft bake the coated wafers may be annealed immediately, though wafers may be stored indefinitely following soft bake.
  • Films are annealed at temperatures between 200 and 500° C., more particularly between 350 and 425° C. While films may be annealed in air, this is generally incompatible with copper damascene processing since the copper will be oxidized. Films may be annealed in vacuum, nitrogen or argon, or forming gas (hydrogen diluted with N 2 or Ar to approx. 5% or less by volume). Films may be annealed in several atmospheres, including but not limited to, vacuum, N 2 , Ar, He, mixtures of inert gases, water vapor entrained in an inert carrier gas such as N 2 , CO 2 , H 2 , and forming gas (H 2 entrained in inert gas). Gas mixtures containing oxygen at a partial pressure exceeding 0.2 bar are generally avoided due to excessive oxidation of the film, though excess O 2 may become advantageous at lower curing temperatures (375° C. and below) if Cu is not present.
  • Films may be annealed in the absence of an illumination source.
  • they may be annealed in the presence of ultraviolet (UV) illumination at a wavelength or wavelengths between 170 and 365 nm. This can have the effect of reducing k and increasing Young's modulus. Films must still be heated at 250-450° C. during illumination. Anneal atmosphere must be consistent with the wavelengths chosen; shorter wavelengths (in particular less than 190 nm) will require vacuum or He or mixtures of He and H 2 .
  • UV ultraviolet
  • Films cured at lower temperatures can have dielectric constants and Young's moduli equivalent to films cured at higher temperatures.
  • the use of forming gas, longer cure times, and in-situ UV illumination may help achieve this.
  • FIGS. 4-19 A partial list of the effects of various curing atmospheres may be seen in FIGS. 4-19 .
  • the wafer is soft baked in an oven or on a hot plate for 10 minutes at 140° C. This can be done in air or inert atmosphere. It is then annealed in a furnace or on a hot plate or in a rapid thermal annealer at 425° C. for 10 min. in a N 2 atmosphere. Annealing in air slightly increases both k and E vs. annealing in N 2 or Ar. However, annealing in air is incompatible with copper damascene processes. Also, it is also sometimes advantageous to cure the films in more than one step, with a low temperature cure (250-350° C.) occurring before a higher temperature cure step (350-500° C.).
  • the films produced are resistant to atmospheric moisture and damage caused by ashing, and are also resistant to atmospheric moisture attack after they have been ashed.
  • Factors that reduce k (and E) include: using an aprotic solvent such as acetonitrile in place of ethanol, introducing propylene oxide as a cosolvent, altering the TEOS/MTES ratio, partially replacing either TEOS or MTES with an alkyl trialkoxysilane where the alkyl group contains 2 or more carbon atoms, soft baking in a reactive atmosphere such as ammonia, steam, or methylamine, and annealing in an atmosphere other than air.
  • an aprotic solvent such as acetonitrile in place of ethanol
  • propylene oxide as a cosolvent
  • Factors that increase E (and k) include the use of squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) as the strong acid catalyst or as the organic acid, using an organic acid such as citric acid in significant quantity (at least 0.01 mol acid/mol Si) and, under certain circumstances, UV illumination during cure. Longer soft bake times (up to 16 hr.) increase E without increasing k.
  • an acetonitrile-based sol may be prepared by combining 6.25 g each of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) with 9.0 g acetonitrile to make part A.
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • 3.87 g Pluronic P104, 0.62 g citric acid, and 7.02 g 0.1 N HNO 3 are dissolved in 9.0 g acetonitrile to make part B.
  • Parts A and B are then mixed prior to use.
  • parts A and B can be mixed immediately and heated at 40-60 C for 16 hr.
  • acetonitrile and residual ethanol (from ester hydrolysis) and water are distilled off in a vacuum distillation apparatus such as a Buchi Rotavapor or equivalent until the sol volume is ca. 0.3-0.5 of its original volume, then replaced with fresh acetonitrile. This process is repeated as necessary until no more ethanol distills off (usually about 3 times).
  • a sol will have substantially reduced k and modulus vs. an alcohol-based sol but will have a much longer pot life (at least several months).
  • an ethanol-based sol may be subjected to the above treatment and yield the same result, though the solvent removal/replacement process may be lengthier.
  • Propylene oxide can partially replace ethanol, lowering k (and E) and potentially lengthening pot life.
  • An example follows:
  • TEOS tetraethoxysilane
  • MTES methyltriethoxysilane
  • Soft baking in a reactive atmosphere reduces both k and E, but the reduction in k may be very substantial.
  • This may be accomplished by placing the wet, freshly spun wafers in a tube furnace or other enclosed apparatus and passing ammonia vapor entrained in a carrier gas such as air or N 2 over the wafer. The wafer is then heated via a furnace or hot plate to 140° C. for up to 10 min.
  • the ammonia vapor may be supplied by anhydrous NH 3 , or it may be wet ammonia vapor made by bubbling the carrier gas through a solution of aqueous NH 3 .
  • Other volatile amines such as methylamine (CH 3 NH 2 ) may be used with similar effect. Water vapor may also be used.
  • the wafer may be heated in a sealed system into which water has been introduced.
  • Wafers may be exposed to UV light during soft bake or cure.
  • the effect of UV on k and modulus depends on the chemical composition of the film.
  • the principal effect of UV illumination during cure on a film containing 0.05 mol citric acid per mol Si is to improve the modulus of a film that has been cured at 350° C. rather than 425° C. If no organic acid is present the modulus will be lower but the k value will be very substantially decreased.
  • a low k/low E recipe e.g., one containing acetonitrile or propylene oxide, curing under UV light will increase k to that of a film made with a protic solvent such as ethanol, but will double or triple the Young's modulus.
  • a film treated by ammonia soft bake is cured under UV light, a very low dielectric constant (ca. 1.3) can be produced.
  • a wafer spun with a sol corresponding to that described in section [0027] was soft baked for 10 min at 140° C. It was then loaded into a UV annealing apparatus (e.g., Axcelis Corp., Beverly, Mass.) and simultaneously illuminated with UV light at a wavelength of 200-300 nm and heated on a hot plate to 350° C. for 16 min. in a N 2 atmosphere.
  • the Young's modulus of the film thusly prepared was 4.7 GPa.
  • An identical wafer was treated with the same sol, soft baked, and annealed in the absence of UV at 350° C. for 16 min. The resulting film had a Young's modulus of 3.8 GPa.
  • a sol was made by combining 6.25 g each of TEOS and MTES with 18.0 g ethanol, 7.02 g 0.1 N HNO 3 , and 3.87 g Pluronic P104 in the order stated.
  • This sol was heated to 40 C for 1 hr, diluted in a 3:1 ratio with 2,2-EEE and spun onto a 8′′ silicon wafer at a speed of 800 rpm.
  • the wafer was soft baked for 10 min. at 140° C., then exposed to a UV lamp with a wavelength in the range of 200-300 nm. It was simultaneously heated to 400° C. on a hot plate for a duration of 16 min.
  • the k and E of the resulting film were 1.5 and 2.54 GPa, respectively.
  • a sol identical to the one employed in the previous example was spun onto a silicon wafer.
  • the wafer was placed onto a 1 ⁇ 8′′ thick piece of Al metal 12′′ square, then covered with a bell jar, which was purged with N2 gas bubbled through aqueous NH 3 .
  • This assembly was placed on a hot plate and heated to 140 C for 10 min.
  • the wafer was subsequently exposed to a UV lamp with a wavelength in the range of 200-300 nm and simultaneously heated to 400 C on a hot plate for a duration of 16 min.
  • the k and E of the resulting film were 1.29 and 2.50 GPa, respectively.
  • a sol was made by combining 6.25 g each of TEOS and MTES with 15.0 g acetonitrile, 3.0 g propylene oxide, 7.02 g 0.1 N HNO 3 , and 2.58 g Pluronic P104 in the order stated.
  • This sol was heated to 40 C for 1 hr, diluted in a 3:1 ratio with 2,2-EEE and spun onto a 8′′ silicon wafer at a speed of 800 rpm.
  • the wafer was soft baked for 10 min. at 140° C., then exposed to a UV lamp with a wavelength in the range of 200-300 nm in a N 2 atmosphere. It was simultaneously heated to 400° C. on a hot plate for a duration of 16 min.
  • the resulting k and E were 1.8 and 5.5 GPa, respectively.
  • a wafer made identically without UV exposure during cure yielded a film with a k value of 1.7 and a modulus of 1.6 GPa.
  • a similar increase of E results when the wafer is exposed to UV illumination during soft bake and is subsequently cured at 400° C., optimally under UV illumination but also in the dark.
  • an inert gas must be used for curing dielectric films in a copper damascene process.
  • Forming gas H 2 diluted by N 2 or Ar
  • the films may also be annealed under vacuum instead of inert atmosphere.
  • Another improvement relates to increasing the degree of adhesion between the low-k film and the substrate.
  • the substrate is typically capped with a Si or Ta nitride layer prior to film deposition.
  • the adhesion of the low-k film to the nitride layer improves if the latter is partially oxidized to yield 1 or more monolayers of native oxide.
  • O 2 plasma ashing, O 2 RIE, UV-ozone, and oxidizing chemical solutions such as H 2 SO 4 /H 2 O 2 (“pirhana”) accomplish this.
  • Adhesion is further enhanced if a silane coupling agent is used subsequent to growth of a native oxide. This silane coupling agent introduces a chemical bond between the oxide and the film.
  • Agents include hexamethyldisiloxane, which can be applied from solution or the vapor phase, and bipodal ligands, which are typically applied from solutions.
  • silane coupling agents such as APTES (3-aminopropyl triethoxysilane) can treat the cured low-k film and improve its adhesion to copper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Paints Or Removers (AREA)

Abstract

A spin-on dielectric of novel composition formed as a sol comprising an a source of silicon such as an orthosilicate ester, alone or in combination with an alkylated orthosilicate ester, a polar solvent, water, an acid catalyst, which may be a strong acid catalyst, and an amphiphilic block copolymer surfactant, optionally including an organic acid, a co-solvent and/or a reactive solvent. Also provided is a method of formulating the sol, a film made from the spin-on dielectric that has desirable electrical and mechanical properties, methods for treating the film described to optimize the film's electrical and mechanical performance, and methods for depositing the film onto silicon, steel or other surfaces.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of the Provisional U.S. Patent Application Ser. No. 60/934,725 filed Jun. 15, 2007 which is incorporated for reference in its entirety.
  • FIELD OF THE INVENTION
  • The invention relates to dielectrics having a low dielectric constant, methods for formulating them, forming films made from the dielectrics and depositing and treating the films, for example by spin-on methods, spray coating, dip coating, draw coating, and inkjet printing.
  • BACKGROUND OF THE INVENTION
  • One property of dielectric materials is the dielectric constant. For certain purposes it is desirable to use materials with low dielectric constants. The manufacture of interlayer dielectric semiconductor thin films is typically carried out by first depositing the desired thin film on a surface such as a semiconductor substrate. One common method of depositing thin films is by spin-on deposition. During spin-on deposition, a solution of precursor for the thin film is applied to a semiconductor wafer, and either during deposition or thereafter the wafer is rotated at sufficiently high speed (rapid spinning step) to thin and even the layer of precursor solution. During and after the rapid spinning step, the solvents are permitted to evaporate, leaving a dried film of dielectric material. However, typically, some of the commonly used dielectric materials require subsequent processing, including curing the thin film at high temperature. The high temperature curing step can condense or cross-link the precursor molecules together, making a tighter, stronger film with a low dielectric constant. Additionally, the curing step frequently serves to “crack” a polymeric porogen into more volatile chemical fragments that vaporize to create pores or voids in the cured film, thus reducing dielectric constant. The curing step can be performed in a furnace using only thermal energy. Alternatively, films may be cured simultaneously heating and exposing to UV light. They may also be cured via electron beam irradiation.
  • This invention describes a series of techniques for making porous dielectric films with an exceptional range of k values (1.3-3.0), an expanded Young's modulus vs. k envelope, excellent CTE match with silicon and copper, low film stress, and low crack propagation rates, that are curable at reduced temperatures compared with other porous dielectrics. These characteristics arise from a combination of improvements in the composition of the solutions used to prepare the films and improvements in the techniques used to process the films. Most significantly, these films can be processed with very short bake and cure times, which significantly reduces overall process times and enhances device production rate.
  • Current techniques for preparing porous dielectric films are deficient in at least one of the elements specified above. Notably, CTE mismatch between the dielectric film and copper has caused failures during processing: a ULSI device made using a dual damascene process can contain 11 layers or greater, and the repeated temperature cycling needed to cure successive layers causes failures related to cracking and delamination. More significantly, ULSI devices will require incrementally finer wire size and pitch in order to increase transistor density and devices built at a node size of 32 nm or smaller will require dielectrics with k values less than 2.2 to prevent crosstalk and capacitance loss. In addition, semiconductor manufacturers desire cure temperatures less than 400 C to protect thermally sensitive components. Furthermore, a substantial number of spin-on porous dielectric films are sensitive to ambient moisture and must be handled in dry conditions to prevent hydrolysis with a concomitant increase in k and susceptibility to cracking.
  • Another common method for depositing dielectric films is chemical vapor deposition (CVD). This process requires very expensive equipment. Also, it is best suited for producing films with dielectric constant (k) in the range of 2.5 to 3. The effective dielectric constant is generally higher than the CVD dielectric due to adhesion and capping layers required to meet the application requirements. CVD films with lower k values suffer problems related to mechanical stability such as poor adhesion or delamination, high film stress, unacceptable crack propagation rate, and/or low Young's modulus. In addition, it appears very difficult to make CVD films with k values less than 2.3, while the films in this invention have k values between 1.3 and 3.0. Moreover, the films in this invention have superior mechanical properties at a particular dielectric constant between 1.3 and 2.6 vs. CVD and other spin-on films (as determined through measurements of modulus and crack propagation) and have improved hydrolytic stability.
  • Therefore, compositions are needed that enable rapid, efficient curing of spin-on thin films, while maintaining a low dielectric constant, high dielectric strength, low loss tangent, and high mechanical strength.
  • More specifically, the dielectric constant of an insulating thin film is only one of many attributes required for making a film that will perform properly in a semiconductor device. Films must also be mechanically robust, both to survive the chemical-mechanical polish (CMP) step and inhibit crack propagation. In addition the films must be resistant to damage from ashing during post-CMP cleanup, and must be resistant to attack from atmospheric moisture. The conventional CVD materials have limitations for ULK dielectrics with both properties. Furthermore, the coefficient of thermal expansion (CTE) of the film should be close to the CTEs of copper and silicon, the pores (if any) in the dielectric must be small (5 nm or less) to avoid copper migration, and outgassing of the film during subsequent thermal processing should be minimal. The optimum cure temperature will depend on the application, since some devices will require lower cure temperatures than others. It will also depend on the type of surfactant used, film thickness, atmosphere during cure, time available for cure, and desired electrical and mechanical properties. Most films will be cured at temperatures between 250 and 500° C., more preferably temperatures between 350 and 425° C.
  • It is generally assumed that the Young's modulus of the film is indicative of CMP resistance and rate of crack propagation, and this invention is guided by this assumption. It is possible that fracture toughness is a more reliable indicator of mechanical robustness than modulus. Notwithstanding this, it is the goal of this invention to produce films that have an expanded modulus vs. dielectric constant or E-k envelope, that is, have increased Young's moduli at a particular value of k compared with prior art. It is a further goal is this invention to produce films with acceptable mechanical and electrical properties after curing at temperatures below 400° C.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention overcomes the foregoing drawbacks by providing a spin-on dielectric of novel composition.
  • In one embodiment, a fluid colloidal solution is provided comprising a silica source, a polar solvent, water, an acid catalyst and an amphiphilic block copolymer surfactant.
  • In a more particular embodiment, a sol (also referred to as a hydrosol), is provided comprising an orthosilicate ester, alone or in combination with an alkylated orthosilicate ester, a polar solvent, water, an acid catalyst, and an amphiphilic block copolymer surfactant.
  • In another embodiment, the above fluid colloidal solutions further comprise of a second cosolvent, which may be polar or nonpolar, and an additional acid in the form of an organic acid.
  • A method of formulating a low dielectric film is also provided comprising combining a silica source, polar solvent, water, acid catalyst, polymer surfactant, and cosolvent.
  • In another embodiment, a method of formulating a low dielectric film is provided by combining a silica source with a polar solvent to form a part A; separately combining water, an acid catalyst, and a polymer surfactant with a polar solvent to form a part B; and mixing part A and part B to form a fluid colloidal solution.
  • In one embodiment, a method for preparing a low dielectric film, is provided comprising combining a silica source with a polar solvent to form a part A; separately combining water, an acid catalyst, and a polymer surfactant with a polar solvent to form a part B; mixing part A and part B to form a fluid colloidal solution; and depositing the fluid colloidal solution onto a surface under conditions whereby to form a low dielectric film.
  • In other embodiments, dielectric films formed by the above processes are provided.
  • In one embodiment, a dielectric film is provided comprising a metal or non-metal oxide comprising M-O bonds, wherein the M-O bonds are partially replaced with M-R bonds, wherein M is a metal, O is oxygen, R is an alkyl or aryl group, and a amphiphilic block copolymer template that can be removed by the action of heat.
  • Also methods for thermally and/or chemically treating the spun sol prior to anneal, and conditions of anneal (e.g., atmosphere, UV illumination) are provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
  • FIG. 1 shows the locus of maximum Young's modulus at a particular value of dielectric constant in the films described in this invention.
  • FIG. 2 a is a flow diagram illustrating the preparation of a two-component sol and its deposition as a film on a wafer.
  • FIG. 2 b is a flow diagram illustrating the preparation of a single component sol and its deposition as a film on a wafer.
  • FIG. 3 a is a TEM image of an uncured film.
  • FIG. 3 b is a TEM image of a film following furnace cure at 400° C.
  • FIG. 4 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in air.
  • FIG. 5 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in air.
  • FIG. 6 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in CO2.
  • FIG. 7 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in CO2.
  • FIG. 8 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in forming gas.
  • FIG. 9 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in forming gas.
  • FIG. 10 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in wet N2.
  • FIG. 11 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in wet N2.
  • FIG. 12 shows a graph illustrating the relationship between K and ETES concentration within the film compositions vacuum annealed.
  • FIG. 13 shows a graph illustrating the relationship between K and P104 concentration within the film compositions vacuumed annealed.
  • FIG. 14 shows a graph illustrating the relationship between K and ETES concentration within the film compositions annealed in dry N2.
  • FIG. 15 shows a graph illustrating the relationship between K and P104 concentration within the film compositions annealed in dry N2.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention provides a novel spin-on dielectric composition formed from a sol having components to produce a lyotropic liquid crystal solution as the sol dries. This lyotropic solution may or may not impart order to the sol as it dries, but has the effect of producing a uniform pore size distribution upon removal of the surfactant template. The sol contains several components that affect the ability of the material to be uniformly coated onto a substrate, or influence the film dielectric constant after template is removed. These components are: (1) a source of silica; (2) a polar solvent, (3) water, (4) an acid catalyst, and (5) an amphiphilic block copolymer surfactant Optionally, one can add a co-solvent, an organic acid, and/or a reactive solvent. The acid catalyst is preferably a strong acid catalyst and can be inorganic or organic.
  • (1) Source of Silica
  • The source of silica is more particularly a mixture of silicate esters. Preferably this includes tetraethoxysilane, more commonly referred to as tetraethyl orthosilicate and abbreviated TEOS, in combination with alkylated silicate esters such as methyltriethoxysilane (MTES), ethyltriethoxysilane (ETES) or vinyltriethoxysilane (VTES). Under certain circumstances it may be advantageous to use esters of silicic acid or alkyl-silicic acid other than ethyl, such as methyl, propyl or butyl. It may also be advantageous to include silicones such as ethoxy-terminated poly(dimethylsiloxane). Other combinations can include: Phenylated silicate esters, alkylated or phenylated silicate esters wherein the alkene, alkane, or phenyl substituent contains a thiol, amino, halide, or hydroxyl group, or other desired moiety. Additionally, Methoxy-terminated esters such as methyltrimethoxysilane, tetramethoxysilane and methoxy-teminated poly(dimethylsiloxane). In particular, it may be useful to combine TEOS and MTES with another mono- or di-alkyl substituted silicate ester, such as ethyl triethoxysilane (ETES) or dimethyl dimethoxysilane (DMDS).
  • The ratio of TEOS to other components affects several qualities in the final film, including dielectric constant (k), elastic modulus and hardness, and water contact angle. In particular, for the case of mixtures of TEOS with MTES, sols with TEOS/MTES molar ratios ranging from 0.83 to 2 yield films with low k values and acceptable Young's moduli.
  • (2) Polar Solvent
  • The polar solvent affects the drying rate and thus film thickness at a particular spin speed. It also affects k and modulus, possibly by altering the structure of the solution as it dries. In particular, it is observed that using aprotic solvents reduces the amount of thickness reduction or shrinkage upon anneal. Such films have lower k but lower modulus than films prepared with protic solvents such as light alcohols. Additionally, small quantities of reactive solvents such as propylene oxide reduce shrinkage, k, and modulus as well. Reducing shrinkage offers the secondary benefit of reducing film stress.
  • Ethanol yields high quality films with acceptable k and modulus values. Acetonitrile lowers k but also decreases modulus. Propylene oxide may be partially substituted for ethanol to further lower k. Other solvents that can be used include: n-propanol, isopropanol, ethylacetoacetate, other short chain alcohols such as methanol, isobutanol and esters such as ethyl acetate or propyl acetate, and mono- and di-substituted glycol ethers such as 2-ethoxyethanol and glyme. Additionally acetone and THF may be used.
  • (3) Water
  • Water is essential to producing a solid film, and acts by hydrolyzing the silicate esters to yield a silica-surfactant nanocomposite. H2O/Si ratio affects film modulus and sol pot life. We find that H2O/Si mole ratios between 3 and 8, in particular 6, to be effective.
  • (4) Acid Catalyst
  • An acid catalyst is required for the water to hydrolyze the silicate esters. This is preferably a strong acid that leaves no metallic or halide residue upon calcination or anneal, and is present at a concentration between 0.01 mol/L H2O and 1.0 mol/L, particularly at 0.1 mol/L H2O. Examples of acid catalysts that are effective include nitric acid (HNO3), oxalic acid (H2C2O4), and squaric acid (H2C4O4). The latter increases both k and modulus of the final film. Weaker acids may be employed (viz. acetic, glycolic, citric acid) but without a strong acid present the films typically have lower Young's moduli.
  • (5) Organic Acid
  • An organic acid that has a lower ionization constant than the strong acid used as a catalyst can be included in the sol. This acid has the effect of increasing hardness and modulus in the final film if the film is initially “soft baked” at a moderate temperature (120-150° C., particularly 130° C.). This will also increase dielectric constant. Most of the acid decomposes and vaporizes during anneal, though it may be desirable for the acid to leave behind some carbon-containing residue. Examples of acids that are effective include citric acid, and glycolic acid, benzoic acid, ascorbic acid, salicylic acid, and any short-chain carboxylic acid or aryl-substituted acid, which may additionally have hydroxyl groups such as lactic acid, or a hydroxyl-substituted benzene such as pyrogallol.
  • (6) Amphiphilic Block Copolymer Surfactant
  • An amphiphilic copolymer surfactant is added to produce a lyotropic solution that forms an oxide-polymer nanocomposite while drying. It is desirable that this surfactant be electrically neutral and decompose at a low temperature (300-500° C.). Examples these include the poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) detergents exemplified by the Pluronic™ surfactants, Pluronic™ being a trade name of BASF. These are included at concentrations from 2-10% w/v, with typical concentrations varying from 4-9%. At a given concentration, lowering the molecular weight of the Pluronic™ increases k. Increasing Pluronic concentration lowers k as well as modulus. Other examples of amphiphilic copolymer surfactants are the amphiphilic copolymers described in Stucky et al. U.S. Pat. No. 7,176,245, entitled: “Block copolymer processing for mesostructured inorganic oxide materials”, the specification of which is incorporated herein by reference.
  • We find that using the PEO-PPO-PEO triblock copolymer referred to by its trade name Pluronic P104 to have some advantages over other surfactants in terms of its ability to template films with a particular modulus, k value, and microtexture. This does not limit the use of other polymer surfactants in this invention, many of which exhibit quite satisfactory performance. Among the Pluronic family of surfactants, it appears that there is an optimum ratio of hydrophilic (EO) to hydrophobic (PO) chain lengths, and that this ratio depends on the molecular weight of the surfactant. For example, at 5.9 kilodaltons (approximate MW of P104) the highest moduli for a given k value are found at a EO/PO ratio of approx. 4. At 1.85 kilodaltons the optimum EO/PO decreases and Pluronic L43 is most effective. Conversely, at 12.6 kD the optimum EO/PO ratio increases and Pluronic F127 is most effective.
  • Other polymer surfactants such as reverse Pluronics (PO-EO-PO), PEO-PBO-PEO (PBO=polybutylene), Brij (particularly, but not exclusively Brij 56), and Tergitol have been tested and are effective.
  • Surface-modified dendrimers such as PAMAM can be effective at templating porous low-k films although the curing requirements may differ from PEO-PPO surfactants.
  • (7) Co-Solvent
  • A co-solvent can be added to the sol made from the above components in order to improve the quality of the spun film and to control thickness. Many solvents are effective. Most effective are ethyl lactate, propylene glycol methyl ether acetate, and mono- and di-glycol ethers and their esters, particularly diethylene glycol monoethyl ether (2,2-EEE) and diethylene glycol monoethyl ether acetate (2,2-EEE acetate)
  • Several factors are considered when choosing the cosolvent, particularly evaporation rate and toxicity. Certain combinations of spin coater configuration and target film thickness will favor one solvent over another. For films that are 300 nm or thinner, low evaporation rate solvents such as 2,2-EEE, 2,2-EEE acetate, and dipropylene glycol monomethyl ether are optimal.
  • One can determine which solvents will not be effective as cosolvents by the observation that the usual failure mode from an ineffective solvent is excessive striation and/or thickness nonuniformity (i.e., films are excessively convex or concave). A test for excessive striation from a given solvent choice can be performed by mixing the sol with the cosolvent to be tested and dispensing the sol onto a wafer, and spinning the wafer at a speed between 1000 and 3000 rpm for wafers of 8″ diameter and greater. If the optical and thickness uniformity of the resulting dried film is deemed acceptable the cosolvent has passed the striation test. A test for thickness nonuniformity maybe performed using a spin coater that allows a user-programmable dispense rate. A wafer of at least 8″ diameter, and preferably 12″ diameter, is spun at the desired speed, typically 1000-2400 rpm. The sol is dispensed at various rates or combination of rates until a film of the desired thickness uniformity is produced. If no dispense recipe can be found that yields the desired uniformity, the cosolvent fails the test.
  • It is important that the cosolvent is tested under conditions approximating actual use. In particular, test wafer diameter and spin speed should be similar or identical to the wafer size and spin speed to be used for production. In addition, a cosolvent that passes the uniformity test on one model of coater will fail the test on another.
  • A partial list of solvents that have been found effective is:
      • 2,2-EEE
      • 2,2-EEE acetate
      • diglyme
      • glyme
      • tetrahydrofuran (THF)
      • ethyl acetate
      • ethyl lactate
      • propylene glycol methyl ether acetate (PGMEA)
      • PGME, other glycol ethers
      • acetonitrile
      • 2-butanone (MEK)
      • 2-ethoxyethanol
      • propyl acetate
      • ethylacetoacetate
      • trichloroethylene
      • dipropylene glycol monomethyl ether (Dowanol DPM™, trademark of Dow)
      • propylene glycol propyl ether
      • diethyl carbonate
  • A partial list of solvents that have been found ineffective is:
      • N-methyl 2-pyrrolidinone (NMP)
      • ethylene glycol diacetate
      • N-methyl formamide
      • dimethyl formamide
      • diethyl malonate
      • 2,4-pentanedione,
      • pentanol,
      • propylene carbonate,
      • ethylene carbonate
      • gamma-butyrolactone
      • Formulation
  • The invention also includes methods of formulating the sol. There are two principal methods. In the first method, the ingredients are combined, at once or in stages, to form a sol that can be used immediately or more than 6 months after formulation. This is referred to here as a single component or “1-c” sol. In the second, the ingredients are combined in a fashion that prevents the hydrolysis reaction from taking place until the time of use. This is done by combining the silica-containing ingredients into a solution, which may be termed “part A”, and separately combining the water and acid catalyst with other ingredients into a separate solution, termed “part B”. This system is termed a two-component or “A/B” sol.
  • In the first (1-c) case generally, the sol is formed by mixing the silicate esters with ethanol, then adding a solution containing ethanol, water, and strong acid catalyst. Another solution containing polymer surfactant, alone or in combination with water and/or ethanol, is added at that time or after several days have elapsed since the hydrolysis reaction. Ideally, the polymer surfactant solution will have been prefiltered with a 0.22 μm or smaller filter prior to mixing. In some applications, it may be necessary to perform ion exchange on the polymer solution to removed unwanted metal ions such as Na+. Cosolvent is then added in the desired concentration. Optionally, extra cosolvent may be added at the time of manufacture to later produce a film of a particular thickness when it is spun. As an alternative, cosolvent may be added during manufacture in a partial amount, and additional cosolvent may be added to “thin” the product at the point of use prior to spin. The cosolvent is ideally chosen such that it is not expected to significantly hydrolyze in the presence of water and acid catalyst within the rated shelf life of the product.
  • In the second (A/B) case generally, the sol is formed by combining the silicate esters with ethanol (or other solvent), and separately combining the water, strong acid catalyst, organic acid, and polymer surfactant with ethanol (or other solvent). These solutions, termed Part A and B respectively, are then mixed, either immediately or at a later date. It may be advantageous to heat the resulting sol to 40-60° C. to promote hydrolysis of the silicate esters. The hydrolyzed sol is then mixed with the cosolvent in the desired ratio. This ratio will depend on the intended film thickness, wafer diameter, and the evaporation rate of the cosolvent among other factors, but is typically between 3 parts sol:1 part cosolvent and 1 part sol:1 part cosolvent by volume. The diluted sol is filtered prior to dispense through a 0.10-0.22 micrometer filter. One or both of the original solutions may be filtered prior to mixing, which improves the speed and quality of the final filtration (after sol is diluted with cosolvent).
  • The shelf life of 1-c sol is known to exceed 6 months. The shelf life of parts A and B in the A/B system is known to be at least 6 months. Both A/B and 1-c sols may be stored at ambient temperature. The pot life of the mixed sol is defined by the change in dielectric constant of a film spun from the sol as the sol ages. Typically the dielectric constant of the spun film changes little in the first 8 hrs after the sol is mixed. Sols that have aged longer than 16 hrs typically yield films with higher dielectric constants.
  • More particularly, to prepare an example of 1-c sol, 500 g tetraethoxysilane, 500 g methyltriethoxysilane, 450.6 g water, 1000 g ethanol, and 5.62 g 1.0 N nitric acid are mixed and allowed to sit at room temperature for three days. A second solution is prepared, containing 105.4 g water, 440 g ethanol, and 207.6 grams of BASF Pluronic P104 block co-polymer surfactant. The second solution is ion exchanged using acid-exchanged Dowex™ Monosphere 650C UPW or Dowex HCR W2 ion exchange resin or NH4-exchanged Zeolite LTA, then filtered through a 0.22 μm syringe filter via a pressure tank. The second solution is added to the first after the three day period, and the completed mixture was diluted with 1200 g 2-(2-ethoxyethoxy)ethanol.
  • Alternately, the second solution may be purified by dialysis rather than ion exchange.
  • To prepare an example of NB sol,
  • Part A:
  • 3315.1 g ethanol, 2638.5 g methyltriethoxysilane, 2638.5 g tetraethoxysilane are placed in a 10 L media bottle, mixed, filtered through a 0.04 μm capsule filter and stored.
  • Part B:
  • 1655.5 g of BASF P104 Pluronic surfactant or equivalent are dissolved in a solution of 2676.5 g water, 4293.6 g ethanol, 297.5 g 1.0 N nitric acid, and 263.3 g citric acid. Mixture is filtered through a 0.04 μm capsule filter and stored.
  • To use, equal volume portions of “A” and “B” are mixed and allowed to age for 2 h at room temperature or 1 hr at 40 C before use.
  • More particularly, 6.25 g each of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) are mixed with 9.0 g ethanol to make part A. Separately, 3.87 g Pluronic P104, 0.62 g citric acid, and 7.02 g 0.1 N HNO3, are dissolved in 9.0 g ethanol to make part B. These solutions are mixed, sealed and placed in a water bath heated to 40 C for 1 hr. to form the sol. The sol is then mixed with diethylene glycol ethyl ether (2,2-EEE) in the desired ratio. For example, if the desired ratio is 3:1, 30 mL of the sol is mixed with 10 mL 2,2-EEE. The diluted sol is then filtered through a 0.22 pm syringe filter and dispensed onto a silicon wafer. The diluted sol is preferably used within 8 hr after mixing.
  • It is possible to make the sol without heating it on a water bath. However, this will increase the reaction time and will delay the solution from reaching its final state of hydrolysis until about 2-3 hrs after mixing. In turn this would delay the start of a wafer production run.
  • It is also possible to make a “stripped sol” with a significantly longer pot life. A stripped sol is made by combining the components of Parts A and B (with or without citric acid [or other organic acids] and Pluronic; generally without) and heating and stirring until hydrolysis is complete. It may be beneficial to add only a portion of the final amount of water, typically about ⅓ of the total, before the sol is heated. The heating is done at any temperature at or below the boiling point of the solvent, though 60° C. is often employed. Heating and stirring are continued until hydrolysis is complete; 16 hr will generally suffice. After hydrolysis the original solvent is partially distilled off until ⅓-½ of the original volume remains, after which the lost solvent volume is replaced with a solvent from which the silica sol is less susceptible to attack from re-esterification. Such a solvent may be aprotic, such as acetone or acetonitrile, or may be hindered, such as 2,2-EEE. Esters such as ethyl acetoacetate or 2,2-EEE acetate may be employed although the solvent should not be excessively acid labile.
  • Following solvent addition the sol is redistilled until ⅓-½ the original volume remains and the desired solvent is added. This is repeated a third time, with the final solvent addition making up the original sol volume. Block copolymer surfactant is added, citric or other organic acid is added if desired, a cosolvent is added if desired, and the sol is filtered prior to dispense.
  • More particularly, an acetonitrile-based sol may be prepared by combining 6.25 g each of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) with 18 g acetonitrile and 2.34 g 0.3 N HNO3. This is heated at 60° C. with stirring for 16 hr. The acetonitrile and residual ethanol (from ester hydrolysis) and water are distilled off in a vacuum distillation apparatus such as a Büchi Rotavapor™ or equivalent until the sol volume is ca. 0.3-0.5 mL of its original volume, then replaced with fresh acetonitrile. This process is repeated as necessary until no more ethanol distills off (usually about 3 times). Such a sol will have substantially reduced k and modulus vs. an alcohol-based sol but may have a much longer pot life. Alternately, an ethanol-based sol may be subjected to the above treatment and yield the same result, though the solvent removal/replacement process may be lengthier.
  • The wafer may be coated using a manual or automated spin coater, and the sol may be dispensed statically (i.e., with the wafer not rotating) but is preferably dispensed dynamically, i.e., with the wafer rotating. A typical rotation speed for dispense would be 400-500 rpm. The rotation speed for the spin cycle depends on the desired film thickness and thickness uniformity, wafer diameter, type of wafer chuck, and exhaust condition of the spin bowl. The films may be effectively spun at speeds between 500 and 4000 rpm, though it is generally advantageous to use a dilution that will yield the desired film thickness at a spin speed between 1000 and 2000 rpm.
  • Nature of the Film and Methods of Treatment
  • In general, the spun films are subjected to a low temperature “soft bake” at a temperature between 130° C. and 150° C. for between 5 min. and 16 hr. with shorter times more desirable for increasing wafer throughput and longer times for increasing the modulus of the final product. If desired, the spun films are dried for 5-20 minutes at 90-110° C. prior to soft bake; this is done if the wafers must be stored or handled between the spinning and soft bake steps. Following soft bake the coated wafers may be annealed immediately, though wafers may be stored indefinitely following soft bake.
  • Films are annealed at temperatures between 200 and 500° C., more particularly between 350 and 425° C. While films may be annealed in air, this is generally incompatible with copper damascene processing since the copper will be oxidized. Films may be annealed in vacuum, nitrogen or argon, or forming gas (hydrogen diluted with N2 or Ar to approx. 5% or less by volume). Films may be annealed in several atmospheres, including but not limited to, vacuum, N2, Ar, He, mixtures of inert gases, water vapor entrained in an inert carrier gas such as N2, CO2, H2, and forming gas (H2 entrained in inert gas). Gas mixtures containing oxygen at a partial pressure exceeding 0.2 bar are generally avoided due to excessive oxidation of the film, though excess O2 may become advantageous at lower curing temperatures (375° C. and below) if Cu is not present.
  • Films may be annealed in the absence of an illumination source. Optionally, they may be annealed in the presence of ultraviolet (UV) illumination at a wavelength or wavelengths between 170 and 365 nm. This can have the effect of reducing k and increasing Young's modulus. Films must still be heated at 250-450° C. during illumination. Anneal atmosphere must be consistent with the wavelengths chosen; shorter wavelengths (in particular less than 190 nm) will require vacuum or He or mixtures of He and H2.
  • Films cured at lower temperatures (ca. 250° C.) can have dielectric constants and Young's moduli equivalent to films cured at higher temperatures. The use of forming gas, longer cure times, and in-situ UV illumination may help achieve this.
  • A partial list of the effects of various curing atmospheres may be seen in FIGS. 4-19.
  • More particularly, after spin coating the wafer is soft baked in an oven or on a hot plate for 10 minutes at 140° C. This can be done in air or inert atmosphere. It is then annealed in a furnace or on a hot plate or in a rapid thermal annealer at 425° C. for 10 min. in a N2 atmosphere. Annealing in air slightly increases both k and E vs. annealing in N2 or Ar. However, annealing in air is incompatible with copper damascene processes. Also, it is also sometimes advantageous to cure the films in more than one step, with a low temperature cure (250-350° C.) occurring before a higher temperature cure step (350-500° C.).
  • The films produced are resistant to atmospheric moisture and damage caused by ashing, and are also resistant to atmospheric moisture attack after they have been ashed.
  • As previously mentioned, it is a goal of this invention to produce dielectric films with an expanded E-k envelope. One can reduce the dielectric constant by altering the above recipe in several ways, though each will reduce the modulus. Conversely, it is possible to increase modulus with the penalty of increasing k. By correctly applying two or more of these conflicting factors it is possible to reduce k substantially while maintaining an acceptable value of Young's modulus.
  • Factors that reduce k (and E) include: using an aprotic solvent such as acetonitrile in place of ethanol, introducing propylene oxide as a cosolvent, altering the TEOS/MTES ratio, partially replacing either TEOS or MTES with an alkyl trialkoxysilane where the alkyl group contains 2 or more carbon atoms, soft baking in a reactive atmosphere such as ammonia, steam, or methylamine, and annealing in an atmosphere other than air. Factors that increase E (and k) include the use of squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) as the strong acid catalyst or as the organic acid, using an organic acid such as citric acid in significant quantity (at least 0.01 mol acid/mol Si) and, under certain circumstances, UV illumination during cure. Longer soft bake times (up to 16 hr.) increase E without increasing k.
  • More particularly, an acetonitrile-based sol may be prepared by combining 6.25 g each of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) with 9.0 g acetonitrile to make part A. Separately, 3.87 g Pluronic P104, 0.62 g citric acid, and 7.02 g 0.1 N HNO3, are dissolved in 9.0 g acetonitrile to make part B. Parts A and B are then mixed prior to use. Alternately, parts A and B can be mixed immediately and heated at 40-60 C for 16 hr. The acetonitrile and residual ethanol (from ester hydrolysis) and water are distilled off in a vacuum distillation apparatus such as a Buchi Rotavapor or equivalent until the sol volume is ca. 0.3-0.5 of its original volume, then replaced with fresh acetonitrile. This process is repeated as necessary until no more ethanol distills off (usually about 3 times). Such a sol will have substantially reduced k and modulus vs. an alcohol-based sol but will have a much longer pot life (at least several months). Alternately, an ethanol-based sol may be subjected to the above treatment and yield the same result, though the solvent removal/replacement process may be lengthier.
  • Propylene oxide can partially replace ethanol, lowering k (and E) and potentially lengthening pot life. An example follows:
  • 6.25 g each of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) are mixed with 6.0 g ethanol and 3.0 g propylene oxide to make part A. Separately, 3.87 g Pluronic P104, 0.62 g citric acid, and 7.02 g 0.1 N HNO3, are dissolved in 9.0 g ethanol to make part B. Parts A and B are mixed and used in a fashion similar to that employed in prior embodiments.
  • Partially replacing TEOS or MTES with ethyl triethoxysilane or dimethyl diethoxysilane can reduce k. An example follows:
  • 6.25 g TEOS, 5.94 g MTES, and 0.31 g ETES (ethyl triethoxysilane) are combined with 18 g ethanol. Separately, 0.62 g citric acid is dissolved in 7.02 g 0.1 N aqueous HNO3. The two solutions are mixed and used in a fashion similar to that employed in prior embodiments.
  • Soft baking in a reactive atmosphere reduces both k and E, but the reduction in k may be very substantial. This may be accomplished by placing the wet, freshly spun wafers in a tube furnace or other enclosed apparatus and passing ammonia vapor entrained in a carrier gas such as air or N2 over the wafer. The wafer is then heated via a furnace or hot plate to 140° C. for up to 10 min. The ammonia vapor may be supplied by anhydrous NH3, or it may be wet ammonia vapor made by bubbling the carrier gas through a solution of aqueous NH3. Other volatile amines such as methylamine (CH3NH2) may be used with similar effect. Water vapor may also be used. This is accomplished by heating water to 40-100° C., preferably 80° C., sparging the water with a carrier gas, and exposing the wafer to water vapor. Care must be taken to make sure that the temperature of the wafer remains higher than the local dew point. Alternately, the wafer may be heated in a sealed system into which water has been introduced.
  • Wafers may be exposed to UV light during soft bake or cure. The effect of UV on k and modulus depends on the chemical composition of the film. The principal effect of UV illumination during cure on a film containing 0.05 mol citric acid per mol Si is to improve the modulus of a film that has been cured at 350° C. rather than 425° C. If no organic acid is present the modulus will be lower but the k value will be very substantially decreased. If a low k/low E recipe is used, e.g., one containing acetonitrile or propylene oxide, curing under UV light will increase k to that of a film made with a protic solvent such as ethanol, but will double or triple the Young's modulus. If a film treated by ammonia soft bake is cured under UV light, a very low dielectric constant (ca. 1.3) can be produced.
  • For example, a wafer spun with a sol corresponding to that described in section [0027] was soft baked for 10 min at 140° C. It was then loaded into a UV annealing apparatus (e.g., Axcelis Corp., Beverly, Mass.) and simultaneously illuminated with UV light at a wavelength of 200-300 nm and heated on a hot plate to 350° C. for 16 min. in a N2 atmosphere. The Young's modulus of the film thusly prepared was 4.7 GPa. An identical wafer was treated with the same sol, soft baked, and annealed in the absence of UV at 350° C. for 16 min. The resulting film had a Young's modulus of 3.8 GPa.
  • For another example, a sol was made by combining 6.25 g each of TEOS and MTES with 18.0 g ethanol, 7.02 g 0.1 N HNO3, and 3.87 g Pluronic P104 in the order stated. This sol was heated to 40 C for 1 hr, diluted in a 3:1 ratio with 2,2-EEE and spun onto a 8″ silicon wafer at a speed of 800 rpm. The wafer was soft baked for 10 min. at 140° C., then exposed to a UV lamp with a wavelength in the range of 200-300 nm. It was simultaneously heated to 400° C. on a hot plate for a duration of 16 min. The k and E of the resulting film were 1.5 and 2.54 GPa, respectively.
  • For another example, a sol identical to the one employed in the previous example was spun onto a silicon wafer. The wafer was placed onto a ⅛″ thick piece of Al metal 12″ square, then covered with a bell jar, which was purged with N2 gas bubbled through aqueous NH3.This assembly was placed on a hot plate and heated to 140 C for 10 min. The wafer was subsequently exposed to a UV lamp with a wavelength in the range of 200-300 nm and simultaneously heated to 400 C on a hot plate for a duration of 16 min. The k and E of the resulting film were 1.29 and 2.50 GPa, respectively.
  • In a further example, a sol was made by combining 6.25 g each of TEOS and MTES with 15.0 g acetonitrile, 3.0 g propylene oxide, 7.02 g 0.1 N HNO3, and 2.58 g Pluronic P104 in the order stated. This sol was heated to 40 C for 1 hr, diluted in a 3:1 ratio with 2,2-EEE and spun onto a 8″ silicon wafer at a speed of 800 rpm. The wafer was soft baked for 10 min. at 140° C., then exposed to a UV lamp with a wavelength in the range of 200-300 nm in a N2 atmosphere. It was simultaneously heated to 400° C. on a hot plate for a duration of 16 min. The resulting k and E were 1.8 and 5.5 GPa, respectively. A wafer made identically without UV exposure during cure yielded a film with a k value of 1.7 and a modulus of 1.6 GPa. A similar increase of E results when the wafer is exposed to UV illumination during soft bake and is subsequently cured at 400° C., optimally under UV illumination but also in the dark.
  • As was previously mentioned, an inert gas must be used for curing dielectric films in a copper damascene process. Forming gas (H2 diluted by N2 or Ar) may be used in place of the inert gas. This will more completely remove the porogen and reduce k, though it will also reduce E. The films may also be annealed under vacuum instead of inert atmosphere.
  • Another improvement relates to increasing the degree of adhesion between the low-k film and the substrate. The substrate is typically capped with a Si or Ta nitride layer prior to film deposition. The adhesion of the low-k film to the nitride layer improves if the latter is partially oxidized to yield 1 or more monolayers of native oxide. O2 plasma ashing, O2 RIE, UV-ozone, and oxidizing chemical solutions such as H2SO4/H2O2 (“pirhana”) accomplish this. Adhesion is further enhanced if a silane coupling agent is used subsequent to growth of a native oxide. This silane coupling agent introduces a chemical bond between the oxide and the film. Agents include hexamethyldisiloxane, which can be applied from solution or the vapor phase, and bipodal ligands, which are typically applied from solutions. In addition, silane coupling agents such as APTES (3-aminopropyl triethoxysilane) can treat the cured low-k film and improve its adhesion to copper.
  • Although the present invention has been described in connection with the preferred embodiments, it is to be understood that modifications and variations may be utilized without departing from the principles and scope of the invention, as those skilled in the art will readily understand. Accordingly, such modifications may be practiced within the scope of the following claims.

Claims (42)

1-32. (canceled)
33. A method of formulating a dielectric film, comprising
combining a silica source, polar solvent, water, acid catalyst, polymer surfactant, and cosolvent to form a single component colloidal solution.
34. The method of formulating a dielectric film of claim 33, wherein the solution has a shelf life of at least 6 months.
35. A method of formulating a dielectric film, comprising:
combining a silica source with a polar solvent to form a part A;
separately combining water, an acid catalyst, and a polymer surfactant with a polar solvent to form a part B; and
mixing part A and part B to form a fluid colloidal solution.
36. The method of claim 35 in which part A and part B are kept separate prior to mixing.
37. The method of claim 35, in which part A and part B have shelf lives of at least 6 months prior to mixing.
38. The method of claim 35, in which the silica source is thoroughly hydrolyzed prior to formulation with the other components.
39. The method of claim 35 in which residual water and solvent are removed by distillation and replaced with fresh solvent.
40. The method of claim 39 in which the fresh solvent is a different solvent.
41. The method of claim 39 in which the fresh solvent is a cosolvent.
42. A method for preparing a low dielectric film, comprising:
combining a silica source, polar solvent, water, acid catalyst, polymer surfactant, and cosolvent to form a single component colloidal solution, and
depositing the fluid colloidal solution onto a surface under conditions whereby to form a low dielectric film.
43. The method of claim 42 further comprising adding a cosolvent.
44. The method of claim 42, wherein the step of adding a cosolvent is completed at the time of manufacturing the film, or done later in part.
45. (canceled)
46. A method for preparing a low dielectric film, comprising:
combining a silica source with a polar solvent to form a part A;
separately combining water, an acid catalyst, and a polymer surfactant with a polar solvent to form a part B;
mixing part A and part B to form a fluid colloidal solution; and
depositing the fluid colloidal solution onto a surface under conditions whereby to form a low dielectric film.
47. The method of claim 46 in which the fluid colloidal solution is heated to at least 40° C. for at least one hour prior to depositing it onto the surface.
48. The method of claim 46 in which the fluid colloidal solution is deposited on the surface by spinning onto a silicon wafer.
49. The method of claim 48 where the film is annealed by an electron beam.
50. The method of claim 46 in which the film is soft baked at 130-150° C.
51. The method of claim 50 in which the film is exposed to a reactive gas before or during bake.
52. The method of claim 51 in which the reactive gas is water vapor.
53. The method of claim 51 in which the reactive gas is ammonia vapor.
54. The method of claim 48 in which the film is exposed to UV illumination during soft bake.
55. The method of claim 48 in which the film is annealed at 200-450° C.
56. The method of claim 55 in which the film is annealed at 250° C. in the presence of a reducing atmosphere that contains hydrogen.
57. The method of claim 56 in which the film is exposed to UV illumination before being annealed.
58. The method of claim 56 in which the film is exposed to UV illumination during anneal.
59. The method of claim 58 in which the film is exposed to UV illumination at a wavelength or wavelengths between 170 nm and 365 nm during anneal.
60. The method of claim 55 in which the annealing is done in air.
61. The method of claim 55 in which the annealing is done in nitrogen or argon.
62. The method of claim 55 in which the annealing is done in helium.
63. The method of claim 55 in which the annealing is done in a reducing atmosphere that contains hydrogen.
64. The method of claim 55 in which the annealing is done in carbon dioxide.
65. The method of claim 55 in which the annealing is done in vacuum.
66. The method of claim 55 in which the annealing is done in nitrogen saturated with water vapor.
67. (canceled)
68. The method of claim 66 in which adhesion of the film to the substrate is promoted by creating at least one monolayer of a native oxide on the substrate.
69. The method of claim 68 in which the method is O2 plasma ashing, reactive ion etch with O2, UV ozone treatment, applying a layer of SiO2, or cleaning in an oxidizing chemical solution.
70. The method of claim 69 in which the oxidizing chemical solution is sulfuric acid or and/or hydrogen peroxide.
71. A nanoporous organic-containing oxide with a glassy wall structure and generally open pores, comprising:
a metal or metalloid oxide in which the metal or metalloid oxide is partially replaced with an alkyl or aryl group, and
an amphiphilic block copolymer template that can be removed by the action of heat.
72. The nanoporous organic-containing oxide material of claim 71, wherein the metalloid is silicon.
73. The nanoporous organic-containing oxide of claim 71, wherein the material is spun into a film less than 2 μm thick upon anneal, and the material has a relationship between Young's modulus (E) and dielectric constant (k) bounded by the points-E=2.5 GPa, k=1.29 and E=8 GPa, k=2.6.
US13/010,573 2007-06-15 2011-01-20 Low k dielectric Abandoned US20110135847A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/010,573 US20110135847A1 (en) 2007-06-15 2011-01-20 Low k dielectric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US93472507P 2007-06-15 2007-06-15
US12/157,830 US8932702B2 (en) 2007-06-15 2008-06-13 Low k dielectric
US13/010,573 US20110135847A1 (en) 2007-06-15 2011-01-20 Low k dielectric

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/157,830 Division US8932702B2 (en) 2007-06-15 2008-06-13 Low k dielectric

Publications (1)

Publication Number Publication Date
US20110135847A1 true US20110135847A1 (en) 2011-06-09

Family

ID=40156526

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/157,830 Expired - Fee Related US8932702B2 (en) 2007-06-15 2008-06-13 Low k dielectric
US13/010,573 Abandoned US20110135847A1 (en) 2007-06-15 2011-01-20 Low k dielectric

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/157,830 Expired - Fee Related US8932702B2 (en) 2007-06-15 2008-06-13 Low k dielectric

Country Status (6)

Country Link
US (2) US8932702B2 (en)
EP (1) EP2164648B8 (en)
JP (1) JP2010530137A (en)
KR (1) KR101562681B1 (en)
CN (1) CN101687219A (en)
WO (1) WO2008156680A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228748A1 (en) * 2009-11-25 2012-09-13 International Business Machines Corporation Passivation layer surface topography modifications for improved integrity in packaged assemblies
US9589789B2 (en) 2012-10-31 2017-03-07 Sba Materials, Inc. Compositions of low-K dielectric sols containing nonmetallic catalysts
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US10037905B2 (en) * 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
JP5882583B2 (en) * 2010-02-04 2016-03-09 東京応化工業株式会社 Silica-based film forming material for air gap formation and air gap forming method
US9176259B2 (en) * 2011-03-04 2015-11-03 Intermolecular, Inc. Sol-gel based antireflective (AR) coatings with controllable pore size using organic nanocrystals and dendrimers
US20140094565A1 (en) * 2011-05-25 2014-04-03 Mitsubishi Rayon Co., Ltd. Method for producing siloxane oligomers
JP5880211B2 (en) * 2012-03-29 2016-03-08 三菱マテリアル株式会社 Ferrite thin film forming composition and method for forming ferrite thin film
US9414445B2 (en) * 2013-04-26 2016-08-09 Applied Materials, Inc. Method and apparatus for microwave treatment of dielectric films
US20150104940A1 (en) * 2013-10-11 2015-04-16 Air Products And Chemicals Inc. Barrier chemical mechanical planarization composition and method thereof
CN106046410B (en) * 2016-06-14 2019-03-08 常州时创能源科技有限公司 With the preparation method of the perforated membrane of substrate anchoring
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
KR102141666B1 (en) * 2017-11-22 2020-08-05 한국과학기술원 Dielectric for pressure sensor, method of manufacturing the same and capacitive type pressure sensor
WO2019243623A1 (en) * 2018-06-21 2019-12-26 University College Cork - National University Of Ireland, Cork A coating composition comprising integrated functionality
KR102167968B1 (en) * 2018-08-31 2020-10-20 한국자동차연구원 A low dielectric constant polyimide film using nanosilicate particles and a method of manufacturing the same
WO2024056569A1 (en) * 2022-09-14 2024-03-21 Merck Patent Gmbh Composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616084A (en) * 1983-08-09 1986-10-07 Bayer Aktiengesellschaft Process for the preparation of 7-acylamino-3-hydroxy-cephem-4-carboxylic acids and 7-acylamino-3-hydroxy-1-dethia-1-oxacephem-4-carboxylic acids
US5622684A (en) * 1995-06-06 1997-04-22 Board Of Trustees Operating Michigan State University Porous inorganic oxide materials prepared by non-ionic surfactant templating route
US6054111A (en) * 1997-02-13 2000-04-25 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Lyotropic liquid-crystal phases of amphiphilic block copolymers as template for the preparation of mesoporous solids
US20020045693A1 (en) * 2000-04-17 2002-04-18 Jsr Corporation Composition for film formation, method of film formation and silica-based film
US6420278B1 (en) * 1998-06-12 2002-07-16 Advanced Micro Devices, Inc. Method for improving the dielectric constant of silicon-based semiconductor materials
US20030099843A1 (en) * 1999-07-13 2003-05-29 Tomoko Aoki Low-permittivity porous siliceous film, semiconductor devices having such films, and coating composition for forming the film
US20050214674A1 (en) * 2004-03-25 2005-09-29 Yu Sui Positive-working photoimageable bottom antireflective coating
US7611731B2 (en) * 2004-08-16 2009-11-03 Sba Materials, Inc. Mesostructured silica/block copolymer monoliths as a controlled release device and methods of manufacture

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460478A (en) 1982-09-30 1984-07-17 Union Carbide Corporation Orthosilicate ester containing heat transfer fluids
JPH04233732A (en) 1990-08-16 1992-08-21 Motorola Inc Spin on derivative used in manufacturing process of semiconductor
JP2003531083A (en) * 1997-12-09 2003-10-21 ザ・リージェンツ・オブ・ザ・ユニバーシティー・オブ・カリフォルニア Block polymer treatment method for mesostructured inorganic oxide material
JP2003529202A (en) * 1999-04-14 2003-09-30 アライドシグナル インコーポレイテッド Low dielectric nanoporous materials obtained from polymer decomposition
JP3494081B2 (en) * 1999-07-01 2004-02-03 Jsr株式会社 Method for manufacturing low-density film, low-density film, insulating film, and semiconductor device
DE60123512T2 (en) * 2000-04-17 2007-05-16 Jsr Corp. Film-making composition, film-forming method and silica-based film
US6630406B2 (en) * 2001-05-14 2003-10-07 Axcelis Technologies Plasma ashing process
US6756085B2 (en) * 2001-09-14 2004-06-29 Axcelis Technologies, Inc. Ultraviolet curing processes for advanced low-k materials
JP2005503664A (en) * 2001-09-17 2005-02-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic device and composition
US7122880B2 (en) 2002-05-30 2006-10-17 Air Products And Chemicals, Inc. Compositions for preparing low dielectric materials
US7307343B2 (en) * 2002-05-30 2007-12-11 Air Products And Chemicals, Inc. Low dielectric materials and methods for making same
JP3829188B2 (en) * 2002-07-05 2006-10-04 独立行政法人産業技術総合研究所 Mesoporous silicate and method for producing the same
US6919636B1 (en) * 2003-07-31 2005-07-19 Advanced Micro Devices, Inc. Interconnects with a dielectric sealant layer
US20050089642A1 (en) 2003-10-28 2005-04-28 Rohm And Haas Electronic Materials, L.L.C. Dielectric materials preparation
JP2005191437A (en) * 2003-12-26 2005-07-14 Ricoh Co Ltd Semiconductor device, manufacturing method therefor, and display device
US20050196974A1 (en) * 2004-03-02 2005-09-08 Weigel Scott J. Compositions for preparing low dielectric materials containing solvents
US20050227898A1 (en) * 2004-04-09 2005-10-13 Leskowicz James J Zero to low VOC glass and general purpose cleaner
EP1615260A3 (en) * 2004-07-09 2009-09-16 JSR Corporation Organic silicon-oxide-based film, composition and method for forming the same, and semiconductor device
US7332445B2 (en) * 2004-09-28 2008-02-19 Air Products And Chemicals, Inc. Porous low dielectric constant compositions and methods for making and using same
JP2006117763A (en) * 2004-10-20 2006-05-11 Catalysts & Chem Ind Co Ltd Low dielectric constant amorphous silica film-forming coating liquid, its preparation method and low dielectric constant amorphous silica film obtained thereby
US7678712B2 (en) * 2005-03-22 2010-03-16 Honeywell International, Inc. Vapor phase treatment of dielectric materials
US20060276041A1 (en) * 2005-05-17 2006-12-07 Jsr Corporation Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
US20070099005A1 (en) * 2005-10-31 2007-05-03 Honeywell International Inc. Thick crack-free silica film by colloidal silica incorporation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616084A (en) * 1983-08-09 1986-10-07 Bayer Aktiengesellschaft Process for the preparation of 7-acylamino-3-hydroxy-cephem-4-carboxylic acids and 7-acylamino-3-hydroxy-1-dethia-1-oxacephem-4-carboxylic acids
US5622684A (en) * 1995-06-06 1997-04-22 Board Of Trustees Operating Michigan State University Porous inorganic oxide materials prepared by non-ionic surfactant templating route
US6054111A (en) * 1997-02-13 2000-04-25 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Lyotropic liquid-crystal phases of amphiphilic block copolymers as template for the preparation of mesoporous solids
US6420278B1 (en) * 1998-06-12 2002-07-16 Advanced Micro Devices, Inc. Method for improving the dielectric constant of silicon-based semiconductor materials
US20030099843A1 (en) * 1999-07-13 2003-05-29 Tomoko Aoki Low-permittivity porous siliceous film, semiconductor devices having such films, and coating composition for forming the film
US20020045693A1 (en) * 2000-04-17 2002-04-18 Jsr Corporation Composition for film formation, method of film formation and silica-based film
US20050214674A1 (en) * 2004-03-25 2005-09-29 Yu Sui Positive-working photoimageable bottom antireflective coating
US7611731B2 (en) * 2004-08-16 2009-11-03 Sba Materials, Inc. Mesostructured silica/block copolymer monoliths as a controlled release device and methods of manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228748A1 (en) * 2009-11-25 2012-09-13 International Business Machines Corporation Passivation layer surface topography modifications for improved integrity in packaged assemblies
US8786059B2 (en) * 2009-11-25 2014-07-22 International Business Machines Corporation Passivation layer surface topography modifications for improved integrity in packaged assemblies
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10947138B2 (en) 2011-12-06 2021-03-16 Delta Faucet Company Ozone distribution in a faucet
US9589789B2 (en) 2012-10-31 2017-03-07 Sba Materials, Inc. Compositions of low-K dielectric sols containing nonmetallic catalysts
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device

Also Published As

Publication number Publication date
EP2164648B1 (en) 2016-09-21
US20090017272A1 (en) 2009-01-15
CN101687219A (en) 2010-03-31
JP2010530137A (en) 2010-09-02
EP2164648A1 (en) 2010-03-24
KR101562681B1 (en) 2015-10-22
US8932702B2 (en) 2015-01-13
WO2008156680A1 (en) 2008-12-24
EP2164648B8 (en) 2016-11-09
KR20100038099A (en) 2010-04-12
EP2164648A4 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US8932702B2 (en) Low k dielectric
EP1142832B1 (en) Ionic additives for extreme low dielectric constant chemical formulations
KR100561884B1 (en) Compositions for preparing low dielectric materials
US6756085B2 (en) Ultraviolet curing processes for advanced low-k materials
JP4028512B2 (en) Method for producing low dielectric material
US20030077918A1 (en) Simplified method to produce nanoporous silicon-based films
US7265062B2 (en) Ionic additives for extreme low dielectric constant chemical formulations
US20110151677A1 (en) Wet oxidation process performed on a dielectric material formed from a flowable cvd process
JP5535583B2 (en) Method for forming trench isolation structure
CN101965629A (en) Dipping solution for use in production of siliceous film and process for producing siliceous film using the dipping solution
JP4756128B2 (en) Coating liquid for forming protective film for semiconductor processing, method for preparing the same, and protective film for semiconductor processing obtained therefrom
TWI328600B (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film and semiconductor device
TWI314936B (en)
US8088686B2 (en) Method of remedying deterioration of insulating film
JP3635443B2 (en) Method for forming SiO2 film
EP1583141A2 (en) Solvents and methods using same for removing silicon-containing residues from a substrate
JP2006303129A (en) Forming method of film coating
KR20150083867A (en) Compositions of low-k dielectric sols containing nonmetallic catalysts

Legal Events

Date Code Title Description
AS Assignment

Owner name: SBA MATERIALS, INC., NEW MEXICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PHILLIPS, MARK L.F.;THOMS, TRAVIS P.S.;REEL/FRAME:025671/0945

Effective date: 20080630

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION