[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US20110043465A1 - Touch panel having a insulation layer - Google Patents

Touch panel having a insulation layer Download PDF

Info

Publication number
US20110043465A1
US20110043465A1 US12/826,599 US82659910A US2011043465A1 US 20110043465 A1 US20110043465 A1 US 20110043465A1 US 82659910 A US82659910 A US 82659910A US 2011043465 A1 US2011043465 A1 US 2011043465A1
Authority
US
United States
Prior art keywords
conductive
conductive film
wires
touch panel
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/826,599
Inventor
Po-Shan Huang
Chih-Han Chao
Po-Sheng Shih
Jia-Shyong Cheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
Original Assignee
Chimei Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chimei Innolux Corp filed Critical Chimei Innolux Corp
Assigned to CHIMEI INNOLUX CORPORATION reassignment CHIMEI INNOLUX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAO, CHIH-HAN, CHENG, JIA-SHYONG, HUANG, PO-SHAN, SHIH, PO-SHENG
Publication of US20110043465A1 publication Critical patent/US20110043465A1/en
Assigned to Innolux Corporation reassignment Innolux Corporation CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CHIMEI INNOLUX CORPORATION
Priority to US14/489,081 priority Critical patent/US9537483B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/9645Resistive touch switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96015Constructional details for touch switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/953Detector using nanostructure
    • Y10S977/956Of mechanical property

Definitions

  • the disclosure relates to a sensing apparatus, and more particularly, the disclosure relates to a touch panel.
  • the most user-friendly and most popular operation method is touch operation, which means that a user directly touches or presses on images displayed on a screen to obtain the needed function or effect.
  • the operation can be achieved by intuition so that it is convenient to children or elderly people.
  • the touch interface is commonly formed by a touch panel adhered on a display.
  • the present touch panel can be divided into a resistive type, a capacitive type, an infrared type, and a surface acoustic type touch panels.
  • a typical resistive touch panel includes two insulation substrates respectively having a conductive film and conductive wires, and one of the insulation substrates is adhered with a decorative substrate.
  • the decorative substrate is directly touched by the user for performing an operation, which has characters, patterns, or a combination thereof for enhancing the beauty of the display.
  • the touch panel has at least three substrates (i.e. two insulation substrates and one decorative substrate), which results in the difficulty of reducing the thickness of the touch panel.
  • a wet etching process or a dry etching process (such as a laser etching process) is performed so as to increase the cost of manufacturing the touch panel.
  • the wet etching process or the dry etching process can be harmful to the substrates.
  • a first embodiment of the disclosure provides a touch panel including a first insulation substrate, a first insulation layer, a plurality of first conductive wires, a second insulation substrate, and a plurality of second conductive wires.
  • the first insulation substrate has a first conductive film thereon contacting with the first insulation substrate.
  • the first insulation layer covers a portion of a periphery of the first conductive film so that the first conductive film has a first exposed region.
  • the first conductive wires are separately disposed on the periphery of the first conductive film and each of the first conductive wires includes a first electrode segment and a first extending segment. The first electrode segment contacts with the first exposed region to be electrically connected to the first conductive film.
  • the first extending segment contacts with the first insulation layer to be isolated from the first conductive film.
  • the second insulation substrate has a second conductive film thereon contacting with the second insulation substrate.
  • the second conductive wires are separately disposed on a periphery of the second conductive film.
  • the second insulation substrate is for connecting with an external circuit.
  • a second embodiment of the disclosure provides a touch panel including a first insulation substrate, a first insulation layer, a plurality of first conductive wires, a second insulation substrate, and a plurality of second conductive wires.
  • the first insulation substrate has a first conductive film thereon contacting with the first insulation substrate.
  • the first insulation layer covers a portion of a periphery of the first conductive film so that the first conductive film has a first exposed region.
  • the first conductive wires are separately disposed on the periphery of the first conductive film and each of the first conductive wires includes a first electrode segment and a first extending segment. The first electrode segment contacts with the first exposed region to be electrically connected to the first conductive film.
  • the first extending segment contacts with the first insulation layer to be isolated from the first conductive film.
  • the second insulation substrate has a second conductive film thereon contacting with the second insulation substrate.
  • the second conductive wires are separately disposed on a periphery of the second conductive film.
  • the first insulation substrate is for connecting with an external circuit.
  • a third embodiment of the disclosure directs to a touch panel including a first insulation substrate, a plurality of first conductive wires, a second insulation substrate, and a plurality of second conductive wires.
  • the first insulation substrate has a first conductive film contacting with the first insulation substrate, and the first conductive film has a first region and a plurality of second regions while the first region and the second regions are separated from one another.
  • the first conductive wires are separately disposed on a periphery of the first conductive film and each of the first conductive wires includes a first electrode segment and a first extending segment.
  • the first electrode segment contacts with the first region to be electrically connected to the first region.
  • the first extending segment contacts with one of the second regions.
  • the second insulation substrate has a second conductive film thereon contacting with the second insulation substrate.
  • the second conductive wires are separately disposed on a periphery of the second conductive film.
  • the first insulation substrate is for connecting with an external circuit.
  • FIG. 1A is a schematic cross-sectional view of a touch panel according to a first embodiment of the disclosure.
  • FIG. 1B is a schematic drawing of the two insulation substrates of the touch panel depicted in FIG. 1A .
  • FIG. 2 is a schematic drawing of two insulation substrates of a touch panel according to a second embodiment of the disclosure.
  • FIG. 3 is a schematic drawing of two insulation substrates of a touch panel according to a third embodiment of the disclosure.
  • FIG. 4 is a schematic drawing of two insulation substrates of a touch panel according to a fourth embodiment of the disclosure.
  • FIG. 5 is a schematic drawing of two insulation substrates of a touch panel according to a fifth embodiment of the disclosure.
  • FIG. 6 is a schematic drawing of two insulation substrates of a touch panel according to a sixth embodiment of the disclosure.
  • FIG. 7 is a schematic cross-sectional view of a touch panel according to a seven embodiment of the disclosure.
  • FIG. 1A is a schematic cross-sectional view of a touch panel according to a first embodiment of the disclosure and FIG. 1B is a schematic drawing of the two insulation substrates of the touch panel depicted in FIG. 1A , and FIG. 1A is the schematic cross-sectional view taken along line I-I of FIG. 1B .
  • the upper insulation substrate and the elements disposed thereon illustrated in FIG. 1B are shown upside down and the real disposition relationship can be referred to FIG. 1A .
  • a touch panel 100 of the present embodiment includes an insulation substrate 110 , a conductive film 120 , an insulation layer 130 , a plurality of conductive wires 140 , an insulation substrate 150 , a conductive film 160 , and a plurality of conductive wires 170 .
  • the insulation substrate 110 has a surface 112 .
  • the insulation substrate 110 can have, for example, a decorative substrate having patterns, characters, or a combination thereof.
  • a printed layer 114 can be disposed on the surface 112 and the printed layer 114 includes the patterns, the characters, or the combination thereof.
  • the printed layer 114 can also be disposed on an opposite surface 116 of the insulation substrate 110 .
  • the insulation substrate 110 can be a flexible transparent substrate having a material such as polyethylene terephthalate (PET). Additionally, in other embodiments, a material of the insulation substrate 110 can be other polymer or insulation materials.
  • the conductive film 120 is disposed on the surface 112 .
  • the conductive film 120 directly contacts with the decorative substrate (i.e. the insulation substrate 110 ).
  • the conductive film 120 can directly contact with the printed layer 114 of the decorative substrate.
  • the insulation layer 130 covers at least a portion of a periphery of the first conductive film 120 and exposes an exposed region A 1 of the conductive film 120 .
  • the conductive wires 140 are disposed on the periphery of the conductive film 120 and are separately disposed. Each of the conductive wires 140 includes an electrode segment 142 and an extending segment 144 and the electrode segment 142 and the extending segment 144 are connected with each other.
  • the electrode segment 142 is disposed on the exposed region A 1 and contacts with the exposed region A 1 to be electrically connected to the conductive film 120 .
  • the extending segment 144 is disposed on the insulation layer 130 and contacts the insulation layer 130 to be isolated from the conductive film 120 .
  • the insulation layer 130 isolates the extending segment 144 from the conductive film 120 .
  • the insulation layer 130 includes three sub-insulation layers 130 a , 130 b , and 130 c .
  • the sub-insulation layers 130 a and 130 b are located at two adjacent margins of the conductive film 120 and the sub-insulation layers 130 a and 130 c are also located at two adjacent margins of the conductive film 120 .
  • a portion of each of the conductive wires 140 is isolated from the conductive film 120 through the sub-insulation layers 130 a , 130 b , and 130 c and another portion of each of the conductive wires 140 contacts the exposed region A 1 .
  • the insulation substrate 150 has a surface 152 (as shown in FIG. 1A ), and the surface 112 is faced to the surface 152 .
  • the insulation substrate 150 can be a transparent supporting substrate such as a flexible substrate or a rigid substrate.
  • the insulation substrate 150 can be, for example, a glass substrate.
  • a material of the insulation substrate 150 can be polycarbonate (PC), polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), other polymer, or other insulation material.
  • the insulation substrate 110 is closer to a touch surface of the touch panel 100 (the surface 116 is the touch surface in the present embodiment) than the insulation substrate 150 is while the touch surface is the surface capable of being touched or pressed by a finger, a nib of a touch pen, or other objects.
  • the amount of the insulation substrates in the touch panel 100 is only two, i.e. the insulation substrates 110 and 150 .
  • the conductive film 160 is disposed on the surface 152 .
  • the conductive film 160 contacts with the insulation substrate 150 .
  • the conductive wires 170 are disposed on a periphery of the conductive film 160 and are separately disposed.
  • the insulation substrate 150 is provided to connect with an external circuit 320 .
  • the external circuit 320 is electrically connected to the extending segments 144 and the conductive wires 170 .
  • the external circuit 320 is, for example, a flexible printed circuit (FPC) board.
  • the external circuit 320 can be other circuit boards or conductive circuits.
  • a composition of the conductive film 120 and the conductive film 160 includes a plurality of molecules with anisotropic conductivity and a size of each molecule with anisotropic conductivity is not larger than 300 nm. At least one of the conductive film 120 and the conductive film 160 includes a carbon nanotube (CNT) film, i.e. the molecule with anisotropic conductivity is a carbon nanotube.
  • CNT carbon nanotube
  • both of the conductive film 120 and the conductive film 160 are, for example, CNT films.
  • the conductive film 120 and the conductive film 160 can also be an indium tin oxide (ITO) films or other transparent conductive films. Alternately, one of the conductive film 120 and the conductive film 160 is the CNT film and the other one is another type of transparent film.
  • the touch panel 100 further includes an insulation layer 210 covering at least a portion of the periphery of the conductive film 160 and exposes an exposed region A 2 of the conductive film 160 .
  • Each of the conductive wires 170 includes an electrode segment 172 and at least one extending segment 174 (such as the extending segments 174 a and 174 b shown in the figures).
  • the electrode segment 172 is disposed on the exposed region A 2 and contacts with the exposed region A 2 to be electrically connected with the conductive film 160 .
  • the electrode segment 172 directly contacts with the conductive film 160 .
  • the extending segment 174 is disposed on the insulation layer 210 and contacts the insulation layer 210 to be isolated from the conductive film 160 .
  • the insulation layer 210 isolates the extending segment 174 from the conductive film 160 .
  • the insulation layer 210 includes two sub-insulation layers 210 a and 210 b located at two opposite margins of the conductive film 160 , and a portion of each of the conductive wires 170 (such as the extending segments 174 a and 174 b ) is disposed on the two sub-insulation layers 210 a and 210 b and another portion of each of the conductive wires 170 (such as the electrode segment 172 ) is disposed on the exposed region A 2 .
  • the touch panel 100 further includes a plurality of conductive pads 180 separately disposed on the insulation layer 210 , and the conductive pads 180 are not electrically connected with the conductive wires 170 , i.e. the conductive pads 180 and the conductive wires 170 are separately disposed.
  • the extending segments 144 are electrically connected to the external circuit 320 through the conductive pads 180 .
  • a terminal of each of the extending segments 174 a is configured with a contact point 176 and the conductive wires 170 are electrically connected to the external circuit 320 through the contact points 176 , respectively.
  • the touch panel 100 can further includes a plurality of connecting wires 190 and each of the connecting wires 190 has an external connecting terminal 192 and an inner connecting terminal 194 opposite to the external connecting terminal 192 .
  • the conductive pads 180 are respectively configured in the external connecting terminals 192 and a terminal of each of the conductive wires 140 is electrically connected to the inner connecting terminal 194 .
  • a terminal of the extending segments 144 is electrically connected to the inner connecting terminals 194 through a plurality of conductive glues 220 so that the conductive wires 140 are electrically connected to the external circuit 320 .
  • the connecting wires 190 are disposed on the insulation layer 210 so as to be isolated from the conductive film 160 , namely, the insulation layer 210 isolates the connecting wires 190 from the conductive film 160 .
  • the conductive glues 220 are represented by a dash line in FIG. 1B .
  • a material of the conductive wires 140 and 170 and the connecting wires 190 can be silver or other metal.
  • a material of the conductive wires 140 and 170 and the connecting wires 190 can be other conductive material.
  • a terminal of the conductive wires 140 can be directly electrically connected to the external circuit 320 without connected through the connecting wires 190 .
  • the conductive film 120 and the conductive film 160 are separated by a gap and electrically insulated from each other.
  • the conductive film 120 where is pressed contacts and is electrically connected with the conductive film 160 .
  • the amounts of the electrode segments 142 and the electrode segments 172 are both two.
  • the two electrode segments 142 are respectively disposed at two opposite margins of the touch panel 100 and the two electrode segments 172 are respectively disposed at the other two opposite margins of the touch panel 100 .
  • the external circuit 320 can be connected to a control platform (such as a computer, a processer, or a control circuit of an electronic apparatus), which determines the position touched by the finger through analyzing the resistances by measuring the electrode segments 142 and the electrode segments 172 .
  • a control platform such as a computer, a processer, or a control circuit of an electronic apparatus
  • the insulation substrate 110 and the insulation substrate 150 are bonded through a double sided tape 360 (as shown in FIG. 1A ), through other sealing materials or through other adhesions.
  • the touch panel 100 can further includes at least one dummy wire 230 disposed on the insulation layer 130 .
  • the dummy wire 230 is electrically insulated with the conductive film 120 and has no actual function to the electric signals.
  • the dummy wire 230 can be disposed corresponding to the conductive wires 170 so that the surface of the touch panel 100 formed by the assembly of the insulation substrate 110 and the insulation substrate 150 is flat.
  • At least one insulation substrate such as the insulation substrate 110 (or 150 ) uses the insulation layer 130 (or 210 ) thereon for isolating the extending segments 144 (or 174 ) of the conductive wires 140 (or 170 ) from the conductive film 120 (or 160 ) to replace the conventional method of separating the conductive film into separate blocks through the etching process. Therefore, in addition to be conducive to reduce the manufacturing cost, the touch panel 100 of the present embodiment is conducive to prevent the substrate from the damage caused by the etching process and improve the yield rate and reliability of the touch panel.
  • the conductive film 120 and the conductive wires 140 of the present embodiment can be directly formed on the decorative substrate (i.e. the insulation substrate 110 ) so that the printed layer 114 on the decorative substrate is not destroyed by the wet etching process or the laser etching process. Accordingly, the insulation layer 130 used in the present embodiment is helpful in improving the yield rate of the decorative substrate.
  • the insulation substrate 150 is to be connected with the external circuit 320 , that is, the external circuit 320 is bonded with the connecting pads 180 and the contact point 176 on the insulation substrate 150 but not directly connected to the conductive wires 140 on the insulation substrate 110 . Therefore, the external circuit 320 is not bonded with the insulation substrate 110 through a thermal compressing process so as to prevent the decorative substrate from the damage caused by the thermal compressing process.
  • the touch panel 100 of the present embodiment may merely use two insulation substrates 110 and 150 so that the thickness is decreased and the cost is reduced.
  • the conductive films 120 and 160 are CNT films
  • the conductive films 120 and 160 can be formed on the insulation substrates 110 and 150 under a lower temperature condition or by the UV (ultra-violet light) curing process, which is more conducive to improve the yield rate and the reliability of the decorative substrate when it is compared to the high temperature condition in the sputtering process for forming the indium tin oxide film on the insulation substrate.
  • FIG. 2 is a schematic drawing of two insulation substrates of a touch panel according to a second embodiment of the disclosure.
  • the touch panel 100 a of the present embodiment is similar to the touch panel 100 , and the difference between these two touch panels is described as below.
  • the insulation layer 210 depicted in FIG. 1B is not used.
  • the conductive film 160 a has a first region 162 and a plurality of second regions 164 , and the first region 162 and the second regions 164 are separated from one another.
  • each conductive wire 170 is disposed on the first region 162 and contacts with the first region 162 so as to be electrically connected with the first region 162 .
  • the extending segment 174 of each conductive wire 170 (such as the extending segments 174 a and 174 b ) is disposed on at least one of the second regions 164 and contacts with the at least one of the second regions 164 .
  • the conductive pads 180 are separately disposed on a portion of the second regions 164 , and the conductive pads 180 are not electrically connected with the conductive wires 170 , i.e. the conductive pads 180 and the conductive wires 170 are separated from each other.
  • the extending segments 144 are electrically connected to the external circuit (such as the external circuit 320 illustrated in FIG. 1A ) through the conductive pads 180 , respectively.
  • the connecting wires 190 are also disposed on the second regions 164 .
  • FIG. 3 is a schematic drawing of two insulation substrates of a touch panel according to a third embodiment of the disclosure, and the structures configured on the bottom insulation substrate 150 are referred as the structures configured on the middle insulation substrate 150 without the insulation layer 250 and a portion of the connecting wires 260 while the portion of the connecting wires 260 is located on the insulation layer 250 .
  • the touch panel 100 b of the present embodiment is similar to the touch panel 100 in FIG. 1B , and the difference between these two touch panels is described as below.
  • the insulation layer 130 in FIG. 1B is not disposed on the conductive film 120 of the present embodiment and the conductive wire 350 as a whole is served as an electrode.
  • the touch panel 100 b further includes a sub-insulation layer 250 disposed on the margin of the conductive film 160 and connecting the sub-insulation layer 210 a and the sub-insulation layer 210 b .
  • the sub-insulation layer 250 covers a portion of at least one conductive wire 170 and a portion of each one of the two sub-insulation layers 210 a and 210 b .
  • a portion of at least one connecting wire (the connecting wire 260 is taken as an example in the present embodiment) is disposed above the sub-insulation layer 250 and the conductive wire 170 .
  • the inner connecting terminal 194 of the connecting wire 260 is located above the insulation layer 250 and above the first sub-insulation layer 210 b .
  • the insulation layer 250 isolates the first conductive wire 170 from the connecting wire 260 and the insulation layer 210 isolates the connecting wires 190 and 260 from the conductive film 160 .
  • the touch panel 100 b of the present embodiment can further includes a plurality of dummy pads 240 disposed on the conductive film 120 and corresponding to the contact points 176 and the conductive pads 180 so as to improve the flatness of the touch panel 100 b.
  • FIG. 4 is a schematic drawing of two insulation substrates of a touch panel according to a fourth embodiment of the disclosure, and the structures configured on the bottom insulation substrate 150 are referred as the structures configured on the middle insulation substrate 150 without the insulation layer 270 and a portion of the connecting wires 280 while the portion of the connecting wires 280 is located on the insulation layer 270 .
  • the touch panel 100 c is similar to the touch panel 100 b in FIG. 3 .
  • the structures configured on the insulation substrate 110 of the touch panel 100 c according to the present embodiment are the same as the structures configured on the insulation substrate 110 in FIG. 3 , but the structures configured on the insulation substrate 150 according to the present embodiment are similar to the structures configured on the insulation substrate 140 in FIG. 2 .
  • the touch panel 100 c further includes an insulation layer 270 covering at least a portion of the periphery of the conductive film 160 a and covering a portion of one conductive wire 170 .
  • At least one connecting wire (the connecting wire 280 is taken as an example in the present embodiment) is disposed on the insulation layer 270 and extended from a corner of the conductive film 160 a to an adjacent corner of the conductive film 160 a .
  • the connecting wire 280 and the electrode segment 172 of the conductive wires 170 covered by the insulation layer 270 are respectively disposed at two opposite sides of the insulation layer 270 .
  • an extending direction of the electrode segment 172 is substantially parallel to an extending direction a portion of the connecting wire 280 located in the first region 162 .
  • Each one of the connecting wires 280 has an external connecting terminal 192 and an inner connecting terminal 194 opposite to the external connecting terminal 192 and the inner connecting terminals 194 are respectively electrically connected to the conductive wires 350 .
  • the external connecting terminal 192 is configured with the conductive pad 180 .
  • the external circuit (such as the external circuit 320 illustrate in FIG.
  • the connecting wire 190 is taken as an example in the present embodiment
  • the connecting wire 190 is taken as an example in the present embodiment
  • FIG. 5 is a schematic drawing of two insulation substrates of a touch panel according to a fifth embodiment of the disclosure.
  • the touch panel 100 d of the present embodiment is similar to the touch panel 100 b in FIG. 3 , and the difference between these two touch panels is described as below.
  • the sub-insulation layer 250 in FIG. 3 is not disposed in the touch panel 100 d of the present embodiment.
  • the insulation layer 201 ′ includes a sub-insulation layer 210 c , a sub-insulation layer 210 d , and a sub-insulation layer 210 e .
  • the sub-insulation layer 210 c and the sub-insulation layer 210 d are respectively disposed at two opposite margins of the conductive film 160 .
  • the sub-insulation layer 210 e is disposed on the margin of the conductive film 160 and connects the sub-insulation layer 210 c and the sub-insulation layer 210 d .
  • the sub-insulation layer 210 e and one of the electrode segments 172 are disposed at the same side of the insulation substrate 150 .
  • an extending direction of the sub-insulation layer 210 e is substantially parallel to the extending directions of all electrode segments 172 .
  • the conductive pads 180 are separately disposed on the sub-insulation layer 210 c , and the conductive pads 180 and the conductive wires 170 are separately disposed and the conductive wires 350 are electrically connected to the external circuit (such as the external circuit 320 illustrated in FIG. 1A ) through the conductive pads 180 , respectively.
  • a portion of at least one connecting wire (the connecting wire 290 is taken as an example in the present embodiment) is disposed above the sub-insulation layer 210 e and adjacent to the conductive wire 172 .
  • the inner connecting terminal 194 of the connecting wire 290 is located on the sub-insulation layer 210 d and the insulation layer 210 ′ isolates the connecting wire 290 from the conductive film 160 .
  • the connecting wire 290 disposed on the insulation substrate 150 is extended from a corner of the conductive film 160 to an adjacent corner thereof and connects the conductive wire 350 on the insulation substrate 110 to the external circuit, which is efficiently simplify the layout and reduce the amount of the conductive wires 350 on the insulation substrate 110 .
  • the insulation substrate 110 is a decorative substrate
  • the connecting wire 290 is capable of simplifying the layout of the conductive wires 350 on the insulation substrate 110 so that the conductive wire 350 as a whole can be served as an electrode. Accordingly, the decorative substrate may be not treated by the dry etching process or the wet etching process to improve the yield and the reliability of the touch panel 100 d.
  • FIG. 6 is a schematic drawing of two insulation substrates of a touch panel according to a sixth embodiment of the disclosure.
  • the touch panel 100 e of the present embodiment is similar to the touch panel 100 d in FIG. 5 , and the difference between these two touch panels is described as below.
  • the insulation layer 210 ′ depicted in FIG. 5 is not used.
  • the conductive film 160 a having a first region 162 and a plurality of second regions 164 is used in the touch panel 100 e of the present embodiment, and the first region 162 and the second regions 164 are separated from one another.
  • a plurality of connecting wires 190 and 310 are disposed on two or more of the second regions 164 .
  • At least one connecting wire (the connecting wire 310 is taken as an example in the present embodiment) is extended from a corner of the conductive film 160 a to an adjacent corner thereof.
  • the connecting wire 310 and one of the conductive wires 170 are disposed on the same side of the insulation substrate 150 .
  • an extending direction of a portion of the connecting wire 310 is substantially parallel to the extending directions of all electrode segments 172 .
  • Each one of the connecting wires (such as the connecting wires 190 and 310 ) has an external connecting terminal 192 and an inner connecting terminal 194 opposite to the external connecting terminal 192 and the inner connecting terminals 194 are respectively electrically connected to the conductive wires 350 .
  • FIG. 7 is a schematic cross-sectional view of a touch panel according to a seven embodiment of the disclosure.
  • the touch panel 100 f of the present embodiment is similar to the touch panel 100 in FIG. 1A , and the difference between the two touch panels lies in that the external circuit 320 according to the present embodiment is disposed on the surface 154 of the insulation substrate 150 , and the surface 154 is opposite to the surface 152 .
  • a plurality of conductive pads 330 can be disposed on the surface 154 , which are electrically connected to the conductive wires 170 (as shown in FIG. 1B ) and the conductive wires 140 through a plurality of conductive through holes 340 .
  • the external circuit 320 is not disposed between the insulation substrate 110 and the insulation substrate 150 so as to further improve the flatness of the touch panel 100 f.
  • the extending segments of the conductive wires on one insulation substrate is isolated from the conductive film by the insulation layer so as to have the advantages of lowering the manufacturing cost, preventing from the damage caused by the etching process on the substrate, enhancing the yield of the touch panel, and improving the reliability when it is compared with the conventional process of separating the conductive film into the isolated blocks by an etching process.
  • the connecting wire on one insulation substrate is extended from a corner of the conductive film to an adjacent corner thereof and connects the conductive wire on another insulation substrate to the external circuit so as to efficiently simplify the conductive wire on the another insulation substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

A touch panel including a first insulation substrate, a first conductive film, a first insulation film, first conductive wires, a second insulation substrate, a second conductive film, and second conductive wires is provided. The first conductive film is disposed on the first insulation substrate and the first insulation layer covers a portion of a periphery of the first conductive film so that the first conductive film has an exposed region. The first conductive wires are disposed on the periphery of the first conductive film and each of the first conductive wires includes an electrode segment and an extending segment. The electrode segment is electrically connected with the first conductive film and the extending segment is electrically isolated from the first conductive film. The second conductive film is disposed on the second insulation substrate. The second conductive wires are disposed on the periphery of the second conductive film.

Description

    BACKGROUND OF DISCLOSURE
  • 1. Field of the Disclosure
  • The disclosure relates to a sensing apparatus, and more particularly, the disclosure relates to a touch panel.
  • 2. Description of Related Art
  • Improvements in electronic and display technology allow significant enhancement of present operating interfaces. The most user-friendly and most popular operation method is touch operation, which means that a user directly touches or presses on images displayed on a screen to obtain the needed function or effect. The operation can be achieved by intuition so that it is convenient to children or elderly people.
  • The touch interface is commonly formed by a touch panel adhered on a display. The present touch panel can be divided into a resistive type, a capacitive type, an infrared type, and a surface acoustic type touch panels. A typical resistive touch panel includes two insulation substrates respectively having a conductive film and conductive wires, and one of the insulation substrates is adhered with a decorative substrate. The decorative substrate is directly touched by the user for performing an operation, which has characters, patterns, or a combination thereof for enhancing the beauty of the display.
  • However, the touch panel has at least three substrates (i.e. two insulation substrates and one decorative substrate), which results in the difficulty of reducing the thickness of the touch panel. In addition, because of the requirement for forming separate conductive blocks in the conductive film of the conventional touch panel, a wet etching process or a dry etching process (such as a laser etching process) is performed so as to increase the cost of manufacturing the touch panel. Furthermore, the wet etching process or the dry etching process can be harmful to the substrates.
  • SUMMARY OF THE DISCLOSURE
  • A first embodiment of the disclosure provides a touch panel including a first insulation substrate, a first insulation layer, a plurality of first conductive wires, a second insulation substrate, and a plurality of second conductive wires. The first insulation substrate has a first conductive film thereon contacting with the first insulation substrate. The first insulation layer covers a portion of a periphery of the first conductive film so that the first conductive film has a first exposed region. The first conductive wires are separately disposed on the periphery of the first conductive film and each of the first conductive wires includes a first electrode segment and a first extending segment. The first electrode segment contacts with the first exposed region to be electrically connected to the first conductive film. The first extending segment contacts with the first insulation layer to be isolated from the first conductive film. The second insulation substrate has a second conductive film thereon contacting with the second insulation substrate. The second conductive wires are separately disposed on a periphery of the second conductive film. The second insulation substrate is for connecting with an external circuit.
  • A second embodiment of the disclosure provides a touch panel including a first insulation substrate, a first insulation layer, a plurality of first conductive wires, a second insulation substrate, and a plurality of second conductive wires. The first insulation substrate has a first conductive film thereon contacting with the first insulation substrate. The first insulation layer covers a portion of a periphery of the first conductive film so that the first conductive film has a first exposed region. The first conductive wires are separately disposed on the periphery of the first conductive film and each of the first conductive wires includes a first electrode segment and a first extending segment. The first electrode segment contacts with the first exposed region to be electrically connected to the first conductive film. The first extending segment contacts with the first insulation layer to be isolated from the first conductive film. The second insulation substrate has a second conductive film thereon contacting with the second insulation substrate. The second conductive wires are separately disposed on a periphery of the second conductive film. The first insulation substrate is for connecting with an external circuit.
  • A third embodiment of the disclosure directs to a touch panel including a first insulation substrate, a plurality of first conductive wires, a second insulation substrate, and a plurality of second conductive wires. The first insulation substrate has a first conductive film contacting with the first insulation substrate, and the first conductive film has a first region and a plurality of second regions while the first region and the second regions are separated from one another. The first conductive wires are separately disposed on a periphery of the first conductive film and each of the first conductive wires includes a first electrode segment and a first extending segment. The first electrode segment contacts with the first region to be electrically connected to the first region. The first extending segment contacts with one of the second regions. The second insulation substrate has a second conductive film thereon contacting with the second insulation substrate. The second conductive wires are separately disposed on a periphery of the second conductive film. The first insulation substrate is for connecting with an external circuit.
  • In order to make the aforementioned and other features and advantages of the disclosure more comprehensible, embodiments accompanying figures are described in detail below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
  • FIG. 1A is a schematic cross-sectional view of a touch panel according to a first embodiment of the disclosure.
  • FIG. 1B is a schematic drawing of the two insulation substrates of the touch panel depicted in FIG. 1A.
  • FIG. 2 is a schematic drawing of two insulation substrates of a touch panel according to a second embodiment of the disclosure.
  • FIG. 3 is a schematic drawing of two insulation substrates of a touch panel according to a third embodiment of the disclosure.
  • FIG. 4 is a schematic drawing of two insulation substrates of a touch panel according to a fourth embodiment of the disclosure.
  • FIG. 5 is a schematic drawing of two insulation substrates of a touch panel according to a fifth embodiment of the disclosure.
  • FIG. 6 is a schematic drawing of two insulation substrates of a touch panel according to a sixth embodiment of the disclosure.
  • FIG. 7 is a schematic cross-sectional view of a touch panel according to a seven embodiment of the disclosure.
  • DESCRIPTION OF EMBODIMENTS
  • FIG. 1A is a schematic cross-sectional view of a touch panel according to a first embodiment of the disclosure and FIG. 1B is a schematic drawing of the two insulation substrates of the touch panel depicted in FIG. 1A, and FIG. 1A is the schematic cross-sectional view taken along line I-I of FIG. 1B. For clearly showing the corresponding relationships of the structures on the two insulation substrates, the upper insulation substrate and the elements disposed thereon illustrated in FIG. 1B are shown upside down and the real disposition relationship can be referred to FIG. 1A.
  • A touch panel 100 of the present embodiment includes an insulation substrate 110, a conductive film 120, an insulation layer 130, a plurality of conductive wires 140, an insulation substrate 150, a conductive film 160, and a plurality of conductive wires 170. The insulation substrate 110 has a surface 112. In the present embodiment, the insulation substrate 110 can have, for example, a decorative substrate having patterns, characters, or a combination thereof. Specifically, a printed layer 114 can be disposed on the surface 112 and the printed layer 114 includes the patterns, the characters, or the combination thereof. However, in other embodiments, the printed layer 114 can also be disposed on an opposite surface 116 of the insulation substrate 110. In the present embodiment, the insulation substrate 110 can be a flexible transparent substrate having a material such as polyethylene terephthalate (PET). Additionally, in other embodiments, a material of the insulation substrate 110 can be other polymer or insulation materials.
  • The conductive film 120 is disposed on the surface 112. In the present embodiment, the conductive film 120 directly contacts with the decorative substrate (i.e. the insulation substrate 110). For example, the conductive film 120 can directly contact with the printed layer 114 of the decorative substrate. The insulation layer 130 covers at least a portion of a periphery of the first conductive film 120 and exposes an exposed region A1 of the conductive film 120. The conductive wires 140 are disposed on the periphery of the conductive film 120 and are separately disposed. Each of the conductive wires 140 includes an electrode segment 142 and an extending segment 144 and the electrode segment 142 and the extending segment 144 are connected with each other. The electrode segment 142 is disposed on the exposed region A1 and contacts with the exposed region A1 to be electrically connected to the conductive film 120. The extending segment 144 is disposed on the insulation layer 130 and contacts the insulation layer 130 to be isolated from the conductive film 120. In other words, the insulation layer 130 isolates the extending segment 144 from the conductive film 120. In the present embodiment, the insulation layer 130 includes three sub-insulation layers 130 a, 130 b, and 130 c. The sub-insulation layers 130 a and 130 b are located at two adjacent margins of the conductive film 120 and the sub-insulation layers 130 a and 130 c are also located at two adjacent margins of the conductive film 120. A portion of each of the conductive wires 140 is isolated from the conductive film 120 through the sub-insulation layers 130 a, 130 b, and 130 c and another portion of each of the conductive wires 140 contacts the exposed region A1.
  • The insulation substrate 150 has a surface 152 (as shown in FIG. 1A), and the surface 112 is faced to the surface 152. The insulation substrate 150 can be a transparent supporting substrate such as a flexible substrate or a rigid substrate. In the present embodiment, the insulation substrate 150 can be, for example, a glass substrate. Additionally, in other embodiments, a material of the insulation substrate 150 can be polycarbonate (PC), polymethylmethacrylate (PMMA), polyethylene terephthalate (PET), other polymer, or other insulation material. In the present embodiment, the insulation substrate 110 is closer to a touch surface of the touch panel 100 (the surface 116 is the touch surface in the present embodiment) than the insulation substrate 150 is while the touch surface is the surface capable of being touched or pressed by a finger, a nib of a touch pen, or other objects. In addition, in the present embodiment, the amount of the insulation substrates in the touch panel 100 is only two, i.e. the insulation substrates 110 and 150.
  • The conductive film 160 is disposed on the surface 152. In the present embodiment, the conductive film 160 contacts with the insulation substrate 150. The conductive wires 170 are disposed on a periphery of the conductive film 160 and are separately disposed. The insulation substrate 150 is provided to connect with an external circuit 320. In the present embodiment, the external circuit 320 is electrically connected to the extending segments 144 and the conductive wires 170. In the present embodiment, the external circuit 320 is, for example, a flexible printed circuit (FPC) board. However, in other embodiment, the external circuit 320 can be other circuit boards or conductive circuits. In the present embodiment, a composition of the conductive film 120 and the conductive film 160 includes a plurality of molecules with anisotropic conductivity and a size of each molecule with anisotropic conductivity is not larger than 300 nm. At least one of the conductive film 120 and the conductive film 160 includes a carbon nanotube (CNT) film, i.e. the molecule with anisotropic conductivity is a carbon nanotube. In the present embodiment, both of the conductive film 120 and the conductive film 160 are, for example, CNT films. However, in other embodiments, the conductive film 120 and the conductive film 160 can also be an indium tin oxide (ITO) films or other transparent conductive films. Alternately, one of the conductive film 120 and the conductive film 160 is the CNT film and the other one is another type of transparent film.
  • In the present embodiment, the touch panel 100 further includes an insulation layer 210 covering at least a portion of the periphery of the conductive film 160 and exposes an exposed region A2 of the conductive film 160. Each of the conductive wires 170 includes an electrode segment 172 and at least one extending segment 174 (such as the extending segments 174 a and 174 b shown in the figures). The electrode segment 172 is disposed on the exposed region A2 and contacts with the exposed region A2 to be electrically connected with the conductive film 160. In the present embodiment, the electrode segment 172 directly contacts with the conductive film 160. The extending segment 174 is disposed on the insulation layer 210 and contacts the insulation layer 210 to be isolated from the conductive film 160. In other words, the insulation layer 210 isolates the extending segment 174 from the conductive film 160. In the present embodiment, the insulation layer 210 includes two sub-insulation layers 210 a and 210 b located at two opposite margins of the conductive film 160, and a portion of each of the conductive wires 170 (such as the extending segments 174 a and 174 b) is disposed on the two sub-insulation layers 210 a and 210 b and another portion of each of the conductive wires 170 (such as the electrode segment 172) is disposed on the exposed region A2.
  • In the present embodiment, the touch panel 100 further includes a plurality of conductive pads 180 separately disposed on the insulation layer 210, and the conductive pads 180 are not electrically connected with the conductive wires 170, i.e. the conductive pads 180 and the conductive wires 170 are separately disposed. In addition, the extending segments 144 are electrically connected to the external circuit 320 through the conductive pads 180. In the present embodiment, a terminal of each of the extending segments 174 a is configured with a contact point 176 and the conductive wires 170 are electrically connected to the external circuit 320 through the contact points 176, respectively.
  • The touch panel 100 can further includes a plurality of connecting wires 190 and each of the connecting wires 190 has an external connecting terminal 192 and an inner connecting terminal 194 opposite to the external connecting terminal 192. The conductive pads 180 are respectively configured in the external connecting terminals 192 and a terminal of each of the conductive wires 140 is electrically connected to the inner connecting terminal 194. In the present embodiment, a terminal of the extending segments 144 is electrically connected to the inner connecting terminals 194 through a plurality of conductive glues 220 so that the conductive wires 140 are electrically connected to the external circuit 320. In the present embodiment, the connecting wires 190 are disposed on the insulation layer 210 so as to be isolated from the conductive film 160, namely, the insulation layer 210 isolates the connecting wires 190 from the conductive film 160. For simplifying the drawing, the conductive glues 220 are represented by a dash line in FIG. 1B. In the present embodiment, a material of the conductive wires 140 and 170 and the connecting wires 190 can be silver or other metal. In other embodiments, a material of the conductive wires 140 and 170 and the connecting wires 190 can be other conductive material. Furthermore, in other embodiment, a terminal of the conductive wires 140 can be directly electrically connected to the external circuit 320 without connected through the connecting wires 190.
  • When the touch panel 100 is not pressed, the conductive film 120 and the conductive film 160 are separated by a gap and electrically insulated from each other. When a user touches the surface 116 of the insulation substrate 110 by a finger, the conductive film 120 where is pressed contacts and is electrically connected with the conductive film 160. In the present embodiment, the amounts of the electrode segments 142 and the electrode segments 172 are both two. The two electrode segments 142 are respectively disposed at two opposite margins of the touch panel 100 and the two electrode segments 172 are respectively disposed at the other two opposite margins of the touch panel 100. The external circuit 320 can be connected to a control platform (such as a computer, a processer, or a control circuit of an electronic apparatus), which determines the position touched by the finger through analyzing the resistances by measuring the electrode segments 142 and the electrode segments 172.
  • In the present embodiment, the insulation substrate 110 and the insulation substrate 150 are bonded through a double sided tape 360 (as shown in FIG. 1A), through other sealing materials or through other adhesions. In the present embodiment, the touch panel 100 can further includes at least one dummy wire 230 disposed on the insulation layer 130. The dummy wire 230 is electrically insulated with the conductive film 120 and has no actual function to the electric signals. The dummy wire 230 can be disposed corresponding to the conductive wires 170 so that the surface of the touch panel 100 formed by the assembly of the insulation substrate 110 and the insulation substrate 150 is flat.
  • In the touch panel 100 of the present embodiment, at least one insulation substrate, such as the insulation substrate 110 (or 150), uses the insulation layer 130 (or 210) thereon for isolating the extending segments 144 (or 174) of the conductive wires 140 (or 170) from the conductive film 120 (or 160) to replace the conventional method of separating the conductive film into separate blocks through the etching process. Therefore, in addition to be conducive to reduce the manufacturing cost, the touch panel 100 of the present embodiment is conducive to prevent the substrate from the damage caused by the etching process and improve the yield rate and reliability of the touch panel. In addition, the conductive film 120 and the conductive wires 140 of the present embodiment can be directly formed on the decorative substrate (i.e. the insulation substrate 110) so that the printed layer 114 on the decorative substrate is not destroyed by the wet etching process or the laser etching process. Accordingly, the insulation layer 130 used in the present embodiment is helpful in improving the yield rate of the decorative substrate.
  • Furthermore, in the touch panel 100 of the present embodiment, the insulation substrate 150 is to be connected with the external circuit 320, that is, the external circuit 320 is bonded with the connecting pads 180 and the contact point 176 on the insulation substrate 150 but not directly connected to the conductive wires 140 on the insulation substrate 110. Therefore, the external circuit 320 is not bonded with the insulation substrate 110 through a thermal compressing process so as to prevent the decorative substrate from the damage caused by the thermal compressing process.
  • In addition, the touch panel 100 of the present embodiment may merely use two insulation substrates 110 and 150 so that the thickness is decreased and the cost is reduced.
  • In addition, when the conductive films 120 and 160 are CNT films, the conductive films 120 and 160 can be formed on the insulation substrates 110 and 150 under a lower temperature condition or by the UV (ultra-violet light) curing process, which is more conducive to improve the yield rate and the reliability of the decorative substrate when it is compared to the high temperature condition in the sputtering process for forming the indium tin oxide film on the insulation substrate.
  • FIG. 2 is a schematic drawing of two insulation substrates of a touch panel according to a second embodiment of the disclosure. Referring to FIG. 2, the touch panel 100 a of the present embodiment is similar to the touch panel 100, and the difference between these two touch panels is described as below. In the touch panel 100 a of the present embodiment, the insulation layer 210 depicted in FIG. 1B is not used. Alternatively, in the present embodiment, the conductive film 160 a has a first region 162 and a plurality of second regions 164, and the first region 162 and the second regions 164 are separated from one another. The electrode segment 172 of each conductive wire 170 is disposed on the first region 162 and contacts with the first region 162 so as to be electrically connected with the first region 162. The extending segment 174 of each conductive wire 170 (such as the extending segments 174 a and 174 b) is disposed on at least one of the second regions 164 and contacts with the at least one of the second regions 164.
  • In addition, in the present embodiment, the conductive pads 180 are separately disposed on a portion of the second regions 164, and the conductive pads 180 are not electrically connected with the conductive wires 170, i.e. the conductive pads 180 and the conductive wires 170 are separated from each other. The extending segments 144 are electrically connected to the external circuit (such as the external circuit 320 illustrated in FIG. 1A) through the conductive pads 180, respectively. In addition, the connecting wires 190 are also disposed on the second regions 164.
  • FIG. 3 is a schematic drawing of two insulation substrates of a touch panel according to a third embodiment of the disclosure, and the structures configured on the bottom insulation substrate 150 are referred as the structures configured on the middle insulation substrate 150 without the insulation layer 250 and a portion of the connecting wires 260 while the portion of the connecting wires 260 is located on the insulation layer 250. Referring to FIG. 3, the touch panel 100 b of the present embodiment is similar to the touch panel 100 in FIG. 1B, and the difference between these two touch panels is described as below. The insulation layer 130 in FIG. 1B is not disposed on the conductive film 120 of the present embodiment and the conductive wire 350 as a whole is served as an electrode.
  • The conductive pads 180 are separately disposed on the sub-insulation layer 210 a. Furthermore, in the present embodiment, the touch panel 100 b further includes a sub-insulation layer 250 disposed on the margin of the conductive film 160 and connecting the sub-insulation layer 210 a and the sub-insulation layer 210 b. In the present embodiment, the sub-insulation layer 250 covers a portion of at least one conductive wire 170 and a portion of each one of the two sub-insulation layers 210 a and 210 b. A portion of at least one connecting wire (the connecting wire 260 is taken as an example in the present embodiment) is disposed above the sub-insulation layer 250 and the conductive wire 170. The inner connecting terminal 194 of the connecting wire 260 is located above the insulation layer 250 and above the first sub-insulation layer 210 b. The insulation layer 250 isolates the first conductive wire 170 from the connecting wire 260 and the insulation layer 210 isolates the connecting wires 190 and 260 from the conductive film 160. Moreover, the touch panel 100 b of the present embodiment can further includes a plurality of dummy pads 240 disposed on the conductive film 120 and corresponding to the contact points 176 and the conductive pads 180 so as to improve the flatness of the touch panel 100 b.
  • FIG. 4 is a schematic drawing of two insulation substrates of a touch panel according to a fourth embodiment of the disclosure, and the structures configured on the bottom insulation substrate 150 are referred as the structures configured on the middle insulation substrate 150 without the insulation layer 270 and a portion of the connecting wires 280 while the portion of the connecting wires 280 is located on the insulation layer 270. Referring to FIG. 4, the touch panel 100 c is similar to the touch panel 100 b in FIG. 3. Specifically, the structures configured on the insulation substrate 110 of the touch panel 100 c according to the present embodiment are the same as the structures configured on the insulation substrate 110 in FIG. 3, but the structures configured on the insulation substrate 150 according to the present embodiment are similar to the structures configured on the insulation substrate 140 in FIG. 2. The difference between the structures configured on the insulation substrate 150 according to the present embodiment and the structures configured on the insulation substrate 150 in FIG. 2 are provided below. In the present embodiment, the touch panel 100 c further includes an insulation layer 270 covering at least a portion of the periphery of the conductive film 160 a and covering a portion of one conductive wire 170. At least one connecting wire (the connecting wire 280 is taken as an example in the present embodiment) is disposed on the insulation layer 270 and extended from a corner of the conductive film 160 a to an adjacent corner of the conductive film 160 a. The connecting wire 280 and the electrode segment 172 of the conductive wires 170 covered by the insulation layer 270 (the lower electrode segment 172 in the figure) are respectively disposed at two opposite sides of the insulation layer 270. In the present embodiment, an extending direction of the electrode segment 172 is substantially parallel to an extending direction a portion of the connecting wire 280 located in the first region 162. Each one of the connecting wires 280 has an external connecting terminal 192 and an inner connecting terminal 194 opposite to the external connecting terminal 192 and the inner connecting terminals 194 are respectively electrically connected to the conductive wires 350. The external connecting terminal 192 is configured with the conductive pad 180. The external circuit (such as the external circuit 320 illustrate in FIG. 1A) is electrically connected to the extending segments 174 a and the external connecting terminals 192. In addition, at least another connecting wire (the connecting wire 190 is taken as an example in the present embodiment) is disposed on at least one of the second regions 164.
  • FIG. 5 is a schematic drawing of two insulation substrates of a touch panel according to a fifth embodiment of the disclosure. Referring to FIG. 5, the touch panel 100 d of the present embodiment is similar to the touch panel 100 b in FIG. 3, and the difference between these two touch panels is described as below. The sub-insulation layer 250 in FIG. 3 is not disposed in the touch panel 100 d of the present embodiment. Alternatively, the insulation layer 201′ includes a sub-insulation layer 210 c, a sub-insulation layer 210 d, and a sub-insulation layer 210 e. The sub-insulation layer 210 c and the sub-insulation layer 210 d are respectively disposed at two opposite margins of the conductive film 160. The sub-insulation layer 210 e is disposed on the margin of the conductive film 160 and connects the sub-insulation layer 210 c and the sub-insulation layer 210 d. In the present embodiment, the sub-insulation layer 210 e and one of the electrode segments 172 are disposed at the same side of the insulation substrate 150. In addition, in the present embodiment, an extending direction of the sub-insulation layer 210 e is substantially parallel to the extending directions of all electrode segments 172. The conductive pads 180 are separately disposed on the sub-insulation layer 210 c, and the conductive pads 180 and the conductive wires 170 are separately disposed and the conductive wires 350 are electrically connected to the external circuit (such as the external circuit 320 illustrated in FIG. 1A) through the conductive pads 180, respectively.
  • A portion of at least one connecting wire (the connecting wire 290 is taken as an example in the present embodiment) is disposed above the sub-insulation layer 210 e and adjacent to the conductive wire 172. The inner connecting terminal 194 of the connecting wire 290 is located on the sub-insulation layer 210 d and the insulation layer 210′ isolates the connecting wire 290 from the conductive film 160.
  • In the touch panel 100 d of the present embodiment, the connecting wire 290 disposed on the insulation substrate 150 is extended from a corner of the conductive film 160 to an adjacent corner thereof and connects the conductive wire 350 on the insulation substrate 110 to the external circuit, which is efficiently simplify the layout and reduce the amount of the conductive wires 350 on the insulation substrate 110. When the insulation substrate 110 is a decorative substrate, the connecting wire 290 is capable of simplifying the layout of the conductive wires 350 on the insulation substrate 110 so that the conductive wire 350 as a whole can be served as an electrode. Accordingly, the decorative substrate may be not treated by the dry etching process or the wet etching process to improve the yield and the reliability of the touch panel 100 d.
  • FIG. 6 is a schematic drawing of two insulation substrates of a touch panel according to a sixth embodiment of the disclosure. Referring to FIG. 6, the touch panel 100 e of the present embodiment is similar to the touch panel 100 d in FIG. 5, and the difference between these two touch panels is described as below. In the touch panel 100 e of the present embodiment, the insulation layer 210′ depicted in FIG. 5 is not used. Alternatively, the conductive film 160 a having a first region 162 and a plurality of second regions 164 is used in the touch panel 100 e of the present embodiment, and the first region 162 and the second regions 164 are separated from one another. A plurality of connecting wires 190 and 310 are disposed on two or more of the second regions 164. At least one connecting wire (the connecting wire 310 is taken as an example in the present embodiment) is extended from a corner of the conductive film 160 a to an adjacent corner thereof. In the present embodiment, the connecting wire 310 and one of the conductive wires 170 are disposed on the same side of the insulation substrate 150. In addition, in the present embodiment, an extending direction of a portion of the connecting wire 310 is substantially parallel to the extending directions of all electrode segments 172. Each one of the connecting wires (such as the connecting wires 190 and 310) has an external connecting terminal 192 and an inner connecting terminal 194 opposite to the external connecting terminal 192 and the inner connecting terminals 194 are respectively electrically connected to the conductive wires 350.
  • FIG. 7 is a schematic cross-sectional view of a touch panel according to a seven embodiment of the disclosure. The touch panel 100 f of the present embodiment is similar to the touch panel 100 in FIG. 1A, and the difference between the two touch panels lies in that the external circuit 320 according to the present embodiment is disposed on the surface 154 of the insulation substrate 150, and the surface 154 is opposite to the surface 152. Specifically, a plurality of conductive pads 330 can be disposed on the surface 154, which are electrically connected to the conductive wires 170 (as shown in FIG. 1B) and the conductive wires 140 through a plurality of conductive through holes 340. The external circuit 320 is not disposed between the insulation substrate 110 and the insulation substrate 150 so as to further improve the flatness of the touch panel 100 f.
  • In summary, according to a touch panel of the embodiment of the disclosure, the extending segments of the conductive wires on one insulation substrate is isolated from the conductive film by the insulation layer so as to have the advantages of lowering the manufacturing cost, preventing from the damage caused by the etching process on the substrate, enhancing the yield of the touch panel, and improving the reliability when it is compared with the conventional process of separating the conductive film into the isolated blocks by an etching process. In addition, the touch panel according to an embodiment of the disclosure, the connecting wire on one insulation substrate is extended from a corner of the conductive film to an adjacent corner thereof and connects the conductive wire on another insulation substrate to the external circuit so as to efficiently simplify the conductive wire on the another insulation substrate.
  • Although the present disclosure has been disclosed above by the embodiments, they are not intended to limit the present disclosure. Anybody skilled in the art can make some modifications and alteration without departing from the spirit and scope of the present disclosure. Therefore, the protecting range of the present disclosure falls in the appended claims.

Claims (27)

1. A touch panel, comprising:
a first insulation substrate having a first conductive film contacting with the first insulation substrate;
a first insulation layer covering a portion of a periphery of the first conductive film so that the first conductive film has a first exposed region;
a plurality of first conductive wires separately disposed at the periphery of the first conductive film, and each of the first conductive wires comprising:
a first electrode segment contacting with the first exposed region to be electrically connected to the first conductive film; and
a first extending segment contacting with the first insulation layer to be isolated from the first conductive film;
a second insulation substrate having a second conductive film thereon contacting with the second insulation substrate; and
a plurality of second conductive wires separately disposed on a periphery of the second conductive film,
wherein the second insulation substrate is for connecting with an external circuit.
2. The touch panel as claimed in claim 1, wherein the first insulation substrate is more adjacent to a touch surface of the touch panel than the second insulation substrate is.
3. The touch panel as claimed in claim 1, wherein the first insulation substrate is a decorative substrate having patterns, characters, or a combination thereof.
4. The touch panel as claimed in claim 1, wherein the first insulation layer comprises two sub-insulation layers located at two adjacent margins of the first conductive film, a portion of each of the first conductive wires is isolated from the first conductive film through the sub-insulation layers, and another portion of each of the first conductive wires contacts the first exposed region.
5. The touch panel as claimed in claim 1, further comprising a second insulation layer covering a portion of the periphery of the second conductive film so that the second conductive film has a second exposed region, wherein each of the second conductive wires comprises:
a second electrode segment contacting with the second exposed region to be electrically connected with the second conductive film; and
a second extending segment contacting with the second insulation layer to be isolated from the second conductive film.
6. The touch panel as claimed in claim 5, further comprising a plurality of conductive pads separately disposed on the second insulation layer, the conductive pads being not electrically connected with the second conductive wires, the first extending segments being respectively electrically connected to the external circuit through the conductive pads, a terminal of each second extending segment being configured with a contact point, and the second conductive wires being respectively electrically connected to the external circuit through the contact points.
7. The touch panel as claimed in claim 6, further comprising a plurality of connecting wires, each of the connecting wires having an external connecting terminal and an inner connecting terminal opposite to the external connecting terminal, the conductive pads being respectively configured in the external connecting terminal, and a terminal of the first conductive wires being electrically connected to the inner connecting terminals.
8. The touch panel as claimed in claim 7, wherein the connecting wires are disposed on the second insulation layer and isolated from the second conductive film.
9. The touch panel as claimed in claim 8, wherein the terminal of the first conductive wires is electrically connected to the inner connecting terminals through conductive glue.
10. The touch panel as claimed in claim 1, wherein the second conductive film has a first region and a plurality of second regions, the first region and the second regions are separated from one another, and each of the second conductive wires comprises:
a second electrode segment contacting with the first region to be electrically connected to the first region; and
a second extending segment contacting with one of the second regions.
11. The touch panel as claimed in claim 10, further comprising a plurality of conductive pads separately disposed on a portion of the second regions, the conductive pads being not electrically connected with the second conductive wires, the first extending segments being respectively electrically connected to the external circuit through the conductive pads, a terminal of each second extending segment being configured with a contact point, and the second conductive wires being respectively electrically connected to the external circuit through the contact points.
12. The touch panel as claimed in claim 11, further comprising a plurality of connecting wires, each of the connecting wires having an external connecting terminal and an inner connecting terminal opposite to the external connecting terminal, the conductive pads being respectively configured in the external connecting terminal, and a terminal of the first conductive wires being electrically connected to the inner connecting terminals.
13. The touch panel as claimed in claim 1, wherein one of the first conductive film and the second conductive film comprises a carbon nanotube film.
14. A touch panel, comprising:
a first insulation substrate having a first conductive film contacting with the first insulation substrate;
a first insulation layer covering a portion of a periphery of the first conductive film so that the first conductive film has a first exposed region;
a plurality of first conductive wires separately disposed at the periphery of the first conductive film, and each of the first conductive wires comprising:
a first electrode segment contacting with the first exposed region to be electrically connected to the first conductive film; and
a first extending segment contacting with the first insulation layer to be isolated from the first conductive film;
a second insulation substrate having a second conductive film thereon contacting with the second insulation substrate; and
a plurality of second conductive wires separately disposed on a periphery of the second conductive film;
wherein the first insulation substrate is for connecting with an external circuit.
15. The touch panel as claimed in claim 14, wherein the second insulation substrate is more adjacent to a touch surface of the touch panel than the first insulation substrate is.
16. The touch panel as claimed in claim 14, wherein the second insulation substrate is a decorative substrate having patterns, characters, or a combination thereof.
17. The touch panel as claimed in claim 14, wherein the first insulation layer comprises:
a first sub-insulation layer;
a second sub-insulation layer, the first sub-insulation layer and the second sub-insulation layer being respectively disposed at two opposite margins of the first conductive film; and
a third sub-insulation layer disposed on a margin of the first conductive film and connecting with the first sub-insulation layer and the second sub-insulation layer.
18. The touch panel as claimed in claim 17, further comprising a plurality of conductive pads separately disposed on the first sub-insulation layer, the conductive pads being not electrically connected with the first conductive wires, and the second conductive wires being respectively electrically connected to the external circuit through the conductive pads.
19. The touch panel as claimed in claim 18, further comprising a plurality of connecting wires, each of the connecting wires having an external connecting terminal and an inner connecting terminal opposite to the external connecting terminal, the conductive pads being respectively configured in the external connecting terminal, and a terminal of the second conductive wires being electrically connected to the inner connecting terminals.
20. The touch panel as claimed in claim 19, wherein a portion of one of the connecting wires is disposed above the third sub-insulation layer and one of the first conductive wires.
21. The touch panel as claimed in claim 19, wherein a portion of one of the connecting wires is disposed above the third sub-insulation layer and adjacent to one of the first conductive wires.
22. The touch panel as claimed in claim 14, wherein one of the first conductive film and the second conductive film comprises a carbon nanotube film.
23. A touch panel, comprising:
a first insulation substrate having a first conductive film contacting with the first insulation substrate, the first conductive film having a first region and a plurality of second regions, and the first region and the second regions being separated from one another;
a plurality of first conductive wires separately disposed at a periphery of the first conductive film, and each of the first conductive wires comprising:
a first electrode segment contacting with the first region to be electrically connected to the first region; and
a first extending segment contacting with one of the second regions.
a second insulation substrate having a second conductive film contacting with the second insulation substrate; and
a plurality of second conductive wires separately disposed on a periphery of the second conductive film;
wherein the first insulation substrate is for connecting with an external circuit.
24. The touch panel as claimed in claim 23, further comprising:
an insulation layer covering a portion of the periphery of the first conductive film and covering a portion of one of the first conductive wires; and
a plurality of connecting wires, one of the connecting wires being disposed on the insulation layer and extended from a corner of the first conductive film to an adjacent corner thereof, the connecting wire and the first electrode segment of the first conductive wire covered by the insulation layer being respectively disposed at two opposite sides of the insulation layer, each of the connecting wires having an external connecting terminal and an inner connecting terminal, and the inner connecting terminal being respectively electrically connected to the second conductive wires.
25. The touch panel as claimed in claim 24, wherein another one of the connecting wires is disposed on one of the second regions.
26. The touch panel as claimed in claim 23, further comprising:
a plurality of connecting wires disposed on two or more of the second regions, wherein one of the connecting wires is extended from a corner of the first conductive film to an adjacent corner thereof, the connecting wires and one of the first conductive wires are disposed at a same side of the first insulation substrate, each of the connecting wires has an external connecting terminal and an inner connecting terminal, and the inner connecting terminals are respectively electrically connected to the second conductive wires.
27. The touch panel as claimed in claim 23, wherein one of the first conductive film and the second conductive film comprises a carbon nanotube film.
US12/826,599 2009-08-19 2010-06-29 Touch panel having a insulation layer Abandoned US20110043465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/489,081 US9537483B2 (en) 2009-08-19 2014-09-17 Touch panel having a insulation layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009103058041A CN101995988B (en) 2009-08-19 2009-08-19 Touch screen
CN200910305804.1 2009-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/489,081 Division US9537483B2 (en) 2009-08-19 2014-09-17 Touch panel having a insulation layer

Publications (1)

Publication Number Publication Date
US20110043465A1 true US20110043465A1 (en) 2011-02-24

Family

ID=43127217

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/826,599 Abandoned US20110043465A1 (en) 2009-08-19 2010-06-29 Touch panel having a insulation layer
US14/489,081 Active 2030-11-24 US9537483B2 (en) 2009-08-19 2014-09-17 Touch panel having a insulation layer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/489,081 Active 2030-11-24 US9537483B2 (en) 2009-08-19 2014-09-17 Touch panel having a insulation layer

Country Status (6)

Country Link
US (2) US20110043465A1 (en)
EP (2) EP2336866B1 (en)
JP (1) JP5690519B2 (en)
KR (1) KR101798233B1 (en)
CN (1) CN101995988B (en)
AT (1) ATE532126T1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120006585A1 (en) * 2010-07-06 2012-01-12 Panasonic Corporation Touch panel
CN103552107A (en) * 2013-11-05 2014-02-05 金龙机电(东莞)有限公司 Disassembling device and disassembling method for touch screen and liquid crystal display screen
US20140168535A1 (en) * 2012-12-19 2014-06-19 Chih-Chung Lin Touch panel
US20150109226A1 (en) * 2013-10-18 2015-04-23 Lg Innotek Co., Ltd. Touch panel
US9058074B2 (en) 2012-09-18 2015-06-16 Lg Display Co., Ltd. Organic light emitting display
US9285405B2 (en) 2012-08-24 2016-03-15 Shenzhen O-Film Tech Co., Ltd. Thin film sensor, capacitive touch panel having the same and preparation method thereof and terminal product
US9360974B2 (en) * 2012-10-11 2016-06-07 Lg Innotek Co., Ltd. Touch panel and method of manufacturing the same
US20160195969A1 (en) * 2015-01-05 2016-07-07 Samsung Display Co., Ltd. Display device
US9510456B2 (en) 2012-11-09 2016-11-29 Shenzhen O-Film Tech Co., Ltd. Transparent conductor and preparation method thereof
US20170228073A1 (en) * 2016-02-05 2017-08-10 Fujitsu Component Limited Touchscreen and method of manufacturing touchscreen
US20180077827A1 (en) * 2012-05-18 2018-03-15 Wistron Corporation Touch panel with single plate and manufacturing method thereof
US10453910B2 (en) * 2016-07-20 2019-10-22 Samsung Display Co., Ltd. Display apparatus
US11467698B2 (en) * 2018-04-17 2022-10-11 Dongwoo Fine-Chem Co., Ltd. Touch sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008435U (en) * 2011-05-31 2012-12-10 영 패스트 옵토일렉트로닉스 씨오., 엘티디. An improved structure of touch panel
JP5701450B2 (en) * 2012-04-19 2015-04-15 深▲セン▼欧菲光科技股▲フン▼有限公司Shenzhen O−Film Tech Co., Ltd. Conductive component and preparation method thereof
TWI574367B (en) * 2012-05-31 2017-03-11 群康科技(深圳)有限公司 Touch panel, manufacturing method thereof and display device using the same
CN103576949B (en) * 2012-07-24 2017-02-15 宸鸿科技(厦门)有限公司 Touch panel and manufacturing method thereof
CN104063075A (en) * 2013-03-18 2014-09-24 林志忠 Touch panel
JP2017167572A (en) * 2014-06-30 2017-09-21 日本電気株式会社 Resistive film type touch panel and method for manufacturing the same, and touch panel display
CN104615318A (en) * 2015-01-23 2015-05-13 深圳市华星光电技术有限公司 Touch screen and terminal provided with same
CN107610836B (en) * 2017-08-09 2019-03-29 芜湖伦丰电子科技有限公司 The production method of touch screen with multilayer conductive film
EP4239458A4 (en) * 2021-02-09 2024-02-21 Samsung Electronics Co., Ltd. Digitizer panel and electronic device comprising digitizer panel

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897511A (en) * 1987-06-17 1990-01-30 Gunze Limited Method of detection of the contacting position in touch panel sensor
US5181030A (en) * 1989-12-28 1993-01-19 Gunze Limited Input system including resistance film touch panel and pushed position detecting device
US5506375A (en) * 1993-02-22 1996-04-09 Wacom Co., Ltd. Circuit board for coordinate detecting apparatus with noise suppression
US6304251B1 (en) * 1998-07-06 2001-10-16 Alps Electric Co., Ltd. Coordinate input device with flat cable having two divided flat mounting parts composing divided conductor portions
US6305073B1 (en) * 1999-12-29 2001-10-23 Gm Nameplate, Inc. One-sided electrode arrangement on an intermediate spacer for a touchscreen
US6356259B1 (en) * 1998-07-15 2002-03-12 Smk Corporation Touch-panel input device
US20020090798A1 (en) * 2001-01-10 2002-07-11 Young-Soo Ahn Contact structure of substrates of touch panel and method of bonding the same
US20020149572A1 (en) * 2001-04-17 2002-10-17 Schulz Stephen C. Flexible capacitive touch sensor
US6522322B1 (en) * 1999-03-30 2003-02-18 Smk Corporation Touch panel input device
US20030095111A1 (en) * 2001-11-14 2003-05-22 In-Duk Song Touch panel
US20040100452A1 (en) * 2002-11-14 2004-05-27 Oh Eui Yeol Touch panel for display device
US20050209392A1 (en) * 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
US20060192767A1 (en) * 2003-08-18 2006-08-31 Gunze Limited Transparent touch panel and electronic apparatus
US20060223346A1 (en) * 2005-03-31 2006-10-05 Shoji Fujii Wiring board, input device using the same wiring board and method of manufacturing the same input device
US7227537B2 (en) * 2002-09-30 2007-06-05 Smk Corporation Touch panel
US20070182720A1 (en) * 2006-02-07 2007-08-09 Shoji Fujii Touch panel
US7400319B2 (en) * 2004-02-05 2008-07-15 Smk Corporation Tablet apparatus
US20080186418A1 (en) * 2007-02-02 2008-08-07 Samsung Electronics Co., Ltd. Display device
US20080238882A1 (en) * 2007-02-21 2008-10-02 Ramesh Sivarajan Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
US20080252612A1 (en) * 2007-04-13 2008-10-16 Innolux Display Corp. Touch panel display device with signal transmission channel
US7499038B2 (en) * 2002-12-10 2009-03-03 Nissha Printing Co., Ltd. Thin-frame touch panel
US20090102810A1 (en) * 2007-10-23 2009-04-23 Tsinghua University Touch panel
US20090134001A1 (en) * 2007-11-26 2009-05-28 Nobuhiro Yamaue Touch panel
US20090153516A1 (en) * 2007-12-12 2009-06-18 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US20090153521A1 (en) * 2007-12-14 2009-06-18 Tsinghua University Touch panel and display device using the same
US20090167707A1 (en) * 2007-12-27 2009-07-02 Tsinghua University Touch control device
US20090201268A1 (en) * 2008-02-08 2009-08-13 Fujitsu Component Limited Panel-type input device, method of manufacturing panel-type input device, and electronic apparatus having panel-type input device
US20090256820A1 (en) * 2008-04-09 2009-10-15 Nec Lcd Technologies, Ltd. Display device, liquid crystal display device, electronic apparatus, and display device manufacturing method
US20090267913A1 (en) * 2008-04-25 2009-10-29 Sony Corporation Touch panel and manufacturing method of the same
US7825905B2 (en) * 2003-08-21 2010-11-02 Atmel Corporation Anisotropic touch screen element
US8350727B2 (en) * 2009-07-08 2013-01-08 Chimei Innolux Corporation Touch panel and electronic device including the same
US8421757B2 (en) * 2007-10-12 2013-04-16 Sony Corporation Touch sensor with a plurality of touch sensor sections
US8481855B2 (en) * 2009-12-09 2013-07-09 Hosiden Corporation Flexible wiring substrate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615376Y2 (en) * 1987-11-24 1994-04-20 三菱電機株式会社 Flat switch
JPH08203382A (en) * 1995-01-31 1996-08-09 Matsushita Electric Ind Co Ltd Analog transparent touch screen and its manufacture
US6081259A (en) * 1997-11-25 2000-06-27 Lsi Logic Corporation Method and apparatus for reducing noise in an electrostatic digitizer
JP4270761B2 (en) * 2001-01-17 2009-06-03 富士通コンポーネント株式会社 Touch panel
WO2004023503A1 (en) * 2002-09-03 2004-03-18 Nissha Printing Co., Ltd. Touch panel with adhesive layer
KR100469358B1 (en) * 2002-12-23 2005-02-02 엘지.필립스 엘시디 주식회사 Method for driving touch panel
CN1186745C (en) * 2003-03-18 2005-01-26 中国电子科技集团公司第五十五研究所 High reliable touch screen and manufacturing technique
JP4308694B2 (en) * 2004-03-29 2009-08-05 富士通コンポーネント株式会社 Coordinate detection apparatus and coordinate detection method
US20060113346A1 (en) 2004-11-30 2006-06-01 Bridgestone Sports Co., Ltd. Caddie bag
TWI369796B (en) * 2007-12-25 2012-08-01 Wintek Corp Touch panel and driving method thereof

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897511A (en) * 1987-06-17 1990-01-30 Gunze Limited Method of detection of the contacting position in touch panel sensor
US5181030A (en) * 1989-12-28 1993-01-19 Gunze Limited Input system including resistance film touch panel and pushed position detecting device
US5506375A (en) * 1993-02-22 1996-04-09 Wacom Co., Ltd. Circuit board for coordinate detecting apparatus with noise suppression
US6304251B1 (en) * 1998-07-06 2001-10-16 Alps Electric Co., Ltd. Coordinate input device with flat cable having two divided flat mounting parts composing divided conductor portions
US6356259B1 (en) * 1998-07-15 2002-03-12 Smk Corporation Touch-panel input device
US6522322B1 (en) * 1999-03-30 2003-02-18 Smk Corporation Touch panel input device
US6305073B1 (en) * 1999-12-29 2001-10-23 Gm Nameplate, Inc. One-sided electrode arrangement on an intermediate spacer for a touchscreen
US20020090798A1 (en) * 2001-01-10 2002-07-11 Young-Soo Ahn Contact structure of substrates of touch panel and method of bonding the same
US6552718B2 (en) * 2001-01-10 2003-04-22 Atough Co., Ltd. Contact structure of substrates of touch panel and method of bonding the same
US20020149572A1 (en) * 2001-04-17 2002-10-17 Schulz Stephen C. Flexible capacitive touch sensor
US20030095111A1 (en) * 2001-11-14 2003-05-22 In-Duk Song Touch panel
US7227537B2 (en) * 2002-09-30 2007-06-05 Smk Corporation Touch panel
US20040100452A1 (en) * 2002-11-14 2004-05-27 Oh Eui Yeol Touch panel for display device
US7499038B2 (en) * 2002-12-10 2009-03-03 Nissha Printing Co., Ltd. Thin-frame touch panel
US20060192767A1 (en) * 2003-08-18 2006-08-31 Gunze Limited Transparent touch panel and electronic apparatus
US7825905B2 (en) * 2003-08-21 2010-11-02 Atmel Corporation Anisotropic touch screen element
US20050209392A1 (en) * 2003-12-17 2005-09-22 Jiazhong Luo Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
US7400319B2 (en) * 2004-02-05 2008-07-15 Smk Corporation Tablet apparatus
US20060223346A1 (en) * 2005-03-31 2006-10-05 Shoji Fujii Wiring board, input device using the same wiring board and method of manufacturing the same input device
US7455529B2 (en) * 2005-03-31 2008-11-25 Panasonic Corporation Wiring board, input device using the same wiring board and method of manufacturing the same input device
US20070182720A1 (en) * 2006-02-07 2007-08-09 Shoji Fujii Touch panel
US7710406B2 (en) * 2006-02-07 2010-05-04 Panasonic Corporation Touch panel
US20080186418A1 (en) * 2007-02-02 2008-08-07 Samsung Electronics Co., Ltd. Display device
US20080238882A1 (en) * 2007-02-21 2008-10-02 Ramesh Sivarajan Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
US20080252612A1 (en) * 2007-04-13 2008-10-16 Innolux Display Corp. Touch panel display device with signal transmission channel
US8421757B2 (en) * 2007-10-12 2013-04-16 Sony Corporation Touch sensor with a plurality of touch sensor sections
US20090102810A1 (en) * 2007-10-23 2009-04-23 Tsinghua University Touch panel
US20090134001A1 (en) * 2007-11-26 2009-05-28 Nobuhiro Yamaue Touch panel
US20090153516A1 (en) * 2007-12-12 2009-06-18 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US20090153521A1 (en) * 2007-12-14 2009-06-18 Tsinghua University Touch panel and display device using the same
US20090167707A1 (en) * 2007-12-27 2009-07-02 Tsinghua University Touch control device
US20090201268A1 (en) * 2008-02-08 2009-08-13 Fujitsu Component Limited Panel-type input device, method of manufacturing panel-type input device, and electronic apparatus having panel-type input device
US20090256820A1 (en) * 2008-04-09 2009-10-15 Nec Lcd Technologies, Ltd. Display device, liquid crystal display device, electronic apparatus, and display device manufacturing method
US20090267913A1 (en) * 2008-04-25 2009-10-29 Sony Corporation Touch panel and manufacturing method of the same
US8350727B2 (en) * 2009-07-08 2013-01-08 Chimei Innolux Corporation Touch panel and electronic device including the same
US8481855B2 (en) * 2009-12-09 2013-07-09 Hosiden Corporation Flexible wiring substrate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389865B2 (en) * 2010-07-06 2013-03-05 Panasonic Corporation Touch panel
US20120006585A1 (en) * 2010-07-06 2012-01-12 Panasonic Corporation Touch panel
US10866680B2 (en) * 2012-05-18 2020-12-15 Wistron Corporation Touch panel with single plate and manufacturing method thereof
US20180077827A1 (en) * 2012-05-18 2018-03-15 Wistron Corporation Touch panel with single plate and manufacturing method thereof
US9285405B2 (en) 2012-08-24 2016-03-15 Shenzhen O-Film Tech Co., Ltd. Thin film sensor, capacitive touch panel having the same and preparation method thereof and terminal product
TWI549287B (en) * 2012-09-18 2016-09-11 樂金顯示科技股份有限公司 Organic light emitting display
US9058074B2 (en) 2012-09-18 2015-06-16 Lg Display Co., Ltd. Organic light emitting display
US9360974B2 (en) * 2012-10-11 2016-06-07 Lg Innotek Co., Ltd. Touch panel and method of manufacturing the same
US9510456B2 (en) 2012-11-09 2016-11-29 Shenzhen O-Film Tech Co., Ltd. Transparent conductor and preparation method thereof
US9188803B2 (en) * 2012-12-19 2015-11-17 Chih-Chung Lin Touch panel
US20140168535A1 (en) * 2012-12-19 2014-06-19 Chih-Chung Lin Touch panel
US9983701B2 (en) * 2013-10-18 2018-05-29 Lg Innotek Co., Ltd. Touch panel
US20150109226A1 (en) * 2013-10-18 2015-04-23 Lg Innotek Co., Ltd. Touch panel
CN103552107A (en) * 2013-11-05 2014-02-05 金龙机电(东莞)有限公司 Disassembling device and disassembling method for touch screen and liquid crystal display screen
US20160195969A1 (en) * 2015-01-05 2016-07-07 Samsung Display Co., Ltd. Display device
US9939973B2 (en) * 2015-01-05 2018-04-10 Samsung Display Co., Ltd. Display device including a touch sensor
US20170228073A1 (en) * 2016-02-05 2017-08-10 Fujitsu Component Limited Touchscreen and method of manufacturing touchscreen
US11099702B2 (en) * 2016-02-05 2021-08-24 Fujitsu Component Limited Touchscreen and method of manufacturing touchscreen
US10453910B2 (en) * 2016-07-20 2019-10-22 Samsung Display Co., Ltd. Display apparatus
US11467698B2 (en) * 2018-04-17 2022-10-11 Dongwoo Fine-Chem Co., Ltd. Touch sensor

Also Published As

Publication number Publication date
EP2336866B1 (en) 2012-11-28
JP2011044137A (en) 2011-03-03
US9537483B2 (en) 2017-01-03
ATE532126T1 (en) 2011-11-15
JP5690519B2 (en) 2015-03-25
KR20110019329A (en) 2011-02-25
CN101995988B (en) 2012-08-15
EP2287717A1 (en) 2011-02-23
KR101798233B1 (en) 2017-11-15
US20150035642A1 (en) 2015-02-05
EP2336866A1 (en) 2011-06-22
EP2287717B1 (en) 2011-11-02
CN101995988A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US9537483B2 (en) Touch panel having a insulation layer
US8115751B2 (en) Capacitive touch sensing assembly
JP5744562B2 (en) Touch screen panel and manufacturing method thereof
TWI476656B (en) Touch panel and manufacturing method thereof
US20150110953A1 (en) Touch panel, method for manufacturing the same, and liquid crystal display device including the touch panel
TWM344544U (en) Sensory structure of touch panel
US8350727B2 (en) Touch panel and electronic device including the same
US8947399B2 (en) Dual-substrate capacitive touch panel
JP5925659B2 (en) Touch panel and manufacturing method thereof
US20110315536A1 (en) Touch panel
WO2010058495A1 (en) Touch panel and display device using the same
CN110858107A (en) Touch control display device
KR101241469B1 (en) Touch panel
US9454275B2 (en) Touch panel
TWI457814B (en) Touch panel and method of making the same
JP2007233513A (en) Touch panel
TWM354119U (en) Improved capacitance touch sensor structure
CN102236446A (en) Slim touch device
KR20090024842A (en) Pad for preparing touch panel, method of preparing touch panel using the same and touch panel thereby
TWI395999B (en) Touch panel
KR20120101310A (en) Touch panel
CN110174965B (en) Narrow-frame touch panel
KR100822187B1 (en) Touch panel and flat display panel applying the same
KR20130022259A (en) Slim type touch device
KR102237838B1 (en) Touch panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOLUX CORPORATION, TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:CHIMEI INNOLUX CORPORATION;REEL/FRAME:032672/0813

Effective date: 20121219

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION