US20100300917A1 - Methods of providing antioxidants to a drug containing product - Google Patents
Methods of providing antioxidants to a drug containing product Download PDFInfo
- Publication number
- US20100300917A1 US20100300917A1 US12/851,414 US85141410A US2010300917A1 US 20100300917 A1 US20100300917 A1 US 20100300917A1 US 85141410 A US85141410 A US 85141410A US 2010300917 A1 US2010300917 A1 US 2010300917A1
- Authority
- US
- United States
- Prior art keywords
- antioxidant
- packaging
- rapamycin
- medical device
- stent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1303—Paper containing [e.g., paperboard, cardboard, fiberboard, etc.]
- Y10T428/1307—Bag or tubular film [e.g., pouch, flexible food casing, envelope, etc.]
Definitions
- This invention generally relates to a method of providing a volatile antioxidant (e.g., butylated hydroxytoluene (BHT) and/or butylated hydroxyanisole (BHA)) to a package with a medical device such as a drug-delivery stent.
- a volatile antioxidant e.g., butylated hydroxytoluene (BHT) and/or butylated hydroxyanisole (BHA)
- BHT butylated hydroxytoluene
- BHA butylated hydroxyanisole
- Drug delivery stent is becoming a common practice to treat, prevent or ameliorate a cardiovascular condition or a related medical condition.
- the drug or drug-polymer formulation is first applied onto the stent as a coating.
- the stent then undergoes many post coating treatments, which may involve heat, moisture, pressure, sterilized gas, electron beam or radiation.
- One of the commonly used methods to circumvent these shortcomings is to include one or more antioxidants in the stent coating formulation.
- Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are commonly used antioxidant in food industry.
- many drugs such as limus family (e.g. everolimus, sirolimus, ABT 578, biorolimus) and paclitaxel are oxygen sensitive.
- antioxidant was introduced into the drug coating formulation. Among them are BHT and BHA.
- BHA is a volatile solid with melting temperature of 45 to 63° C. BHT can be sublimated at temperatures under its melting point (70° C.). Studies have shown that in some stent coating processes, up to 40% BHT may be lost during standard ethylene oxide (ETO) sterilization process, which involves heat and moisture.
- ETO ethylene oxide
- a method for providing a volatile antioxidant (e.g., BHT and/or BHA) to a medical device (e.g., drug delivery stent) during and/or after the manufacturing process of the device includes adding an antioxidant (e.g., BHT and/or BHA) to a medical device or a coating for the device, causing the antioxidant to permeate into a medical device or a coating for the device, or otherwise providing an antioxidant in the proximity or surrounding of a medical device (e.g., a stent).
- the antioxidant permeates into a medical device or a coating of the medical device so as to provide the antioxidant in the device and/or coating or to enhance the content of the antioxidant in the device and/or coating.
- the antioxidant can be the same or different from the antioxidant in the device or coating should the device or coating already include one.
- the medical device can be a stent that can be a metallic or polymeric stent which is biodegradable or nondegradable.
- the stent itself or a coating on the stent may include a bioactive agent such as paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), pimecrolimus, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N-1-tetrazolyl)-rapa
- FIG. 1 shows one embodiment of the present invention where an antioxidant is placed in a porous or permeable container in a product package containing a medical device;
- FIG. 2 shows another embodiment of the present invention where an antioxidant is present between the product packaging that includes a medical device and a secondary packaging in that the antioxidant is placed in the outer layer of the product packaging;
- FIG. 3 shows another embodiment of the present invention where an antioxidant is present between the product packaging that includes a medical device and a secondary packaging in that the antioxidant is placed in the inner layer of the secondary packaging;
- FIG. 4 shows butylated hydroxytoluene (BHT) powder sublimation at different temperature
- FIG. 5 shows BHT retained in a coating at different temperatures.
- an antioxidant e.g., a volatile antioxidant
- BHT butylated hydroxytoluene
- BHA butylated hydroxyanisole
- the method includes causing an antioxidant (e.g., BHT and/or BHA) to permeate into a medical device or a coating on the device or otherwise providing an antioxidant in the proximity of a medical device (e.g., a stent) to allow the antioxidant to permeate into the medical device or the coating of the medical device so as to provide the antioxidant to the device or the coating or to enhance the content of the antioxidant in the device or the coating.
- a medical device e.g., a stent
- the device or coating can include a drug.
- the antioxidant can be the same or different from the antioxidant in the device or coating should the device or the coating already include one.
- the device or coating does not include an antioxidant such that the method provides for one to be added in the device or coating.
- the antioxidant added to a medical device or coating by the method described herein may compensate the whole or part of the loss of the antioxidant in the medical device (e.g., stent) or coating during the manufacture or storage of the medical device.
- the antioxidant is added to the device or coating in an amount more than the loss of the antioxidant in the medical device or coating from the manufacturing process or during storage.
- the medical device can be a stent that can be a metallic or polymer stent.
- the stent can be a biodegradable stent or a nondegradable stent.
- the stent may have a polymeric coating that may include a bioactive agent such as everolimus.
- the coating can be biodegradable or nondegradable.
- the stent, itself can be a polymeric biodegradable, bioerodable or bioabsorbable stent, terms which are used interchangeably unless specifically indicated, which can include the bioactive agent embedded in the body of the stent or coating in the stent.
- the stent can be intended for neurovasculature, carotid, coronary, pulmonary, aorta, renal, biliary, iliac, femoral, popliteal, or other peripheral vasculature.
- the stent can be used to treat, prevent, or ameliorate a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
- an amount e.g., ranging from about 1 mg to about 10 g
- a volatile antioxidant can be placed in a porous or permeable container and then place the container inside a product package such as a Tyvek pouch within which a medical device (e.g., stent) is packaged.
- a product package such as a Tyvek pouch within which a medical device (e.g., stent) is packaged.
- FIG. 1 where the Tyvek package 100 contains a stent 110 and a porous or permeable container 120, which contains antioxidant 130 .
- a kit having a sterile device, such as a drug delivery stent, and an antioxidant included in the kit packaging.
- the stent can be packaged alone or may be pre-crimped on a delivery catheter or a balloon catheter, ready for use by a health care provider.
- the figures do not illustrate a catheter assembly for delivery of the stent but such devices are well known to one having ordinary skill in the art.
- permeation of BHT into a polymeric coating can be achieved by placing a certain amount (e.g., 500 mg) of BHT in a porous or permeable container and placing the container inside a Tyvek pouch within which a medical device such as a stent is packaged prior to ethylene oxide (ETO) sterilization.
- ETO ethylene oxide
- BHT sublimates to form a BHT gas.
- the BHT gas then fills in the Tyvek pouch.
- the permeation rate of molecules through a Tyvek pouch is size sensitive. Larger molecules have a smaller permeation rate while smaller molecules have a larger permeation rate.
- Permeation rate of ETO, cresol and toluene on one kind of Tyvek material are listed below as examples of molecular size dependence on the permeation rate (Table 1).
- the level of antioxidant can be lower than the initial level of the antioxidant. In some embodiments, as mentioned previously, the level is higher. It is also possible that the level of antioxidant is preserved, e.g., about ⁇ 5%, about ⁇ 10%, about ⁇ 15%, about ⁇ 20%, or about ⁇ 30%.
- an amount e.g., an amount from about 1 mg to about 20 g
- an antioxidant or a volatile antioxidant e.g., BHT and/or BHA
- a medical device such as bioerodable polymeric stent or polymeric coated metallic stent, which is packaged within a package (e.g., Tyvek package), in a gas impermeable secondary package after sterilization. In some embodiments, it can be before sterilization.
- the secondary packaging 200 encloses a Tyvek packaging 210 , which includes a stent 220 .
- the kit can include the stent 220 by itself or pre-crimped on a delivery catheter or balloon catheter.
- the gas impermeable secondary package can be made of any plastic or non-plastic material.
- the volatile antioxidant e.g., BHT and/or BHA
- evaporates over time fills the space and prevents the infiltrated oxygen from damaging the product.
- antioxidant gas e.g., BHT gas
- the heating can be achieved by any heating means known in the art. It is noteworthy that, in this embodiment, the volatile antioxidant (e.g., BHT) is not added directly to the polymer and/or drug formulation.
- the shelf life of a medical device can be improved by providing a gas impermeable secondary package, placing (e.g., by coating) an amount (e.g., about 1 mg to about 20 g) of an antioxidant (e.g., BHT particles or BHT film) in the inner-layer or inside of the secondary package, and placing a sterilized product package (e.g., Tyvek package) containing a drug-delivery stent that can include a antioxidant (e.g., BHA and/or BHT) into the secondary package.
- an antioxidant e.g., BHT particles or BHT film
- a sterilized product package e.g., Tyvek package
- the sterilization can be by commonly known techniques including ETO.
- sterilization can be subsequent to placement in the secondary package. As shown in FIG.
- the secondary packaging 200 encloses a Tyvek packaging 210 , which includes a stent 220 .
- an antioxidant 230 is placed on the inner layer or inside of the secondary packaging 200 . The antioxidant will then evaporate to form a vapor which protects the enclosed product.
- the antioxidant can be the same or different from the antioxidant in the medical device. As with any other embodiments of the invention, such embodiment can be in the form of a labeled medical kit with a stent or the stent premounted on a delivery or balloon catheter.
- the product shelf life can be prolonged by placing (e.g., by coating) an amount (e.g., about 1 mg to about 20 g) of a volatile antioxidant (e.g., BHT particles or BHT film) on the outer layer of a product package (e.g., Tyvek package) containing a medical device (e.g., stent) that can include a antioxidant and placing the product package inside a gas impermeable secondary package.
- a volatile antioxidant e.g., BHT particles or BHT film
- a product package e.g., Tyvek package
- a medical device e.g., stent
- the medical device can be sterilized prior to placement in the secondary package or alternatively after its placement.
- the antioxidant then evaporates over the time to protect the drug from oxidation.
- the antioxidant can be added between the two packaging in solid, fluid or gas form and is not limited to a coating form.
- the antioxidant can be the same or different from the antioxidant in the medical device should the device already include one.
- gas impermeable means impermeable to an antioxidant gas, preferably to BHT or BHA (conversely, the term “permeable” means permeable to an antioxidant gas).
- such an assembly can be in the form of a medical kit with a stent or the stent premounted on a catheter.
- an antioxidant can be added to the formulation from which the device is made or from which the device is coated.
- the antioxidant can be added to the polymer/solvent coating formulation with or without a drug.
- the formulation could be used to form the reservoir layer or a topcoat layer on top of the reservoir layer.
- the topcoat layer can be free of drug although in certain circumstances some drug migration might occur.
- the method described herein is applicable to any medical device coated with one or more drugs or bioactive agents with or without a polymeric material and optionally with one or more biobeneficial materials.
- the drug can be blended, conjugated, bonded or combined with a polymer.
- the method described herein is also applicable to any biodurable or bioabsorable (which can include bioerodable or biodegradable) device formed of a polymeric material optionally with one or more bioactive agents.
- the drugs or agents can be compounded in the body of the device or coated on the device.
- the biocompatible polymer useful for forming a coating composition can be any biocompatible polymer known in the art, which can be biodegradable or nondegradable.
- Biodegradable is intended to include bioabsorbable or bioerodable, unless otherwise specifically stated.
- Representative examples of polymers that can be used to coat a medical device in accordance with the present invention include, but are not limited to, poly(ester amide), ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(L-lactide), poly(D-lactide), poly(D,L-lactide), poly(D,L-lactide-co-L-lactide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide) (PDLLAGA), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), poly(hydroxyvalerate), polycaprolactone, poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester,
- the biocompatible polymer can provide a controlled release of a bioactive agent, if included in the coating and/or binding the bioactive agent to a substrate, which can be the surface of a medical device or a coating thereon.
- Controlled release and delivery of bioactive agent using a polymeric carrier has been extensively researched in the past several decades (see, for example, Mathiowitz, Ed., Encyclopedia of Controlled Drug Delivery, C.H.I.P.S., 1999).
- PLA based drug delivery systems have provided controlled release of many therapeutic drugs with various degrees of success (see, for example, U.S. Pat. No. 5,581,387 to Labrie, et al.).
- the release rate of the bioactive agent can be controlled by, for example, by selection of a particular type of biocompatible polymer which can provide a desired release profile of the bioactive agent.
- the release profile of the bioactive agent can be further controlled by the molecular weight of the biocompatible polymer and/or the ratio of the biocompatible polymer over the bioactive agent.
- the release profile can also be controlled by the degradation rate of the biodegradable polymer.
- One of ordinary skill in the art can readily select a carrier system using a biocompatible polymer to provide a controlled release of the bioactive agent.
- a preferred biocompatible polymer is a polyester, such as one of poly(ester amide), poly(D,L-lactide) (PDLLA), poly(D,L-lactic acid-co-glycolic acid) (PDLLGA), polyglycolic acid (PGA), polyhydroxyalkanoate (PHA), poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly((3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(D,L-lactide), poly(L-lactide), polycaprolactone (PCL) and a combination thereof.
- PDA poly(D,L-lactide)
- PDLLGA poly(D,L-lactic acid-co-glycolic acid)
- PGA polyglycolic acid
- PHA polyhydroxyalkanoate
- PBB poly(
- the biobeneficial material can be a polymeric material or non-polymeric material.
- the biobeneficial material is preferably flexible when present as a discrete layer, or confers elastic properties in a blend or copolymer, and is biocompatible and/or biodegradable, more preferably non-toxic, non-antigenic and non-immunogenic.
- a biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent.
- non-fouling is defined as preventing, delaying or reducing the amount of formation of protein build-up caused by the body's reaction to foreign material and can be used interchangeably with the term “anti-fouling.”
- biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), polypropylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropyl methacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylprop
- the biobeneficial material is a block copolymer comprising flexible poly(ethylene glycol terephthalate)/poly(butylenes terephthalate) (PEGT/PBT) segments (PolyActiveTM). These segments are biocompatible, non-toxic, non-antigenic and non-immunogenic. Previous studies have shown that the PolyActiveTM top coat decreases the thrombosis and embolism formation on stents. PolyActiveTM is generally expressed in the form of xPEGTyPBTz, in which x is the molecular weight of PEG, y is percentage of PEGT, and z is the percentage of PBT.
- a specific PolyActiveTM polymer can have various ratios of the PEG, ranging from about 1% to about 99%, e.g., about 10% to about 90%, about 20% to about 80%, about 30% to about 70%, about 40% to about 60% PEG.
- the PEG for forming PolyActiveTM can have a molecular weight ranging from about 300 Daltons to about 100,000 Daltons, e.g., about 300 Daltons, about 500 Daltons, about 1,000 Daltons, about 5,000 Daltons, about 10,000 Daltons, about 20,000 Daltons, or about 50,000 Daltons.
- the biobeneficial material can be a polyether such as polyethhylene glycol (PEG) or polyalkylene oxide.
- the bioactive agents can be any diagnostic, preventive and therapeutic agents.
- agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities.
- Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes.
- drugs include antibodies, receptor ligands, and enzymes, adhesion peptides, oligosaccharides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy.
- antibodies include antibodies, receptor ligands, and enzymes, adhesion peptides, oligosaccharides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy.
- Such agents can also include a prohealing drug that imparts a benign neointimal response characterized by controlled proliferation of smooth muscle cells and controlled deposition of extracellular matrix with complete luminal coverage by phenotypically functional (similar to uninjured, healthy intima) and morphologically normal (similar to uninjured, healthy intima) endothelial cells.
- a prohealing drug that imparts a benign neointimal response characterized by controlled proliferation of smooth muscle cells and controlled deposition of extracellular matrix with complete luminal coverage by phenotypically functional (similar to uninjured, healthy intima) and morphologically normal (similar to uninjured, healthy intima) endothelial cells.
- Such agents can also fall under the genus of antineoplastic, cytostatic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances.
- TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.
- docetaxel e.g. Taxotere®, from Aventis S.A., Frankfurt, Germany
- methotrexate azathioprine
- vincristine vincristine
- vinblastine a cell line
- fluorouracil a cell line
- doxorubicin hydrochloride e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.
- mitomycin e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.
- antiplatelets examples include heparinoids, hirudin, recombinant hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, antibody, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.).
- cytostatic agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g.
- actinomycin D or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I 1 , actinomycin X 1 , and actinomycin C 1 .
- Other drugs include calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide.
- An example of an antiallergic agent is permirolast potassium.
- Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, bioactive RGD, antibodies such as CD-34 antibody, abciximab (REOPRO), and progenitor cell capturing antibody, prohealing drugs that promotes controlled proliferation of muscle cells with a normal and physiologically benign composition and synthesis products, enzymes, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory agents, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), dexamethasone, clobetasol, aspirin, estradiol, tacrolimus, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), pimecrolimus,
- a medical device may be any suitable medical substrate that can be implanted in a human or veterinary patient.
- medical devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.).
- the underlying structures can be of virtually any design.
- the device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
- ELGILOY cobalt chromium alloy
- stainless steel 316L
- high nitrogen stainless steel e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof.
- BIODUR 108 cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol)
- tantalum nickel-t
- the device can be a bioabsorbable stent, made from a polymeric material (and optionally erodable metal).
- the bioabsorbable stent can include a drug coating, for example with a polymer film layer or the drug can be compounded or embedded in the body of the stent.
- a medical device e.g., stent having any of the above-described features is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways.
- a stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, restenosis, and vulnerable plaque.
- Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
- an angiogram is first performed to determine the appropriate positioning for stent therapy.
- An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken.
- a guidewire is then advanced through the lesion or proposed site of treatment.
- Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway.
- the delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance.
- a stent having with or without a drug delivery coating may then be expanded at the desired area of treatment.
- a post-insertion angiogram may also be utilized to confirm appropriate positioning.
- Table 2 listed sampling schemes for the tested sample stents.
- Table 3 is a summary of BHT and total content of the drug (TC) test results at the various stages of stent manufacture process.
- FIG. 4 is the plot of BHT weight loss vs. time at various temperatures. As shown in FIG.
- FIG. 5 is a plot of Ln (BHT/BHT 0 ) vs. time. Linearity was seen at 40° C. and 50° C. baking, indicating first order sublimation kinetics. No curve fitting was performed on 55° C. and 70° C. experiment conditions, due to not enough data points. Equation 1 represents 1 st order kinetics
- BHT/BHT 0 is the ratio of BHT remained in the pan at time t and k is the sublimation rate constant at the experiment temperature.
- k is the sublimation rate constant at the experiment temperature.
- the sublimation energy for BHT is about 2 times of water's heat of vaporization, which is not very high.
- the experiment explained why BHT got lost during ETO process. Long time exposure of stents at 55° C. during ETO process can cause sublimation of BHT. With polymer protection, the sublimation rate was largely reduced.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
A method of providing an antioxidant to a medical device and a kit are described.
Description
- This application is a continuation application of U.S. application Ser. No. 11/189,216 filed on Jul. 25, 2005, the teaching of which in incorporated by reference herein in its entirety.
- 1. Field of the Invention
- This invention generally relates to a method of providing a volatile antioxidant (e.g., butylated hydroxytoluene (BHT) and/or butylated hydroxyanisole (BHA)) to a package with a medical device such as a drug-delivery stent.
- 2. Description of the Background
- Drug delivery stent is becoming a common practice to treat, prevent or ameliorate a cardiovascular condition or a related medical condition. In manufacture of drug coated stent, the drug or drug-polymer formulation is first applied onto the stent as a coating. The stent then undergoes many post coating treatments, which may involve heat, moisture, pressure, sterilized gas, electron beam or radiation. After the stents are packaged, it will face shelf life challenges. For example, if a drug is oxygen sensitive, oxidation degradation may occur during these steps. One of the commonly used methods to circumvent these shortcomings is to include one or more antioxidants in the stent coating formulation. Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) are commonly used antioxidant in food industry. For instance, many drugs such as limus family (e.g. everolimus, sirolimus, ABT 578, biorolimus) and paclitaxel are oxygen sensitive. To preserve the drug integrity, antioxidant was introduced into the drug coating formulation. Among them are BHT and BHA.
- BHA is a volatile solid with melting temperature of 45 to 63° C. BHT can be sublimated at temperatures under its melting point (70° C.). Studies have shown that in some stent coating processes, up to 40% BHT may be lost during standard ethylene oxide (ETO) sterilization process, which involves heat and moisture.
- Therefore, there is a need for the preservation of BHT and/or BHA in a stent manufacturing process. There is another need for the incorporation of BHT and/or BHA into the drug product.
- The embodiments described below address the above described problems and needs.
- Provided herein is a method for providing a volatile antioxidant (e.g., BHT and/or BHA) to a medical device (e.g., drug delivery stent) during and/or after the manufacturing process of the device. The method includes adding an antioxidant (e.g., BHT and/or BHA) to a medical device or a coating for the device, causing the antioxidant to permeate into a medical device or a coating for the device, or otherwise providing an antioxidant in the proximity or surrounding of a medical device (e.g., a stent). In some embodiments, the antioxidant permeates into a medical device or a coating of the medical device so as to provide the antioxidant in the device and/or coating or to enhance the content of the antioxidant in the device and/or coating. The antioxidant can be the same or different from the antioxidant in the device or coating should the device or coating already include one.
- The medical device can be a stent that can be a metallic or polymeric stent which is biodegradable or nondegradable. The stent itself or a coating on the stent may include a bioactive agent such as paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), pimecrolimus, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N-1-tetrazolyl)-rapamycin (ABT-578), pimecrolimus, imatinib mesylate, midostaurin, clobetasol, bioactive RGD, CD-34 antibody, abciximab (REOPRO), progenitor cell capturing antibody, prohealing drugs, prodrugs thereof, co-drugs thereof, or a combination thereof.
-
FIG. 1 shows one embodiment of the present invention where an antioxidant is placed in a porous or permeable container in a product package containing a medical device; -
FIG. 2 shows another embodiment of the present invention where an antioxidant is present between the product packaging that includes a medical device and a secondary packaging in that the antioxidant is placed in the outer layer of the product packaging; -
FIG. 3 shows another embodiment of the present invention where an antioxidant is present between the product packaging that includes a medical device and a secondary packaging in that the antioxidant is placed in the inner layer of the secondary packaging; -
FIG. 4 shows butylated hydroxytoluene (BHT) powder sublimation at different temperature; -
FIG. 5 shows BHT retained in a coating at different temperatures. - Provided herein is a method for providing an antioxidant (e.g., a volatile antioxidant), in some embodiments, butylated hydroxytoluene (BHT) and/or butylated hydroxyanisole (BHA), to a medical device such as a drug delivery stent or to a coating on the device during the manufacturing process or storage of the device. In some embodiments, the method includes causing an antioxidant (e.g., BHT and/or BHA) to permeate into a medical device or a coating on the device or otherwise providing an antioxidant in the proximity of a medical device (e.g., a stent) to allow the antioxidant to permeate into the medical device or the coating of the medical device so as to provide the antioxidant to the device or the coating or to enhance the content of the antioxidant in the device or the coating. The device or coating can include a drug. The antioxidant can be the same or different from the antioxidant in the device or coating should the device or the coating already include one. In some embodiments, the device or coating does not include an antioxidant such that the method provides for one to be added in the device or coating. In some other embodiments, the antioxidant added to a medical device or coating by the method described herein may compensate the whole or part of the loss of the antioxidant in the medical device (e.g., stent) or coating during the manufacture or storage of the medical device. In one embodiment, the antioxidant is added to the device or coating in an amount more than the loss of the antioxidant in the medical device or coating from the manufacturing process or during storage.
- The medical device can be a stent that can be a metallic or polymer stent. The stent can be a biodegradable stent or a nondegradable stent. The stent may have a polymeric coating that may include a bioactive agent such as everolimus. The coating can be biodegradable or nondegradable. In some embodiments, the stent, itself, can be a polymeric biodegradable, bioerodable or bioabsorbable stent, terms which are used interchangeably unless specifically indicated, which can include the bioactive agent embedded in the body of the stent or coating in the stent. The stent can be intended for neurovasculature, carotid, coronary, pulmonary, aorta, renal, biliary, iliac, femoral, popliteal, or other peripheral vasculature. The stent can be used to treat, prevent, or ameliorate a disorder such as atherosclerosis, thrombosis, restenosis, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, or combinations thereof.
- In one embodiment, an amount (e.g., ranging from about 1 mg to about 10 g) of a volatile antioxidant can be placed in a porous or permeable container and then place the container inside a product package such as a Tyvek pouch within which a medical device (e.g., stent) is packaged. This embodiment is shown in
FIG. 1 , where the Tyvekpackage 100 contains astent 110 and a porous orpermeable container 120, which containsantioxidant 130. - Thus, in one commercial embodiment, a kit is provided having a sterile device, such as a drug delivery stent, and an antioxidant included in the kit packaging. The stent can be packaged alone or may be pre-crimped on a delivery catheter or a balloon catheter, ready for use by a health care provider. The figures do not illustrate a catheter assembly for delivery of the stent but such devices are well known to one having ordinary skill in the art. For example, permeation of BHT into a polymeric coating can be achieved by placing a certain amount (e.g., 500 mg) of BHT in a porous or permeable container and placing the container inside a Tyvek pouch within which a medical device such as a stent is packaged prior to ethylene oxide (ETO) sterilization. During the ETO process (typically at 55° C.), BHT sublimates to form a BHT gas. The BHT gas then fills in the Tyvek pouch. The permeation rate of molecules through a Tyvek pouch is size sensitive. Larger molecules have a smaller permeation rate while smaller molecules have a larger permeation rate. Permeation rate of ETO, cresol and toluene on one kind of Tyvek material are listed below as examples of molecular size dependence on the permeation rate (Table 1).
-
TABLE 1 Time to reach permeation Material rate of 1 μg/cm2/min) ETO 120 Cresol 206 Toluene >480
Since BHT is much more bulky than ethylene oxide, it is expected that the permeation rate for BHT is significantly lower than ethylene oxide gas. Depending on the type of Tyvek pouch, the permeation rate for ETO gas and moisture could be significantly different from the bulky BHT molecule. Accordingly, over time, the Tyvek pouch can be over-saturated with BHT, which could reduce the escape of BHT from coated stents and even may lead to reverse diffusion of BHT into a coating such as the coating of a drug-delivery stent, increasing BHT content in the coating of the stent. Should the coating not include an antioxidant, such process may lead to the incorporation of the antioxidant into the coating. In some embodiments, prior to the use of the device, the level of antioxidant can be lower than the initial level of the antioxidant. In some embodiments, as mentioned previously, the level is higher. It is also possible that the level of antioxidant is preserved, e.g., about ±5%, about ±10%, about ±15%, about ±20%, or about ±30%. - In another embodiment, an amount (e.g., an amount from about 1 mg to about 20 g) of an antioxidant or a volatile antioxidant (e.g., BHT and/or BHA) can be placed intimately close to a medical device, such as bioerodable polymeric stent or polymeric coated metallic stent, which is packaged within a package (e.g., Tyvek package), in a gas impermeable secondary package after sterilization. In some embodiments, it can be before sterilization. As shown in
FIG. 2 , thesecondary packaging 200 encloses aTyvek packaging 210, which includes astent 220. The kit can include thestent 220 by itself or pre-crimped on a delivery catheter or balloon catheter. On the outer layer of theTyvek packaging 210, anantioxidant 230 is placed. The gas impermeable secondary package can be made of any plastic or non-plastic material. In this embodiment, the volatile antioxidant (e.g., BHT and/or BHA) evaporates over time, fills the space and prevents the infiltrated oxygen from damaging the product. To speed up the sublimation, one may optionally heat the entire finished package to a temperature e.g., e.g., between 20° C. and, 70° C. (e.g., about 30° C., about 40° C., about 50° C., or about 60° C.) for a short period of time (e.g., about 10 seconds, about 20 seconds, about 30 seconds, about 40 seconds, about 50 seconds, about 60 seconds, about 90 seconds, or about 120 seconds) to allow enough antioxidant gas (e.g., BHT gas) to fill the space of the secondary package. The heating can be achieved by any heating means known in the art. It is noteworthy that, in this embodiment, the volatile antioxidant (e.g., BHT) is not added directly to the polymer and/or drug formulation. - In another embodiment, the shelf life of a medical device (e.g., stent) can be improved by providing a gas impermeable secondary package, placing (e.g., by coating) an amount (e.g., about 1 mg to about 20 g) of an antioxidant (e.g., BHT particles or BHT film) in the inner-layer or inside of the secondary package, and placing a sterilized product package (e.g., Tyvek package) containing a drug-delivery stent that can include a antioxidant (e.g., BHA and/or BHT) into the secondary package. The sterilization can be by commonly known techniques including ETO. In some embodiments, sterilization can be subsequent to placement in the secondary package. As shown in
FIG. 3 , thesecondary packaging 200 encloses aTyvek packaging 210, which includes astent 220. On the inner layer or inside of thesecondary packaging 200, anantioxidant 230 is placed. The antioxidant will then evaporate to form a vapor which protects the enclosed product. The antioxidant can be the same or different from the antioxidant in the medical device. As with any other embodiments of the invention, such embodiment can be in the form of a labeled medical kit with a stent or the stent premounted on a delivery or balloon catheter. - In a further embodiment, the product shelf life can be prolonged by placing (e.g., by coating) an amount (e.g., about 1 mg to about 20 g) of a volatile antioxidant (e.g., BHT particles or BHT film) on the outer layer of a product package (e.g., Tyvek package) containing a medical device (e.g., stent) that can include a antioxidant and placing the product package inside a gas impermeable secondary package. The medical device can be sterilized prior to placement in the secondary package or alternatively after its placement. The antioxidant then evaporates over the time to protect the drug from oxidation. It should be noted that the antioxidant can be added between the two packaging in solid, fluid or gas form and is not limited to a coating form. The antioxidant can be the same or different from the antioxidant in the medical device should the device already include one. Unless otherwise specifically indicated, the term “gas impermeable” means impermeable to an antioxidant gas, preferably to BHT or BHA (conversely, the term “permeable” means permeable to an antioxidant gas). Again, such an assembly can be in the form of a medical kit with a stent or the stent premounted on a catheter.
- In a further embodiment, an antioxidant can be added to the formulation from which the device is made or from which the device is coated. For example, the antioxidant can be added to the polymer/solvent coating formulation with or without a drug. The formulation could be used to form the reservoir layer or a topcoat layer on top of the reservoir layer. The topcoat layer can be free of drug although in certain circumstances some drug migration might occur.
- The method described herein is applicable to any medical device coated with one or more drugs or bioactive agents with or without a polymeric material and optionally with one or more biobeneficial materials. The drug can be blended, conjugated, bonded or combined with a polymer. The method described herein is also applicable to any biodurable or bioabsorable (which can include bioerodable or biodegradable) device formed of a polymeric material optionally with one or more bioactive agents. The drugs or agents can be compounded in the body of the device or coated on the device. The biocompatible polymer useful for forming a coating composition can be any biocompatible polymer known in the art, which can be biodegradable or nondegradable. Biodegradable is intended to include bioabsorbable or bioerodable, unless otherwise specifically stated. Representative examples of polymers that can be used to coat a medical device in accordance with the present invention include, but are not limited to, poly(ester amide), ethylene vinyl alcohol copolymer (commonly known by the generic name EVOH or by the trade name EVAL), poly(L-lactide), poly(D-lactide), poly(D,L-lactide), poly(D,L-lactide-co-L-lactide), poly(L-lactide-co-glycolide), poly(D,L-lactide-co-glycolide) (PDLLAGA), poly(L-lactide-co-caprolactone), poly(D,L-lactide-co-caprolactone), poly(hydroxyvalerate), polycaprolactone, poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone, polyorthoester, polyanhydride, poly(glycolic acid), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyurethanes, polyphosphazenes, silicones, polyesters, polyolefins, polyisobutylene and ethylene-alphaolefin copolymers, acrylic polymers and copolymers, vinyl halide polymers and copolymers, such as polyvinyl chloride, polyvinyl ethers, such as polyvinyl methyl ether, polyvinylidene halides, fluoro polymers or copolymers under the trade name Solef™ or Kynar™ such as polyvinylidene fluoride (PVDF) and poly(vinylidene fluoride-co-hexafluoropropylene), polyvinylidene chloride, poly(butyl methacrylate), polyacrylonitrile, polyvinyl ketones, polyvinyl aromatics, such as polystyrene, polyvinyl esters, such as polyvinyl acetate, copolymers of vinyl monomers with each other and olefins, such as ethylene-methyl methacrylate copolymers, acrylonitrile-styrene copolymers, isobutylene-styrene copolymers, methacrylate-styrene copolymer, ABS resins, and ethylene-vinyl acetate copolymers, polyamides, such as Nylon 66 and polycaprolactam, alkyd resins, polycarbonates, polyoxymethylenes, polyimides, polyethers, polyvinylpyrrolidone (PVP), poly(vinyl alcohol) (PVA), polyacrylamide (PAAm), poly(glyceryl sebacate), polypropylene fumarate), epoxy resins, polyurethanes, rayon, rayon-triacetate, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethyl cellulose.
- The biocompatible polymer can provide a controlled release of a bioactive agent, if included in the coating and/or binding the bioactive agent to a substrate, which can be the surface of a medical device or a coating thereon. Controlled release and delivery of bioactive agent using a polymeric carrier has been extensively researched in the past several decades (see, for example, Mathiowitz, Ed., Encyclopedia of Controlled Drug Delivery, C.H.I.P.S., 1999). For example, PLA based drug delivery systems have provided controlled release of many therapeutic drugs with various degrees of success (see, for example, U.S. Pat. No. 5,581,387 to Labrie, et al.). The release rate of the bioactive agent can be controlled by, for example, by selection of a particular type of biocompatible polymer which can provide a desired release profile of the bioactive agent. The release profile of the bioactive agent can be further controlled by the molecular weight of the biocompatible polymer and/or the ratio of the biocompatible polymer over the bioactive agent. In the case of a biodegradable polymer, the release profile can also be controlled by the degradation rate of the biodegradable polymer. One of ordinary skill in the art can readily select a carrier system using a biocompatible polymer to provide a controlled release of the bioactive agent.
- A preferred biocompatible polymer is a polyester, such as one of poly(ester amide), poly(D,L-lactide) (PDLLA), poly(D,L-lactic acid-co-glycolic acid) (PDLLGA), polyglycolic acid (PGA), polyhydroxyalkanoate (PHA), poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly((3-hydroxyvalerate), poly(3-hydroxyhexanoate), poly(4-hydroxybutyrate), poly(4-hydroxyvalerate), poly(4-hydroxyhexanoate), poly(D,L-lactide), poly(L-lactide), polycaprolactone (PCL) and a combination thereof.
- The biobeneficial material can be a polymeric material or non-polymeric material. The biobeneficial material is preferably flexible when present as a discrete layer, or confers elastic properties in a blend or copolymer, and is biocompatible and/or biodegradable, more preferably non-toxic, non-antigenic and non-immunogenic. A biobeneficial material is one which enhances the biocompatibility of a device by being non-fouling, hemocompatible, actively non-thrombogenic, or anti-inflammatory, all without depending on the release of a pharmaceutically active agent. As used herein, the term non-fouling is defined as preventing, delaying or reducing the amount of formation of protein build-up caused by the body's reaction to foreign material and can be used interchangeably with the term “anti-fouling.”
- Representative biobeneficial materials include, but are not limited to, polyethers such as poly(ethylene glycol), copoly(ether-esters) (e.g. PEO/PLA); polyalkylene oxides such as poly(ethylene oxide), polypropylene oxide), poly(ether ester), polyalkylene oxalates, polyphosphazenes, phosphoryl choline, choline, poly(aspirin), polymers and co-polymers of hydroxyl bearing monomers such as hydroxyethyl methacrylate (HEMA), hydroxypropyl methacrylate (HPMA), hydroxypropyl methacrylamide, PEG acrylate (PEGA), PEG methacrylate, 2-methacryloyloxyethylphosphorylcholine (MPC) and n-vinyl pyrrolidone (VP), carboxylic acid bearing monomers such as methacrylic acid (MA), acrylic acid (AA), alkoxymethacrylate, alkoxyacrylate, and 3-trimethylsilylpropyl methacrylate (TMSPMA), polystyrene-polyisoprene-polystyrene-co-PEG (SIS-PEG), polystyrene-PEG, polyisobutylene-PEG, polycaprolactone-PEG (PCL-PEG), PLA-PEG, poly(methyl methacrylate)-PEG (PMMA-PEG), polydimethylsiloxane-co-PEG (PDMS-PEG), poly(vinylidene fluoride)-PEG (PVDF-PEG), PLURONIC™ surfactants (polypropylene oxide-co-polyethylene glycol), poly(tetramethylene glycol), hydroxy functional poly(vinyl pyrrolidone), biomolecules such as fibrin, fibrinogen, cellulose, starch, collagen, dextran, dextrin, hyaluronic acid, fragments and derivatives of hyaluronic acid, heparin, fragments and derivatives of heparin, glycosamino glycan (GAG), GAG derivatives, polysaccharide, elastin, chitosan, alginate, silicones, and combinations thereof. In some embodiments, the biobeneficial material can exclude any one of the aforementioned materials.
- In a preferred embodiment, the biobeneficial material is a block copolymer comprising flexible poly(ethylene glycol terephthalate)/poly(butylenes terephthalate) (PEGT/PBT) segments (PolyActive™). These segments are biocompatible, non-toxic, non-antigenic and non-immunogenic. Previous studies have shown that the PolyActive™ top coat decreases the thrombosis and embolism formation on stents. PolyActive™ is generally expressed in the form of xPEGTyPBTz, in which x is the molecular weight of PEG, y is percentage of PEGT, and z is the percentage of PBT. A specific PolyActive™ polymer can have various ratios of the PEG, ranging from about 1% to about 99%, e.g., about 10% to about 90%, about 20% to about 80%, about 30% to about 70%, about 40% to about 60% PEG. The PEG for forming PolyActive™ can have a molecular weight ranging from about 300 Daltons to about 100,000 Daltons, e.g., about 300 Daltons, about 500 Daltons, about 1,000 Daltons, about 5,000 Daltons, about 10,000 Daltons, about 20,000 Daltons, or about 50,000 Daltons.
- In another preferred embodiment, the biobeneficial material can be a polyether such as polyethhylene glycol (PEG) or polyalkylene oxide.
- The bioactive agents can be any diagnostic, preventive and therapeutic agents. Examples of such agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Other examples of drugs include antibodies, receptor ligands, and enzymes, adhesion peptides, oligosaccharides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Such agents can also include a prohealing drug that imparts a benign neointimal response characterized by controlled proliferation of smooth muscle cells and controlled deposition of extracellular matrix with complete luminal coverage by phenotypically functional (similar to uninjured, healthy intima) and morphologically normal (similar to uninjured, healthy intima) endothelial cells. Such agents can also fall under the genus of antineoplastic, cytostatic, anti-inflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antiallergic and antioxidant substances. Examples of such antineoplastics and/or antimitotics include paclitaxel (e.g. TAXOL® by Bristol-Myers Squibb Co., Stamford, Conn.), docetaxel (e.g. Taxotere®, from Aventis S.A., Frankfurt, Germany) methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include heparinoids, hirudin, recombinant hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, antibody, and thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.). Examples of cytostatic agents include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.), actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1. Other drugs include calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. An example of an antiallergic agent is permirolast potassium.
- Other therapeutic substances or agents which may be appropriate include alpha-interferon, genetically engineered epithelial cells, bioactive RGD, antibodies such as CD-34 antibody, abciximab (REOPRO), and progenitor cell capturing antibody, prohealing drugs that promotes controlled proliferation of muscle cells with a normal and physiologically benign composition and synthesis products, enzymes, antivirals, anticancer drugs, anticoagulant agents, free radical scavengers, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory agents, antibiotics, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), dexamethasone, clobetasol, aspirin, estradiol, tacrolimus, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), pimecrolimus, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, 40-O-tetrazole-rapamycin, 40-epi-(N-1-tetrazolyl)-rapamycin (ABT-578), pimecrolimus, imatinib mesylate, midostaurin, progenitor cell capturing antibody, pro-drugs thereof, co-drugs thereof, and a combination thereof. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.
- As used herein, a medical device may be any suitable medical substrate that can be implanted in a human or veterinary patient. Examples of such medical devices include self-expandable stents, balloon-expandable stents, stent-grafts, grafts (e.g., aortic grafts), artificial heart valves, cerebrospinal fluid shunts, pacemaker electrodes, and endocardial leads (e.g., FINELINE and ENDOTAK, available from Guidant Corporation, Santa Clara, Calif.). The underlying structures can be of virtually any design. The device can be made of a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Devices made from bioabsorbable or biostable polymers could also be used with the embodiments of the present invention. For example, the device can be a bioabsorbable stent, made from a polymeric material (and optionally erodable metal). The bioabsorbable stent can include a drug coating, for example with a polymer film layer or the drug can be compounded or embedded in the body of the stent.
- A medical device (e.g., stent) having any of the above-described features is useful for a variety of medical procedures, including, by way of example, treatment of obstructions caused by tumors in bile ducts, esophagus, trachea/bronchi and other biological passageways. A stent having the above-described coating is particularly useful for treating occluded regions of blood vessels caused by abnormal or inappropriate migration and proliferation of smooth muscle cells, thrombosis, restenosis, and vulnerable plaque. Stents may be placed in a wide array of blood vessels, both arteries and veins. Representative examples of sites include the iliac, renal, and coronary arteries.
- For implantation of a stent, an angiogram is first performed to determine the appropriate positioning for stent therapy. An angiogram is typically accomplished by injecting a radiopaque contrasting agent through a catheter inserted into an artery or vein as an x-ray is taken. A guidewire is then advanced through the lesion or proposed site of treatment. Over the guidewire is passed a delivery catheter which allows a stent in its collapsed configuration to be inserted into the passageway. The delivery catheter is inserted either percutaneously or by surgery into the femoral artery, brachial artery, femoral vein, or brachial vein, and advanced into the appropriate blood vessel by steering the catheter through the vascular system under fluoroscopic guidance. A stent having with or without a drug delivery coating may then be expanded at the desired area of treatment. A post-insertion angiogram may also be utilized to confirm appropriate positioning.
- Table 2 listed sampling schemes for the tested sample stents.
-
TABLE 2 Sampling scheme # of stent # of stent Stent for BHT for drug Label Sampling steps test content 1 After stent secured on the balloon 5 4 and packaged in Tyvek pouch 2 After ETO sterilization 5 4
Besides the sampling scheme for stents, BHT amount in the drug substance and in the coating solution was also assayed. The stents were manufactured by following standard Guidant procedures, which included drug coat solution mixing, spray coating, drying, stent retention on the balloon catheters, and packaging of coated stent device in Tvyek pouch. - Table 3 is a summary of BHT and total content of the drug (TC) test results at the various stages of stent manufacture process.
-
TABLE 3 Summary of BHT and TC test results TC, BHT found, % BHT % Groups Conditions % ng/ug drug retained BHT loss Raw drug 1.78 100 0 Drug coat solution 1.80 101.1 0 1 before ETO 98.5 0.97 54.6 45.4 2 Post ETO 94.8 0.11 5.9 94.1
The percent BHT was normalized based on BHT in raw drug substance. The results showed that the drug mixing process did not change BHT content. About 45% BHT was lost during stent spray coating, drying and stent retention process. With conventional ETO process, BHT dropped from ˜50% to ˜5% before and after ETO. Total content recovery was correlated with BHT level. The higher the BHT amount in the stents, the higher the total content recovery of the drug, indicating missing total content of the drug might be related to oxidation of the drug. - Since BHT loss in ETO process was severe, a study was designed to determine the cause. 100 mg of BHT was weighed in an aluminum pan and baked in a convectional oven at 55° C. and checked at 1 hr and 16 hr. The pan was weighed after each time point. After overnight baking, all the BHT powder was gone. The experiment was repeated at 70° C. for 30 minutes and 1 hr. Since 70° C. is the melting temperature for BHT, the results represented the worst case. The experiment was redone at 40° C. and 50° C. for 1 hr, 4 h, 7 h and 24 h.
FIG. 4 is the plot of BHT weight loss vs. time at various temperatures. As shown inFIG. 4 , it is clear that BHT sublimation occurred at temperatures under 70° C.FIG. 5 is a plot of Ln (BHT/BHT0) vs. time. Linearity was seen at 40° C. and 50° C. baking, indicating first order sublimation kinetics. No curve fitting was performed on 55° C. and 70° C. experiment conditions, due to not enough data points.Equation 1 represents 1st order kinetics, -
- where BHT/BHT0 is the ratio of BHT remained in the pan at time t and k is the sublimation rate constant at the experiment temperature. Using
equation 1, the half-lives for BHT sublimation are ˜13 hr at 40° C. and ˜5 hr at 50° C. - Based on the curve fitting in
FIG. 5 , k40C=0.048 and k50C=0.1331. Using Arrhenius equation (Equation 2), -
- where R is the gas constant (1.987) and Ea is the sublimation activation energy, the activation energy for BHT sublimation is 20.5 kcal/mol. The rate constant at other temperatures can be readily calculated with
equations - The sublimation energy for BHT is about 2 times of water's heat of vaporization, which is not very high. The experiment explained why BHT got lost during ETO process. Long time exposure of stents at 55° C. during ETO process can cause sublimation of BHT. With polymer protection, the sublimation rate was largely reduced.
- The study showed that ETO process contributed heavily on BHT loss. It also demonstrated the relationship between total content recovery and BHT levels on the stent. The study also demonstrated that one could take advantage of the volatile nature of BHT and BHA to enhance the product performance by placing or coating BHT/BHA in the secondary package. Other benefits include increase in storage life of the product.
- While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from this invention in its broader aspects. Therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.
Claims (20)
1. A method of packaging a drug delivery medical device, comprising:
providing an antioxidant,
placing a medical device in a first packaging; and
placing the first packaging within a second packaging, such that the antioxidant is present between the first packaging and the second packaging,
wherein the first packaging is porous or gas permeable and the second packaging is gas impermeable.
2. The method of claim 1 , wherein the antioxidant is a volatile antioxidant.
3. The method of claim 1 , wherein the antioxidant comprises butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or a combination of both.
4. The method of claim 1 , wherein the antioxidant is coated on the inner surface of the second packaging or the outer surface of the first packaging.
5. The method of claim 1 , wherein the medical device is sterilized after placement in the first packaging and prior to placement in the second packaging.
6. The method of claim 1 , wherein the medical device comprises a stent.
7. The method of claim 1 , wherein the medical device comprises a coated stent.
8. The method of claim 1 , further comprising causing sublimation of the antioxidant by a sterilization procedure, by exposure to heat, or a combination thereof.
9. The method of claim 7 , wherein the coating includes a bioactive agent.
10. The method of claim 9 , wherein the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), pimecrolimus, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N-1-tetrazolyl)-rapamycin (ABT-578), pimecrolimus, imatinib mesylate, midostaurin, clobetasol, prodrugs thereof, bioactive RGD, CD-34 antibody, abciximab (REOPRO), and progenitor cell capturing antibody.
11. The method of claim 1 , wherein the provided antioxidant is a first antioxidant and the medical device comprises a second antioxidant, the second antioxidant being the same as or different than the first antioxidant.
12. A kit, comprising:
a porous or permeable first packaging containing a medical device;
an impermeable second packaging housing the first packaging; and
an antioxidant between the first and second packaging.
13. The kit according to claim 12 , wherein the antioxidant is a volatile antioxidant.
14. The kit according to claim 12 , wherein the antioxidant comprises butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), or a combination thereof.
15. The kit according to claim 12 , wherein the antioxidant is coated on the inner surface of the second packaging or the outer surface of the first packaging.
16. The kit according to claim 12 , wherein the medical device is sterilized after placement in the first packaging and prior to placement in the second packaging.
17. The kit according to claim 12 , wherein the medical device comprises a stent.
18. The kit according to claim 12 , wherein the medical device comprises a coated stent, wherein the coating includes a bioactive agent.
19. The kit according to claim 18 , wherein the bioactive agent is selected from the group consisting of paclitaxel, docetaxel, estradiol, nitric oxide donors, super oxide dismutases, super oxide dismutases mimics, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), tacrolimus, dexamethasone, rapamycin, rapamycin derivatives, 40-O-(2-hydroxy)ethyl-rapamycin (everolimus), pimecrolimus, 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, and 40-O-tetrazole-rapamycin, 40-epi-(N-1-tetrazolyl)-rapamycin (ABT-578), pimecrolimus, imatinib mesylate, midostaurin, clobetasol, prodrugs thereof, bioactive RGD, CD-34 antibody, abciximab (REOPRO), and progenitor cell capturing antibody.
20. The kit of claim 12 , wherein the antioxidant between the first and the second packaging is a first antioxidant and wherein the medical device comprises a second antioxidant, the second antioxidant being the same as or different than the first antioxidant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/851,414 US20100300917A1 (en) | 2005-07-25 | 2010-08-05 | Methods of providing antioxidants to a drug containing product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/189,216 US7785647B2 (en) | 2005-07-25 | 2005-07-25 | Methods of providing antioxidants to a drug containing product |
US12/851,414 US20100300917A1 (en) | 2005-07-25 | 2010-08-05 | Methods of providing antioxidants to a drug containing product |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/189,216 Continuation US7785647B2 (en) | 2005-07-25 | 2005-07-25 | Methods of providing antioxidants to a drug containing product |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100300917A1 true US20100300917A1 (en) | 2010-12-02 |
Family
ID=37679362
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/189,216 Expired - Fee Related US7785647B2 (en) | 2005-07-25 | 2005-07-25 | Methods of providing antioxidants to a drug containing product |
US11/528,891 Abandoned US20070198080A1 (en) | 2005-07-25 | 2006-09-27 | Coatings including an antioxidant |
US12/851,420 Expired - Fee Related US9675737B2 (en) | 2005-07-25 | 2010-08-05 | Methods of providing antioxidants to a drug containing product |
US12/851,414 Abandoned US20100300917A1 (en) | 2005-07-25 | 2010-08-05 | Methods of providing antioxidants to a drug containing product |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/189,216 Expired - Fee Related US7785647B2 (en) | 2005-07-25 | 2005-07-25 | Methods of providing antioxidants to a drug containing product |
US11/528,891 Abandoned US20070198080A1 (en) | 2005-07-25 | 2006-09-27 | Coatings including an antioxidant |
US12/851,420 Expired - Fee Related US9675737B2 (en) | 2005-07-25 | 2010-08-05 | Methods of providing antioxidants to a drug containing product |
Country Status (2)
Country | Link |
---|---|
US (4) | US7785647B2 (en) |
WO (1) | WO2007018931A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9655751B2 (en) | 2005-07-25 | 2017-05-23 | Abbott Cardiovascular Systems Inc. | Kits including implantable medical devices and antioxidants |
US9901663B2 (en) | 2013-05-06 | 2018-02-27 | Abbott Cardiovascular Systems Inc. | Hollow stent filled with a therapeutic agent formulation |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003002243A2 (en) | 2001-06-27 | 2003-01-09 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US7349971B2 (en) * | 2004-02-05 | 2008-03-25 | Scenera Technologies, Llc | System for transmitting data utilizing multiple communication applications simultaneously in response to user request without specifying recipient's communication information |
US10076641B2 (en) | 2005-05-11 | 2018-09-18 | The Spectranetics Corporation | Methods and systems for delivering substances into luminal walls |
US7785647B2 (en) * | 2005-07-25 | 2010-08-31 | Advanced Cardiovascular Systems, Inc. | Methods of providing antioxidants to a drug containing product |
US20070135909A1 (en) * | 2005-12-08 | 2007-06-14 | Desnoyer Jessica R | Adhesion polymers to improve stent retention |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US8128688B2 (en) * | 2006-06-27 | 2012-03-06 | Abbott Cardiovascular Systems Inc. | Carbon coating on an implantable device |
CA2663250A1 (en) * | 2006-09-15 | 2008-03-20 | Boston Scientific Limited | Bioerodible endoprostheses and methods of making the same |
EP2068964B1 (en) | 2006-09-15 | 2017-11-01 | Boston Scientific Limited | Medical devices and methods of making the same |
EP2068782B1 (en) | 2006-09-15 | 2011-07-27 | Boston Scientific Limited | Bioerodible endoprostheses |
US20080114096A1 (en) * | 2006-11-09 | 2008-05-15 | Hydromer, Inc. | Lubricious biopolymeric network compositions and methods of making same |
US8998846B2 (en) | 2006-11-20 | 2015-04-07 | Lutonix, Inc. | Drug releasing coatings for balloon catheters |
US20080276935A1 (en) | 2006-11-20 | 2008-11-13 | Lixiao Wang | Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs |
US9700704B2 (en) | 2006-11-20 | 2017-07-11 | Lutonix, Inc. | Drug releasing coatings for balloon catheters |
US8414909B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US8414526B2 (en) * | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids |
US8414910B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US8425459B2 (en) | 2006-11-20 | 2013-04-23 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent |
US9737640B2 (en) | 2006-11-20 | 2017-08-22 | Lutonix, Inc. | Drug releasing coatings for medical devices |
US8414525B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices |
EP2125065B1 (en) | 2006-12-28 | 2010-11-17 | Boston Scientific Limited | Bioerodible endoprostheses and methods of making same |
JP2008305262A (en) * | 2007-06-08 | 2008-12-18 | Konica Minolta Business Technologies Inc | Printer introduction method in server and thin client environment |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US20090319031A1 (en) * | 2008-06-19 | 2009-12-24 | Yunbing Wang | Bioabsorbable Polymeric Stent With Improved Structural And Molecular Weight Integrity |
WO2010024898A2 (en) * | 2008-08-29 | 2010-03-04 | Lutonix, Inc. | Methods and apparatuses for coating balloon catheters |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US20100280594A1 (en) * | 2009-05-01 | 2010-11-04 | Medi-Solve, Llc | Antithrombotic Neurovascular Device Containing a Glycoprotein IIB/IIIA Receptor Inhibitor for The Treatment of Brain Aneurysms and/or Acute Ischemic Stroke, and Methods Related Thereto |
US20110137407A1 (en) * | 2009-07-09 | 2011-06-09 | Thai Minh Nguyen | Bare metal stent with drug eluting reservoirs |
WO2011119573A1 (en) | 2010-03-23 | 2011-09-29 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
WO2011119159A1 (en) * | 2010-03-25 | 2011-09-29 | Lixiao Wang | Drug releasing coatings for medical devices |
EP2380605A1 (en) | 2010-04-19 | 2011-10-26 | InnoRa Gmbh | Improved formulations for drug-coated medical devices |
EP2380604A1 (en) | 2010-04-19 | 2011-10-26 | InnoRa Gmbh | Improved coating formulations for scoring or cutting balloon catheters |
EP2383000A1 (en) | 2010-04-19 | 2011-11-02 | InnoRa Gmbh | Limus-coated medical devices |
EP2617774B1 (en) * | 2010-09-17 | 2015-03-04 | Terumo Kabushiki Kaisha | Silicone rubber composition |
US8966868B2 (en) * | 2011-05-09 | 2015-03-03 | Abbott Cardiovascular Systems Inc. | Methods of stabilizing molecular weight of polymer stents after sterilization |
CN104039371B (en) | 2011-10-14 | 2016-06-01 | 伊诺拉两合有限公司 | For the improved formulations of medication coat medical treatment device |
WO2013102842A2 (en) | 2012-01-06 | 2013-07-11 | Sahajanand Medical Technologies Private Limited | Device and composition for drug release |
DE102012102082B3 (en) * | 2012-03-13 | 2013-03-21 | Thyssenkrupp Rasselstein Gmbh | A method of treating a metal-coated steel strip or sheet with an aftertreatment agent and a steel strip or sheet provided with a metal coating. |
US20140102049A1 (en) * | 2012-10-17 | 2014-04-17 | Abbott Cardiovascular Systems Inc. | Method Of Fabrication Of Implantable Medical Device Comprising Macrocyclic Triene Active Agent And Antioxidant |
US20160250392A1 (en) * | 2015-02-26 | 2016-09-01 | Battelle Memorial Instute | Implant with reactive oxygen species scavenging coating |
Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3429717A (en) * | 1965-05-24 | 1969-02-25 | Grace W R & Co | Flexible film wrapper |
US3993622A (en) * | 1970-10-08 | 1976-11-23 | Ciba-Geigy Corporation | Bis-salicyloyl-hydrazine as stabilizer for polymers |
US4401804A (en) * | 1982-05-24 | 1983-08-30 | Eastman Kodak Company | Deactivation of polyester catalyst residues |
US5006281A (en) * | 1985-03-26 | 1991-04-09 | Century Laboratories, Inc. | Process for the production of a marine animal oil |
US5288711A (en) * | 1992-04-28 | 1994-02-22 | American Home Products Corporation | Method of treating hyperproliferative vascular disease |
US5527337A (en) * | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
US5539081A (en) * | 1992-10-02 | 1996-07-23 | Cargill, Incorporated | Melt-stable lactide polymer composition and process for manufacture thereof |
US5581387A (en) * | 1993-08-04 | 1996-12-03 | Fujitsu Limited | Optical data communications network with a plurality of optical transmitters and a common optical receiver connected via a passive optical network |
US5618866A (en) * | 1996-01-22 | 1997-04-08 | General Electric Company | Neo diol phosphite esters and polymeric compositions thereof |
US5992000A (en) * | 1997-10-16 | 1999-11-30 | Scimed Life Systems, Inc. | Stent crimper |
US6037022A (en) * | 1997-09-16 | 2000-03-14 | International Paper Company | Oxygen-scavenging filled polymer blend for food packaging applications |
US6065597A (en) * | 1996-06-14 | 2000-05-23 | Astra Aktiebolag | Catheter package |
US6309383B1 (en) * | 2000-01-20 | 2001-10-30 | Isostent, Inc. | Stent crimper apparatus with radiation shied |
US20020015542A1 (en) * | 2000-06-22 | 2002-02-07 | Bradley James S. | Laminate antioxidant film |
US20020022144A1 (en) * | 2000-05-19 | 2002-02-21 | Hu Yang | Enhanced oxygen barrier performance from modification of ethylene vinyl alcohol copolymers (EVOH) |
US20020153511A1 (en) * | 2000-12-22 | 2002-10-24 | Cotterman R. L. | Method of sterilizing and initiating a scavenging reaction in an article |
US6485950B1 (en) * | 2000-07-14 | 2002-11-26 | Council Of Scientific And Industrial Research | Isozyme of autoclavable superoxide dismutase (SOD), a process for the identification and extraction of the SOD in cosmetic, food and pharmaceutical compositions |
US20030083646A1 (en) * | 2000-12-22 | 2003-05-01 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
US20030144145A1 (en) * | 2001-12-19 | 2003-07-31 | Hu Yang | Oxygen scavenging compositions comprising polymers derived from aromatic difunctional monomers |
US6608187B2 (en) * | 2000-05-23 | 2003-08-19 | The Rockefeller University | C1 bacteriophage lytic system |
US20030189192A1 (en) * | 2000-03-24 | 2003-10-09 | Daniele Girelli | Stabilizing mixtures for organic polymers |
US20030204239A1 (en) * | 2002-04-26 | 2003-10-30 | Wenda Carlyle | Endovascular stent with a preservative coating |
US20030215564A1 (en) * | 2001-01-18 | 2003-11-20 | Heller Phillip F. | Method and apparatus for coating an endoprosthesis |
US20030216806A1 (en) * | 2002-05-14 | 2003-11-20 | Terumo Kabushiki Kaisha | Stent |
US20040033269A1 (en) * | 2002-08-06 | 2004-02-19 | Ecolab Inc. | Critical fluid antimicrobial compositions and their use and generation |
US6727300B2 (en) * | 2000-11-03 | 2004-04-27 | Cytec Technology Corp. | Polymeric articles containing hindered amine light stabilizers based on multi-functional carbonyl compounds |
US6746622B2 (en) * | 2002-02-08 | 2004-06-08 | Chevron Phillips Chemical Company Lp | Oxygen scavenging compositions comprising polymers derived from tetrahydrofurfuryl monomers |
US20040116332A1 (en) * | 1999-05-27 | 2004-06-17 | Ornberg Richard L. | Biopolymers modified with superoxide dismutase mimics |
US20040220660A1 (en) * | 2001-02-05 | 2004-11-04 | Shanley John F. | Bioresorbable stent with beneficial agent reservoirs |
US20050004663A1 (en) * | 2001-05-07 | 2005-01-06 | Llanos Gerard H. | Heparin barrier coating for controlled drug release |
US20050037048A1 (en) * | 2003-08-11 | 2005-02-17 | Young-Ho Song | Medical devices containing antioxidant and therapeutic agent |
US6949254B2 (en) * | 2002-01-30 | 2005-09-27 | Bmg Incorporated | Bio-decomposable polymer composition showing good thermal decomposition |
US7022258B2 (en) * | 2002-02-14 | 2006-04-04 | Chevron Phillips Chemical Company, Lp | Oxygen scavenging compositions comprising polymers derived from benzenedimethanol monomers |
US20070020380A1 (en) * | 2005-07-25 | 2007-01-25 | Ni Ding | Methods of providing antioxidants to a drug containing product |
US20090319031A1 (en) * | 2008-06-19 | 2009-12-24 | Yunbing Wang | Bioabsorbable Polymeric Stent With Improved Structural And Molecular Weight Integrity |
US20100036047A1 (en) * | 2005-10-24 | 2010-02-11 | Lucite International, Inc. | Extrudable acrylic compositions |
US7704518B2 (en) * | 2003-08-04 | 2010-04-27 | Foamix, Ltd. | Foamable vehicle and pharmaceutical compositions thereof |
US8128688B2 (en) * | 2006-06-27 | 2012-03-06 | Abbott Cardiovascular Systems Inc. | Carbon coating on an implantable device |
US8207240B2 (en) * | 2009-09-14 | 2012-06-26 | Abbott Cardiovascular Systems Inc | Method to minimize molecular weight drop of poly(L-lactide) stent during processing |
US8394446B2 (en) * | 2005-07-25 | 2013-03-12 | Abbott Cardiovascular Systems Inc. | Methods of providing antioxidants to implantable medical devices |
Family Cites Families (287)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR732895A (en) | 1932-10-18 | 1932-09-25 | Consortium Elektrochem Ind | Articles spun in polyvinyl alcohol |
US2386454A (en) | 1940-11-22 | 1945-10-09 | Bell Telephone Labor Inc | High molecular weight linear polyester-amides |
US3849514A (en) | 1967-11-17 | 1974-11-19 | Eastman Kodak Co | Block polyester-polyamide copolymers |
US3773737A (en) | 1971-06-09 | 1973-11-20 | Sutures Inc | Hydrolyzable polymers of amino acid and hydroxy acids |
US4329383A (en) | 1979-07-24 | 1982-05-11 | Nippon Zeon Co., Ltd. | Non-thrombogenic material comprising substrate which has been reacted with heparin |
SU790725A1 (en) | 1979-07-27 | 1983-01-23 | Ордена Ленина Институт Элементоорганических Соединений Ан Ссср | Process for preparing alkylaromatic polyimides |
US4226243A (en) | 1979-07-27 | 1980-10-07 | Ethicon, Inc. | Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids |
SU811750A1 (en) | 1979-08-07 | 1983-09-23 | Институт Физиологии Им.С.И.Бериташвили | Bis-bicarbonates of aliphatic diols as monomers for preparing polyurethanes and process for producing the same |
SU872531A1 (en) | 1979-08-07 | 1981-10-15 | Институт Физиологии Им.И.С.Бериташвили Ан Гсср | Method of producing polyurethans |
SU876663A1 (en) | 1979-11-11 | 1981-10-30 | Институт Физиологии Им. Академика И.С.Бериташвили Ан Гсср | Method of producing polyarylates |
SU1016314A1 (en) | 1979-12-17 | 1983-05-07 | Институт Физиологии Им.И.С.Бериташвили | Process for producing polyester urethanes |
US4529792A (en) | 1979-12-17 | 1985-07-16 | Minnesota Mining And Manufacturing Company | Process for preparing synthetic absorbable poly(esteramides) |
US4343931A (en) | 1979-12-17 | 1982-08-10 | Minnesota Mining And Manufacturing Company | Synthetic absorbable surgical devices of poly(esteramides) |
SU905228A1 (en) | 1980-03-06 | 1982-02-15 | Институт Физиологии Им. Акад.И.С. Бериташвили Ан Гсср | Method for preparing thiourea |
SU1293518A1 (en) | 1985-04-11 | 1987-02-28 | Тбилисский зональный научно-исследовательский и проектный институт типового и экспериментального проектирования жилых и общественных зданий | Installation for testing specimen of cross-shaped structure |
US4656242A (en) | 1985-06-07 | 1987-04-07 | Henkel Corporation | Poly(ester-amide) compositions |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4611051A (en) | 1985-12-31 | 1986-09-09 | Union Camp Corporation | Novel poly(ester-amide) hot-melt adhesives |
US4882168A (en) | 1986-09-05 | 1989-11-21 | American Cyanamid Company | Polyesters containing alkylene oxide blocks as drug delivery systems |
JPH0696023B2 (en) | 1986-11-10 | 1994-11-30 | 宇部日東化成株式会社 | Artificial blood vessel and method for producing the same |
US5721131A (en) | 1987-03-06 | 1998-02-24 | United States Of America As Represented By The Secretary Of The Navy | Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells |
US4800882A (en) | 1987-03-13 | 1989-01-31 | Cook Incorporated | Endovascular stent and delivery system |
US6387379B1 (en) | 1987-04-10 | 2002-05-14 | University Of Florida | Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like |
US4894231A (en) | 1987-07-28 | 1990-01-16 | Biomeasure, Inc. | Therapeutic agent delivery system |
US4886062A (en) | 1987-10-19 | 1989-12-12 | Medtronic, Inc. | Intravascular radially expandable stent and method of implant |
US5019096A (en) | 1988-02-11 | 1991-05-28 | Trustees Of Columbia University In The City Of New York | Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same |
JP2561309B2 (en) | 1988-03-28 | 1996-12-04 | テルモ株式会社 | Medical material and manufacturing method thereof |
US4931287A (en) | 1988-06-14 | 1990-06-05 | University Of Utah | Heterogeneous interpenetrating polymer networks for the controlled release of drugs |
US5328471A (en) | 1990-02-26 | 1994-07-12 | Endoluminal Therapeutics, Inc. | Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens |
US4977901A (en) | 1988-11-23 | 1990-12-18 | Minnesota Mining And Manufacturing Company | Article having non-crosslinked crystallized polymer coatings |
IL90193A (en) | 1989-05-04 | 1993-02-21 | Biomedical Polymers Int | Polurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same |
US5272012A (en) | 1989-06-23 | 1993-12-21 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
US5971954A (en) | 1990-01-10 | 1999-10-26 | Rochester Medical Corporation | Method of making catheter |
DK0514406T3 (en) | 1990-01-30 | 1994-08-15 | Akzo Nobel Nv | An article for controlled release of an active substance comprising a cavity completely enclosed by a wall and fully or partially filled with one or more active substances |
US5300295A (en) | 1990-05-01 | 1994-04-05 | Mediventures, Inc. | Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH |
US5292516A (en) | 1990-05-01 | 1994-03-08 | Mediventures, Inc. | Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers |
US5298260A (en) | 1990-05-01 | 1994-03-29 | Mediventures, Inc. | Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality |
US5306501A (en) | 1990-05-01 | 1994-04-26 | Mediventures, Inc. | Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers |
WO1991017724A1 (en) | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
WO1991019529A1 (en) | 1990-06-15 | 1991-12-26 | Cortrak Medical, Inc. | Drug delivery apparatus and method |
CA2038605C (en) | 1990-06-15 | 2000-06-27 | Leonard Pinchuk | Crack-resistant polycarbonate urethane polymer prostheses and the like |
US6060451A (en) | 1990-06-15 | 2000-05-09 | The National Research Council Of Canada | Thrombin inhibitors based on the amino acid sequence of hirudin |
US5112457A (en) | 1990-07-23 | 1992-05-12 | Case Western Reserve University | Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants |
US5455040A (en) | 1990-07-26 | 1995-10-03 | Case Western Reserve University | Anticoagulant plasma polymer-modified substrate |
US5258020A (en) | 1990-09-14 | 1993-11-02 | Michael Froix | Method of using expandable polymeric stent with memory |
US6248129B1 (en) | 1990-09-14 | 2001-06-19 | Quanam Medical Corporation | Expandable polymeric stent with memory and delivery apparatus and method |
US5163952A (en) | 1990-09-14 | 1992-11-17 | Michael Froix | Expandable polymeric stent with memory and delivery apparatus and method |
US5462990A (en) | 1990-10-15 | 1995-10-31 | Board Of Regents, The University Of Texas System | Multifunctional organic polymers |
GB9027793D0 (en) | 1990-12-21 | 1991-02-13 | Ucb Sa | Polyester-amides containing terminal carboxyl groups |
US5330768A (en) | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
US5500013A (en) | 1991-10-04 | 1996-03-19 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
US5573934A (en) | 1992-04-20 | 1996-11-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
US5599352A (en) | 1992-03-19 | 1997-02-04 | Medtronic, Inc. | Method of making a drug eluting stent |
GB9206736D0 (en) | 1992-03-27 | 1992-05-13 | Sandoz Ltd | Improvements of organic compounds and their use in pharmaceutical compositions |
US5219980A (en) | 1992-04-16 | 1993-06-15 | Sri International | Polymers biodegradable or bioerodiable into amino acids |
EP0568451B1 (en) | 1992-04-28 | 1999-08-04 | Terumo Kabushiki Kaisha | Thermoplastic polymer composition and medical devices made of the same |
DE4224401A1 (en) | 1992-07-21 | 1994-01-27 | Pharmatech Gmbh | New biodegradable homo- and co-polymer(s) for pharmaceutical use - produced by polycondensation of prod. from heterolytic cleavage of aliphatic polyester with functionalised (cyclo)aliphatic cpd. |
FR2699168B1 (en) | 1992-12-11 | 1995-01-13 | Rhone Poulenc Chimie | Method of treating a material comprising a polymer by hydrolysis. |
EP0604022A1 (en) | 1992-12-22 | 1994-06-29 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method for its manufacture |
US20020055710A1 (en) | 1998-04-30 | 2002-05-09 | Ronald J. Tuch | Medical device for delivering a therapeutic agent and method of preparation |
US5824048A (en) | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
US5464650A (en) | 1993-04-26 | 1995-11-07 | Medtronic, Inc. | Intravascular stent and method |
JPH0767895A (en) | 1993-06-25 | 1995-03-14 | Sumitomo Electric Ind Ltd | Antimicrobial artificial blood vessel and suture yarn for antimicrobial operation |
US5994341A (en) | 1993-07-19 | 1999-11-30 | Angiogenesis Technologies, Inc. | Anti-angiogenic Compositions and methods for the treatment of arthritis |
EG20321A (en) | 1993-07-21 | 1998-10-31 | Otsuka Pharma Co Ltd | Medical material and process for producing the same |
DE4327024A1 (en) | 1993-08-12 | 1995-02-16 | Bayer Ag | Thermoplastically processable and biodegradable aliphatic polyesteramides |
US5380299A (en) | 1993-08-30 | 1995-01-10 | Med Institute, Inc. | Thrombolytic treated intravascular medical device |
WO1995010989A1 (en) | 1993-10-19 | 1995-04-27 | Scimed Life Systems, Inc. | Intravascular stent pump |
US5723004A (en) | 1993-10-21 | 1998-03-03 | Corvita Corporation | Expandable supportive endoluminal grafts |
WO1995019796A1 (en) | 1994-01-21 | 1995-07-27 | Brown University Research Foundation | Biocompatible implants |
US6051576A (en) | 1994-01-28 | 2000-04-18 | University Of Kentucky Research Foundation | Means to achieve sustained release of synergistic drugs by conjugation |
WO1995024929A2 (en) | 1994-03-15 | 1995-09-21 | Brown University Research Foundation | Polymeric gene delivery system |
US5567410A (en) | 1994-06-24 | 1996-10-22 | The General Hospital Corporation | Composotions and methods for radiographic imaging |
US5857998A (en) | 1994-06-30 | 1999-01-12 | Boston Scientific Corporation | Stent and therapeutic delivery system |
US5670558A (en) | 1994-07-07 | 1997-09-23 | Terumo Kabushiki Kaisha | Medical instruments that exhibit surface lubricity when wetted |
US5788979A (en) | 1994-07-22 | 1998-08-04 | Inflow Dynamics Inc. | Biodegradable coating with inhibitory properties for application to biocompatible materials |
US5516881A (en) | 1994-08-10 | 1996-05-14 | Cornell Research Foundation, Inc. | Aminoxyl-containing radical spin labeling in polymers and copolymers |
US5578073A (en) | 1994-09-16 | 1996-11-26 | Ramot Of Tel Aviv University | Thromboresistant surface treatment for biomaterials |
US5649977A (en) | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
US5485496A (en) | 1994-09-22 | 1996-01-16 | Cornell Research Foundation, Inc. | Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties |
FR2724938A1 (en) | 1994-09-28 | 1996-03-29 | Lvmh Rech | POLYMERS FUNCTIONALIZED BY AMINO ACIDS OR AMINO ACID DERIVATIVES, THEIR USE AS SURFACTANTS, IN PARTICULAR, IN COSMETIC COMPOSITIONS AND IN PARTICULAR NAIL POLISH. |
JPH10509696A (en) | 1994-10-12 | 1998-09-22 | フォーカル, インコーポレイテッド | Targeted delivery via biodegradable polymers |
US5637113A (en) | 1994-12-13 | 1997-06-10 | Advanced Cardiovascular Systems, Inc. | Polymer film for wrapping a stent structure |
US5569198A (en) | 1995-01-23 | 1996-10-29 | Cortrak Medical Inc. | Microporous catheter |
US6017577A (en) | 1995-02-01 | 2000-01-25 | Schneider (Usa) Inc. | Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices |
US5919570A (en) | 1995-02-01 | 1999-07-06 | Schneider Inc. | Slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly(N-vinylpyrrolidone) polymer hydrogel, coated polymer and metal substrate materials, and coated medical devices |
US5869127A (en) | 1995-02-22 | 1999-02-09 | Boston Scientific Corporation | Method of providing a substrate with a bio-active/biocompatible coating |
US5702754A (en) | 1995-02-22 | 1997-12-30 | Meadox Medicals, Inc. | Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings |
US6231600B1 (en) | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices |
US5854376A (en) | 1995-03-09 | 1998-12-29 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Aliphatic ester-amide copolymer resins |
US5605696A (en) | 1995-03-30 | 1997-02-25 | Advanced Cardiovascular Systems, Inc. | Drug loaded polymeric material and method of manufacture |
US20020091433A1 (en) | 1995-04-19 | 2002-07-11 | Ni Ding | Drug release coated stent |
CA2218495A1 (en) | 1995-04-19 | 1996-10-24 | Kazunori Kataoka | Heterotelechelic block copolymer and a method for the production thereof |
US5837313A (en) | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
US6099562A (en) | 1996-06-13 | 2000-08-08 | Schneider (Usa) Inc. | Drug coating with topcoat |
US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
US5674242A (en) | 1995-06-06 | 1997-10-07 | Quanam Medical Corporation | Endoprosthetic device with therapeutic compound |
US5820917A (en) | 1995-06-07 | 1998-10-13 | Medtronic, Inc. | Blood-contacting medical device and method |
CA2178541C (en) | 1995-06-07 | 2009-11-24 | Neal E. Fearnot | Implantable medical device |
US7550005B2 (en) | 1995-06-07 | 2009-06-23 | Cook Incorporated | Coated implantable medical device |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
US6774278B1 (en) | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
US7611533B2 (en) | 1995-06-07 | 2009-11-03 | Cook Incorporated | Coated implantable medical device |
US6010530A (en) | 1995-06-07 | 2000-01-04 | Boston Scientific Technology, Inc. | Self-expanding endoluminal prosthesis |
US5667767A (en) | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
US5877224A (en) | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
US5723219A (en) | 1995-12-19 | 1998-03-03 | Talison Research | Plasma deposited film networks |
US5658995A (en) | 1995-11-27 | 1997-08-19 | Rutgers, The State University | Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide) |
DE19545678A1 (en) | 1995-12-07 | 1997-06-12 | Goldschmidt Ag Th | Copolymers of polyamino acid esters |
DK2111876T3 (en) | 1995-12-18 | 2011-12-12 | Angiodevice Internat Gmbh | Crosslinked polymer preparations and methods for their use |
US6033582A (en) | 1996-01-22 | 2000-03-07 | Etex Corporation | Surface modification of medical implants |
US6054553A (en) | 1996-01-29 | 2000-04-25 | Bayer Ag | Process for the preparation of polymers having recurring agents |
US5932299A (en) | 1996-04-23 | 1999-08-03 | Katoot; Mohammad W. | Method for modifying the surface of an object |
US5955509A (en) | 1996-05-01 | 1999-09-21 | Board Of Regents, The University Of Texas System | pH dependent polymer micelles |
US5610241A (en) | 1996-05-07 | 1997-03-11 | Cornell Research Foundation, Inc. | Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers |
US5876433A (en) | 1996-05-29 | 1999-03-02 | Ethicon, Inc. | Stent and method of varying amounts of heparin coated thereon to control treatment |
US5874165A (en) | 1996-06-03 | 1999-02-23 | Gore Enterprise Holdings, Inc. | Materials and method for the immobilization of bioactive species onto polymeric subtrates |
NL1003459C2 (en) | 1996-06-28 | 1998-01-07 | Univ Twente | Copoly (ester amides) and copoly (ester urethanes). |
US5711958A (en) | 1996-07-11 | 1998-01-27 | Life Medical Sciences, Inc. | Methods for reducing or eliminating post-surgical adhesion formation |
US5830178A (en) | 1996-10-11 | 1998-11-03 | Micro Therapeutics, Inc. | Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide |
US6060518A (en) | 1996-08-16 | 2000-05-09 | Supratek Pharma Inc. | Polymer compositions for chemotherapy and methods of treatment using the same |
US5783657A (en) | 1996-10-18 | 1998-07-21 | Union Camp Corporation | Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids |
US6530951B1 (en) | 1996-10-24 | 2003-03-11 | Cook Incorporated | Silver implantable medical device |
US6120491A (en) | 1997-11-07 | 2000-09-19 | The State University Rutgers | Biodegradable, anionic polymers derived from the amino acid L-tyrosine |
US5980972A (en) | 1996-12-20 | 1999-11-09 | Schneider (Usa) Inc | Method of applying drug-release coatings |
US5997517A (en) | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
WO1998032777A1 (en) | 1997-01-28 | 1998-07-30 | United States Surgical Corporation | Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom |
WO1998032779A1 (en) | 1997-01-28 | 1998-07-30 | United States Surgical Corporation | Polyesteramide, its preparation and surgical devices fabricated therefrom |
WO1998032398A1 (en) | 1997-01-28 | 1998-07-30 | United States Surgical Corporation | Polyesteramide, its preparation and surgical devices fabricated therefrom |
WO1998041559A1 (en) | 1997-03-20 | 1998-09-24 | Eastman Chemical Company | Process for the modification of a polyester melt used in a continuous melt-to-preform process |
US6240616B1 (en) | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US5879697A (en) | 1997-04-30 | 1999-03-09 | Schneider Usa Inc | Drug-releasing coatings for medical devices |
US6245760B1 (en) | 1997-05-28 | 2001-06-12 | Aventis Pharmaceuticals Products, Inc | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
US6159978A (en) | 1997-05-28 | 2000-12-12 | Aventis Pharmaceuticals Product, Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
US6180632B1 (en) | 1997-05-28 | 2001-01-30 | Aventis Pharmaceuticals Products Inc. | Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases |
US6056993A (en) | 1997-05-30 | 2000-05-02 | Schneider (Usa) Inc. | Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel |
US6110483A (en) | 1997-06-23 | 2000-08-29 | Sts Biopolymers, Inc. | Adherent, flexible hydrogel and medicated coatings |
US6211249B1 (en) | 1997-07-11 | 2001-04-03 | Life Medical Sciences, Inc. | Polyester polyether block copolymers |
US5980928A (en) | 1997-07-29 | 1999-11-09 | Terry; Paul B. | Implant for preventing conjunctivitis in cattle |
CN1272873A (en) | 1997-08-08 | 2000-11-08 | 普罗格特-甘布尔公司 | Laundry detergent compositions with amino acid based polymers to provide appearance and integrity benefits to fabrics laundered therewith |
US6121027A (en) | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6316522B1 (en) | 1997-08-18 | 2001-11-13 | Scimed Life Systems, Inc. | Bioresorbable hydrogel compositions for implantable prostheses |
US6890546B2 (en) | 1998-09-24 | 2005-05-10 | Abbott Laboratories | Medical devices containing rapamycin analogs |
US6120788A (en) | 1997-10-16 | 2000-09-19 | Bioamide, Inc. | Bioabsorbable triglycolic acid poly(ester-amide)s |
US6015541A (en) | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
CA2312913A1 (en) * | 1997-12-12 | 1999-06-24 | Jeffrey C. Way | Compounds and methods for the inhibition of protein-protein interactions |
US6110188A (en) | 1998-03-09 | 2000-08-29 | Corvascular, Inc. | Anastomosis method |
US6258371B1 (en) | 1998-04-03 | 2001-07-10 | Medtronic Inc | Method for making biocompatible medical article |
US20030040790A1 (en) | 1998-04-15 | 2003-02-27 | Furst Joseph G. | Stent coating |
US20010029351A1 (en) | 1998-04-16 | 2001-10-11 | Robert Falotico | Drug combinations and delivery devices for the prevention and treatment of vascular disease |
US7658727B1 (en) | 1998-04-20 | 2010-02-09 | Medtronic, Inc | Implantable medical device with enhanced biocompatibility and biostability |
ATE298590T1 (en) | 1998-04-27 | 2005-07-15 | Surmodics Inc | BIOACTIVE ACTIVE COATINGS |
US20020188037A1 (en) | 1999-04-15 | 2002-12-12 | Chudzik Stephen J. | Method and system for providing bioactive agent release coating |
US6113629A (en) | 1998-05-01 | 2000-09-05 | Micrus Corporation | Hydrogel for the therapeutic treatment of aneurysms |
KR100314496B1 (en) | 1998-05-28 | 2001-11-22 | 윤동진 | Non-thrombogenic heparin derivatives, process for preparation and use thereof |
US6153252A (en) | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents |
JP4898991B2 (en) | 1998-08-20 | 2012-03-21 | クック メディカル テクノロジーズ エルエルシー | Sheathed medical device |
US6248127B1 (en) | 1998-08-21 | 2001-06-19 | Medtronic Ave, Inc. | Thromboresistant coated medical device |
US6335029B1 (en) | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US6011125A (en) | 1998-09-25 | 2000-01-04 | General Electric Company | Amide modified polyesters |
US6530950B1 (en) | 1999-01-12 | 2003-03-11 | Quanam Medical Corporation | Intraluminal stent having coaxial polymer member |
US6419692B1 (en) | 1999-02-03 | 2002-07-16 | Scimed Life Systems, Inc. | Surface protection method for stents and balloon catheters for drug delivery |
US6143354A (en) | 1999-02-08 | 2000-11-07 | Medtronic Inc. | One-step method for attachment of biomolecules to substrate surfaces |
US6258121B1 (en) | 1999-07-02 | 2001-07-10 | Scimed Life Systems, Inc. | Stent coating |
US6494862B1 (en) | 1999-07-13 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway |
US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
US6177523B1 (en) | 1999-07-14 | 2001-01-23 | Cardiotech International, Inc. | Functionalized polyurethanes |
US20040029952A1 (en) | 1999-09-03 | 2004-02-12 | Yung-Ming Chen | Ethylene vinyl alcohol composition and coating |
US6503954B1 (en) | 2000-03-31 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Biocompatible carrier containing actinomycin D and a method of forming the same |
US6749626B1 (en) | 2000-03-31 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Actinomycin D for the treatment of vascular disease |
US6713119B2 (en) | 1999-09-03 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Biocompatible coating for a prosthesis and a method of forming the same |
US6503556B2 (en) | 2000-12-28 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Methods of forming a coating for a prosthesis |
US6287628B1 (en) | 1999-09-03 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US6790228B2 (en) | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6379381B1 (en) | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US6759054B2 (en) | 1999-09-03 | 2004-07-06 | Advanced Cardiovascular Systems, Inc. | Ethylene vinyl alcohol composition and coating |
US6203551B1 (en) | 1999-10-04 | 2001-03-20 | Advanced Cardiovascular Systems, Inc. | Chamber for applying therapeutic substances to an implant device |
US6331313B1 (en) | 1999-10-22 | 2001-12-18 | Oculex Pharmaceticals, Inc. | Controlled-release biocompatible ocular drug delivery implant devices and methods |
US6251136B1 (en) | 1999-12-08 | 2001-06-26 | Advanced Cardiovascular Systems, Inc. | Method of layering a three-coated stent using pharmacological and polymeric agents |
US20020081228A1 (en) * | 1999-12-21 | 2002-06-27 | Hui Henry K. | Monitoring sterilant concentration in diffusion-restricted regions as a basis for parametric release |
US6613432B2 (en) | 1999-12-22 | 2003-09-02 | Biosurface Engineering Technologies, Inc. | Plasma-deposited coatings, devices and methods |
US6908624B2 (en) | 1999-12-23 | 2005-06-21 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6283949B1 (en) | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
US20010007083A1 (en) | 1999-12-29 | 2001-07-05 | Roorda Wouter E. | Device and active component for inhibiting formation of thrombus-inflammatory cell matrix |
US6899731B2 (en) | 1999-12-30 | 2005-05-31 | Boston Scientific Scimed, Inc. | Controlled delivery of therapeutic agents by insertable medical devices |
US6527801B1 (en) | 2000-04-13 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Biodegradable drug delivery material for stent |
US6270779B1 (en) | 2000-05-10 | 2001-08-07 | United States Of America | Nitric oxide-releasing metallic medical devices |
US20020005206A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Antiproliferative drug and delivery device |
US6776796B2 (en) | 2000-05-12 | 2004-08-17 | Cordis Corportation | Antiinflammatory drug and delivery device |
US20020007215A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007214A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US20020007213A1 (en) | 2000-05-19 | 2002-01-17 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease |
DE10025458B4 (en) * | 2000-05-23 | 2005-05-12 | Vacuumschmelze Gmbh | Magnet and method for its production |
US6673385B1 (en) | 2000-05-31 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Methods for polymeric coatings stents |
US6395326B1 (en) | 2000-05-31 | 2002-05-28 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for depositing a coating onto a surface of a prosthesis |
US6585765B1 (en) | 2000-06-29 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Implantable device having substances impregnated therein and a method of impregnating the same |
US20020077693A1 (en) | 2000-12-19 | 2002-06-20 | Barclay Bruce J. | Covered, coiled drug delivery stent and method |
US6555157B1 (en) | 2000-07-25 | 2003-04-29 | Advanced Cardiovascular Systems, Inc. | Method for coating an implantable device and system for performing the method |
MXPA03000821A (en) | 2000-07-27 | 2004-03-18 | Univ Rutgers | Therapeutic polyesters and polyamides. |
US6451373B1 (en) | 2000-08-04 | 2002-09-17 | Advanced Cardiovascular Systems, Inc. | Method of forming a therapeutic coating onto a surface of an implantable prosthesis |
US6503538B1 (en) | 2000-08-30 | 2003-01-07 | Cornell Research Foundation, Inc. | Elastomeric functional biodegradable copolyester amides and copolyester urethanes |
US6585926B1 (en) | 2000-08-31 | 2003-07-01 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a porous balloon |
US6254632B1 (en) | 2000-09-28 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Implantable medical device having protruding surface structures for drug delivery and cover attachment |
US6716444B1 (en) | 2000-09-28 | 2004-04-06 | Advanced Cardiovascular Systems, Inc. | Barriers for polymer-coated implantable medical devices and methods for making the same |
US7261735B2 (en) | 2001-05-07 | 2007-08-28 | Cordis Corporation | Local drug delivery devices and methods for maintaining the drug coatings thereon |
US6746773B2 (en) | 2000-09-29 | 2004-06-08 | Ethicon, Inc. | Coatings for medical devices |
US20020051730A1 (en) | 2000-09-29 | 2002-05-02 | Stanko Bodnar | Coated medical devices and sterilization thereof |
US20020111590A1 (en) | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
US6506437B1 (en) | 2000-10-17 | 2003-01-14 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device having depots formed in a surface thereof |
US6558733B1 (en) | 2000-10-26 | 2003-05-06 | Advanced Cardiovascular Systems, Inc. | Method for etching a micropatterned microdepot prosthesis |
US6758859B1 (en) | 2000-10-30 | 2004-07-06 | Kenny L. Dang | Increased drug-loading and reduced stress drug delivery device |
US20020082679A1 (en) | 2000-12-22 | 2002-06-27 | Avantec Vascular Corporation | Delivery or therapeutic capable agents |
US6824559B2 (en) | 2000-12-22 | 2004-11-30 | Advanced Cardiovascular Systems, Inc. | Ethylene-carboxyl copolymers as drug delivery matrices |
US6544543B1 (en) | 2000-12-27 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Periodic constriction of vessels to treat ischemic tissue |
US6540776B2 (en) | 2000-12-28 | 2003-04-01 | Advanced Cardiovascular Systems, Inc. | Sheath for a prosthesis and methods of forming the same |
US6663662B2 (en) | 2000-12-28 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Diffusion barrier layer for implantable devices |
US20020087123A1 (en) | 2001-01-02 | 2002-07-04 | Hossainy Syed F.A. | Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices |
US6645195B1 (en) | 2001-01-05 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Intraventricularly guided agent delivery system and method of use |
US6544223B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Balloon catheter for delivering therapeutic agents |
US6544582B1 (en) | 2001-01-05 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for coating an implantable device |
US6740040B1 (en) | 2001-01-30 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Ultrasound energy driven intraventricular catheter to treat ischemia |
US20030032767A1 (en) | 2001-02-05 | 2003-02-13 | Yasuhiro Tada | High-strength polyester-amide fiber and process for producing the same |
CA2437820C (en) | 2001-02-09 | 2008-09-23 | Endoluminal Therapeutics, Inc. | Endomural therapy |
US20030004141A1 (en) | 2001-03-08 | 2003-01-02 | Brown David L. | Medical devices, compositions and methods for treating vulnerable plaque |
US6613077B2 (en) | 2001-03-27 | 2003-09-02 | Scimed Life Systems, Inc. | Stent with controlled expansion |
US6780424B2 (en) | 2001-03-30 | 2004-08-24 | Charles David Claude | Controlled morphologies in polymer drug for release of drugs from polymer films |
US6645135B1 (en) | 2001-03-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance |
US6623448B2 (en) | 2001-03-30 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Steerable drug delivery device |
US6625486B2 (en) | 2001-04-11 | 2003-09-23 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for intracellular delivery of an agent |
US6764505B1 (en) | 2001-04-12 | 2004-07-20 | Advanced Cardiovascular Systems, Inc. | Variable surface area stent |
US6712845B2 (en) | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
EP1383504A1 (en) | 2001-04-26 | 2004-01-28 | Control Delivery Systems, Inc. | Sustained release drug delivery system containing codrugs |
US6660034B1 (en) | 2001-04-30 | 2003-12-09 | Advanced Cardiovascular Systems, Inc. | Stent for increasing blood flow to ischemic tissues and a method of using the same |
US6656506B1 (en) | 2001-05-09 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Microparticle coated medical device |
US7651695B2 (en) | 2001-05-18 | 2010-01-26 | Advanced Cardiovascular Systems, Inc. | Medicated stents for the treatment of vascular disease |
US6605154B1 (en) | 2001-05-31 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Stent mounting device |
US7862495B2 (en) | 2001-05-31 | 2011-01-04 | Advanced Cardiovascular Systems, Inc. | Radiation or drug delivery source with activity gradient to minimize edge effects |
US6743462B1 (en) | 2001-05-31 | 2004-06-01 | Advanced Cardiovascular Systems, Inc. | Apparatus and method for coating implantable devices |
US6666880B1 (en) | 2001-06-19 | 2003-12-23 | Advised Cardiovascular Systems, Inc. | Method and system for securing a coated stent to a balloon catheter |
US6695920B1 (en) | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
US6572644B1 (en) | 2001-06-27 | 2003-06-03 | Advanced Cardiovascular Systems, Inc. | Stent mounting device and a method of using the same to coat a stent |
US6673154B1 (en) | 2001-06-28 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Stent mounting device to coat a stent |
US6565659B1 (en) | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
US6585755B2 (en) | 2001-06-29 | 2003-07-01 | Advanced Cardiovascular | Polymeric stent suitable for imaging by MRI and fluoroscopy |
US6527863B1 (en) | 2001-06-29 | 2003-03-04 | Advanced Cardiovascular Systems, Inc. | Support device for a stent and a method of using the same to coat a stent |
US6706013B1 (en) | 2001-06-29 | 2004-03-16 | Advanced Cardiovascular Systems, Inc. | Variable length drug delivery catheter |
US6656216B1 (en) | 2001-06-29 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Composite stent with regioselective material |
EP1273314A1 (en) | 2001-07-06 | 2003-01-08 | Terumo Kabushiki Kaisha | Stent |
US6641611B2 (en) | 2001-11-26 | 2003-11-04 | Swaminathan Jayaraman | Therapeutic coating for an intravascular implant |
WO2003028590A1 (en) | 2001-09-24 | 2003-04-10 | Medtronic Ave Inc. | Rational drug therapy device and methods |
US7195640B2 (en) | 2001-09-25 | 2007-03-27 | Cordis Corporation | Coated medical devices for the treatment of vulnerable plaque |
US20030059520A1 (en) | 2001-09-27 | 2003-03-27 | Yung-Ming Chen | Apparatus for regulating temperature of a composition and a method of coating implantable devices |
US6753071B1 (en) | 2001-09-27 | 2004-06-22 | Advanced Cardiovascular Systems, Inc. | Rate-reducing membrane for release of an agent |
US20030073961A1 (en) | 2001-09-28 | 2003-04-17 | Happ Dorrie M. | Medical device containing light-protected therapeutic agent and a method for fabricating thereof |
US20030065377A1 (en) | 2001-09-28 | 2003-04-03 | Davila Luis A. | Coated medical devices |
US7585516B2 (en) | 2001-11-12 | 2009-09-08 | Advanced Cardiovascular Systems, Inc. | Coatings for drug delivery devices |
US6663880B1 (en) | 2001-11-30 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Permeabilizing reagents to increase drug delivery and a method of local delivery |
US6709514B1 (en) | 2001-12-28 | 2004-03-23 | Advanced Cardiovascular Systems, Inc. | Rotary coating apparatus for coating implantable medical devices |
US7445629B2 (en) | 2002-01-31 | 2008-11-04 | Boston Scientific Scimed, Inc. | Medical device for delivering biologically active material |
US6887270B2 (en) | 2002-02-08 | 2005-05-03 | Boston Scientific Scimed, Inc. | Implantable or insertable medical device resistant to microbial growth and biofilm formation |
JP2003253031A (en) | 2002-02-28 | 2003-09-10 | Toray Ind Inc | Biodegradable crosslinked resin foam |
US6743463B2 (en) | 2002-03-28 | 2004-06-01 | Scimed Life Systems, Inc. | Method for spray-coating a medical device having a tubular wall such as a stent |
US6865810B2 (en) | 2002-06-27 | 2005-03-15 | Scimed Life Systems, Inc. | Methods of making medical devices |
CN1215156C (en) * | 2002-07-12 | 2005-08-17 | 吕新 | Color-flame candle and method for making same |
US20040054104A1 (en) | 2002-09-05 | 2004-03-18 | Pacetti Stephen D. | Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol) |
US20040063805A1 (en) | 2002-09-19 | 2004-04-01 | Pacetti Stephen D. | Coatings for implantable medical devices and methods for fabrication thereof |
US7087263B2 (en) | 2002-10-09 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Rare limiting barriers for implantable medical devices |
AU2003293082A1 (en) | 2002-11-27 | 2004-06-23 | Tufts University | Antioxidant-functionalized polymers |
US8088404B2 (en) | 2003-03-20 | 2012-01-03 | Medtronic Vasular, Inc. | Biocompatible controlled release coatings for medical devices and related methods |
US7318944B2 (en) | 2003-08-07 | 2008-01-15 | Medtronic Vascular, Inc. | Extrusion process for coating stents |
US20050038497A1 (en) | 2003-08-11 | 2005-02-17 | Scimed Life Systems, Inc. | Deformation medical device without material deformation |
US20050037052A1 (en) | 2003-08-13 | 2005-02-17 | Medtronic Vascular, Inc. | Stent coating with gradient porosity |
US20050043786A1 (en) | 2003-08-18 | 2005-02-24 | Medtronic Ave, Inc. | Methods and apparatus for treatment of aneurysmal tissue |
US20050049693A1 (en) | 2003-08-25 | 2005-03-03 | Medtronic Vascular Inc. | Medical devices and compositions for delivering biophosphonates to anatomical sites at risk for vascular disease |
US20050055078A1 (en) | 2003-09-04 | 2005-03-10 | Medtronic Vascular, Inc. | Stent with outer slough coating |
US20050054774A1 (en) | 2003-09-09 | 2005-03-10 | Scimed Life Systems, Inc. | Lubricious coating |
US7544381B2 (en) | 2003-09-09 | 2009-06-09 | Boston Scientific Scimed, Inc. | Lubricious coatings for medical device |
US20050060020A1 (en) | 2003-09-17 | 2005-03-17 | Scimed Life Systems, Inc. | Covered stent with biologically active material |
US7371228B2 (en) | 2003-09-19 | 2008-05-13 | Medtronic Vascular, Inc. | Delivery of therapeutics to treat aneurysms |
US7789891B2 (en) | 2003-09-23 | 2010-09-07 | Boston Scientific Scimed, Inc. | External activation of vaso-occlusive implants |
US20050065501A1 (en) | 2003-09-23 | 2005-03-24 | Scimed Life Systems, Inc. | Energy activated vaso-occlusive devices |
US7060319B2 (en) | 2003-09-24 | 2006-06-13 | Boston Scientific Scimed, Inc. | method for using an ultrasonic nozzle to coat a medical appliance |
US8801692B2 (en) | 2003-09-24 | 2014-08-12 | Medtronic Vascular, Inc. | Gradient coated stent and method of fabrication |
US7055237B2 (en) | 2003-09-29 | 2006-06-06 | Medtronic Vascular, Inc. | Method of forming a drug eluting stent |
US20050074406A1 (en) | 2003-10-03 | 2005-04-07 | Scimed Life Systems, Inc. | Ultrasound coating for enhancing visualization of medical device in ultrasound images |
US6984411B2 (en) | 2003-10-14 | 2006-01-10 | Boston Scientific Scimed, Inc. | Method for roll coating multiple stents |
-
2005
- 2005-07-25 US US11/189,216 patent/US7785647B2/en not_active Expired - Fee Related
-
2006
- 2006-07-11 WO PCT/US2006/027050 patent/WO2007018931A2/en active Application Filing
- 2006-09-27 US US11/528,891 patent/US20070198080A1/en not_active Abandoned
-
2010
- 2010-08-05 US US12/851,420 patent/US9675737B2/en not_active Expired - Fee Related
- 2010-08-05 US US12/851,414 patent/US20100300917A1/en not_active Abandoned
Patent Citations (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3429717A (en) * | 1965-05-24 | 1969-02-25 | Grace W R & Co | Flexible film wrapper |
US3993622A (en) * | 1970-10-08 | 1976-11-23 | Ciba-Geigy Corporation | Bis-salicyloyl-hydrazine as stabilizer for polymers |
US4401804A (en) * | 1982-05-24 | 1983-08-30 | Eastman Kodak Company | Deactivation of polyester catalyst residues |
US5006281A (en) * | 1985-03-26 | 1991-04-09 | Century Laboratories, Inc. | Process for the production of a marine animal oil |
US5527337A (en) * | 1987-06-25 | 1996-06-18 | Duke University | Bioabsorbable stent and method of making the same |
US5288711A (en) * | 1992-04-28 | 1994-02-22 | American Home Products Corporation | Method of treating hyperproliferative vascular disease |
US5539081A (en) * | 1992-10-02 | 1996-07-23 | Cargill, Incorporated | Melt-stable lactide polymer composition and process for manufacture thereof |
US5581387A (en) * | 1993-08-04 | 1996-12-03 | Fujitsu Limited | Optical data communications network with a plurality of optical transmitters and a common optical receiver connected via a passive optical network |
US5618866A (en) * | 1996-01-22 | 1997-04-08 | General Electric Company | Neo diol phosphite esters and polymeric compositions thereof |
US6065597A (en) * | 1996-06-14 | 2000-05-23 | Astra Aktiebolag | Catheter package |
US6037022A (en) * | 1997-09-16 | 2000-03-14 | International Paper Company | Oxygen-scavenging filled polymer blend for food packaging applications |
US5992000A (en) * | 1997-10-16 | 1999-11-30 | Scimed Life Systems, Inc. | Stent crimper |
US20040116332A1 (en) * | 1999-05-27 | 2004-06-17 | Ornberg Richard L. | Biopolymers modified with superoxide dismutase mimics |
US6309383B1 (en) * | 2000-01-20 | 2001-10-30 | Isostent, Inc. | Stent crimper apparatus with radiation shied |
US20030189192A1 (en) * | 2000-03-24 | 2003-10-09 | Daniele Girelli | Stabilizing mixtures for organic polymers |
US20020022144A1 (en) * | 2000-05-19 | 2002-02-21 | Hu Yang | Enhanced oxygen barrier performance from modification of ethylene vinyl alcohol copolymers (EVOH) |
US6608187B2 (en) * | 2000-05-23 | 2003-08-19 | The Rockefeller University | C1 bacteriophage lytic system |
US20020015542A1 (en) * | 2000-06-22 | 2002-02-07 | Bradley James S. | Laminate antioxidant film |
US6485950B1 (en) * | 2000-07-14 | 2002-11-26 | Council Of Scientific And Industrial Research | Isozyme of autoclavable superoxide dismutase (SOD), a process for the identification and extraction of the SOD in cosmetic, food and pharmaceutical compositions |
US6727300B2 (en) * | 2000-11-03 | 2004-04-27 | Cytec Technology Corp. | Polymeric articles containing hindered amine light stabilizers based on multi-functional carbonyl compounds |
US20020153511A1 (en) * | 2000-12-22 | 2002-10-24 | Cotterman R. L. | Method of sterilizing and initiating a scavenging reaction in an article |
US20030083646A1 (en) * | 2000-12-22 | 2003-05-01 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
US6875400B2 (en) * | 2000-12-22 | 2005-04-05 | Cryovac, Inc. | Method of sterilizing and initiating a scavenging reaction in an article |
US20030215564A1 (en) * | 2001-01-18 | 2003-11-20 | Heller Phillip F. | Method and apparatus for coating an endoprosthesis |
US20040220660A1 (en) * | 2001-02-05 | 2004-11-04 | Shanley John F. | Bioresorbable stent with beneficial agent reservoirs |
US20050004663A1 (en) * | 2001-05-07 | 2005-01-06 | Llanos Gerard H. | Heparin barrier coating for controlled drug release |
US20030144145A1 (en) * | 2001-12-19 | 2003-07-31 | Hu Yang | Oxygen scavenging compositions comprising polymers derived from aromatic difunctional monomers |
US6949254B2 (en) * | 2002-01-30 | 2005-09-27 | Bmg Incorporated | Bio-decomposable polymer composition showing good thermal decomposition |
US6746622B2 (en) * | 2002-02-08 | 2004-06-08 | Chevron Phillips Chemical Company Lp | Oxygen scavenging compositions comprising polymers derived from tetrahydrofurfuryl monomers |
US7022258B2 (en) * | 2002-02-14 | 2006-04-04 | Chevron Phillips Chemical Company, Lp | Oxygen scavenging compositions comprising polymers derived from benzenedimethanol monomers |
US20030204239A1 (en) * | 2002-04-26 | 2003-10-30 | Wenda Carlyle | Endovascular stent with a preservative coating |
US20030216806A1 (en) * | 2002-05-14 | 2003-11-20 | Terumo Kabushiki Kaisha | Stent |
US20040033269A1 (en) * | 2002-08-06 | 2004-02-19 | Ecolab Inc. | Critical fluid antimicrobial compositions and their use and generation |
US7704518B2 (en) * | 2003-08-04 | 2010-04-27 | Foamix, Ltd. | Foamable vehicle and pharmaceutical compositions thereof |
US20050037048A1 (en) * | 2003-08-11 | 2005-02-17 | Young-Ho Song | Medical devices containing antioxidant and therapeutic agent |
US20070020380A1 (en) * | 2005-07-25 | 2007-01-25 | Ni Ding | Methods of providing antioxidants to a drug containing product |
US20070198080A1 (en) * | 2005-07-25 | 2007-08-23 | Ni Ding | Coatings including an antioxidant |
US7785647B2 (en) * | 2005-07-25 | 2010-08-31 | Advanced Cardiovascular Systems, Inc. | Methods of providing antioxidants to a drug containing product |
US20100300903A1 (en) * | 2005-07-25 | 2010-12-02 | Ni Ding | Methods of providing antioxidants to a drug containing product |
US8394446B2 (en) * | 2005-07-25 | 2013-03-12 | Abbott Cardiovascular Systems Inc. | Methods of providing antioxidants to implantable medical devices |
US20100036047A1 (en) * | 2005-10-24 | 2010-02-11 | Lucite International, Inc. | Extrudable acrylic compositions |
US8128688B2 (en) * | 2006-06-27 | 2012-03-06 | Abbott Cardiovascular Systems Inc. | Carbon coating on an implantable device |
US20090319031A1 (en) * | 2008-06-19 | 2009-12-24 | Yunbing Wang | Bioabsorbable Polymeric Stent With Improved Structural And Molecular Weight Integrity |
US8207240B2 (en) * | 2009-09-14 | 2012-06-26 | Abbott Cardiovascular Systems Inc | Method to minimize molecular weight drop of poly(L-lactide) stent during processing |
Non-Patent Citations (5)
Title |
---|
Lazada, Water Dessicant Pack (Anti-Fog), 2013, Lazada.com, www.lazada.com.my/Watershot-Desiccant-Pack-Anti-Fog-451390.html * |
Unknown, Discoloration of Polyurethane Foam, 6/11/2014, FXI Industries, http://fxi.com/assets/pdf/up_06_quality/Discoloration_Info_Sheet_-_111010.pdf * |
Unknown, Introduction to Voltile Organic Compounds (VOCs), 6/11/2014, Home Institute, http://www.homeinstitute.com/introduction-to-volatile-organic-compounds-vocs.htm * |
Unknown, TechBarrier S, 6/11/2014, Mitsubishi Plastics, http://www.techbarrier.com/type/category05/index.html * |
Unknown, Volatile Organic Compounds in Your Home, 6/11/2014, Minnesota Department of Health, www.health.state.mn.us/divs/eh/indoorair/voc/ * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9655751B2 (en) | 2005-07-25 | 2017-05-23 | Abbott Cardiovascular Systems Inc. | Kits including implantable medical devices and antioxidants |
US9901663B2 (en) | 2013-05-06 | 2018-02-27 | Abbott Cardiovascular Systems Inc. | Hollow stent filled with a therapeutic agent formulation |
Also Published As
Publication number | Publication date |
---|---|
US20070198080A1 (en) | 2007-08-23 |
US20100300903A1 (en) | 2010-12-02 |
US7785647B2 (en) | 2010-08-31 |
US20070020380A1 (en) | 2007-01-25 |
WO2007018931A2 (en) | 2007-02-15 |
WO2007018931A3 (en) | 2007-06-07 |
US9675737B2 (en) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9675737B2 (en) | Methods of providing antioxidants to a drug containing product | |
US7311980B1 (en) | Polyactive/polylactic acid coatings for an implantable device | |
US9539332B2 (en) | Plasticizers for coating compositions | |
US8932615B2 (en) | Implantable devices formed on non-fouling methacrylate or acrylate polymers | |
US7601383B2 (en) | Coating construct containing poly (vinyl alcohol) | |
US7637941B1 (en) | Endothelial cell binding coatings for rapid encapsulation of bioerodable stents | |
US8048441B2 (en) | Nanobead releasing medical devices | |
WO2006026521A1 (en) | Polymers of fluorinated monomers and hydrophilic monomers | |
JP2008517719A (en) | Poly (ester amide) filler blends for control of coating properties | |
US20080095918A1 (en) | Coating construct with enhanced interfacial compatibility | |
US20160158420A1 (en) | Coatings formed from stimulus-sensitive material | |
US20100189758A1 (en) | Coating containing pegylated hyaluronic acid and a pegylated non-hyaluronic acid polymer | |
US20080262606A1 (en) | Polymers containing siloxane monomers | |
US20080175882A1 (en) | Polymers of aliphatic thioester | |
US9381279B2 (en) | Implantable devices formed on non-fouling methacrylate or acrylate polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |